Artículo

Heinecke, J.L.; Khin, C.; Pereira, J.C.M.; Suárez, S.A.; Iretskii, A.V.; Doctorovich, F.; Ford, P.C. "Nitrite reduction mediated by heme models. Routes to NO and HNO?" (2013) Journal of the American Chemical Society. 135(10):4007-4017
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The water-soluble ferriheme model Fe III (TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe II (TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe III (TPPS) to the formation of both N 2 O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N 2 O. A key pathway to NO formation is nitrite reduction by Fe II (TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Nitrite reduction mediated by heme models. Routes to NO and HNO?
Autor:Heinecke, J.L.; Khin, C.; Pereira, J.C.M.; Suárez, S.A.; Iretskii, A.V.; Doctorovich, F.; Ford, P.C.
Filiación:Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, United States
Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires, Argentina
Department of Chemistry, Lake Superior State University, Sault Ste Marie, MI 49783, United States
Palabras clave:Biological thiols; Dimethyl sulfide; Ischemia/reperfusion; Nitrite reduction; Oxygen atom transfer; Potential mechanism; Reactive intermediate; Redox transformations; Amino acids; Iron compounds; Linear transformations; Phosphorus compounds; Reduction; cysteine; dimethyl sulfide; glutathione; hematin; heme; nitric acid; nitric oxide; nitrite; oxygen; phosphine; sulfenic acid derivative; thiol; aqueous solution; article; electrochemistry; ischemia; nitrosylation; oxidation reduction reaction; reperfusion injury; Hemeproteins; Nitric Oxide; Nitrites; Nitrogen Oxides; Oxidation-Reduction
Año:2013
Volumen:135
Número:10
Página de inicio:4007
Página de fin:4017
DOI: http://dx.doi.org/10.1021/ja312092x
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; dimethyl sulfide, 75-18-3; glutathione, 70-18-8; hematin, 15489-90-4; heme, 14875-96-8; nitric acid, 7697-37-2; nitric oxide, 10102-43-9; nitrite, 14797-65-0; oxygen, 7782-44-7; phosphine, 7803-51-2; Hemeproteins; Nitric Oxide, 31C4KY9ESH; Nitrites; Nitrogen Oxides; nitroxyl, 14332-28-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v135_n10_p4007_Heinecke

Referencias:

  • Shiva, S., Gladwin, M.T., (2009) Basic Res. Cardiol., 104, pp. 113-119
  • Tejero, J., Basu, S., Helms, C., Hogg, N., King, S.B., Kim-Shapiro, D.B., Gladwin, M.T., Low, N.O., (2012) J. Biol. Chem., 287, pp. 18262-18274
  • Lundberg, J., Weitzberg, E., Gladwin, M.T., (2008) Nat. Rev. Drug Discovery, 7, pp. 156-167
  • Castiglione, N., Rinaldo, S., Giardina, G., Stelitano, V., Cutruzzola, F., (2012) Antioxid. Redox Signaling, 17, pp. 684-716
  • Hines, I.N., Grisham, M.B., (2011) J. Clin. Biochem. Nutr., 48, pp. 50-56
  • Luchsinger, B.P., Rich, E.N., Yan, Y., Williams, E.M., Stamler, J.S., Singel, D.J., (2005) J. Inorg. Biochem., 99, p. 912. , However, see also - 21
  • Hendgen-Cotta, U.B., Kelm, M., Rassaf, T., (2010) Nitric Oxide-Biol. Chem., 22, pp. 75-82
