Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A simplified methodology to acquire steady-state emission spectra and quantum yields of highly absorbing samples is presented. The experimental setup consists of a commercial spectrofluorometer adapted to transmission geometry, allowing the detection of the emitted light at 180° with respect to the excitation beam. The procedure includes two different mathematical approaches to describe and reproduce the distortions caused by reabsorption on emission spectra and quantum yields. Toluene solutions of 9,10-diphenylanthracence, DPA, with concentrations ranging between 1.12 × 10-5 and 1.30 × 10-2 M, were used to validate the proposed methodology. This dye has significant probability of reabsorption and re-emission in concentrated solutions without showing self-quenching or aggregation phenomena. The results indicate that the reabsorption corrections, applied on molecular emission spectra and quantum yields of the samples, accurately reproduce experimental data. A further discussion is performed concerning why the re-emitted radiation is not detected in the experiments, even at the highest DPA concentrations. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events
Autor:Krimer, N.I.; Rodrigues, D.; Rodríguez, H.B.; Mirenda, M.
Filiación:Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA-CONICET), Av. Gral. Paz 1499, San-Martín, Buenos Aires, B1650KNA, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Casilla de Correo 16, Sucursal 4, La Plata, 1900, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
Palabras clave:Emission spectroscopy; Quantum yield; Aggregation phenomena; Concentrated solution; Mathematical approach; Quantitative approach; Re-absorption corrections; Steady state fluorescences; Steady-state emissions; Transmission geometries; Quantum theory
Año:2017
Volumen:89
Número:1
Página de inicio:640
Página de fin:647
DOI: http://dx.doi.org/10.1021/acs.analchem.6b02819
Título revista:Analytical Chemistry
Título revista abreviado:Anal. Chem.
ISSN:00032700
CODEN:ANCHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032700_v89_n1_p640_Krimer

Referencias:

  • Knut, R., (2008) Fluorescence Quantum Yields: Methods of Determination and Standards, pp. 101-145. , Springer: Berlin
  • Würth, C., Grabolle, M., Pauli, J., Spieles, M., Resch-Genger, U., (2013) Nat. Protoc., 8, pp. 1535-1550
  • Miller, J.N., Chapter 5: Inner filter effects, sample cells and their geometry in fluorescence spectrometry (1981) Standards in Flourescence Spectrometry, pp. 27-43. , Springer: Netherlands
  • Birks, J.B., (1976) J. Res. Natl. Bur. Stand., Sect. A, 80, pp. 389-399
  • Vavilov, S.I., (1925) Z. Phys., 31, pp. 750-764
  • Budó, A., Dombi, J., Szollosy, L., (1956) Acta Phys. Chem., 2, pp. 18-27
  • Budó, A., Ketskeméty, I., (1956) J. Chem. Phys., 25, pp. 595-596
  • Budó, A., Ketskeméty, I., (1957) Acta Phys. Acad. Sci. Hung., 7, pp. 207-223
  • Melhuish, W.H., (1961) J. Phys. Chem., 65, pp. 229-235
  • Rohatgi, K.K., Singhal, G.S., (1962) Anal. Chem., 34, pp. 1702-1706
  • Rohatgi, K.K., Singhal, G.S., (1968) Photochem. Photobiol., 7, pp. 361-367
  • Eisinger, J., Flores, J., (1979) Anal. Biochem., 94, pp. 15-21
  • Lopez Arbeloa, I., (1980) J. Photochem., 14, pp. 97-105
  • Vieira Ferreira, L.F., Costa, S.M.B., Pereira, E.J., (1991) J. Photochem. Photobiol., A, 55, pp. 361-376
  • Weber, G., Teale, F.W.J.T., (1957) Trans. Faraday Soc., 53, pp. 646-655
  • Parker, C.A., Rees, W.T., (1960) Analyst, 85, pp. 587-600
  • Holland, J.F., Teets, R.E., Kelly, P.M., Timnick, A., (1977) Anal. Chem., 49, pp. 706-710
  • Novák, A., (1978) Collect. Czech. Chem. Commun., 43, pp. 2869-2877
  • Lutz, H.-P., Luisi, P.L., (1983) Helv. Chim. Acta, 66, pp. 1929-1935
  • Kubista, M., Sjöback, R., Eriksson, S., Albinsson, B., (1994) Analyst, 119, pp. 417-419
  • MacDonald, B.C., Lvin, S.J., Patterson, H., (1997) Anal. Chim. Acta, 338, pp. 155-162
  • Gu, Q., Kenny, J.E., (2009) Anal. Chem., 81, pp. 420-426
  • Gu, Q., (2007) Improvement of Corrections for Fluorescence Inner Filter Effects under Non-ideal Beam Conditions Based on Effective Geometric Parameters, , Ph.D. Thesis, Tufts University, Boston
  • Fonin, A.V., Sulatskaya, A.I., Kutnetsova, I.M., Turoverov, K.K., (2014) PLoS One, 9, p. e103878
  • Parker, C.A., (1968) Photoluminescence of Solutions, , Elsevier: London
  • Birks, J.B., (1970) Photophysics of Aromatic Molecules, , 1 st ed. John Wiley & Sons Ltd: London
  • Fletcher, K.A., Fakayode, S.O., Lowry, M., Tucker, S.A., Neal, S.L., Kimaru, I.W., McCarroll, M.E., Warner, I.M., (2006) Anal. Chem., 78, pp. 4047-4068
  • Chamberlain, J., (1995) The Analysis of Drugs in Biological Fluids, , 2 nd ed. CRC Press: Boca Raton, FL
  • Lanzani, G., (2005) Photophysics of Molecular Materials: From Single Molecules to Single Crystals, , Wiley-VCH: Weinheim
  • Izawa, H., Wakizono, S., (2010) Chem. Commun., 46, pp. 6359-6361
  • Chen, X.-W., Liu, J.-W., Wang, J.-H., (2011) J. Phys. Chem. B, 115, pp. 1524-1530
  • Heinrich, G., Schoof, S., Gusten, H., (1974) J. Photochem., 3, pp. 315-320
  • Martinho, J.M.G., Macanita, A.L., Berberán-Santos, M.N., (1989) J. Chem. Phys., 90, pp. 53-59
  • Gray, V., Dzebo, D., Lundin, A., Alborzpour, J., Abrahamsson, M., Albinsson, B., Moth-Poulsen, K., (2015) J. Mater. Chem. C, 3, pp. 11111-11121
  • DeVol, T.A., Wehe, D.K., Knoll, G.F., (1994) Nucl. Instrum. Methods Phys. Res., Sect. A, 348, pp. 156-162
  • Dawson, W.R., Windsor, M.W., (1968) J. Phys. Chem., 72, pp. 3251-3260
  • Braslavsky, S.E., (2007) Pure Appl. Chem., 79, pp. 293-465
  • Suzuki, K., Kobayashi, A., Kaneko, S., Takehira, K., Yoshihara, T., Ishida, H., Shiina, Y., Tobita, S., (2009) Phys. Chem. Chem. Phys., 11, pp. 9850-9860
  • Lagorio, G., Dicelio, L., Litter, M., San Roman, E., (1998) J. Chem. Soc., Faraday Trans., 94, pp. 419-425
  • Ahn, T.S., Al-Kaysi, R.O., Müller, A.M., Wentz, K.M., Bardeen, C.J., (2007) Rev. Sci. Instrum., 78, p. 086105
  • Kuśba, J., Grajek, H., Gryczynski, I., (2014) Methods Appl. Fluoresc., 2, p. 015001

Citas:

---------- APA ----------
Krimer, N.I., Rodrigues, D., Rodríguez, H.B. & Mirenda, M. (2017) . Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events. Analytical Chemistry, 89(1), 640-647.
http://dx.doi.org/10.1021/acs.analchem.6b02819
---------- CHICAGO ----------
Krimer, N.I., Rodrigues, D., Rodríguez, H.B., Mirenda, M. "Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events" . Analytical Chemistry 89, no. 1 (2017) : 640-647.
http://dx.doi.org/10.1021/acs.analchem.6b02819
---------- MLA ----------
Krimer, N.I., Rodrigues, D., Rodríguez, H.B., Mirenda, M. "Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events" . Analytical Chemistry, vol. 89, no. 1, 2017, pp. 640-647.
http://dx.doi.org/10.1021/acs.analchem.6b02819
---------- VANCOUVER ----------
Krimer, N.I., Rodrigues, D., Rodríguez, H.B., Mirenda, M. Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events. Anal. Chem. 2017;89(1):640-647.
http://dx.doi.org/10.1021/acs.analchem.6b02819