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Energización de iones en turbulencia
de plasmas: enfoque
magnetohidrodinámico y cinético

Resumen
La turbulencia es un fenómeno observable en casi todos los flujos de la naturaleza, tanto neutros

cómo cargados. Se da cómo consecuencia de la interacción no lineal entre los distintos grados de
libertad del sistema, permitiendo el transporte de energía entre escalas. En la imagen habitual,
esta cascada de energía se da desde la escala de inyección hacia escalas más pequeñas, donde
eventualmente es disipada cómo calor. Aunque en flujos neutros la disipación se da principalmente
por colisiones entre las partículas o moléculas que lo componen, en flujos cargados cómo los
plasmas la dinámica puede ser mucho más rica. Para plasmas poco densos cómo el viento solar,
el efecto de las colisiones puntuales entre partículas es despreciable y cualquier mecanismo de
disipación de energía debe ser inherentemente colectivo.

Muchas de las propuestas existentes en la literatura dependen en mayor o menor medida de la
producción de partículas supraenergéticas que escapan del plasma cómo rayos cósmicos, llevándose
consigo parte de la energía del sistema. Si bien se conocen múltiples mecanismos eficientes para la
aceleración de partículas, cómo la reconexión magnética y los choques no colisionales, estos no son
inherentemente turbulentos (aunque pueden verse propiciados por la presencia de turbulencia).
El objetivo de esta tesis es estudiar mecanismos de aceleración de partículas cargadas en presencia
de turbulencia, puntualmente iones, mediante simulaciones numéricas directas.

Cómo primera aproximación al problema, trabajaremos con partícula de prueba inmersas
en un plasma modelado con la aproximación magnetohidrodinámica (MHD). A pesar de estar
cargadas, las partículas de prueba no generan campos electromagnéticos propios, sino que solo
responden a los dados por el modelo MHD. Comenzaremos estudiando la dinámica de iones con
distintas cocientes de carga y masa e identificaremos un mecanismo dominante de acumulación y
aceleración, cuya eficiencia depende de este cociente. Luego, mostraremos que este mecanismo
es inherentemente turbulento, comparando con simulaciones de MHD linealizado. En el modelo
MHD linealizado, el plasma está compuesto por múltiples tipos de onda con las que las partículas
pueden entrar en resonancia, ganando energía. Compararemos ambos mecanismos en distintos
regímenes y mostraremos que la presencia de ondas es disruptiva para la aceleración de protones,
pues interfiere con el mecanismo turbulento.

Finalmente, desarrollaremos un código cinético híbrido de tipo particle-in-cell (PIC), donde los
protones tienen campo electromagnético propio pero los electrones se modelan cómo un fluido sin
masa. Compararemos la aceleración de protones en este modelo cinético con la previamente estu-
diada en MHD. Veremos que aunque la aproximación de partículas de prueba produce resultados
cualitativamente similares a los del modelo cinético, arroja aceleraciones mayores y sobrestima la
población de protones supraenergéticos.

Palabras clave: plasma; aceleración de partículas cargadas; turbulencia; teoría cinética; simulaciones
numéricas directas.

v





Ion energization in plasma
turbulence: magnetohydrodynamic
and kinetic approach

Abstract
Turbulence is a phenomenon observable in almost all natural flows, both neutral and charged.

It arises as a consequence of the nonlinear interaction between the system’s different degrees of
freedom, allowing the transport of energy across scales. In the usual picture, this energy cascade
occurs from the injection scale to smaller scales, where it is eventually dissipated as heat. While in
neutral flows dissipation mainly occurs due to collisions between the particles or molecules that
comprise it, in charged flows such as plasmas, the dynamics can be much richer. For low-density
plasmas such as the solar wind, the effect of particle-particle collisions is negligible, and any energy
dissipation mechanism must inherently be collective.

Many of the existing proposals in the literature rely to varying degrees on the production of
suprathermal particles that escape the plasma as cosmic rays, carrying away part of the system’s
energy. Although multiple efficient particle acceleration mechanisms are known, such as magnetic
reconnection and collisionless shocks, these are not inherently turbulent (though they may be
facilitated by the presence of turbulence). The goal of this thesis is to study mechanisms for the
acceleration of charged particles, specifically ions, in the presence of turbulence through direct
numerical simulations.

As a first approach to the problem, we will work with test particles immersed in a plasma
modeled using the magnetohydrodynamic (MHD) approximation. Although the test particles are
charged, they do not generate their own electromagnetic fields but only respond to those given by
the MHD model. We will begin by studying the dynamics of ions with different charge-to-mass
ratios and will identify a dominant accumulation and acceleration mechanism, whose efficiency
depends on this ratio. Then, we will show that this mechanism is inherently turbulent by comparing
it with linearized MHD simulations. In the linearized MHD model, the plasma is composed of
multiple types of waves with which the particles can resonate, gaining energy. We will compare
both mechanisms in different regimes and show that the presence of waves is disruptive for proton
acceleration, as it interferes with the turbulent mechanism.

Finally, we will develop a hybrid kinetic code of the particle-in-cell (PIC) type, where protons
have their own electromagnetic fields but electrons are modeled as a massless fluid. We will
compare proton acceleration in this kinetic model with that previously studied in MHD. We will
see that, although the test particle approach produces qualitatively similar results to the kinetic
model, it yields higher accelerations and overestimates the population of suprathermal protons.

Keywords: plasma; charged particle acceleration; turbulence; kinetic theory; direct numerical simu-
lations.
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Capítulo 1

Introducción

Excepto cerca de los electrodos, donde hay láminas que contienen muy pocos electro-
nes, el gas ionizado contiene iones y electrones en números aproximadamente iguales,
por lo que la carga espacial resultante es muy pequeña. Usaremos el nombre de plasma
para describir esta región que contiene cargas equilibradas de iones y electrones.

Irving Langmuir, Oscillations in ionized gases, 1928

Las primeras observaciones de gases ionizados son tan antiguas cómo la humanidad misma,
siendo parte de los fenómenos más espectaculares de la naturaleza. Están presentes en las descargas
eléctricas durante una tormenta y en el fuego de los incendios que estasmismas generan. Conforman
el sol que nos ilumina a diario, las estrellas que nos guían en la noche y las auroras que nos fascinan.
La característica clave común a todos estos fenómenos es la emisión de luz.

Las primeras observaciones de laboratorio corresponden a experimentos de rayos catódicos en
tubos de vacío. En 1879 Sir William Crookes, uno de los pioneros en el área, bautizó este cuarto
estado de la materia cómo materia radiante (Crookes 1879). Los primeros estudios sistemáticos
de este estado fueron liderados por Irving Langmuir, culminando en su trabajo seminal de 1928
(Langmuir 1928). Allí acuñó el término plasma, notando que la descarga actúa cómo un sustrato
sobre el cual se mueven los iones y los electrones, análogamente a cómo lo hacen los glóbulos rojos
y blancos en el plasma sanguíneo (Mott-Smith 1971). Desde entonces, se han identificado gases
ionizados en múltiples contextos, concluyendo eventualmente que constituye casi la totalidad de
la materia visible en el universo.

Toda estrella, incluido nuestro propio Sol, es un gas ionizado amalgamado por su propia atrac-
ción gravitatoria. La tesis doctoral de Cecilia Payne-Gaposchkin en 1925 contiene la primera
explicación completa del espectro de emisión del Sol en términos de su composición iónica. A
pesar de su incredulidad, logró demostrar que el Sol está compuesto principalmente por hidrógeno
ionizado H+ (protones). En 1942, Hannes Alfvén mostró que en un fluido conductor (cómo un gas
ionizado) pueden existir ondas electromagnéticas-hidrodinámicas, que bautizó cómo magnetohidro-
dinámicas (Alfvén 1942) y propuso cómo una posible explicación para la dinámica de las manchas
solares. Enrico Fermi tomó estas ondas magnéticas cómo una fuente de aceleración de partículas
cargadas en el espacio interestelar, dando un posible origen de rayos cósmicos (Fermi 1949).

En 1958, Eugene Parker probó que no existe solución hidrostática posible para esta atmósfera
solar, mostrando la existencia del viento solar (Parker 1958). Su existencia fue confirmada mediante
mediciones de la misión Mariner 2 de la Administración Nacional de Aeronáutica y el Espacio
(NASA, por sus siglas en inglés) estadounidense durante su trayecto hacia Venus (Neugebauer
y Snyder 1962) y es monitoreado constantemente desde entonces. El viento solar se expande a
velocidad supersónica 𝑈0 ∼ 400 km/s hasta aproximadamente 100 AU (unidad astronómica, con 1
AU = distancia Sol-Tierra), marcando el límite de la heliosfera. En ausencia de fuentes de calor, se
esperaría que esta expansión sea adiabática, pero observaciones por Voyager I y II han mostrado
que el viento solar se enfría más lentamente (Wang y J. D. Richardson 2001), contradicción conocida
como el problema de la aceleración del viento solar. Este viene aparejado con el problema del
calentamiento coronal, según el cual existe un gran salto de temperatura entre la cromosfera y
la corona solar. Esto es llamativo porque habitualmente la temperatura del Sol se reduce con la
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2 Capítulo 1: Introducción

distancia al núcleo, pasando de 𝑇 ∼ 1,5×107 K hasta 𝑇 ∼ 5×103 K en la cromosfera, pero volviendo
a aumentar hasta 𝑇 ∼ 10 × 105 K en la corona.

Ambos problemas apuntan a la existencia de mecanismos de calentamiento del plasma y un
candidato viable sería la disipación de energía por turbulencia. Tanto la corona cómo el viento
solar se encuentran en un régimen turbulento, con espectros de energía compatibles con leyes de
escala cómo la de Kolmogorov (Kolmogorov 1941; Coleman 1968). Este régimen se caracteriza
por generar un flujo de energía cinética y/o magnética hacia escalas más pequeñas, donde efectos
disipativos cómo viscosidad o resistividad se maximizan y la transforman en calor. Para el viento
solar, esto ocurre en las escalas inerciales de protones y electrones, en ausencia de colisiones y,
por lo tanto, implica estructuras coherentes (Bruno et al. 2007; Perri et al. 2012; Perrone et al.
2016), intermitencia (Bruno et al. 2001; Greco et al. 2012; Zhdankin et al. 2012) y producción de
partículas energéticas (Parker y Tidman 1958; Tessein et al. 2013; Tessein et al. 2015).

A pesar del constante monitoreo del viento solar por misiones espaciales, existe un activo
debate sobre las características de la turbulencia por debajo de la escala iónica (protónica), donde
la descripción MHD y su correspondiente espectro de Kolmogorov pierden validez. Para escalas
menores a la protónica, el espectro de energía magnética presenta un quiebre hacia una ley de
potencias más empinada (R. J. Leamon et al. 1998; Smith et al. 2006), aunque este nuevo índice
espectral no está perfectamente determinado. Además, el espectro del campo eléctrico allí se separa
del espectro magnético, mostrando mayor intensidad y un decaimiento más lento, fundamental a
la hora de energizar partículas (Bale et al. 2005; Matteini et al. 2016). Estos cambios se deben a
procesos cinéticos que cobran importancia en esas escalas, cómo reconexiónmagnética, anisotropías
en la temperatura o calentamiento diferencial de iones. El espectro es aún menos comprendido
en escalas electrónicas, pero se sabe que es mucho más empinado, con evidencias que apuntan a
un decaimiento exponencial (Alexandrova et al. 2009, 2012; Sahraoui et al. 2013; Sahraoui et al.
2020).

Según el argumento original de Fermi, uno de los posibles mecanismos para la producción de
partículas energéticas sería la interacción resonante con ondas de Alfvén viajeras. Este argumento
fue posteriormente refinado y colectado en la Teoría Casi Lineal (TCL), dando condiciones claras
para esta resonancia (Stix 1992). Sin embargo, este tipo de cálculos dependen de la predominancia
de la dinámica ondulatoria en el plasma, régimen conocido cómo turbulencia débil (Chandran 2005,
2008). En este contexto, cada campo puede descomponerse cómo un valor medio de referencia más
una fluctuación de baja amplitud descripta cómo una suma de ondas débilmente interactuantes.
Este régimen, sin embargo, no es capaz de capturar procesos de turbulencia fuerte (Pouquet y Yokoi
2022), donde la dinámica comienza a ser dominada por estructuras coherentes y fluctuaciones
intermitentes no propagantes en lugar de ondas.

Las interacciones de partículas con estas estructuras coherentes son muy complejas, y aún
no existe un modelo definitivo para predecir las tasas de energización de partículas (Bieber et al.
2004; Ruffolo et al. 2008). En general, las partículas son capaces de explotar los campos eléctricos
presentes en estas estructuras para obtener altas tasas de energización. Dentro de estos modelos, el
uso de partículas de prueba es un enfoque popular y relativamente económico para calcular la
energización, en el cual las partículas no generan campos electromagnéticos, sino que simplemente
reaccionan a los campos impuestos externamente. Por lo tanto, la validez de sus predicciones está
determinada principalmente por cuán realista es el modelado de los campos electromagnéticos
externos, ya sea mediante turbulencia sintética (Ruffolo et al. 2006; Minnie et al. 2007; Dalena et al.
2012; Tautz y Dosch 2013; Dalena et al. 2014) o aquella obtenida mediante simulaciones numéricas
directas de distintos modelos (Dmitruk et al. 2004a; Dmitruk y Matthaeus 2006; Lehe et al. 2009;
Teaca et al. 2014; C. A. González et al. 2016, 2017; Pezzi et al. 2022). Mientras que el primero es
computacionalmente económico y capaz de capturar estadísticas globales, como los coeficientes de
difusión, el segundo es más adecuado para reproducir estructuras comúnmente presentes en el
plasma, que pueden ser muy relevantes en la energización de partículas (Greco et al. 2014; Perrone
et al. 2020; Lemoine 2021; Pezzi et al. 2022; Lotekar et al. 2022; Vinogradov et al. 2024).

En las escalas más grandes, el modelo magnetohidrodinámico (MHD) provee una buena des-
cripción de los plasmas espaciales, incluyendo la corona y el viento solar. Este modelo es capaz
de generar y evolucionar de forma consistente tanto las estructuras coherentes cómo las ondas y
permite describir de turbulencia fuerte a débil, incluyendo todos los regímenes intermedios. Es
por esto que este enfoque suele considerarse más realista a la hora de estudiar la energización
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de partículas de prueba. En presencia de un campo magnético guía, esta energización es princi-
palmente perpendicular para iones y paralela para electrones (Dmitruk et al. 2004a). Aunque
esta anisotropía ha sido observada consistentemente, no existe completo acuerdo sobre cuales son
los mecanismos responsables de esto. Las partículas de prueba se usan más comúnmente para
estudiar la dinámica de partículas cargadas de alta energía pero baja concentración, a fin de que
su efecto sobre los campos externos no sea notable y no sea necesario tener en cuenta sus campos
electromagnéticos intrínsecos. Esta es la población de partículas que asociaríamos a rayos cósmicos,
cuya energía es muy superior al grueso de las partículas que componen el plasma, pudiendo ser
consideradas cómo casi independientes del mismo.

Estos rayos cósmicos no son el único producto del calentamiento no colisional en un plasma,
sino también otras partículas supratérmicas con considerablemente menos energía y mayor con-
centración. Para capturar esta producción, son necesarios modelos cinéticos auto-consistentes
capaces de considerar la retroalimentación de las partículas sobre los campos (Servidio et al. 2017;
Howes 2017). Uno de los más importantes corresponde a acomplar las ecuaciones de Vlasov para
cada especie de partícula cargada con las ecuaciones de Maxwell para el campo electromagnético,
modelo conocido cómo Vlasov-Maxwell. Este permite resolver completamente tanto la dinámica
de los iones como la de los electrones, siendo estos últimos los que poseen escalas características
considerablemente más pequeñas, lo que exige resoluciones espaciales y temporales más altas a la
hora de hacer simulaciones numéricas directas (SND). Cuando el interés se centra principalmente
en los iones, este aumento en la resolución eleva el costo computacional, limitando el tamaño de
las simulaciones sin necesariamente aportar más información relevante sobre la física de los iones.
Para contrarrestar esto, se han desarrollado modelos híbridos donde solo los iones son tratados
cinéticamente mientras que los electrones son tratados como un fluido, generalmente sin masa.
Estos modelos no solo reducen significativamente el costo computacional, sino que también arrojan
resultados consistentes con observaciones en el viento solar (Servidio et al. 2014; Trotta et al. 2022)
y simulaciones completamente cinéticas (Birn et al. 2001; Le et al. 2016; C. González et al. 2023) a
la hora de reproducir fenómenos a escala de iones.

