Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have employed a combination of protein film voltammetry, time-resolved vibrational spectroelectrochemistry and molecular dynamics simulations to evaluate the electron-transfer reorganization free energy (λ) of cytochrome c (Cyt) in electrostatic complexes that mimic some basic features of protein-protein and protein-lipid interactions. The results reveal the existence of two native-like conformations of Cyt that present significantly different λ values. Conversion from the high to the low λ forms is triggered by electrostatic interactions, and involves the rupture of a weak H-bond between first-(M80) and second-sphere (Y67) ligands of the heme iron, as a distinctive feature of the conformational switch. The two flexible Ω loops operate as transducers of the electrostatic signal. This fine-tuning effect is abolished in the Y67F Cyt mutant, which presents a λ value similar to the WT protein in electrostatic complexes. We propose that interactions of Cyt with the natural redox partner proteins activate a similar mechanism to minimize the reorganization energy of interprotein electron transfer. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c
Autor:Alvarez-Paggi, D.; Castro, M.A.; Tórtora, V.; Castro, L.; Radi, R.; Murgida, D.H.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
Departamento de Bioquímica, Uruguay
Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
Palabras clave:Conformational switches; Electrostatic complexes; Electrostatically driven; Molecular dynamics simulations; Protein film voltammetry; Protein-lipid interactions; Reorganization energies; Second-sphere ligands; Electrostatics; Ligands; Molecular dynamics; Spectroelectrochemistry; Proteins; cytochrome c; heme; iron; ligand; article; conformational transition; crystal structure; cyclic potentiometry; dipole; electrochemistry; electron transport; energy; hydrogen bond; molecular dynamics; oxidation reduction state; potentiometry; protein conformation; protein film voltametry; protein folding; protein immobilization; protein lipid interaction; protein protein interaction; protein structure; signal transduction; static electricity; temperature dependence; wild type; Animals; Cytochromes c; Electrochemical Techniques; Electron Transport; Horses; Hydrogen Bonding; Molecular Dynamics Simulation; Point Mutation; Spectrum Analysis, Raman; Static Electricity; Tyrosine
Año:2013
Volumen:135
Número:11
Página de inicio:4389
Página de fin:4397
DOI: http://dx.doi.org/10.1021/ja311786b
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:cytochrome c, 9007-43-6, 9064-84-0; heme, 14875-96-8; iron, 14093-02-8, 53858-86-9, 7439-89-6; Cytochromes c, 9007-43-6; Tyrosine, 55520-40-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v135_n11_p4389_AlvarezPaggi

Referencias:

  • Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., Dutton, P.L., (1992) Nature, 355, pp. 796-802
  • Marcus, R.A., (1956) J. Chem. Phys., 24, pp. 966-978
  • Balabin, I.A., Beratan, D.N., Skourtis, S.S., (2008) Phys. Rev. Lett., 101, pp. 158102-158105
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., (1991) Science, 252, pp. 1285-1288
  • Gray, H.B., Winkler, J.R., (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 3534-3539
  • Sigfridsson, E., Olsson, M.H.M., Ryde, U., (2001) J. Phys. Chem. B, 105, pp. 5546-5552
  • Bortolotti, C.A., Siwko, M.E., Castellini, E., Ranieri, A., Sola, M., Corni, S., (2011) J. Phys. Chem. Lett., 2, pp. 1761-1765
  • Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., (2010) ChemPhysChem, 11, pp. 1225-1235
