Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An intensity dependent nonlinear coupling model of N two-level atoms (generalized Dicke model) interacting dispersively with a bimodal cavity field via two-photon transitions is investigated in a scenario where the rotating wave approximation is assumed. The model becomes homogeneous in the sense that the spin transition frequency is the same for all atoms and the coupling constants emerging from the collective interactions of the atomic system with the cavity field depend only on the particular radiation field mode. This allows us to represent the Dicke Hamiltonian entirely in terms of the total angular momentum J. It is assumed that, initially, the atomic system and the field are in a disentangled state where the field modes are in Glauber coherent states and the atomic system is a superposition of states |JM (Dicke states). The model is numerically tested against simulations of normal squeezing variance of the field, squeezing factors based on the Heisenberg uncertainty principle, along with the statistical properties of the light leading to the possible production of nonclassical effects, such as degree of second-order coherence in the modes, degree of intermode correlation, as well as violation of the Cauchy-Schwartz inequality. Analytical expression of the total density operator matrix elements at t>0 shows the present nonlinear model to be strongly entangled, which is reflected in the time evolution of the linear entropy, where the superposition states are reduced to statistical mixtures. Thus, the present generalized Dicke model does not preserve the modulus of the Bloch vector. The computations, performed in the weak coupling and strong field limits, were conducted via second-order Dyson perturbative expansion of the time evolution operator matrix elements for the totality of the angular momentum states of the atomic system. © 2011 Elsevier Inc.

Registro:

Documento: Artículo
Título:Nonclassical effects in a highly nonlinear generalized homogeneous Dicke model
Autor:Grinberg, H.
Filiación:Department of Physics, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad Universitaria, Pabellón 1, (1428) Buenos Aires, Argentina
IFIBA, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Palabras clave:Dicke model; Entanglement; Linear entropy; Normal squeezing; Rotating wave approximation; Variance squeezing
Año:2011
Volumen:326
Número:11
Página de inicio:2845
Página de fin:2867
DOI: http://dx.doi.org/10.1016/j.aop.2011.07.010
Título revista:Annals of Physics
Título revista abreviado:Ann. Phys.
ISSN:00034916
CODEN:APNYA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00034916_v326_n11_p2845_Grinberg

Referencias:

