Artículo

Duong, R.; Philipp, F."The effect of perturbations of linear operators on their polar decomposition" (2017) Proceedings of the American Mathematical Society. 145(2):779-790
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of matrix perturbations on the polar decomposition has been studied by several authors and various results are known. However, for operators between infinite-dimensional spaces the problem has not been considered so far. Here, we prove in particular that the partial isometry in the polar decomposition of an operator is stable under perturbations, given that kernel and range of original and perturbed operator satisfy a certain condition. In the matrix case, this condition is weaker than the usually imposed equal-rank condition. It includes the case of semi-Fredholm operators with agreeing nullities and deficiencies, respectively. In addition, we prove a similar perturbation result where the ranges or the kernels of the two operators are assumed to be sufficiently close to each other in the gap metric. © 2016 American Mathematical Society.

Registro:

Documento: Artículo
Título:The effect of perturbations of linear operators on their polar decomposition
Autor:Duong, R.; Philipp, F.
Filiación:Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, Berlin, 10623, Germany
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Palabras clave:Hilbert space; Linear operator; Perturbation; Polar decomposition
Año:2017
Volumen:145
Número:2
Página de inicio:779
Página de fin:790
DOI: http://dx.doi.org/10.1090/proc/13252
Handle:http://hdl.handle.net/20.500.12110/paper_00029939_v145_n2_p779_Duong
Título revista:Proceedings of the American Mathematical Society
Título revista abreviado:Proc. Am. Math. Soc.
ISSN:00029939
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n2_p779_Duong

Referencias:

  • Barrlund, E., Perturbation bounds on the polar decomposition (1990) BIT, 30 (1), pp. 101-113. , MR1032844
  • Bhatia, R., Rosenthal, P., How and why to solve the operator equation AX − XB = Y (1997) Bull. London Math. Soc, 29 (1), pp. 1-21. , MR1416400
  • Chaitin-Chatelin, F., Gratton, S., On the condition numbers associated with the polar factorization of a matrix (2000) Numer. Linear Algebra Appl, 7 (5), pp. 337-354. , MR1766918
  • Chen, X.-S., Li, W., Sun, W., Some new perturbation bounds for the generalized polar decomposition (2004) BIT, 44 (2), pp. 237-244. , MR2093503
  • Chen, X.S., Li, W., Perturbation bounds for polar decomposition under unitarily invariant norms (Chinese, with English and Chinese summaries) (2005) Math. Numer. Sin, 27 (2), pp. 121-128. , MR2164343
  • Higham, N.J., Computing the polar decomposition—with applications (1986) SIAM J. Sci. Statist. Comput, 7 (4), pp. 1160-1174. , MR857788
  • Hong, X., Meng, L., Zheng, B., Some new perturbation bounds of generalized polar decomposition (2014) Appl. Math. Comput, 233, pp. 430-438. , MR3214997
  • Kato, T., (1980) Perturbation Theory for Linear Operators, , 2nd Edition, Springer, Berlin, Heidelberg, New York
  • Kulkarni, S.H., Nair, M.T., A characterization of closed range operators (2000) Indian J. Pure Appl. Math, 31 (4), pp. 353-361. , MR1760936
  • Li, R.C., A perturbation bound for the generalized polar decomposition (1993) BIT, 33 (2), pp. 304-308. , MR1326021
  • Li, R.C., New perturbation bounds for the unitary polar factor (1995) SIAM J. Matrix Anal. Appl, 16 (1), pp. 327-332. , MR1311436
  • Li, W., On the perturbation bound in unitarily invariant norms for subunitary polar factors (2008) Linear Algebra Appl, 429 (2-3), pp. 649-657. , MR2419954
  • Li, W., Sun, W., Perturbation bounds of unitary and subunitary polar factors (2002) SIAM J. Matrix Anal. Appl, 23 (4), pp. 1183-1193. , (electronic), MR1920940
  • Markus, A.S., On some properties of linear operators connected with the notion of gap (Russian) (1959) Kishinev Gos. Univ. Uchen. Zap, 39, pp. 265-272
  • Mathias, R., Perturbation bounds for the polar decomposition (1993) SIAM J. Matrix Anal. Appl, 14 (2), pp. 588-597. , MR1211809
  • Müller, V., Spectral theory of linear operators and spectral systems in Banach algebras (2007) Operator Theory: Advances and Applications, 139. , 2nd ed, Birkhäuser Verlag, Basel, MR2355630
  • Wedin, P.-A., Perturbation theory for pseudo-inverses (1973) Nordisk Tidskr. Informationsbehandling (BIT), 13, pp. 217-232. , MR0336982

Citas:

---------- APA ----------
Duong, R. & Philipp, F. (2017) . The effect of perturbations of linear operators on their polar decomposition. Proceedings of the American Mathematical Society, 145(2), 779-790.
http://dx.doi.org/10.1090/proc/13252
---------- CHICAGO ----------
Duong, R., Philipp, F. "The effect of perturbations of linear operators on their polar decomposition" . Proceedings of the American Mathematical Society 145, no. 2 (2017) : 779-790.
http://dx.doi.org/10.1090/proc/13252
---------- MLA ----------
Duong, R., Philipp, F. "The effect of perturbations of linear operators on their polar decomposition" . Proceedings of the American Mathematical Society, vol. 145, no. 2, 2017, pp. 779-790.
http://dx.doi.org/10.1090/proc/13252
---------- VANCOUVER ----------
Duong, R., Philipp, F. The effect of perturbations of linear operators on their polar decomposition. Proc. Am. Math. Soc. 2017;145(2):779-790.
http://dx.doi.org/10.1090/proc/13252