  • Muegge, I., Qi, P.X., Wand, A.J., Chu, Z.T., Warshel, A., (1997) J. Phys. Chem. B, 101, pp. 825-836
  • Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res., 37, pp. 854-861
  • Tipmanee, V., Oberhofer, H., Park, M., Kim, K.S., Blumberger, J., (2010) J. Am. Chem. Soc., 132, pp. 17032-17040
  • Jasaitis, A., Johansson, M.P., Wikström, M., Vos, M.H., Verkhovsky, M.I., (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 20811-20814
  • Kim, Y.C., Wikström, M., Hummer, G., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 13707-13712
  • Gray, H.B., Winkler, J.R., (2003) Q. Rev. Biophys., 36, pp. 341-372
  • Basu, G., Kitao, A., Kuki, A., Go, N., (1998) J. Phys. Chem. B, 102, pp. 2085-2094
  • Olsson, M.H.M., Ryde, U., Roos, B.O., (1998) Protein Sci., 7, pp. 2659-2668
  • Caroppi, P., Sinibaldi, F., Fiorucci, L., Santucci, R., (2009) Curr. Med. Chem., 16, pp. 4058-4065
  • Scott, R.A., Mauk, A.G., (1996) Cytochrome C: A Multidisciplinary Approach, , University Science Books: Mill Valley, CA
  • Andrew, S.M., Thomasson, K.A., Northrup, S.H., (1993) J. Am. Chem. Soc., 115, pp. 5516-5521
  • Dolidze, T.D., Rondinini, S., Verto-Va, A., Waldeck, D.H., Khoshtariya, D.E., (2007) Biopolymers, 87, pp. 68-73
  • Fedurco, M., Augustynski, J., Indiani, C., Smulevich, G., Antalik, M., Bano, M., Sedlak, E., Dawson, J.H., (2005) J. Am. Chem. Soc., 127, pp. 7638-7646
  • Nahir, T.M., Clark, R.A., Bowden, E.F., (1994) Anal. Chem., 66, pp. 2595-2598
  • Shafiey, H., Ghourchian, H., Mogharrab, N., (2008) Biophys. Chem., 134, pp. 225-231
  • Song, S., Clark, R.A., Bowden, E.F., Tarlov, M.J., (1993) J. Phys. Chem., 97, pp. 6564-6572
  • Terrettaz, S., Cheng, J., Miller, C.J., (1996) J. Am. Chem. Soc., 118, pp. 7857-7858
  • Matyushov, D.V., (2011) J. Phys. Chem. B, 115, pp. 10715-10724
  • Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Abriata, L.A., Cassina, A., Tortora, V., Marin, M., Souza, J.M., Castro, L., Vila, A.J., Radi, R., (2009) J. Biol. Chem., 284, pp. 17-26
  • Rumbley, J.N., Hoang, L., Englander, S.W., (2002) Biochemistry, 41, pp. 13894-13901
  • Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Murgida, D.H., Hildebrandt, P., (2001) Angew. Chem., Int. Ed., 40, pp. 728-731
  • Murgida, D.H., Hildebrandt, P., (2001) J. Am. Chem. Soc., 123, pp. 4062-4068
  • Laviron, E., (1979) J. Electroanal. Chem., 101, pp. 19-28
  • Bushnell, G.W., Louie, G.V., Brayer, G.D., (1990) J. Mol. Biol., 214, pp. 585-595
  • Rai, B., Sathish, P., Malhotra, C.P., Ayappa, K.G., (2004) Langmuir, 20, pp. 3138-3144
  • Ying, T., Wang, Z.H., Lin, Y.W., Xie, J., Tan, X., Huang, Z.X., (2009) Chem. Commun., pp. 4512-4514
  • Berghuis, A.M., Guillemette, J.G., McLendon, G., Sherman, F., Smith, M., Brayer, G.D., (1994) J. Mol. Biol., 236, pp. 786-799
  • Luntz, T.L., Schejter, A., Garber, E.A., Margoliash, E., (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 3524-3528
  • Feinberg, B.A., Petro, L., Hock, G., Wenying, Q.I.N., Margoliash, E., (1999) J. Pharmaceut. Biomed. Anal., 19, pp. 115-125
  • Battistuzzi, G., Bortolotti, C.A., Bellei, M., Di Rocco, G., Salewski, J., Hildebrandt, P., Sola, M., (2012) Biochemistry, 51, pp. 5967-5978
  • García-Heredia, J.M., Díaz-Moreno, I., Nieto, P.M., Orzáez, M., Kocanis, S., Teixeira, M., Pérez-Payá, E., De La Rosa, M.A., (2010) BBA-Bioenergetics, 1797, pp. 981-993
  • Zhou, P., Tian, F., Lv, F., Shang, Z., (2009) Proteins: Struct., Funct. Bioinf., 76, pp. 151-163
  • Blouin, C., Wallace, C.J., (2001) J. Biol. Chem., 276, pp. 28814-28818
  • Schweitzer-Stenner, R., (2008) J. Phys. Chem. B, 112, pp. 10358-10366
  • Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev., 37, pp. 937-945
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., (2008) J. Am. Chem. Soc., 130, pp. 9844-9848
  • Petrovic, J., Clark, R.A., Yue, H., Waldeck, D.H., Bowden, E.F., (2005) Langmuir, 21, pp. 6308-6316
  • Finklea, H.O., Hanshew, D.D., (1992) J. Am. Chem. Soc., 114, pp. 3173-3181
  • Xu, J., Li, H., Zhang, Y., (1993) J. Phys. Chem., 97, pp. 11497-11500
  • Smalley, J.F., Feldberg, S.W., Chidsey, C.E.D., Linford, M.R., Newton, M.D., Liu, Y.P., (1995) J. Phys. Chem., 99, pp. 13141-13149
  • Kuznetsov, A.M., Ulstrup, J., (1999) Electron Transfer in Chemistry and Biology: An Introduction to the Theory, , Wiley: Chichester, UK
  • Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, pp. 12814-12819
  • Monari, S., Ranieri, A., Bortolotti, C.A., Peressini, S., Tavagnacco, C., Borsari, M., (2011) Electrochim. Acta, 56, pp. 6925-6931
  • Maity, H., Rumbley, J.N., Englander, S.W., (2006) Proteins: Struct., Funct. Bioinf., 63, pp. 349-355
  • Kokhan, O., Wraight, C.A., Tajkhorshid, E., (2010) Biophys. J., 99, pp. 2647-2656
  • Zhou, J., Zheng, J., Jiang, S., (2004) J. Phys. Chem. B, 108, pp. 17418-17424
  • Pelletier, H., Kraut, J., (1992) Science, 258, pp. 1748-1755
  • Lange, C., Hunte, C., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 2800-2805
  • Roberts, V.A., Pique, M.E., (1999) J. Biol. Chem., 274, pp. 38051-38060
  • Galinato, M.G.I., Kleingardner, J.G., Bowman, S.E.J., Alp, E.E., Zhao, J., Bren, K.L., Lehnert, N., (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 8896-8900
  • Roberts, V.A., Pique, M.E., (1999) J. Biol. Chem., 274, pp. 38051-38060
  • Yue, H.J., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., (2006) J. Phys. Chem. B, 110, pp. 19906-19913
  • Blumberger, J., (2008) Phys. Chem. Chem. Phys., 10, pp. 5651-5667
  • Battistuzzi, G., Borsari, M., Bortolotti, C.A., Di Rocco, G., Ranieri, A., Sola, M., (2007) J. Phys. Chem. B, 111, pp. 10281-10287
  • Takayama, S.J., Irie, K., Tai, H.L., Kawahara, T., Hirota, S., Takabe, T., Alcaraz, L.A., Yamamoto, Y., (2009) J. Biol. Inorg. Chem., 14, pp. 821-828
  • Matsuura, Y., Takano, T., Dickerson, R.E., (1982) J. Mol. Biol., 156, pp. 389-409
  • Capdevila, D., Marmisolle, W., Williams, F.J., Murgida, D.H., (2013) Phys. Chem. Chem. Phys., , 10.1039/C2CP42044A
  • Abriata, L.A., Alvarez-Paggi, D., Ledesma, G., Blackburn, N.J., Vila, A.J., Murgida, D.H., (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 17348-17353

Citas:

---------- APA ----------
Alvarez-Paggi, D., Castro, M.A., Tórtora, V., Castro, L., Radi, R. & Murgida, D.H. (2013) . Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c. Journal of the American Chemical Society, 135(11), 4389-4397.
http://dx.doi.org/10.1021/ja311786b
---------- CHICAGO ----------
Alvarez-Paggi, D., Castro, M.A., Tórtora, V., Castro, L., Radi, R., Murgida, D.H. "Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c" . Journal of the American Chemical Society 135, no. 11 (2013) : 4389-4397.
http://dx.doi.org/10.1021/ja311786b
---------- MLA ----------
Alvarez-Paggi, D., Castro, M.A., Tórtora, V., Castro, L., Radi, R., Murgida, D.H. "Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c" . Journal of the American Chemical Society, vol. 135, no. 11, 2013, pp. 4389-4397.
http://dx.doi.org/10.1021/ja311786b
---------- VANCOUVER ----------
Alvarez-Paggi, D., Castro, M.A., Tórtora, V., Castro, L., Radi, R., Murgida, D.H. Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c. J. Am. Chem. Soc. 2013;135(11):4389-4397.
http://dx.doi.org/10.1021/ja311786b