Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The North of Argentina is one of the southernmost areas of maize landrace cultivation. Two distinct centres of diversity have been distinguished within this region: Northwestern Argentina (NWA), and Northeastern Argentina (NEA). Nowadays, maize landraces from this area are faced with two main risks. On the one hand, significant structural and functional changes have modified the rural environment with the boundaries of cropland areas experiencing a rapid expansion at the expense of northern natural forests and rangelands; and on the other, native gene pools are increasingly threatened by hybrids and commercial varieties which are more attractive relative to landraces. The first step towards any conservational action is the acquisition of an inclusive knowledge of the biological resources. For this purpose, our study assesses the genetic diversity and population dynamics of maize landraces from Northern Argentina using microsatellite markers. The Northeastern lowland region (NEA) was represented by 12 landraces (19 populations). In addition, six landraces (eight populations) from the Northwestern highland region (NWA) were used for comparison. For the NEA data set, a total of 126 alleles were found, with an average of 10.5 alleles per locus. Mean H o, H e and R s were 0.350, 0.467 and 2.72, respectively. Global fit to Hardy-Weinberg proportions was observed in 7 of 19 populations. Global estimates of F ST revealed significant differentiation among populations. Bayesian analyses of population structure allowed the recognition of two main gene pools (popcorns versus floury landraces). When NWA was added to the analysis, three clusters were distinguished: NEA popcorns, NEA flours and NWA racial complexes. Additional information on the relationships among these groups was retrieved from cluster analyses. This study shows that lowland landraces from Northern Argentina harbour considerable levels of genetic diversity, with contributions from different gene pools. Further studies encompassing a larger number of populations from the NEA region will certainly help to detect additional genetic variation, which may prove highly valuable in germplasm conservation and management. Future conservation efforts should focus on preserving NEA popcorns, NEA floury and NWA racial complexes as different management units. © 2012 Association of Applied Biologists.

Registro:

Documento: Artículo
Título:Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: Implications for the conservation of native resources
Autor:Bracco, M.; Lia, V.V.; Hernández, J.C.; Poggio, L.; Gottlieb, A.M.
Filiación:Departamento de Ecología, Genética y Evoluciõn, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autõnoma de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto de Biotecnología, CICVyA, INTA, Castelar Los Reseros y Las Cabañ as s/n (B1686ICG), Hurlingham, Buenos Aires, Argentina
Laboratorio de Recursos Genéticos Vegetales 'N.i. Vavilov', Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Conservation genetics; maize landraces; microsatellites; Northern Argentina; agricultural ecosystem; agricultural land; Bayesian analysis; cluster analysis; conservation genetics; cultivar; environmental change; functional change; genetic marker; genetic resource; genetic variation; germplasm; lowland environment; maize; native species; population structure; relatedness; resource management; species conservation; species pool; upland region; Argentina; South America; Zea mays
Año:2012
Volumen:160
Número:3
Página de inicio:308
Página de fin:321
DOI: http://dx.doi.org/10.1111/j.1744-7348.2012.00544.x
Título revista:Annals of Applied Biology
Título revista abreviado:Ann. App. Biol.
