Artículo

Abstract:

The insect tracheal system is a continuous tubular network that ramifies into progressively thinner branches to provide air directly to every organ and tissue throughout the body. During embryogenesis the basic architecture of the tracheal system develops in a stereotypical and genetically controlled manner. Later, in larval stages, the tracheal system becomes plastic, and adapts to particular oxygen needs of the different tissues of the body. Oxygen sensing is mediated by specific prolyl-4-hydroxylases that regulate protein stability of the alpha subunit of oxygen-responsive transcription factors from the HIF family. Tracheal cells are exquisitely sensitive to oxygen levels, modulating the expression of hypoxia-inducible proteins that mediate sprouting of tracheal branches in direction to oxygen-deprived tissues. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Tracheal remodelling in response to hypoxia
Autor:Centanin, L.; Gorr, T.A.; Wappner, P.
Filiación:Institute of Zoology, Im Neuenheimer Feld University of Heidelberg, 69120 Heidelberg, Germany
Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), Wintherthurerstrasse 260, CH-8057 Zurich, Switzerland
Instituto Leloir, FBMC, FCEyN-Universidad de Buenos Aires, Patricias Argentinas 435, Buenos Aires, 1405, Argentina
Palabras clave:Cell autonomy; HIF; Hypoxia; Plasticity; Tracheae; embryonic development; enzyme; hypoxia; insect; larval development; adaptation; animal; animal anatomy; anoxia; growth, development and aging; histology; insect; larva; physiology; review; Adaptation, Physiological; Animal Structures; Animals; Anoxia; Insects; Larva; Hexapoda
Año:2010
Volumen:56
Número:5
Página de inicio:447
Página de fin:454
DOI: http://dx.doi.org/10.1016/j.jinsphys.2009.05.008
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.
ISSN:00221910
CODEN:JIPHA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00221910_v56_n5_p447_Centanin.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v56_n5_p447_Centanin

Referencias:

  • Affolter, M., Montagne, J., Walldorf, U., Groppe, J., Kloter, U., LaRosa, M., Gehring, W.J., The Drosophila SRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development (1994) Development, 120, pp. 743-753
  • Bacon, N.C., Wappner, P., O'Rourke, J.F., Bartlett, S.M., Shilo, B., Pugh, C.W., Ratcliffe, P.J., Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha (1998) Biochemical Biophysical Research Communication, 249, pp. 811-816
  • Bruick, R.K., McKnight, S.L., A conserved family of prolyl-4-hydroxylases that modify HIF (2001) Science, 294, pp. 1337-1340
  • Carmeliet, P., Collen, D., Molecular basis of angiogenesis. Role of VEGF and VE-cadherin (2000) Annals of the New York Academy of Sciences, 902, pp. 249-262
  • Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Nagy, A., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele (1996) Nature, 380, pp. 435-439
  • Centanin, L., Ratcliffe, P.J., Wappner, P., Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of Hypoxia-Inducible Factor-alpha/Sima (2005) EMBO Reports, 6, pp. 1070-1075
  • Centanin, L., Dekanty, A., Romero, N., Irisarri, M., Gorr, T.A., Wappner, P., Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting (2008) Developmental Cell, 14, pp. 547-558
  • Chapman, R.F., (1998) The Insects Structure and Function. fourth ed., , Cambridge University Press
  • Dekanty, A., Lavista-Llanos, S., Irisarri, M., Oldham, S., Wappner, P., The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-{alpha}/Sima (2005) Journal of Cell Science, 118, pp. 5431-5441
  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, Mole, D.R., Mukherji, M., Metzen, E., Ratcliffe, P.J., C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation (2001) Cell, 107, pp. 43-54
  • Firth, J.D., Ebert, B.L., Ratcliffe, P.J., Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements (1995) Journal of Biological Chemistry, 270, pp. 21021-21027
  • Folkman, J., Tumor angiogenesis (1974) Advances in Cancer Research, 19, pp. 331-358
  • Franco, C.A., Mericskay, M., Parlakian, A., Gary-Bobo, G., Gao-Li, J., Paulin, D., Gustafsson, E., Li, Z., Serum response factor is required for sprouting angiogenesis and vascular integrity (2008) Developmental Cell, 15, pp. 448-461
  • Ghabrial, A., Luschnig, S., Metzstein, M.M., Krasnow, M.A., Branching morphogenesis of the Drosophila tracheal system (2003) Annual Reviews of Cellular Developmental Biology, 19, pp. 623-647
  • Ghabrial, A.S., Krasnow, M.A., Social interactions among epithelial cells during tracheal branching morphogenesis (2006) Nature, 441, pp. 746-749
  • Glazer, L., Shilo, B.Z., The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension (1991) Genes and Development, 5, pp. 697-705
  • Gorr, T.A., Gassmann, M., Wappner, P., Sensing and responding to hypoxia via HIF in model invertebrates (2006) Journal of Insect Physiology, 52, pp. 349-364
  • Guillemin, K., Groppe, J., Ducker, K., Treisman, R., Hafen, E., Affolter, M., Krasnow, M.A., The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system (1996) Development, 122, pp. 1353-1362
  • Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., Krasnow, M.A., Sprouty encodes a novel antagonist of Fgf signaling that patterns apical branching of the Drosophila airways (1998) Cell, 92, pp. 253-263
  • Harrison, J.F., Tracheal system (2003) Encyclopedia of Insects, , Resh V.H., and Carde R. (Eds), Academic Press
  • Henry, J.R., Harrison, J.F., Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster (2004) Journal of Experimental Biology, 207, pp. 3559-3567
  • Holderfield, M.T., Hughes, C.C., Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis (2008) Circulatory Research, 102, pp. 637-652
  • Huang, L.E., Gu, J., Schau, M., Bunn, H.F., Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway (1998) Proceedings National Academy of Sciences United States of America, 95, pp. 7987-7992
  • Isaac, D.D., Andrew, D.J., Tubulogenesis in Drosophila: a requirement for the trachealess gene product (1996) Genes and Development, 10, pp. 103-117
  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Kaelin Jr., W.G., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing (2001) Science, 292, pp. 464-468
  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Ratcliffe, P.J., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation (2001) Science, 292, pp. 468-472
  • Jarecki, J., Johnson, E., Krasnow, M.A., Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF (1999) Cell, 99, pp. 211-220
  • Kaelin Jr., W.G., Ratcliffe, P.J., Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway (2008) Molecular Cell, 30, pp. 393-402
  • Klämbt, C., Glazer, L., Shilo, B.Z., Breathless, a Drosophila Fgf receptor homolog, is essential for migration of tracheal and specific midline glial cells (1992) Genes and Development, 6, pp. 1668-1678
  • Lando, D., Gorman, J.J., Whitelaw, M.L., Peet, D.J., Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation (2003) European Journal of Biochemistry, 270, pp. 781-790
  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., Bruick, R.K., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor (2002) Genes and Development, 16, pp. 1466-1471
  • Lavista-Llanos, S., Centanin, L., Irisarri, M., Russo, D.M., Gleadle, J.M., Bocca, S.N., Muzzopappa, M., Wappner, P., Control of the hypoxic response in Drosophila melanogaster by the Basic Helix-Loop-Helix PAS protein similar (2002) Molecular and Cellular Biology, 22, pp. 6842-6853
  • Lee, T., Hacohen, N., Krasnow, M., Montell, D.J., Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system (1996) Genes and Development, 10, pp. 2912-2921
  • Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., Vascular endothelial growth factor is a secreted angiogenic mitogen (1989) Science, 246, pp. 1306-1309
