Registro:
Documento: | Tesis Doctoral |
Disciplina: | matematica |
Título: | Desigualdades polinomiales en espacios de Banach |
Título alternativo: | Polynomial inequalities on Banach spaces |
Autor: | Rodríguez, Jorge Tomás |
Editor: | Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
Lugar de trabajo: | Departamento de Matemática
|
Publicación en la Web: | 2017-03-30 |
Fecha de defensa: | 2016-03-14 |
Fecha en portada: | 2016 |
Grado Obtenido: | Doctorado |
Título Obtenido: | Doctor de la Universidad de Buenos Aires en el área de Ciencias Matemáticas |
Departamento Docente: | Departamento de Matemáticas |
Director: | Carando, Daniel |
Jurado: | Botelho, Geraldo; Andruchow, Esteban; Ombrosi, Sheldy |
Idioma: | Español |
Palabras clave: | POLINOMIOS; ESPACIOS DE BANACH; ULTRAPRODUCTOS; NORMAS; DESIGUALDADES POLINOMIALES; CONSTANTES DE POLARIZACIONPOLYNOMIALS; BANACH SPACES; ULTRAPRODUCTS; NORMS; POLYNOMIAL INEQUALITIES; POLARIZATION CONSTANTS |
Formato: | PDF |
Handle: |
http://hdl.handle.net/20.500.12110/tesis_n5915_Rodriguez |
PDF: | https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5915_Rodriguez.pdf |
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n5915_Rodriguez |
Ubicación: | MAT 005915 |
Derechos de Acceso: | Esta obra puede ser leída, grabada y utilizada con fines de estudio, investigación y docencia. Es necesario el reconocimiento de autoría mediante la cita correspondiente. Rodríguez, Jorge Tomás. (2016). Desigualdades polinomiales en espacios de Banach. (Tesis Doctoral. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales). Recuperado de http://hdl.handle.net/20.500.12110/tesis_n5915_Rodriguez |
Resumen:
En esta tesis estudiamos desigualdades para el producto de polinomios en espaciosde Banach. Nos enfocamos principalmente en los llamados factor problem yplank problem. El factor problem consiste en buscar cotas inferiores para la norma del productode polinomios de grados previamente fijados. Estudiamos este problema en diferentescontextos. Consideramos el producto de funciones lineales (i.e. polinomioshomogéneos de grado uno), polinomios homogéneos y no homogéneos de gradosarbitrarios. También investigamos el problema en diferentes espacios: finito e infinitodimensionales, espacios Lp, las clases de Schatten Sp y ultraproductos de espaciosde Banach, entre otros. En algunos casos, como en los espacios Lp y las clasesde Schatten Sp, obtenemos cotas inferiores óptimas, mientras que en otros sóloestimamos la cota inferior óptima. En un espacio de Banach X, el plank problem para polinomios consiste en encontrarcondiciones sobre escalares no negativos a₁,...,an que aseguren que paracualquier conjunto de polinomios de norma uno P₁,...,Pn : X → K exista un vectorz de norma uno tal que ∣Pi(z)∣ ai^deg(Pi) para i = 1,...,n. Aplicamos las cotas inferiores obtenidas para el producto de polinomios al estudiode este problema y obtenemos condiciones suficientes para espacios de Banach complejos. También obtenemos condiciones menos restrictivas para ciertos espacios de Banach, como los espacios Lp o las clases Schatten Sp.
Abstract:
In this thesis we study inequalities for the product of polynomials on Banachspaces. We focus mainly on the so called factor problem and plank problem. The factor problem is the problem of finding lower bounds for the norm of theproduct of polynomials of some prescribed degrees. We study this problem in different contexts. We consider the product of linear functions (i.e. homogeneouspolynomials of degree one), homogeneous and non homogeneous polynomials ofarbitrary degrees. We also study this problem on different spaces: finite and infinitedimensional spaces, Lp spaces, Schatten classes Sp and ultraproducts of Banachspaces, among others. In some case, like in the Lp spaces and the Schatten classes Sp,we obtain optimal lower bounds, while for other spaces we only give some estimatesof the optimal lower bounds. On a Banach space X, the plank problem for polynomials consists in findingconditions on nonnegative scalars a₁,...,an ensuring that for any set of norm onepolynomials P₁,...,Pn : X → K there is an element in the ball of X such that ∣Pi(z)∣ ai^deg(Pi) for i = 1,...,n. We apply our lower bounds for products of polynomials to study the plankproblem, and obtain sufficient conditions for complex Banach spaces. We also obtainsome less restrictive conditions for some particular Banach spaces, like the Lp spacesor Schatten classes Sp.
Citación:
---------- APA ----------
Rodríguez, Jorge Tomás. (2016). Desigualdades polinomiales en espacios de Banach. (Tesis Doctoral. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.). Recuperado de https://hdl.handle.net/20.500.12110/tesis_n5915_Rodriguez
---------- CHICAGO ----------
Rodríguez, Jorge Tomás. "Desigualdades polinomiales en espacios de Banach". Tesis Doctoral, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, 2016.https://hdl.handle.net/20.500.12110/tesis_n5915_Rodriguez
Estadísticas:
Descargas totales desde :
Descargas mensuales
https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5915_Rodriguez.pdf