Artículo

Factorovich, M.H.; Molinero, V.; Scherlis, D.A. "Vapor pressure of water nanodroplets" (2014) Journal of the American Chemical Society. 136(12):4508-4514
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Classical thermodynamics is assumed to be valid up to a certain length-scale, below which the discontinuous nature of matter becomes manifest. In particular, this must be the case for the description of the vapor pressure based on the Kelvin equation. However, the legitimacy of this equation in the nanoscopic regime can not be simply established, because the determination of the vapor pressure of very small droplets poses a challenge both for experiments and simulations. In this article we make use of a grand canonical screening approach recently proposed to compute the vapor pressures of finite systems from molecular dynamics simulations. This scheme is applied to water droplets, to show that the applicability of the Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where the inhomogeneities in the density of matter occur within spatial lengths of the same order of magnitude as the size of the object. While in principle this appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular descriptions depart from each other. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Vapor pressure of water nanodroplets
Autor:Factorovich, M.H.; Molinero, V.; Scherlis, D.A.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Palabras clave:Drop formation; Hydrostatic pressure; Molecular dynamics; Thermodynamics; Vapors; Classical thermodynamics; Density profile; Grand canonical; Kelvin equation; Molecular descriptions; Molecular dynamics simulations; Pressure of water; Screening approaches; Vapor pressure; water; article; evaporation; high temperature; molecular dynamics; particle size; surface tension; thermodynamics; transition temperature; vapor pressure; water vapor
Año:2014
Volumen:136
Número:12
Página de inicio:4508
Página de fin:4514
DOI: http://dx.doi.org/10.1021/ja405408n
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v136_n12_p4508_Factorovich

Referencias:

