Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by computing the contact angle of water on flat interfaces and the desorption pressure of water from cylindrical nanopores. The studied interfaces are binary mixtures of hydrophilic and hydrophobic sites, with and without the ability to form hydrogen bonds with water, intercalated at different scales. Water is described with the mW coarse-grained potential, where hydrogen-bonds are modeled in the absence of explicit hydrogen atoms, via a three-body term that favors tetrahedral coordination. We found that the combination of particles exhibiting the same kind of coordination with water gives rise to a linear dependence of contact angle with respect to composition, in agreement with the Cassie model. However, when only the hydrophilic component can form hydrogen bonds, unprecedented deviations from linearity are observed, increasing the contact angle and the vapor pressure above their values in the purely hydrophobic interface. In particular, the maximum enhancement is seen when a 35% of hydrogen bonding molecules is randomly scattered on a hydrophobic background. This effect is very sensitive to the heterogeneity length-scale, being significantly attenuated when the hydrophilic domains reach a size of 2 nm. The observed behavior may be qualitatively rationalized via a simple modification of the Cassie model, by assuming a different microrugosity for hydrogen bonding and non-hydrogen bonding interfaces. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces
Autor:Factorovich, M.H.; Molinero, V.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Palabras clave:Atoms; Binary mixtures; Contact angle; Hydrophilicity; Hydrophobicity; Coarse-grained potential; Cylindrical nanopores; Heterogeneous surface; Hydrophilic and hydrophobic; Hydrophilic components; Hydrophobic interface; Molecular simulations; Tetrahedral coordination; Hydrogen bonds; hydrogen; water; Article; contact angle; desorption; hydrogen bond; hydrophobicity; molecular dynamics; nanopore; vapor pressure
Año:2015
Volumen:137
Número:33
Página de inicio:10618
Página de fin:10623
DOI: http://dx.doi.org/10.1021/jacs.5b05242
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:hydrogen, 12385-13-6, 1333-74-0; water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v137_n33_p10618_Factorovich

Referencias:

  • Young, T., An essay on the cohesion of fluids (1805) Philos. Trans. R. Soc. London, 95, p. 65
  • Gibbs, J.W., (1961) The Scientific Papers of J. W. Gibbs, 1, p. 288. , Dover: New York, Vol
  • Wenzel, R.N., Resistance of solid surfaces to wetting by water (1936) Ind. Eng. Chem., 28, p. 988
  • Cassie, A.B.D., Contact angles (1948) Discuss. Faraday Soc., 3, pp. 11-16
  • Marmur, A., Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be? (2003) Langmuir, 19, pp. 8343-8348
  • Marmur, A., Bittoun, E., When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations (2009) Langmuir, 25, pp. 1277-1281
  • Johnson, R.E., Dettre, R.H., (1993) Wettability, pp. 1-74. , In; Berg, J. C. Marcel Dekker: New York
  • Johnson, R.E., Dettre, R.H., Brandeth, D., Dynamic Contact Angle and Contact-Angle Hysteresis (1977) J. Colloid Interface Sci., 62, pp. 205-212
  • Huh, C., Mason, S.G., Effects of surface roughness on wetting (theoretical) (1977) J. Colloid Interface Sci., 60, p. 11
  • Joanny, J.F., De Gennes, P.G., A model for contact angle hysteresis (1984) J. Chem. Phys., 81, p. 552
  • Extrand, C.W., Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces (2002) Langmuir, 18, pp. 7991-7999
  • Long, J., Hyder, M., Huang, R., Chen, P., Thermodynamic modeling of contact angles on rough, heterogeneous surfaces (2005) Adv. Colloid Interface Sci., 118, pp. 173-190
  • Kijlstra, J., Reihs, K., Klamt, A., Roughness and topology of ultra-hydrophobic surfaces (2002) Colloids Surf., A, 206, pp. 521-529
  • Lu, Y., Sathasivam, S., Song, J., Crick, C.R., Carmalt, C.J., Parkin, I.P., Robust self-cleaning surfaces that function when exposed to either air or oil (2015) Science, 347, pp. 1132-1135
  • Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E., Wetting and spreading (2009) Rev. Mod. Phys., 81, pp. 739-805
  • Amirfazli, A., Neumann, A., Status of the three-phase line tension: A review (2004) Adv. Colloid Interface Sci., 110, pp. 121-141
  • Wang, J.Y., Betelu, S., Law, B.M., Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 63, p. 031601
  • Guillemot, L., Biben, T., Galarneau, A., Vigier, G., Charlaix, E., Activated drying in hydrophobic nanopores and the line tension of water (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 19557-19562
  • Law, B.M., Theory of nucleated wetting (1994) Phys. Rev. Lett., 72, pp. 1698-1701
  • Lazaridis, M., The Effects of Surface Diffusion and Line Tension on the Mechanism of Heterogeneous Nucleation (1993) J. Colloid Interface Sci., 155, pp. 386-391
  • Aleksandrov, A.D., Toshev, B.V., Sheludko, A.D., Nucleation from supersaturated water vapors on n-hexadecane: Temperature dependence of critical supersaturation and line tension (1991) Langmuir, 7, p. 3211
  • De Gennes, P.G., Wetting: Statics and dynamics (1985) Rev. Mod. Phys., 57, pp. 827-863
  • Dussan, E.B., Spreading of Liquids on Solid-Surfaces - Static and Dynamic Contact Lines (1979) Annu. Rev. Fluid Mech., 11, pp. 371-400
  • Dobbs, H., Line Tension of n-Alkanes on Water from a Cahn-Type Theory (1999) Langmuir, 15, pp. 2586-2591
  • Wu, J., Zhang, M., Wang, X., Li, S., Wen, W., A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface (2011) Langmuir, 27, pp. 5705-5708
  • Heim, L.-O., Bonaccurso, E., Measurement of Line Tension on Droplets in the Submicrometer Range (2013) Langmuir, 29, pp. 14147-14153
  • Bittoun, E., Marmur, A., The Role of Multiscale Roughness in the Lotus Effect: Is It Essential for Super-Hydrophobicity? (2012) Langmuir, 28, pp. 13933-13942
  • Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Enhanced surface hydrophobicity by coupling of surface polarity and topography (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15181-15185
  • Godawat, R., Jamadagni, S.N., Garde, S., Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15119-15124
  • Acharya, H., Vembanur, S., Jamadagni, S.N., Garde, S., Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins (2010) Faraday Discuss., 146, pp. 353-365
  • Kuna, J.J., Voitchovsky, K., Singh, C., Jiang, H., Mwenifumbo, S., Ghorai, P.K., Glotzer, S.C., Stellacci, F., (2009) Nat. Mater., 8, pp. 837-842
  • Remsing, R., Patel, A., Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions (2015) J. Chem. Phys., 142, p. 024502
  • Rotenberg, B., Patel, A.J., Chandler, D., Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic (2011) J. Am. Chem. Soc., 133, pp. 20521-20527
  • Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes (2003) J. Phys. Chem. B, 107, pp. 1345-1352
  • Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure (2007) J. Phys. Chem. B, 111, pp. 9581-9587
  • Hua, L., Zangi, R., Berne, B.J., Hydrophobic Interactions and Dewetting between Plates with Hydrophobic and Hydrophilic Domains (2009) J. Phys. Chem. C, 113, pp. 5244-5253
  • Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: The relation between hydrophobicity, adsorption pressure, and hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300
  • Hung, S.-W., Hsiao, P.-Y., Chen, C.-P., Chieng, C.-C., Wettability of Graphene-coated Surface: Free Energy Investigations using Molecular Dynamics Simulation (2015) J. Phys. Chem. C, 119, pp. 8103-8111
  • Lupi, L., Kastelowitz, N., Molinero, V., Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water (2014) J. Chem. Phys., 141, p. 18C508
  • Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Hydration Behavior under Confinement by Nanoscale Surfaces with Patterned Hydrophobicity and Hydrophilicity (2007) J. Phys. Chem. C, 111, pp. 1323-1332
  • Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016
  • Moore, E.B., Molinero, V., Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice (2011) Nature, 479, pp. 506-508
  • Moore, E.B., Allen, J.T., Molinero, V., Liquid-Ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514
  • De La Llave, E., Molinero, V., Scherlis, D.A., Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores (2012) J. Phys. Chem. C, 116, pp. 1833-1840
  • Lupi, L., Hudait, A., Molinero, V., Heterogeneous nucleation of ice on carbon surfaces (2014) J. Am. Chem. Soc., 136, pp. 3156-3164
  • Xu, L., Molinero, V., Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics (2010) J. Phys. Chem. B, 114, pp. 7320-7328
  • Baron, R., Molinero, V., Water-driven cavity-ligand binding: Comparison of thermodynamic signatures from coarse-grained and atomic-level simulations (2012) J. Chem. Theory Comput., 8, pp. 3696-3704
  • Lu, J., Qiu, Y., Baron, R., Molinero, V., Coarse Graining of TIP4P/2005, TIP4P-Ew, SPC/E and TIP3P to Monatomic Anisotropic Water models Using Relative Entropy Minimization (2014) J. Chem. Theory Comput., 10, pp. 4104-4120
  • Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19
  • Martic, G., Blake, T.D., Coninck, J.D., Dynamics of Imbibition into a Pore with a Heterogeneous Surface (2005) Langmuir, 21, pp. 11201-11207
  • Li, D., Drop size dependence of contact angles and line tensions of solid-liquid systems (1996) Colloids Surf., A, 116, pp. 1-23
  • Drelich, J., The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems (1996) Colloids Surf., A, 116, pp. 43-54
  • Israelachvili, J.N., Gee, M.L., Contact angles on chemically heterogeneous surfaces (1989) Langmuir, 5, pp. 288-289
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys., 140, p. 064111
  • Fisher, L.R., Israelachvili, J.N., Direct experimental verification of the Kelvin equation for capillary condensation (1979) Nature, 277, pp. 548-549
  • Luzar, A., Leung, K., Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces (2000) J. Chem. Phys., 113, pp. 5836-5844
  • Willard, A.P., Chandler, D., Coarse-grained modeling of the interface between water and heterogeneous surfaces (2009) Faraday Discuss., 141, pp. 209-220

Citas:

---------- APA ----------
Factorovich, M.H., Molinero, V. & Scherlis, D.A. (2015) . Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces. Journal of the American Chemical Society, 137(33), 10618-10623.
http://dx.doi.org/10.1021/jacs.5b05242
---------- CHICAGO ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. "Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces" . Journal of the American Chemical Society 137, no. 33 (2015) : 10618-10623.
http://dx.doi.org/10.1021/jacs.5b05242
---------- MLA ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. "Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces" . Journal of the American Chemical Society, vol. 137, no. 33, 2015, pp. 10618-10623.
http://dx.doi.org/10.1021/jacs.5b05242
---------- VANCOUVER ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces. J. Am. Chem. Soc. 2015;137(33):10618-10623.
http://dx.doi.org/10.1021/jacs.5b05242