ISSN:00034746
CODEN:AABIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00034746_v160_n3_p308_Bracco

Referencias:

  • Bracco, M., Lia, V.V., Gottlieb, A.M., Cámara, H.J., Poggio, L., Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina (2009) Genetica, 135, pp. 39-49
  • Bretting, P.K., Goodman, M.M., Stuber, C.W., Kariological and isozyme variation in West Indian and allied American landraces of maize (1987) American Journal of Botany, 74, pp. 1601-1613
  • Bretting, P.K., Goodman, M.M., Stuber, C.W., Isozymatic variation in Guatemalan races of maize (1990) American Journal of Botany, 77, pp. 211-225
  • Bryant, D., Moulton, V., Neighbor-Net: An Agglomerative Method for the Construction of Phylogenetic Networks (2004) Molecular Biology and Evolution, 21, pp. 255-265
  • Cámara Hernández, J., Miante Alzogaray, A.M., Las razas de maíz de Jujuy y Salta Argentina (1997) 1er Taller Internacional de Recursos Fitogenéticos Del Noroeste Argentino, pp. 19-23. , Salta, Argentina
  • Cámara Hernández, J., Miante Alzogaray, A.M., Caracterizaciõn y clasificaciõn en razas, de maíces nativos de la Provincia de Misiones, Argentina (2003) Proceedings of the IV Simposio de Recursos Genéticos Para América Latina y El Caribe, Mar Del Plata, Argentina
  • Chiavarino, A.M., (1997) Cromosomas B: Meiosis y Herencia en Razas Nativas de Maíz, p. 143. , Buenos Aires: Departamento de Ciencias Biolõgicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • Chiavarino, A.M., Rosato, M., Manzanero, S., Jimenez, G., Gonzalez-Sanchez, M., Puertas, M.J., Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize (2000) Genetics, 155, pp. 889-897
  • Chiavarino, A.M., González-Sánchez, M., Poggio, L., Puertas, M.J., Rosato, M., Rosi, P., Is maize B chromosome preferential fertilization controlled by a single gene? (2001) Heredity, 86, pp. 743-748
  • Doebley, J., Molecular evidence and the evolution of maize (1990) Economic Botany, 44, pp. 7-25
  • Doebley, J., Goodman, M.M., Isoenzymatic variation in Zea (Gramineae) (1984) Systematic Botany, 9, pp. 203-218
  • Doebley, J., Goodman, M.M., Stuber, C.W., Isozyme variation in maize from the southwestern United States taxonomic and anthropological implications (1983) Maydica, 28, pp. 94-120
  • Doebley, J., Goodman, M.M., Stuber, C.W., Isozyme variation in the races of maize from Mexico (1985) American Journal of Botany, 72, pp. 629-639
  • Doebley, J., Goodman, M.M., Stuber, C.W., Exceptional genetic divergence of Northern Flint Corn (1986) American Journal of Botany, 73, pp. 64-69
  • Doebley, J., Goodman, M.M., Stuber, C.W., Patterns of isozyme variation between maize and Mexican Annual teosinte (1987) Economic Botany, 41, pp. 234-246
  • Doebley, J., Wendel, J.F., Smith, J.S.C., Stuber, C.W., Goodman, M.M., The origin of cornbelt maize: The isozyme evidence (1988) Economic Botany, 42, pp. 120-131
  • Dubreuil, P., Charcosset, A., Genetic diversity within and among maize populations: A comparison between isozyme and nuclear RFLP loci (1998) Theoretical and Applied Genetics, 96, pp. 577-587
  • El Mousadik, A., Petit, R., High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco (1996) Theoretical and Applied Genetics, 92, pp. 832-839
  • Van Etten, J., De Bruin, S., Regional and local maize seed exchange and replacement in the western highlands of Guatemala (2007) Plant Genetic Resources, 5, pp. 57-70
  • Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software structure: A simulation study (2005) Molecular Ecology, 14, pp. 2611-2620
  • Excoffier, L., Analysis of population subdivision (2007) Handbook of Statistical Genetics, pp. 980-1020. , In D. Balding, M. Bishop, C. Cannings eds. 3rd Edn, New York, USA: Wiley
  • Excoffier, L., Smouse, P., Quattro, J., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data (1992) Genetics, 131, pp. 479-491
  • Falush, D., Stephens, M., Pritchard, J.K., Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies (2003) Genetics, 164, pp. 1567-1587
  • Gaggiotti, O.E., Lange, O., Rassmann, K., Gliddon, C., A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data (1999) Molecular Ecology, 8, pp. 1513-1520
