Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Predicting future plant and ecosystem responses to elevated CO2 also requires an understanding of the role of other factors, especially soil nitrogen. This is particularly challenging for global aridlands where total N and the relative amounts of nitrate and ammonia vary both spatially and seasonally. We measured gas exchange and primary and secondary C metabolites in seedlings of two dominant aridland shrub species (Prosopis flexuosa [S America] and P. glandulosa [N America]) grown at ambient (350 ppm) or elevated (650 ppm) CO2 and nitrogen at two levels (low [0.8 mM] and high [8.0 mM]) and at either 1 : 1 or 3 : 1 nitrate to ammonia. Whereas elevated CO2 increased assimilation rate, water use efficiency, and primary carbon metabolites in both species, these increases were strongly contingent upon nitrogen availability. Elevated CO2 did not increase secondary metabolites (i.e., phenolics). For these important aridland species, the effects of elevated CO2 are strongly influenced by nitrogen availability and to a lesser extent by the relative amounts of nitrate and ammonia supplied, which underscores the importance of both the amount and chemical composition of soil nitrogen in mediating the potential responses of seedling growth and establishment of aridland plants under future CO2-enriched atmospheres.

Registro:

Documento: Artículo
Título:Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: Effects of elevated CO2, N supply, and N source
Autor:Causin, H.F.; Rufty, T.W.; Reynolds, J.F.
Filiación:Departamento de Biodiversidad Y Biología Experimental, F.C.E. N., Ciudad Universitaria, 1428 Capital Federal, Argentina
Department of Crop Science, North Carolina State University, P.O. Box 7620, Raleigh, NC 27695-7620, United States
Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Science, Durham, NC 27708-0340, United States
Department of Biology, Phytotron Building, Duke University, Durham, NC 27708-0340, United States
Palabras clave:Ammonia-N; Global change; Nitrate-N; Phenolic compounds; Prosopis flexuosa; Prosopis glandulosa; Rangeland; ammonia; arid region; botany; carbon; gas exchange; metabolism; nitrate; soil nitrogen; Fabaceae; Prosopis; Prosopis flexuosa; Prosopis glandulosa
Año:2006
Volumen:93
Número:5
Página de inicio:716
Página de fin:723
DOI: http://dx.doi.org/10.3732/ajb.93.5.716
Título revista:American Journal of Botany
Título revista abreviado:Am. J. Bot.
ISSN:00029122
CODEN:AJBOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029122_v93_n5_p716_Causin

Referencias:

  • Ainsworth, E.A., Long, S.P., What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 (2005) New Phytologist, 165, pp. 351-371
  • Ashraf, M., Habib-Ur-Rehman, K., Interactive effects of nitrate and long-term waterlogging on growth, water relations, and gaseous exchange properties of maize (Zea mays L.) (1999) Plant Science, 144, pp. 35-43
  • Bailey, R.G., (1998) Ecoregions: The Ecosystem Geography of the Oceans and Continents, , Springer-Verlag, Inc., New York, New York, USA
  • Ball, J.P., Danell, K., Sunesson, P., Response of an herbivore community to increased food quality and quantity: An experiment with nitrogen fertilizer in a boreal forest (2000) Journal of Applied Ecology, 37, pp. 247-255
  • Bassirirad, H., Reynolds, J.F., Virginia, R.A., Brunelle, M.H., Growth and root NO3- and PO4 3- uptake capacity of three desert species in response to atmospheric CO2 enrichment (1997) Australian Journal of Plant Physiology, 24, pp. 353-358
  • Bassirirad, H., Thomas, R.B., Reynolds, J.F., Strain, B.R., Differential responses of root uptake kinetics of NH4 + and NO3- to enriched atmospheric CO 2 concentration in field-grown loblolly pine (1996) Plant, Cell & Environment, 19, pp. 367-371
