Abstract:
Some properties of effect algebras, effect algebras with the Riesz descomposition property, Φ-symmetric effect algebras, MV-algebras, Boolean algebras and MV-effect algebras are studied. An MV-pair is a pair (B, G) where B is a Boolean algebra and G is a subgroup of the automorphism group of B satisfying certain conditions. Let ~G be the equivalence relation on B naturally associated with G. For every MV-pair (B, G), the effect algebra B/~G is an MV-effect algebra, a proof of this fact is given. Moreover, we present a characterization of B/ ~G as a Boolean algebra.
Citación:
---------- APA ----------
Herrmann, Guillermo Walter. (2010). Teorema de representación de MV-Álgebras. (Tesis de Grado. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.). Recuperado de https://hdl.handle.net/20.500.12110/seminario_nMAT000696_Herrmann
---------- CHICAGO ----------
Herrmann, Guillermo Walter. "Teorema de representación de MV-Álgebras". Tesis de Grado, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, 2010.https://hdl.handle.net/20.500.12110/seminario_nMAT000696_Herrmann
Estadísticas:
Descargas mensuales
Total de descargas desde :
https://bibliotecadigital.exactas.uba.ar/download/seminario/seminario_nMAT000696_Herrmann.pdf
Distrubución geográfica