Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. © 2012 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites
Autor:Gholipour, Y.; Erra-Balsells, R.; Hiraoka, K.; Nonami, H.
Filiación:Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
CIHIDECAR-CONICET, Departamento de Química Orgánica, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Clean Energy Research Center, University of Yamanashi, Kofu 400-8511, Japan
Palabras clave:Cell analyses; Plant cell; Shotgun metabolomics; Single-cell metabolite profiling; amino acid; fatty acid; sugar; vitamin; article; cell manipulation; electrospray mass spectrometry; metabolite; metabolomics; priority journal; single cell analysis; Cell Survival; Metabolomics; Plant Roots; Pressure; Single-Cell Analysis; Spectrometry, Mass, Electrospray Ionization; Tulipa; Tulipa
Año:2013
Volumen:433
Número:1
Página de inicio:70
Página de fin:78
DOI: http://dx.doi.org/10.1016/j.ab.2012.10.001
Título revista:Analytical Biochemistry
Título revista abreviado:Anal. Biochem.
ISSN:00032697
CODEN:ANBCA
CAS:amino acid, 65072-01-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032697_v433_n1_p70_Gholipour

Referencias:

  • Amantonico, A., Urban, P.L., Zenobi, R., Analytical techniques for single-cell metabolomics: State of the art and trends (2010) Anal. Bioanal. Chem., 398, pp. 2493-2504
  • Hiraoka, K., Nishidate, K., Mori, K., Asakawa, D., Suzuki, S., Development of probe electrospray using a solid needle (2007) Rapid Commun. Mass Spectrom., 21, pp. 3139-3144
  • Yu, Z., Chen, L.C., Suzuki, H., Ariyada, O., Erra-Balsells, R., Nonami, H., Hiraoka, K., Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry (2009) J. Am. Soc. Mass Spectrom., 20, pp. 2304-2311
  • Mizuno, H., Tsuyama, N., Harada, T., Masujima, T., Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification (2008) J. Mass Spectrom., 43, pp. 1692-1700
  • Tsuyama, N., Mizuno, H., Tokunaga, E., Masujima, T., Live single-cell molecular analysis by video-mass spectrometry (2008) Anal. Sci., 24, pp. 559-561
  • Tejedor, M.L., Mizuno, H., Tsuyama, N., Harada, T., Masujima, T., Direct single-cell molecular analysis of plant tissues by video mass spectrometry (2009) Anal. Sci., 25, pp. 1053-1056
  • Shrestha, B., Vertes, A., In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry (2009) Anal. Chem., 81, pp. 8265-8271
  • Nonami, H., Boyer, J.S., Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials (1990) Plant Physiol., 93, pp. 1610-1619
  • Kajiyama, S., Harada, K., Fukusaki, E., Kobayashi, A.J., Single cell-based analysis of Torenia petal pigments by a combination of ArF excimer laser micro sampling and nano-high performance liquid chromatography (HPLC)-mass spectrometry (2006) Biosci. Bioeng., 6, pp. 575-578
  • Izumi, Y., Kajiyama, S., Nakamura, R., Ishihara, A., Okazawa, A., Fukusaki, E., Kanematsu, Y., Kobayashi, A., High-resolution spatial and temporal analysis of phytoalexin production in oats (2009) Planta, 229, pp. 931-943
  • Gholipour, Y., Nonami, H., Erra-Balsells, R., Application of pressure probe and UV-MALDI-TOF MS for direct analysis of plant underivatized carbohydrates in subpicoliter single-cell cytoplasm extract (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1841-1848
  • Gholipour, Y., Erra-Balsells, R., Nonami, H., In situ pressure probe sampling and UVMALDI MS for profiling metabolites in living single cells (2012) Mass Spectrom., 1, p. 0003
  • Erra-Balsells, R., Gholipour, Y., Nonami, H., In situ pressure probe sampling of single cell solution from living plants for metabolite analyses with UV-MALDI MS (2012) Lecture Notes Eng. Comput. Sci., 2197, pp. 572-577
  • Kramer, P.J., Boyer, J.S., Cell water relations (1995) Water Relations of Plants and Soils, pp. 42-83. , Academic Press, San Diego
  • Boyer, J.S., Pressure probe (1995) Measuring the Water Status of Plants and Soils, pp. 103-142. , Academic Press, San Diego
  • Hüsken, E., Steudle, E., Zimmermann, U., Pressure probe technique for measuring water relations of cells in higher plants (1978) Plant Physiol., 61, pp. 158-163
  • Shackel, K.A., Direct measurement of turgor and osmotic potential in individual epidermal cells (1987) Plant Physiol., 83, pp. 719-722
  • Nonami, H., Schulze, E.D., Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves: Combined measurements with the cell pressure probe and a nanoliter osmometer (1989) Planta, 177, pp. 35-46
