Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Effects of chlorate on the sulfation process of trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion
Autor:Ferrero, M.R.; Soprano, L.L.; Acosta, D.M.; García, G.A.; Esteva, M.I.; Couto, A.S.; Duschak, V.G.
Filiación:Area de Bioquímica de Proteínas y Glicobiología de Parásitos, Departamento de Investigación, Instituto Nacional de Parasitologia, Dr Mario Fatala Chaben, ANLIS-Malbrán, Ministerio de Salud de la Nación, Paseo Colòn 568, CABA (1063), Buenos Aires, Argentina
CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Cruzipain; Invasion process; Sulfation; Sulfoglycosphingolipids; Trypanosoma cruzi; chlorate; cruzipain; cruzipain antibody; enzyme antibody; glycoconjugate; immunoglobulin G; mannose receptor; mannose receptor antibody; receptor antibody; sulfatide; unclassified drug; chlorate; cysteine proteinase; glycoconjugate; sulfate; antibody; electron microscopy; lipid; membrane; metabolism; parasite; amastigote; animal cell; antibody specificity; article; cell invasion; cell organelle; cell ultrastructure; controlled study; electron microscopy; epimastigote; flow cytometry; gel mobility shift assay; host parasite interaction; immunoblotting; isoelectric point; lipid reservosome; matrix assisted laser desorption ionization time of flight mass spectrometry; nonhuman; polyacrylamide gel electrophoresis; sulfation; thin layer chromatography; Trypanosoma cruzi; trypomastigote; ultraviolet spectroscopy; animal; cell line; drug effects; endocytosis; heart muscle cell; human; mass spectrometry; metabolism; parasitology; physiology; protein processing; rabbit; Trypanosoma cruzi; two dimensional gel electrophoresis; Animals; Cell Line; Chlorates; Cysteine Endopeptidases; Electrophoresis, Gel, Two-Dimensional; Endocytosis; Glycoconjugates; Humans; Immunoblotting; Isoelectric Point; Metabolic Networks and Pathways; Microscopy, Electron; Myocytes, Cardiac; Protein Processing, Post-Translational; Rabbits; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Sulfates; Trypanosoma cruzi
Año:2014
Volumen:137
Página de inicio:161
Página de fin:173
DOI: http://dx.doi.org/10.1016/j.actatropica.2014.05.014
Título revista:Acta Tropica
Título revista abreviado:Acta Trop.
ISSN:0001706X
CODEN:ACTRA
CAS:chlorate, 14866-68-3; cruzipain; immunoglobulin G, 97794-27-9; cysteine proteinase, 37353-41-6; sulfate, 14808-79-8; Chlorates; cruzipain; Cysteine Endopeptidases; Glycoconjugates; Sulfates
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0001706X_v137_n_p161_Ferrero

Referencias:

  • Acosta, D.M., Arnaiz, M.R., Esteva, M.I., Barboza, M., Stivale, D., Orlando, U.D., Torres, S., Duschak, V.G., Sulfates are main targets of immune responses to cruzipain and are involved in heart damage in BALB/c immunized mice (2008) Int. Immunol., 20 (4), pp. 461-470
  • Acosta, D.M., Soprano, L.L., Ferrero, M., Landoni, M., Esteva, M.I., Couto, A.S., Duschak, V.G., A striking common O-linked N-acetylglucosaminyl moiety between cruzipain and myosin (2011) Parasite Immunol., 33 (7), pp. 363-370
  • Acosta, D.M., Soprano, L.L., Ferrero, M.R., Esteva, M.I., Riarte, A., Couto, A.S., Duschak, V.G., Structural and immunological characterization of sulfatides: relevance of sulfate moieties in Trypanosoma cruzi glycoconjugates (2012) Parasite Immunol., 34 (11), pp. 499-510
  • Andrews, N.W., Colli, W., Adhesion and interiorization of Trypanosoma cruzi in mammalian cells (1982) J. Protozool., 29 (2), pp. 264-269
  • Araújo-Jorge, T.C., De Souza, W., Interaction of Trypanosoma cruzi with macrophages. Involvement of surface galactose and N-acetyl-d-galactosamine residues on the recognition process (1998) Acta Trop., 45, pp. 127-136