  • Katsoulakis, M.A., Vlachos, D.G., (2000) Phys. Rev. Lett., 84, pp. 1511-1514
  • Castleman Jr., A.W., Keese, R.G., (1988) Science, 241, pp. 36-42
  • Rajamani, S., Truskett, T.M., Garde, S., (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 9475-9480
  • Gross, D.H.E., (2001) Microcanonical Thermodynamics: Phase Transitions in 'Small' Systems, , 1 st ed. World Scientific Pub. Co. Inc. Singapore
  • Tolman, R.C., (1949) J. Chem. Phys., 17, pp. 333-337
  • Adamson, A.W., Gast, A.P., (1997) Physical Chemistry of Surfaces, , 6 th ed. Wiley-Interscience: New York
  • Fujikawa, S., Yano, T., Watanabe, M., (2011) Vapor Liquid Interfaces, Bubbles and Droplets. Fundamentals and Applications, , Springer-Verlag: Berlin
  • Peeters, P., Hrubý, J., Van Dongen, M.E.H., (2001) J. Phys. Chem. B, 105, pp. 11763-11771
  • Kodambaka, S.R.M.C., Tersoff, J., Ross, F.M., (2007) Science, 316, pp. 729-732
  • Kuna, J.J., Voitchovsky, K., Singh, C., Jiang, H., Mwenifumbo, S., Ghorai, P.K., Stevens, M.M., Stellacci, F., (2009) Nat. Mater., 8, pp. 837-842
  • Choi, S., Jamshidi, A., Seok, T.J., Wu, M.C., Zohdi, T.I., Pisano, A.P., (2012) Langmuir, 28, pp. 3102-3111
  • Rodebush, W.H., (1954) Proc. Natl. Acad. Sci. U.S.A, 40, pp. 789-794
  • Andreae, M.O., (2013) Science, 339, pp. 911-912
  • Zhang, R., Khalizov, A., Wang, L., Hu, M., Xu, W., (2012) Chem. Rev., 112, pp. 1957-2011
  • Tolman, R.C., (1949) J. Chem. Phys., 17, pp. 118-127
  • Kalikmanov, V.I., (2008) J. Chem. Phys., 129, p. 44510
  • Thompson, S.M., Gubbins, K.E., (1984) J. Chem. Phys., 81, pp. 530-542
  • Shreve, A.P., Walton, J.P.R.B., Gubbins, K.E., (1986) J. Chem. Phys., 85, pp. 2178-2186
  • Nijmeijer, M.J.P., Bruin, C., Van Woerkom, A.B., Bakker, A.F., Van Leeuwen, J.M.J., (1992) J. Chem. Phys., 96, pp. 565-576
  • Fisher, L.R., Israelachvili, J.N., (1981) J. Colloid Interface Sci., 80, pp. 528-541
  • Samsonov, V.M., Shcherbakov, L.M., Novoselov, A.R., Lebedev, A.V., (1999) Colloids Surf., 160, pp. 117-121
  • Moody, M.P., Attard, P., (2003) Phys. Rev. Lett., 91, p. 56104
  • Neimark, A.V., Vishnyakov, A., (2005) J. Chem. Phys., 122, p. 174508
  • Merikanto, J., Zapadinsky, E., Lauri, A., Vehkamäki, H., (2007) Phys. Rev. Lett., 98, p. 145702
  • Nellas, R.B., Keasler, S.J., Siepmann, J.I., Chen, B., (2010) J. Chem. Phys., 132, p. 164517
  • Zhukhovitskii, D.I., (1995) J. Chem. Phys., 103, pp. 9401-9407
  • Kusaka, I., Wang, Z.-G., Seinfeld, J.H., (1998) J. Chem. Phys., 108, pp. 3416-3423
  • Kusaka, I., Oxtoby, D.W., (1999) J. Chem. Phys., 110, pp. 5249-5261
  • Oh, K.J., Gao, G.T., Zeng, X.C., (1998) J. Chem. Phys., 109, pp. 8435-8441
  • Oh, K.J., Zeng, X.C., (1999) J. Chem. Phys., 110, pp. 4471-4476
  • Malijevský, A., Jackson, G., (2012) J. Phys.-Condens. Mater., 24, p. 464121
  • Factorovich, M., Molinero, V., Scherlis, D.A., (2014) J. Chem. Phys., 140, p. 064111
  • Molinero, V., Moore, E.B., (2009) J. Phys. Chem. B, 113, pp. 4008-4016
  • Moore, E.B., Molinero, V., (2011) Nature, 479, pp. 506-508
  • Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation, , 2 nd ed. Academic Press: San Diego, CA
  • Papadopoulou, A., Becker, E.D., Lupkowski, M., Van Swol, F., (1993) J. Chem. Phys., 98, p. 4897
  • Heffelfinger, G.S., Van Swol, F., (1994) J. Chem. Phys., 100, pp. 7548-7552
  • Arya, G., Chang, H.-S., Maginn, E.J., (2001) J. Chem. Phys., 115, p. 8112
  • Cracknell, R.F., Nicholson, D., Quirke, N., (1995) Phys. Rev. Lett., 74, pp. 2463-2466
  • Plimpton, S., (1995) J. Comput. Phys., 117, pp. 1-19
  • Car, R., Parrinello, M., (1985) Phys. Rev. Lett., 55, p. 2471
  • Giannozzi, P., (2009) J. Phys.-Condens. Matter, 21, p. 395502
  • Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244
  • Perdew, J.P., (1992) Phys. Rev. B, 46, p. 6671
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892
  • Lei, Y.A., Bykov, T., Yoo, S., Zeng, X.C., (2005) J. Am. Chem. Soc., 127, pp. 15346-15347
  • Van Giessen, A.E., Blokhuis, E.M., (2009) J. Chem. Phys., 131, p. 164705
  • Samsonov, V., Bazulev, A., Sdobnyakov, N., (2003) Cent. Eur. J. Phys., 3, pp. 474-484
  • Samsonov, V.M., Bazulev, A.N., Sdobnyakov, N.Y., (2003) Dokl. Phys. Chem., 389, pp. 83-85
  • Lu, H.M., Jiang, Q., (2005) Langmuir, 21, pp. 779-781
  • Graziano, G., (2010) Chem. Phys. Lett., 497, pp. 33-36
  • Xue, Y.-Q., Yang, X.-C., Cui, Z.-X., Lai, W.-P., (2011) J. Phys. Chem. B, 115, pp. 109-112
  • Horsch, M., Hasse, H., Shchekin, A.K., Agarwal, A., Eckelsbach, S., Vrabec, J., Müller, E.A., Jackson, G., (2012) Phys. Rev. e, 85, p. 031605
  • El Bardouni, H., Mareschal, M., Lovett, R., Baus, M., (2000) J. Chem. Phys., 113, p. 9804
  • Tröster, A., Oettel, M., Block, B., Virnau, P., Binder, K., (2012) J. Chem. Phys., 136, p. 064709
  • Joswiak, M.N., Duff, N., Doherty, M.F., Peters, B., (2013) J. Phys. Chem. Lett., 4, pp. 4267-4272
  • Holten, V., Labetski, D.G., Van Dongen, M.E.H., (2005) J. Chem. Phys., 123, p. 104505
  • Azouzi, M.E.M., Ramboz, C., Lenain, J.-F., Caupin, F., (2013) Nat. Phys., 9, pp. 38-41
  • Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A.D., Gadre, S.R., (2001) J. Phys. Chem. A, 105, pp. 10525-10537
  • Shields, R.M., Temelso, B., Archer, K.A., Morrell, T.E., Shields, G.C., (2010) J. Phys. Chem. A, 114, pp. 11725-11737
  • Yoo, S., Zeng, X.C., Xantheas, S.S., (2009) J. Chem. Phys., 130, p. 221102
  • Schenter, G.K., Kathmann, S.M., Garrett, B.C., (2002) J. Chem. Phys., 116, pp. 4275-4280
  • Schenter, G.K., Kathmann, S.M., Garrett, B.C., (1999) Phys. Rev. Lett., 82, p. 3484

Citas:

---------- APA ----------
Factorovich, M.H., Molinero, V. & Scherlis, D.A. (2014) . Vapor pressure of water nanodroplets. Journal of the American Chemical Society, 136(12), 4508-4514.
http://dx.doi.org/10.1021/ja405408n
---------- CHICAGO ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. "Vapor pressure of water nanodroplets" . Journal of the American Chemical Society 136, no. 12 (2014) : 4508-4514.
http://dx.doi.org/10.1021/ja405408n
---------- MLA ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. "Vapor pressure of water nanodroplets" . Journal of the American Chemical Society, vol. 136, no. 12, 2014, pp. 4508-4514.
http://dx.doi.org/10.1021/ja405408n
---------- VANCOUVER ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. Vapor pressure of water nanodroplets. J. Am. Chem. Soc. 2014;136(12):4508-4514.
http://dx.doi.org/10.1021/ja405408n