Abstract:
We experimentally studied the dependence of the period of the interrupted pendulum as a function of the amplitude for small angles of oscillation. We found a new kind of dependence of the period with the amplitude of the pendulum that indicates that if the interruption is not located on the main vertical axis that contains the point of suspension, the period of the interrupted pendulum is highly nonisochronous and does not converge to a definite value as the maximum amplitude approaches zero. We have developed a simple model that satisfactorily explains the experimental data with no adjustable parameters. This property of the interrupted pendulum is a general property of the parabolic potential consisting of two quadratic forms with different curvatures that join at a point different from the apex or the vertex. © 2003 American Association of Physics Teachers.
Registro:
| Documento: |
Artículo
|
| Título: | Nonisochronism in the interrupted pendulum |
| Autor: | Gil, S.; Di Gregorio, D.E. |
| Filiación: | Esc. de Ciencia y Tecnología, Univ. Nacional de San Martín, Provincia de Buenos Aires, Argentina Fac. de Ing./Cie. Exact. y Naturales, Universidad Favaloro, Buenos Aires, Argentina Laboratorio Tandar, Departamento de Física, Comn. Nacl. de Ener. Atómica, Buenos Aires, Argentina
|
| Año: | 2003
|
| Volumen: | 71
|
| Número: | 11
|
| Página de inicio: | 1115
|
| Página de fin: | 1120
|
| DOI: |
http://dx.doi.org/10.1119/1.1578071 |
| Título revista: | American Journal of Physics
|
| Título revista abreviado: | Am. J. Phys.
|
| ISSN: | 00029505
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029505_v71_n11_p1115_Gil |
Referencias:
- Bozzi, P., Maccagni, C., Olivieri, L., Settle, T.B., (1995) Galileo e la Scienza Sperimentale, p. 50. , Dipartiraento di Fisica "Galileo Galilei" Universita di Padova - Padova "Pendolo Interrotto,"
- Wood, H., The interrupted pendulum (1994) Phys. Teach., 32, pp. 422-423
- Gil, S., Rodríguez, E., (2001) Física Re-creativa, p. 91. , Prentice-Hall, Buenos Aires, Chap. 17
- Miller, B.E., Period of an interrupted pendulum (2002) Phys. Teach., 40, pp. 476-478
- Shankar, R., (1980) Principles of Quantum Mechanics, , Plenum, New York, Chap. 7
- Migdal, A.B., Krainov, V., (1969) Approximation Methods in Quantum Mechanics, p. 122. , Benjamin, New York, Chap. 3
- Holstein, B.R., Semiclassical treatment of the double well (1988) Am. J. Phys., 56, pp. 338-345
- Brink, D.M., (1985) Semi-classical Methods for Nucleus-nucleus Scattering, p. 127. , Cambridge University Press, Cambridge, Chap. 7
- Marion, J.B., (1965) Classical Dynamics, p. 182. , Academic, New York, Chap. 7
- Molina, M.I., Simple linearization of the simple pendulum for any amplitude (1997) Phys. Teach., 35, p. 489
Citas:
---------- APA ----------
Gil, S. & Di Gregorio, D.E.
(2003)
. Nonisochronism in the interrupted pendulum. American Journal of Physics, 71(11), 1115-1120.
http://dx.doi.org/10.1119/1.1578071---------- CHICAGO ----------
Gil, S., Di Gregorio, D.E.
"Nonisochronism in the interrupted pendulum"
. American Journal of Physics 71, no. 11
(2003) : 1115-1120.
http://dx.doi.org/10.1119/1.1578071---------- MLA ----------
Gil, S., Di Gregorio, D.E.
"Nonisochronism in the interrupted pendulum"
. American Journal of Physics, vol. 71, no. 11, 2003, pp. 1115-1120.
http://dx.doi.org/10.1119/1.1578071---------- VANCOUVER ----------
Gil, S., Di Gregorio, D.E. Nonisochronism in the interrupted pendulum. Am. J. Phys. 2003;71(11):1115-1120.
http://dx.doi.org/10.1119/1.1578071