Doctorovich, F.; Bikiel, D.E.; Pellegrino, J.; Suárez, S.A.; Martí, M.A. "Reactions of HNO with metal porphyrins: Underscoring the biological relevance of HNO" (2014) Accounts of Chemical Research. 47(10):2907-2916
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


ConspectusAzanone (1HNO, nitroxyl) shows interesting yet poorly understood chemical and biological effects. HNO has some overlapping properties with nitric oxide (NO), sharing its biological reactivity toward heme proteins, thiols, and oxygen. Despite this similarity, HNO and NO show significantly different pharmacological effects. The high reactivity of HNO means that studies must rely on the use of donor molecules such as trioxodinitrate (Angeli"s salt). It has been suggested that azanone could be an intermediate in several reactions and that it may be an enzymatically produced signaling molecule. The inherent difficulty in detecting its presence unequivocally prevents evidence from yielding definite answers. On the other hand, metalloporphyrins are widely used as chemical models of heme proteins, providing us with invaluable tools for the study of the coordination chemistry of small molecules, like NO, CO, and O2. Studies with transition metal porphyrins have shown diverse mechanistic, kinetic, structural, and reactive aspects related to the formation of nitrosyl complexes. Porphyrins are also widely used in technical applications, especially when coupled to a surface, where they can be used as electrochemical gas sensors. Given their versatility, they have not escaped their role as key players in chemical studies involving HNO.This Account presents the research performed during the last 10 years in our group concerning azanone reactions with iron, manganese, and cobalt porphyrins. We begin by describing their HNO trapping capabilities, which result in formation of the corresponding nitrosyl complexes. Kinetic and mechanistic studies of these reactions show two alternative operating mechanisms: reaction of the metal center with HNO or with the donor. Moreover, we have also shown that azanone can be stabilized by coordination to iron porphyrins using electron-attracting substituents attached to the porphyrin ring, which balance the negatively charged NO¯.Second, we describe an electrochemical HNO sensing device based on the covalent attachment of a cobalt porphyrin to gold. A surface effect affects the redox potentials and allows discrimination between HNO and NO. The reaction with the former is fast, efficient, and selective, lacking spurious signals due to the presence of reactive nitrogen and oxygen species. The sensor is both biologically compatible and highly sensitive (nanomolar). This time-resolved detection allows kinetic analysis of reactions producing HNO. The sensor thus offers excellent opportunities to be used in experiments looking for HNO. As examples, we present studies concerning (a) HNO donation capabilities of new HNO donors as assessed by the sensor, (b) HNO detection as an intermediate in O atom abstraction to nitrite by phosphines, and (c) NO to HNO interconversion mediated by alcohols and thiols.Finally, we briefly discuss the key experiments required to demonstrate endogenous HNO formation to be done in the near future, involving the in vivo use of the HNO sensing device. © 2014 American Chemical Society.


Documento: Artículo
Título:Reactions of HNO with metal porphyrins: Underscoring the biological relevance of HNO
Autor:Doctorovich, F.; Bikiel, D.E.; Pellegrino, J.; Suárez, S.A.; Martí, M.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Ciudad Universitaria, Pab. II, Buenos, Aires, 1428, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. II, Buenos, Aires, 1428, Argentina
Palabras clave:metalloporphyrin; nitric oxide; nitrogen oxide; nitroxyl; chemistry; electrochemical analysis; metabolism; Electrochemical Techniques; Metalloporphyrins; Nitric Oxide; Nitrogen Oxides
Página de inicio:2907
Página de fin:2916
Título revista:Accounts of Chemical Research
Título revista abreviado:Acc. Chem. Res.