  • Barbosa, H.S., Meirelles, M.N., Ultrastructural detection in vitro of WGA-, RCA I-, and Con A-binding sites involved in the invasion of heart muscle cells by Trypanosoma cruzi (1992) Parasitol. Res., 78 (5), pp. 404-409
  • Barboza, M., Duschak, V.G., Cazzulo, J.J., de Lederkremer, R.M., Couto, A.S., Presence of sialic acid in N-linked oligosaccharide chains and O-linked N-acetylglucosamine in cruzipain, the major cysteine proteinase of Trypanosoma cruzi (2003) Mol. Biochem. Parasitol., 126, pp. 293-296
  • Barboza, M., Duschak, V.G., Fukuyama, Y., Nonami, H., Erra-Balsells, R., Cazzulo, J.J., Couto, A.S., Structural analysis of the N glycans present in cruzipain, the major cysteine proteinase of Trypanosoma cruzi. Identification of sulfated high mannose type oligosaccharides (2005) FEBS J., 272, pp. 3803-3815
  • Baeuerle, P.A., Huttner, W.B., Chlorate. A potent inhibitor of protein sulfation in intact cells (1986) Biochem. Biophys. Res. Commun., 141 (2), pp. 870-877
  • Bambino-Medeiros, R., Oliveira, F.O., Calvet, C.M., Vicente, D., Toma, L., Krieger, M.A., Meirelles, M.N., Pereira, M.C., Involvement of host cell heparan sulfate proteoglycan in Trypanosoma cruzi amastigote attachment and invasion (2011) Parasitology, 138 (5), pp. 593-601
  • Bonay, P., Fresno, M., Characterization of carbohydrate binding proteins in Trypanosoma cruzi (1995) J. Biol. Chem., 270 (19), pp. 11062-11070
  • Calvet, C.M., Melo, T.G., Garzoni, L.R., Oliveira, F.O., Neto, D.T., Meirelles, L., Pereira, M.C., Current understanding of the Trypanosoma cruzi-cardiomyocyte interaction (2012) Front. Immunol., 3 (327), pp. 1-8
  • Camargo, M.E., Fluorescent antibody test for serodiagnosis of American Trypanosomiasis. Technical modification employing preserved culture forms of Trypanosoma cruzi in a slide test (1966) Rev. Inst. Med. Trop. Sao Paulo, 8 (5), pp. 227-234
  • Carruthers, V.B., Hakansson, S., Giddings, O.K., Sibley, L.D., Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment (2002) Infect. Immun., 68 (7), pp. 4005-4011
  • Cazorla, S.I., Frank, F.M., Malchiodi, E.L., Vaccination approaches against Trypanosoma cruzi infection (2009) Expert Rev. Vacc., 8, pp. 921-935
  • Cazzulo, J.J., Franke de Cazzulo, B.M., Engel, J.C., Cannata, J.J., End products and enzyme levels of aerobic glucose fermentation in trypanosomatids (1985) Mol. Biochem. Parasitol., 16, pp. 329-343
  • Cazzulo, J.J., Labriola, C., Parussini, F., Duschak, V.G., Martinez, J., Franke de Cazzulo, B.M., Cysteine proteinases in Trypanosoma cruzi and other Trypanosomatid parasites (1995) Acta Chim. Sloven., 42, pp. 409-418
  • Cazzulo, J.J., Stoka, V., Turk, V., Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi (2001) Curr. Pharm. Des., 7, pp. 1143-1156
  • Claycomb, W.C., Lanson, N.A., Stallworth, B.S., Egeland, D.B., Delcarpio, J.B., Bahinski, A., Izzo, N.J., HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte (1998) Proc. Natl. Acad. Sci. U.S.A., 95 (6), pp. 2979-2984
  • Couto, A.S., Soprano, L.L., Landoni, M., Pourcelot, M., Acosta, D.M., Bultel, L., Parente, J., Duschak, V.G., An anionic synthetic sugar containing 6-SO3-NAcGlc mimics the sulfated cruzipain epitope that plays a central role in immune recognition (2012) FEBS J., 279 (19), pp. 3665-3679
  • Cunha-e-Silva, N., Sant'Anna, C., Pereira, M.G., Porto-Carreiro, I., Jeovanio, A.L., de Souza, W., Reservosomes: multipurpose organelles? (2006) Parasitol. Res., 99 (4), pp. 325-327
  • de Lederkremer, R.M., Zingales, B., Confalonieri, A.N., Couto, A.S., Martin, N.F., Colli, W., In vivo incorporation of palmitic acid and galactose in glycolipids of Trypanosoma cruzi epimastigotes (1985) Biochem. Int., 10, pp. 79-88