Uno de los enfoques para implementar numéricamente modelos involucra computar directa-
mente la función de distribución de iones en el espacio de fases 𝑓(x, v) resolviendo un conjunto de
ecuaciones diferenciales en derivadas parciales. Para esto, algunos métodos discretizan el espa-
cio de fases 6D análogamente al dominio real 3D, aplicando allí métodos de diferencias finitas
(Valentini et al. 2007; Muñoz et al. 2018; Pezzi et al. 2019). Otros métodos lo hacen de forma
pseudoespectral, usando funciones de Hermite en espacio de velocidades donde los operadores
diferenciales son más sencillos de expresar (Camporeale et al. 2016). Sin embargo, el método a
utilizar en esta tesis corresponde al de partícula en celda (PIC, por sus siglas en inglés), donde el
modelado de los iones se hace a través de macropartículas que representan un cierto volumen en
el espacio de fases (Lipatov 2002). Este método es conceptualmente simple y de relativamente fácil
implementación, siendo uno de los más antiguos y reconocidos a la hora de modelar cinéticamente
plasmas. En virtud de trabajar directamente con partículas que siguen las ecuaciones de Newton, la
descripción es inherentemente cinética. Sin embargo, para obtener 𝑓(x, v) es necesario computarla
directamente a partir de las macropartículas, lo cual puede ser computacionalmente costoso y
poco preciso debido al ruido disparo introducido por el muestreo finito de partículas. Sin embargo,
la mayoría de los observables de interés en un plasma pueden obtenerse sin necesidad de conocer
explícitamente 𝑓(x, v), volviendo este método extremadamente versátil.

Esta tesis se estructura de la siguiente manera: el próximo capítulo contiene el marco teórico
necesario para fundamentar el trabajo. Daremos un punteo sobre la dinámica de partículas cargadas
seguido por descripciones cinéticas y de fluido de plasmas. Además, discutiremos propiedades
generales de la turbulencia y los métodos numéricos utilizados para resolverla. Los siguientes
dos capítulos tratarán los resultados principales de esta tesis, primero comparando el rol de
estructuras y ondas en energización de partículas de prueba y luego energización en modelos
híbridos autoconsistentes y su comparación con partículas de prueba. En el último capítulo,
discutiremos estos resultados, su relevancia y posibles ramificaciones.
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Capítulo 2

Marco teórico

Las líneas de fuerzamagnéticas pueden considerarse como cuerdas elásticas según la
imagenmecánica usual de los fenómenos electrodinámicos. En vista de la conductividad
infinita, todo movimiento (perpendicular al campo) del líquido en relación con las
líneas de fuerza está prohibido porque produciría corrientes de Foucault infinitas. Así,
la materia del líquido está “atada” a las líneas de fuerza...

Hannes Alfvén, On the existence of electromagnetic-hydrodynamic waves, 1942

En este capítulo hablaremos sobre la descripción de sistemas compuestos por partículas cargadas.
Comenzaremos analizando la dinámica de cargas frente a campos electromagnéticos impuestos
externamente. Estos campos externos son indiferentes a la dinámica de estas cargas, por lo que las
llamaremos partículas de prueba.

Luego pasaremos a una descripción de tipo cinética, considerando poblaciones enteras de
distintas especies de partículas y su reacción a los campos que ellas mismas generan. A partir de
ella, construiremos sucesivamente descripciones de tipo fluido para las distintas especies, pasando
por una descripción híbrida antes de llegar a la descripción magnetohidrodinámica del plasma.
Discutiremos la fenomenología que surge a partir de estos modelos, con especial énfasis en la
turbulencia.

2.1. Dinámica de partículas cargadas

2.1.1. Fuerza de Lorentz
En presencia de un campo electromagnético, la dinámica de una partícula cargada está dictada

por la fuerza de Lorentz

F = 𝑞 (E +
v
𝑐
× B) , (2.1)

donde 𝑐 es la velocidad de la luz en vacío, 𝑞 es la carga de la partícula, v su velocidad y E y B son
los campos eléctrico y magnético en la posición de la partícula, respectivamente. Vemos que el
campo eléctrico siempre aporta una componente de fuerza paralela a él mismo, mientras que la
fuerza magnética es perpendicular tanto a la velocidad cómo al propio campo magnético. Entre
otras cosas, esto implica que la fuerza magnética es incapaz de generar trabajo, al ser su potencia
v ⋅ F𝑀 = 0.

Es posible interpretar la fuerza magnética en analogía con la cinemática de un cuerpo rígido.
Sabemos que para un punto material arbitrario ubicado en r sujeto a una rotación rígida dada
por Ω, la velocidad está dada por ̇r = Ω × r. Recordando la segunda ley de Newton, vemos que
algo completamente análogo ocurre para la velocidad ̇v = (−𝑞/𝑚𝑐)B × v, donde 𝑚 es la masa
de la partícula. Por lo tanto, podemos interpretar la fuerza magnética cómo una rotación rígida
instantánea en el espacio de velocidades.

Esta rotación se da sobre el plano perpendicular a B, mientras que la componente paralela no
se ve afectada. Para un campo magnético uniforme y estacionario, esta fuerza magnética genera un

5
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movimiento circular uniforme (MCU) en el plano perpendicular a B y un movimiento rectilíneo
uniforme (MCU) en la dirección paralela a B. La superposición de estos movimientos genera una
trayectoria helicoidal orientada en la dirección de B, cómo muestra la figura 2.1(a).

Este MCU tiene una frecuencia de ciclotrón

Ω𝑐 =
|𝑞B|
𝑚𝑐

, (2.2)

también conocida cómo girofrecuencia. El signo de 𝑞 determina el sentido de giro: horario para
𝑞 > 0 y antihorario para 𝑞 < 0. Esa frecuencia tiene asociado su giroperiodo

𝜏𝑐 =
2𝜋
Ω𝑐

=
2𝜋𝑚𝑐
|𝑞B|

, (2.3)

y su giroradio o radio de ciclotrón

𝑅𝑐 =
|v⟂|
Ω𝑐

=
𝑚𝑐|v⟂|
|𝑞B|

, (2.4)

donde v⟂ es la componente de v perpendicular a B.

Agregando un campo eléctrico también uniforme y estacionario esta dinámica cambia levemente.
Vemos que un cambio de variables v′ = v − 𝑐E × B/|B|2 transforma (2.1) en

v̇′ =
𝑞
𝑚

[(E ⋅ 𝐁̂) 𝐁̂ +
v′

𝑐
× B] ,

donde usamos la propiedad del doble producto vectorial A × (B × C) = B (A ⋅ C) − C (A ⋅ B) y
definimos el versor dirección del campo magnético 𝐁̂ = B/|B|.

Vemos entonces que la componente de v′ paralela a B se ve acelerada con la componente paralela
de E. Al ser esta aceleración constante, tenemos un movimiento rectilineo uniformemente acelerado
(MRUV). Por otro lado, la componente perpendicular de v′ está sujeta a la misma ecuación de
antes, por lo que sigue un MCU en el plano perpendicular. Podemos recuperar la velocidad original
v = v′ +V𝐷 donde

V𝐷 = 𝑐
E × B
|B|2

(2.5)

es una velocidad de deriva constante y perpendicular a B. Concluimos entonces que la cinemática
es una superposición de MRU (dado por V𝐷) y MCU en el plano perpendicular a B junto con un
MRUV en la dirección paralela a B. En la figura 2.1(b), se muestra esta deriva proyectada sobre el
plano perpendicular a B.

2.1.2. Aproximación de centro guía
El método anterior puede generalizarse aún para el caso de campos electromagnéticos no

uniformes. Empecemos por notar que tanto el giroperiodo 𝜏𝑐 (2.3) cómo el giroradio 𝑅𝑐 (2.4)
escalan cómo ∼ 𝑚𝑐/|𝑞B|. Por lo tanto, si estas escalas espacio-temporales son menores que las
escalas características de variación de los campos electromagnéticos, es posible aproximar los
campos percibidos por la partícula por una expansión de Taylor de bajo orden. En este régimen
se dice que las partículas se encuentran magnetizadas, pues suele darse en presencia de campos
magnéticos intensos.

La aproximación de orden 0, donde asumimos ambos campos cómo uniformes, es la que arrojó la
velocidad de deriva (2.5). La partícula está sujeta a un MCU alrededor de un centro que se desplaza,
que en este caso sigue una trayectoria parabólica: un MRUV en 𝐁̂ y un MRU en la dirección de V𝐷.
La idea de este método es asumir que incluso a ordenes mayores, la partícula seguirá moviendose
en un MCU alrededor de un centro guía. La dinámica de este centro guía se complicará a medida
que se aumente el orden de la aproximación, pero se mantiene la visión de que la trayectoria será
una helicoide orientada a lo largo de las líneas de campo magnético con una pequeña deriva lateral.

Siguiendo esta idea, la posición x(𝑡) de una partícula cargada puede aproximarse según

x(𝑡) ≈ x𝑐(𝑡) + x𝑔(𝑡),
dx𝑐
d𝑡

= V𝐷(x𝑐(𝑡), 𝑡), (2.6)
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B E VD

B ∝ 3(ẑ·x)x−|x|2ẑ
|x|5

∇|B|
V∇

B

(a) (b)

(c)

Figura 2.1: Visualización de las trayectorias (azul) de una partícula cargada en distintas configuraciones de campo elec-
tromagnético. (a) Helicoide correspondiente al caso E = 0 y B constante. (b) Proyección sobre el plano perpendicular a B
constante, mostrando la deriva ante un campo eléctrico E constante. (c) Partícula con 𝑣∥ = 0 sobre el plano ortogonal a un
campo magnético B dipolar, cuyo módulo tiene un gradiente radial y, por lo tanto, una velocidad de deriva V∇ azimutal.

donde x𝑔(𝑡) es un movimiento circular con frecuenciaΩ𝑐 y radio 𝑅𝑐, en principio constantes durante
al menos un giroperiodo 𝜏𝑐. Cómo vemos, esta aproximación así escrita impone v∥ = 0 (componente
de v paralela a B), lo cual no es razonable. En principio, la dinámica de esta componente no es
simple de computar, pero usando la expresión (2.6), es posible obtener algunas aproximaciones.

Para fluctuaciones de campo eléctrico la corrección a siguiente orden para la V𝐷 (2.5) es

VE = (1 +
1
4
𝑅2
𝑐∇2) 𝑐

E × B
|B|2

. (2.7)

Esto nos muestra que las correcciones por variación del campo eléctrico son cuadráticas en el
giroradio 𝒪 (𝑅2

𝑐 ), sin que exista un caso intermedio 𝒪 (𝑅𝑐). Esto implica que para 𝑅𝑐 ll ℓ con ℓ una
distancia característica de variación de los campos, estas correcciones serán subdominantes.

Algo análogo ocurre con las derivas asociadas a fluctuaciones del campo magnético. Dos de las
más conocidas son la debida a un gradiente en la intensidad del campo (∇|B| ≠ 0)

V∇ =
𝑚𝑐

2𝑞|B|
|v⟂|

2∇|B| × B
|B|2

, (2.8)

y la debida a la curvatura de las líneas de campo magnético

V𝐶 =
𝑚𝑐
𝑞|B|

𝑣2∥
K × B
|B|

, (2.9)

donde 𝑣∥ = v ⋅ 𝐁̂ y K = 𝐁̂ ⋅ ∇𝐁̂ es la curvatura local de B: su módulo corresponde al inverso del
radio de curvatura. Es fácil ver que |V∇| ∼ |v⟂|𝑅𝑐/ℓ = 𝒪(𝑅𝑐) donde ℓ = |B|/|∇|B|| es la distancia
característica de variación de |B|. Vemos entonces que esta deriva será dominante respecto a VE,
pero aún así pequeña respecto a V𝐷 excepto para partículas con excepcional energía cinética
perpendicular 𝜀⟂ = |v⟂|

2. Podemos apreciar un ejemplo de esta deriva en la figura 2.1(c) para
el caso de un campo magnético dipolar y dinámica puramente perpendicular a la dirección del
dipolo. Algo similar ocurre con V𝐶, pues |V𝐶| ∼ 𝑣2∥ /ℓΩ𝑐 donde en este caso ℓ representa el radio de
curvatura, por lo que solo será relevante para partículas con una energía cinética paralela 𝜀∥ = 𝑣2∥
excepcionalmente alta.

En esta tesis, estamos interesados en el caso en que existe un campo guía intenso, tal que
B = B0 + b con B0 constante y |B0| ≫ |b|. Bajo esta hipótesis, ambas escalas características serán
grandes pues |B0| ≈ |B| y 𝐁̂ ≈ 𝐁̂0 y sus variaciones lentas, volviendo estas derivas aún menos
relevantes.
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2.1.3. Espejos magnéticos y ángulo de inclinación
Otra aproximación muy conocida es la que da origen a los espejos magnéticos (Roederer y Zhang

2013; F. F. Chen 2016). Consideremos una región del espacio donde el campo magnético es axisi-
métrico 𝜕/𝜕𝜑 = 0 y sin componente azimutal 𝐵𝜑 = 0. Si consideramos que x𝑐 se encuentra sobre
este eje de simetría, la condición ∇ ⋅ B = 0 nos permite encontrar una expresión simple para 𝐵𝑟

1
𝑟
𝜕
𝜕𝑟

(𝑟𝐵𝑟) = −
𝜕𝐵𝑧
𝜕𝑧

⟹ 𝐵𝑟 = −
1
𝑟
∫

𝑟

0
𝑟 ′
𝜕𝐵𝑧
𝜕𝑧

𝑑𝑟 ′ ≈ −
1
2
𝑟
𝜕𝐵𝑧
𝜕𝑧

|
𝑟=0

, (2.10)

donde usamos que 𝑟 ≤ 𝑅𝑐 ll ℓ𝑟 con ℓ𝑟 ∼ 𝐵𝑧/𝜕𝑟𝐵𝑧 la escala característica de variación radial de 𝐵𝑧. La
componente 𝑧 de la fuerza magnética es entonces

𝐹𝑧 = 𝑞(v × B)𝑧 = 𝑞 (𝑣𝑟𝐵𝜑 − 𝑣𝜑𝐵𝑟) ≈
1
2
𝑞𝑣𝜑𝑟

𝜕𝐵𝑧
𝜕𝑧

|
𝑟=0

.

Esta fuerza, sin embargo, oscilará junto con 𝑣𝜑, por lo que no es muy indicativa de la dinámica
del sistema. En línea con la hipótesis anterior 𝑅𝑐 ll ℓ𝑟, podemos promediar esta fuerza en un
giroperiodo 𝜏𝑐. Durante este tiempo, la partícula avanzará ∼ 𝑣𝑧𝜏𝑐 ll ℓ𝑧 donde ℓ𝑧 es la distancia
característica de variación del campo magnético a lo largo del eje. Por lo tanto, podemos aproximar
su trayectoria cómo circular y en su lugar promediar sobre un círculo de radio 𝑅𝑐

⟨𝐹𝑧⟩ =
1
𝜏𝑐

∫
𝜏𝑐

0
𝐹𝑧d𝑡′ ≈

1
2𝜋𝑅𝑐

∮𝐹𝑧dℓ =
1

2𝜋𝑅𝑐
∫

2𝜋

0

1
2
𝑞𝑣𝜑𝑅𝑐

𝜕𝐵𝑧
𝜕𝑧

|
𝑟=0

𝑅𝑐d𝜑 = −
𝑚|v⟂|

2

2|B|
𝜕𝐵𝑧
𝜕𝑧

|
𝑟=0

donde usamos (2.10), 𝑣𝜑 = −sg(𝑞)|v⟂| y la definición de𝑅𝑐 (2.4). Esto nos permite definir elmomento
magnético

𝜇 =
𝑚|v⟂|

2

2|B|
. (2.11)

Sobre el eje de simetría, tenemos B = 𝐵𝑧𝐳̂ dada la hipotesis inicial 𝐵𝜑 = 0 y (2.10), por lo que
podemos escribir

𝑣𝑧
d𝑣𝑧
d𝑡

≈ −𝑣𝑧 𝜇
𝜕𝐵𝑧
𝜕𝑧

|
𝑟=0

≈ −𝜇
d𝐵𝑧
d𝑡

= −𝜇
d|B|
d𝑡

, (2.12)

donde 𝐵𝑧 = |B| está evaluado en la posición del centro guía x𝑐 y usamos la definición de derivada
direccional. Por lo tanto, esta derivada d𝐵𝑧/d𝑡 refiere a la variación del campo experimentado por
la partícula, despreciando variaciones temporales propias del campo (𝜕𝐵𝑧/𝜕𝑡 ≈ 0).