  • Bennett, L.T., Adams, M.A., Indices for characterising spatial variability of soil nitrogen in semi-arid grasslands of northwestern Australia (1999) Soil Biology & Biochemistry, 31, pp. 735-746
  • Brown, J.R., Archer, S., Woody plant invasion of grasslands: Establishment of honey mesquite (Prosopis glandulosa var. glandulosa) on sites differing in herbaceous biomass and grazing history (1989) Oecologia, 80, pp. 19-26
  • Brown, J.R., Archer, S., Water relations of a perennial grass and seedling versus adult woody plants in a subtropical savanna, Texas, USA (1990) Oikos, 57, pp. 366-374
  • Bryant, J.P., Chapin III, F.S., Klein, D.R., Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory (1983) Oikos, 40, pp. 357-368
  • Causin, H.F., Tremmel, D.C., Rufty, T.W., Reynolds, J.F., Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: Effects of nitrogen supply and source (2004) American Journal of Botany, 91, pp. 565-572
  • Chapin III, F.S., The mineral nutrition of wild plants (1980) Annual Review of Ecology and Systematics, 11, pp. 233-260
  • Chapin III, F.S., Bloom, A.J., Field, C.B., Waring, R.H., Plant responses to multiple environmental factors (1987) Bioscience, 37, pp. 49-57
  • Cruz, C., Lips, S.H., Martins-Loução, M.A., Changes in the morphology of roots and leaves of carob seedlings induced by nitrogen source and atmospheric carbon dioxide (1997) Annals of Botany, 80, pp. 817-823
  • Cure, J.A., Rufty, T., Israel, D., Alterations in soybean leaf development and photosynthesis in a CO 2-enriched atmosphere (1989) Botanical Gazette, 150, pp. 337-345
  • Day, R.W., Quinn, G.P., Comparisons of treatments after an analysis of variance in ecology (1989) Ecological Monographs, 59, pp. 433-463
  • Derner, J.D., Tischler, C.R., Polley, H., Johnson, H.B., Seedling growth of two honey mesquite varieties under CO2 enrichment (2005) Journal of Range Management, 58, pp. 292-298
  • Drake, B.G., González-Meler, M.A., Long, S.P., More efficient plants: A consequence of rising atmospheric CO 2? (1997) Annual Review of Plant Physiology and Plant Molecular Biology, 48, pp. 609-639
  • Gebauer, R.L.E., Strain, B.R., Reynolds, J.F., The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda) (1998) Oecologia, 113, pp. 29-36
  • Geiger, M., Haake, V., Ludewig, F., Sonnewald, U., Stitt, M., The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco (1999) Plant, Cell & Environment, 22, pp. 1177-1199
  • Gloser, V., Frehner, M., Luscher, A., Nosberger, J., Hartwig, U.A., Does the response of perennial ryegrass to elevated CO2 concentration depend on the form of the supplied nitrogen? (2002) Biologia Plantarum, 45, pp. 51-58
  • Grimmer, C., Bachfischer, T., Komor, E., Carbohydrate partitioning into starch in leaves of Ricinus communis L. grown under elevated CO2 is controlled by sucrose (1999) Plant, Cell & Environment, 22, pp. 1275-1280
  • Guevara, J.C., Estevez, O.R., Stasi, C.R., Monge, A.S., Botanical composition of the seasonal diet of cattle in the rangelands of the Monte Desert of Mendoza, Argentina (1996) Journal of Arid Environments, 32, pp. 387-394
  • Hahne, K.S., Schuch, U.K., (2004) Nitrogen Requirements of Prosopis Velutina during Early Seedling Growth, Turfgrass and Ornamental Research Report, , http://cals.arizona.edu/pubs/crops/az1359/, College of Agriculture & Life Sciences, University of Arizona, Tucson, Arizona, USA
  • Hamilton, J.G., Zangerl, A.R., Delucia, E.H., Berenbaum, M.R., The carbon-nutrient balance hypothesis: Its rise and fall (2001) Ecology Letters, 4, pp. 86-95
  • Hu, S., Wu, J., Burkey, K.O., Firestone, M.K., Plant and microbial N acquisition under elevated atmospheric CO 2 in two mesocosm experiments with annual grasses (2005) Global Change Biology, 11, pp. 213-233
  • Jackson, R., Reynolds, H.L., Nitrate and ammonium uptake for single- and mixed-species communities grown at elevated CO2 (1996) Oecologia, 105, pp. 74-80