  • Gonzalez, G.E., (2004) Afinidades Genõmicas y Mapeo Cromosõmico en Maíz y Especies Relacionadas A Través de Estudios de Citogenética Clásica y de Hibridaciõn in Situ, , Doctoral Thesis. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires
  • Goodman, M.M., Stuber, C.W., Races of maize. VI. Isozyme variation among races of maize in Bolivia (1983) Maydica, 28, pp. 169-187
  • Goudet, J., Fstat version 1.2: A computer program to calculate F-statistics (1995) Journal of Heredity, 86, pp. 485-486
  • Goudet, J., (2001) FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3), , URL
  • Hardy, O.J., Charbonnel, N., Freville, H., Heuertz, M., Microsatellite allele sizes: A simple test to assess their significance on genetic differentiation (2003) Genetics, 163, pp. 1467-1482
  • Van Heerwaarden, J., Doebley, J., Briggs, W.H., Glaubitz, J.C., Goodman, M.M., Sanchez Gonzalez, J.J., Ross-Ibarra, J., Genetic signals of origin, spread, and introgression in a large sample of maize landraces (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 1088-1092
  • Huson, D.H., Bryant, D., Application of phylogenetic networks in evolutionary studies (2006) Molecular Biology and Evolution, 23, pp. 254-267
  • Jombart, T., Adegenet: A R package for the multivariate analysis of genetic markers (2008) Bioinformatics, 24, pp. 1403-1405
  • Jombart, T., Devillard, S., Balloux, F., Discriminant analysis of principal components: A new method for the analysis of genetically structured populations (2010) BMC Genetics, 11, p. 94
  • Kahler, A.L., Hallauer, A.R., Gardner, C., Allozyme polymorphism within and among open-pollinated and adapted exotic populations of maize (1986) Theoretical and Applied Genetics, 72, pp. 592-601
  • Latournerie, L., Tuxill, J., Yupit, E., Arias, L., Cristobal, J., Jarvis, D.I., Traditional maize storage methods of Mayan farmers in Yucatan, Mexico: Implications for seed selection and crop diversity (2006) Biodiversity and Conservation, 15, pp. 1771-1795
  • Legendre, P., Legendre, L., (1998) Numerical Ecology, , 2nd English Edition edn. Amsterdam, The Netherlands: Elsevier
  • Lia, V.V., Poggio, L., Confalonieri, V.A., Microsatellite variation in maize landraces from Northwestern Argentina: Genetic diversity, population structure and racial affiliations (2009) Theoretical and Applied Genetics, 119, pp. 1053-1067
  • Liu, K., Muse, S.V., PowerMarker: An integrated analysis environment for genetic marker analysis (2005) Bioinformatics, 21, pp. 2128-2129
  • Martínez-Crovetto, R., La alimentaciõn entre los indios guaraníes de Misiones (República Argentina) (1968) Etnobiolõgica, 4, pp. 1-24
  • Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sánchez, G.J., Buckler, E.S., Doebley, J., A single domestication for maize shown by multilocus microsatellite genotyping (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 6080-6084
  • Matsuoka, Y., Mitchell, S.E., Kresovich, S., Goodman, M.M., Doebley, J., Microsatellites in Zea - Variability, patterns of mutations, and use for evolutionary studies (2002) Theoretical and Applied Genetics, 104, pp. 436-450
  • McClintock, B., Kato, T.A., Blumenschein, A., (1981) Chromosome Constitution of the Races of Maize, Its Significance in the Interpretation of Relationships between Races and Varieties in the Americas, p. 521. , Colegio de Postgraduados, Chapingo, Mexico. p
  • Melchiorre, P., Bartoloni, N., Cámara, H.J., Phenetic relationships among native races of maize (Zea mays ssp. mays) from North-eastern Argentina (Misiones) (2006) Journal of Genetics and Breeding, 60, pp. 173-182
  • Nei, M., (1987) Molecular Evolutionary Genetics, , New York, USA: Columbia University Press
  • Oliveira Freitas, F., Bendel, G., Allaby, R.G., Brown, T., DNA from primitive maize landraces and archaeological remains: Implications for the domestication of maize and its expansion into South America (2003) Journal of Archaeological Science, 30, pp. 901-908
  • Peakall, R., Smouse, P.E., GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research (2006) Molecular Ecology Notes, 6, pp. 288-295
  • Perales, R.H., Brush, S.B., Qualset, C.O., Dynamic management of maize landraces in central Mexico (2003) Economic Botany, 7, pp. 21-34
  • Poggio, L., Molina, M.C., Naranjo, C.A., Cytogenetic studies in the genus Zea. 2. Colchicine induced multivalents (1990) Theoretical and Applied Genetics, 79, pp. 461-464
