Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this report, we developed the pressure probe electrospray ionization-mass spectrometry with internal electrode capillary (IEC-PPESI-MS) which enables high spatial-resolution cell sampling, precise postsampling manipulation, and high detection sensitivity. Using this technique, a comparative in situ single-cell metabolite profiling of stalk and glandular cells, the two adjacent cell types comprising a trichome unit in tomato plants (Solanum lycopersicum L.), were performed to clarify the extent of metabolic differentiation between two cell types as well as among different types of trichomes. Owing to high sensitivity of the system, less than a picoliter cell sap from a single stalk cell sufficiently yielded a number of peaks of amino acids, organic acids, carbohydrates, and flavonoids. The minimal cell sap removal from a stalk cell without severe disturbance of trichome structure enabled sequential analysis of adjacent glandular cell on the same trichome, which showed the presence of striking differences in metabolite compositions between two adjacent cell types. Comparison among different types of trichome also revealed significant variations in metabolite profiles, particularly in flavonoids and acyl sugars compositions. Some metabolites were found only in specific cell types or particular trichome types. Although extensive metabolomics analysis of glandular cells of tomato trichomes has been previously documented, this is the first report describing cell-to-cell variations in metabolite compositions of stalk and glandular cells as well as in different trichome types. Further application of this technique may provide new insights into distinct metabolism in plant cells displaying variations in shape, size, function and physicochemical properties. (Figure Presented). © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry
Autor:Nakashima, T.; Wada, H.; Morita, S.; Erra-Balsells, R.; Hiraoka, K.; Nonami, H.
Filiación:Plant Biophysics, Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, Matsuyama, 790-8566, Japan
Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Chikugo, 833-0041, Japan
CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Clean Energy Research Center, University of Yamanashi, Kofu, 400-8511, Japan
Palabras clave:Biomolecules; Electrodes; Electrospray ionization; Flavonoids; Fruits; Ionization; Mass spectrometry; Metabolism; Metabolites; Plants (botany); Potential flow; Probes; Spectrometry; Cell-to-cell variation; Detection sensitivity; High spatial resolution; Internal electrodes; Metabolite profiles; Physicochemical property; Sequential analysis; Solanum lycopersicum; Molecular biology; electrode; electrospray mass spectrometry; metabolism; procedures; trichome; Electrodes; Spectrometry, Mass, Electrospray Ionization; Trichomes
Año:2016
Volumen:88
Número:6
Página de inicio:3049
Página de fin:3057
DOI: http://dx.doi.org/10.1021/acs.analchem.5b03366
Título revista:Analytical Chemistry
Título revista abreviado:Anal. Chem.
ISSN:00032700
CODEN:ANCHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032700_v88_n6_p3049_Nakashima

Referencias:

  • Zenobi, R., (2013) Science, 342
  • Rubakhin, S.S., Lanni, E.J., Sweedler, J.V., (2013) Curr. Opin. Biotechnol., 24, pp. 95-104
  • Oikawa, A., Saito, K., (2012) Plant J., 70, pp. 30-38
  • Misra, B.P., Assmann, S.M., Chen, S., (2014) Trends Plant Sci., 19, pp. 637-646
  • Gholipour, Y., Nonami, H., Erra-Balsells, R., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1841-1848
  • Gholipour, Y., Erra-Balsells, R., Hiraoka, K., Nonami, H., (2013) Anal. Biochem., 433, pp. 70-78
  • Mizuno, H., Tsuyama, N., Harada, T., Masujima, T., (2008) J. Mass Spectrom., 43, pp. 1692-1700
  • Tejedor, L.M., Mizono, H., Tsuyama, N., Harada, T., Masujima, (2009) Anal. Sci., 25, pp. 1053-1055
  • Tejedor, M.L., Mizuno, H., Tsuyama, N., Harada, T., Masujima, T., (2012) Anal. Chem., 84, pp. 5221-5228
  • Kajiyama, S., Harada, K., Fukusaki, E., Kobayashi, A., (2006) J. Biosci. Bioeng., 102, pp. 575-678
  • Yu, Z., Chen, L.C., Ninomiya, S., Mandal, M.K., Hiraoka, K., Nonami, H., (2014) Analyst, 139, pp. 5734-5739
  • Gong, X., Zhao, Y., Cai, S., Fu, S., Yang, C., Zhang, S., Zhang, X., (2014) Anal. Chem., 86, pp. 3809-3816
  • Shrestha, B., Vertes, A., (2009) Anal. Chem., 81, pp. 8265-8271
  • Shrestha, B., Patt, J.M., Vertes, A., (2011) Anal. Chem., 83, pp. 2947-2955
  • Amantonico, A., Urban, P.L., Fagerer, S.R., Balabin, R.M., Zenobi, R., (2010) Anal. Chem., 82, pp. 7394-7400
  • Jun, J.H., Song, Z., Liu, Z., Nikolau, B.J., Yeung, E.S., Lee, Y.J., (2010) Anal. Chem., 82, pp. 3255-3265
  • Hölscher, D., Shroff, R., Knop, K., Gottschaldt, M., Crecelius, A., Schneider, B., Heckel, D.G., Svatoš, A., (2009) Plant J., 60, pp. 907-918
  • Li, C., Wang, Z., Jones, A.D., (2014) Anal. Bioanal. Chem., 406, pp. 171-182
  • Gholipour, Y., Erra-Balsells, R., Nonami, H., (2012) Mass Spectrom., 1, p. A0003
  • Wagner, G.J., (1991) Plant Physiol., 96, pp. 675-679
  • Tissier, A., (2012) Plant J., 70, pp. 51-68
  • Tian, D., Tooker, J., Peiffer, M., Chung, S.H., Felton, G.W., (2012) Planta, 236, pp. 1053-1066
  • Glas, J.J., Schimmel, B.C.J., Alba, J.M., Escobar-Bravo, R., Schuurink, R.C., Kant, M.R., (2012) Int. J. Mol. Sci., 13, pp. 17077-17193
  • Schilmiller, A.L., Last, R.L., Pichersky, E., (2008) Plant J., 54, pp. 702-711
  • Schilmiller, A.L., Miner, D.P., Larson, M., McDowell, E., Gang, D.R., (2010) Plant Physiol., 153, pp. 1212-1223
  • Schilmiller, A., Shi, F., Kim, J., Charbonneau, A.L., Holmes, D., Jones, A.D., Last, R.L., (2010) Plant J., 62, pp. 391-403
  • McDowell, E.T., Kapteyn, J., Schmidt, A., Li, C., Kang, J.-H., Descour, A., Shi, F., Gang, D.R., (2011) Plant Physiol., 155, pp. 524-539
  • Kim, J., Kang, K., Gonzales-Vigil, E., Shi, F., Jones, A.D., Barry, C.S., Last, R.L., (2012) Plant Physiol., 160, pp. 1854-1870
  • Ghosh, B., Westbrook, T.C., Jones, A.D., (2014) Metabolomics, 10, pp. 496-507
  • Kang, J.-H., McRoberts, J., Shi, F., Moreno, J.E., Jones, A.D., Howe, G.A., (2014) Plant Physiol., 164, pp. 1161-1174
  • March, R.E., Lewars, E.G., Stadey, C.J., Miao, X.S., Zhao, X., Metcalfe, C.D., (2006) Int. J. Mass Spectrom., 248, pp. 61-85
  • Kachlicki, P., Einhorn, J., Muth, D., Kerhoas, L., Stobiecki, M., (2008) J. Mass Spectrom., 43, pp. 572-586
  • Zhou, H., Tang, W., Zeng, J., Tang, C., (2014) J. Food Nutrit. Res., 2, pp. 369-376
  • Olivero, D., LaPlaca, M., Kottke, P.A., (2012) Anal. Chem., 84, pp. 2072-2075
  • Henderson, M.A., McIndoe, J.S., (2006) Chem. Commun., pp. 2872-2874
  • Liu, P., Forni, A., Chen, H., (2014) Anal. Chem., 86, pp. 4024-4032
  • Shackel, K.A., Polito, V.S., Ahmadi, H., (1991) Plant Physiol., 97, pp. 907-912
  • Christensen, N.M., Faulkner, C., Oparka, K., (2009) Plant Physiol., 150, pp. 96-104
  • Kang, J.H., Shi, F., Jones, A.D., Marks, M., Howe, A., (2010) J. Exp. Bot., 61, pp. 1053-1064
  • Tseng, T.W., Wu, J.T., Chen, Y.C., Urban, P.L., (2012) PLoS One, 7
  • Outlaw, W.H., Lowry, O.H., (1977) Proc. Natl. Acad. Sci. U. S. A., 74, pp. 4434-4438
  • Zhao, J., Dixon, R.A., (2010) Trends Plant Sci., 15, pp. 72-80
  • Zhu, J., Li, Y.-T., Li, S.C., Cole, R.B., (1999) Glycobiology, 9, pp. 985-993
  • Boutegrabet, L., Kanawati, B., Gebefügi, I., Peyron, D., Cayot, P., Gougeon, R.D., Schmitt-Kopplin, P., (2012) Chem. - Eur. J., 18, pp. 13059-13067
  • Cai, Y., Jiang, Y., Cole, R.B., (2003) Anal. Chem., 75, pp. 1638-1644
  • Smaoui, A., Barhoumi, Z., Rabhi, M., Abdelly, C., (2011) Protoplasma, 248, pp. 363-372
  • Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Cushman, J.C., (2007) J. Exp. Bot., 58, pp. 1957-1967
  • Rusak, G., Krajačić, M., Pleše, N., (1997) Antiviral Res., 36, pp. 125-129

Citas:

---------- APA ----------
Nakashima, T., Wada, H., Morita, S., Erra-Balsells, R., Hiraoka, K. & Nonami, H. (2016) . Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 88(6), 3049-3057.
http://dx.doi.org/10.1021/acs.analchem.5b03366
---------- CHICAGO ----------
Nakashima, T., Wada, H., Morita, S., Erra-Balsells, R., Hiraoka, K., Nonami, H. "Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry" . Analytical Chemistry 88, no. 6 (2016) : 3049-3057.
http://dx.doi.org/10.1021/acs.analchem.5b03366
---------- MLA ----------
Nakashima, T., Wada, H., Morita, S., Erra-Balsells, R., Hiraoka, K., Nonami, H. "Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry" . Analytical Chemistry, vol. 88, no. 6, 2016, pp. 3049-3057.
http://dx.doi.org/10.1021/acs.analchem.5b03366
---------- VANCOUVER ----------
Nakashima, T., Wada, H., Morita, S., Erra-Balsells, R., Hiraoka, K., Nonami, H. Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry. Anal. Chem. 2016;88(6):3049-3057.
http://dx.doi.org/10.1021/acs.analchem.5b03366