Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of differences in nitrogen (N) availability and source on growth and nitrogen metabolism at different atmospheric CO2 concentrations in Prosopis glandulosa and Prosopis flexuosa (native to semiarid regions of North and South America, respectively) was examined. Total biomass, allocation, N uptake, and metabolites (e.g., free NO3 -, soluble proteins, organic acids) were measured in seedlings grown in controlled environment chambers for 48 d at ambient (350 ppm) and elevated (650 ppm) CO2 and fertilized with high (8.0 mmol/L) or low (0.8 mmol/L) N (N,level), supplied at either 1:1 or 3:1 NO3 -:NH4 + ratios (Nsource). Responses to elevated CO2 depended on both Nlevel and N source, with the largest effects evident at high Nlevel. A high NO3 -:NH4 + ratio stimulated growth responses to elevated CO2 in both species when N was limiting and increased the responses of P. flexuosa at high Nlevel. Significant differences in N uptake and metabolites were found between species. Seedlings of both species are highly responsive to N availability and will benefit from increases in CO2, provided that a high proportion of NO3- to NH4-N is present in the soil solution. This enhancement, in combination with responses that increase N acquisition and increases in water use efficiency typically found at elevated CO2, may indicate that these semiarid species will be better able to cope with both nutrient and water deficits as CO2 levels rise.

Registro:

Documento: Artículo
Título:Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: Effects of nitrogen supply and source
Autor:Causin, H.F.; Tremmel, D.C.; Rufty, T.W.; Reynolds, J.F.
Filiación:Department of Biology, Duke University, Durham, NC 27708, United States
Department of Crop Science, North Carolina State University, P.O. Box 7620, Raleigh, NC 27695, United States
Department of Biology, Nicholas Sch. Environ. Earth Sci., Duke University, Durham, NC 27708-0340, United States
Depto. de Biodiversidad Y Biol. Exp., F.C.E.y N., Ciudad Universitaria, 1428 Capital Federal, Argentina
Palabras clave:Ammonium; CO2; Controlled environments; Nitrate; Nitrogen metabolism; Nitrogen uptake; Prosopis flexuosa; Prosopis glandulosa; carbon dioxide; growth; metabolism; nitrogen; nutrient uptake; semiarid region; shrub; Prosopis; Prosopis flexuosa; Prosopis flexuosa; Prosopis glandulosa; Prosopis glandulosa
Año:2004
Volumen:91
Número:4
Página de inicio:565
Página de fin:572
DOI: http://dx.doi.org/10.3732/ajb.91.4.565
Título revista:American Journal of Botany
Título revista abreviado:Am. J. Bot.
ISSN:00029122
CODEN:AJBOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029122_v91_n4_p565_Causin

Referencias:

