Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation
Autor:Peinetti, A.S.; Gilardoni, R.S.; Mizrahi, M.; Requejo, F.G.; González, G.A.; Battaglini, F.
Filiación:INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas, INIFTA, CONICET, Dto. Química, Fac. Cs Ex, UNLP, La Plata, 1900, Argentina
Palabras clave:Computation theory; Computational methods; Cyclic voltammetry; Diffusion; Electrodes; Microelectrodes; Cylindrical symmetry; Diffusion and kinetics; Electrochemical behaviors; Electrochemical response; Experimental techniques; Interelectrode distance; Microelectrode array; Theoretical framework; Electrochemical electrodes
Año:2016
Volumen:88
Número:11
Página de inicio:5752
Página de fin:5759
DOI: http://dx.doi.org/10.1021/acs.analchem.6b00039
Título revista:Analytical Chemistry
Título revista abreviado:Anal. Chem.
ISSN:00032700
CODEN:ANCHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032700_v88_n11_p5752_Peinetti

Referencias:

  • Ongaro, M., Ugo, P., (2013) Anal. Bioanal. Chem., 405, pp. 3715-3729
  • Zhu, F., Yan, J., Pang, S., Zhou, Y., Mao, B., Oleinick, A., Svir, I., Amatore, C., (2014) Anal. Chem., 86, pp. 3138-3145
  • Davies, T.J., Compton, R.G., (2005) J. Electroanal. Chem., 585, pp. 63-82
  • Davies, T.J., Ward-Jones, S., Banks, C.E., Del Campo, F.J., Mas, R., Munoz, F.X., Compton, R.G., (2005) J. Electroanal. Chem., 585, pp. 51-62
  • Amatore, C., Oleinick, A.I., Svir, I., (2009) Anal. Chem., 81, pp. 4397-4405
  • Guo, J., Lindner, E., (2009) Anal. Chem., 81, pp. 130-138
  • Fernandez, J.L., Wijesinghe, M., Zoski, C.G., (2015) Anal. Chem., 87, pp. 1066-1074
  • Peinetti, A.S., Herrera, S., González, G.A., Battaglini, F., (2013) Chem. Commun., 49, pp. 11317-11319
  • Zhang, B., Zhang, Y.H., White, H.S., (2004) Anal. Chem., 76, pp. 6229-6238
  • Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M., Battaglini, F., (2015) Nanoscale, 7, pp. 7763-7769
  • Godino, N., Borrise, X., Munoz, F.X., Del Campo, F.J., Compton, R.G., (2009) J. Phys. Chem. C, 113, pp. 11119-11125
  • Ziaie, B., Baldi, A., Atashbar, M.Z., (2010) Springer Handbook of Nanotechnology, , Introduction to Micro-/Nanofabrication. In, 3 rd ed. Bhushan, B. Springer-Verlag: Berlin, Heidelberg, Germany
  • Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A.J., Gleeson, J.P., Redmond, G., Arrigan, D.W.M., (2007) Anal. Chem., 79, pp. 3048-3055
  • Sandison, M.E., Cooper, J.M., (2006) Lab Chip, 6, pp. 1020-1025
  • Moretto, L.M., Tormen, M., De Leo, M., Carpentiero, A., Ugo, P., (2011) Nanotechnology, 22, p. 185305
  • Menon, V.P., Martin, C.R., (1995) Anal. Chem., 67, pp. 1920-1928
  • Baker, W.S., Crooks, R.M., (1998) J. Phys. Chem. B, 102, pp. 10041-10046
  • De Leo, M., Pereira, F.C., Moretto, L.M., Scopece, P., Polizzi, S., Ugo, P., (2007) Chem. Mater., 19, pp. 5955-5964
  • Perera, D.M.N.T., Ito, T., (2010) Analyst, 135, pp. 172-176
  • Fontaine, O., Laberty-Robert, C., Sanchez, C., (2012) Langmuir, 28, pp. 3650-3657
