Conferencia

Abstract:

Compressibility has a strong influence on the stability of velocity shear layers when the difference of velocity ΔV across the flow becomes supersonic. The flanks of the Earth's magnetopause are normally supersonic Ms > 1, and super-Alfvénic MA > 1, depending on the distance from the dayside terminator (Ms and MA are the sonic and Alfvén Mach numbers of the magnetosheath plasma, respectively). The stability of MHD supersonic flows depends, also on several other features, such as the finite thickness Δ of the boundary layer, the relative orientation of velocity and magnetic fields, the density jump across the boundary and the magnetic shear angle. We analyze the MHD stability of some representative flank sites modeled after data from spacecraft crossings of the magnetopause under different interplanetary conditions, complementing these cases with extrapolations of likely conditions upstream, and downstream of the crossing site. Under northward interplanetary magnetic field conditions, there are solar wind regimes such that the near, but already supersonic, flank of the magnetopause may be locally stable. Stability is possible, e.g., when M s becomes larger than ∼1.2-1.4 while MA remains smaller than 1.2, and there is magnetic shear between the geomagnetic and the interplanetary magnetic field. Solar winds favouring local stability of the boundary layer are cold, not-too-dense plasmas, with strong magnetic fields, so that MA is smaller, while Ms is larger, than normal values of the magnetosheath flow. A gap between dayside and tail amplifying regions of Kelvin-Helmholtz disturbances over the magnetopause may exist when the above conditions are realized. © 2009 IOP Publishing Ltd.

Registro:

Documento: Conferencia
Título:Supersonic mixing layers: Stability of magnetospheric flanks models
Autor:Gnavi, G.; Gratton, F.T.; Farrugia, C.J.; Bilbao, L.E.
Filiación:Instituto de Física Del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Fisicomatemticas e Ingeniería, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
Space Science Center, University of New Hampshire, Durham, NH 03824, United States
Año:2009
Volumen:166
DOI: http://dx.doi.org/10.1088/1742-6596/166/1/012022
Título revista:Journal of Physics: Conference Series
Título revista abreviado:J. Phys. Conf. Ser.
ISSN:17426588
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_17426588_v166_n_p_Gnavi.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17426588_v166_n_p_Gnavi

Referencias:

  • Landau, L.D., (1944) Dokl. Akad. Nauk. SSS, 44, p. 151
  • Belmont, G., Chanteur, G., (1989) Phys. Script, 124, p. 124
  • Fitzenreiter, R.J., Ogilvie, K.W., (1995) Physics of the Magnetopause (Geophys. Monog. Ser.), 90, p. 277
  • Kivelson, M.G., Chen, S.-H., (1995) Physics of the Magnetopause (Geophys. Monog. Ser.), 90, p. 257
  • Miura, A., (1995) Physics of the Magnetopause (Geophys. Monog. Ser.), 90, p. 285
  • Lotko, W., Sonnerup, B.U., (1995) Physics of the Magnetopause (Geophys. Monog. Ser.), 90, p. 371
  • Farrugia, C.J., Gratton, F.T., Torbert, R.B., (2001) Space Sci. Rev, 95, p. 443
  • Farrugia, C.J., Al, E., (2000) J. Geophys. Res., 105 (A4), pp. 7639-7667
  • Gratton, J., Gratton, F.T., Gonzlez, A.G., (1988) Plasma Phys. Control. Fusio, 30, pp. 435-456
  • Keller, H.B., (1992) Numerical Methods for Two Point Boundary-value Problems
  • Miura, A., Pritchett, P.L., (1982) J. Geophys. Res., 87 (A9), p. 7431
  • Gonzlez, A.G., Gratton, J., (1994) J. Plasma Phys, 51 (1), pp. 43-60
  • Gonzlez, A.G., Gratton, J., (1994) J. Plasma Phys, 52 (2), pp. 223-244
  • Gratton, F.T., Bender, L., Farrugia, C.J., Gnavi, G., (2004) J. Geophys. Res., 109
  • Gratton, F.T., Gnavi, G., Farrugia, C.J., Bender, L., (2005) Brazilian J. Phys, 34, pp. 1804-1813
  • Gratton, F.T., Bilbao, L.E., Farrugia, C.J., Gnavi, G., (2008); Farrugia, C.J., Gratton, F.T., Bender, L., Biernat, H.K., Erkaev, N.V., Denisenko, V., Torbert, R.B., Quinn, J.M., (1998) J. Geophys. Res., 103 (A4), p. 6703

Citas:

---------- APA ----------
Gnavi, G., Gratton, F.T., Farrugia, C.J. & Bilbao, L.E. (2009) . Supersonic mixing layers: Stability of magnetospheric flanks models. Journal of Physics: Conference Series, 166.
http://dx.doi.org/10.1088/1742-6596/166/1/012022
---------- CHICAGO ----------
Gnavi, G., Gratton, F.T., Farrugia, C.J., Bilbao, L.E. "Supersonic mixing layers: Stability of magnetospheric flanks models" . Journal of Physics: Conference Series 166 (2009).
http://dx.doi.org/10.1088/1742-6596/166/1/012022
---------- MLA ----------
Gnavi, G., Gratton, F.T., Farrugia, C.J., Bilbao, L.E. "Supersonic mixing layers: Stability of magnetospheric flanks models" . Journal of Physics: Conference Series, vol. 166, 2009.
http://dx.doi.org/10.1088/1742-6596/166/1/012022
---------- VANCOUVER ----------
Gnavi, G., Gratton, F.T., Farrugia, C.J., Bilbao, L.E. Supersonic mixing layers: Stability of magnetospheric flanks models. J. Phys. Conf. Ser. 2009;166.
http://dx.doi.org/10.1088/1742-6596/166/1/012022