Por otro lado, en ausencia de campo eléctrico sabemos que la energía cinética total se conserva

0 =
d
d𝑡

(
1
2
𝑚|v|2) =

d
d𝑡

(
1
2
𝑚|v⟂|

2 +
1
2
𝑚𝑣2𝑧 ) =

d
d𝑡

(|B|𝜇) − 𝜇
d|B|
d𝑡

= |B|
d𝜇
d𝑡

(2.13)

donde la descompusimos en componente paralela y perpendicular y usamos (2.12). Por lo tanto,
bajo estas hipótesis 𝜇 es una constante de movimiento, volviéndolo uno de los invariantes adiabáticos
de la partícula. Los demás invariantes no son particularmente relevantes para esta tesis y tampoco
resulta trivial que estas hipótesis se cumplan en presencia de turbulencia. Cuando se cumplen,
pueden dar origen a confinamiento por espejos magnéticos: una partícula debe incrementar su
|v⟂| para poder acceder a regiones de alto |B|, lo cual por conservación de la energía solo puede
ocurrir en detrimento de |𝑣𝑧|. Si la partícula no dispone de suficiente |𝑣𝑧| (energía cinética), no
podrá acceder a regiones con campos magnéticos intensos.

En el fondo, la efectividad de este confinamiento no depende de la energía cinética sino del
ángulo de la velocidad respecto al campo magnético, conocido cómo ángulo de inclinación (en inglés,
pitch angle) y correspondiente al ángulo polar en coordenadas esféricas. Por lo tanto, 𝑣𝑧 = |𝑣| cos𝜃
con 𝜃 el ángulo de inclinación y podemos escribir el momento magnético cómo 𝜇 = 𝜀 sin2 𝜃/|B|
donde 𝜀 = 𝑚|v|/2 la energía cinética de la partícula. Supongamos que la partícula tiene unmomento
magnético inicial 𝜇0 = 𝜀0 sin2 𝜃0/𝐵0. Para que la partícula acceda a una región con |B|, dado que
𝜀 = 𝜀0 en ausencia de campo eléctrico, el nuevo ángulo de inclinación debe ser

sin2 𝜃 = sin2 𝜃0
|B|
𝐵0

≤ 1 ⟹ |B| ≤
𝐵0

sin2 𝜃0
,
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B = 80o

= 65o
= 50o

= 35o

Figura 2.2: Corte paralelo de un espejo magnético axisimétrico B = 𝐵𝑟(𝑟, 𝑧) ̂𝐫 + 𝐵𝑧(𝑟, 𝑧)𝐳̂. En negro se muestran las líneas de
campo magnético mientras que los colores indican trayectorias para partículas con la misma energía inicial pero distinto
ángulo de inclinación.

y por lo tanto la partícula no podrá acceder regiones con campo magnético demasiado intenso.
Podemos ver un ejemplo de este confinamiento en la figura 2.2 para un campo magnético artificial,
donde integramos la trayectoria de múltiples partículas con la misma energía cinética inicial pero
distinto ángulo de inclinación. Vemos que la configuración de tipo cuello de botella impide que las
partículas con 𝜃 ≳ 50o escapen de la región observada.

2.1.4. Energización en presencia de anisotropía
Cómo mencionamos previamente, nos interesa el caso en que existe un campo magnético guía

presente B0 = 𝐵0𝐳̂ con 𝐵0 una constante, tal que B = B0 + b. Esta dirección privilegiada motiva una
descomposición de la dinámica en paralela y perpendicular, tal que v = v⟂ + v∥ donde v∥ = (v ⋅ 𝐳̂)𝐳̂.
La ecuación de Newton bajo la fuerza de Lorentz (2.1) puede descomponerse entonces cómo

dv∥

d𝑡
= (

dv
d𝑡

⋅ 𝐳̂) 𝐳̂ = (𝛼 [𝑐E + v × (B0 + b)] ⋅ 𝐳̂) 𝐳̂ = 𝛼 [𝑐E ⋅ 𝐳̂ + (v × b) ⋅ 𝐳̂] 𝐳̂,

donde usamos que (v ×B0) ⟂ 𝐳̂ y definimos 𝛼 = 𝑞/𝑚𝑐 por simplicidad. Usando la propiedad cíclica
(v × b) ⋅ 𝐳̂ = (𝐳̂ × v) ⋅ b y la descomposición de v junto con una análoga para E y b obtenemos

dv∥

d𝑡
= 𝛼 [𝑐E∥ + (b⟂ × 𝐳̂) ⋅ v⟂𝐳̂] . (2.14)

Podemos hacer lo mismo para la componente perpendicular, definida cómo v⟂ = v − v∥

dv⟂
d𝑡

=
dv
d𝑡

−
dv∥

d𝑡
= 𝛼 [𝑐(E − E∥) + v × B0 + v × b − (b⟂ × 𝐳̂) ⋅ v⟂𝐳̂] ,

donde vemos que aparece naturalmente E⟂ = E − E∥. Los 2 términos siguientes resultan

v × B0 = (v⟂ + v∥) × B0 = v⟂ × B0,
v × b = (v⟂ + v∥) × (b⟂ + b∥) = v⟂ × b⟂ + v⟂ × b∥ + v∥ × b⟂,

por lo que agrupando tenemos

dv⟂
d𝑡

= 𝛼 [𝑐E⟂ + v⟂ × (B0 + b∥ + b⟂) + v∥ × b⟂ − (v⟂ × b⟂) ⋅ 𝐳̂𝐳̂] . (2.15)

A partir de (2.14) y (2.15) podemos obtener ecuaciones para la energía paralela 𝜀∥ y perpendi-
cular 𝜀⟂

d𝜀∥
d𝑡

=
d
d𝑡

(
1
2
|v∥|2) = v∥ ⋅

dv∥

d𝑡
= 𝛼 [𝑐𝐸∥𝑣∥ + (b⟂ × v∥) ⋅ v⟂] ≡ 𝒫∥ + 𝒫×, (2.16)
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d𝜀⟂
d𝑡

=
d
d𝑡

(
1
2
|v⟂|2) = v⟂ ⋅

dv⟂
d𝑡

= 𝛼 [𝑐E⟂ ⋅ v⟂ − (b⟂ × v∥) ⋅ v⟂] ≡ 𝒫⟂ − 𝒫×, (2.17)

donde definimos las potencias paralela 𝒫∥, perpendicular 𝒫⟂ y cruzada 𝒫×. Las primeras dos
corresponden al trabajo del campo eléctrico en esa dirección, mientras 𝒫× refiere a un término de
intercambio entre energía paralela y perpendicular mediado por las fluctuaciones perpendiculares
del campo magnético b⟂. Podemos reexpresar esta potencia cómo

𝒫× = 𝛼(b⟂ × v∥) ⋅ v⟂ = 𝛼(v∥ × v⟂) ⋅ b⟂, (2.18)

donde vemos que el intercambio se maximiza cuando b⟂ ∥ (v∥ × v⟂). Geométricamente, sabemos
que este producto mixto representa el volumen (orientado) del paralelepípedo formado por los 3
vectores v∥, v⟂,b⟂. Cómo v∥ y v⟂ ya son perpendiculares entre si, tenemos simplemente |v∥ × v⟂| =
𝑣∥𝑣⟂, por lo que 𝒫× = 𝛼𝑣∥𝑣⟂𝑏⟂ cos𝜑 con 𝜑 el ángulo entre v∥ × v⟂ y b⟂. En términos del ángulo de
inclinación 𝜃 respecto a B0 tenemos 𝑣∥ = |v| cos𝜃 y 𝑣⟂ = |v| sin𝜃, por lo que

𝒫× = 𝛼
𝑣2

2
sin(2𝜃)𝑏⟂ cos𝜑 = 𝜀 sin(2𝜃)𝛼𝑏⟂ cos𝜑, (2.19)

donde 𝜀 = |v|2/2 es la energía cinética total. Dada la dependencia con el ángulo de inclinación 𝜃
podemos identificar esta tasa de intercambio de energía con la conocida dispersión del ángulo de
inclinación (en inglés, pitch angle scattering).
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2.2. Modelos cinéticos de plasmas
Habiendo estudiado la dinámica de partículas individuales, pasamos ahora a estudiar su com-

portamiento colectivo. En esta sección, presentaremos modelos para describir la mutua interacción
de un número macroscópico de partículas cargadas, puntualmente en el contexto de un plasma.

2.2.1. ¿Qué es un plasma?
No todo sistema compuesto por partículas cargadas es un plasma. Más aún, no todo gas ionizado

es necesariamente un plasma, pues todo gas tiene un grado no nulo de ionización (C. H. K. Chen
et al. 2013, Capítulo 1). Un plasma es un gas casineutral compuesto tanto por partículas cargadas
cómo neutras que exhibe comportamiento colectivo. Los conceptos clave en esta definición son
casineutralidad y comportamiento colectivo.

Casineutralidad refiere a la propiedad de apantallar potenciales eléctricos. Esquemáticamente,
notamos que cualquier carga aislada tenderá a atraer eléctricamente cargas opuestas hasta que
la repulsión de estas nuevas cargas compense la atracción de la carga original. En ese momento,
la carga neta se vuelve prácticamente nula y decimos que el potencial original fue apantallado.
Este apantallamiento no es absoluto, sino que es efectivo a partir de una cierta longitud de Debye
(C. H. K. Chen et al. 2013, Capítulo 1)

𝜆𝐷 = √ 𝐾𝐵𝑇
4𝜋𝑛𝑞2

, (2.20)

donde 𝐾𝐵 es la constante de Boltzmann, 𝑇 es la temperatura del sistema, 𝑛 es la densidad media de
partículas y 𝑞 su carga. Decimos entonces que dos cargas separadas por una distancia mayor a 𝜆𝐷
no interactúan eléctricamente. Para distancias menores a 𝜆𝐷, la interacción eléctrica es dominante e
intensa, cualidades que podemos asociar a una colisión. Para que este apantallamiento sea posible,
es necesario que las partículas cargadas interactúen entre si más de lo que interactúan con las
partículas neutras del sistema. Esto suele poner cotas mínimas a la fracción de ionización del
sistema, que en los contextos astrofísicos de interés para esta tesis, se cumplen siempre.

Otra condición necesaria para el apantallamiento es que cada carga tenga suficientes cargas
opuestas en su vecindad, lo cual se cuantifica con el llamado parámetro de plasma

𝑁𝐷 =
4𝜋
3
𝜆3
𝐷𝑛, (2.21)

que corresponde al número medio de partículas en una esfera de radio 𝜆𝐷. Cuando 𝑁𝐷 ≫ 1, el
sistema no solo dispone de casineutralidad sino que además presenta comportamiento colectivo.
Disponer de este gran número de partículas permite que el sistema genere desbalances locales de
carga o incluso corrientes, dando origen a campos electromagnéticos. Al ser estos campos de largo
alcance, la dinámica depende no solo de condiciones locales sino de aquellas en regiones alejadas,
dando origen a un comportamiento colectivo.

Un ejemplo sencillo de este comportamiento colectivo son las oscilaciones de plasma frío
(Langmuir 1928). Consideremos un plasma estático y uniforme perturbado por un campo eléctrico
inicialmente sinusoidal E(x, 𝑡 = 0) = 𝐸0 exp(𝑖𝑘𝑥)𝐱̂. Este sistema es esencialmente unidimensional,
por lo que dejaremos de lado la notación vectorial. Proponemos entonces una solución compleja
𝐸(𝑥, 𝑡) = 𝐸0 exp[𝑖(𝑘𝑥 − 𝜔𝑡)], con el objetivo de hallar 𝜔(𝑘). Si consideramos el límite de plasma frío,
todas las partículas comienzan con velocidad 0, por lo que rápidamente se acoplan a la dinámica
del campo. La ecuación de Newton resulta

𝑚 ̇𝑣 = 𝑞𝐸 ⟹ 𝑣 = 𝑖
𝑞

𝜔𝑚
𝐸0𝑒𝑖(𝑘𝑥0−𝜔𝑡), (2.22)

donde tomamos la posición de la partícula cómo aproximadamente constante 𝑥(𝑡) ≈ 𝑥0, teniendo
en mente la solución oscilatoria e inspirados en el modelo del centro guía de la sección 2.1.2. La
conservación de la carga impone

𝜕𝑗
𝜕𝑥

= −
𝜕𝜌𝑐
𝜕𝑡

=
𝜕
𝜕𝑥

(
𝑖𝜔𝐸
4𝜋

) , (2.23)
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donde 𝑗 es la densidad de corriente, 𝜌𝑐 la densidad de carga y usamos la Ley de Gauss ∇ ⋅ E = 4𝜋𝜌𝑐
junto con el reemplazo 𝜕𝑡 → −𝑖𝜔 en virtud de (2.22). La densidad de corriente puede escribirse en
términos de la velocidad cómo 𝑗 ≈ 𝑞𝑛0𝑣 = donde 𝑛0 es la densidad inicial de partículas y usando
(2.22) junto con (2.23)

𝑖𝑘 [𝑖
𝑞2𝑛0
𝜔𝑚

−
𝑖𝜔
4𝜋

] 𝐸0 = 0, (2.24)

donde usamos la forma ondulatoria para reemplazar 𝜕𝑥 → 𝑖𝑘 y simplificamos las exponenciales. Es
inmediato ver que la única solución no trivial (𝐸0 ≠ 0) corresponde a la frecuencia de plasma

𝜔 = √4𝜋𝑛0𝑞2

𝑚
, (2.25)

asociada a las ondas de Langmuir. Es importante notar que nunca especificamos el tipo de partícula
cargada, por lo que cada especie tendrá su propia frecuencia de plasma, determinada únicamente
por su carga 𝑞𝑠, su masa 𝑚𝑠 y su densidad media 𝑛0. Dada esta frecuencia, es inmediato construir
una longitud asociada tomando en cuenta la velocidad de la luz 𝑐

𝑑 =
𝑐
𝜔

= √ 𝑚𝑐2

4𝜋𝑛0𝑞2
, (2.26)

conocida cómo longitud de penetración o longitud inercial. En general, esta es la escala a partir de la
cual las partículas exhiben comportamientos cinéticos, desacoplándose del flujo medio subyacente
(ver a continuación).

2.2.2. Ecuaciones de Vlasov-Maxwell
Existen múltiples formas de describir un sistema de partículas interactuantes desde el punto

de vista de la mecánica estadística. En su forma más general, un sistema de 𝑁 partículas clásicas
idénticas puede describirse mediante una densidad de probabilidad 𝑓𝑁(x1, .., x𝑁,p1, ..,p𝑁, 𝑡), donde
x𝑖 y p𝑖 son la posición y elmomento de la 𝑖-esima partícula, respectivamente. El Teorema de Liouville
(Goldstein et al. 2002, Capítulo 9) determina la evolución de esta densidad de probabilidad en
este espacio de fases 6𝑁 dimensional, pero esto resulta poco práctico si nos interesan sistemas
macroscópicos con 𝑁 ≫ 1. Para tan alta dimensionalidad, este problema resulta intratable.

Es posible reducir la dimensionalidad de este espacio mediante la jerarquía BBGKY (en honor
a Bogoliubov–Born–Green–Kirkwood–Yvon) (D. C. Montgomery et al. 1965, Capítulo 4), donde
obtenemos ecuaciones para la densidad de probabilidad de ℓ ≤ 𝑁 partículas 𝑓ℓ(x1, .., xℓ,p1, ..,pℓ, 𝑡).
Estas ecuaciones, sin embargo, están acopladas y no es posible darles clausura, pues habitualmente
𝑓ℓ depende explícitamente de 𝑓ℓ+1. De un punto de vista formal, esto eventualmente obliga a resolver
hasta 𝑓𝑁, por lo cual es equivalente al problema original. No obstante, esta formulación da un
marco claro a partir del cual aproximar 𝑓ℓ: necesitamos alguna hipótesis sobre 𝑓ℓ+1 para forzar una
clausura temprana del sistema de ecuaciones.

