Artículo

Fridman, D.; Garbulsky, J.; Glecer, B.; Grime, J.; Florentin, M.T."A Prime-Representing Constant" (2019) American Mathematical Monthly. 126(1):70-73
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a constant and a recursive relation to define a sequence fn such that the floor of fn is the nth prime. Therefore, this constant generates the complete sequence of primes. We also show this constant is irrational and consider other sequences that can be generated using the same method. © 2018, © THE MATHEMATICAL ASSOCIATION OF AMERICA.

Registro:

Documento: Artículo
Título:A Prime-Representing Constant
Autor:Fridman, D.; Garbulsky, J.; Glecer, B.; Grime, J.; Florentin, M.T.
Filiación:Mathematics Department (FCEN), University of Buenos Aires, Acceso Pabellón 1, Buenos Aires, Argentina
Mathematics Department (FCEN), University of Buenos Aires, Acceso Pabellón 1, Buenos Aires, Argentina
Department of Electronic Engineering, Buenos Aires Regional Faculty, National Technological University, Argentina
Cambridge, United Kingdom
Physics Department (FCEN), University of Buenos Aires, Acceso Pabellón 1, Buenos Aires, Argentina
Palabras clave:11A67; MSC: Primary 00A08; Secondary 11A41
Año:2019
Volumen:126
Número:1
Página de inicio:70
Página de fin:73
DOI: http://dx.doi.org/10.1080/00029890.2019.1530554
Handle:http://hdl.handle.net/20.500.12110/paper_00029890_v126_n1_p70_Fridman
Título revista:American Mathematical Monthly
Título revista abreviado:Am. Math. Mon.
ISSN:00029890
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029890_v126_n1_p70_Fridman

Referencias:

  • Bou-Rabee, K., McReynolds, D.B., Bertrand’s postulate and subgroup growth (2010) J. Algebra, 324 (4), pp. 793-819
  • Crandall, R., Pomerance, C., (2005) Prime Numbers: A Computational Perspective, , http://doi.org/10.1007/0-387-28979-8, New York: Springer-Verlag
  • Mills, W.H., A prime-representing function (1947) Bull. Amer. Math. Soc, 53 (6), p. 604
  • (2000) On-Line Encyclopedia of Integer Sequences, , oeis.org/A053669
  • Rivin, I., Geodesics with one self-intersection, and other stories (2012) Adv. Math, 231 (5), pp. 2391-2412

Citas:

---------- APA ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J. & Florentin, M.T. (2019) . A Prime-Representing Constant. American Mathematical Monthly, 126(1), 70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554
---------- CHICAGO ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J., Florentin, M.T. "A Prime-Representing Constant" . American Mathematical Monthly 126, no. 1 (2019) : 70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554
---------- MLA ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J., Florentin, M.T. "A Prime-Representing Constant" . American Mathematical Monthly, vol. 126, no. 1, 2019, pp. 70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554
---------- VANCOUVER ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J., Florentin, M.T. A Prime-Representing Constant. Am. Math. Mon. 2019;126(1):70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554