CAS:nitric oxide, 10102-43-9; nitrogen oxide, 11104-93-1; Metalloporphyrins; Nitric Oxide; Nitrogen Oxides; nitroxyl


  • Doctorovich, F., Bikiel, D., Pellegrino, J., Suárez, S.A., Larsen, A., Martí, M.A., Nitroxyl (azanone) trapping by metalloporphyrins (2011) Coord. Chem. Rev., 255, pp. 2764-2784
  • Shafirovich, V., Lymar, S.V., Nitroxyl and its anion in aqueous solutions: Spin states, protic equilibria, and reactivities toward oxygen and nitric oxide (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 7340-7345
  • Paolocci, N., Saavedra, W.F., Miranda, K.M., Martignani, C., Isoda, T., Hare, J.M., Espey, M.G., Kass, D.A., Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 10463-10468
  • Schmidt, H.H.H.W., Hofmann, H., Schindler, U., Shutenko, Z.S., Cunningham, D.D., Feelisch, M., NO from NO synthase (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 14492-14497
  • Filipovic, M.R.M., Miljkovic, J.L.J., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Ivanovic, I., Chemical characterization of the smallest S -nitrosothiol, HSNO; Cellular cross-talk of H2S and S -nitrosothiols (2012) J. Am. Chem. Soc., 134, pp. 12016-12027
  • Bazylinski, D.A., Hollocher, T.C., Metmyoglobin and methemoglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aqueous solution (1985) J. Am. Chem. Soc., 107, pp. 7982-7986
  • Bazylinsky, D.A., Goretski, J., Hollocher, T.C., On the reaction of trioxodinitrate(II) with hemoglobin and myoglobin (1985) J. Am. Chem. Soc., 107, pp. 7986-7989
  • Kumar, M.R., Pervitsky, D., Chen, L., Poulos, T., Kundu, S., Hargrove, M.S., Rivera, E.J., Farmer, P.J., Nitrosyl hydride (HNO) as an O2 analogue: Long-lived HNO adducts of ferrous globins (2009) Biochemistry, 48, pp. 5018-5025
  • Bari, S.E., Martí, M.A., Amorebieta, V.T., Estrin, D.A., Doctorovich, F., Fast nitroxyl trapping by ferric porphyrins (2003) J. Am. Chem. Soc., 125, pp. 15272-15273
  • Martí, M.A., Bari, S.E., Estrin, D.A., Doctorovich, F., Discrimination of nitroxyl and nitric oxide by water-soluble Mn(III) porphyrins (2005) J. Am. Chem. Soc., 127, pp. 4680-4684
  • Suárez, S.A., Martí, M.A., De Biase, P.M., Estrin, D.A., Bari, S.E., Doctorovich, F., HNO trapping and assisted decomposition of nitroxyl donors by ferric hemes (2007) Polyhedron., 26, pp. 4673-4679
  • Suárez, S.A., Fonticelli, M.H., Rubert, A.A., De La Llave, E., Scherlis, D., Salvarezza, R.C., Martí, M.A., Doctorovich, F., A surface effect allows HNO/NO discrimination by a cobalt porphyrin bound to gold (2010) Inorg. Chem., 49, pp. 6955-6966
  • Roncaroli, F., Van Eldik, R., Mechanistic analysis of reductive nitrosylation on water-soluble cobalt(III)-porphyrins (2006) J. Am. Chem. Soc., 128, pp. 8042-8053
  • Boron, I., Suárez, S.A., Doctorovich, F., Martí, M.A., Bari, S.E., A protective protein matrix improves the discrimination of nitroxyl from nitric oxide by MnIII protoporphyrinate IX in aerobic media (2011) J. Inorg. Biochem., 105, pp. 1044-1049
  • Suárez, S., Bikiel, D., Wetzler, D., Martí, M.A., Doctorovich, F., Time-resolved electrochemical quantification of azanone (HNO) at low nanomolar level (2013) Anal. Chem., 85, pp. 10262-10269
  • Cline, M.R., Tu, C., Silverman, D.N., Toscano, J.P., Detection of nitroxyl (HNO) by membrane inlet mass spectrometry (2011) Free Radical Biol. Med., 50, pp. 1274-1279
  • Reisz, J.A., Zink, C.N., King, S.B., Rapid and selective nitroxyl (HNO) trapping by phosphines: Kinetics and new aqueous ligations for HNO detection and quantitation (2011) J. Am. Chem. Soc., 133, pp. 11675-11685
  • Donzelli, S., Espey, M.G., Flores-Santana, W., Switzer, C.H., Yeh, G.C., Huang, J., Stuehr, D.J., Wink, D.A., Generation of nitroxyl by heme protein-mediated peroxidation of hydroxylamine but not N-hydroxy-L-arginine (2008) Free Radical Biol. Med., 45, pp. 578-584
  • Dobmeier, K.P., Riccio, D.A., Schoenfisch, M.H., Xerogel optical sensor films for quantitative detection of nitroxyl (2008) Anal. Chem., 80, pp. 1247-1254