  • Jenkins, M.B., Virginia, R.A., Jarrell, W.M., Depth distribution and seasonal populations of mesquite-nodulating rhizobia in warm desert ecosystems (1988) Soil Science Society of America Journal, 52, pp. 1644-1650
  • Jones, C.G., Harley, S.E., A Protein Competition Model of phenolic allocation (1999) Oikos, 86, pp. 27-44
  • Julkunen-Tiitto, R., Tahvanainen, J., Silvola, J., Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.) (1993) Oecologia, 95, pp. 495-498
  • Kinney, K.K., Lindroth, R.L., Jung, S.M., Nordheim, E.V., Effects of CO2 and NO3- availability on deciduous trees: Phytochemistry and insect performance (1997) Ecology, 78, pp. 215-230
  • Koricheva, J., The carbon-nutrient balance hypothesis is dead; long live the carbon-nutrient balance hypothesis? (2002) Oikos, 98, pp. 537-539
  • Körner, C., The response of complex multispecies systems to elevated CO2 (1996) Global Change and Terrestrial Ecosystems, pp. 20-42. , B. H. Walker and W. L. Steffen [eds.], Cambridge University Press, Cambridge, UK
  • Lincoln, D.E., Fajer, E.D., Johnson, R.H., Plant-insect herbivore interactions in elevated CO2 environments (1993) Trends in Ecology and Evolution, 8, pp. 64-68
  • Lindroth, R.L., Consequences of elevated atmospheric CO2 for forest insects (1996) Carbon Dioxide, Populations, and Communities, pp. 347-361. , C. Körner and F. A. Bazzaz [eds.], San Diego, California, USA
  • Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., Rising atmospheric carbon dioxide: Plants face the future (2004) Annual Review of Plant Biology, 55, pp. 591-628
  • Martin, J.S., Martin, M.M., Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species (1982) Oecologia, 54, pp. 205-211
  • Martin, R.E., Asner, G.P., Regional estimate of nitric oxide emissions following woody encroachment: Linking imaging spectroscopy and field studies (2005) Ecosystems, 8, pp. 33-47
  • Martínez, A.J., López-Portillo, J., Growth and architecture of small honey mesquites under jackrabbit browsing: Overcoming the disadvantage of being eaten (2003) Annals of Botany, 92, pp. 365-375
  • Mazzarino, M.J., Oliva, L., Abril, A., Acosta, M., Factors affecting nitrogen dynamics in a semiarid woodland (Dry Chaco, Argentina) (1991) Plant and Soil, 138, pp. 85-98
  • Navas, M.L., Sonie, L., Richarte, J., Roy, J., The influence of elevated CO2 on species phenology, growth and reproduction in a Mediterranean old-field community (1997) Global Change Biology, 3, pp. 523-530
  • Paul, M.J., Foyer, C.H., Sink regulation of photosynthesis (2001) Journal of Experimental Botany, 52, pp. 1383-1400
  • Peñuelas, J., Estiarte, M., Can elevated CO2 affect secondary metabolism and ecosystem function? (1998) Trends in Ecology and Evolution, 13, pp. 20-24
  • Pisani, J.M., Distel, R.A., Inter- and intraspecific variations in production of spines and phenols in Prosopis caldenia and Prosopis flexuosa (1998) Journal of Chemical Ecology, 24, pp. 23-36
  • Plhak, F., Nitrogen supply through transpiration mass flow can limit nitrogen nutrition of plants (2003) Plant, Soil & Environment, 49, pp. 473-479
  • Polley, H.W., Johnson, H.B., Mayeux, H.S., Tischler, C.R., Brown, D.A., Carbon dioxide enrichment improves growth, water relations and survival of droughted honey mesquite (Prosopis glandulosa) seedlings (1996) Tree Physiology, 16, pp. 817-823
  • Potvin, C., Tardif, S., Sources of variability and experimental designs in growth chambers (1988) Functional Ecology, 2, pp. 123-130
  • Raven, J.A., Wollenweber, B., Handley, L., A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs (1992) New Phytologist, 121, pp. 19-32
  • Rogers, G.S., Milham, P.J., Gillings, M., Conroy, J.P., Sink strength may be the key to growth and nitrogen responses in Ndeficient wheat at elevated CO2 (1996) Australian Journal of Plant Physiology, 23, pp. 253-264
