Abstract:
We present a constant and a recursive relation to define a sequence fn such that the floor of fn is the nth prime. Therefore, this constant generates the complete sequence of primes. We also show this constant is irrational and consider other sequences that can be generated using the same method. © 2018, © THE MATHEMATICAL ASSOCIATION OF AMERICA.
Registro:
Documento: |
Artículo
|
Título: | A Prime-Representing Constant |
Autor: | Fridman, D.; Garbulsky, J.; Glecer, B.; Grime, J.; Florentin, M.T. |
Filiación: | Mathematics Department (FCEN), University of Buenos Aires, Acceso Pabellón 1, Buenos Aires, Argentina Mathematics Department (FCEN), University of Buenos Aires, Acceso Pabellón 1, Buenos Aires, Argentina Department of Electronic Engineering, Buenos Aires Regional Faculty, National Technological University, Argentina Cambridge, United Kingdom Physics Department (FCEN), University of Buenos Aires, Acceso Pabellón 1, Buenos Aires, Argentina
|
Palabras clave: | 11A67; MSC: Primary 00A08; Secondary 11A41 |
Año: | 2019
|
Volumen: | 126
|
Número: | 1
|
Página de inicio: | 70
|
Página de fin: | 73
|
DOI: |
http://dx.doi.org/10.1080/00029890.2019.1530554 |
Título revista: | American Mathematical Monthly
|
Título revista abreviado: | Am. Math. Mon.
|
ISSN: | 00029890
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029890_v126_n1_p70_Fridman |
Referencias:
- Bou-Rabee, K., McReynolds, D.B., Bertrand’s postulate and subgroup growth (2010) J. Algebra, 324 (4), pp. 793-819
- Crandall, R., Pomerance, C., (2005) Prime Numbers: A Computational Perspective, , http://doi.org/10.1007/0-387-28979-8, New York: Springer-Verlag
- Mills, W.H., A prime-representing function (1947) Bull. Amer. Math. Soc, 53 (6), p. 604
- (2000) On-Line Encyclopedia of Integer Sequences, , oeis.org/A053669
- Rivin, I., Geodesics with one self-intersection, and other stories (2012) Adv. Math, 231 (5), pp. 2391-2412
Citas:
---------- APA ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J. & Florentin, M.T.
(2019)
. A Prime-Representing Constant. American Mathematical Monthly, 126(1), 70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554---------- CHICAGO ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J., Florentin, M.T.
"A Prime-Representing Constant"
. American Mathematical Monthly 126, no. 1
(2019) : 70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554---------- MLA ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J., Florentin, M.T.
"A Prime-Representing Constant"
. American Mathematical Monthly, vol. 126, no. 1, 2019, pp. 70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554---------- VANCOUVER ----------
Fridman, D., Garbulsky, J., Glecer, B., Grime, J., Florentin, M.T. A Prime-Representing Constant. Am. Math. Mon. 2019;126(1):70-73.
http://dx.doi.org/10.1080/00029890.2019.1530554