Artículo

Martí, M.A.; Bidon-Chanal, A.; Crespo, A.; Yeh, S.-R.; Guallar, V.; Luque, F.J.; Estrin, D.A. "Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N" (2008) Journal of the American Chemical Society. 130(5):1688-1693
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The capability of Mycobacterium tuberculosis to rest in latency in the infected organism appears to be related to the disposal of detoxification mechanisms, which converts the nitric oxide (NO) produced by macrophages during the initial growth infection stage into a nitrate anion. Such a reaction appears to be associated with the truncated hemoglobin N (trHbN). Even though previous experimental and theoretical studies have examined the pathways used by NO and O2 to access the heme cavity, the eggression pathway of the nitrate anion is still a challenging question. In this work we present results obtained by means of classical and quantum chemistry simulations that show that trHbN is able to release rapidly the nitrate anion using an eggression pathway other than those used for the entry of both O2 and NO and that its release is promoted by hydration of the heme cavity. These results provide a detailed understanding of the molecular basis of the NO detoxification mechanism used by trHbN to guarantee an efficient NO detoxification and thus warrant survival of the microorganism under stress conditions. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N
Autor:Martí, M.A.; Bidon-Chanal, A.; Crespo, A.; Yeh, S.-R.; Guallar, V.; Luque, F.J.; Estrin, D.A.
Filiación:Departamento de Quimica Inorganica,Analitica Y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas Y Naturales, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Departament de Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, United States
ICREA, Computacional Biology Program, Barcelona Supercomputing Center, Barcelona 08028, Spain
Palabras clave:Eggression pathway; Heme cavity; Mycobacterium tuberculosis; Detoxification; Hemoglobin; Hydration; Nitric oxide; Quantum chemistry; Bacteria; heme; hemoglobin; hemoglobin n; nitric oxide; nitrite; oxygen; unclassified drug; article; bacterial growth; hydration; latent period; macrophage; molecular dynamics; molecular mechanics; Mycobacterium tuberculosis; nonhuman; quantum chemistry; quantum mechanics; reaction analysis; simulation; stress; Anions; Binding Sites; Computer Simulation; Hemoglobins, Abnormal; Ligands; Models, Molecular; Mycobacterium tuberculosis; Nitrates; Nitric Oxide; Protein Binding; Protein Structure, Tertiary; Water
Año:2008
Volumen:130
Número:5
Página de inicio:1688
Página de fin:1693
DOI: http://dx.doi.org/10.1021/ja076853+
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:heme, 14875-96-8; hemoglobin, 9008-02-0; nitric oxide, 10102-43-9; nitrite, 14797-65-0; oxygen, 7782-44-7; Anions; Hemoglobins, Abnormal; Ligands; Nitrates; Nitric Oxide, 10102-43-9; Water, 7732-18-5; hemoglobins N, 9035-12-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v130_n5_p1688_Marti

Referencias:

  • Bloom, B.R., (1994) Tuberculosis: Pathogenesis, Protection and Control, , ASM Press: Washington, DC
  • MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., (1997) Proc. Natl. Acad. Sci. U.S.A, 94, p. 5243
  • Shiloh, M.U., Nathan, C.F., (2000) Curr. Opin. Microbiol, 3, p. 35
  • Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., (1999) Proc. Natl. Acad. Sci. U.S.A, 96, p. 11223
  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., (2002) Proc. Natl. Acad. Sci. U.S.A, 99, p. 5902
  • Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., (2002) Mol. Microbiol, 45, p. 1303
  • Moens, L., Vanfleteren, J., van de Peer, Y., Peeters, K., Kapp, O., Czeluzniak, J., Goodman, M., Vinogradov, S., (1996) Mol. Biol. Evol, 13, p. 324
  • Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., (2000) EMBO J, 19, p. 2424
  • Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., (2005) J. Inorg. Biochem, 99, p. 97
  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., (2001) EMBO J, 20, p. 3902
  • Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J.M., Ascenzi, P., Guertin, M., Bolognesi, M., (2004) J. Biol. Chem, 279, p. 21520
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpí, J.L., Luque, F.J., Estrin, D.A., (2005) J. Am. Chem. Soc, 127, p. 4433
  • Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., (2006) Proteins, 64, p. 457
  • Bidon-Chanal, A., Martí, M.A., Estrin, D.A., Luque, F.J., (2007) J. Am. Chem. Soc, 129, p. 6782
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys, 79, p. 926
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comp. Phys. Commun, 91, p. 1
  • Jarzynski, C., (1997) Phys. Rev. Lett, 78, p. 2690
  • (2005) Qsite, , 4.0; Schrodinger, LLC: New York
  • Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098
  • Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785
  • Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys, 82, p. 270
  • Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L., (2001) J. Phys. Chem. B, 105, p. 6474
  • Friesner, R.A., Guallar, V., (2005) Annu. Rev. Phys. Chem, 56, p. 389
  • (2005) Jaguar, , 6.5; Schrodinger, LLC: New York
  • Kleywegt, G.J., Jones, T.A., (1994) Acta Crystallogr, D50, p. 1178
  • Borrelli, K.W., Vitalis, A., Alcantara, R., Guallar, V., (2005) J. Chem. Theory Comput, 1, p. 1304

Citas:

---------- APA ----------
Martí, M.A., Bidon-Chanal, A., Crespo, A., Yeh, S.-R., Guallar, V., Luque, F.J. & Estrin, D.A. (2008) . Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N. Journal of the American Chemical Society, 130(5), 1688-1693.
http://dx.doi.org/10.1021/ja076853+
---------- CHICAGO ----------
Martí, M.A., Bidon-Chanal, A., Crespo, A., Yeh, S.-R., Guallar, V., Luque, F.J., et al. "Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N" . Journal of the American Chemical Society 130, no. 5 (2008) : 1688-1693.
http://dx.doi.org/10.1021/ja076853+
---------- MLA ----------
Martí, M.A., Bidon-Chanal, A., Crespo, A., Yeh, S.-R., Guallar, V., Luque, F.J., et al. "Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N" . Journal of the American Chemical Society, vol. 130, no. 5, 2008, pp. 1688-1693.
http://dx.doi.org/10.1021/ja076853+
---------- VANCOUVER ----------
Martí, M.A., Bidon-Chanal, A., Crespo, A., Yeh, S.-R., Guallar, V., Luque, F.J., et al. Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N. J. Am. Chem. Soc. 2008;130(5):1688-1693.
http://dx.doi.org/10.1021/ja076853+