  • Rosenthal, J., Lippard, S.J., Direct detection of nitroxyl in aqueous solution using a tripodal copper(II) BODIPY complex (2010) J. Am. Chem. Soc., 132, pp. 5536-5537
  • Zhou, Y., Liu, K., Li, J.-Y., Fang, Y., Zhao, T.-C., Yao, C., Visualization of nitroxyl in living cells by a chelated copper(II) coumarin complex (2011) Org. Lett., 13, pp. 2357-2360
  • Shoeman, D.W., Shirota, F.N., Demaster, E.G., Nagasawa, H.T., Reaction of nitroxyl, an aldehyde dehydrogenase inhibitor, with N-acetyl-L-cysteine (2000) Alcohol., 20, pp. 55-59
  • Pino, R.Z., Feelisch, M., Bioassay discrimination between nitric oxide (NO.) and nitroxyl (NO-) using L-cysteine (1994) Biochem. Biophys. Res. Commun., 201, pp. 54-62
  • Donzelli, S., Espey, M.G., Thomas, D.D., Mancardi, D., Tocchetti, C.G., Ridnour, L.A., Paolocci, N., Wink, D.A., Discriminating formation of HNO from other reactive nitrogen oxide species (2006) Free Radical Biol. Med., 40, pp. 1056-1066
  • Tennyson, A.G., Do, L., Smith, R.C., Lippard, S.J., Selective fluorescence detection of nitroxyl over nitric oxide in buffered aqueous solution using a conjugated metallopolymer (2006) Polyhedron, 26, pp. 4625-4630
  • Samuni, U., Samuni, Y., Goldstein, S., On the distinction between nitroxyl and nitric oxide using nitronyl nitroxides (2010) J. Am. Chem. Soc., 132, pp. 8428-8432
  • Enemark, J.H., Feltham, R.D., Principles of structure, bonding, and reactivity for metal nitrosyl complexes (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Obayashi, E., Takahashi, S., Shiro, Y., Electronic structure of reaction intermediate of cytochrome P450nor in its nitric oxide reduction (1998) J. Am. Chem. Soc., 120, pp. 12964-12965
  • Lancon, D., Kadish, K.M., Electrochemical and spectral characterization of iron mono- and dinitrosyl porphyrins (1983) J. Am. Chem. Soc., 105, pp. 5610-5617
  • Choi, I.K., Liu, Y., Feng, D., Paeng, K.J., Ryan, M.D., Electrochemical and spectroscopic studies of iron porphyrin nitrosyls and their reduction products (1991) Inorg. Chem., 30, pp. 1832-1839
  • Bykov, D., Neese, F.J., Reductive activation of the heme iron-nitrosyl intermediate in the reaction mechanism of cytochrome c nitrite reductase: A theoretical study (2012) J. Biol. Inorg. Chem., 17, pp. 741-760
  • Pellegrino, J., Bari, S.E., Bikiel, D.E., Doctorovich, F., Successful stabilization of the elusive species {FeNO}8 in a heme model (2010) J. Am. Chem. Soc., 132, pp. 989-995
  • Serres, R.G., Grapperhaus, C.A., Bothe, E., Bill, E., Weyhermüller, T., Neese, F., Wieghardt, K., Structural, spectroscopic, and computational study of an octahedral, non-heme [Fe-NO]6-8 Series: [Fe(NO)(cyclam-ac)]2+/+/0 (2004) J. Am. Chem. Soc., 126, pp. 5138-5153
  • Speelman, A.L., Lehnert, N., Characterization of a high-spin non-heme {FeNO}(8) complex: Implications for the reactivity of iron nitroxyl species in biology (2013) Angew. Chem., Int. Ed., 52, pp. 12283-12287
  • Pellegrino, J., Hübner, R., Doctorovich, F., Kaim, W., Spectroelectrochemical evidence for the nitrosyl redox siblings NO+, NO, and NO- coordinated to a strongly electron-accepting Fe(II) porphyrin: DFT calculations suggest the presence of high-spin states after reduction of the Fe(II)-NO- complex (2011) Chem.-Eur. J., 17, pp. 7868-7874
  • Lee, J., Richter-Addo, G.B., A nitrosyl hydride complex of a heme model [Ru(ttp)(HNO)(1-MeIm)] (ttp=tetratolylporphyrinato dianion) (2004) J. Inorg. Biochem., 98, pp. 1247-1250
  • Lin, R., Farmer, P.J., The HNO adduct of myoglobin: Synthesis and characterization (2000) J. Am. Chem. Soc., 122, pp. 2393-2394
  • Goodrich, L.E., Roy, S., Alp, E.E., Zhao, J., Hu, M.Y., Lehnert, N., Electronic structure and biologically relevant reactivity of low-spin {FeNO}8 porphyrin model complexes: New insight from a bis-picket fence porphyrin (2013) Inorg. Chem., 52, pp. 7766-7780
  • Montenegro, A.C.A., Amorebieta, V.T., Slep, L.D., Martín, D.F., Murgida, D.H., Bari, S.E., Olabe, J.A., Three redox states of nitrosyl: NO+, NO., and NO-/HNO interconvert reversibly on the same pentacyanoferrate (II) platform (2009) Angew. Chem., Int. Ed., 48, pp. 4213-4216