  • De Souza, W., Carvalho, T.U., Benchimol, M., Trypanosoma cruzi: ultrastructural, cytochemical and freeze-fracture studies of protein uptake (1978) Exp. Parasitol., 45, pp. 101-115
  • Duschak, V.G., Barboza, M., García, G.A., Lammel, E.M., Couto, A.S., Isola, E.L., Novel cysteine proteinase in Trypanosoma cruzi metacyclogenesis (2006) Parasitology, 132, pp. 345-355
  • Duschak, V.G., Couto, A.S., Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review (2009) Curr. Med. Chem., 16 (24), pp. 3174-3202
  • Duschak, V.G., Couto, A.S., Targets and patented drugs for chemotherapy of Chagas disease (2010) Anti-Infective Drug Discovery, 1, pp. 323-408. , Frontiers, Bentham Science Publishers, (Chapter 18)
  • Duschak, V.G., A decade of targets and patented drugs for chemotherapy of Chagas disease (2011) Recent Pat. Antiinfect Drug Discov., 6 (3), pp. 216-259
  • Esko, J.D., Lindahl, U., Molecular diversity of heparan sulfate (2001) J. Clin. Invest., 108 (2), pp. 169-173
  • Ey, P.L., Prowse, S.J., Jenkin, C.R., Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose (1978) Immunochemistry, 15, pp. 429-436
  • Fleckenstein, J.M., Holland, J.T., Hasty, D.L., Interaction of an outer membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans (2002) Infect. Immun., 70 (3), pp. 1530-1537
  • Freeze, H.H., Yeh, R., Miller, A.L., Kornfeld, S., Structural analysis of the asparagine-linked oligosaccharides from three lysosomal enzymes of Dictyostelium discoideum. Evidence for an unusual acid-stable phosphodiester (1983) J. Biol. Chem., 258 (24), pp. 14874-14879
  • Freeze, H.H., Mierendorf, R.C., Wunderlich, R., Dimond, R.L., Sulfated oligosaccharides block antibodies to many Dictyostelium discoideum acid hydrolases (1984) J. Biol. Chem., 259 (16), pp. 10641-10643
  • Fukuda, M., Hiraoka, N., Akama, T.O., Fukuda, M.N., Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology (2001) J. Biol. Chem., 276, pp. 47747-47750
  • Garavaglia, P.A., Cannata, J.J., Ruiz, A.M., Maugeri, D., Duran, R., Galleano, M., García, G.A., Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity (2010) Mol. Biochem. Parasitol., 173 (2), pp. 132-141
  • Garrido, V.V., Dulgerian, L.R., Stempin, C.C., Cerbàn, F.M., The increase in mannose receptor recycling favors arginase induction and Trypanosoma cruzi survival in macrophages (2011) Int. J. Biol. Sci., 7 (9), pp. 1257-1272
  • Herrera, E.M., Ming, M., Ortega-Barria, E., Pereira, M.E., Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter-receptors on the trypanosomes (1994) Mol. Biochem. Parasitol., 65 (1), pp. 73-83
  • Honke, K., Taniguchi, N., Sulfotransferases and sulfated oligosaccharides (2002) Med. Res. Rev., 22, pp. 637-654
  • Kawasaki, N., Ohta, M., Hyuga, S., Hyuga, M., Hayakawa, T., Application of liquid chromatography mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site specific carbohydrate heterogeneity in erythropoietin (2000) Anal. Biochem., 285, pp. 82-91
  • Klaassen, C.D., Boles, J.W., Sulfation and sulfotransferases 5: the importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation (1997) FASEB J., 11 (6), pp. 404-418
  • Kovensky, J., Sulfated oligosaccharides: new targets for drug development? (2009) Curr. Med. Chem., 16, pp. 2338-2344
  • Lefkowitz, D.L., Lincoln, J.A., Lefkowitz, S.S., Bollen, A., Moguilevsky, N., Enhancement of macrophage-mediated bactericidal activity by macrophage-mannose receptor-ligand interaction (1997) Immunol. Cell Biol., 75, pp. 136-141
  • Linehan, S.A., The mannose receptor is expressed by subsets of APC in non-lymphoid organs (2005) BMC Immunol., 6, pp. 4-14
  • Liu, Y., Misulovin, Z., Bjorkman, P.J., The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor (2001) J. Mol. Biol., 305, pp. 481-490
