Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It has been argued that the standard inflationary scenario suffers from a serious deficiency as a model for the origin of the seeds of cosmic structure: it can not truly account for the transition from an early homogeneous and isotropic stage to another one lacking such symmetries. The issue has often been thought as a standard instance of the "quantum measurement problem", but as has been recently argued by some of us, that quagmire reaches a critical level in the cosmological context of interest here. This has lead to a proposal in which the standard paradigm is supplemented by a hypothesis concerning the self-induced dynamical collapse of the wave function, as representing the physical mechanism through which such change of symmetry is brought forth. This proposal was originally formulated within the context of semiclassical gravity. Here we investigate an alternative realization of such idea implemented directly within the standard analysis in terms of a quantum field jointly describing the inflaton and metric perturbations, the so called Mukhanov-Sasaki variable. We show that even though the prescription is quite different, the theoretical predictions include some deviations from the standard ones, which are indeed very similar to those found in the early studies. We briefly discuss the differences between the two prescriptions, at both, the conceptual and practical levels. © 2012 Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:The collapse of the wave function in the joint metric-matter quantization for inflation
Autor:Diez-Tejedor, A.; León, G.; Sudarsky, D.
Filiación:Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Mexico, DF, Mexico
División de Ciencias e Ingenierías, Departamento de Física, Campus León, Universidad de Guanajuato, 37150 León, Mexico
Department of Physics, University of Trieste, Strada Costiera 11, 34014 Trieste, Italy
Instituto de Astronomía y Física del Espacio, Universidad de Buenos Aires, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires, Argentina
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Mexico, DF, Mexico
Palabras clave:Cosmology; Inflation; Quantum foundations; Quantum gravity
Año:2012
Volumen:44
Número:12
Página de inicio:2965
Página de fin:2988
DOI: http://dx.doi.org/10.1007/s10714-012-1433-5
Título revista:General Relativity and Gravitation
Título revista abreviado:Gen. Relativ. Gravit.
ISSN:00017701
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v44_n12_p2965_DiezTejedor

Referencias:

