Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Soluble guanylate cyclase (sGC), the mammalian receptor for nitric oxide (NO), is a heme protein with a histidine as the proximal ligand. Formation of a five-coordinate heme-NO complex with the associated Fe-His bond cleavage is believed to trigger a conformational change that activates the enzyme and transduces the NO signal. Cytochrome c′ (cyt c′) is a protobacteria heme protein that has several similarities with sGC, including the ability to form a five-coordinate NO adduct and the fact that it does not bind oxygen. Recent crystallographic characterization of cyt c′ from Alcaligenes xylosoxidans (AXCP) has yielded the discovery that exogenous ligands are able to bind to the Fe center from either side of the porphyrin plane. In this paper, we explore the molecular basis of the NO interaction with AXCP using hybrid quantum-classical simulation techniques. Our results suggest that Fe-His bond breaking depends not only on the iron-histidine bond strength but also on the existence of a local minimum conformation of the protein with the histidine away from the iron. We also show that AXCP is a useful paradigm for NO interaction with heme proteins, particularly regarding the activation/deactivation mechanism of sGC. The results presented here fully support a recently proposed model of sGC activation in which NO is not only the iron ligand but also catalyzes the activation step. © 2005 American Chemical Society.

Registro:

Documento: Artículo
Título:Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break?
Autor:Martí, M.A.; Capece, L.; Crespo, A.; Doctorovich, F.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica,Analítica y Química Física, Facultad de Ciencias Exacias y Naturelles, Univerxidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
Palabras clave:Activation analysis; Catalysis; Chemical bonds; Complexation; Conformations; Crystallography; Enzymes; Conformational changes; Deactivation; Ligands; Soluble guanylate cyclase (sGC); Nitrogen oxides; cytochrome c; guanylate cyclase; hemoprotein; histidine; iron; ligand; nitric oxide; Achromobacter xylosoxidans; article; catalysis; complex formation; energy; enzyme activation; nonhuman; oxygen affinity; structure analysis; X ray crystallography; Alcaligenes; Cytochromes c'; Guanylate Cyclase; Histidine; Models, Molecular; Nitric Oxide; Protein Conformation; Thermodynamics
Año:2005
Volumen:127
Número:21
Página de inicio:7721
Página de fin:7728
DOI: http://dx.doi.org/10.1021/ja042870c
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:cytochrome c, 9007-43-6, 9064-84-0; guanylate cyclase, 9054-75-5; histidine, 645-35-2, 7006-35-1, 71-00-1; iron, 14093-02-8, 53858-86-9, 7439-89-6; nitric oxide, 10102-43-9; Cytochromes c'; Guanylate Cyclase, EC 4.6.1.2; Histidine, 71-00-1; Nitric Oxide, 10102-43-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v127_n21_p7721_Marti

Referencias:

  • Moncada, S., Palmer, R.M., Higgs, E.A., (1991) Pharmacol. Rev., 43, pp. 109-142
  • Zhao, Y., Schelvis, J.P., Babcock, G.T., Marietta, M.A., (1998) Biochemistry, 37, pp. 4504-4509
  • Vogel, K.M., Hu, S., Spiro, T.G., Dierks, E.A., Yu, A.E., Burstyn, J.N., (1999) J. Biol. Inorg. Chem., 4, pp. 804-813
  • Yu, A.E., Hu, S., Spiro, T.G., Burstyn, J.N., (1994) J. Am. Chem. Soc., 116, pp. 4117-4118
  • Burstyn, J.N., Yu, A.E., Dierks, E.A., Hawkins, B.K., Dawson, J.H., (1995) Biochemistry, 34, pp. 3896-5903
  • Denium, G., Stone, J.R., Babcock, G.T., Marletta, M.A., (1996) Biochemistry, 35, pp. 1540-1547
  • Tomita, T., Ogura, T., Tsuyama, S., Imai, Y., Kitagawa, T., (1997) Biochemistry, 36, pp. 10155-10160
  • Li, Z., Pal, B., Takenaka, S., Tsuyama, S., Kitagawa, T., (2005) Biochemistry, 44, pp. 939-946
  • Kim, S., Deinum, G., Gardner, M.T., Marletta, M.A., Babcock, G.T., (1996) J. Am. Chem. Soc., 188, pp. 8769-8770
  • Pellicena, P., Karow, D.S., Boon, E.M., Marletta, M.A., Kuriyan, J., (2004) Proc. Natl. Acad. Sci. U.S.A., 101 (35), pp. 12854-12859
  • Karow, D.S., Pan, D., Tran, R., Pellicena, P., Presley, A., Mathies, R.A., Marletta, M.A., (2004) Biochemistry, 43, pp. 10203-10211
  • Denninger, J.W., Marletta, M.A., (1999) Biochim. Biophys. Acta, 1411, pp. 334-350
  • Ballou, D.P., Zhao, Y., Brandish, P.E., Marletta, M.A., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 12097-12101
  • Zhao, Y., Brandish, P.E., Ballou, D.P., Marletta, M.A., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 14753-14758
  • Bellamy, T.C., Wood, J., Garthwaite, J., (2002) Proc. Natl. Acad Sci. U.S.A., 99, pp. 507-510
  • Meyer, T.E., Kamen, M.D., (1982) Adv. Protein. Chem., 35, pp. 105-212
  • Iwasaki, H., Yoshimura, T., Suzuki, S., Shidara, S., (1991) Binchim. Biophys. Acta, 1058, pp. 79-82
  • Schnidt, T.M., DiSpirito, A.A., (1990) Arch. Microbiol., 154, pp. 453-458
  • Moir, J.W.B., (1999) Biochim. Biophys. Acta, 1430, pp. 65-72
  • Cross, R., Aish, J., Patson, S.J., Poole, R.K., Moir, J.W.B., (2000) J. Bacteriol., 182, pp. 1442-1447
  • Cross, R., Lloyd, D., Poole, R.K., Moir, J.W.B., (2001) J. Bacteriol., 183, pp. 3050-3054
  • Lawson, D.M., Stevenson, C.E.M., Andrew, C.R., Eady, R.R., (2000) EMBO J., 19, pp. 5661-5671
  • Makino, R., Matsuda, H., Obayashi, E., Shiro, Y., Iizuka, T., Hori, H., (1999) J. Biol. Chem., 274, pp. 7714-7723
  • George, J.S., Andrew, C.R., Lawson, D.M., Thorneley, R.N.F., Eady, R.R., (2001) J. Am. Chem. Soc., 123, pp. 9683-9684
  • Stone, J.R., Marletta, M.A., (1994) Biochemistry, 33, pp. 5636-5640
  • Lawson, D.M., Stevenson, C.E.M., Andrew, C.R., George, S.J., Eady, R.R., (2003) Biochem. Soc. Trans., 31, pp. 553-557
  • Andrew, C.R., Green, E.L., Lawson, D.M., Eady, R.R., (2001) Biochemistry, 40, pp. 4115-4122
  • Andrew, C.R., Georee, S.J., Lawson, D.M., Eady, R.R., (2002) Biochemistry, 41, pp. 2353-2360
  • Andrew, C.R., Rodgers, K.R., Eady, R.R., (2003) J. Am. Chem. Soc., 125, pp. 9548-9549
  • Mayburd, A.L., Kassner, R.J., (2002) Biochemistry, 41, pp. 11582-11591
  • Wyllie, G.R.A., Schulz, C.E., Scheldt, W.R., (2003) Inorg. Chem., 42, pp. 5722-5734
  • Gong, W., Hao, B., Mansy, S.S., Gonzalez, G., Gilles-Gonzalez, M.A., Chan, M.K., (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 15177-15182
  • Schelvis, J.P.M., Seibold, S.A., Cerda, J.F., Garavito, R.M., Babcock, G.T., (2000) J. Phys. Chem. B, 104, pp. 10844-10850
  • Martí, M.A., Scherlis, D.A., Doetorovich, F.A., Ordejón, P., Estrin, D.A., (2003) J. Biol. Inorg. Chem., 6, pp. 595-600