Idealmente, buscamos limitarnos al caso ℓ = 1 y obtener la función de distribución de una única
partícula 𝑓1 ≡ 𝑓, donde la dimensionalidad del problema es siquiera tratable. Sin embargo, cualquier
distribución de una única partícula es incapaz de modelar correctamente la interacción entre dos o
más partículas. Cómo mencionamos en la sección 2.2.1, podemos separar estas interacciones en
aquellas con campos electromagnéticos de largo alcance generados colectivamente y las colisiones.
Si nos concentramos en escalas 𝐿 ≫ 𝜆𝐷, es posible despreciar las colisiones y tratar solo con los
campos magnéticos de largo alcance. Esto arroja la ecuación de Vlasov no colisional

𝜕𝑓𝑠
𝜕𝑡

+ v ⋅
𝜕𝑓𝑠
𝜕x

+ 𝑞𝑠 (E +
v
𝑐
× B) ⋅

𝜕𝑓𝑠
𝜕p

= 0, (2.27)

donde v = ẋ es la velocidad y el índice 𝑠 denota la especie de partícula en cuestión, si consideramos
un plasma compuesto por múltiples poblaciones (e.g., electrones, protones, iones pesados). Las
partículas de cada especie son idénticas entre si desde un punto de vista clásico, con una misma
carga 𝑞𝑠 y masa𝑚𝑠. Esta es una ecuación de conservación del número de partículas (de cada especie)
en el espacio de fases, asumiendo que su dinámica está dictada por la fuerza de Lorentz (2.1).
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Para completar la descripción, es necesario determinar los campos eléctrico E y magnético B,
para lo cual utilizamos las ecuaciones de Maxwell

∇ ⋅ E = 4𝜋𝜌𝑐, (2.28)
∇ ⋅ B = 0, (2.29)

∇ × E = −
1
𝑐
𝜕B
𝜕𝑡

, (2.30)

∇ × B =
4𝜋
𝑐

j +
1
𝑐
𝜕E
𝜕𝑡

, (2.31)

donde 𝜌𝑐 es la densidad de carga y j es la densidad de corriente. Estas densidades están relacionadas
con los primeros dos momentos de la distribución de partículas.

𝜌𝑐(x, 𝑡) = ∑
𝑠

𝑞𝑠𝑛𝑠(x, 𝑡) = ∑
𝑠

𝑞𝑠∫𝑓𝑠(x,p, 𝑡)dp,

j(x, 𝑡) = ∑
𝑠

𝑞𝑠𝑛𝑠(x, 𝑡)u𝑠(x, 𝑡) = ∑
𝑠

𝑞𝑠∫ v𝑓𝑠(x,p, 𝑡)dp,

donde 𝑛𝑠(x,p, 𝑡) es la densidad de partículas y u𝑠(x, 𝑡) es la velocidad media, tal que ∫𝑛𝑠(x, 𝑡)dx = 𝑁𝑠
el número total de partículas de la especie 𝑠.

Nótese que aún no determinamos la relación entre la velocidad v y el momento p. Dado que la
fuerza de Lorentz tiene la misma forma tanto para el caso relativista cómo para el Newtoniano, la
elección recae exclusivamente en cómo se relacionan v y p. En principio, las ecuaciones de Maxwell
son invariantes de Lorentz, por lo que deberíamos tomar p = 𝑚𝑠𝛾(v)v, donde 𝛾(v) = (1 − |v|2/𝑐2)−1/2

es el factor de Lorentz.

En el contexto de este trabajo, sin embargo, nos limitaremos a descripciones no relativistas del
plasma, por lo que tomaremos la relación más usual p = 𝑚𝑠v de la mecánica Newtoniana. Esto
vuelve (2.27) invariante de Galileo si agregamos la corrección habitual E → E − U × B, donde U es
la velocidad del nuevo sistema de referencia. Para solucionar la contradicción con la invarianza de
Lorentz (2.28)-(2.31), usaremos que las partículas tienen velocidades |v| ll 𝑐, por lo que podemos
despreciar los campos de radiación. Esto es similar a tomar una hipótesis casiestacionaria, donde
descartamos el término de corriente de desplazamiento ∝ 𝜕𝑡E de (2.31).

Dado que p y v son proporcionales, podemos redefinir la distribución en términos de v re-
normalizando apropiadamente. El sistema clásico newtoniano entonces está compuesto por la
ecuación de Vlasov

𝜕𝑓𝑠
𝜕𝑡

+ v ⋅
𝜕𝑓𝑠
𝜕x

+
𝑞𝑠
𝑚𝑠

(E +
v
𝑐
× B) ⋅

𝜕𝑓𝑠
𝜕v

= 0, (2.32)

las ecuaciones de Maxwell (2.28)-(2.30), la ley de Ampere modificada

∇ × B =
4𝜋
𝑐

j, (2.33)

y las fuentes

𝜌𝑐(x, 𝑡) = ∑
𝑠

𝑞𝑠𝑛𝑠(x, 𝑡) = ∑
𝑠

𝑞𝑠∫𝑓𝑠(x, v, 𝑡)dv, (2.34)

j(x, 𝑡) = ∑
𝑠

𝑞𝑠𝑛𝑠(x, 𝑡)u𝑠(x, 𝑡) = ∑
𝑠

𝑞𝑠∫ v𝑓𝑠(x, v, 𝑡)dv. (2.35)

Este sistema de ecuaciones es implícitamente cuadrático en 𝑓𝑠. Esto se debe a que los campos
E y B son lineales en 𝑓𝑠 cómo consecuencia de la linealidad de las ecuaciones de Maxwell (2.28)
y (2.33) con las fuentes. Más aún, las fuentes involucran a todas las especies, por lo que el tercer
término de (2.32) uno que acopla las 𝑓𝑠 de las distintas especies.
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2.2.3. Momentos de la ecuación de Vlasov y equilibrio local

Cómodijimos, los campos de densidad 𝑛𝑠(x, 𝑡) y velocidadu𝑠(x, 𝑡) son los primeros dosmomentos
de la distribución de partículas. Estos momentos se computan integrando en espacio de velocidades
y podemos obtener sus ecuaciones de evolución a partir de (2.32). La primer ecuación se obtiene
integrando directamente la ecuación ∫(2.32)dv,

𝜕𝑛𝑠
𝜕𝑡

+ ∇ ⋅ (𝑛𝑠u𝑠) = 0. (2.36)

Esta ecuación implica la conservación del número de partículas en el espacio real y se la conoce
cómo ecuación de continuidad. Integrando ∫𝑚𝑠v(2.32)dv obtenemos la ecuación de Euler

𝑚𝑠𝑛𝑠 [
𝜕u𝑠
𝜕𝑡

+ (u𝑠 ⋅ ∇)u𝑠] = −∇ ⋅ P𝑠 + 𝑞𝑠𝑛𝑠 (E +
u𝑠
𝑐

× B) , (2.37)

donde aparece el tensor presión de la especie 𝑠

P𝑠(x, 𝑡) = 𝑚𝑠∫[v − u𝑠(x, 𝑡)] [v − u𝑠(x, 𝑡)] 𝑓𝑠(x, v, 𝑡)dv. (2.38)

Este tensor presión mide la desviación de las velocidades respecto a la media y tiene unidades
de densidad de energía. Es posible relacionarlo con la temperatura a través de

𝑇𝑠(x, 𝑡) =
Tr [P𝑠(x, 𝑡)]
3𝑛𝑠(x, 𝑡)

=
𝑚𝑠

3𝑛𝑠(x, 𝑡)
∫ |v − u𝑠(x, 𝑡)|

2𝑓𝑠(x, v, 𝑡)dv ≡
𝑚𝑠
3
⟨|v − u𝑠|

2⟩𝑠 (2.39)

donde definimos el valor medio en espacio de velocidades ⟨•⟩𝑠 = ∫•𝑓𝑠dv/𝑛𝑠 y dejamos de lado la
constante de Boltzmann 𝐾𝐵, expresando la temperatura directamente en unidades de energía. En
esta notación, tenemos u𝑠 = ⟨v⟩𝑠 y P𝑠 = 𝑚𝑠𝑛𝑠⟨[v − u𝑠] [v − u𝑠]⟩𝑠.

Ambas ecuaciones (2.36) y (2.37) describen la derivada temporal de cada momento siempre
en términos de momentos superiores: 𝜕𝑡𝑛𝑠 depende de u𝑠 mientras que 𝜕𝑡u𝑠 depende de P𝑠. Una
ecuación para 𝜕𝑡P𝑠 generada con unmétodo análogo dependerá del tensor compuesto pormomentos
de orden 3 y así sucesivamente. Este es un conocido problema de clausura, muy similar al que
ocurre en la jerarquía BBGKY (ver sección 2.2.2) y en otros problemas no lineales.

Para poder cerrar tempranamente este sistema de ecuaciones, es necesario aplicar clausuras
termodinámicas. Esto implica que existe una escala del problema en la cual los elementosmateriales
están en equilibrio termodinámico. En gases clásicos, este equilibrio suele alcanzarse mediante
colisiones entre las partículas, que llevan al sistema a una distribución de Maxwell-Boltzmann

𝑓𝑠(x, v, 𝑡) =
𝑛𝑠(x, 𝑡)

[(2𝜋)3 detS𝑠(x, 𝑡)]
1/2 exp {−

1
2
[v − u𝑠(x, 𝑡)] ⋅ S−1

𝑠 (x, 𝑡) ⋅ [v − u𝑠(x, 𝑡)]} , (2.40)

donde S𝑠 es el tensor de correlación de las distintas componentes de las desviaciones v − u𝑠(x, 𝑡).
Podemos relacionarlo con el tensor de presiones P𝑠(x, 𝑡) = 𝑚𝑠𝑛𝑠(x, 𝑡)S𝑠(x, 𝑡) y, por lo tanto, su traza
cumple Tr [S𝑠] = 3𝑇𝑠/𝑚𝑠. Más aún, al ser S𝑠 simétrico cómo P𝑠, existen 3 direcciones ortogonales
para las cuales se pueden definir temperaturas 𝑇(1)

𝑠 , 𝑇(2)
𝑠 y 𝑇(3)

𝑠 . Para sistemas isótropos se tiene
𝑇(1)
𝑠 = 𝑇(2)

𝑠 = 𝑇(3)
𝑠 = 𝑇𝑠, por lo que esta descomposición es más relevante para problemas anisótropos.

Veremos que un campo magnético uniforme es capaz de inducir esta anisotropía de modo que,
por ejemplo, 𝑇(1)

𝑠 = 𝑇∥
𝑠 y 𝑇(2)

𝑠 = 𝑇(3)
𝑠 = 𝑇⟂

𝑠 . Independientemente de esta diagonalización, siempre es
posible definir la temperatura de cada componente ℓ de la velocidad cómo

𝑇ℓ =
Pℓℓ(x, 𝑡)
𝑛(x, 𝑡)

=
𝑚

𝑛(x, 𝑡)
∫ [𝑣ℓ − 𝑢ℓ(x, 𝑡)]

2 𝑓(x, v, 𝑡)dv ≡
𝑚
3
⟨[𝑣ℓ − 𝑢ℓ(x, 𝑡)]

2⟩ (2.41)

donde hemos omitido los subindices de especie 𝑠 por simplicidad, tal que su promedio da la
temperatura definida en (2.39) 𝑇 = (𝑇𝑥 + 𝑇𝑦 + 𝑇𝑧)/3.
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Definidas la temperatura y la presión, podemos discutir la termodinámica del sistema. En
particular, un parámetro relevante es el 𝛽 de plasma de cada especie, dado por el cociente entre
presión térmica y magnética, esta última definida cómo 𝑝𝑀 = |B0|

2/8𝜋, tal que

𝛽𝑠 =
8𝜋𝑛𝑠𝑇𝑠

|B0|
2 , (2.42)

donde interpretamos 𝑛𝑠𝑇𝑠 = Tr [P𝑠(x, 𝑡)] /3 cómo una presión media. Este parámetro se usa cómo
medida de magnetización de la especie 𝑠. En general, especies con 𝛽𝑠 ≫ 1 tendrán una dinámica
dominada por fenómenos netamente termodinámicos, cómo las colisiones. En contraposición, el
campo magnético será relevante para especies con 𝛽𝑠 ≲ 1, generando fenómenos colectivos sin
necesidad de colisiones.

En principio, las colisiones necesarias para alcanzar la termalización no están consideradas
directamente en las ecuaciones de Vlasov-Maxwell, por lo que su uso requiere ciertas hipótesis ad
hoc. Dado un gas colisional, existe un camino libre medio 𝜆𝑠 ∼ (𝜎𝑠𝑛𝑠)−1 donde 𝜎𝑠 es la sección eficaz
y 𝑛𝑠 es la densidad volumétrica de partículas. Volúmenes mayores a 𝜆3

𝑠 estarán compuestos por
partículas colisionando entre sí y por lo tanto en equilibrio termodinámico local. Por lo tanto, este
modelo de fluido solo sería válido para la especie 𝑠 en escalas espaciales ℓ ≫ 𝜆𝑠. Sin embargo, en
muchos plasmas este tipo de colisión frontal es sumamente improbable (𝜆𝑠 ≳ 𝐿)¹ y la termalización
se da mediante otros mecanismos. En particular, puede darse en distintas escalas para cada especie
de partículas, pues cada especie tiene escalas espaciales y temporales propias. Ejemplos de estas
escalas serían el giroradio 𝑅𝑐 (2.4) y el giroperíodo 𝜏𝑐 (2.2) o la frecuencia de plasma 𝜔𝑝 (2.25) y la
longitud de penetración 𝑑 (2.26).

2.2.4. Modelo híbrido
Muchos plasmas se forman por ionización de materiales habitualmente neutros: están com-

puesto por iones positivos y electrones negativos. Al estar los iones compuestos de protones y
neutrones con masa 𝑚𝑛 ≈ 𝑚𝑝 ≫ 𝑚𝑒 la masa de estos iones 𝑚𝑖 también es mucho mayor a 𝑚𝑒, donde
𝑚𝑛 ≈ 939,6MeV/𝑐2, 𝑚𝑝 ≈ 938,3MeV/𝑐2 y 𝑚𝑒 ≈ 511, 0keV/𝑐2 son las masas del neutrón, protón
y electrón, respectivamente (National Institute of Standards and Technology (NIST) 2025). En
otras palabras, la inercia electrónica es despreciable frente a la iónica y los electrones tienden a
reaccionar a perturbaciones externas mucho más rápido. En particular, tanto el giroradio cómo el
giroperiodo de los electrones es mucho menor al de los protones 𝜏𝑐𝑒/𝜏𝑐𝑝 = 𝑅𝑐𝑒/𝑅𝑐𝑝 ∝ 𝑚𝑒/𝑚𝑝 ll 1 y,
por lo tanto, al de cualquier ion². Algo similar ocurre con la longitud de penetración y frecuencia
de plasma 𝑑𝑒/𝑑𝑖 = 𝜔𝑝𝑖/𝜔𝑝𝑒 = √𝑚𝑒/𝑚𝑖 ll 1.

Por lo tanto, si estamos interesados en estudiar escalas 𝑑𝑒, 𝑅𝑐𝑒 ≲ 𝐿 ≲ 𝑑𝑖, 𝑅𝑐𝑖, podemos tratar a los
electrones cómo un fluido en equilibrio termodinámico local a la vez que retenemos el carácter
cinético de los iones. En particular, dada la composición del viento solar, nos interesa un plasma
compuesto por electrones y protones. Podemos entonces usar ecuaciones de fluido (2.36) y (2.37)
para los electrones (𝑠 = 𝑒) y la ecuación de Vlasov (2.32) para los protones (𝑠 = 𝑝) junto con las
ecuaciones de Maxwell (2.28), (2.29), (2.30) y (2.33), lo que se conoce cómo modelo híbrido.

Antes de seguir, notemos que existe cierta contradicción entre la aproximación casiestacionaria
que lleva de (2.31) a (2.33) y la conservación de la carga.

0 =
𝜕𝜌𝑐
𝜕𝑡

+ ∇ ⋅ j =
𝜕𝜌𝑐
𝜕𝑡

,

donde usamos que ∇ ⋅ j = 0 por (2.33). La aproximación casiestacionaria impide la variación tem-
poral de 𝜌𝑐 y la solución más simple es imponer 𝜌𝑐(x, 𝑡) = 0. Esta condición es un desprendimiento
de la casineutralidad introducida en la sección 2.2.1. Para un plasma de protones y electrones la
ecuación (2.34) implica

𝑛𝑒(x, 𝑡) = 𝑛𝑝(x, 𝑡). (2.43)

Esta condición modifica la definición de la densidad de corriente (2.35)

j = 𝑛𝑝e (u𝑝 − u𝑒) (2.44)

¹En el viento solar a distancia de 1AU del sol, se estima 𝜆𝑠 ∼ 3AU mientras que 𝑑𝑝 ∼ 𝑅𝑐𝑝 ∼ 150km y 𝑑𝑝 ∼ 𝑅𝑐𝑒 ∼ 3km
(Verscharen et al. 2019).

