Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work describes the synergistic combination of ionic self-assembly and recognition-directed assembly with the aim of creating highly functional bioelectrochemical interfaces compatible with the supramolecular design of a wide variety of biosensing platforms. A recently synthesized glycopolyelectrolyte constituted of polyallylamine bearing redox-active osmium complexes and glycosidic residues (lactose) is used to create a self-assembled structure with sodium dodecylsulfate. In turn, this supramolecular thin films bearing redox-active and biorecognizable carbohydrate units enable the facile assembly of functional lectins as well as the subsequent docking and "wiring" of glycoenzymes, like horseradish peroxidase (HRP) (an elusive enzyme to immobilize via noncovalent interactions). The assembly of this system was followed by quartz crystal microbalance and grazing-incidence small-angle X-ray scattering (GISAXS) studies confirming that spin-coated ionically self-assembled films exhibit mesostructured architectures according to the formation of self-organized lamellar structures. In-depth characterization of the electrocatalytic properties of the biosupramacromolecular assemblies confirmed the ability of this kind of interfacial architecture to efficiently mediate electron transfer processes between the glycoenzyme and the electrode surface. For instance, our experimental electrochemical evidence clearly shows that tailor-made interfacial configurations of the ionic self-assemblies can prevent the inhibition of the glycoenzyme (typically observed in HRP) leading to bioelectrocatalytic currents up to 0.1 mA cm-2. The presence of carbohydrate moieties in the ionic domains promotes the biorecognition-driven assembly of lectins adding a new dimension to the capabilities of ionic self-assembly. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors
Autor:Cortez, M.L.; Pallarola, D.; Ceolín, M.; Azzaroni, O.; Battaglini, F.
Filiación:INQUIMAE - Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química - Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CC 16 Suc. 4, (1900) La Plata, Argentina
Palabras clave:Bio-electrochemical; Bioelectrocatalytic currents; Biosensing platforms; Electrocatalytic properties; Electrode surfaces; Electron transfer; Electron transfer process; Electrostatic driving; Glycosidic residues; Grazing incidence small-angle X-ray scattering; Horseradish peroxidase; Interfacial architecture; Interfacial configurations; Ionic self-assembly; ITS applications; Mesostructured; New dimensions; Non-covalent interaction; Osmium complexes; Polyallylamine; Redox-active; Self assembled films; Self assembled structures; Self-assembled architectures; Specific recognition; Substrate inhibition; Supramolecular thin film; Synergistic combinations; Electrodes; Ions; Organic compounds; Self assembly; Sodium dodecyl sulfate; Sugars; Supramolecular chemistry; Synthesis (chemical); Electron transitions; coordination compound; electrolyte; horseradish peroxidase; lactose; osmium; polyallylamine; polyamine; article; chemistry; electrochemical analysis; electrode; electron transport; enzyme specificity; genetic procedures; metabolism; oxidation reduction reaction; quartz crystal microbalance; small angle scattering; static electricity; X ray diffraction; Biosensing Techniques; Coordination Complexes; Electrochemical Techniques; Electrodes; Electrolytes; Electron Transport; Horseradish Peroxidase; Lactose; Osmium; Oxidation-Reduction; Polyamines; Quartz Crystal Microbalance Techniques; Scattering, Small Angle; Static Electricity; Substrate Specificity; X-Ray Diffraction
Año:2013
Volumen:85
Número:4
Página de inicio:2414
Página de fin:2422
DOI: http://dx.doi.org/10.1021/ac303424t
Título revista:Analytical Chemistry
Título revista abreviado:Anal. Chem.
ISSN:00032700
CODEN:ANCHA
CAS:lactose, 10039-26-6, 16984-38-6, 63-42-3, 64044-51-5; osmium, 7440-04-2; Coordination Complexes; Electrolytes; Horseradish Peroxidase, 1.11.1.-; Lactose, 63-42-3; Osmium, 7440-04-2; Polyamines; polyallylamine, 30551-89-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032700_v85_n4_p2414_Cortez

Referencias:

  • Faul, C.F.J., Antonietti, M., (2003) Adv. Mater., 15, p. 673
  • Ikkala, O., Ten Brinke, G., (2002) Science, 295, p. 2407
  • Thünemann, A.F., (2002) Prog. Polym. Sci. (Oxford), 27, p. 1473
  • Perico, A., Ciferri, A., (2009) Chem. - Eur. J., 15, p. 6312
  • Gröhn, F., (2008) Macromol. Chem. Phys., 209, p. 2291
  • Thünemann, A.F., Müller, M., Dautzenberg, H., Joanny, J.F., Löwen, H., (2004) Adv. Polym. Sci., 166, p. 113
  • Zhou, S., Burger, C., Chu, B., (2004) J. Phys. Chem. B, 108, p. 10819
  • Thünemann, A.F., General, S., (2001) J. Controlled Release, 75, p. 237
  • Antonietti, M., Conrad, J., Thünemann, A., (1994) Macromolecules, 27, p. 6007
  • Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., (2011) Anal. Chem., 83, p. 8011
  • Cortez, M.L., González, G.A., Battaglini, F., (2011) Electroanalysis, 23, p. 156
  • Kobayashi, Y., Hoshi, T., Anzai, J.I., (2001) Chem. Pharm. Bull., 49, p. 755
  • Azzaroni, O., Álvarez, M., Abou-Kandil, A.I., Yameen, B., Knoll, W., (2008) Adv. Funct. Mater., 18, p. 3487
  • Mir, M., Álvarez, M., Azzaroni, O., Tiefenauer, L., Knoll, W., (2008) Anal. Chem., 80, p. 6554
  • Pallarola, D., Queralto, N., Knoll, W., Azzaroni, O., Battaglini, F., (2010) Chem. - Eur. J., 16, p. 13970
  • Deacon, A., Gleichmann, T., Kalb, A.J., Price, H., Raftery, J., Bradbrook, G., Yariv, J., Helliwell, J.R., (1997) J. Chem. Soc., Faraday Trans., 93, p. 4305
  • Edelman, G.M., Cunningham, B.A., Reeke Jr., G.N., Becker, J.W., Waxdal, M.J., Wang, J.L., (1972) Proc. Natl. Acad. Sci. U.S.A., 69, p. 2580
  • Arrondo, J.L.R., Young, N.M., Mantsch, H.H., (1988) BBA, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 952, p. 261
  • Alter, G.M., Pandolfino, E.R., Christie, D.J., Magnuson, J.A., (1977) Biochemistry, 16, p. 4034
  • Becker, J.W., Reeke Jr., G.N., Cunningham, B.A., Edelman, G.M., (1976) Nature, 259, p. 406
  • Kalb, A.J., Levitzki, A., (1968) Biochem. J., 109, p. 669
  • Derewenda, Z., Yariv, J., Helliwell, J.R., Kalb, A.J., Dodson, E.J., Papiz, M.Z., Wan, T., Campbell, J., (1989) EMBO J., 8, p. 2189
  • Reeke Jr., G.N., Becker, J.W., Edelman, G.M., (1975) J. Biol. Chem., 250, p. 1525
  • Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, p. 8071
  • Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., (2012) Chem. Commun., 48, p. 10868
  • Danilowicz, C., Corton, E., Battaglini, F., (1998) J. Electroanal. Chem., 445, p. 89
  • Pallarola, D., Queralto, N., Knoll, W., Ceolin, M., Azzaroni, O., Battaglini, F., (2010) Langmuir, 26, p. 13684
  • Flexer, V., Forzani, E.S., Calvo, E.J., Ludueña, S.J., Pietrasanta, L.I., (2006) Anal. Chem., 78, p. 399
  • Cortón, E., Battaglini, F., (2001) J. Electroanal. Chem., 511, p. 8
  • Savéant, J.M., (2006) Elements of Molecular and Biomolecular Electrochemistry, , Wiley: New Jersey, USA
  • Dequaire, M., Limoges, B., Moiroux, J., Savéant, J.M., (2002) J. Am. Chem. Soc., 124, p. 240
  • Coman, V., Gustavsson, T., Finkelsteinas, A., Von Wachenfeldt, C., Hägerhäll, C., Gorton, L., (2009) J. Am. Chem. Soc., 131, p. 16171
  • Ertl, P., Mikkelsen, S.R., (2001) Anal. Chem., 73, p. 4241
  • Reska, A., Gasteier, P., Schulte, P., Moeller, M., Offenhäusser, A., Groll, J., (2008) Adv. Mater., 20, p. 2751
  • Fromherz, P., (2008) Solid-State Electron., 52, p. 1364
  • Schätzthauer, R., (1998) Eur. J. Neurosci., 10, p. 1956

Citas:

---------- APA ----------
Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O. & Battaglini, F. (2013) . Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors. Analytical Chemistry, 85(4), 2414-2422.
http://dx.doi.org/10.1021/ac303424t
---------- CHICAGO ----------
Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F. "Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors" . Analytical Chemistry 85, no. 4 (2013) : 2414-2422.
http://dx.doi.org/10.1021/ac303424t
---------- MLA ----------
Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F. "Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors" . Analytical Chemistry, vol. 85, no. 4, 2013, pp. 2414-2422.
http://dx.doi.org/10.1021/ac303424t
---------- VANCOUVER ----------
Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F. Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors. Anal. Chem. 2013;85(4):2414-2422.
http://dx.doi.org/10.1021/ac303424t