Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The catalytic disproportionation of NH2OH has been studied in anaerobic aqueous solution, pH 6-9.3, at 25.0 °C, with Na 3[Fe(CN)5NH3]·3H2O as a precursor of the catalyst, [FeII(CN)5H2O] 3-. The oxidation products are N2, N2O, and NO+ (bound in the nitroprusside ion, NP), and NH3 is the reduction product. The yields of N2/N2O increase with pH and with the concentration of NH2OH. Fast regime conditions involve a chain process initiated by the NH2 radical, generated upon coordination of NH2OH to [FeII(CN)5H 2O]3-. NH3 and nitroxyl, HNO, are formed in this fast process, and HNO leads to the production of N2, N 2O, and NP. An intermediate absorbing at 440 nm is always observed, whose formation and decay depend on the medium conditions. It was identified by UV-vis, RR, and 15NMR spectroscopies as the diazene-bound [Fe II(CN)5N2H2]3- ion and is formed in a competitive process with the radical path, still under the fast regime. At high pH's or NH2OH concentrations, an inhibited regime is reached, with slow production of only N2 and NH3. The stable red diazene-bridged [(NC)5FeHN=NHFe(CN)5] 6- ion is formed at an advanced degree of NH2OH consumption.

Registro:

Documento: Artículo
Título:Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3
Autor:Alluisetti, G.E.; Almaraz, A.E.; Amorebieta, V.T.; Doctorovich, F.; Olabe, J.A.
Filiación:Departamento de Química, Facultad de Ciencias Exactas, Univ. National de Mar del Plata, Funes y R. Peña, Mar del Plata B7602AYL, Argentina
Depto. Quim. Inorg./Analit./Quim. F., INQUIMAE, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Palabras clave:Catalysis; Catalyst activity; Coordination reactions; Nuclear magnetic resonance spectroscopy; Oxidation; pH effects; Reduction; Ultraviolet spectroscopy; Catalytic disproportionation; Diazene; Amines; ammonia; azo compound; diazene derivative; free radical; hydroxylamine; nitrogen; nitrogen oxide; nitroprusside sodium; nitroxyl derivative; unclassified drug; absorption spectroscopy; anaerobic metabolism; aqueous solution; article; catalyst; chemical reaction; disproportionation reaction; gas; nitrogen nuclear magnetic resonance; pH; Raman spectrometry; reduction; stoichiometry; temperature; Ammonia; Anaerobiosis; Catalysis; Ferric Compounds; Ferrous Compounds; Free Radicals; Hydrogen-Ion Concentration; Hydroxylamine; Kinetics; Nitrogen; Nitrogen Oxides; Oxidation-Reduction; Spectrum Analysis, Raman
Año:2004
Volumen:126
Número:41
Página de inicio:13432
Página de fin:13442
DOI: http://dx.doi.org/10.1021/ja046724i
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:ammonia, 14798-03-9, 51847-23-5, 7664-41-7; hydroxylamine, 7803-49-8; nitrogen oxide, 11104-93-1; nitrogen, 7727-37-9; nitroprusside sodium, 14402-89-2, 15078-28-1; Ammonia, 7664-41-7; Ferric Compounds; Ferrous Compounds; Free Radicals; Hydroxylamine, 7803-49-8; Nitrogen Oxides; Nitrogen, 7727-37-9; nitroxyl, 14332-28-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v126_n41_p13432_Alluisetti

Referencias:

  • Buchner, W., Schliebs, R., Winter, O., Buchel, K.H., (1989) Industrial Inorganic Chemistry, pp. 52-55. , VCH Veriagsgeselischaft
  • Hughes, M.N., (1981) The Inorganic Chemistry of Biological Processes, 2nd Ed., , Wiley: New York
  • Hooper, A.B., (1989) Autotrophic Bacteria, , Schlegel, H. G., Bowien, B., Eds.; Science Tech Publishers
  • Hendrich, M.P., Logan, M., Andersson, K.K., Arciero, D.M., Lipscomb, J.D., Hooper, A.B., (1994) J. Am. Chem. Soc., 116, pp. 11961-11968
  • Hendrich, M.P., Petasis, D., Arciero, D.M., Hooper, A.B., (2001) J. Am. Chem. Soc., 123, pp. 2997-3005
  • Upadhyay, A.K., Petasis, D.T., Arciero, D.M., Hooper, A.B., Hendrich, M.P., (2003) J. Am. Chem. Soc., 125, pp. 1738-1747
  • Hendrich, M.P., Upadhyay, A.K., Riga, J., Arciero, D.M., Hooper, A.B., (2002) Biochemistry, 41, pp. 4603-4611
  • Cabail, M.Z., Pacheco, A.A., (2003) Inorg. Chem., 42, pp. 270-272
  • Allen, J.W.A., Watmough, N.J., Ferguson, S.J., (2000) Nat. Struct. Biol., 7, pp. 885-888
  • Singh, J., (1973) Biochim. Biophys. Acta, 333, pp. 28-36
  • Stach, P., Einsle, O., Schumacher, W., Kurun, E., Kroneck, P.M.H., (2000) J. Inorg. Biochem., 79, pp. 381-385
  • Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P.M.H., Neese, F., (2002) J. Am. Chem. Soc., 124, pp. 11737-11745
  • Lui, S.M., Soriano, A., Cowan, J.A., (1993) J. Am. Chem. Soc., 115, pp. 10483-10486
  • Crane, B.R., Siegel, L.M., Getzoff, E.D., (1997) Biochemistry, 36, pp. 12120-12137
  • Feelisch, M., Stamler, J.S., (1996) Methods in Nitric Oxide Research, , Wiley: Chichester
  • Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A.J., (2002) Chem. Rev., 102, pp. 1091-1134
  • Wieghardt, K., (1984) Adv. Inorg. Bioinorg. Mech., 3, pp. 213-274
  • Nast, R., Hieber, W., Proeschel, E., (1948) Z. Anorg. Allg. Chem., 13, p. 339
  • Nast, R., Foppel, J., (1950) Z. Anorg. Allg. Chem., 263, p. 310
  • Choi, I.K., Liu, Y., Wei, Z., Ryan, M.D., (1997) Inorg. Chem., 36, pp. 3113-3118
  • Barley, M.H., Takeuchi, K.J., Meyer, T.J., (1986) J. Am. Chem. Soc., 108, pp. 5876-5885
  • Bazylinski, D.A., Arkowitz, R.A., Hollocher, T.C., (1987) Arch. Biochem. Biophys., 259, pp. 520-526
  • Castignetti, D., Hollocher, T.C., (1982) Appl. Environm. Microbiol., 44, pp. 923-928
  • Baschi, S.N., Kleiner, D., (1990) Biochim. Biophys. Acta, 1041, pp. 9-13
  • Lunak, S., Veprek-Siska, J., (1974) Collect. Czech. Chem. Commun., 39, pp. 41-48
  • Lunak, S., Veprek-Siska, J., (1974) Collect. Czech. Chem. Commun., 39, pp. 391-395
  • Bonner, F.T., Akhtar, M.J., (1981) Inorg. Chem., 20, pp. 3155-3160
  • Lunak, S., Veprek-Siska, J., (1974) Collect. Czech. Chem. Commun., 39, pp. 2719-2723
  • Macartney, D.H., (1988) Rev. Inorg. Chem., 6, pp. 101-151
  • Baraldo, L.M., Forlano, P., Parise, A.R., Slep, L.D., Olabe, J.A., (2001) Coord. Chem. Rev., 219-221, pp. 881-921
  • Olabe, J.A., (2004) Adv. Inorg. Chem., 55, pp. 61-126
  • Banyai, I., Dozsa, L., Beck, M.T., Gyemant, G., (1996) J. Coord. Chem., 37, pp. 257-270
  • Wolfe, S.K., Andrade, C., Swinehart, J.H., (1974) Inorg. Chem., 13, pp. 2567-2572
  • Kenney, D.J., Flynn, T.P., Gallini, J.B., (1961) J. Inorg. Nucl. Chem., 20, pp. 75-81
  • Toma, H.E., (1975) Inorg. Chim. Acta, 15, pp. 205-211
  • Olabe, J.A., Zersa, H.O., (1983) Inorg. Chem., 22, pp. 4156-4158
  • Bridsart, G.J., Waters, W.A., Wilson, I.R., (1973) J. Chem. Soc., Dalton Trans., pp. 1582-1584
  • Espenson, J.H., Wolenuk Jr., S.G., (1972) Inorg. Chem., 11, pp. 2034-2041
  • Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups, 4th Ed., , Wiley-Interscience
  • Koroleff, F., (1976) Methods of Seawater Analysis, pp. 126-133. , Grasshoftt, K., Ed.; Verlag Chemie: New York
  • Paliani, G., Poletti, A., Santucci, A., (1971) J. Mol. Struct., 8, pp. 63-74
  • Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, pp. 893-902
  • Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, pp. 10307-10319
  • Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, pp. 3914-3918
  • Funai, I.A., Blesa, M.A., Olabe, J.A., (1989) Polyhedron, 8, pp. 419-426
  • Katz, N.E., Olabe, J.A., Aymonino, P.J., (1977) J. Inorg. Nucl. Chem., 39, pp. 908-910
  • Olabe, J.A., Gentil, L.A., (1983) Transition Met. Chem., 8, pp. 65-69
  • Gear, C.W., (1971) Comun. ACM, 14, p. 176