  • Scherlis, D.A., Martí, M.A., Ordejón, P., Estrin, D.A., (2002) Int. J. of Quantum Chem., 90, pp. 1505-1514
  • Kaole, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shulten, K., (1999) J. Comput. Phys., 151, pp. 283-312
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., (1995) J. Am. Chem. Soc., 117, pp. 5179-5197
  • Wang, J., Cieplak, P., Kollman, P.A., (2000) J. Comput. Chem., 2, pp. 1049-1074
  • Soler, J.M., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Cond. Matt., 14, pp. 2745-2779
  • Martí, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Guallar, V., Friesner, R.A., (2004) J. Am. Chem. Soc., 126, pp. 8501-8508
  • Schoneboom, J.C., Lin, H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S., (2002) J. Am. Chem. Soc., 124, pp. 8142-8151
  • Trollier, N., Martins, J.L., (1991) Phys. Rev. B, 43, pp. 1993-2006
  • Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys. Rev. B, 26, pp. 1738-1742
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., (1999) J. Chem. Phys., 110, pp. 10452-10467
  • Rovira, C., Schultze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., (2001) Biophys. J., 81, pp. 435-445
  • Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J. Phys. Chem. A, 101, pp. 8914-8925
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitbers, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Park, E.S., Thomas, M.R., Boxer, S.G., (2000) J. Am. Chem. Soc., 122, pp. 12297-12303
  • Suydam, I.T., Boxer, S.G., (2003) Biochemistry, 42, pp. 12050-12055
  • Chan, N.L., Kavanaugh, J.S., Rogers, P.H., Arnone, A., (2004) Biochemistry, 43, pp. 118-132
  • Conradie, J., Wondimagegn, T., Ghosh, A., (2003) J. Am. Chem. Soc., 125, pp. 4968-4969
  • Lorkovic, I., Ford, P.C., (2000) J. Am. Chem. Soc., 122, pp. 6516-6517
  • Ford, P.C., Lorkovic, I., (2002) Chem. Rev., 102, pp. 993-1017
  • Malinski, T., Czuchajowski, C., (1996) Methods in Nitric Oxide Research, , Feelish, M., Stamler, J. S., Eds.; J. Wiley and Sons: Cichester, UK: Ch. 6 and references therein
  • Hirota, Y., Ishida, H., Genka, C., Obama, R., Matsuyama, S., Nakasawa, H., (2001) Jpn. J. Physiol., 51, pp. 455-461
  • Condorelli, P., George, S.C., (2001) Biophys. J., 80, pp. 2110-2119
  • Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellel, Y., Dewilde, S., Bocedi, A., Bolognesi, M., (2005) J. Inorg. Biochem., 99, pp. 97-109
  • Crespo, A., Martí, M.A., Kalko, S.O., Morreale, A., Orazco, M., Gelpi, J.L., Luque, F.J., Estrin, D., (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Traylor, T.G., Sharma, V.S., (1992) Biochemistry, 31, pp. 2847-2849

Citas:

---------- APA ----------
Martí, M.A., Capece, L., Crespo, A., Doctorovich, F. & Estrin, D.A. (2005) . Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break?. Journal of the American Chemical Society, 127(21), 7721-7728.
http://dx.doi.org/10.1021/ja042870c
---------- CHICAGO ----------
Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A. "Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break?" . Journal of the American Chemical Society 127, no. 21 (2005) : 7721-7728.
http://dx.doi.org/10.1021/ja042870c
---------- MLA ----------
Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A. "Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break?" . Journal of the American Chemical Society, vol. 127, no. 21, 2005, pp. 7721-7728.
http://dx.doi.org/10.1021/ja042870c
---------- VANCOUVER ----------
Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A. Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break?. J. Am. Chem. Soc. 2005;127(21):7721-7728.
http://dx.doi.org/10.1021/ja042870c