  • Rogers, G.S., Milham, P.J., Thibaud, M.C., Conroy, J.P., Interactions between rising CO2 concentration and nitrogen supply in cotton. 1. Growth and leaf nitrogen concentration (1996) Australian Journal of Plant Physiology, 23, pp. 119-125
  • Rufty, T.W., Probing the carbon and nitrogen interaction: A whole plant perspective (1997) A Molecular Approach to Primary Metabolism in Higher Plants, pp. 255-273. , C. H. Foyer and P. Quick [eds.], Taylor and Francis, London, UK
  • Salsac, L., Chaillou, S., Morot-Gaudry, J.F., Lesaint, C., Jolivet, E., Nitrate and ammonium nutrition in plants (1987) Plant Physiology and Biochemistry, 25, pp. 805-812
  • Scheible, W.R., Lauerer, M., Schulze, E.D., Caboche, M., Stitt, M., Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco (1997) Plant Journal: For Cell and Molecular Biology, 11, pp. 671-691
  • Shearer, G., Kohl, D.H., Virginia, R.A., Bryan, B.A., Skeeters, J.L., Nilsen, E.T., Sharifi, M.R., Rundel, P., Estimates of N2-fixation from variation in the natural abundance of15N in Sonoran Desert ecosystem (1983) Oecologia, 56, pp. 365-373
  • Stitt, M., Krapp, A., The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background (1999) Plant, Cell & Environment, 22, pp. 583-621
  • Stitt, M., Müller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W., Krapp, A., Steps towards an integrated view of nitrogen metabolism (2002) Journal of Experimental Botany, 53, pp. 959-970
  • Tissue, D.T., Wright, S.J., Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs (1995) Functional Ecology, 9, pp. 518-527
  • Tognetti, R., Johnson, J.D., Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus ilex L. seedlings from a coppice stand growing at a natural CO2 spring (1999) Annals of Forest Science, 56, pp. 549-561
  • Van Auken, O.W., Bush, J.K., Growth of Prosopis glandulosa in response to changes in aboveground and belowground interference (1997) Ecology, 78, pp. 1222-1229
  • Van Den Bosch, S., Guevara, J.C., Tacchini, F.M., Estevez, O.R., Nutrient content of browse species in the arid rangelands of the Mendoza plain, Argentina (1997) Journal of Arid Environments, 37, pp. 285-298
  • Velleman, P.F., (1995) Data Desk Handbook, , Data Description, Ithaca, New York, USA
  • Virginia, R.A., Jarrell, W.M., Franco-Vizcaino, E., Direct measurement of denitrification in a Prosopis (mesquite) dominated Sonoran desert ecosystem (1982) Oecologia, 53, pp. 120-122
  • Ward, J.K., Strain, B.R., Elevated CO2 studies: Past, present and future (1999) Tree Physiology, 19, pp. 211-220
  • Whitford, W.G., Nielson, R., Desoyza, A., Establishment and effects of establishment of creosotebush, Larrea tridentata, on a Chihuahuan Desert watershed (2001) Journal of Arid Environments, 47, pp. 1-10
  • Wulff, R.D., Strain, B.R., Effects of CO2 enrichment on growth and photosynthesis in Desmodium paniculatum (1982) Canadian Journal of Botany, 60, pp. 1084-1091

Citas:

---------- APA ----------
Causin, H.F., Rufty, T.W. & Reynolds, J.F. (2006) . Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: Effects of elevated CO2, N supply, and N source. American Journal of Botany, 93(5), 716-723.
http://dx.doi.org/10.3732/ajb.93.5.716
---------- CHICAGO ----------
Causin, H.F., Rufty, T.W., Reynolds, J.F. "Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: Effects of elevated CO2, N supply, and N source" . American Journal of Botany 93, no. 5 (2006) : 716-723.
http://dx.doi.org/10.3732/ajb.93.5.716
---------- MLA ----------
Causin, H.F., Rufty, T.W., Reynolds, J.F. "Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: Effects of elevated CO2, N supply, and N source" . American Journal of Botany, vol. 93, no. 5, 2006, pp. 716-723.
http://dx.doi.org/10.3732/ajb.93.5.716
---------- VANCOUVER ----------
Causin, H.F., Rufty, T.W., Reynolds, J.F. Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: Effects of elevated CO2, N supply, and N source. Am. J. Bot. 2006;93(5):716-723.
http://dx.doi.org/10.3732/ajb.93.5.716