  • Archer, S., Schimel, D.S., Holland, E.A., Mechanisms of shrubland expansion: Land use, climate or CO2? (1995) Climatic Change, 29, pp. 91-99
  • Bailey, J., Varying the ratio of 15N- labelled ammonium and nitrate-N supplied to creeping bent: Effects on nitrogen absorption and assimilation, and plant growth (1999) New Phytolologist, 143, pp. 503-512
  • Barneix, A., Causin, H., The central role of amino acids in nitrogen utilization and plant growth (1996) Journal of Plant Physiology, 149, pp. 358-362
  • Bassirirad, H., Griffin, K.L., Reynolds, J.F., Strain, B.R., Changes in root NH4 + and NO3 - absorption rates of loblolly and ponderosa pine in response to CO2 enrichment (1997) Plant and Soil, 190, pp. 1-9
  • Bassirirad, H., Reynolds, J.F., Virginia, R.A., Brunelle, M.H., Growth and root NO3 - and PO4 3- uptake capacity of three desert species in response to atmospheric CO2 enrichment (1997) Australian Journal of Plant Physiology, 24, pp. 353-358
  • Bazzaz, F.A., The response of natural ecosystems to the rising global CO2 levels (1990) Annual Review of Ecology and Systematics, 21, pp. 167-196
  • Berntson, G.M., Rajakaruna, N., Bazzaz, F.A., Growth and nitrogen uptake in an experimental community of annuals exposed to elevated atmospheric CO2 (1998) Global Change Biology, 4, pp. 607-626
  • Bowler, J.M., Press, M.C., Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass (1996) New Phytologist, 132, pp. 391-401
  • Bridgham, S.D., Pastor, J., McClaugherty, C.A., Richardson, C.J., Nutrient-use efficiency, a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands (1995) American Naturalist, 145, pp. 1-21
  • Carlson, R., Continuous flow reduction of nitrate to ammonia with granular zinc (1986) Analytical Chemistry, 58, pp. 1590-1591
  • Ceulemans, R., Mousseau, M., Tansley Review No. 71. Effects of elevated atmospheric CO2 on woody plants (1994) New Phytologist, 127, pp. 425-446
  • Chapin III, F.S., Vitousek, P.M., Van Cleve, K., The nature of nutrient limitation in plant communities (1986) American Naturalist, 127, pp. 48-58
  • Chapin III, F.S., Bloom, A.J., Field, C.B., Waring, R.H., Plant responses to multiple environmental factors (1987) Bioscience, 37, pp. 49-57
  • Coleman, J.S., McConnaughay, K.D.M., Bazzaz, F.A., Elevated CO2 and plant nitrogen-use: Is reduced tissue nitrogen concentration size-dependent? (1993) Oecologia, 93, pp. 195-200
  • Day, R.W., Quinn, G.P., Comparisons of treatments after an analysis of variance in ecology (1989) Ecological Monographs, 59, pp. 433-463
  • Drake, B.G., Gonzalez-Meler, M.A., Long, S.P., More efficient plants: A consequence of rising atmospheric CO 2? (1997) Annual Review of Plant Physiology and Plant Molecular Biology, 48, pp. 609-639
  • Falkengren-Grerup, U., Interspecies differences in the preference of ammonium and nitrate in vascular plants (1995) Oecologia, 102, pp. 305-311
  • Geiger, M., Haake, V., Ludewig, F., Sonnewald, U., Stitt, M., The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco (1999) Plant Cell and Environment, 22, pp. 1177-1199
  • Islam, M.S., Matsui, T., Yoshida, Y., Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity (1996) Scientia Horticulturae, 65, pp. 137-149
  • Jackson, R., Reynolds, H.L., Nitrate and ammonium uptake for single- and mixed-species communities grown at elevated CO2 (1996) Oecologia, 105, pp. 74-80
  • Jackson, R.B., Manwaring, J.H., Caldwell, M.M., Rapid physiological adjustment of roots to localized soil enrichment (1990) Nature, 344, pp. 58-60
  • Jenkins, M.B., Virginia, R.A., Jarrell, W.M., Depth distribution and seasonal populations of mesquite-nodulating rhizobia in warm desert ecosystems (1988) Soil Science Society of America Journal, 52, pp. 1644-1650
  • Johnson, D.W., Thomas, R.B., Griffin, K.L., Tissue, D.T., Ball, J.T., Strain, B.R., Walker, R.F., Effects of carbon dioxide and nitrogen on growth and nitrogen uptake in ponderosa and loblolly pine (1998) Journal of Environmental Quality, 27, pp. 414-425
  • Jones, C., Hare, D., Compton, S., Measuring plant protein with the Bradford assay (1989) Journal of Chemical Ecology, 15, pp. 979-992
  • Körner, C., The response of complex multispecies systems to elevated CO2 (1996) Global Change and Terrestrial Ecosystems, pp. 20-42. , B. H. Walker and W. L. Steffen [eds.], Cambridge University Press, Cambridge, UK
  • Körner, C., Biosphere responses to CO2 enrichment (2000) Ecological Applications, 10, pp. 1590-1619
  • Lawlor, D.W., Mitchell, A.C., The effects of increasing CO2 on crop photosynthesis and productivity: A review of field studies (1991) Plant Cell and Environment, 14, pp. 807-818
  • Mazzarino, M.J., Oliva, L., Abril, A., Acosta, M., Factors affecting nitrogen dynamics in a semiarid woodland (Dry Chaco, Argentina) (1991) Plant and Soil, 138, pp. 85-98
  • Mazzarino, M.J., Oliva, L., Nuñez, A., Nuñez, G., Buffa, E., Nitrogen mineralization and soil fertility in the Dry Chaco ecosystem (Argentina) (1991) Soil Science Society of America Journal, 55, pp. 515-522
  • McGuire, A.D., Melillo, J.M., Joyce, L.A., The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide (1995) Annual Review of Ecology and Systematics, 26, pp. 473-503