  • Emschwiller, G.C.R., (1967) Acad. Sci. Paris, 265, pp. 281-284
  • Emschwiller, G., Jorgensen, C.K., (1970) Chem. Phys. Lett., 5, pp. 561-563
  • Souto, M.F., Cukiernik, F.D., Forlano, P., Olabe, J.A., (2001) J. Coord. Chem., 54, pp. 343-353
  • Kochi, J.K., (1973) Free Radicals, 2. , Wiley
  • Corvaja, C., Fischer, H., Giacometti, G., (1965) Z. Physik. Chem. Neue Folge, 45, pp. 1-19
  • Neta, P., Maruthamuthu, P., Carton, P.M., Fessenden, R.W., (1978) J. Phys. Chem., 82, pp. 1875-1878
  • note; Lehnert, N., Wiesler, B.E., Tuczek, F., Hennige, A., Sellmann, D., (1997) J. Am. Chem. Soc., 119, pp. 8879-8888
  • (1997) J. Am. Chem. Soc., 119, pp. 8869-8878
  • Silverstein, R.M., Webster, F.X., (1997) Spectrometric Identification of Organic Compounds, 6th Ed., , Wiley
  • Mason, J., (1981) Chem. Rev., 81, pp. 205-227
  • Stanbury, D.M., (1998) Prog. Inorg. Chem., 47, pp. 511-561
  • Back, R.A., (1984) Rev. Chem. Intermed., 5, pp. 293-323
  • Hunig, S., Muller, H.R., Thier, W., (1961) Tetrahedron Lett., 11, pp. 353-357
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 1039-1045
  • Malin, J.M., Koch, R.C., (1978) Inorg. Chem., 17, pp. 752-754
  • Davies, G., Garafalo, A.R., (1976) Inorg. Chim. Acta, 19, pp. L3-L4
  • Davies, G., Garafalo, A.R., (1976) Inorg. Chem., 15, pp. 1101-1106
  • Toma, H.E., Batista, A.A., Gray, H.B., (1982) J. Am. Chem. Soc., 104, pp. 7509-7515
  • Fasman, G.D., (1976) Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data, 1. , CRC Press: Cleveland, OH
  • Stanbury, D.M., (1989) Adv. Inorg. Chem., 33, pp. 69-138
  • Jones, C.W., (1999) Applications of Hydrogen Peroxide and Derivatives, p. 44. , The Royal Society of Chemistry: U.K
  • Benson, S.W., (1960) Foundations of Chemical Kinetics, , McGraw-Hill Book Co.: New York
  • Bonner, F.T., Dzelzkalns, L.S., Bonucci, J.A., (1978) Inorg. Chem., 17, pp. 2487-2494
  • Akhtar, M.J., Bonner, F.T., Borer, A., Cooke, I., Hughes, M.N., (1987) Inorg. Chem., 26, pp. 4379-4382
  • Southern, J.S., Hillhouse, G.L., (1997) J. Am. Chem. Soc., 119, pp. 12406-12407
  • Bartberger, M.D., Fukuto, J.M., Houk, K.N., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 2194-2198
  • Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7340-7345
  • Sulc, F., Immoos, C.E., Pervitsky, D., Farmer, P.J., (2004) J. Am. Chem. Soc., 126, pp. 1096-1101
  • Laszlo, B., Alfassi, Z.B., Neta, P., Huie, R.E., (1998) J. Phys. Chem. A, 102, pp. 8498-8504
  • note; Mulvey, D., Waters, W.A., (1975) J. Chem. Soc., Dalton Trans., pp. 951-959
  • Smith III, M.R., Cheng, T.Y., Hillhouse, G.L., (1993) J. Am. Chem. Soc., 115, pp. 8638-8642
  • Cheng, T.Y., Ponce, A., Rheingold, A.L., Hillhouse, G.L., (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 657-659
  • Marchenko, A.V., Vedemikow, A.N., Dye, D.F., Pink, M., Zaleski, J.M., Caulton, K.G., (2004) Inorg. Chem., 43, pp. 351-360
  • note; Caulton, K.G., (1975) Coord. Chem. Rev., 14, pp. 317-355
  • Johnson, M.D., Hornstein, B.J., (2003) Inorg. Chem., 42, pp. 6923-6928
  • Gonzalez Lebrero, M.C., Scherlis, D.A., Estiú, G.L., Olabe, J.A., Estrin, D.A., (2001) Inorg. Chem., 40, pp. 4127-4133
  • James, A.D., Murray, R.S., (1977) J. Chem. Soc., Dalton Trans., pp. 326-329
  • note

Citas:

---------- APA ----------
Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F. & Olabe, J.A. (2004) . Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3. Journal of the American Chemical Society, 126(41), 13432-13442.
http://dx.doi.org/10.1021/ja046724i
---------- CHICAGO ----------
Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A. "Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3" . Journal of the American Chemical Society 126, no. 41 (2004) : 13432-13442.
http://dx.doi.org/10.1021/ja046724i
---------- MLA ----------
Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A. "Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3" . Journal of the American Chemical Society, vol. 126, no. 41, 2004, pp. 13432-13442.
http://dx.doi.org/10.1021/ja046724i
---------- VANCOUVER ----------
Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A. Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3. J. Am. Chem. Soc. 2004;126(41):13432-13442.
http://dx.doi.org/10.1021/ja046724i