Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

ZnO nanowires were grown by vapor-transport and deposition on Au nanocluster covered fused and thermal silica and c-Si. The nanowire size and density depended strongly on the substrate type. By decreasing the O 2 to local Zn partial pressure ratio, the growth pattern changed to nanocombs and nanosheets. ZnO nanohedgehogs were found on bare c-Si. We observe a remarkable correlation between the defect to exciton photoluminescence intensity ratio and the nanostructures specific surface areas. These results indicate that changes in strain and O deficiency defects at surfaces are behind the observed morphology changes, one to two-dimensional growth transition, and corresponding luminescence. © 2012 American Institute of Physics.

Registro:

Documento: Artículo
Título:Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence
Autor:Grinblat, G.; Capeluto, M.G.; Tirado, M.; Bragas, A.V.; Comedi, D.
Filiación:Laboratorio de Física Del Sólido, Dep. de Física, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina
Laboratorio de Electrónica Cuántica, Dep. de Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Laboratorio de Propiedades Dieléctricas de la Materia, Dep. de Física, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina
Instituto de Física de Buenos Aires (IFIBA), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Au nanoclusters; Exciton photoluminescences; Growth mechanisms; Growth patterns; Morphology changes; Nanocombs; Partial pressure ratio; Substrate types; Two-dimensional growth; ZnO; ZnO nanostructures; ZnO nanowires; Fused silica; Nanowires; Photoluminescence; Silicon; Vapors; Zinc oxide
Año:2012
Volumen:100
Número:23
DOI: http://dx.doi.org/10.1063/1.4724195
Título revista:Applied Physics Letters
Título revista abreviado:Appl Phys Lett
ISSN:00036951
CODEN:APPLA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00036951_v100_n23_p_Grinblat

Referencias:

  • Chu, S., Lie, D., Chang, P., Lu, J.G., (2011) Nanoscale Res. Lett., 6, p. 38. , 10.1007/s11671-010-9804-x
  • Vanmaekelbergh, D., Van Vugt, L.K., (2011) Nanoscale, 3, p. 2783. , 10.1039/c1nr00013f
  • Liao, L., Lu, H.B., Li, J.C., Liu, C., Fu, D.J., Liu, Y.L., (2007) Appl. Phys. Lett., 91, p. 173110. , 10.1063/1.2800812
  • Zhang, X., Wang, L., Zhou, G., (2005) Rev. Adv. Mater. Sci., 10, p. 69. , www.ipme.ru/ejournals/RAMS/no_11005/zhang.html
  • Cheng, A., Tzeng, Y., Zhou, Y., Park, M., Wu, T., Shannon, C., Wang, D., Lee, W., (2008) Appl. Phys. Lett., 92, p. 092113. , 10.1063/1.2889502
  • Ye, C., Fang, X., Hao, Y., Teng, X., Zhang, L., (2005) J. Phys. Chem. B, 109, p. 19758. , 10.1021/jp0509358
  • Choi, J.H., Seo, J.S., Cha, S.N., Kim, H.J., Kim, S.M., Park, Y.J., Kim, S., Kim, J.M., (2011) Jpn. J. Appl. Phys., Part 1, 50, p. 015001. , 10.1143/JJAP.50.015001
  • Roozbehi, M., Sangpour, P., Khademi, A., Moshfegh, A.Z., (2011) Appl. Surf. Sci., 257, p. 3291. , 10.1016/j.apsusc.2010.11.005
  • Zhu, G., Zhou, Y., Wang, S., Yang, R., Ding, Y., Wang, X., Bando, Y., Wang, Z., (2012) Nanotechnology, 23, p. 055604. , 10.1088/0957-4484/23/5/055604
  • Ghosh, R., Basak, D., Fujihara, S., (2004) J. Appl. Phys., 96, p. 2689. , 10.1063/1.1769598
  • Zang, C.H., Liu, Y.C., Zhao, D.X., Zhang, J.Y., Shen, D.Z., (2010) J. Nanosci. Nanotechnol., 10, p. 2370. , 10.1166/jnn.2010.2480
  • Phan, T.L., Sun, Y., Vincent, R., (2011) J. Korean Phys. Soc., 59, p. 60. , 10.3938/jkps.59.60
  • Chen, S., Liu, Y., Shao, C., Mu, R., Lu, Y., Zahng, J., Shen, D., Fan, X., (2005) Adv. Mater., 17, p. 586. , 10.1002/adma.200401263
  • Park, J.-H., Park, J.-G., (2006) Curr. Appl. Phys., 6, p. 1020. , 10.1016/j.ca2005.07.011
  • Vega, N.C., Wallar, R., Caram, J., Grinblat, G., Tirado, M., Lapierre, R.R., Comedi, D., ZnO nanowire co-growth on SiO 2 and C by carbothermal reduction and vapour advection, Nanotechnology (IOP) (in press); Bai, W., Yu, K., Zhang, Q., Xu, F., Peng, D., Zhu, Z., (2007) Mater. Lett., 61, p. 3469. , 10.1016/j.matlet.2006.11.103
  • Zhang, H., Du, N., Wu, J., Ma, X., Yang, D., Zhang, X., Yang, Z., (2007) Mat. Sci. Eng. B, 141, p. 76. , 10.1016/j.mseb.2007.06.001
  • Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Morko, H., (2005) J. Appl. Phys., 98, p. 041301. , 10.1063/1.1992666
  • Shalish, I., Temkin, H., Narayanamurti, V., (2004) Phys. Rev. B, 69, p. 245401. , 10.1103/PhysRevB.69.245401
  • Voss, T., Bekeny, C., Gutowski, J., Tena-Zaera, R., Elias, J., Lévy- Clément, C., Mora-Seró, I., Bisquert, J., (2009) J. Appl. Phys., 106, p. 054304. , 10.1063/1.3211294

Citas:

---------- APA ----------
Grinblat, G., Capeluto, M.G., Tirado, M., Bragas, A.V. & Comedi, D. (2012) . Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence. Applied Physics Letters, 100(23).
http://dx.doi.org/10.1063/1.4724195
---------- CHICAGO ----------
Grinblat, G., Capeluto, M.G., Tirado, M., Bragas, A.V., Comedi, D. "Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence" . Applied Physics Letters 100, no. 23 (2012).
http://dx.doi.org/10.1063/1.4724195
---------- MLA ----------
Grinblat, G., Capeluto, M.G., Tirado, M., Bragas, A.V., Comedi, D. "Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence" . Applied Physics Letters, vol. 100, no. 23, 2012.
http://dx.doi.org/10.1063/1.4724195
---------- VANCOUVER ----------
Grinblat, G., Capeluto, M.G., Tirado, M., Bragas, A.V., Comedi, D. Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence. Appl Phys Lett. 2012;100(23).
http://dx.doi.org/10.1063/1.4724195