  • Martinez, J., Campetella, O., Frasch, A.C.C., Cazzulo, J.J., The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is antigenic in human infections (1991) Infect Immun., 59 (11), pp. 4275-4277
  • Martinez-Pomares, L., Wienke, D., Stillion, R., McKenzie, E.J., Arnold, J.N., Harris, J., McGreal, E., Gordon, S., Carbohydrate-independent recognition of collagens by the macrophage mannose receptor (2006) Eur. J. Immunol., 36, pp. 1074-1082
  • Meirelles, M.N., Pereira, M.C., Singer, R.H., Soeiro, M.N., Garzoni, L.R., Silva, D.T., Barbosa, H.S., Vermelho, A.B., Trypanosoma cruzi-cardiomyocytes: new contributions regarding a better understanding of this interaction (1999) Mem. Inst. Oswaldo Cruz, 94, pp. 149-152
  • Menna-Barreto, R.F., Salomão, K., Dantas, A.P., Santa-Rita, R.M., Soares, M.J., Barbosa, H.S., de Castro, S.L., Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study (2009) Micron, 40, pp. 157-168
  • Moolani, Y., Bukhman, G., Hotez, P.J., Neglected tropical diseases as hidden causes of cardio-vascular disease (2012) PLoS Negl. Trop. Dis., 6 (6), pp. e1499
  • Oliveira, F.O., Alves, C.R., Calvet, C.M., Toma, L., Bouças, R.I., Nader, H.B., Castro CÔrtes, L.M., Souza Pereira, M.C., Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain (2008) Microb. Pathog., 44 (4), pp. 329-338
  • Ortega-Barria, E., Boothroyd, J.C., A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection (1999) J. Biol. Chem., 274, pp. 1267-1276
  • Pancake, S.J., Holt, G.D., Mellouk, S., Hoffman, S.L., Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates (1992) J. Cell Biol., 117, pp. 1351-1357
  • Parodi, A.J.A., Labriola, C., Cazzulo, J.J., The presence of complex-type oligosaccharides at the C-terminal domain glycosylation site of some molecules of cruzipain (1995) Mol. Biochem. Parasitol., 69, pp. 247-255
  • Parussini, F., Duschak, V.G., Cazzulo, J.J., Membrane-bound cysteine proteinase isoforms in different developmental stages of Trypanosoma cruzi (1998) Cell. Mol. Biol., 44, pp. 513-519
  • Pérez-Molina, J.A., Norman, F., López-Vélez, R., Chagas disease in non-endemic countries: epidemiology, clinical presentation and treatment (2012) Curr. Infect. Dis. Rep., 14, pp. 263-274
  • Rapraeger, A.C., Krufka, A., Olwin, B.B., Requirement of heparan sulfate for ßFGF-mediated fibroblast growth and myoblast differentiation (1991) Science, 252, pp. 1705-1708
  • Sant'Anna, C., Nakayasu, E.S., Pereira, M.G., Lourenço, D., de Souza, W., Almeida, I.C., Cunha-E-Silva, N.L., Subcellular proteomics of Trypanosoma cruzi reservosomes (2009) Proteomics, 9 (7), pp. 1782-1794
  • Santos Barrias, E., Ulisses de Carvalho, T.M., De Souza, W., Trypanosoma cruzi: entry into mammalian host cells and parasitophorous vacuole formation (2013) Front. Immunol., 4 (186), pp. 1-10
  • Scharfstein, J., Rodriguez, M.M., Alves, C.A., De Souza, W., Previato, J.O., Mendonca-Previato, L., Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies (1983) J. Immunol., 131 (2), pp. 972-976
  • Scharfstein, J., Luquetti, A., Murta, A.C., Senna, M., Rezende, J.M., Rassi, A., Mendonça-Previato, L., Chagas' disease: serodiagnosis with purified Gp25 antigen (1985) Am. J. Trop. Med. Hyg., 34 (6), pp. 1153-1160
  • Scharfstein, J., Schechter, M., Senna, M., Peralta, J.M., Mendonça-Previato, L., Miles, M.A., Trypanosoma cruzi: characterization and isolation of 57/51000m.w. surface glycoprotein (GP 57/51) expressed by epimastigotes and bloodstream trypomastigotes (1986) J. Immunol., 137 (4), pp. 1336-1344
  • Shibata, Y., Metzger, W.J., Myrvik, Q.N., Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production (1997) J. Immunol., 159, pp. 2462-2467