²Hemos asumido velocidades similares para ambas especies, lo cual no es necesariamente cierto en algunos contextos.
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donde usamos que e = 𝑞𝑝 = −𝑞𝑒 es la carga del electrón (en módulo). En particular, vemos que
𝑛𝑒u𝑒 = 𝑛𝑝u𝑝 − j/e y por lo tanto la ecuación de continuidad electrónica se cumple trivialmente

𝜕𝑛𝑒
𝜕𝑡

+ ∇ ⋅ (𝑛𝑒u𝑒) =
𝜕𝑛𝑝
𝜕𝑡

+ ∇ ⋅ (𝑛𝑝u𝑝) −
1
e
∇ ⋅ j = 0,

en consecuencia a la ecuación de continuidad (2.36) protónica (𝑠 = 𝑝) y ∇ ⋅ j = 0 por (2.33).

Esta serie de aproximaciones no termina aquí, pues podemos ver de (2.44) que la velocidad del
flujo electrónico u𝑒 está unívocamente definida dados u𝑝 y B. Por lo tanto, en principio la ecuación
de Euler (2.37) que dicta la evolución de u𝑒 podría entrar en conflicto con la ley de Faraday (2.30)
y la ecuación de Vlasov protónica (2.32) que determinan, indirectamente, la evolución de u𝑝 y
B. Para evitar esto, aprovechamos que bajo la hipótesis casiestacionaria no disponemos de una
ecuación de evolución para E y que la ley de Gauss (2.31) perdió sentido al ser 𝜌𝑐 ≡ 0. Esto nos da
la libertad de despejar E a partir de la ecuación de Euler (2.37) para electrones (𝑠 = 𝑒)

E = −
𝑚𝑒
e

[
𝜕u𝑒
𝜕𝑡

+ (u𝑒 ⋅ ∇)u𝑒] −
1
e𝑛𝑒

∇ ⋅ P𝑒 −
u𝑒
𝑐

× B, (2.45)

conocida cómo la ley de Ohm generalizada. Siguiendo el argumento inicial de inercia electrónica
despreciable, es habitual anular el término ∝ 𝑚𝑒/e, dado que mantenerlo puede requerir resolver
ecuaciones elípticas para evolucionar B (Andrés et al. 2014; Muñoz et al. 2018). Esta expresión
requiere aún una clausura termodinámica para el tensor de presiones P𝑒. Aquí asumiremos una
presión isótropa P𝑒 = 𝑝𝑒1 con 1 el tensor identidad y politrópica 𝑝𝑒 ∝ 𝑛𝛾

𝑒 , donde 𝛾 es el exponente
politrópico (usualmente 𝛾 = 5/3 para el caso adiabático).

Armados con esto, podemos llegar a un sistema de ecuaciones donde la dinámica electrónica
queda completamente dictada por la dinámica de los protones y el campo magnético. El sistema
de ecuaciones resulta

𝜕𝑓𝑝
𝜕𝑡

+ v ⋅
𝜕𝑓𝑝
𝜕x

+
e
𝑚𝑝

(E +
v
𝑐
× B) ⋅

𝜕𝑓𝑝
𝜕v

= 0, (2.46)

E =
1
e𝑛𝑒

[
j × B
𝑐

− ∇𝑝𝑒] −
u𝑝

𝑐
× B = −

u𝑒
𝑐

× B −
∇𝑝𝑒
e𝑛𝑒

, (2.47)

𝑝𝑒𝑛
−𝛾
𝑝 = const., (2.48)

𝜕B
𝜕𝑡

= −𝑐∇ × E = ∇ × [(u𝑝 −
j

e𝑛𝑒
) × B] , (2.49)

donde usamos que 𝑛𝑒 = 𝑛𝑝 y que 𝑛−1
𝑒 ∇𝑝𝑒 puede escribirse cómo el gradiente de algún funcional

presión al ser 𝑝𝑒 una función de 𝑛𝑒, por lo que su rotor es automáticamente nulo. A estas ecuaciones
se suman (2.29) y (2.33) y las definiciones de 𝑛𝑝 y u𝑝 según (2.34) y (2.35).

A partir de este sistema de ecuaciones podemos derivar densidades de energía asociadas a los
distintos campos

ℰ𝑝(x, 𝑡) =
1
2
𝑚𝑝𝑛𝑝⟨|v|

2⟩𝑝 =
1
2
𝑚𝑝𝑛𝑝|u𝑝|

2 +
1
2
𝑚𝑝𝑛𝑝⟨|v − u𝑝|

2⟩𝑝 ≡ ℰ𝑐(x, 𝑡) + ℰ𝑇(x, 𝑡), (2.50)

ℰ𝑚(x, 𝑡) =
1
8𝜋

|B|2, (2.51)

ℰ𝑒(x, 𝑡) =
𝑝𝑒

𝛾 − 1
, (2.52)

donde separamos la energía cinética total de los protones ℰ𝑝 en la energía cinética del flujo medio
ℰ𝑐 (o energía cinética a gran escala) y la energía de las fluctuaciones o térmica ℰ𝑇³. La energía
magnética es ℰ𝑚 mientras que la energía térmica electrónica es ℰ𝑒. Promediando estas densidades
en toda la caja (lo cual denotaremos cómo ⟨•⟩) obtenemos ecuaciones de balance globales

d⟨ℰ𝑝⟩
d𝑡

= ⟨e𝑛𝑝u𝑝 ⋅ E⟩, (2.53)

³Usando (2.39), podemos expresar ℰ𝑇 = (3/2)𝑛𝑝𝑇𝑝, en completa analogía con la densidad energía interna de un gas ideal
en equilibrio termodinámico.
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d⟨ℰ𝑚⟩
d𝑡

= −⟨j ⋅ E⟩ = ⟨e𝑛𝑒u𝑒 ⋅ E⟩ − ⟨e𝑛𝑝u𝑝 ⋅ E⟩, (2.54)

d⟨ℰ𝑒⟩
d𝑡

= −⟨𝑝𝑒∇ ⋅ u𝑒⟩ = ⟨u𝑒 ⋅ ∇𝑝𝑒⟩, (2.55)

para las cuales usamos que los flujos sobre la superficie del volumen se anulan. Definiendo una
energía total ℰ = ℰ𝑝 + ℰ𝑚 + ℰ𝑒, sumando (2.53)-(2.55) y usando la expresión de E dada por (2.47), se
obtiene una conservación global de ℰ.

2.2.5. Método particle-in-cell (PIC)
El método de partícula en celda (particle-in-cell, PIC) consiste en expresar la función de distri-

bución cómo una superposición de 𝑁𝑠 macropartículas

𝑓𝑠 (x, v, 𝑡) =
𝑁𝑠

∑
𝑗=1

𝑤𝑗 𝑆 (x − x𝑗(𝑡)) 𝛿 (v − v𝑗(𝑡)) , (2.56)

ubicadas en el punto (x𝑗(𝑡), v𝑗(𝑡)) del espacio de fases. Consideramos que estas macropartículas
representan una colección de partículas cercanas en el espacio de fases, ocupando un volumen
espacial dado por la función de forma 𝑆 (shape, en inglés). Todas las partículas de la colección
tienen una misma velocidad (identificado por la función delta de Dirac 𝛿) para que el paquete no
se disperse. La cantidad de partículas en cada colección está determinado por su peso 𝑤𝑗 (weight,
en inglés).

Existen múltiples elecciones posibles para la función de forma 𝑆, pero la más habitual surge
de tomar una 𝛿 (correspondiente al caso de partícula puntual) y aplicar sucesivas convoluciones
contra la función galera

Π(x) =
1
Δ𝐷 {1 si ‖x‖∞ ≤ Δ/2

0 si ‖x‖∞ > Δ/2 (2.57)

donde𝐷 es la dimensión del espacio,Δ es una escala espacial característica y ‖x‖∞ = máx{|𝑥1|, .., |𝑥𝐷|}
es la norma infinito . Llamamos orden de la interpolación al número de veces que esta convolución
se aplica. En el contexto de la matemática y el procesamiento gráfico, esta familia de funciones
es conocida cómo B-splines (R. y Boor 1980, Capítulo 9). Dado que las funciones semilla 𝛿 y Π
son pares (simétricas respecto a x = 0), todas las funciones de esta familia lo serán. En el caso 2D,
vemos que funciones de mayor orden son más suaves y emulan mejor la simetría esférica esperable
de una partícula, lo cual también ocurrirá en 3D (ver más adelante).

Cada una de estas macropartículas debe cumplir la ecuación de Vlasov (2.32), por lo que
tomando momentos obtenemos ecuaciones de Newton para cada una

̇x𝑗 = v𝑗, v̇𝑗 =
𝑞𝑠
𝑚𝑠

(E𝑗 +
v𝑗

𝑐
× B𝑗) , (2.58)

donde E𝑗 y B𝑗 son los campos efectivos (o interpolados) que sienten las partículas

E𝑗 = ∫E(x) 𝑆 (x − x𝑗)dx, (2.59)

y lo propio para B𝑗. Estas interpolaciones equivalen a convolucionar el campo contra la función de
forma 𝑆 y evaluar en x𝑗.

Es importante notar que la representación del método PIC es inherentemente Lagrangiana:
cada macropartícula tiene propiedades asociadas (masa, carga, impulso, energía, por mencionar
algunas) que acarrea consigo a lo largo de su movimiento. Esto es completamente independiente
de cómo se representen los campos, que en principio son Eulrianos. Hablaremos en mayor detalle
de esta representación cuando discutamos el método pseudoespectral en la sección 2.3.4. Por
ahora, basta considerar el caso en que los campos están definidos sobre una grilla cuadrada de
tamaño Δ (idéntico al asociado a Π). Consideraremos 𝑁 de estas celdas, cada una determinada por
una coordenada X𝑛 (usaremos temporalmente mayúsculas para distinguirlas de la posición de las
macropartículas) 𝑛 = 1, .., 𝑁 y volumen Δ𝐷.
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Figura 2.3: Funciones peso para los primeros 4 ordenes de aproximación, tanto en 1D (paneles superiores) cómo 2D (paneles
inferiores). Vemos que tienden a ser más suaves y con mayor simetría esférica a medida que aumenta el orden.

Al estar la grilla discretizada, consideramos que los campos son constantes en el interior de la
celda 𝑛 (definida por X𝑛). Estos campos constantes a trozos pueden expresarse cómo una suma de
funciones galera centradas en cada punto de grilla

𝐺(x) =
𝑁

∑
𝑛=1

𝐺(X𝑛) Π(x − X𝑛)Δ, (2.60)

donde𝐺 es un campo Euleriano arbitrario. Bajo esta definición, es posible reescribir la interpolación
definida en (2.59) cómo

𝐺𝑗 =
𝑁

∑
𝑛=1

∫𝐺(X𝑛) Π (x − X𝑛) Δ 𝑆 (x − x𝑗(𝑡))dx =
𝑁

∑
𝑛=1

𝐺(X𝑛) 𝑊 (X𝑛 − x𝑗(𝑡)) (2.61)

donde𝑊 ≡ Π∗𝑆Δ es la función peso (weight function, en inglés), obtenida de convolucionar la función
de forma 𝑆 con la función galera Π. Dada la definición de 𝑆 cómo una secuencia de convoluciones
conΠ,𝑊 sería simplemente la siguiente función en la familia de B-splines. En la figura 2.3 podemos
observar las primeras funciones𝑊 de esta familia en sus versiones unidimensional y bidimensional.

Análogamente, es posible obtener equivalentes Eulerianos de las propiedades de partícula
definidos sobre esta grilla mediante el depósito, que implica usar la definición de 𝑓𝑠 según (2.56)
para calcular los valores medios ⟨•⟩𝑠. Si tenemos una propiedad de macropartícula 𝑔(v), podemos
obtener la densidad media de esta propiedad cómo

𝑛𝑠⟨𝑔(v)⟩𝑠 =
𝑁𝑝

∑
𝑛=1

𝑤𝑗 𝑔(v𝑗) 𝑆 (x − x𝑗(𝑡)) . (2.62)

Por ejemplo, para 𝑔(v) = 1 tenemos simplemente 𝑛𝑠, para 𝑔(v) = v tenemos 𝑛𝑠u𝑠 y así sucesivamente.
Estos campos Eulerianos, sin embargo, son continuos. Podemos obtener los valores sobre el punto
de grilla X𝑛 promediando sobre la celda completa. Esto equivale a convolucionar contra la función
galera, por lo que nuevamente obtenemos una expresión en términos de la función peso

[𝑛𝑠⟨𝑔(v)⟩𝑠] (X𝑛, 𝑡) =
𝑁𝑝

∑
𝑛=1

𝑤𝑗 𝑔(v𝑗) 𝑊 (X𝑛 − x𝑗(𝑡)) . (2.63)

Más detalles técnicos sobre las funciones de peso 𝑊 y su efecto sobre los depósitos pueden
verse en el apéndice A.
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2.3. Magnetohidrodinámica
En la sección anterior introdujimos el modelo híbrido donde los protones son tratados cómo

partículas (cinéticamente) y los electrones cómo un fluido sin masa. En esta sección, vamos consi-
derar también a los protones cómo un fluido, para obtener así el modelo de único fluido conocido
cómo magnetohidrodinámica (MHD).

2.3.1. Derivación
Comenzaremos tomando las ecuaciones para los dos primeros momentos de la ecuación de

Vlasov para protones (𝑠 = 𝑝): la ecuación de continuidad (2.36) y la ecuación de Euler (2.37). Por
convención, multiplicaremos la ecuación (2.36) por𝑚𝑝 y definiremos la densidad de masa 𝜌 = 𝑚𝑝𝑛𝑝,
teniendo en mente que los electrones no aportan. También renombraremos u𝑝 cómo u, al notar que
u𝑒 no es realmente un grado de libertad sino que está definido en términos de los demás. Con estas
consideraciones, la ecuación de continuidad en MHD resulta

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌u) = 0, (2.64)

Para la ecuación de Euler (2.37) necesitamos utilizar la ley de Ohm generalizada (2.47) tal que

𝜌 [
𝜕u
𝜕𝑡

+ (u ⋅ ∇)u] = −∇ ⋅ P𝑝 + e𝑛𝑒 (
1
e𝑛𝑒

[
j × B
𝑐

− ∇𝑝𝑒] −
u𝑝

𝑐
× B +

u𝑝

𝑐
× B)

𝜌 [
𝜕u
𝜕𝑡

+ (u ⋅ ∇)u] = −∇ ⋅ (P𝑝 + 1𝑝𝑒) +
j × B
𝑐

donde usamos que 𝑛𝑝 = 𝑛𝑒 por cuasineutralidad. Nuevamente, surge el problema de clausura con
la presión, por lo que la asumimos isótropa P𝑝 = 1𝑝𝑝 y politrópica similarmente a la electrónica
𝑝𝑝 ∝ 𝑛𝛾

𝑝 . Esto nos permite definir una presión total 𝑝 = 𝑝𝑝+𝑝𝑒 ∝ 𝑛𝛾
𝑝 ∝ 𝜌𝛾, donde usamos que 𝑝𝑝 ∝ 𝑛𝛾

𝑝

y 𝑝𝑒 ∝ 𝑛𝛾
𝑒 = 𝑛𝛾

𝑝 . Es habitual agregar una cierta disipación viscosa para imponer una escala mínima
en el problema (discutiremos esto con mayor detalle en la sección 2.4). Con todo esto, resulta

𝜌 [
𝜕u
𝜕𝑡

+ (u ⋅ ∇)u] = −∇𝑝 +
j × B
𝑐

+ 𝜇 [∇2u +
∇(∇ ⋅ u)

3
] , (2.65)

donde 𝜇 es el coeficiente de viscosidad dinámica.

Por las mismas razones, agregamos una resistividad 𝜂 a la ley de Ohm (2.47)

E = − [(u −
𝜖𝐻
𝜌

j) × B] −
𝜖𝐻
𝜌
∇𝑝𝑒 + 𝜂j (2.66)

donde 𝜖𝐻 = 𝑚𝑝/e es el parámetro de Hall y es habitual tomar 𝑝𝑒 = 𝑝/2, que equivale a asumir
equilibrio térmico entre ambas especies (𝑇𝑒 = 𝑇𝑝). Esto lleva a una ecuación de inducción

𝜕B
𝜕𝑡

= ∇ × [(u −
𝜖𝐻
𝜌

j) × B] + 𝜂∇2B, (2.67)

y cerramos el sistema con la relación politrópica

𝑝𝜌−𝛾 = 𝑝0𝜌
−𝛾
0 (2.68)

donde 𝑝0 y 𝜌0 son una presión y densidad de masa de referencia, respectivamente.

