Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These results are explained from the incomplete binding of proteins to the ligands due to repulsive protein-protein and protein-ligand steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i) proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used, and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely charged. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels
Autor:Tagliazucchi, M.; Szleifer, I.
Filiación:Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States
INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Palabras clave:Bins; Biochemistry; Density functional theory; Ligands; Nanopores; Tetherlines; Confined environment; Ligand-receptor binding; Nanometric channels; Non-monotonic function; Polymeric tethers; Protein ligands; Steric interactions; Systematic study; Proteins; ligand; macrogol; nanochannel; ion; ligand; nanomaterial; protein binding; apparent dissociation constant; Article; chemical reaction; conductance; entropy; geometry; ion current; ion transport; isotherm; nanopore; protein binding; receptor binding; static electricity; surface property; chemistry; electric conductivity; particle size; Electric Conductivity; Ions; Ligands; Nanopores; Nanostructures; Particle Size; Protein Binding
Año:2015
Volumen:137
Número:39
Página de inicio:12539
Página de fin:12551
DOI: http://dx.doi.org/10.1021/jacs.5b05032
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:macrogol, 25322-68-3; Ions; Ligands
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v137_n39_p12539_Tagliazucchi

Referencias:

  • Bezrukov, S.M., Vodyanoy, I., Parsegian, V.A., (1994) Nature, 370, p. 279
  • Dekker, C., (2007) Nat. Nanotechnol., 2, p. 209
  • Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W., (1996) Proc. Natl. Acad. Sci. U. S. A., 93, p. 13770
  • Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Schloss, J.A., (2008) Nat. Biotechnol., 26, p. 1146
  • Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., (2005) J. Am. Chem. Soc., 127, p. 5000
  • Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., (2008) J. Am. Chem. Soc., 130, p. 16351
  • Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., Ensinger, W., (2013) J. Phys. Chem. C, 117, p. 18234
  • Palyulin, V.V., Ala-Nissila, T., Metzler, R., (2014) Soft Matter, 10, p. 9016
  • Muthukumar, M., (2011) Polymer Tranlocation, , Taylor & Francis Inc: Bosa Roca
  • Ali, M., Nasir, S., Nguyen, Q.H., Sahoo, J.K., Tahir, M.N., Tremel, W., Ensinger, W., (2011) J. Am. Chem. Soc., 133, p. 17307
  • Kumar, B.V.V.S.P., Rao, K.V., Sampath, S., George, S.J., Eswaramoorthy, M., (2014) Angew. Chem., 126, p. 13289
  • Brunsen, A., Díaz, C., Pietrasanta, L.I., Yameen, B., Ceolín, M., Soler-Illia, G.J.A.A., Azzaroni, O., (2012) Langmuir, 28, p. 3583
  • Ali, M., Neumann, R., Ensinger, W., (2010) ACS Nano, 4, p. 7267
  • Karnik, R., Castelino, K., Fan, R., Yang, P., Majumdar, A., (2005) Nano Lett., 5, p. 1638
  • Longo, G., Szleifer, I., (2005) Langmuir, 21, p. 11342
  • Ali, M., Ramirez, P., Tahir, M.N., Mafe, S., Siwy, Z., Neumann, R., Tremel, W., Ensinger, W., (2011) Nanoscale, 3, p. 1894
  • Sun, Z., Han, C., Wen, L., Tian, D., Li, H., Jiang, L., (2012) Chem. Commun., 48, p. 3282
  • Tian, Y., Wen, L.P., Hou, X., Hou, G.L., Jiang, L., (2012) ChemPhysChem, 13, p. 2455
  • Vlassiouk, I., Kozel, T.R., Siwy, Z.S., (2009) J. Am. Chem. Soc., 131, p. 8211
  • Umehara, S., Karhanek, M., Davis, R.W., Pourmand, N., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, p. 4611
