Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Multilevel resistance states in silver-manganite interfaces are studied both experimentally and through a realistic model that includes as a main ingredient the oxygen vacancies diffusion under applied electric fields. The switching threshold and amplitude studied through hysteresis switching loops are found to depend critically on the initial state. The associated vacancy profiles further unveil the prominent role of the effective electric field acting at the interfaces. While experimental results validate main assumptions of the model, the simulations allow to disentangle the microscopic mechanisms behind the resistive switching in metal-transition metal oxide interfaces. © 2010 American Institute of Physics.

Registro:

Documento: Artículo
Título:Hysteresis switching loops in Ag-manganite memristive interfaces
Autor:Ghenzi, N.; Sánchez, M.J.; Gomez-Marlasca, F.; Levy, P.; Rozenberg, M.J.
Filiación:GIA, INN, CAC-CNEA, 1650-San Martín, Argentina
Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 San Carlos de Bariloche, Argentina
Laboratoire de Physique des Solides, UMR 8502, Universit́ Paris-Sud, Orsay 91405, France
Departamento de Física Juan Joś Giambiagi, FCEN, Ciudad Universitaria Pabellón i, 1428 Buenos Aires, Argentina
Palabras clave:Applied electric field; Hysteresis switching; Initial state; Microscopic mechanisms; Realistic model; Resistance state; Resistive switching; Switching thresholds; Transition-metal oxides; Computer simulation; Electric fields; Hysteresis; Manganese oxide; Oxygen; Oxygen vacancies; Transition metal compounds; Transition metals; Vacancies; Switching
Año:2010
Volumen:107
Número:9
DOI: http://dx.doi.org/10.1063/1.3372617
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v107_n9_p_Ghenzi.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v107_n9_p_Ghenzi

Referencias:

  • Waser, R., Aono, M., Nanoionics-based resistive switching memories (2007) Nature Materials, 6 (11), pp. 833-840. , DOI 10.1038/nmat2023, PII NMAT2023
  • Sawa, A., Resistive switching in transition metal oxides (2008) Materials Today, 11 (6), pp. 28-36. , DOI 10.1016/S1369-7021(08)70119-6, PII S1369702108701196
  • Waser, R., Dittmann, R., Staikov, G., Szot, K., (2009) Adv. Mater. (Weinheim, Ger.), 21, p. 2632. , ADVMEW 0935-9648,. 10.1002/adma.200900375
  • Beck, A., Bednorz, J.G., Gerber, C., Rossel, C., Widmer, D., (2000) Appl. Phys. Lett., 77, p. 139. , APPLAB 0003-6951,. 10.1063/1.126902
  • Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Moon, J.T., IEDM, Tech. Dig., 2004, p. 587
  • Liu, S.Q., Wu, N.J., Ignatiev, A., (2000) Appl. Phys. Lett., 76, p. 2749. , APPLAB 0003-6951,. 10.1063/1.126464
  • Watanabe, Y., Bednorz, J.G., Bietsch, A., Gerber, C., Widmer, D., Beck, A., Wind, S.J., (2001) Appl. Phys. Lett., 78, p. 3738. , APPLAB 0003-6951,. 10.1063/1.1377617
  • Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Tiedke, S., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition (2005) Journal of Applied Physics, 98 (3), pp. 1-10. , DOI 10.1063/1.2001146, 033715
  • Rozenberg, M.J., Inoue, I.H., Sánchez, M.J., (2004) Phys. Rev. Lett., 92, p. 178302. , PRLTAO 0031-9007,. 10.1103/PhysRevLett.92.178302
  • Rozenberg, M.J., Inoue, I.H., Sanchez, M.J., Strong electron correlation effects in nonvolatile electronic memory devices (2006) Applied Physics Letters, 88 (3), pp. 1-3. , DOI 10.1063/1.2164917, 033510
  • Rozenberg, M.J., Sánchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., Levy, P., (2010) Phys. Rev. B, 81, p. 115101. , PRBMDO 0163-1829,. 10.1103/PhysRevB.81.115101
  • Jeong, D.S., Schroeder, H., Waser, R., (2009) Phys. Rev. B, 79, p. 195317. , PRBMDO 0163-1829,. 10.1103/PhysRevB.79.195317
  • Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A., Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides (2007) Physical Review Letters, 98 (14), p. 146403. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.146403&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.146403
  • Tulina, N.A., Colossal electroresistance and electron instability in strongly correlated electron systems (2007) Physics-Uspekhi, 50 (11), pp. 1171-1178. , DOI 10.1070/PU2007v050n11ABEH006396
  • Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Noh, T.W., (2008) Adv. Mater. (Weinheim, Ger.), 20, p. 1154. , ADVMEW 0935-9648,. 10.1002/adma.200702024
  • Strukov, B., Snider, G., Stewart, D.R., Williams, R.S., (2008) Nature, 80, p. 453. , NATUAS 0028-0836
  • Chua, I.O., (1971) IEEE Trans. Circuit Theory, 18, p. 507. , IECTAF 0018-9324,. 10.1109/TCT.1971.1083337
  • Szot, K., Speier, W., Bihlmayer, G., Waser, R., (2006) Nature Mater., 5, p. 312. , NMAACR 1476-1122,. 10.1038/nmat1614
  • Seong, D.-J., Jo, M., Lee, D., Hwang, H., HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO 3 Schottky junction for nonvolatile memory application (2007) Electrochemical and Solid-State Letters, 10 (6), pp. 168-170. , DOI 10.1149/1.2718396
  • Gomez-Marlasca, F., Levy, P., (2009) J. Phys.: Conf. Ser., 167, p. 012036. , JPCSDZ 1742-6588,. 10.1088/1742-6596/167/1/012036
  • Quintero, M., Levy, P., Leyva, A.G., Rozenberg, M.J., Mechanism of electric-pulse-induced resistance switching in manganites (2007) Physical Review Letters, 98 (11), p. 116601. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.116601&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.116601
  • Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., Tokura, Y., Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3 (2005) Applied Physics Letters, 86 (1), pp. 0121071-0121073. , DOI 10.1063/1.1845598, 012107
  • Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y., (2004) Appl. Phys. Lett., 85, p. 4073. , APPLAB 0003-6951,. 10.1063/1.1812580
  • Chen, X., Wu, N.J., Strozier, J., Ignatiev, A., Direct resistance profile for an electrical pulse induced resistance change device (2005) Applied Physics Letters, 87 (23), pp. 1-3. , DOI 10.1063/1.2139843, 233506
  • Ignatiev, A., Wu, N.J., Chen, X., Nian, Y.B., Papagianni, C., Liu, S.Q., Strozier, J., (2008) Phase Transitions, 81, p. 791. , PHTRDP 0141-1594,. 10.1080/01411590802212374
  • In the numerical simulations the calculated values of resistance at each simulation time stecorresponds to the experimental resistance that is measured with the small bias current; Das, N., Tsui, S., Xue, Y.Y., Wang, Y.Q., Chu, C.W., (2009) Phys. Rev. B, 80, p. 115411. , PRBMDO 0163-1829,. 10.1103/PhysRevB.80.115411

Citas:

---------- APA ----------
Ghenzi, N., Sánchez, M.J., Gomez-Marlasca, F., Levy, P. & Rozenberg, M.J. (2010) . Hysteresis switching loops in Ag-manganite memristive interfaces. Journal of Applied Physics, 107(9).
http://dx.doi.org/10.1063/1.3372617
---------- CHICAGO ----------
Ghenzi, N., Sánchez, M.J., Gomez-Marlasca, F., Levy, P., Rozenberg, M.J. "Hysteresis switching loops in Ag-manganite memristive interfaces" . Journal of Applied Physics 107, no. 9 (2010).
http://dx.doi.org/10.1063/1.3372617
---------- MLA ----------
Ghenzi, N., Sánchez, M.J., Gomez-Marlasca, F., Levy, P., Rozenberg, M.J. "Hysteresis switching loops in Ag-manganite memristive interfaces" . Journal of Applied Physics, vol. 107, no. 9, 2010.
http://dx.doi.org/10.1063/1.3372617
---------- VANCOUVER ----------
Ghenzi, N., Sánchez, M.J., Gomez-Marlasca, F., Levy, P., Rozenberg, M.J. Hysteresis switching loops in Ag-manganite memristive interfaces. J Appl Phys. 2010;107(9).
http://dx.doi.org/10.1063/1.3372617