Artículo

Alvarez-Paggi, D.; Martín, D.F.; Debiase, P.M.; Hildebrandt, P.; Martí, M.A.; Murgida, D.H. "Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes" (2010) Journal of the American Chemical Society. 132(16):5769-5778
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Direct electron transfer (ET) of redox proteins immobilized on biomimetic or biocompatible electrodes represents an active field of fundamental and applied research. In this context, several groups have reported for a variety of proteins unexpected distance dependencies of the ET rate, whose origin remains largely speculative and controversial, but appears to be a quite general phenomenon. Here we have employed molecular dynamics (MD) simulations and electron pathway analyses to study the ET properties of cytochrome c (Cyt) electrostatically immobilized on Au coated by carboxyl-terminated alkylthiols. The MD simulations and concomitant binding energy calculations allow identification of preferred binding configurations of the oxidized and reduced Cyt which are established via different lysine residues and, thus, correspond to different orientations and dipole moments. Calculations of the electronic coupling matrices for the various Cyt/self-assembled monolayer (SAM) complexes indicate that the thermodynamically preferred protein orientations do not coincide with the orientations of optimum coupling. These findings demonstrate that the ET of the immobilized Cyt is controlled by an interplay between protein dynamics and tunneling probabilities. Protein dynamics exerts two level of tuning on the electronic coupling via reorientation (coarse) and low amplitude thermal fluctuations (fine). Upon operating the Au support as an electrode, electric-field-dependent alignment of the protein dipole moment becomes an additional determinant for the protein dynamics and thus for the overall ET rate. The present results provide a consistent molecular description of previous (spectro)electrochemical data and allow conclusions concerning the coupling of protein dynamics and ET of Cyt in physiological complexes. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes
Autor:Alvarez-Paggi, D.; Martín, D.F.; Debiase, P.M.; Hildebrandt, P.; Martí, M.A.; Murgida, D.H.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
Palabras clave:Active field; Alkylthiols; Applied research; Binding configuration; Biomimetic complex; Concomitant binding; Cytochrome C; Direct electron transfer; Electrochemical data; Electron transfer dynamics; Electronic coupling; Energy calculation; Low-amplitude; Lysine residues; MD simulation; Molecular basis; Molecular descriptions; Molecular dynamics simulations; Optimum coupling; Pathway analysis; Protein dynamics; Protein orientation; Redox proteins; Thermal fluctuations; Tunneling probabilities; Amino acids; Binding energy; Biomimetics; Dynamics; Electric dipole moments; Electron transitions; Molecular dynamics; Monolayers; Proteins; carboxy terminated alkylthiol; cytochrome c; gold; lysine; protein; self assembled monolayer; thiol derivative; unclassified drug; biomimetic material; cytochrome c; immobilized enzyme; amplitude modulation; article; binding affinity; biomimetics; calculation; carboxy terminal sequence; complex formation; controlled study; cross coupling reaction; dipole; electric field; electricity; electrode; electron; electron transport; energy; material coating; molecular dynamics; oxidation; protein analysis; protein stability; thermodynamics; tuning curve; chemistry; electrochemistry; electron transport; enzyme specificity; protein tertiary structure; static electricity; Biomimetic Materials; Cytochromes c; Electrochemistry; Electron Transport; Enzymes, Immobilized; Gold; Molecular Dynamics Simulation; Protein Structure, Tertiary; Static Electricity; Substrate Specificity; Sulfhydryl Compounds; Thermodynamics
Año:2010
Volumen:132
Número:16
Página de inicio:5769
Página de fin:5778
DOI: http://dx.doi.org/10.1021/ja910707r
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:cytochrome c, 9007-43-6, 9064-84-0; gold, 7440-57-5; lysine, 56-87-1, 6899-06-5, 70-54-2; protein, 67254-75-5; thiol derivative, 13940-21-1; Cytochromes c, 9007-43-6; Enzymes, Immobilized; Gold, 7440-57-5; Sulfhydryl Compounds
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v132_n16_p5769_AlvarezPaggi

Referencias:

  • Cracknell, J.A., Vincent, K.A., Armstrong, F.A., (2008) Chem. Rev., 108, p. 2439
  • Willner, I., Katz, E., (2000) Angew. Chem., Int. Ed., 39, p. 1180
  • Armstrong, F.A., (2005) Curr. Opin. Chem. Biol., 9, p. 110
  • Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res., 37, p. 854
  • Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev., 37, p. 937
  • Fedurco, M., (2000) Coord. Chem. Rev., 209, p. 263
  • Murgida, D.H., Hildebrandt, P., Wei, J., He, Y.F., Liu, H.Y., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, p. 2261
  • Rivas, L., Murgida, D.H., Hildebrandt, P., (2002) J Phys. Chem. B, 106, p. 4823
  • Kuznetsov, A.M., Ulstrup, J., (1999) Electron Transfer in Chemistry and Biology. An Introduction to the Theory, , 1 ed. Wiley: Chichester
  • Marcus, R.A., (1965) J. Chem. Phys., 43, p. 679
  • Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., (2000) J. Phys. Chem. B, 104, p. 2759
  • Chi, Q.J., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., (2001) J. Phys. Chem. B, 105, p. 4669
  • Davis, K.L., Waldeck, D.H., (2008) J. Phys. Chem. B, 112, p. 12498
  • El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R.J., (1998) J. Am. Chem. Soc., 120, p. 225
  • Feng, J.J., Kuhlmann, U., Murgida, D.H., Utesch, T., Mroginski, M., Hildebrandt, P., Weidinger, I., (2008) J. Phys. Chem. B, 112, p. 15202
  • Kranich, A., Naumann, H., Molina-Heredia, F.P., Moore, H.J., Lee, T.R., Lecomte, S., De La Rosa, M.A., Murgida, D.H., (2009) Phys. Chem. Chem. Phys., 11, p. 7390
  • Murgida, D.H., Hildebrandt, P., (2001) J. Am. Chem. Soc., 123, pp. 4062-4068
  • Niki, K., Hardy, W.R., Hill, M.G., Li, H., Sprinkle, J.R., Margoliash, E., Fujita, K., Gray, H.B., (2003) J. Phys. Chem. B, 107, p. 9947
  • Wei, J.J., Liu, H.Y., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., (2002) Angew. Chem., Int. Ed., 41, p. 4700
  • Xu, J.S., Bowden, E.F., (2006) J. Am. Chem. Soc., 128, p. 6813
  • Yue, H.J., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., (2006) J. Phys. Chem. B, 110, p. 19906
  • Zuo, P., Albrecht, T., Barker, P.D., Murgida, D.H., Hildebrandt, P., (2009) Phys. Chem. Chem. Phys., 11, p. 7430
  • Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, p. 12814
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., (2008) J. Am. Chem. Soc., 130, p. 9844
  • Paggi, D.A., Martin, D.F., Kranich, A., Hildebrandt, P., Marti, M.A., Murgida, D.H., (2009) Electrochim. Acta, 54, p. 4963
  • Banci, L., Bertini, I., Huber, J.G., Spyroulias, G.A., Turano, P., (1999) J. Biol. Inorg. Chem., 4, p. 21
  • Bushnell, G.W., Louie, G.V., Brayer, G.D., (1990) J. Mol. Biol., 214, p. 585
  • Case, D.A., Cheatham Iii, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev Jr., A., Woods, R., (2005) J. Computat. Chem., 26, p. 1668
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., Lebrero, M.C.G., Estrin, D.A., (2006) Phys. Chem. Chem. Phys., 8, p. 5611
  • Rai, B., Sathish, P., Malhotra, C.P., Pradip, Ayappa, K.G., (2004) Langmuir, 20, p. 3138
  • Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, p. 1578
  • Ataka, K., Heberle, J., (2004) J. Am. Chem. Soc., 126, p. 9445
  • Park, S., Schulten, K., (2004) J. Chem. Phys., 120, p. 5946
  • Onufriev, A., Bashford, D., Case, D.A., (2004) Proteins: Struct. Funct. Bioinf., 55, p. 383
  • Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A., Haak, J.R., (1984) J. Chem. Phys., 81, p. 3684
  • Koppenol, W.H., Rush, J.D., Mills, J.D., Margoliash, E., (1991) Mol. Biol. Evol., 8, p. 545
  • Beratan, D.N., Onuchic, J.N., Betts, J.N., Bowler, B.E., Gray, H.B., (1990) J. Am. Chem. Soc., 112, p. 7915
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., (1992) Science, 258, p. 1740
  • Araci, Z.O., Runge, A.F., Doherty Iii, W.J., Saavedra, S.S., (2008) J. Am. Chem. Soc., 130, p. 1572
  • De Biase, P.M., Paggi, D.A., Doctorovich, F., Hildebrandt, P., Estrin, D.A., Murgida, D.H., Marti, M.A., (2009) J. Am. Chem. Soc., 131, p. 16248
  • Pelletier, H., Kraut, J., (1992) Science, 258, p. 1748
  • Lange, C., Hunte, C., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 2800
  • Roberts, V.A., Pique, M.E., (1999) J. Biol. Chem., 274, p. 38051
  • Cheung, E., Taylor, K., Kornblatt, J.A., English, A.M., McLendon, G., Miller, J.R., (1986) Proc. Natl. Acad. Sci. U.S.A., 83, p. 1330
  • Michel, B., Bosshard, H.R., (1989) Biochemistry, 28, p. 244
  • Michel, B., Mauk, A.G., Bosshard, H.R., (1989) FEBS Lett., 243, p. 149
  • Michel, B., Proudfoot, A.E.I., Wallace, C.J.A., Bosshard, H.R., (1989) Biochemistry, 28, p. 456
  • Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., Wilson, M.T., (1985) EMBO J., 4, p. 2365
  • Capitanio, N., Capitanio, G., Demarinis, D.A., De Nitto, E., Massari, S., Papa, S., (1996) Biochemistry, 35, p. 10800
  • Hazzard, J.T., McLendon, G., Cusanovich, M.A., Tollin, G., (1988) Biochim. Biophys. Res. Comm., 151, p. 429
  • Heacock, D.H., (1993) J. Biol. Chem., 268, p. 27171
  • Schlarb-Ridley, B.G., Bendall, D.S., Howe, C.J., (2003) Biochemistry, 42, p. 4057
  • Hunte, C., Solmaz, S., Lange, C., (2002) BBA-Bioenergetics, 1555, p. 21
  • Sadeghi, S.J., Valetti, F., Cunha, C.A., Rompo, M.J., Soares, C.M., Gilardi, G., (2000) J. Biol. Inorg. Chem., 5, p. 730

Citas:

---------- APA ----------
Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A. & Murgida, D.H. (2010) . Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes. Journal of the American Chemical Society, 132(16), 5769-5778.
http://dx.doi.org/10.1021/ja910707r
---------- CHICAGO ----------
Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H. "Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes" . Journal of the American Chemical Society 132, no. 16 (2010) : 5769-5778.
http://dx.doi.org/10.1021/ja910707r
---------- MLA ----------
Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H. "Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes" . Journal of the American Chemical Society, vol. 132, no. 16, 2010, pp. 5769-5778.
http://dx.doi.org/10.1021/ja910707r
---------- VANCOUVER ----------
Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H. Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes. J. Am. Chem. Soc. 2010;132(16):5769-5778.
http://dx.doi.org/10.1021/ja910707r