  • Dicke, R.H., (1954) Phys. Rev., 93, pp. 99-110
  • Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B., (2006) Nat. Phys., 2, pp. 849-855
  • Greentree, A.D., Tahan, C., Cole, J.H., Hollenberg, L.C.L., (2006) Nat. Phys., 2, pp. 856-861
  • Smith, B.J., Mahou, P., Cohen, O., Lundeen, J.S., Walmsley, L.A., (2009) Opt. Exp., 17, pp. 23589-23602
  • Zagoskin, A.M., Ashhab, S., Johansson, J.R., Nori, F., (2006) Phys. Rev. Lett., 97, p. 077001. , (4 pages)
  • Scheibner, M., Yakes, M., Bracker, A.S., Ponomarev, I.V., Doty, M.F., Hellberg, C.S., Whitman, L.J., Gammon, D., (2008) Nat. Phys., 4, pp. 291-295
  • Puri, R.R., (2001) Mathematical Methods of Quantum Optics, pp. 215-237. , Springer, Berlin
  • Ramon, G., Brif, C., Mann, A., (1998) Phys. Rev. A, 58, pp. 2506-2517
  • Emary, C., Brandes, T., (2004) Phys. Rev. A, 69, p. 053804. , (7 pages)
  • Lee, C.F., Johnson, N.F., (2004) Phys. Rev. Lett., 93, p. 083001. , (4 pages)
  • Li, Y., Wang, Z.D., Sun, C.P., (2006) Phys. Rev. A, 74, p. 023815. , (5 pages)
  • Tolkunov, D., Solenov, D., (2007) Phys. Rev. B, 75, p. 024402. , (7 pages)
  • Chen, G., Chen, Z., (2007) J. Liang, Phys. Rev. A, 76, p. 045801. , (4 pages)
  • Chen, G., Wang, X., Liang, J.-Q., Wang, Z.D., (2008) Phys. Rev. A, 78, p. 023634. , (5 pages)
  • Nagy, D., Konya, G., Szirmai, G., Domokos, P., (2010) Phys. Rev. Lett., 104, p. 130401. , (4 pages)
  • Goto, H., Ichimura, K., (2008) Phys. Rev. A, 77, p. 053811. , (5 pages)
  • Tsyplyatyev, O., Loss, D., (2009) Phys. Rev. A, 80, p. 023803. , (6 pages)
  • Alcalde, M.A., Kullock, R., Svaiter, N.F., (2009) J. Math. Phys., 50, p. 013511. , (17 pages)
  • Larson, J., Lewenstein, M., (2009) New J. Phys., 11, p. 063027. , (18 pages)
  • Schneider, S., Milburn, G.J., (2002) Phys. Rev. A, 65, p. 042107. , (5 pages)
  • Emary, C., Brandes, T., (2003) Phys. Rev. E, 67, p. 066203. , (22 pages)
  • Hou, X.-W., Hu, B., (2004) Phys. Rev. A, 69, p. 042110. , (6 pages)
  • Bužek, V., Orzag, M., Rosko, M., (2005) Phys. Rev. Lett., 94, p. 163601. , (4 pages)
  • Narozhny, N.B., Sánchez-Mondragón, J.J., Eberly, J.H., (1981) Phys. Rev. A, 23, pp. 236-247
  • Arnesen, M.C., Bose, S., Vedral, V., (2001) Phys. Rev. Lett., 87, p. 017901. , (4 pages)
  • Yu, T., Eberly, J.H., (2004) Phys. Rev. Lett., 93, p. 140404. , (4 pages)
  • Tanaś, R., Ficek, Z., (2004) J. Opt. B: Quantum Semiclass. Opt., 6, pp. S610-S617
  • Song, L., Wang, X., Yan, D., Zong, Z.G., (2008) Int. J. Theor. Phys., 47, pp. 2635-2644
  • Härkönen, K., Plastina, F., Maniscalco, S., (2009) Phys. Rev. A, 80, p. 033841. , (15 pages)
  • Loudon, R., Knight, P.L., (1987) J. Mod. Opt., 34, pp. 709-759
  • Kimble, H.J., (2008) Nature (London), 453, pp. 1023-1030
  • Pérez-Campos, C., González-Alonso, J.R., Castaños, O., (2010) Ann. Phys., 325, pp. 325-344
  • Hassan, S.S., Nayak, N., Deb, R.N., (2009) Phys. Lett. A, 373, pp. 3697-3700
  • Deb, R.N., Nayak, N., Dutta-Roy, B., (2005) Eur. Phys. J. D, 33, pp. 149-155
  • Nagak, N., Deb, R.N., Dutta-Roy, B., (2005) J. Opt. B, 7, pp. S761-S764
  • Grinberg, H., (2008) J. Phys. Chem. B, 112, pp. 16140-16157
  • Grinberg, H., (2008) Int. J. Mod. Phys. B, 22, pp. 599-633
  • Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H., (1972) Phys. Rev. A, 6, pp. 2211-2236
  • Barnett, S.M., Radmore, P.M., (1997) Methods in Theoretical Quantum Optics, pp. 236-239. , Oxford Science Publications, Clarendon Press, Oxford
  • Zhang, J.-S., Xu, J.-B., (2009) Can. J. Phys., 87, pp. 1031-1036
  • Kitagawa, M., Ueda, M., (1993) Phys. Rev. A, 47, pp. 5138-5143
  • Grinberg, H., (2010) Int. J. Mod. Phys. B, 24, pp. 1079-1092
  • Kukliński, J.R., Madajczyk, J.L., (1988) Phys. Rev. A, 37, pp. 3175-3178
  • Woods, C.W., Gea-Banacloche, J., (1993) J. Mod. Opt., 40, pp. 2361-2379
  • Butler, M., Drummond, P.D., (1986) Opt. Acta, 33, pp. 1-5
  • Chumakov, S.M., Kozierowski, J., (1996) Quantum Semiclassic. Opt., 8, pp. 775-803
  • Grinberg, H., (2005) Phys. Lett. A, 344, pp. 170-183
  • Gerry, C.C., Eberly, J.H., (1990) Phys. Rev. A, 42, pp. 6805-6815
  • Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B., (1996) Phys. Rev. A, 53, pp. 2046-2052
  • Grinberg, H., (2010) Phys. Lett. A, 374, pp. 1481-1487

Citas:

---------- APA ----------
(2011) . Nonclassical effects in a highly nonlinear generalized homogeneous Dicke model. Annals of Physics, 326(11), 2845-2867.
http://dx.doi.org/10.1016/j.aop.2011.07.010
---------- CHICAGO ----------
Grinberg, H. "Nonclassical effects in a highly nonlinear generalized homogeneous Dicke model" . Annals of Physics 326, no. 11 (2011) : 2845-2867.
http://dx.doi.org/10.1016/j.aop.2011.07.010
---------- MLA ----------
Grinberg, H. "Nonclassical effects in a highly nonlinear generalized homogeneous Dicke model" . Annals of Physics, vol. 326, no. 11, 2011, pp. 2845-2867.
http://dx.doi.org/10.1016/j.aop.2011.07.010
---------- VANCOUVER ----------
Grinberg, H. Nonclassical effects in a highly nonlinear generalized homogeneous Dicke model. Ann. Phys. 2011;326(11):2845-2867.
http://dx.doi.org/10.1016/j.aop.2011.07.010