Artículo

Abstract:

Magnetohydrodynamic turbulence has been proposed as a mechanism for the heating of coronal active regions, and has therefore been actively investigated in recent years. According to this scenario, a turbulent regime is driven by footpoint motions. The energy being pumped this way into active region loops, is efficiently transferred to small scales due to a direct energy cascade. The ensuing generation of fine scale structures, which is a natural outcome of turbulent regimes, helps to enhance the dissipation of either waves or DC currents. We present an updated overview of recent results on turbulent coronal heating. To illustrate this theoretical scenario, we simulate the internal dynamics of a coronal loop within the reduced MHD approximation. The application of a stationary velocity field at the photospheric boundary leads to a turbulent stationary regime after several photospheric turnover times. This regime is characterized by a broadband power spectrum and energy dissipation rate levels compatible with the heating requirements of active region loops. Also, the energy dissipation rate displays a complex superposition of impulsive events, which we associate to the so-called nanoflares. A statistical analysis yields a power law distribution as a function of their energies, which is consistent with those obtained from observations. We also study the distributions of peak dissipation rate and duration of these events. © 2008 International Astronomical Union.

Registro:

Documento: Artículo
Título:Turbulent heating of coronal active regions
Autor:Gómez, D.O.; Dmitruk, P.
Filiación:Department of Physics, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Palabras clave:Coronal heating; Mhd turbulence; Nanoflares; Solar corona
Año:2007
Volumen:3
Número:S247
Página de inicio:269
Página de fin:278
DOI: http://dx.doi.org/10.1017/S1743921308014968
Título revista:Proceedings of the International Astronomical Union
Título revista abreviado:Proc. Int. Astron. Union
ISSN:17439213
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_17439213_v3_nS247_p269_Gomez.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17439213_v3_nS247_p269_Gomez

Referencias:

  • Aschwanden, M.J., (2004) Physics of the Solar Corona. An Introduction, , Springer-Verlag, Berlin
  • Aschwanden, M.J., Parnell, C.E., (2002) ApJ, 572, p. 1048
  • Benz, A.O., Krucker, S., (2002) ApJ, 568, p. 412
  • Boffetta, G., Carbone, V., Giuliani, P., Veltøi, P., Vulpiani, A., (1999) Phys. Rev. Lett, 83, p. 4662
  • Buchlin, E., Galtier, S., Velli, M., (2005) Astron. Astrophys, 436, p. 355
  • Buchlin, E., Velli, M., (2007) ApJ, 662, p. 701
  • Crosby, N.B., Aschwanden, M.J., Dennis, B.R., (1993) Solar Phys, 143, p. 275
  • Demoulin, P., van Driel-Gesztelyi, L., Mandrini, C.H., Klimchuk, J.A., Harra, L., (2003) ApJ, 586, p. 592
  • Dmitruk, P., Gómez, D.O., (1997) ApJ, 484, pp. L83
  • Dmitruk, P., Gómez, D.O., DeLuca, E., (1998) ApJ, 505, p. 974
  • Dmitruk, P., Gómez, D.O., (1999) ApJ, 527, pp. L63
  • Dmitruk, P., Gómez, D.O., Matthaeus, W.H., (2003) Phys. Plasmas, 10, p. 3584
  • Einaudi, G., Velli, M., Politano, H., Pouquet, A., (1996) ApJ, 457, pp. L113
  • Galsgaard, K., Nordlund, A., (1996) J. Geophys. Res, 101, p. 13445
  • Galtier, S., (1999) ApJ, 521, p. 483
  • Georgoulis, M., Velli, M., Einaudi, G., (1998) ApJ, 497, p. 957
  • Gómez, D.O., (1990) Fund. Cosmic Phys, 14, p. 361
  • Gómez, D.O., Ferro Fontán, C., (1988) Solar Phys, 116, p. 33
  • Gómez, D.O., Ferro Fontán, C., (1992) ApJ, 394, p. 662
  • Gudiksen, B.V., Nordlund, A., (2002) ApJ, 572, pp. L113
  • Hendrix, D.L., van Hoven, G., (1996) ApJ, 467, p. 887
  • Heyvaerts, J., Priest, E.R., (1983) Astron. Astrophys, 117, p. 220
  • Heyvaerts, J., Priest, E.R., (1992) ApJ, 390, p. 297
  • Hudson, H.S., (1991) Solar Phys, 133, p. 357
  • Longcope, D.W., Sudan, R.N., (1994) ApJ, 437, p. 491
  • Mandrini, C.H., Demoulin, P., Klimchuk, J.A., (2000) ApJ, 530, p. 999
  • Mikić, Z., Schnack, D.D., van Hoven, G., (1989) ApJ, 338, p. 1148
  • Milano, L.J., Gómez, D.O., Martens, P.C.H., (1997) ApJ, 490, p. 442
  • Narain, U., Ulmschneider, P., (1990) Space Sci. Rev, 54, p. 377
  • Narain, U., Ulmschneider, P., (1996) Space Sci. Rev, 75, p. 453
  • Nigro, G., Malara, F., Carbone, V., Veltøi, P., (2004) Phys. Rev. Lett, 92, p. 194501
  • P arker, E.N. 1972, ApJ, 174, 499; Parker, E.N., (1988) ApJ, 330, p. 474
  • Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B., (2007) ApJ, 657, pp. L47
  • Shimizu, T., (1995) Publ Astr. Soc. Japan, p. 251. , Al
  • Strauss, H., (1976) Phys. Fluids, 19, p. 134
  • van Ballegooijen, A.A., (1986) ApJ, 311, p. 1001
  • Watkins, N.W., Oughton, S., Freeman, M.P., (2001) Planetary and Space Si, 49, p. 1233
  • Zirker, J.B., (1993) Solar Phys, 148, p. 43

Citas:

---------- APA ----------
Gómez, D.O. & Dmitruk, P. (2007) . Turbulent heating of coronal active regions. Proceedings of the International Astronomical Union, 3(S247), 269-278.
http://dx.doi.org/10.1017/S1743921308014968
---------- CHICAGO ----------
Gómez, D.O., Dmitruk, P. "Turbulent heating of coronal active regions" . Proceedings of the International Astronomical Union 3, no. S247 (2007) : 269-278.
http://dx.doi.org/10.1017/S1743921308014968
---------- MLA ----------
Gómez, D.O., Dmitruk, P. "Turbulent heating of coronal active regions" . Proceedings of the International Astronomical Union, vol. 3, no. S247, 2007, pp. 269-278.
http://dx.doi.org/10.1017/S1743921308014968
---------- VANCOUVER ----------
Gómez, D.O., Dmitruk, P. Turbulent heating of coronal active regions. Proc. Int. Astron. Union. 2007;3(S247):269-278.
http://dx.doi.org/10.1017/S1743921308014968