  • Duay, J., Goran, J.M., Stevenson, K.J., (2014) Anal. Chem., 86, pp. 11528-11532
  • Nielsch, K., Müller, F., Li, A.-P., Gösele, U., (2000) Adv. Mater., 12, pp. 582-586
  • Tian, M., Xu, S., Wang, J., Kumar, N., Wertz, E., Li, Q., Campbell, P.M., Mallouk, T.E., (2005) Nano Lett., 5, pp. 697-703
  • Amatore, C., Saveant, J.M., Tessier, D., (1983) J. Electroanal. Chem. Interfacial Electrochem., 147, pp. 39-51
  • Lee, H.J., Beriet, C., Ferrigno, R., Girault, H.H., (2001) J. Electroanal. Chem., 502, pp. 138-145
  • Lantiat, D., Vivier, V., Laberty-Robert, C., Grosso, D., Sanchez, C., (2010) ChemPhysChem, 11, pp. 1971-1977
  • Bard, A., Faulkner, L., (2001) Electrochemical Methods, , 2 nd ed. Wiley: New York, Chapter 5
  • Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems, , 3 rd ed. Wiley: New York, Chapter 11
  • Zhang, Y.H., Zhang, B., White, H.S., (2006) J. Phys. Chem. B, 110, pp. 1768-1774
  • González, G., Priano, G., Günther, M., Battaglini, F., (2010) Sens. Actuators, B, 144, pp. 349-353
  • Ravel, B., Newville, M., (2005) J. Synchrotron Radiat., 12, pp. 537-541
  • Newville, M., (2001) J. Synchrotron Radiat., 8, pp. 322-324
  • Lee, W., Park, S.J., (2014) Chem. Rev., 114, pp. 7487-7556
  • Smith, C.P., White, H.S., (1993) Anal. Chem., 65, pp. 3343-3353
  • Sun, Y., Liu, Y., Liang, Z., Xiong, L., Wang, A., Chen, S., (2009) J. Phys. Chem. C, 113, pp. 9878-9883
  • Liu, Y., He, R., Zhang, Q., Chen, S., (2010) J. Phys. Chem. C, 114, pp. 10812-10822
  • Dickinson, E.J.F., Compton, R.J., (2009) J. Phys. Chem. C, 113, pp. 17585-17589
  • Bard, A., Faulkner, L., (2001) Electrochemical Methods, , 2 nd ed. Wiley: New York, Chapter 6
  • Bond, A.M., Luscombe, D., Oldham, K.B., Zoski, C.G., (1988) J. Electroanal. Chem. Interfacial Electrochem., 249, pp. 1-14

Citas:

---------- APA ----------
Peinetti, A.S., Gilardoni, R.S., Mizrahi, M., Requejo, F.G., González, G.A. & Battaglini, F. (2016) . Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation. Analytical Chemistry, 88(11), 5752-5759.
http://dx.doi.org/10.1021/acs.analchem.6b00039
---------- CHICAGO ----------
Peinetti, A.S., Gilardoni, R.S., Mizrahi, M., Requejo, F.G., González, G.A., Battaglini, F. "Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation" . Analytical Chemistry 88, no. 11 (2016) : 5752-5759.
http://dx.doi.org/10.1021/acs.analchem.6b00039
---------- MLA ----------
Peinetti, A.S., Gilardoni, R.S., Mizrahi, M., Requejo, F.G., González, G.A., Battaglini, F. "Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation" . Analytical Chemistry, vol. 88, no. 11, 2016, pp. 5752-5759.
http://dx.doi.org/10.1021/acs.analchem.6b00039
---------- VANCOUVER ----------
Peinetti, A.S., Gilardoni, R.S., Mizrahi, M., Requejo, F.G., González, G.A., Battaglini, F. Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation. Anal. Chem. 2016;88(11):5752-5759.
http://dx.doi.org/10.1021/acs.analchem.6b00039