  • Tsuchiya, K., Kanematsu, Y., Yoshizumi, M., Ohnishi, H., Kirima, K., Izawa, Y., Shikishima, M., Tamaki, T., (2005) Am. J. Physiol., 288, pp. 2163-2170
  • Feelisch, M., Fernandez, B.O., Bryan, N.S., Garcia-Saura, M.F., Bauer, S., Whitlock, D.R., Ford, P.C., Ashrafian, H., (2008) J. Biol. Chem., 283, pp. 33927-33934
  • Huang, K.T., Keszler, A., Patel, N., Patel, R.P., Gladwin, M.T., Kim-Shapiro, D.B., Hogg, N., (2005) J. Biol. Chem., 280, pp. 31126-31131
  • Nagababu, E., Ramasamy, S., Abernethy, D.R., Rifkind, J.M., (2003) J. Biol. Chem., 278, pp. 46349-46356
  • Shiva, S., Huang, Z., Grubina, R., Sun, J., Ringwood, L.A., Macarthur, P.H., Xu, X., Gladwin, M.T., (2007) Circ. Res., 100, pp. 654-661
  • Yi, J., Heinecke, J., Tan, H., Ford, P.C., Richter-Addo, G.B., (2009) J. Am. Chem. Soc., 131, pp. 18119-18128
  • Heinecke, J., Yi, J., Pereira, J.C.M., Richter-Addo, G.B., Ford, P.C., (2012) J. Inorg. Biochem., 107, pp. 47-53
  • Tiso, M., Tejero, J., Basu, S., Azarov, I., Wang, X., Simplaceanu, V., Frizzell, S., Gladwin, M.T., (2011) J. Biol. Chem., 286, pp. 18277-18289
  • Webb, A.J., Milsom, A.B., Rathod, K.S., Chu, W.L., Qureshi, S., Lovell, M.J., Lecomte, F.M.J., Ahluwalia, A., (2008) Circ. Res., 103, pp. 957-964
  • Heinecke, J., Ford, P.C., (2010) Coord. Chem. Rev., 254, pp. 235-247
  • Rose, E.J., Hoffman, B.M., (1983) J. Am. Chem. Soc., 105, pp. 2866-2873
  • Laverman, L.E., Ford, P.C., (2001) J. Am. Chem. Soc., 123, pp. 11614-11622
  • Ford, P.C., Laverman, L.E., Lorkovic, I.M., (2003) Adv. Inorg. Chem., 51, pp. 203-257
  • Doyle, M.P., Hoekstra, J.W., (1981) J. Inorg. Biochem., 14, pp. 351-358
  • Olson, J.S., Foley, E.W., Rogge, C., Tsai, A.L., Doyle, M.P., Lemon, D.D., (2004) Free Radical Biol. Med., 36, pp. 685-697
  • Shiva, S., Rassaf, T., Patel, R.P., Gladwin, M.T., (2011) Cardiovasc. Res., 89, pp. 566-573
  • Tovrog, B.S., Diamond, S.E., Mares, F., (1979) J. Am. Chem. Soc., 101, pp. 270-272
  • Ercolani, C., Paoletti, A.M., Pennesi, G., Rossi, G., (1991) J. Chem. Soc., Dalton Trans., pp. 1317-1321
  • O'Shea, S.K., Wang, W., Wade, R.S., Castro, C.E., (1996) J. Org. Chem., 61, pp. 6388-6395
  • Cheng, L., Powell, D.R., Khan, M.A., Richter-Addo, G.B., (2000) Chem. Commun., pp. 2301-2302
  • Kurtikyan, T.S., Hovhannisyan, A.A., Iretskii, A.V., Ford, P.C., (2009) Inorg. Chem., 48, pp. 11236-11241
  • Treinin, A., Hayon, E., (1970) J. Am. Chem. Soc., 92, pp. 5821-5828
  • Markovits, G.Y., Schwartz, S.E., Newman, L., (1981) Inorg. Chem., 20, pp. 445-450
  • Williams, D.L.H., (2004) Nitrosation Reactions and the Chemistry of Nitric Oxide, , Elsevier: Amsterdam
  • Bard, A.J., Parsons, R., Jordan, J., (1985) Standard Potentials in Aqueous Solutions, p. 127. , Eds. Marcel Dekker: New York - 139
  • Khin, C., (2008), Ph.D Dissertation, University of California, Santa Barbara, CA; Khin, C., Heinecke, J., Ford, P.C., (2008) J. Am. Chem. Soc., 130, p. 13830. , supporting information - 13831
  • Heinecke, J., Ford, P.C., (2010) J. Am. Chem. Soc., 132, p. 9240. , supporting information - 9243