Este modelo dispone de densidades de energía similares a las del modelo híbrido definidas en
(2.50), (2.51) y (2.52). Más aún, la energía de flujo medio ℰ𝑐 (reemplazando 𝑚𝑝𝑛𝑝 por 𝜌 y u𝑝 por u)
y magnética ℰ𝑚 son idénticas, mientras que la energía térmica y la electrónica se combinan en una
única energía interna

ℰ𝑇+𝑒 =
𝑝

𝛾 − 1
=

𝑝𝑝 + 𝑝𝑒
𝛾 − 1

. (2.69)
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Sin embargo, la existencia de términos disipativos genera correcciones en las ecuaciones de
balance globales (2.53), (2.54) y (2.55), que aquí resultan

d⟨ℰ𝑐⟩
d𝑡

= −⟨u ⋅ ∇𝑝⟩ + ⟨
1
𝑐
(j × B) ⋅ u⟩ − 𝜇⟨|𝜔|2 +

4
3
(∇ ⋅ u)2⟩, (2.70)

d⟨ℰ𝑚⟩
d𝑡

= −⟨
1
𝑐
(j × B) ⋅ u⟩ − 𝜂⟨|j|2⟩, (2.71)

d⟨ℰ𝑇+𝑒⟩
d𝑡

= −⟨𝑝∇ ⋅ u⟩ = ⟨u ⋅ ∇𝑝⟩, (2.72)

mostrando que 𝜇 y 𝜂 efectivamente corresponden a disipación. Al sumar estas ecuaciones (2.70)-(2.72)
para obtener el balance ℰ = ℰ𝑐 + ℰ𝑚 + ℰ𝑇+𝑒, vemos que estos términos disipativos persisten.

2.3.2. Propiedades y fenomenología
En ausencia de condiciones de contorno, el sistema de ecuaciones dado por (2.64), (2.65), (2.67)

y (2.68) está caracterizado por 4 números adimensionales. Reescribimos x = 𝐿0x′ y 𝑡 = 𝑡0𝑡′ y los
campos cómo 𝜌 = 𝜌0𝜌′, u = 𝑈0u

′, B = 𝐵0B
′ y 𝑝 = 𝑝0𝑝′ donde tomaremos cómo convención que las

magnitudes primadas son adimensionales. En el Sistema Cegesimal de Unidades (CGS) usado en
esta tesis, solo disponemos de 3 unidades fundamentales: centimetro (longitud), gramo (masa) y
segundo (tiempo). Por lo tanto, podemos sin pérdida de generalidad relacionar muchas de estas
magnitudes dimensionales: la convención habitual es 𝑈0 = 𝐿0/𝑡0 y 𝐵0 = 𝑈0√4𝜋𝜌0. Aunque en
principio podríamos deshacernos de una magnitud más, aquí la dejaremos libre al considerar que
𝐿0 viene dada por el dominio espacial de interés.

Operando con esta formulación y abandonando las primas por simplicidad, obtenemos el
sistema de ecuaciones adimensionalizado

𝜌 [
𝜕u
𝜕𝑡

+ (u ⋅ ∇)u] = −
1

𝛾𝑀2
𝑠
∇𝑝 + (∇ × B) × B +

1
𝑅𝑒

[∇2u +
∇(∇ ⋅ u)

3
] , (2.73)

𝜕B
𝜕𝑡

= ∇ × [(u −
̃𝜖𝐻
𝜌

j) × B] +
1
𝑅𝑚

∇2B, (2.74)

𝑝 = 𝜌−𝛾, (2.75)

donde omitimos escribir la ecuación de continuidad (2.64) ya que es idéntica. Los números adi-
mensionales resultan el número de Mach

𝑀𝑠 =
𝑈0
𝑐𝑠

, 𝑐𝑠 =
√

⎷
𝜕𝑝
𝜕𝜌

|
𝜌0

= √
𝛾𝑝0
𝜌0

(2.76)

con 𝑐𝑠 la velocidad del sonido, el parámetro de Hall

̃𝜖𝐻 =
𝑑𝑝
𝐿0

, 𝑑𝑝 =
𝑚𝑝𝑐

e√4𝜋𝜌0
, (2.77)

y los números de Reynolds cinético

𝑅𝑒 =
𝑈0𝐿0𝜌0

𝜇
=

𝑈0𝐿0
𝜈

, (2.78)

con 𝜈 = 𝜇/𝜌0 la viscosidad cinemática y el número de Reynolds magnético

𝑅𝑚 =
𝑈0𝐿0
𝜂

. (2.79)

El número de Mach𝑀𝑠 controla la compresibilidad del flujo, recuperando un fluido incompresi-
ble en el límite𝑀𝑠 → 0, donde la velocidad del sonido 𝑐𝑠 → ∞. Esto permite corregir desbalances de
presión inmediatamente, con variaciones infinitesimales de densidad. Finalmente, el parámetro de
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Hall adimensional controla la separación entre la escala integral 𝐿0 y la longitud inercial protónica
𝑑𝑝, a partir de la cual la dinámica de los protones adquiere mayor relevancia.

Ambos números de Reynolds controlan la intensidad de los términos no lineales respecto a
los lineales. El límite 𝑅𝑒, 𝑅𝑚 → ∞ resulta no disipativo (𝜇, 𝜂 → 0) y totalmente dominado por la
dinámica no lineal. Cabe remarcar, sin embargo, que estos números de Reynolds están asociados a
escalas características y en un mismo flujo podrían tomar diferentes valores (y, por consiguiente,
distintos regímenes) si coexisten diferentes escalas. Normalmente, a medida que los números de
Reynolds incrementan, la dinámica se vuelve más caótica y compleja, desarrollando turbulencia
más intensa, cómo discutiremos en la sección 2.4. Allí veremos también que estos números controlan
la separación entre la escala integral 𝐿0 y la escala de disipación 𝑙𝑑. Es clave notar que en cualquier
flujo real esta escala es finita, por lo que 𝑅𝑒, 𝑅𝑚 → ∞ es solo una idealización.

En contraposición, el límite 𝑅𝑒, 𝑅𝑚 → 0 corresponde a un sistema laminar dominado por la
viscosidad y la resistividad. Considerando el caso ̃𝜀𝐻 → 0, obtenemos el límite de MHD ideal,
donde valen los Teoremas de Alfvén (Davidson 2001, Capítulo 5). El primero de estos teoremas
corresponde al congelamiento de las líneas magnéticas.

Teorema de Alfvén 1 Los elementos de fluido sobre una línea de campo magnético a un dado
tiempo continúan estándolo para todo tiempo posterior.

Teorema de Alfvén 2 El flujo magnético a través de cualquier curva material desplazándose con
el fluido se conserva.

Así, las líneas de campo magnético están aferradas al flujo, siendo advectadas por el mismo
cómo si fuesen elementos materiales. Decimos que las líneas de campo están “congeladas” en el
flujo. En particular, esto fija la topología de las líneas, evitando que estas se crucen o cambien de
configuración. El segundo teorema atañe a la expansión y compresión de tubos de flujo magnético,
fenómenomuy relevante en la dinámica de la corona solar. En principio, estos teoremas no requieren
𝑅𝑒 → ∞, sino basta que 𝑅𝑚 → ∞.

Aún en el límite de 𝑅𝑚 ≫ 1 (baja resistividad), pueden existir regiones donde el término ∇2B
es tan grande que compensa el bajo valor de la resistividad 𝜂. En estas regiones el congelamiento
se viola y las líneas de campo magnético comienzan a difundir, libres de cruzarse y reconectarse.
Este tipo de reconexión magnética está muy presente en regiones donde existen fuertes gradientes
perpendiculares a j ∝ ∇ × B, conocidas cómo hojas de corriente. Esto se debe a que son estructuras
finas y casi bidimensionales sobre las cuales circula una alta j, normalmente alineadas al campo
magnético local. En estas hojas de corriente, la tasa de disipación de energía magnética 𝜂|j|2 se
maximiza y surgen fuertes campos eléctricos producto del término resistivo de (2.66), que generan
haces de partículas energéticas.

2.3.3. Ondas magnetohidrodinámicas

Es posible estudiar el sistema de ecuaciones (2.64)-(2.68) analizando las soluciones al problema
lineal. Esto implica tomar pequeñas perturbaciones a un estado de equilibrio uniforme dado por
𝜌 = 𝜌0, u = 0⁴ y B = B0, que son soluciones triviales. Planteamos entonces pequeñas desviaciones
respecto a este equilibrio 𝜌 = 𝜌0(1 + 𝑟), u y B = B0 + b con 𝑟 ll 1 y |b| ll |B0|. A la hora de estudiar
estas soluciones, es habitual despreciar los términos disipativos, equivalente a tomar 𝜇 = 0 = 𝜂,
pues solo suman un decaimiento exponencial a la dinámica ondulatoria. Si nos quedamos a primer
orden en estos campos 𝑟, u y b, la ecuación de continuidad resulta

𝜕𝑟
𝜕𝑡

+ ∇ ⋅ u = 0. (2.80)

Linealizando la relación politrópica (2.68) obtenemos 𝑝 = 𝑝0(𝜌/𝜌0)𝛾 ≈ 𝑝0(1 + 𝛾𝑟). Combinando
esto con el hecho de que (4𝜋/𝑐)j = ∇ × B = ∇ × b podemos reescribir (2.65) cómo

𝜕u
𝜕𝑡

= −
𝑝0𝛾
𝜌0

∇𝑟 +
(∇ × b) × B0

4𝜋𝜌0
, (2.81)

⁴Considerar un U0 uniforme es irrelevante, pues está a una transformación de Galileo del sistema en reposo.
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donde aparece naturalmente la velocidad del sonido 𝑐𝑠 = √𝛾𝑝0/𝜌0. Finalmente, la ecuación de
inducción (2.67) resulta

𝜕b
𝜕𝑡

= ∇ × [(u −
𝜖𝐻𝑐
4𝜋𝜌0

∇ × b) × B0] . (2.82)

Es posible encontrar soluciones oscilatorias a este sistema de ecuaciones mediante la transfor-
mada de Fourier. La idea es proponer soluciones de la forma 𝜓(x, 𝑡) = 𝜓0 exp{𝑖 (k ⋅ x − 𝜔(k)𝑡)} donde
𝜓 ∈ {𝑟, 𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝑏𝑥, 𝑏𝑦, 𝑏𝑧} y 𝜓0 ∈ ℂ, tal que el operador gradiente se vuelva ∇ → 𝑖k y la derivada
temporal 𝜕𝑡 → −𝑖𝜔. Antes de introducir estas soluciones en las ecuaciones (2.80)-(2.82), pasaremos
a variables aflvénicas definiendo v = b/√4𝜋𝜌0 y vA = B0/√4𝜋𝜌0

𝜔𝑟0 = k ⋅ u, (2.83)

𝜔u0 = 𝑐2𝑠 k𝑟0 − (k × v0) × vA, (2.84)

𝜔v0 = −k × [(u0 − 𝑖𝑑𝑝k × v0) × vA] (2.85)

donde 𝑑𝑝 = 𝑐𝑚𝑝/√4𝜋𝜌0e2 = 𝜖𝐻𝑐/√4𝜋𝜌0 es la longitud inercial protónica (también llamada escala
de Hall en este contexto). Este sistema de ecuaciones puede pensarse cómo un problema lineal
en 𝒴 = (𝑟0,u0, v0)

𝑇 ∈ ℂ7. En particular, podemos plantearlo cómo un problema de autovalores de
la forma 𝔸(k)𝒴 = 𝜔(k)𝒴 con 𝔸 ∈ ℂ7×7. Por simplicidad, en este trabajo nos limitaremos al caso
𝑑𝑝 = 0 (hablaremos un poco del caso 𝑑𝑝 > 0 más adelante). En este límite, disponemos de 3 modos
normales de oscilación, ignorando un modo espurio de 𝜔 = 0 que viola la condición ∇ ⋅ b = 0.
El primer modo son las conocidas ondas de Alfvén (Alfvén 1942), que corresponden a modos
incompresibles (𝑟0 = 0) del plasma

𝜔2
𝐴 = (vA ⋅ k)2 = |vA|

2𝑘2∥ , (2.86)

donde definimos la componente de k paralela al campo guía 𝑘∥ = k ⋅ 𝐁̂0. Luego, tenemos dos modos
magnetosónicos compresibles, uno rápido 𝜔𝐹 (fast, en inglés) y otro lento 𝜔𝑆 (slow, en inglés)

𝜔2
𝐹,𝑆 =

𝑐2𝑠 + |vA|
2

2
⎡⎢
⎣
1 ±√1 − (

2|vA|𝑐𝑠
𝑐2𝑠 + |vA|

2 )
2

(
𝑘∥
|k|

)
2
⎤⎥
⎦
|k|2. (2.87)

Es inmediato notar que todos estos modos son dispersivos y su velocidad de fase depende
fuertemente del ángulo entre k y el campo guía B0. En particular, las ondas magnetosónicas rápidas
pueden alcanzar velocidades de fase√𝑐2𝑠 + |vA|

2 ≥ 𝑐𝑠, |vA|, por lo que es lamáxima velocidad posible
de cualquiera de estas ondas.

Para 𝑑𝑝 finito surgen ondas de radio silbido (o whistler, en inglés), donde la frecuencia escala
cómo 𝜔 ∼ |V𝐴|𝑑𝑝𝑘2. Veamos esto para el caso incompresible (𝑟0 = 0), donde obtenemos dos modos

|𝜔±| =
|vA|𝑑𝑝𝑘∥|k|

2
⎛
⎝
√1 +

4
𝑑2
𝑝 |k|

2 ± 1⎞
⎠
. (2.88)

Vemos entonces que efectivamente en el límite 𝑑𝑝|k| ≫ 1 tenemos |𝜔+| ∝ |vA|𝑑𝑝𝑘∥|k| ∝ |k|2,
ondas cuya velocidad de fase crece escala cómo ∼ |k|. Estos whistlers son relevantes para |k|𝑑𝑝 ≳ 1 y
tienen una dinámica muy rápida, que puede no ser trivial de resolver numéricamente (ver sección
2.3.4, a continuación).

2.3.4. Método pseudo-espectral
En el contexto de esta tesis, estaremos interesados en plasmas no confinados que llenan todo el

espacio ℝ𝑑. Esta elección tiene cómo objetivo poder estudiar la dinámica turbulenta en su estado
más puro, evitando efectos introducidos por condiciones de contorno (Fontana 2022). En particular,
consideramos un sistema 2𝜋-periódico en todas direcciones, tal que cualquier campo 𝑔(x, 𝑡) cumple

𝑔(x + 2𝜋m, 𝑡) = 𝑔(x, 𝑡), m ∈ ℤ𝑑. (2.89)
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Por lo tanto, basta estudiar la dinámica en un cubo 𝑑-dimensional de lado 2𝜋 que matemáticamente
podemos describir cómo ℬ = [0, 2𝜋]𝑑. Esta elección es sin pérdida de generalidad, pues es posible
pasar a recintos no cúbicos mediante un reescaleo de las distintas componentes de x. Un campo 𝑔
que cumple (2.89) puede ser escrito en serie de Fourier (Folland 2009, Capítulo 2)

𝑔(x, 𝑡) = ∑
k∈ℤ𝑑

̂𝑔k(𝑡)𝑒𝑖k⋅x. (2.90)

Además, este campo 𝑔 debe ser de cuadrado integrable, que equivale a tener norma 𝐿2 finita

‖𝑔‖ = (∫
ℬ
|𝑔(x)|2dx)

1/2

, (2.91)

donde omitimos la dependencia temporal por simplicidad. Decimos entonces que 𝑔 pertenece al
conjunto 𝐿2ℬ, cuyo producto interno asociado es

⟨𝑔|ℎ⟩ = ∫
ℬ
𝑔(x)ℎ∗(x)dx = 2𝜋 ∑

k∈ℤ𝑑

̂𝑔kℎ̂∗k, (2.92)

donde el asterisco ∗ denota el conjugado complejo, tal que ‖𝑔‖2 = ⟨𝑔|𝑔⟩.