  • Poggio, L., Rosato, M., Chiavarino, A.M., Naranjo, C.A., Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae) (1998) Annals of Botany, 82, pp. 107-115
  • Poggio, L., Gonzalez, G., Confalonieri, V.A., Comas, C., Naranjo, C.A., The genome organization and diversification of maize and its allies revisited: Evidences from classical and FISH-GISH cytogenetic analysis (2005) Cytogenetics and Genome Research, 109, pp. 259-267
  • Pressoir, G., Berthaud, J., Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico (2004) Heredity, 92, pp. 88-94
  • Pritchard, J.K., Stephens, M., Donnelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959
  • Rebourg, C., Chastanet, M., Gouesnard, B., Welcker, C., Dubreuil, P., Charcosset, A., Maize introduction into Europe: The history reviewed in the light of molecular data (2003) Theoretical and Applied Genetics, 106, pp. 895-903
  • Reif, J.C., Xia, X.C., Melchinger, A.E., Warburton, M.L., Hoisington, D.A., Beck, D., Bohn, M., Frisch, M., Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers (2004) Crop Science, 44, pp. 326-334
  • Reif, J.C., Warburton, M.L., Xia, X.C., Hoisington, D.A., Crossa, J., Taba, S., Muminovic, J., Melchinger, A.E., Grouping of accessions of Mexican races of maize revisited with SSR markers (2006) Theoretical and Applied Genetics, 113, pp. 177-185
  • Reynolds, J., Weir, B.S., Cockerham, C.C., Estimation of the coancestry coefficient: Basis for a short-term genetic distance (1983) Genetics, 105, pp. 767-779
  • Rice, W., Analysing tables of statistical tests (1989) Evolution, 43, pp. 223-225
  • Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Molecular Biology and Evolution, 4, pp. 406-425
  • Sánchez, G.J., Stuber, J.C.W., Goodman, M.M., Isozymatic diversity in the races of maize of the Americas (2000) Maydica, 45, pp. 185-203
  • Slatkin, M., A measure of population subdivision based on microsatellite allele frequencies (1995) Genetics, 139, pp. 457-462
  • Vavilov, N.I., (1992) Origin and Geography of Cultivated Plants, p. 96. , Great Britain: English version: Cambridge University Press
  • Viglizzo, E.F., Ricard, M.F., Jobbágy, E.G., Frank, F.C., Carreño, L.V., Assessing the cross-scale impact of 50 years of agricultural transformation in Argentina (2011) Field Crops Research, 124, pp. 186-194
  • Vigouroux, Y., Glaubitz, J.C., Matsuoka, Y., Goodman, M.M., Sánchez, G.J., Doebley, J., Population structure and genetic diversity of New World maize races assessed by DNA microsatellites (2008) American Journal of Botany, 95, pp. 1240-1253
  • Waits, L.P., Luikart, G., Taberlet, P., Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines (2001) Molecular Ecology, 10, pp. 249-256
  • Weir, B., Cockerham, C.C., Estimating F-statistics for the analysis of population structure (1984) Evolution, 38, pp. 1358-1370
  • Wright, S., (1978) Variability Within and among Natural Populations in Evolution and the Genetics of Populations, , Chicago, IL, USA: University of Chicago Press

Citas:

---------- APA ----------
Bracco, M., Lia, V.V., Hernández, J.C., Poggio, L. & Gottlieb, A.M. (2012) . Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: Implications for the conservation of native resources. Annals of Applied Biology, 160(3), 308-321.
http://dx.doi.org/10.1111/j.1744-7348.2012.00544.x
---------- CHICAGO ----------
Bracco, M., Lia, V.V., Hernández, J.C., Poggio, L., Gottlieb, A.M. "Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: Implications for the conservation of native resources" . Annals of Applied Biology 160, no. 3 (2012) : 308-321.
http://dx.doi.org/10.1111/j.1744-7348.2012.00544.x
---------- MLA ----------
Bracco, M., Lia, V.V., Hernández, J.C., Poggio, L., Gottlieb, A.M. "Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: Implications for the conservation of native resources" . Annals of Applied Biology, vol. 160, no. 3, 2012, pp. 308-321.
http://dx.doi.org/10.1111/j.1744-7348.2012.00544.x
---------- VANCOUVER ----------
Bracco, M., Lia, V.V., Hernández, J.C., Poggio, L., Gottlieb, A.M. Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: Implications for the conservation of native resources. Ann. App. Biol. 2012;160(3):308-321.
http://dx.doi.org/10.1111/j.1744-7348.2012.00544.x