Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanoparticles (NPs) of diamond, titanium dioxide, titanium silicon oxide, barium strontium titanium oxide, and silver (Ag) were examined for their potential as MALDI matrixes for direct laser desorption/ionization of carbohydrates, especially fructans, from plant tissue. Two sample preparation methods including solvent-assisted and solvent-free (dry) NPs deposition were performed and compared. All examined NPs except for Ag could desorb/ionize standard sucrose and fructans in positive and in negative ion mode. Ag NPs yielded good signals only for nonsalt-doped samples that were measured in the negative ion mode. In the case of in vivo studies, except for Ag, all NPs studied could desorb/ionize carbohydrates from tissue in both the positive and negative ion modes. Furthermore, compared to the results obtained with soluble sugars extracted from plant tissues, fructans with higher molecular weight intact molecular ions could be detected when the plant tissues were directly profiled. The limit of detection (LOD) of fructans and the ratios between signal intensities and fructan concentrations were analyzed. NPs had similar LODs for standard fructan triose (1-kestose) in the positive ion mode and better LODs in the negative ion mode when compared with the common crystalline organic MALDI matrixes used for carbohydrates (2,5-dihydroxybenzoic acid and nor-harmane) or carbon nanotubes. Solvent-free NP deposition on tissues partially improves the signal acquisition. Although lower signal-to-noise ratio sugar signals were acquired from the tissues when compared to the solvent-assisted method, the reproducibility averaged over all sample was more uniform. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues
Autor:Gholipour, Y.; Giudicessi, S.L.; Nonami, H.; Erra-Balsells, R.
Filiación:Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
CIHIDECAR-CONICET, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón II, 3 P, 1428-Buenos Aires, Argentina
Palabras clave:Barium strontium titanium oxide; Dihydroxybenzoic acids; Doped sample; Fructans; Harmane; In-plants; In-vivo; Kestose; Laser desorption/ionization; Limit of detection; MALDI Matrix; matrix; Matrix-assisted laser desorption/ionization mass spectrometry; Molecular ions; Plant tissues; Positive ion mode; Reproducibilities; Sample preparation methods; Signal acquisitions; Signal intensities; Soluble sugars; Solvent free; Barium; Barium compounds; Carbon nanotubes; Desorption; Histology; Mass spectrometry; Nanoparticles; Negative ions; Organic compounds; Polysaccharides; Signal processing; Signal to noise ratio; Silicon compounds; Silicon oxides; Silver; Silver oxides; Solvents; Strontium; Sugar (sucrose); Tissue; Titanium; Titanium dioxide; Titanium oxides; 1 kestose; 1-kestose; barium; carbon nanotube; diamond; fructan; gold; nanoparticle; oxide; silicon dioxide; strontium; strontium titanium oxide; sucrose; titanium; titanium dioxide; trisaccharide; diamond; fructan; nanoparticle; oxide; silicon dioxide; strontium; titanium; article; chemistry; mass spectrometry; methodology; plant root; tulip; mass spectrometry; procedures; Barium; Diamond; Fructans; Gold; Nanoparticles; Nanotubes, Carbon; Oxides; Plant Roots; Silicon Dioxide; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Strontium; Sucrose; Titanium; Trisaccharides; Tulipa; Barium; Diamond; Fructans; Gold; Nanoparticles; Nanotubes, Carbon; Oxides; Plant Roots; Silicon Dioxide; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Strontium; Sucrose; Titanium; Trisaccharides; Tulipa
Año:2010
Volumen:82
Número:13
Página de inicio:5518
Página de fin:5526
DOI: http://dx.doi.org/10.1021/ac1003129
Título revista:Analytical Chemistry
Título revista abreviado:Anal. Chem.
ISSN:00032700
CODEN:ANCHA
CAS:barium, 7440-39-3; diamond, 7782-40-3; fructan, 9037-90-5; gold, 7440-57-5; oxide, 16833-27-5; silicon dioxide, 10279-57-9, 14464-46-1, 14808-60-7, 15468-32-3, 60676-86-0, 7631-86-9; strontium, 7440-24-6; sucrose, 122880-25-5, 57-50-1; titanium, 7440-32-6; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0; 1-kestose, 470-69-9; Barium, 7440-39-3; Diamond, 7782-40-3; Fructans; Gold, 7440-57-5; Nanotubes, Carbon; Oxides; Silicon Dioxide, 7631-86-9; Strontium, 7440-24-6; Sucrose, 57-50-1; Titanium, 7440-32-6; Trisaccharides; strontium titanium oxide, 12060-59-2; titanium dioxide, 13463-67-7; 1-kestose; Barium; Diamond; Fructans; Gold; Nanotubes, Carbon; Oxides; Silicon Dioxide; Strontium; strontium titanium oxide; Sucrose; Titanium; titanium dioxide; Trisaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032700_v82_n13_p5518_Gholipour

Referencias:

  • Stahl, B., Linos, A., Karas, M., Hillenkamp, F., Steup, M., (1997) Anal. Biochem., 246, pp. 195-204
  • Robinson, S., Warburton, K., Seymour, M., Clench, M., Thomas, J., (2007) New Phytol., 173, pp. 438-444
  • Gholipour, Y., Nonami, H., Erra-Balsells, R., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1841-1848
  • Gholipour, Y., Nonami, H., Erra-Balsells, R., (2008) Anal. Biochem., 383, pp. 159-167
  • Harvey, D.J., (1999) Mass Spectrom. Rev., 18, pp. 349-451
  • Harvey, D.J., (2006) Mass Spectrom. Rev., 25, pp. 595-662
  • Harvey, D.J., (2008) Mass Spectrom. Rev., 27, pp. 125-201
  • Nonami, H., Fukui, S., Erra-Balsells, R., (1997) J. Mass Spectrom., 32, pp. 287-296
  • Schmid, G., (2004) Nanoparticules. from Theory to Applications, , Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany
  • Watanabe, K., Menzel, D., Nilius, N., Freud, H.-J., (2006) Chem. Rev., 106, pp. 4301-4320
  • Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., (1988) Rapid Commun. Mass Spectrom., 2, pp. 151-153
  • Sunner, J., Dratz, E., Chen, Y.C., (1995) Anal. Chem., 67, pp. 4335-4342
  • Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., Guo, B., (2003) Anal. Chem., 75, pp. 6191-6195
  • Pan, C., Xu, S., Hu, L., Su, X., Ou, J., Zou, H., Guo, Z., Guo, B., (2005) J. Am. Soc. Mass Spectrom., 16, pp. 883-892
  • Lee, K.H., Chiang, C.K., Lin, Z.H., Chang, H.T., (2007) Rapid Commun. Mass Spectrom., 21, pp. 2023-2030
  • Lorkiewicz, P., Yappert, M.C., (2009) Anal. Chem., 81, pp. 6596-6603
  • Sluszny, C., Yeung, E.S., Nikolau, B.J., (2005) J. Am. Soc. Mass Spectrom., 16, pp. 107-115
  • Castellana, E.T., Sherrod, S.D., Russell, D.H., (2008) JALA, 13, pp. 330-334
  • Chiu, T.C., Chang, L.C., Chiang, C.K., Chang, H.T., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1343-1346
  • Shrivas, K., Wu, H.F., (2008) Rapid Commun. Mass Spectrom., 22, pp. 2863-2872
  • Wen, X., Dagan, S., Wysocki, V.H., (2007) Anal. Chem., 79, pp. 434-444
  • McLean, J.A., Stumpo, K.A., Russell, D.H., (2005) J. Am. Chem. Soc., 127, pp. 5304-5305
  • Su, C.L., Tseng, W.L., (2007) Anal. Chem., 79, pp. 1626-1633
  • Watanabe, T., Kawasaki, H., Yonezawa, T., Arakawa, R., (2008) J. Mass Spectrom., 43, pp. 1063-1071
  • Wei, L.M., Xue, Y., Zhou, X.W., Jin, H., Shi, Q., Lu, H.J., Yang, P.Y., (2008) Talanta, 74, pp. 1363-1370
  • Zhang, H., Cha, S., Yeung, E.S., (2007) Anal. Chem., 79, pp. 6575-6584
  • Rodriguez, R., Blesa, M.A., Regazzoni, A.E., (1996) J. Colloid Interface Sci., 177, pp. 122-131
  • Yu, Z., Chen, L.C., Suzuki, H., Ariyada, O., Erra-Balsells, R., Nonami, H., Hiraoka, K., (2009) J. Am. Soc. Mass Spectrom., 20, pp. 2304-2311
  • Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W., (1995) Chem. Rev., 95, pp. 69-96
  • Andreson, C., Bard, A.J., (1995) J. Phys. Chem., 99, pp. 9882-9885
  • Nur, H., (2006) Mat. Sci. Eng. B, 133, pp. 49-54
  • Muller, B.R., Majoni, S., Meissner, D., Memming, R., (2002) J. Photochem. Photobiol., A, 151, pp. 253-265
  • Molinari, S., Montocello, M., Rezala, H., Maldotti, A., (2009) Photochem. Photobiol. Sci., 8, pp. 613-619
  • Blesa, M.A., Morando, P.J., Regazzoni, A.E., (1994) Chemical Disolution of Metal Oxides, , CRC Press: Boca Raton, FL
  • Regazzoni, A.E., Mandelbaum, P.A., Matsusyoshi, M., Shiller, S., Bilmes, S.A., Blesa, M.A., (1998) Langmuir, 14, pp. 868-874
  • Pena, M.A., Fierro, J.L.G., (2001) Chem. Rev., 101, pp. 1981-2018
  • Boudou, J.-P., Curmi, P.A., Jelezko, F., Wrachtrup, J., Aubert, P., Sennour, M., Balasubramanian, G., Gaffet, E., (2009) Nanotechnology, 20, p. 235602
  • Moe, R., Wickström, A., (1973) Physiol. Plant., 28, pp. 81-87
  • Haaland, E., Wickström, A., (1975) Acta Hortic., 47, pp. 371-376
  • Lambrechts, H., Rook, F., Kolloffell, C., (1994) Plant Physiol., 10, pp. 515-520
  • Nonami, H., Boyer, J.S., (1993) Plant Physiol., 102, pp. 13-19
  • Boyer, J.S., (1995) Measuring the Water Status of Plants and Soils, , Pressure Probe, Academic Press: San Diego,; Chapter 4

Citas:

---------- APA ----------
Gholipour, Y., Giudicessi, S.L., Nonami, H. & Erra-Balsells, R. (2010) . Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Analytical Chemistry, 82(13), 5518-5526.
http://dx.doi.org/10.1021/ac1003129
---------- CHICAGO ----------
Gholipour, Y., Giudicessi, S.L., Nonami, H., Erra-Balsells, R. "Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues" . Analytical Chemistry 82, no. 13 (2010) : 5518-5526.
http://dx.doi.org/10.1021/ac1003129
---------- MLA ----------
Gholipour, Y., Giudicessi, S.L., Nonami, H., Erra-Balsells, R. "Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues" . Analytical Chemistry, vol. 82, no. 13, 2010, pp. 5518-5526.
http://dx.doi.org/10.1021/ac1003129
---------- VANCOUVER ----------
Gholipour, Y., Giudicessi, S.L., Nonami, H., Erra-Balsells, R. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem. 2010;82(13):5518-5526.
http://dx.doi.org/10.1021/ac1003129