  • Batinic-Haberle, I., Spasojevic, I., Tse, H., Tovmasyan, A., Rajic, Z., St. Clair, D.K., Vujaskovic, Z., Piganelli, J.D., Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities (2012) Amino Acids, 42, pp. 95-113
  • Álvarez, L., Suarez, S.A., Bikiel, D.E., Reboucas, J.S., Batinić-Haberle, I., Martí, M.A., Doctorovich, F., Redox potential determines the reaction mechanism of HNO donors with Mn and Fe porphyrins: Defining the better traps (2014) Inorg. Chem., 53, pp. 7351-7360
  • Sharma, V.S., Isaacson, R.A., John, M.E., Waterman, M.R., Chevion, M., Reaction of nitric oxide with heme proteins: Studies on metmyoglobin, opossum methemoglobin, and microperoxidase (1983) Biochemistry, 22, pp. 3897-3902
  • Laverman, L.E., Ford, P.C., Mechanistic studies of nitric oxide reactions with water soluble iron(II), cobalt(II), and iron(III) porphyrin complexes in aqueous solutions: Implications for biological activity (2001) J. Am. Chem. Soc., 123, pp. 11614-11622
  • Miranda, K.M., Paolocci, N., Katori, T., Thomas, D.D., Ford, E., Bartberger, M.D., Espey, M.G., Wink, D.A., A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 9196-9201
  • Sulc, F., Immoos, C.E., Pervitsky, D., Farmer, P.J., Efficient trapping of HNO by deoxymyoglobin (2004) J. Am. Chem. Soc., 126, pp. 1096-1101
  • Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping pathways for O2 entry and exit from myoglobin (2001) J. Biol. Chem., 276, pp. 5177-5188
  • Sirsalmath, K., Suárez, S.A., Bikiel, D.E., Doctorovich, F., The pH of HNO donation is modulated by ring substituents in Piloty"s acid derivatives: Azanone donors at biological pH (2013) J. Inorg. Biochem., 118, pp. 134-139
  • Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretskii, A.V., Doctorovich, F., Ford, P.C., Nitrite reduction mediated by heme models. Routes to NO and HNO? (2013) J. Am. Chem. Soc., 135, pp. 4007-4017
  • Filipovic, M.R., Eberhardt, M., Prokopovic, V., Mijuskovic, A., Orescanin-Dusic, Z., Reeh, P., Ivanovic-Burmazovic, I., Beyond H2S and NO Interplay: Hydrogen Sulfide and Nitroprusside React Directly to Give Nitroxyl (HNO). A New Pharmacological Source of HNO (2013) J. Med. Chem., 56, pp. 1499-1508
  • Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichko, T.I., Filipovic, M.R., H2S and NO generate nitroxyl and activate HNO-trpa1-CGRP pathway for neurovascular control (2014) Nat. Commun., 5, p. 4381
  • Heinecke, J., Ford, P.C., Mechanistic studies of nitrite reactions with metalloproteins and models relevant to mammalian physiology (2010) Coord. Chem. Rev., 254, pp. 235-247
  • Switzer, C.H., Miller, T.W., Farmer, P.J., Fukuto, J.M., Synthesis and characterization of lithium oxonitrate (LiNO) (2013) J. Inorg. Biochem., 118, pp. 128-133
  • Fukuto, J.M., Cisneros, C.J., Kinkade, R.L., A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO) (2013) J. Inorg. Biochem., 118, pp. 201-208
  • Speelman, A.L., Lehnert, N., Heme versus non-heme iron-nitroxyl {FeN(H)O}8 complexes: Electronic structure and biologically relevant reactivity (2014) Acc. Chem. Res., 47, pp. 1106-1116


---------- APA ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A. & Martí, M.A. (2014) . Reactions of HNO with metal porphyrins: Underscoring the biological relevance of HNO. Accounts of Chemical Research, 47(10), 2907-2916.
---------- CHICAGO ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A. "Reactions of HNO with metal porphyrins: Underscoring the biological relevance of HNO" . Accounts of Chemical Research 47, no. 10 (2014) : 2907-2916.
---------- MLA ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A. "Reactions of HNO with metal porphyrins: Underscoring the biological relevance of HNO" . Accounts of Chemical Research, vol. 47, no. 10, 2014, pp. 2907-2916.
---------- VANCOUVER ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A. Reactions of HNO with metal porphyrins: Underscoring the biological relevance of HNO. Acc. Chem. Res. 2014;47(10):2907-2916.