  • Soares, M.J., De Souza, M.F., De Souza, W., Ultrastructural visualization of lipids in trypanosomatids (1987) J. Protozool., 34, pp. 199-203
  • Soares, M.J., De Souza, W., Cytoplasmic organelles of trypanosomatids. A cytochemical and stereological study (1988) J. Submicrosc. Cytol. Pathol., 20, pp. 349-363
  • Soeiro, M.N., Paiva, M.M., Barbosa, H.S., Meirelles, M.N., Araújo-Jorge, T.C., A cardiomyocytes mannose receptor system is involved in Trypanosoma cruzi invasion and is down-modulated after infection (1999) Cell Struct. Funct., 24, pp. 139-149
  • Souto-Padron, T., Campetella, O.E., Cazzulo, J.J., De Souza, W., Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction (1990) J. Cell Sci., 96, pp. 485-490
  • Stempin, C.C., Tanos, T.B., Coso, O.A., Cerbán, F.M., Arginase induction promotes Trypanosoma cruzi intracellular replication in cruzipain-treated J774 cells through the activation of multiple signaling pathways (2004) Eur. J. Immunol., 34 (1), pp. 200-209
  • Stempin, C.C., Garrido, V.V., Dulgerian, L.R., Cerbán, F.M., Cruzipain and SP600125 induce p38 activation, alter NO/arginase balance and favor the survival of Trypanosoma cruzi in macrophages (2008) Acta Trop., 106 (2), pp. 119-127
  • Stoka, V., Nycander, M., Lenarcic, B., Labriola, C., Cazzulo, J.J., Björk, I., Turk, V., Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily (1995) FEBS Lett., 370, pp. 101-104
  • Tomas, A.M., Miles, M.M., Kelly, J.M., Overexpression of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, is associated with enhanced metacyclogenesis (1997) Eur. J. Biochem., 244, pp. 596-603
  • Uhrig, M.L., Couto, A.S., de Lederkremer, R.M., Zingales, B., Colli, W., Metabolic labelling and partial characterisation of a sulfoglycolipid in Trypanosoma cruzi trypomastigotes (1992) Carbohydr. Res., 231, pp. 329-334
  • Vázquez-Mendoza, A., Carrero, J.C., Rodriguez-Sosa, M., Parasitic infections: a role for C-type lectins receptors (2013) BioMed Res. Int., 2013, pp. 1-12
  • http://www.who.int/mediacentre/factsheets/fs340/en/index.html, WHO, 2010. Available at: ; Yokoyama-Yasunaka, J.K.U., Pral, E.M.F., Oliveira, O.C., Alfieri, S.C., Stolf, A.M.S., Trypanosoma cruzi: identification of proteinases in shed components of trypomastigote forms (1994) Acta Trop., 57, pp. 307-315
  • Yoshida, N., Cortez, M., Trypanosoma cruzi: parasite and host cell signaling during the invasion process (2008) Subcell. Biochem., 47, pp. 82-91

Citas:

---------- APA ----------
Ferrero, M.R., Soprano, L.L., Acosta, D.M., García, G.A., Esteva, M.I., Couto, A.S. & Duschak, V.G. (2014) . Effects of chlorate on the sulfation process of trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Tropica, 137, 161-173.
http://dx.doi.org/10.1016/j.actatropica.2014.05.014
---------- CHICAGO ----------
Ferrero, M.R., Soprano, L.L., Acosta, D.M., García, G.A., Esteva, M.I., Couto, A.S., et al. "Effects of chlorate on the sulfation process of trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion" . Acta Tropica 137 (2014) : 161-173.
http://dx.doi.org/10.1016/j.actatropica.2014.05.014
---------- MLA ----------
Ferrero, M.R., Soprano, L.L., Acosta, D.M., García, G.A., Esteva, M.I., Couto, A.S., et al. "Effects of chlorate on the sulfation process of trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion" . Acta Tropica, vol. 137, 2014, pp. 161-173.
http://dx.doi.org/10.1016/j.actatropica.2014.05.014
---------- VANCOUVER ----------
Ferrero, M.R., Soprano, L.L., Acosta, D.M., García, G.A., Esteva, M.I., Couto, A.S., et al. Effects of chlorate on the sulfation process of trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Trop. 2014;137:161-173.
http://dx.doi.org/10.1016/j.actatropica.2014.05.014