Por su parte, los coeficientes ̂𝑔k pueden obtenerse tomando producto interno con los elementos
de la base Fourier

̂𝑔k =
1
2𝜋

⟨𝑔|𝑒𝑖k⋅x⟩ =
1
2𝜋

∫
ℬ
𝑔(x)𝑒−𝑖k⋅xdx. (2.93)

En particular, vemos rápidamente que para 𝑔 ∈ ℝ debe ser ̂𝑔 ∗
k = ̂𝑔−k (condición de hermiticidad).

Para una función 𝑔 ∈ 𝐶𝑚 (i.e., tiene 𝑚 derivadas continuas), estos coeficientes decaen polinómica-
mente ̂𝑔k = 𝒪 (|k|−(𝑚+1)). Si la función 𝑔 ∈ 𝐶∞, este decaimiento es exponencial, propiedad conocida
cómo convergencia espectral. Otras bases además de la de Fourier presentan esta propiedad, cómo
la de Hermite y la de Chebyshev (Canuto et al. 1988, Capítulo 2). En general, cualquier familia de
autofunciones de un problema de Sturm-Liouville con ciertas condiciones de contorno formará una
base con convergencia exponencial bajo alguna norma. La principal ventaja de la base de Fourier
es su representación del operador gradiente

(∇̂𝑔)
k
= 𝑖k ̂𝑔k (2.94)

por lo que los operadores divergencia y rotor se vuelven simplemente k⋅ y k×, cómo mostramos en
la sección anterior. Por lo tanto, dados los coeficientes ̂𝑔k, es sencillo calcular derivadas espaciales
de la función 𝑔.

Sin embargo, aunque estos coeficientes ̂𝑔k sean discretos, siguen siendo infinitos. Cómo to-
do método numérico está límitado a una cantidad finita de información, la cantidad de modos
computable debe ser finita también. Análogamente, la cantidad de puntos x sobre los que puede
computarse 𝑔 también es finita. Con esto en mente, definimos el conjunto de funciones con 𝑁
modos en cada dirección 𝑆𝑁 = {𝐺 ∈ 𝐿2ℬ | 𝐺̂k = 0 ∀k ∉ ℤ𝑑

𝑁} donde ℤ𝑁 = {−𝑁/2, .., 0, .., 𝑁/2 − 1}
y asumimos 𝑁 par por simplicidad⁵. La generalización al caso en que cada dirección tiene una
cantidad distinta de modos es trivial y aquí solo complicaría la notación. Buscamos entonces una
aproximación 𝑔𝑁 ∈ 𝑆𝑁 tal que

𝑔𝑁(x, 𝑡) = ∑
k∈ℤ𝑑

𝑁

̃𝑔k𝑒𝑖k⋅x, (2.95)

donde es importante notar que, en principio, ̃𝑔k ≠ ̂𝑔k. Lo que realmente buscamos es que 𝑔𝑁(xj) =
𝑔(xj) sobre los puntos xj = 𝜋 + jΔ𝑥 con j ∈ ℤ𝑑

𝑁 y Δ𝑥 = 2𝜋/𝑁 la resolución. La elección de estos
puntos de colocación xj no es arbitraria, sino que son aquellos sobre los cuales puede construirse
una cuadratura gaussiana que nos asegura (Canuto et al. 1988, Capítulo 3)

̃𝑔k =
1
2𝜋

⟨𝑔𝑁|𝑒𝑖k⋅x⟩ =
1
𝑁𝑑 ∑

j∈ℤ𝑑
𝑁

𝑔(xj)𝑒−𝑖k⋅xj. (2.96)

⁵Si no lo fuese, reemplazamos los límites inferior y superior por ⌊𝑁/2⌋ y ⌈𝑁/2⌉ − 1, respectivamente.
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donde usamos que 𝑔𝑁(xj) = 𝑔(xj). En principio, este cómputo exigiría 𝒪(𝑁2𝑑) operaciones, pues
tenemos 𝑁𝑑 posibles k y cada suma en (2.96) tiene 𝑁𝑑 términos. Sin embargo, existen algoritmos
rápidos para computar la transformada de Fourier que aprovechan la periodicidad de la función 𝑒𝑖𝜙
para minimizar el número de operaciones (Cooley y Tukey 1965). Estos algoritmos de tipo dividir
y conquistar (Cormen et al. 2009, Capítulo 4) son colectivamente conocidos cómo transformadas
rápidas de Fourier (FFTs, por sus siglas en inglés) y permiten computar todos los coeficientes en (2.96)
en 𝒪(𝑁𝑑 log𝑁) operaciones (Cormen et al. 2009, Capítulo 30). Los mismos algoritmos pueden
usarse para computar la función 𝑔 sobre los puntos de colocación xj mediante (2.95).

Estas FFTs son fundamentales a la hora de computar los términos no lineales cómo los que
aparecen en (2.64), (2.65) y (2.67). Normalmente, calcular el producto de dos funciones 𝑔, ℎ ∈ 𝑆𝑁
tiene un costo 𝒪(𝑁𝑑) si conocemos sus valores en los puntos de colocación (𝑔ℎ)(xj) = 𝑔(xj)ℎ(xj).
La FFT nos permite recuperar 𝑔(xj) y ℎ(xj) en 𝒪(𝑁𝑑 log𝑁), realizar el producto en 𝒪(𝑁𝑑) y, si es
necesario, obtener los (𝑔ℎ)k en 𝒪(𝑁𝑑 log𝑁). El cálculo de los términos no lineales trae acarreado
consigo el problema del solapamiento, que describimos en mayor detalle en el apéndice B. Por
otro lado, las derivadas espaciales, cómo mostramos en (2.94), pueden computarse también en
𝒪(𝑁𝑑 log𝑁) haciendo este proceso de transformar y antitransformar Fourier. Esto significa que las
derivadas temporales de (2.64), (2.65) y (2.67) pueden computarse paso a paso en𝒪(𝑑𝑁𝑑 log𝑁). En
particular, podemos agrupar los valores de los campos en 𝒴j = (𝜌(xj, 𝑡),u(xj, 𝑡),b(xj, 𝑡)) y reescribir
el sistema de ecuaciones cómo

𝒴̇ = ℒ (𝒴, 𝑡) (2.97)
donde 𝒴 es un vector cuyas entradas son 𝒴j y ℒ es el operador espacial, cuyo costo computacional
es 𝒪(𝑁𝑑 log𝑁). Este enfoque en el cual separamos el operador espacial ℒ de la derivada temporal
es conocido cómo método de líneas. Luego, basta elegir algún esquema para realizar la evolución
temporal de 𝒴(𝑡). En esta tesis, esta evolución será la dada por un método de Runge-Kutta de orden
2 (Iserles 2008, Capítulo 3) dado por

⎧⎪
⎨⎪
⎩

𝒦1 = ℒ (𝒴(𝑡𝑛), 𝑡𝑛) Δ𝑡/2
𝒦2 = ℒ (𝒴(𝑡𝑛) +𝒦1, 𝑡𝑛+1/2) Δ𝑡

𝒴(𝑡𝑛+1) = 𝒴(𝑡𝑛) +𝒦2

(2.98)

dondeΔ𝑡 es el paso temporal y 𝑡𝑛 = 𝑛Δ𝑡 son los tiempos discretizados. Intuitivamente, este esquema
busca dar una estimación razonable para ℒ a tiempo 𝑡𝑛+1/2, tal que la evolución final sea centrada
(hablaremos más en detalle de esto en la sección 4.1.1).

Este esquema de evolución temporal es explícito, lo cual simplifica su implementación y reduce
el costo computacional pero impone ciertas limitaciones sobre el valor del paso temporal Δ𝑡.
Puntualmente, tenemos la condición de Courant, Friedrichs y Levy (CFL; Courant et al. 1928) que
para una correcta resolución de los términos no lineales impone

𝑈Δ𝑡
Δ𝑥

≤ 𝐶1 (2.99)

donde 𝐶1 es una constante de orden 1 que depende del esquema temporal en cuestión y 𝑈 =
máx{|u|, |v|, 𝑐𝑠, |vA|} (usando unidades alfvénicas para el campo magnético) es la máxima velocidad
a la que una perturbación puede advectarse. Incluyendo el término de Hall (𝑑𝑝 ≠ 0) aparece
también la velocidad de los whistlers, que suele ser dominante. Una condición similar se da para
los términos disipativos o difusivos (aquellos que involucran ∇2)

𝜉Δ𝑡
Δ𝑥2

≤ 𝐶2 (2.100)

donde 𝐶2 es otra constante de orden 1 y 𝜉 = máx{𝜈, 𝜂} es la máxima tasa de difusión.

En esta tesis, estamos interesados en casos de turbulencia fuerte donde 𝜉 → 0 y, por lo tanto, la
condiciónmás restrictiva suele ser (2.99). En la práctica,𝑈 varía en el tiempo amedida que el sistema
evoluciona, por lo que elegir el Δ𝑡 correcto es una cuestión de prueba y error. Afortunadamente,
cualquier violación de esta condición implica que el sistema es inestable y las soluciones divergen
en una cantidad finita de pasos. Por lo tanto, para identificar un Δ𝑡 apropiado basta asegurarse
que la simulación no diverja. En la práctica, la condición (2.99) es más una regla para saber cómo
reescalar el paso temporal a medida que cambia el número de modos 𝑁 (i.e., Δ𝑡 ∼ Δ𝑥 ∼ 𝑁−1) o
alguna velocidad característica cómo 𝑐𝑠 o |vA| (i.e., Δ𝑡 ∼ 𝑈−1).
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2.4. Turbulencia

En la actualidad, carecemos de una teoría unificada sobre la turbulencia. Existen resultados
para múltiples sistemas puntuales, en muchos casos de naturaleza estadística y dependientes en
hipótesis físicas basadas en evidencia empírica. En esta sección nos concentraremos en algunos de
estos aspectos puntuales pertinentes a turbulencia de plasmas.

2.4.1. Cascada de energía

Por simplicidad, comenzaremos considerando flujos neutros e incompresibles, pues contienen
la mínima complejidad necesaria para estudiar los fenómenos turbulentos que serán de interés
en esta tesis. Esto equivale a tomar el modelo MHD de la sección 2.3 en el límite 𝜌(x, 𝑡) ≡ 𝜌0 y
B(x, 𝑡) ≡ 0,

∇ ⋅ u = 0, (2.101)

𝜕u
𝜕𝑡

+ (u ⋅ ∇)u = −∇𝑃 + 𝜈∇2u + f, (2.102)

donde 𝜈 = 𝜇/𝜌0 es el coeficiente de viscosidad cinemática, 𝑃 = 𝑝/𝜌0 es una redefinición de la
presión y f es un forzado mecánico que inyecta energía cinética en el sistema para contrarrestar la
disipación. En este límite, la relación politrópica (2.68) carece de sentido, por lo que 𝑃 se obtiene
tomando divergencia en la ecuación (2.102)

∇ ⋅ [(u ⋅ ∇)u] = −∇2𝑃, (2.103)

donde usamos que el operador divergencia ∇⋅ conmuta con los operadores 𝜕𝑡 y ∇2 junto con la
ecuación (2.101). También asumimos que el forzado es incompresible (∇ ⋅ f = 0) pues siempre
podemos expresarlo mediante una descomposición de Helmholtz f = ∇ × F + ∇Φ y absorber el
potencial Φ dentro de la presión 𝑃. La ecuación (2.103) es un problema de Laplace, que dado un
conjunto de condiciones de contorno tiene solución única.

Siguiendo el espíritu del método pseudo-espectral de la sección 2.3.4, consideraremos estas
condiciones de contorno cómo periódicas, por lo que escribiremos ambos campos en base Fourier.
En esta base, la presión y su gradiente son simplemente

𝑃̂k =
𝑖k ⋅ [̂u ⋅ ∇u]

|k|2
⟹ (̂−∇𝑃)k =

kk
|k|2

⋅ [̂u ⋅ ∇u]

donde identificamos el producto entre vectores kk cómo un tensor simétrico de rango 2 (también
llamado producto externo) con entradas (kk)𝑖𝑗 = 𝑘𝑖𝑘𝑗.

Para computar la transformada del término cuadrático, usamos el Teorema de la Convolución
(ver detalles en el apéndice B), que dicta que la transformada del producto es la convolución de las
transformadas. Juntando todo esto sobre la ecuación (2.102) y transformando Fourier resulta

𝜕ûk

𝜕𝑡
= − (1 −

kk
|k|2

) ⋅ ∑
q∈ℤ𝑑

𝑖(ûk−q ⋅ q)ûq − 𝜈|k|2ûk + ̂fk, (2.104)

donde usamos que (∇̂u)q = 𝑖qûq y el Teorema de la Convolución (B.2). La ecuación (2.104) muestra
una propiedad interesante de todas las ecuaciones no lineales: la interacción entre distintos modos.
Puesto de otra forma, aún si a un dado tiempo tenemos ûk = 0 para algún k, basta que existan
dos modos no nulos ûp ≠ 0 y ûq ≠ 0 con p + q = k para que 𝜕𝑡ûk ≠ 0. Esto implica que el sistema
puede desarrollar modos que no existían originalmente, aún sin estar forzados externamente. Esta
propiedad del sistema de desarrollar escalas propias es una condición necesaria para la turbulencia,
pero no es en principio obvio si estas escalas seránmayores omenores a las forzadas u originalmente
presentes. En la imagen original de Richardson (L. F. Richardson 2007), las escalas desarrolladas
son siempre menores, las estructuras grandes partiendose en estructuras más y más chicas, en lo
que se conoce cómo una cascada directa de energía. Si, por el contrario, las estructuras chicas se
agrupasen para formar estructuras más grandes, hablamos de una cascada inversa de energía.
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Formalicemos esto siguiendo el enfoque de Obukhov 1941. En este límite de hidrodinámica
incompresible, tenemos ℰ𝑚 = 0 = ℰ𝑇+𝑒 y ℰ𝑐 = 𝜌0⟨|u|

2⟩/2 y la ecuación de balance global se convierte
en

d⟨|u|2/2⟩
d𝑡

= −𝜈⟨|𝜔|2⟩ + ⟨f ⋅ u⟩. (2.105)

En particular, podemos reescribir este valor medio cómo la norma de u ∈ 𝐿2ℬ, tal que

⟨|u|2⟩ = ⟨u|u⟩ ∝ ∑
k

|ûk|
2

donde usamos la expresión (2.92) y generalizamos el producto interno para campos vectoriales
⟨u|u⟩ = ⟨𝑢𝑥|𝑢𝑥⟩ + ⟨𝑢𝑦|𝑢𝑦⟩ + ⟨𝑢𝑧|𝑢𝑧⟩. Por lo tanto, podemos interpretar |ûk|

2/2 cómo una medida de
la cantidad de energía cinética en el modo k. Multiplicando (2.104) por û∗

k = û−k, encontramos
una ecuación de evolución para esta energía

𝜕
𝜕𝑡

(
|ûk|

2

2
) = −û−k ⋅ (1 −

kk
|k|2

) ⋅ ∑
q∈ℤ𝑑

𝑖(ûk−q ⋅ q)ûq − 𝜈|k|2|ûk|
2 + ̂fk ⋅ û−k (2.106)

Podemos anular el término que contiene el tensor kk notando que la condición de incompresibilidad
(2.101) en espacio Fourier es k ⋅ ûk = 0 y, por lo tanto, k ⋅ û−k = (k ⋅ ûk)∗ = 0. El último paso consiste
en tomar (2.106) y sumar sobre todos los modos k con |k| ≤ 𝜅. Esto es similar, aunque no idéntico,
a proyectar los campos sobre 𝑆𝑁 cómo hicimos en la sección 2.3.4⁶. Obtenemos entonces

𝜕𝔈𝜅
𝜕𝑡

= −Π𝜅 − 𝜈Ω𝜅 +ℱ𝜅 (2.107)

donde definimos la energía cinética

𝔈𝜅 =
1
2
∑
|k|≤𝜅

|ûk|
2, (2.108)

y la enstrofía
Ω𝜅 = ∑

|k|≤𝜅

|k|2|ûk|
2, (2.109)

almacenada en escalas ≳ 𝜅−1. Tenemos además la tasa de inyección de energía en escalas ≳ 𝜅−1

ℱ𝜅 = ∑
|k|≤𝜅

̂fk ⋅ ̂u−k, (2.110)

y flujo de energía a través del cascarón |k| = 𝜅

Π𝜅 = ∑
|k|≤𝜅

∑
q

𝑖(ûk−q ⋅ q)( ̂uq ⋅ û−k). (2.111)

Decimos que Π𝜅 es un flujo porque se anula cuando 𝜅 → ∞, lo cual indica que no tiene efectos
globales sobre la energía, sino que solo la redistribuye entre las distintas escalas. Este es el término
que asociamos a la cascada de energía a través de la escala 𝜅.