  • Fu, Y., Tokuhisa, H., Baker, L.A., (2009) Chem. Commun., p. 4877
  • Jágerszki, G., Gyurcsányi, R.E., Höfler, L., Pretsch, E., (2007) Nano Lett., 7, p. 1609
  • Wang, X., Smirnov, S., (2009) ACS Nano, 3, p. 1004
  • Tian, Y., Hou, X., Wen, L., Guo, W., Song, Y., Sun, H., Wang, Y., Zhu, D., (2010) Chem. Commun., 46, p. 1682
  • Han, C., Hou, X., Zhang, H., Guo, W., Li, H., Jiang, L., (2011) J. Am. Chem. Soc., 133, p. 7644
  • Song, M., Sun, Z., Han, C., Tian, D., Li, H., Jiang, L., (2014) Chem. - Eur. J., 20, p. 7987
  • Zhao, C., Li, X.S., Li, L.Y., Gong, X., Chang, Y., Zheng, J., (2013) Chem. Commun., 49, p. 9317
  • Tian, Y., Zhang, Z., Wen, L., Ma, J., Zhang, Y., Liu, W., Zhai, J., Jiang, L., (2013) Chem. Commun., 49, p. 10679
  • Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., Ensinger, W., (2012) ACS Nano, 6, p. 9247
  • Balamurugan, S., Obubuafo, A., McCarley, R.L., Soper, S.A., Spivak, D.A., (2008) Anal. Chem., 80, p. 9630
  • Ravan, H., Kashanian, S., Sanadgol, N., Badoei-Dalfard, A., Karami, Z., (2014) Anal. Biochem., 444, p. 41
  • Del Valle, E.M.M., Galán, M.A., (2002) Ind. Eng. Chem. Res., 41, p. 2296
  • Green, N.M., (1975) Adv. Protein Chem., 29, p. 85
  • Zhao, Z., Matsui, H., (2007) Small, 3, p. 1390
  • Fasoli, E., Reyes, Y.R., Guzman, O.M., Rosado, A., Cruz, V.R., Borges, A., Martinez, E., Bansal, V., (2013) J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 930, p. 13
  • Tagliazucchi, M., Peleg, O., Kröger, M., Rabin, Y., Szleifer, I., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 3363
  • Tagliazucchi, M., Azzaroni, O., Szleifer, I., (2010) J. Am. Chem. Soc., 132, p. 12404
  • Goldman, D.E., (1943) J. Gen. Physiol., 27, p. 37
  • Vlassiouk, I., Smirnov, S., Siwy, Z., (2008) Nano Lett., 8, p. 1978
  • Tagliazucchi, M., Rabin, Y., Szleifer, I., (2011) J. Am. Chem. Soc., 133, p. 17753
  • Corry, B., Kuyucak, S., Chung, S.H., (2000) Chem. Phys. Lett., 320, p. 35
  • Wei, R.S., Gatterdam, V., Wieneke, R., Tampe, R., Rant, U., (2012) Nat. Nanotechnol., 7, p. 257
  • Satulovsky, J., Carignano, M.A., Szleifer, I., (2000) Proc. Natl. Acad. Sci. U. S. A., 97, p. 9037
  • Ren, C.L., Nap, R.J., Szleifer, I., (2008) J. Phys. Chem. B, 112, p. 16238
  • Tagliazucchi, M., De La Cruz, M.O., Szleifer, I., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 5300
  • Narambuena, C.F., Longo, G.S., Szleifer, I., (2015) Soft Matter, 11, p. 6669
  • Ren, C.-L., Carvajal, D., Shull, K.R., Szleifer, I., (2009) Langmuir, 25, p. 12283
  • Nap, R., Gong, P., Szleifer, I., (2006) J. Polym. Sci., Part B: Polym. Phys., 44, p. 2638

Citas:

---------- APA ----------
Tagliazucchi, M. & Szleifer, I. (2015) . How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels. Journal of the American Chemical Society, 137(39), 12539-12551.
http://dx.doi.org/10.1021/jacs.5b05032
---------- CHICAGO ----------
Tagliazucchi, M., Szleifer, I. "How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels" . Journal of the American Chemical Society 137, no. 39 (2015) : 12539-12551.
http://dx.doi.org/10.1021/jacs.5b05032
---------- MLA ----------
Tagliazucchi, M., Szleifer, I. "How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels" . Journal of the American Chemical Society, vol. 137, no. 39, 2015, pp. 12539-12551.
http://dx.doi.org/10.1021/jacs.5b05032
---------- VANCOUVER ----------
Tagliazucchi, M., Szleifer, I. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels. J. Am. Chem. Soc. 2015;137(39):12539-12551.
http://dx.doi.org/10.1021/jacs.5b05032