  • Mousseau, M., Impact of elevated atmospheric CO2 on plants and crops (2000) Cahiers Agricultures, 9, pp. 11-21
  • Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., Ceulemans, R., Tree responses to rising CO2 in field experiments: Implications for the future forest (1999) Plant Cell and Environment, 22, pp. 683-714
  • Pissani, J.M., Distel, R.A., Inter- and intraspecific variations in production of spines and phenols in Prosopis caldenia and Pmsopis flexuosa (1998) Journal of Chemical Ecology, 24, pp. 23-36
  • Polley, H.W., Johnson, H.B., Mayeux, H.S., Nitrogen and water requirements of C3 plants grown at glacial to present carbon dioxide concentrations (1995) Functional Ecology, 9, pp. 86-96
  • Polley, H.W., Johnson, H.B., Mayeux, H.S., Leaf physiology, production, water use, and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO2 concentrations (1997) Tree Physiology, 17, pp. 89-96
  • Polley, H.W., Mayeux, H.S., Johnson, H.B., Tischler, C.R., Viewpoint: Atmospheric CO2, soil water, and shrub/grass ratios on rangelands (1997) Journal of Range Management, 50, pp. 278-284
  • Poorter, H., Vanberkel, Y., Baxter, R., Denhertog, J., Dijkstra, P., Gifford, R.M., Griffin, K.L., Wong, S.C., The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C-3 species (1997) Plant Cell and Environment, 20, pp. 472-482
  • Potvin, C., Tardif, S., Sources of variability and experimental designs in growth chambers (1988) Functional Ecology, 2, pp. 123-130
  • Pritchard, S., Peterson, C., Runion, G.B., Prior, S., Rogers, H., Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage (1997) Trees, 11, pp. 494-503
  • Raven, J.A., Wollenweber, B., Handley, L., A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs (1992) New Phytologist, 121, pp. 19-32
  • Reeves, D.W., Rogers, H.H., Prior, S.A., Wood, C.W., Runion, G.B., Elevated atmospheric carbon dioxide effects on sorghum and soybean nutrient status (1994) Journal of Plant Nutrition, 17, pp. 1939-1954
  • Rogers, G.S., Milham, P.J., Gillings, M., Conroy, J.P., Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2 (1996) Australian Journal of Plant Physiology, 23, pp. 253-264
  • Rogers, G.S., Milham, P.J., Thibaud, M.C., Conroy, J.P., Interactions between rising CO2 concentration and nitrogen supply in cotton. 1. Growth and leaf nitrogen concentration (1996) Australian Journal of Plant Physiology, 23, pp. 119-125
  • Roumet, C., Laurent, G., Roy, J., Leaf structure and chemical composition as affected by elevated CO 2: Genotypic responses of two perennial grasses (1999) New Phytologist, 143, pp. 73-81
  • Salsac, L., Chaillou, S., Morot-Gaudry, J.F., Lesaint, C., Jolivet, E., Nitrate and ammonium nutrition in plants (1987) Plant Physiology and Biochemistry, 25, pp. 805-812
  • Schenk, M.K., Regulation of nitrogen uptake on the whole plant level (1996) Plant and Soil, 181, pp. 131-137
  • Smith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., Fenstermaker, L.K., Nowak, R.S., Elevated CO2 increases productivity and invasive species success in an arid ecosystem (2000) Nature, 408, pp. 79-82
  • Stitt, M., Krapp, A., The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background (1999) Plant Cell and Environment, 22, pp. 583-621
  • Van Auken, O.W., Shrub invasions of North American semiarid grasslands (2000) Annual Review of Ecology and Systematics, 31, pp. 197-215
  • Van Den Bosch, S., Guevara, J.C., Tacchini, F., Estevez, O., Nutrient content of browse species in the arid rangelands of the Mendoza plain, Argentina (1997) Journal of Arid Environments, 37, pp. 285-298
  • Velleman, P.F., (1995) Data Desk Handbook, , Data Description, Ithaca, New York, USA
  • Virginia, R.A., Jarrell, W.M., Franco-Vizcaino, E., Direct measurement of denitrification in a Prosopis (Mesquite) dominated Sonoran desert ecosystem (1982) Oecologia, 53, pp. 120-122
  • Virginia, R.A., Jenkins, M.B., Jarrell, W.M., Depth of root symbiont occurrence in soil (1986) Biology and Fertility of Soils, 2, pp. 127-130

Citas:

---------- APA ----------
Causin, H.F., Tremmel, D.C., Rufty, T.W. & Reynolds, J.F. (2004) . Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: Effects of nitrogen supply and source. American Journal of Botany, 91(4), 565-572.
http://dx.doi.org/10.3732/ajb.91.4.565
---------- CHICAGO ----------
Causin, H.F., Tremmel, D.C., Rufty, T.W., Reynolds, J.F. "Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: Effects of nitrogen supply and source" . American Journal of Botany 91, no. 4 (2004) : 565-572.
http://dx.doi.org/10.3732/ajb.91.4.565
---------- MLA ----------
Causin, H.F., Tremmel, D.C., Rufty, T.W., Reynolds, J.F. "Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: Effects of nitrogen supply and source" . American Journal of Botany, vol. 91, no. 4, 2004, pp. 565-572.
http://dx.doi.org/10.3732/ajb.91.4.565
---------- VANCOUVER ----------
Causin, H.F., Tremmel, D.C., Rufty, T.W., Reynolds, J.F. Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: Effects of nitrogen supply and source. Am. J. Bot. 2004;91(4):565-572.
http://dx.doi.org/10.3732/ajb.91.4.565