Artículo

La versión final de este artículo es de uso interno de la institución. El editor no permite incluir ninguna versión del artículo en el Repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A simple experimental technique for analyzing a broad range of two-dimensional percolation problems is presented. The method is based on a combination of the use of a CAD program capable of dealing with a variety of site-bond combinations and an electrical measurement of conductance. The latter is achieved by printing the computer generated pattern using conducting ink. The metal-insulator transition is measured on the print out of the lattice, and the conductivity critical exponent and the percolation threshold are calculated from these measurements. © 2004 American Association of Physics Teachers.

Registro:

Documento: Artículo
Título:An experimental method for studying two-dimensional percolation
Autor:Schwartz, G.A.; Ludueña, S.J.
Filiación:Departamento de Física, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 1, Buenos Aires (1428), Argentina
Applied Physics Department, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
Año:2004
Volumen:72
Número:3
Página de inicio:364
Página de fin:366
DOI: http://dx.doi.org/10.1119/1.1625925
Título revista:American Journal of Physics
Título revista abreviado:Am. J. Phys.
ISSN:00029505
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029505_v72_n3_p364_Schwartz

Referencias:

  • Stauffer, D., Aharony, A., (1992) Introduction to Percolation Theory, , Taylor & Francis, Washington, DC, and references therein
  • Fortuin, C.M., Kasteleyn, P.W., Random-cluster model. 1. Introduction and relation to other models (1972) Physica (Amsterdam), 57, pp. 536-564
  • Frisch, H.L., Hammersley, J.M., Percolation processes and related topics (1963) J. Soc. Ind. Appl. Math., 11, pp. 894-918
  • Cox, J.T., Durrett, R., Limit-theorems for the spread of epidemics and forest fires (1988) Stochastic Proc. Appl., 30, pp. 171-191
  • Van den Berg, J., Grimmett, G.R., Schinazi, R.B., Dependent random graphs and spatial epidemics (1998) Ann. Appl. Probab., 8, pp. 317-336
  • Greene, J.W., El Gamal, A., Configuration of VLSI arrays in the presence of defects (1984) J. Assoc. Comput. Mach., 31, pp. 694-717
  • Gul, V.E., (1996) Structure and Properties of Conducting Polymer Composites, , V.S.P. International Science, Utrecht, The Netherlands
  • Sichel, E.K., (1982) Carbon Black-polymer Composites, , Dekker, New York
  • Probst, N., (1993) Carbon Black Science and Technology, pp. 271-288. , edited by J. B. Donnet, R. C. Bansal, and M. J. Wang (Dekker, New York), Chap. 8
  • Dubson, M.A., Garland, J.C., Measurement of the conductivity exponent in two-dimensional percolating networks: Square lattice versus random-void continuum (1985) Phys. Rev. B, 32 (11), pp. 7621-7623
  • Last, B.J., Thouless, D.J., Percolation theory and electrical conductivity (1971) Phys. Rev. Lett., 27, pp. 1719-1721
  • Mehr, R., Grossman, T., Kristianpoller, N., Gefen, Y., Simple percolation experiment in 2 dimensions (1986) Am. J. Phys., 54 (3), pp. 271-273
  • Watson, B.P., Leath, P.L., Conductivity in the two-dimensional-site percolation problem (1974) Phys. Rev. B, 9 (11), pp. 4893-4896
  • Straley, J.P., The ant in the labyrinth - Diffusion in random networks near the percolation-threshold (1980) J. Phys. C, 13, pp. 2991-3002
  • Fisch, R., Harris, A.B., Critical behavior of random resistor networks near the percolation threshold (1978) Phys. Rev. B, 18 (1), pp. 416-420
  • Adler, J., Meir, Y., Aharony, A., Harris, A.B., Klein, L., Low concentration series in general dimension (1990) J. Stat. Phys., 58, pp. 511-538
  • Adler, J., Conductivity exponents from the analysis of series expansions for random resistor networks (1985) J. Phys. A, 18, pp. 307-314
  • Derrida, B., Vannimenus, J., A transfer-matrix approach to random resistor networks (1982) J. Phys. A, 15, pp. L557-L564
  • Zabolitzky, J.G., Monte Carlo evidence against the Alexander-Orbach conjecture for percolation conductivity (1984) Phys. Rev. B, 30 (7), pp. 4077-4079
  • Lobb, C.J., Frank, D.J., Percolative conduction and the Alexander-Orbach conjecture in two dimensions (1984) Phys. Rev. B, 30, pp. 4090-4092
  • Lobb, C.J., Frank, D.J., Highly efficient algorithm for percolative transport studies in two dimensions (1988) Phys. Rev. B, 37, pp. 302-307
  • Stauffer, D., Minireview: New results for old percolation (1997) Physica A, 242 (1-2), pp. 1-7
  • Jan, N., Large lattice random site percolation (1999) Physica A, 266, pp. 72-75
  • Schmelzer, J., Brown, S.A., Wurl, A., Hyslop, M., Blaikie, R.J., Finite-size effects in the conductivity of cluster assembled nanostructures (2002) Phys. Rev. Lett., 88 (22), pp. 2268021-2268024
  • Martin, J.E., Heaney, M.B., Reversible thermal fusing model of carbon black current-limiting thermistors (2000) Phys. Rev. B, 62 (14), pp. 9390-9397
  • Han, K.H., Lim, Z.S., Lee, S.I., Experimental study of the conductivity exponent in a two-dimensional Swiss cheese percolating network (1990) Physica B, 167 (3), pp. 185-188

Citas:

---------- APA ----------
Schwartz, G.A. & Ludueña, S.J. (2004) . An experimental method for studying two-dimensional percolation. American Journal of Physics, 72(3), 364-366.
http://dx.doi.org/10.1119/1.1625925
---------- CHICAGO ----------
Schwartz, G.A., Ludueña, S.J. "An experimental method for studying two-dimensional percolation" . American Journal of Physics 72, no. 3 (2004) : 364-366.
http://dx.doi.org/10.1119/1.1625925
---------- MLA ----------
Schwartz, G.A., Ludueña, S.J. "An experimental method for studying two-dimensional percolation" . American Journal of Physics, vol. 72, no. 3, 2004, pp. 364-366.
http://dx.doi.org/10.1119/1.1625925
---------- VANCOUVER ----------
Schwartz, G.A., Ludueña, S.J. An experimental method for studying two-dimensional percolation. Am. J. Phys. 2004;72(3):364-366.
http://dx.doi.org/10.1119/1.1625925