Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The transition from unicellular, to colonial, to larger multicellular organisms has benefits, costs, and requirements. Here we present a model inspired by the volvocine green algae that explains the dynamics involved in the unicellular-multicellular transition using life-history theory and allometry. We model the two fitness components (fecundity and viability) and compare the fitness of hypothetical colonies of different sizes with varying degrees of cellular differentiation to understand the general principles that underlie the evolution of multicellularity. We argue that germ-soma separation may have evolved to counteract the increasing costs and requirements of larger multicellular colonies. The model shows that the cost of investing in soma decreases with size. For lineages such as the Volvocales, as reproduction costs increase with size for undifferentiated colonies, soma specialization benefits the colony indirectly by decreasing such costs and directly by helping reproductive cells acquire resources for their metabolic needs. Germ specialization is favored once soma evolves and takes care of vegetative functions. To illustrate the model, we use some allometric relationships measured in Volvocales. Our analysis shows that the cost of reproducing an increasingly larger group has likely played an important role in the transition to multicellularity and cellular differentiation. © 2013 by The University of Chicago. 0003-0147/2013/18103-54025$15.00. All rights reserved.

Registro:

Documento: Artículo
Título:A general allometric and life-history model for cellular differentiation in the transition to multicellularity
Autor:Solari, C.A.; Kessler, J.O.; Goldstein, R.E.
Filiación:Laboratorio de Biología Comparada de Protistas, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Department of Physics, University of Arizona, Tucson AZ 85721, Argentina
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB30WA, United Kingdom
Palabras clave:Body size; Cost of reproduction; Germ-soma differentiation; Life-history evolution; Multicellularity; Volvocales; allometry; cell organelle; colony; cost-benefit analysis; fecundity; green alga; life history theory; reproductive cost; specialization; viability; article; biological model; body size; cell differentiation; cytology; evolution; fertility; genetics; germ cell; green alga; growth, development and aging; physiology; reproduction; reproductive fitness; Biological Evolution; Body Size; Cell Differentiation; Chlorophyta; Fertility; Genetic Fitness; Germ Cells; Models, Biological; Reproduction
Año:2013
Volumen:181
Número:3
Página de inicio:369
Página de fin:380
DOI: http://dx.doi.org/10.1086/669151
Título revista:American Naturalist
Título revista abreviado:Am. Nat.
ISSN:00030147
CODEN:AMNTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00030147_v181_n3_p369_Solari

Referencias:

  • Gavrilets, S., Rapid transition towards the division of labor via evolution of developmental plasticity (2010) PLoS Computational Biology, 6, pp. e1000805
  • Graham, L.E., Wilcox, L.W., (2000) Algae, , Prentice Hall, Englewood Cliffs, NJ
  • Grosberg, R.K., Strathmann, R.R., The evolution of multicellularity: A minor major transition? (2007) Annual Review of Ecology, Evolution, and Systematics, 38, pp. 621-654
  • Guyon, E., Hulin, J.P., Petit, L., Mitescu, C.D., (2001) Physical Hydrodynamics, , Oxford University Press, New York
  • Herron, M.D., Michod, R.E., Evolution of complexity in the volvocine algae: Transitions in individuality through Darwin's eye (2008) Evolution, 62, pp. 436-451
  • Hoops, H.J., Motility in the colonial and multicellular Volvocales: Structure, function, and evolution (1997) Protoplasma, 199, pp. 99-112
  • Kirk, D.L., The genetic program for germ-soma differentiation in Volvox (1997) Annual Review of Genetics, 31, pp. 359-380
  • Kirk, D.L., (1998) Volvox: Molecular-genetic Origins of Multicellularity and Cellular Differentiation, , Cambridge University Press, Cambridge
  • Koufopanou, V., The evolution of soma in the Volvocales (1994) American Naturalist, 143, pp. 907-931
  • Larson, A., Kirk, M.M., Kirk, D.L., Molecular phylogeny of the volvocine flagellates (1992) Molecular Biology and Evolution, 9, pp. 85-105
  • Michod, R.E., Viossat, Y., Solari, C.A., Hurand, M., Nedelcu, A.M., Life-history evolution and the origin of multicellularity (2006) Journal of Theoretical Biology, 239, pp. 257-272
  • Morgan, N.C., Secondary production (1980) The Functioning of Freshwater Ecosystems. International Biological Programme Synthesis Series 22, pp. 247-340. , in E. D. Le Cren and R. H. Lowe-McConnell, eds., Cambridge University Press, Cambridge
  • Niklas, K.J., (1994) Plant Allometry: The Scaling of Form and Process, , University of Chicago Press, Chicago
  • Niklas, K.J., The evolution of plant body plans: A biomechanical perspective (2000) Annals of Botany, 85, pp. 411-438
  • Nozaki, H., Ott, F.D., Coleman, A.W., Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae) (2006) Journal of Phycology, 42, pp. 1072-1080
  • Porter, K.G., The plant-animal interface in freshwater ecosystems (1977) American Scientist, 65, pp. 159-170
  • Short, M.B., Solari, C.A., Ganguly, S., Powers, T.R., Kessler, J.O., Goldstein, R.E., Flows driven by flagella of multicellular organisms enhance log-range molecular transport (2006) Proceedings of the National Academy of Sciences of the USA, 103, pp. 8315-8319
  • Solari, C.A., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E., Multicellularity and the functional interdependence of motility and molecular transport (2006) Proceedings of the National Academy of Sciences of the USA, 103, pp. 1353-1358
  • Solari, C.A., Kessler, J.O., Michod, R.E., A hydrodynamics approach to the evolution of multicellularity: Flagellar motility and the evolution of germ-soma differentiation in volvocalean green algae (2006) American Naturalist, 167, pp. 537-554
  • Sommer, U., Gliwicz, Z.M., Long-range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique) (1986) Limnology and Oceanography, 31, pp. 650-653
  • Stearns, S.C., (1992) The Evolution of Life Histories, , Oxford University Press, Oxford
  • Willensdorfer, M., On the evolution of differentiated multicellularity (2009) Evolution, 63, pp. 306-323

Citas:

---------- APA ----------
Solari, C.A., Kessler, J.O. & Goldstein, R.E. (2013) . A general allometric and life-history model for cellular differentiation in the transition to multicellularity. American Naturalist, 181(3), 369-380.
http://dx.doi.org/10.1086/669151
---------- CHICAGO ----------
Solari, C.A., Kessler, J.O., Goldstein, R.E. "A general allometric and life-history model for cellular differentiation in the transition to multicellularity" . American Naturalist 181, no. 3 (2013) : 369-380.
http://dx.doi.org/10.1086/669151
---------- MLA ----------
Solari, C.A., Kessler, J.O., Goldstein, R.E. "A general allometric and life-history model for cellular differentiation in the transition to multicellularity" . American Naturalist, vol. 181, no. 3, 2013, pp. 369-380.
http://dx.doi.org/10.1086/669151
---------- VANCOUVER ----------
Solari, C.A., Kessler, J.O., Goldstein, R.E. A general allometric and life-history model for cellular differentiation in the transition to multicellularity. Am. Nat. 2013;181(3):369-380.
http://dx.doi.org/10.1086/669151