  • Ford, P.C., (2010) Inorg. Chem., 49, pp. 6226-6239
  • Bartik, T., Bartik, B., Hanson, B.E., Glass, T., Bebout, W., (1992) Inorg. Chem., 31, pp. 2667-2670
  • Lim, M.D., Lorkovic, I.M., Ford, P.C., (2005) Methods Enzymol., 396, pp. 3-17
  • Shaw, A.W., Vosper, A.J., (1977) J. Chem. Soc., Faraday Trans. 1, 73, pp. 1239-1244
  • Wilhelm, E., Battino, R., Wilcock, R.J., (1977) Chem. Rev., 77, pp. 219-262
  • Suarez . S, A., Fonticelli, M.H., Rubert, A.A., De La Llave, E., Scherlis, D., Salvarezza, R.C., Martí, M.A., Doctorovich, F.A., (2010) Inorg. Chem., 49, pp. 6955-6966
  • Hoshino, M., Maeda, M., Konishi, R., Seki, H., Ford, P.C., (1996) J. Am. Chem. Soc., 118, pp. 5702-5707
  • Fernandez, B.O., Lorkovic, I.M., Ford, P.C., (2004) Inorg. Chem., 43, pp. 5393-5402
  • Conradie, J., Ghosh, A., (2006) Inorg. Chem., 45, pp. 4902-4909
  • Allison, W.S., (1976) Acc. Chem. Res., 9, pp. 293-299
  • Percival, M.D., Ouellet, M., Campagnolo, C., Claveau, D., Li, C., (1999) Biochemistry, 38, pp. 13574-13583
  • Poole, L.B., Zeng, B.B., Knaggs, S.A., Yakubu, M., King, S.B., (2005) Bioconjugate Chem., 16, pp. 1624-1628
  • Rimmer, R.D., Richter, H., Ford, P.C., (2009) Inorg. Chem., 49, pp. 1180-1185
  • Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7340-7345
  • Doyle, M.P., Mahapatro, S.N., Broene, R.D., Guy, J.K., (1988) J. Am. Chem. Soc., 110, pp. 593-599
  • Wong, P.S.-Y., Hyun, J., Fukuto, J.M., Shirota, F.N., Demaster, E.G., Shoeman, D.W., Nagasawa, H.T., (1998) Biochemistry, 37, p. 5362. , [erratum, p 18129] - 5371
  • Shoeman, D.W., Shirota, F.N., Demaster, E.G., Nagasawa, H.T., (2000) Alcohol, 20, pp. 55-59
  • Miranda, K.M., (2005) Coord. Chem. Rev., 249, pp. 433-455
  • Reisz, J.A., Klorig, E.B., Wright, M.W., King, S.B., (2009) Org. Lett., 11, pp. 2719-2721
  • Reisz, J.A., Zink, C.N., King, S.B., (2011) J. Am. Chem. Soc., 133, pp. 11675-11680
  • Lymar, S.V., Shafirovich, V., Poskrebyshev, G.A., (2005) Inorg. Chem., 44, pp. 5212-5221
  • Lim, M.D., Lorkovic, I.M., Ford, P.C., (2002) Inorg. Chem., 41, pp. 1026-1028
  • Hine, J., (1962) Physical Organic Chemistry, p. 87. , McGraw-Hill Book Co. New York
  • Zhao, Y.-L., Bartberger, M.D., Goto, K., Shimada, K., Kawashima, T., Houk, K.N., (2005) J. Am. Chem. Soc., 127, pp. 7964-7965
  • Bakac, A., Schouten, M., Johnson, A., Song, W., Pestovsky, O., Szajna-Fuller, E., (2009) Inorg. Chem., 48, pp. 6979-6985
  • Kharitonove, V.G., Sundquist, A.R., Sharma, V.S., (1995) J. Biol. Chem., 270, pp. 28158-28164
  • Holman, D.A., Bennett, D.W., (1994) J. Phys. Chem., 98, pp. 13300-13307
  • Goodrich, L.E., Paulat, F., Praneeth, V.K.K., Lehnert, N., (2010) Inorg. Chem., 49, pp. 6293-6316
  • Paulsen, C.E., Carroll, K.S., (2010) ACS Chem. Biol., 5, pp. 47-62
  • Roos, G., Messens, J., (2011) Free Radical Biol. Med., 51, pp. 314-326
  • Vazquez-Torres, A., (2012) Antioxid. Redox Signaling, 17, pp. 1201-1214
  • Claiborne, A., Miller, H., Parsonage, D., Ross, R.P., (1993) FASEB J., 7, pp. 1483-1490
