Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The electrophilic reactivity of the pentacyanonitrosylferrate(II) ion, [Fe(CN)5NO]2-, toward hydrazine (Hz) and substituted hydrazines (MeHz, 1, 1-Me2Hz, and 1,2-Me2Hz) has been studied by means of stoichiometric and kinetic experiments (pH 6-10). The reaction of Hz led to N2O and NH3, with similar paths for MeHz and 1,1-Me2Hz, which form the corresponding amines. A parallel path has been found for MeHz, leading to N2O, N2, and MeOH. The reaction of 1,2-Me2Hz follows a different route, characterized by azomethane formation (MeNNMe), full reduction of nitrosyl to NH3, and intermediate detection of [Fe(CN)5NO]3-. In the above reactions, [Fe(CN)5H2O]3- was always a product, allowing the system to proceed catalytically for nitrite reduction, an issue relevant in relation to the behavior of the nitrite and nitric oxide reductase enzymes. The mechanism comprises initial reversible adduct formation through the binding of the nucleophile to the N-atom of nitrosyl. The adducts decompose through OH- attack giving the final products, without intermediate detection. Rate constants for the adduct-formation steps (k = 0.43 M-1 s-1, 25 °C for Hz) decrease with methylation by about an order of magnitude. Among the different systems studied, one-, two-, and multielectron reductions of bound NO+ are analyzed comparatively, with consideration of the role of NO, HNO (nitroxyl), and hydroxylamine as bound intermediates. A DFT study (B3LYP) of the reaction profile allows one to characterize intermediates in the potential hypersurface. These are the initial adducts, as well as their decomposition products, the η1- and η2-linkage isomers of N2O.

Registro:

Documento: Artículo
Título:The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates
Autor:Gutiérrez, M.M.; Amorebieta, V.T.; Estiú, G.L.; Olabe, J.A.
Filiación:The Department of Chemistry, Facultad de Ciencias Exactas, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
Cequinor, Department of Chemistry, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
Department of Inorganic, Analytical, and Physical Chemistry, Inquimae, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Palabras clave:Electrophilic reactivity; Decomposition; Derivatives; Enzymes; Hydrazine; Rate constants; Chemical reactions; amine; ammonium derivative; ferric ion; hydrazine; hydrazine derivative; hydroxylamine; nitrate; nitric oxide; nitric oxide reductase; nitrite; nitroprusside sodium; nitrous oxide; pentacyanonitrosylferrate(ii); tempol; unclassified drug; article; binding kinetics; catalysis; chemical binding; chemical reaction; chemical reaction kinetics; computer prediction; decomposition; electric conductivity; intermethod comparison; isomerism; methylation; product recovery; reaction analysis; reaction optimization; reduction; stoichiometry; theory
Año:2002
Volumen:124
Número:35
Página de inicio:10307
Página de fin:10319
DOI: http://dx.doi.org/10.1021/ja025995v
Título revista:Journal of the American Chemical Society
Título revista abreviado:J. Am. Chem. Soc.
ISSN:00027863
CODEN:JACSA
CAS:ferric ion, 20074-52-6; hydrazine, 10217-52-4, 13775-80-9, 18500-32-8, 302-01-2, 7803-57-8; hydroxylamine, 7803-49-8; nitrate, 14797-55-8; nitric oxide, 10102-43-9; nitrite, 14797-65-0; nitroprusside sodium, 14402-89-2, 15078-28-1; nitrous oxide, 10024-97-2; tempol, 2226-96-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v124_n35_p10307_Gutierrez

Referencias:

  • Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New York
  • Westcott, B.L., Enemark, J.H., (1999) Inorganic Electronic Structure and Spectroscopy: Applications and Case Studies, 2, pp. 403-450. , Solomon, E.I., Lever, A.B.P., Eds.; Wiley: New York
  • Ford, P.C., Lorkovic, I.M., (2002) Chem. Rev., 102, pp. 993-1018
  • Swinehart, J.H., (1967) Coord. Chem. Rev., 2, pp. 385-402
  • Boedeker, C., (1861) Liebigs Ann. Chem., 117, p. 193
  • McCleverty, J.A., (1979) Chem. Rev., 79, pp. 53-76
  • Bottomley, F., (1985) Reactions of Coordinated Ligands, 2, pp. 115-222. , Braterman, P.S., Ed.; Plenum: New York
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Bottomley, F., (1978) Acc. Chem. Res., 11, pp. 158-163
  • Swinehart, J.H., Rock, P.A., (1966) Inorg. Chem., 5, pp. 573-576
  • Masek, J., Wendt, H., (1969) Inorg. Chim. Acta, 3, pp. 455-458
  • Chevalier, A.A., Gentil, L.A., Olabe, J.A., (1991) J. Chem. Soc., Dalton Trans. (1972-1999), pp. 1959-1963
  • Baraldo, L.M., Bessega, M.S., Rigotti, G.E., Olabe, J.A., (1994) Inorg. Chem., 33, pp. 5890-5896
  • Trogler, W.C., (1999) Coord. Chem. Rev., 187, pp. 303-327
  • Averill, B.A., (1996) Chem. Rev., 96, pp. 2951-2964
  • Hollocher, T.C., (1996) Nitric Oxide Principles and Actions, , Lancaster, J., Jr., Ed.: Academic Press: New York
  • Clarke, M.J., Gaul, J.B., (1993) Struct. Bonding (Berlin), 81, pp. 147-181
  • (2000) Nitric Oxide Biology, and Pathobiology, , Ignarro, L. J., Ed.; Academic Press New York
  • Chevalier, A.A., Gentil, L.A., Amorebieta, V.T., Gutiérrez, M.M., Olabe, J.A., (2000) J. Am. Chem. Soc., 122, pp. 11238-11239
  • Bottomley, F., Crawford, J.R., (1972) J. Am. Chem. Soc., 94, pp. 9092-9095
  • Douglas, P.G., Feltham, R.D., Metzger, H.G., (1971) J. Am. Chem. Soc., 93, pp. 84-90
  • Bottomley, F., Kiremire, E.M.R., (1977) J. Chem. Soc. Dalton Trans. (1972-1999), pp. 1125-1131
  • Stanbury, D.M., (1998) Prog. Inorg. Chem., 47, pp. 511-561
  • Armor, J., (1973) Inorg. Chem., 12, pp. 1959-1961
  • Armor, J.N., Hoffman, M.Z., (1975) Inorg. Chem., 14, pp. 444-446
  • Barley, M.H., Takeuchi, K.J., Meyer, T.J., (1986) J. Am. Chem. Soc., 108, pp. 5876-5885
  • Murphy, W.R., Takeuchi, K., Barley, M.H., Meyer, T., (1986) J. Inorg. Chem., 25, pp. 1041-1053
  • Kenney, D.J., Flynn, T.P., Gallini, J.B., (1961) J. Inorg. Nucl. Chem., 20, p. 75
  • Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, pp. 3914-3918
  • Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zalis, S., Baerends, E., (2001) J. Inorg. Chem., 40, pp. 5704-5707
  • Blatt, A.H., (1943) Organic Synthesis, 2. , Wiley: New York
  • Toma, H.E., (1975) Inorg. Chim. Acta, 15, pp. 205-211
  • Katz, N.E., Olabe, J.A., Aymonino, P.J., (1977) J. Inorg. Nucl. Chem., 39, pp. 908-910
  • Macartney, D.H., (1988) Rev. Inorg. Chem., 9, pp. 101-151
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 1039-1044
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 2080-2083
  • Toma, H.E., Malin, J.M., (1974) Inorg. Chem., 13, pp. 1772-1774
  • Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups, 4th ed., p. 668. , Wiley: New York
  • Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups, 4th ed., p. 581. , Wiley: New York
  • Koroleff, F., (1976) Methods of Seawater Analysis, pp. 126-213. , Grasshoft, K., Ed.; Verlag Chemie: New York
  • West, P.W., Sen, B., (1956) J. Anal. Chem., 153, pp. 12-18
  • Cheney, R.P., Simic, M.G., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, pp. 2187-2192
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, , Gaussian, Inc.: Pittsburgh, PA
  • Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev., B37, pp. 785-789
  • Casida, M.E., Jamorski, C., Casida, K.C., Salahub, D.R., (1998) J. Chem. Phys., 108, pp. 4439-4449