  • Steudle, E., Zimmermann, U., Effect of turgor pressure and cell size on the wall elasticity of plant cells (1977) Plant Physiol., 59, pp. 285-289
  • Green, P.B., Erickson, R.O., Buggy, J., Metabolic and physical control of cell elongation rate: In vivo studies in Nitella (1971) Plant Physiol., 47, pp. 423-430
  • Malone, M., Tomos, A.D., A simple pressure-probe method for the determination of volume in higher-plant cells (1990) Planta, 182, pp. 199-203
  • Zeleny, J., Instability of electrified liquid surfaces (1917) Phys. Rev., 10, pp. 1-6
  • Mann, M., Electrospray: Its potential and limitations as an ionization method for biomolecules (1990) Org. Mass Spectrom., 25, pp. 575-587
  • Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., Electrospray ionization for mass spectrometry of large biomolecules (1989) Science, 246, pp. 64-71
  • Wilm, M.S., Mann, M., Electrospray and Taylor-Cone theory: Dole's beam of macromolecules at last? (1994) Int. J. Mass Spectrom. Ion Proc., 136, pp. 167-180
  • Wilm, M., Mann, M., Analytical properties of the nanoelectrospray ion source (1996) Anal. Chem., 68, pp. 1-8
  • Jessome, L.L., Volmer, D.A., Ion suppression: A major concern in mass spectrometry (2006) LCGC N. Am., 24, pp. 498-510
  • Buhrman, D.L., Price, P.I., Rudewicz, P.J., Quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry: A study of ion suppression (1996) J. Am. Soc. Mass Spectrom., 7, pp. 1099-1105
  • Tong, H., Bell, D., Tabei, K., Siegel, M.M., Automated data massaging, interpretation, and e-mailing modules for high throughput open access mass spectrometry (1999) J. Am. Soc. Mass Spectrom., 10, pp. 1174-1187
  • Bouché, N., Fromm, H., GABA in plants: Just a metabolite? (2004) Trends Plant Sci., 9, pp. 110-115
  • Wang, C., Delcros, J., Cannon, L., Konate, F., Carias, H., Biggerstaff, J., Gardner, R.A., Phanstiel, O., Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters (2003) J. Med. Chem., 46, pp. 5129-5138
  • Alczar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., Bitrin, M., Altabella, T., Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene (2010) Plant Physiol. Biochem., 48, pp. 547-552
  • Moe, R., Wickström, A., The effect of storage temperature on shoot growth, flowering, and carbohydrate metabolism in tulip bulbs (1973) Physiol. Plant., 28, pp. 81-87
  • Haaland, E., Wickström, A., The effect of storage temperature on carbohydrate interconversion in tulip bulbs (1975) Acta Hortic., 47, pp. 371-376
  • Lambrechts, H., Rook, F., Kolloffell, C., Carbohydrate status of tulip bulbs during cold-induced flower stalk elongation and flowering (1994) Plant Physiol., 10, pp. 515-520
  • Gholipour, Y., Giudicessi, S.L., Nonami, H., Erra-Balsells, R., Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues (2010) Anal. Chem., 82, pp. 5518-5526
  • Tschesche, R., Kämmerer, F.-J., Wulff, G., Schönbeck, F., Über die antibiotisch wirksamen substanzen der Tulpe (Tulipa gesneriana) (1968) Tetrahedron Lett., 9, pp. 701-706
  • Tschesche, R., Kämmerer, F.-J., Wulff, G., Über die struktur der antibiotisch aktiven substanzen der tulpe (1969) Chem. Ber., 102, pp. 2057-2071
  • Christensen, L.P., Tuliposides from Tulipa sylvestris and T. turkestanica (1999) Phytochemistry, 51, pp. 969-974
  • Schönbeck, F., Schroeder, C., Role of antimicrobial substances (tuliposides) in tulips attacked by Botrytis spp (1972) Physiol. Plant Pathol., 2, pp. 91-99
  • Beijersbergen, J.C., Lemmers, C.B.G., Enzymatic liberation of tulipalin (α-methylenebutyrol-actone), a fungitoxic substance isolated from tulips (1971) Acta Hort., 23, pp. 230-234

Citas:

---------- APA ----------
Gholipour, Y., Erra-Balsells, R., Hiraoka, K. & Nonami, H. (2013) . Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites. Analytical Biochemistry, 433(1), 70-78.
http://dx.doi.org/10.1016/j.ab.2012.10.001
---------- CHICAGO ----------
Gholipour, Y., Erra-Balsells, R., Hiraoka, K., Nonami, H. "Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites" . Analytical Biochemistry 433, no. 1 (2013) : 70-78.
http://dx.doi.org/10.1016/j.ab.2012.10.001
---------- MLA ----------
Gholipour, Y., Erra-Balsells, R., Hiraoka, K., Nonami, H. "Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites" . Analytical Biochemistry, vol. 433, no. 1, 2013, pp. 70-78.
http://dx.doi.org/10.1016/j.ab.2012.10.001
---------- VANCOUVER ----------
Gholipour, Y., Erra-Balsells, R., Hiraoka, K., Nonami, H. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites. Anal. Biochem. 2013;433(1):70-78.
http://dx.doi.org/10.1016/j.ab.2012.10.001