  • Perez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Cl. Quantum Gravit., 23, pp. 2317-2354
  • Sudarsky, D., Shortcomings in the understanding of why cosmological perturbations look classical (2011) Int. J. Mod. Phys. D, 20, pp. 509-552
  • Halliwell, J.J., Decoherence in quantum cosmology (1989) Phys. Rev. D, 39, p. 2912
  • Zurek, W.H., Environment induced superselection in cosmology (1990) Presented at the quantum gravity symposium, pp. 456-472. , Moscow, USSR, May 1990, Proceedings, (QC178: S4)
  • Laflamme, R., Matacz, A., Decoherence funtional and inhomogeneities in the early universe (1993) Int. J. Mod. Phys. D, 2, p. 171
  • Polarski, D., Starobinsky, A.A., Semiclassicality and decoherence of cosmological perturbations (1996) Cl. Quantum Gravit., 13, p. 377
  • Hartle, J.B., (1997) Quantum Cosmology Problems for the 21st century, , ArXiv gr-qc/9701022
  • Grishchuk, L.P., Martin, J., Best unbiased estimates for microwave background anisotropies (1997) Phys. Rev. D, 56, p. 1924
  • Lesggourges, J., Polarski, D., Starobinsky, A.A., Quantum to classical transition of cosmological perturbations for non vacuum initial states (1997) Nucl. Phys. B, 497, pp. 479-510
  • Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Mishakov, I.V., Decoherence in quantum cosmology at the onset of inflation (1999) Nucl. Phys. B, 551, p. 374
  • Kiefer, C., Origin of classical structure from inflation (2000) Nucl. Phys. Proc. Suppl., 88, p. 255
  • Castagnino, M., Lombardi, O., The self-induced approach to decoherence in cosmology (2003) Int. J. Theor. Phys., 42, p. 1281
  • Lombardo, F.C., Lopez Nacir, D., Decoherence during inflation: the generation of classical inhomogeneities (2004) Phys. Rev. D, 72, p. 063506
  • Martin, J., Inflationary cosmological perturbations of quantum mechanical origin (2005) Lect. Notes Phys., 669, p. 199
  • Hartle, J.B., (2005) Generalized Quantum Mechanics for Quantum Gravity, , ArXiv gr-qc/0510126
  • Martin, J., Inflationary perturbations: the cosmological schwinger effect (2008) Lect. Notes Phys., 738, pp. 193-241
  • Burgess, C.P., Holman, R., Hoover, D., Decoherence of inflationary primordial fluctuations (2008) Phys. Rev. D, 77, p. 063534
  • Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., (1992) Theory of Cosmological Perturbations. Phys. Rept., 215, pp. 203-333
  • Kiefer, C., Polarski, D., Why do cosmological perturbations look classical to us? (2009) Adv. Sci. Lett., 2, p. 164
  • Padmanabhan, T., (1993) Structure Formation in the Universe, pp. 364-373. , Section 10. 4, Cambridge University Press, UK
  • Weinberg, S., (2008) Cosmology, pp. 470-485. , Section 10. 1, Oxford University Press, USA
  • Mukhanov, V.F., (2008) Physical Foundations of Cosmology, pp. 340-348. , Section 8. 3. 3, Cambridge University Press, UK
  • Lyth, D.H., Liddle, A.R., (2009) The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, pp. 367-386. , Section 24. 2, Cambridge University Press, UK
  • Penrose, R., (2004) The Road to Reality: A Complete Guide to the Laws of the Universe, pp. 861-865. , Section 30. 14, Vintage books, US
  • de Unanue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev. D, 78, p. 043510
  • León, G., Sudarsky, D., The slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: contrasts and similarities of standard account and the 'collapse scheme (2010) Cl. Quantum Gravit., 27, p. 225017
  • León, G., de Unánue, A., Sudarsky, D., Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure (2011) Cl. Quantum Gravit., 28, p. 155010
  • León, G., Landau, S., Sudarsky, D., (2011) Quantum Origin of the Primordial Fluctuation Spectrum and its Statistics, , ArXiv 1107. 3054 [astro-ph. CO]
  • Diez-Tejedor, A., Sudarsky, D., Towards a Formal Description of the Collapse Approach to the Inflationary Origin of the Seeds of Cosmic Structure (2012) J. Cosmol. Astropart. Phys., 1207, p. 45
  • León, G., Sudarsky, D., Novel possibility of nonstandard statistics in the inflationary spectrum of primordial inhomogeneities (2012) Sigma, 8, p. 024
  • Landau, S., Scoccola, C.G., Sudarsky, D., Cosmological constraints on non-standard inflationary quantum collapse models (2012) Phys. Rev. D, 85, p. 123001
  • Sudarsky, D., A signature of quantum gravity at the source of the seeds of cosmic structure? (2007) J. Phys. Conf. Ser., 67, p. 012054
  • Sudarsky, D., The seeds of cosmic structure as a door to new physics (2007) J. Phys. Conf. Ser., 68, p. 012029
  • Mukhanov, V.F., Gravitational instability of the universe filled with a scalar field (1985) JETP Lett., 41, p. 493
  • Sasaki, M., Large scale quantum fluctuations in the inflationary universe (1986) Prog. Theor. Phys., 76, p. 1036
  • Penrose, R., On gravity's role in quantum state reduction (1996) Gen. Relativ. Gravit., 28, p. 581
  • Diósi, L., Gravitation and quantum-mechanical localization of macro-objects (1984) Phys. Lett. A, 105, p. 199
  • Bassi, A., Ghirardi, G.C., (2003) Dynamical Reduction Models. Phys. Rept., 379, p. 257
  • Gambini, R., Porto, R.A., Pullin, J., Realistic clocks, universal decoherence an the black hole information paradox (2004) Phys. Rev. Lett., 93, p. 240401
  • Gambini, R., Porto, R.A., Pullin, J., Fundamental decoherence from relational time in discrete quantum gravity: galilean covariance (2004) Phys. Rev. D, 70, p. 124001
  • Hu, B.L., Jacobson, T., (1993) Directions in General Relativity, , UK: Cambridge University Press
  • Ashtekar, A., (2001) Quantum Geometry and Gravity: Recent Advances, , ArXiv gr-qc/0112038

Citas:

---------- APA ----------
Diez-Tejedor, A., León, G. & Sudarsky, D. (2012) . The collapse of the wave function in the joint metric-matter quantization for inflation. General Relativity and Gravitation, 44(12), 2965-2988.
http://dx.doi.org/10.1007/s10714-012-1433-5
---------- CHICAGO ----------
Diez-Tejedor, A., León, G., Sudarsky, D. "The collapse of the wave function in the joint metric-matter quantization for inflation" . General Relativity and Gravitation 44, no. 12 (2012) : 2965-2988.
http://dx.doi.org/10.1007/s10714-012-1433-5
---------- MLA ----------
Diez-Tejedor, A., León, G., Sudarsky, D. "The collapse of the wave function in the joint metric-matter quantization for inflation" . General Relativity and Gravitation, vol. 44, no. 12, 2012, pp. 2965-2988.
http://dx.doi.org/10.1007/s10714-012-1433-5
---------- VANCOUVER ----------
Diez-Tejedor, A., León, G., Sudarsky, D. The collapse of the wave function in the joint metric-matter quantization for inflation. Gen. Relativ. Gravit. 2012;44(12):2965-2988.
http://dx.doi.org/10.1007/s10714-012-1433-5