  • Liao, B., Hu, Y., Brewer, G., Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation (2007) Nature Structural and Molecular Biology, 14, pp. 511-518
  • Locke, M., The co-ordination of growth in the tracheal system of insects (1958) Quarterly Journal of Microscopical Sciences, 99, pp. 373-391
  • Loudon, C., Tracheal hypertrophy in mealworms: design and plasticity in oxygen supply systems (1989) Journal of Experimental Biology, 147, pp. 217-235
  • Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism (1993) Proceedings of National Academy of Sciences United States of America, 90, pp. 2423-2427
  • Maxwell, P.H., Dachs, G.U., Gleadle, J.M., Nicholls, L.G., Harris, A.L., Stratford, I.J., Hankinson, O., Ratcliffe, P.J., Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth (1997) Proceedings of National Academy of Sciences United States of America, 94, pp. 8104-8109
  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Ratcliffe, P.J., The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis (1999) Nature, 399, pp. 271-275
  • Moberg, N.T., Mortimer, K.H., Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia (2009) Developmental Biology, 329, pp. 294-305
  • Nambu, J.R., Chen, W., Hu, S., Crews, S.T., The Drosophila melanogaster similar bHLH-PAS gene encodes a protein related to human hypoxia-inducible factor 1 alpha and Drosophila single-minded (1996) Gene, 172, pp. 249-254
  • Pugh, C.W., Jf, O.R., Nagao, M., Gleadle, J.M., Ratcliffe, P.J., Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit (1997) Journal of Biological Chemistry, 272, pp. 11205-11214
  • Reichman-Fried, M., Shilo, B.Z., Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation (1995) Mechanisms of Development, 52, pp. 265-273
  • Reichman-Fried, M., Dickson, B., Hafen, E., Shilo, B.Z., Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration (1994) Genes and Development, 8, pp. 428-439
  • Romero, N.M., Dekanty, A., Wappner, P., Cellular and developmental adaptations to hypoxia: a Drosophila perspective (2007) Methods in Enzymology, 435, pp. 123-144
  • Sainson, R.C., Johnston, D.A., Chu, H.C., Holderfield, M.T., Nakatsu, M.N., Crampton, S.P., Davis, J., Hughes, C.C., TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype (2008) Blood, 111, pp. 4997-5007
  • Samakovlis, C., Hacohen, N., Manning, G., Sutherland, D.C., Guillemin, K., Krasnow, M.A., Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events (1996) Development, 122, pp. 1395-1407
  • Samakovlis, C., Manning, G., Steneberg, P., Hacohen, N., Cantera, R., Krasnow, M.A., Genetic control of epithelial tube fusion during Drosophila tracheal development (1996) Development, 122, pp. 3531-3536
  • Shweiki, D., Itin, A., Soffer, D., Keshet, E., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis (1992) Nature, 359, pp. 843-845
  • Sutherland, D., Samakovlis, C., Krasnow, M.A., branchless encodes a Drosophila Fgf homolog that controls tracheal cell migration and the pattern of branching (1996) Cell, 87, pp. 1091-1101
  • Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., Johnson, R.S., Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis (2004) Cancer Cell, 6, pp. 485-495
  • Valentine, J.W., Late Precambrian bilaterians: grades and clades (1994) Proceedings of National Academy of Sciences United States of America, 91, pp. 6751-6757
  • Vincent, S., Ruberte, E., Grieder, N.C., Chen, C.K., Haerry, T., Schuh, R., Affolter, M., DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo (1997) Development, 124, pp. 2741-2750
  • Wang, G.L., Semenza, G.L., Purification and characterization of hypoxia-inducible factor 1 (1995) Journal of Biological Chemistry, 270, pp. 1230-1237
  • Wang, G.L., Jiang, B.H., Rue, E.A., Semenza, G.L., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension (1995) Proceedings of National Academy of Sciences United States of America, 92, pp. 5510-5514
  • Wappner, P., Gabay, L., Shilo, B.Z., Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes (1997) Development, 124, pp. 4707-4716
  • Weaver, M., Krasnow, M.A., Dual origin of tissue-specific progenitor cells in Drosophila tracheal remodeling (2008) Science, 321, pp. 1496-1499
  • White, A.T., Davis, S.L., Wilson, T.E., Metabolic, thermoregulatory, and perceptual responses during exercise after lower vs. whole body precooling (2003) Journal of Applied Physiology, 94, pp. 1039-1044
  • Wigglesworth, V.B., Growth and Regeneration in the Tracheal System of an Insect, Rhodnius prolixus (Hemiptera) (1954) Quarterly Journal of Microscopical Sciences, 95, pp. 115-137
  • Wigglesworth, V.B., The physiology of insect tracheoles (1983) Advances in Insect Physiology, 17, pp. 86-148
  • Wilk, R., Weizman, I., Shilo, B.Z., trachealess encodes a bHlh-Pas protein that is an inducer of tracheal cell fates in Drosophila (1996) Genes and Development, 10, pp. 93-102

Citas:

---------- APA ----------
Centanin, L., Gorr, T.A. & Wappner, P. (2010) . Tracheal remodelling in response to hypoxia. Journal of Insect Physiology, 56(5), 447-454.
http://dx.doi.org/10.1016/j.jinsphys.2009.05.008
---------- CHICAGO ----------
Centanin, L., Gorr, T.A., Wappner, P. "Tracheal remodelling in response to hypoxia" . Journal of Insect Physiology 56, no. 5 (2010) : 447-454.
http://dx.doi.org/10.1016/j.jinsphys.2009.05.008
---------- MLA ----------
Centanin, L., Gorr, T.A., Wappner, P. "Tracheal remodelling in response to hypoxia" . Journal of Insect Physiology, vol. 56, no. 5, 2010, pp. 447-454.
http://dx.doi.org/10.1016/j.jinsphys.2009.05.008
---------- VANCOUVER ----------
Centanin, L., Gorr, T.A., Wappner, P. Tracheal remodelling in response to hypoxia. J. Insect Physiol. 2010;56(5):447-454.
http://dx.doi.org/10.1016/j.jinsphys.2009.05.008