  • Stratmann, R.E., Scuseria, G.E., Frisch, M.J., (1998) J. Chem. Phys., 109, pp. 8218-8224
  • note; note; Condon, F.E., (1972) J. Org. Chem., 37, pp. 3608-3615
  • Bagno, A., Menna, E., Mezzina, E., Scorrano, G., Spinelli, D., (1998) J. Phys. Chem. A, 102, pp. 2888-2892
  • Bottomley, F., Brooks, V.F., Paez, D.E., White, P.S., Mukaida, M., (1983) J. Chem. Soc., Dalton Trans. (1972-1999), pp. 2465-2472
  • Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, pp. 231-235
  • Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, pp. 6821-6823
  • Perrott, J.R., Stedman, G., Uysal, N., (1976) J. Chem. Soc., Dalton Trans. (1972-1999), pp. 2058-2064
  • Perrott, J.R., Stedman, G., Uysal, N., (1977) J. Chem. Soc., Perkin Trans. 2, pp. 274-278
  • Wolfe, S.K., Andrade, C., Swinehart, J.H., (1974) Inorg. Chem., 13, pp. 2567-2572
  • note; Dozsa, L., Kormos, V., Beck, M.T., (1984) Inorg. Chim. Acta, 82, pp. 69-74
  • Kathó, A., Beck, M.T., (1988) Inorg. Chim. Acta, 174, pp. 99-102
  • Wilson, R.D., Ibers, J.A., (1979) Inorg. Chem., 18, pp. 336-343
  • Southern, J.S., Hillhouse, G.L., (1997) J. Am. Chem. Soc., 119, pp. 12406-12407
  • Lin, R., Farmer, P.J., (2000) J. Am. Chem. Soc., 122, pp. 2393-2394
  • Sellmann, D., Gottschalk-Gaudig, T., Hausinger, D., Heinemann, F.W., Hess, B.A., (2001) Chem.-Eur. J., 7, pp. 2099-2103
  • González Lebrero, M.C., Scherlis, D.A., Estiú, G.L., Olabe, J.A., Estrin, D.A., (2001) Inorg. Chem., 40, pp. 4127-4133
  • note; Masek, J., Maslova, E., (1974) Collect. Czech. Chem. Commun., 39, pp. 2141-2160
  • Ruff, F., Csizmadia, I.G., (1994) Organic Reactions Equilibria, Kinetics and Mechanism, , Elsevier: New York
  • Silvestrini, M.C., Tordi, M.G., Musci, G., Brunori, M., (1990) J. Biol. Chem., 265, pp. 11783-11787
  • Kim, C.H., Hollocher, T.C., (1984) J. Biol. Chem., 259, pp. 2092-2099
  • Tanimoto, T., Hatano, K.H., Kim, D.H., Uchiyama, H., Shoun, H., (1992) FEMS Microbiol. Lett., 93, pp. 177-180
  • Heaton, B.T., Jacob, C., Page, P., (1996) Coord. Chem. Rev., 154, pp. 193-229
  • Bottomley, F., (1970) Quart. Rev., pp. 617-638
  • Nakamoto, K., (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., , Wiley: New York
  • Enemark, J.H., Feltham, R.D., (1972) Proc. Natl. Acad. Sci. U.S.A., 69, pp. 3534-3536
  • Song, J., Hall, M.B., (1993) J. Am. Chem. Soc., 115, pp. 327-336
  • Bottomley, F., (1976) Inorg. Synth., 16, pp. 75-85
  • Bottomley, F., Brooks, W.V.F., (1977) Inorg. Chem., 16, pp. 501-502
  • Tuan, D.F., Hoffmann, R., (1985) Inorg. Chem., 24, pp. 871-876
  • Coppens, P., Novozhilova, I., Kovalevsky, A., (2002) Chem. Rev., 102, pp. 861-884
  • Carducci, M.D., Pressprich, M.R., Coppens, P., (1997) J. Am. Chem. Soc., 119, pp. 2669-2678
  • Fomitchev, D.V., Bagley, K.A., Coppens, P., (2000) J. Am. Chem. Soc., 122, pp. 532-533

Citas:

---------- APA ----------
Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L. & Olabe, J.A. (2002) . The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates. Journal of the American Chemical Society, 124(35), 10307-10319.
http://dx.doi.org/10.1021/ja025995v
---------- CHICAGO ----------
Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A. "The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates" . Journal of the American Chemical Society 124, no. 35 (2002) : 10307-10319.
http://dx.doi.org/10.1021/ja025995v
---------- MLA ----------
Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A. "The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates" . Journal of the American Chemical Society, vol. 124, no. 35, 2002, pp. 10307-10319.
http://dx.doi.org/10.1021/ja025995v
---------- VANCOUVER ----------
Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A. The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates. J. Am. Chem. Soc. 2002;124(35):10307-10319.
http://dx.doi.org/10.1021/ja025995v