  • Ashby, M.T., Nagy, P., (2006) J. Pharm. Sci., 95, pp. 15-18
  • Note that this reaction is reversible given that ferriheme models and proteins are known to react with HNO to give the analogous ferroheme nitrosyls (refs 61b and 61c); Miranda, K.M., Nims, R.W., Thomas, D.D., Espey, M.G., Citrin, D., Bartberger, M.D., Paolocci, N., Wink, D.A., (2003) J. Inorg. Biochem., 93, pp. 52-60
  • Suárez, S.A., Martí, M.A., De Biase, P.M., Estrin, D.A., Bari, S.E., Doctorovich, F., (2007) Polyhedron, 26, pp. 4673-4679
  • Rinaldo, S., Arcovito, A., Brunori, M., Cutruzzola, F., (2007) J. Biol. Chem., 282, pp. 14761-14767
  • Quaroni, L.G., Seward, H.E., McLean, K.J., Girvan, H.M., Ost, T.W.B., Noble, M.A., Kelly, S.M., Munro, A.W., (2004) Biochemistry, 43, pp. 16416-16431
  • Schmidt, H.H.W., Hofmann, H., Schindle, R.U., Shutenko, Z.S., Cunningham, D.D., Feelisch, M., (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 14492-14497
  • Fukuto, J.M., Wallace, G.C., Hszieh, R., Chaudhuri, G., (1992) Biochem. Pharmacol., 43, pp. 607-613
  • Pufahl, R.A., Wishnok, J.S., Marletta, M.A., (1995) Biochemistry, 3, pp. 1930-1941
  • Adak, S., Wang, Q., Stuehr, D.J., (2000) J. Biol. Chem., 275, pp. 33554-33561
  • Fukuto, J.M., Stuehr, D.J., Feldman, P.L., Bova, M.P., Wong, P., (1993) J. Med. Chem., 36, pp. 2666-2670
  • Santolini, J., Meade, A.L., Stuehr, D.J., (2001) J. Biol. Chem., 276, pp. 48887-48898
  • Zweier, J.L., Samouilov, A., Kuppusamy, P., (1999) Biochim. Biophys. Acta, Bioenerg., 1411, pp. 250-262
  • Wang, Y., Guo, Y., Zhang, S.X., Wu, W., Wang, J., Bao, W., Bolli, R., (2002) J. Mol. Cell Cardiol., 34, pp. 5-15
  • Nugent, S.G., Kumar, D., (2001) Gut, 48, pp. 571-577
  • Sorkin, A., Von Zastrow, M., (2002) Nat. Rev. Mol. Cell Biol., 3, pp. 600-614
  • Geisow, M.J., Hart, P.D., Young, M.R., (1981) J. Cell Biol., 89, pp. 645-652

Citas:

---------- APA ----------
Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretskii, A.V., Doctorovich, F. & Ford, P.C. (2013) . Nitrite reduction mediated by heme models. Routes to NO and HNO?. Journal of the American Chemical Society, 135(10), 4007-4017.
http://dx.doi.org/10.1021/ja312092x
---------- CHICAGO ----------
Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretskii, A.V., Doctorovich, F., et al. "Nitrite reduction mediated by heme models. Routes to NO and HNO?" . Journal of the American Chemical Society 135, no. 10 (2013) : 4007-4017.
http://dx.doi.org/10.1021/ja312092x
---------- MLA ----------
Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretskii, A.V., Doctorovich, F., et al. "Nitrite reduction mediated by heme models. Routes to NO and HNO?" . Journal of the American Chemical Society, vol. 135, no. 10, 2013, pp. 4007-4017.
http://dx.doi.org/10.1021/ja312092x
---------- VANCOUVER ----------
Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretskii, A.V., Doctorovich, F., et al. Nitrite reduction mediated by heme models. Routes to NO and HNO?. J. Am. Chem. Soc. 2013;135(10):4007-4017.
http://dx.doi.org/10.1021/ja312092x