2.4.2. Espectro de Kolmogorov
La ecuación (2.107) nos dice que, en estado estacionario (𝜕𝑡𝔈𝜅 = 0), la cascada de energía debe

balancearse con la inyección y la disipación. Normalmente, el forzado mecánico se encuentra
restringido a una rango de escalas ≳ ℓ𝐼, tal que ̂fk = 0 si |k| ≥ 𝜅𝐼 con 𝜅𝐼 ∼ ℓ−1𝐼 y por lo tanto ℱ𝜅 = ℱ𝜅𝐼
para 𝜅 ≥ 𝜅𝐼. Definimos este valor límite cómo la tasa de inyección de energía 𝜀 = ℱ𝜅𝐼 = ⟨f ⋅ u⟩, que
sabemos por (2.106) debe coincidir con la tasa de disipación 𝜈⟨|𝜔|2⟩ = 𝜈Ω𝜅→∞.

Por otro lado, el término disipativo es

𝜈Ω𝜅 = 𝜈 ∑
|k|≤𝐾

|k|2| ̂uk|
2 ≤ 𝜈𝜅2 ∑

|k|≤𝐾

|ûk|
2 = 2𝜈𝜅2𝔈𝜅,

⁶En espacio Fourier, la condición |k| ≤ 𝜅 genera una esfera, mientras que los modos k asociados a 𝑆𝑁 forman un cubo.
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lo cual nos da una intuición de que este término debe volverse más importante en escalas más chicas.
En una reformulación de las hipótesis de Kolmogorov 1941, podemos considerar que existe un 𝜅𝑑
a partir del cual 𝜈Ω𝜅 se vuelve relevante o incluso dominante. Para 𝜅 < 𝜅𝑑, podemos despreciarlo
(𝜈Ω𝜅 ≈ 0). En el límite 𝑅𝑒 ≫ 1 (𝜈 → 0), esperamos que 𝜅𝐼 < 𝜅𝑑: la energía se inyecta en escalas más
grandes y se disipa en las pequeñas. Existe un rango 𝜅𝐼 < 𝜅 < 𝜅𝑑 donde debe cumplirseΠ𝜅 ≈ ℱ𝜅 = 𝜀
y, por lo tanto, el flujo de energía es constante.

En este rango 𝜅𝐼 < 𝜅 < 𝜅𝑑 el único parámetro relevante es la tasa de inyección 𝜀. Asumiendo
además isotropía, esperamos que la energía |ûk|

2 dependa solamente de |k| = 𝜅. Mediante análisis
dimensional, notando que [𝜀] = 𝐿2𝑇−3, [𝜅] = 𝐿−1 y [|ûk|

2] = 𝐿2𝑇−2, debe ser

|ûk|
2 ≈ 𝐶(𝜀/𝜅)2/3, (2.112)

donde 𝐶 es alguna constante numérica universal. De forma similar, definiendo el espectro de
energía 𝐸(𝑘) tal que ∫

𝜅

0
𝐸(𝑘)d𝑘 = 𝔈𝑐, podemos estimarlo cómo

𝐸(𝜅) ∼
|ûk|

2

𝜅
∼ 𝜀2/3𝜅−5/3, (2.113)

conocido cómo el espectro de Kolmorogov. En principio, este espectro es solo válido para casos de
turbulencia isótropa y homogénea, pero su utilidad muchas veces se extiende más allá.

Finalmente, podemos utilizar lo construido para estimar 𝜅𝑑. En esta escala, esperamos que la
disipación compense la inyección de energía 𝜀, tal que 𝜈Ω𝜅𝑑 ≈ 𝜀. Dado el resultado de la ecuación
(2.113) y la definición de Ω𝜅 dada por (2.109), vemos que el sumando escala cómo ∼ |k|4/3, por lo
que los últimos términos serán dominantes. Podemos entonces estimar Ω𝜅𝑑 ≈ 𝐶𝜈𝜀2/3𝜅4/3

𝑑 y despejar

𝜅𝑑 ∼ (
𝜀
𝜈3

)
1/4

. (2.114)

Por debajo de esta escala 𝑙𝑑 ∼ 𝜅−1
𝑑 , los efectos disipativos serán dominantes y el sistema se vuelve

lineal, con un decaimiento exponencial de la energía. Por lo tanto, a todo fin práctico, basta con
resolver los modos con |k| ≲ 𝜅𝑑 para representar apropiadamente la dinámica del sistema. Cuando
esta condición no se cumple, no existe una escala donde pueda disiparse toda la energía que trae
la cascada y por lo tanto esta empieza a acumularse en los números de onda con mayor |k|. Esta
acumulación de energía puede inducir fluctuaciones de alta frecuencia en los campos que violen la
condición CFL (2.99), arruinando la simulación.

2.4.3. Turbulencia en plasmas
La turbulencia en fluidos cargados tiene algunas diferencias respecto al caso neutro. Principal-

mente, la existencia de un campo magnético guía introduce anisotropía de gran escala, alargando
las estructuras a lo largo de la dirección de este campo. Además, el agregado de componentes
electromagnéticos introduce conservaciones ideales adicionales, no solo energías sino también
invariantes helicoidales (Davidson 2001, Capítulo 9). Consideremos el modelo MHD de la sección
2.3, ignorando el término de Hall (𝜖𝐻 = 0) por simplicidad, donde surge cómo nuevo invariante la
helicidad magnética

𝐻𝑚 = ⟨A ⋅ B⟩, (2.115)

donde A es el potencial vector B = ∇ × A. Además, si consideramos incompresibilidad, se suma la
helicidad cruzada

𝐻𝑐 = ⟨u ⋅ B⟩. (2.116)

Estas restricciones adicionales introducen distinta fenomenología a la turbulencia.

La principal propiedad del campo magnético guía B0 = |B0|𝐳̂ es su tendencia a bidimensio-
nalizar la dinámica. Siguiendo el argumento de Kraichnan y D. Montgomery 1980, empezamos
notando que un campo magnético uniforme B0 no afecta el movimiento enteramente paralelo o
enteramente perpendicular. Esto se debe a que en el caso ideal (𝜈 = 0 = 𝜂) la ecuación de inducción
(2.67) es simplemente

𝜕b
𝜕𝑡

= ∇ × (u × B) = ∇ × (u × B0) + ∇ × (u × b) ,
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Figura 2.4: Espectro de energía magnética del viento solar obtenidas por las misiones espaciales ACE y Cluster, mostrando
una cascada de energía a lo largo de casi 8 ordenes de magnitud que resume la discusión de esta sección. Adaptada de
Sahraoui et al. 2020.

donde descompusimos B = B0 + b. Si tenemos inicialmente b = 0, se anulará la fuerza de Lorentz
sobre el fluido j × B pues j ∝ ∇ × B = ∇ × b = 0 y la única fuente de b será ∇ × (u × B0). Vemos
entonces que si inicialmente tenemos u ∥ B0, el campo magnético se mantendrá constante y no
habrá fuerza magnética.

Por su parte, un movimiento enteramente perpendicular u = u(𝑥, 𝑦) tampoco tendrá efecto,
pues la identidad vectorial

∇ × (u × B) = (B ⋅ ∇)u + (∇ ⋅ B)u − (u ⋅ ∇)B − (∇ ⋅ u)B, (2.117)

nos indica que para B = B0 tenemos ∇× (u × B) = |B0|𝜕𝑧u−(∇⋅u)B0 = −(∇⋅u)B0 donde usamos que
la dinámica es perpendicular. Si asumimos el flujo cómo incompresible, ∇ ⋅ u = 0 y este término se
anula por completo.

Por lo tanto, vemos que B = |B0|𝐳̂ y u = u(𝑥, 𝑦) es solución. La aparición de una dependencia
paralela (𝜕𝑧u ≠ 0) tenderá a deformar las líneas de campo magnético, excitando ondas de Alfvén
con frecuencia dada por (2.86) y consecuentemente disipación Ohmica, relajando nuevamente al
estado bidimensional. Aún en presencia de inyección de energía constante, el campo magnético
guía tenderá a bidimensionalizar la dinámica del sistema, con mayor o menor grado de éxito
dependiendo de su intensidad.

Con esta discusión en mente, un análisis similar al de la sección (2.4.2) permite obtener el
espectro de energía en términos del número de onda k = k⟂ + 𝑘∥𝐳̂ cómo (Goldreich y Sridhar 1995)

𝐸(𝑘⟂) ∼ 𝐶𝜀2/3𝑘−5/3⟂ , (2.118)

𝐸(𝑘∥) ∼ 𝐶(𝜀/|vA|)𝑘−2∥ , (2.119)

con 𝑘⟂ = |k⟂|, vA = B0/√4𝜋𝜌0 la velocidad de Alfvén, 𝜀 = 𝜈⟨|𝜔|2⟩ + 𝜂⟨|j|2⟩ la tasa de disipación
de energía y 𝐶 una constante de orden 1. Es inmediato notar que (2.118) es idéntico al espectro
de Kolmogorov (2.113), mientras que (2.119) decae más rápido con 𝑘∥. Considerando además que
(2.119) escala cómo ∼ 1/|B0|, en el límite de campo magnético intenso esperamos recuperar un
espectro isótropo 𝐸(𝑘) similar a (2.113) al tener energía en modos 𝑘2 = 𝑘2⟂ + 𝑘2∥ ≈ 𝑘2⟂, en especial
para las escalas más pequeñas. Es por esto que a lo largo de esta tesis compararemos los espectros
magnetohidrodinámicos directamente con el de Kolmorogov.
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Más aún, en el caso de turbulencia bidimensional, existe un invariante adicional ⟨|A|2⟩ que
exhibe cascada inversa (de las escalas pequeñas a las escalas grandes), por lo que esperamos cierta
transferencia de energía hacia las grandes escalas en presencia de un campo magnético guía intenso.
Este tipo de turbulencia es clave a la hora de generar las hojas de corriente mencionadas en la
sección 2.3.2, cuya longitud transversal puede ser considerable aún teniendo un espesor ∼ 𝑙𝑑 ∼ 1/𝑘𝑑.

En escalas comparables o menores a 𝑑𝑝, esta imagen se modifica por múltiples razones: el
efecto Hall deja de ser despreciable, el flujo puede adquirir compresibilidad y aparecen efectos
cinéticos. Esto genera una imagen donde la turbulencia está dominada no por ondas de Alfvén,
sino por ondas de Alfvén cinéticas (Bale et al. 2005; Sahraoui et al. 2010; Salem et al. 2012; C. H. K.
Chen et al. 2013), arrojando espectros con exponentes compatibles con −2,8. Estos espectros son
considerablemente más empinados y han sido ampliamente observados en el viento solar (Sahraoui
et al. 2020). Aunque no exista una teoría completa de turbulencia en este rango, esperamos que
muchas de las propiedades del caso MHD provean una estructura conceptual para atacar este
problema.

La figura 2.4 contiene un espectro de energía magnética obtenido mediante las misiones espacia-
les ACE y Cluster en el viento solar. Es posible pasar del dominio de frecuencia 𝑓 al dominio espacial
𝜆−1 (con 𝜆 es la longitud de onda) mediante la hipótesis de Taylor 𝑓 = 𝑈0/𝜆 donde 𝑈0 ∼ 400 km/s
es la velocidad del viento solar. Podemos apreciar los rangos discutidos en esta sección, empezando
por el rango inercial con flujo de energía constante de unos 5 ordenes de magnitud limitado por
la escala iónica 𝑅𝑐,𝑖 y la escala de correlación 𝜆𝐶. En este rango vemos un exponente compatible
con el −5/3 predicho por (2.118) pues en el viento solar existe un campo magnético guía intenso
dado por la espiral de Parker (Parker y Tidman 1958). A partir de 𝑘𝑅𝑐,𝑖 ∼ 1 tenemos el rango iónico
con espectro ∼ 𝑘−8/3 hasta 𝑘𝑅𝑐,𝑖 ∼ 1, donde comienza el rango electrónico y la energía se disipa
en calor. Este rango electrónico es aún menos comprendido y no será relevante para esta tesis,
donde nos interesan escalas con 𝑘𝑅𝑐,𝑒 ≲ 1. Existe un cuarto rango de inyección para 𝑘𝜆𝐶 ≲ 1 con su
característico espectro 𝑓−1, cuyo origen aún es ampliamente debatido por la comunidad y también
excede el alcance de este trabajo.
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Capítulo 3

Energización de partículas de prueba

Propongo en la presente nota discutir una hipótesis [...] según la cual los rayos
cósmicos se originan y se aceleran principalmente en el espacio interestelar, aunque se
supone que los campos magnéticos impiden que salgan de los límites de la galaxia. El
principal proceso de aceleración se debe a la interacción de las partículas cósmicas con
campos magnéticos errantes que, según Alfvén, ocupan los espacios interestelares.

Enrico Fermi, On the origin of the cosmic radiation, 1949

Cómo primer aproximación a comprender los mecanismos de energización de partículas carga-
das, estudiaremos la dinámica de partículas de prueba inmersas en un plasma turbulento. Cómo
dijimos previamente, la interacción de estas partículas con el plasma es unilateral: se mueven
según los campos electromagnéticos generados por el plasma, que evoluciona independientemente.

Esta aproximación es razonable cuando la concentración de partículas es baja en el plasma o,
equivalentemente, una densidad de partículas de prueba muy inferior a la de las partículas que
componen el plasma. Así, la contribución de estas partículas al campo electromagnético total es
despreciable. Libradas a esta interacción unilateral, las partículas pueden ganar energía cinética
indefinidamente, pues son incapaces de ejercer trabajo sobre el plasma o emitir radiación. Por lo
tanto, todo uso de esta aproximación debe estar acotado en el tiempo para evitar que alcancen una
velocidad suficiente donde los efectos radiativos sean apreciables.

3.1. Parámetros de las simulaciones
Los estudios de este capítulo están basados en simulaciones numéricas directas (SND), donde

evolucionamos el plasma acorde a (2.64)-(2.68) mediante el método pseudo-espectral descripto en
la sección 2.3.4 para una caja periódica de tamaño 𝐿caja = 2𝜋. Estas simulaciones se realizaron con
el código GHOST (Mininni et al. 2011) en la computadora de Cálculo de Alto Rendimiento DIRAC del
departamento de Física de la Universidad de Buenos Aires. Su resolución espacial es de 𝑁3 = 5123
modos de Fourier y su evolución temporal se da mediante el método de Runge-Kutta de orden
2 descripto en la sección 2.3.4. Los efectos de solapamiento (o aliasing, en inglés) son removidos
mediante el uso de la regla de los dos tercios (Orszag 1971), por lo que el modo más alto resuelto por
la simulación es 𝑘max = 𝑁/3 = 171 (màs detalles en el apéndice B). La viscosidad 𝜇 y la resistividad
𝜂 son elegidas de forma de poder asegurar la correcta resolución de las escalas más pequeñas
𝑘max ≳ 𝑘𝑑, donde 𝑘𝑑 = (𝜖𝑑(𝜌0/𝜇)3)1/4 es el número de onda de disipación de Kolmogorov, 𝜖𝑑 la tasa
de disipación de energía y 𝜌0 una densidad de masa característica. A partir de esto podemos definir
la escala de disipación 𝑙𝑑 = 2𝜋/𝑘𝑑. Para estos parámetros, el sistema tiene números de Reynolds
𝑅𝑒 = 𝑅𝑚 ∼ 2300.

El plasma es llevado a un estado estacionario usando un forzado mecánico f y electromecánico
∇×m en las ecuaciones (2.65) y (2.67), respectivamente, con el objetivo de compensar la disipación.
Estos forzados son generados en espacio Fourier, teniendo módulo constante y fase aleatoria en los
modos con 2 ≤ |k| ≤ 3 cada cierto tiempo de correlación 𝜏𝑓. Para tiempos intermedios (𝑡/𝜏𝑓 ∉ ℕ),
el forzado se obtiene cómo una interpolación lineal entre el forzado previo en 𝑡ℓ = ℓ𝜏𝑓 y un forzado
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Tabla 3.1: Parámetros de los estados estacionarios obtenidos para las 3 simulaciones CMHD de este capítulo.

ID 𝜏𝑓/𝜏𝑐 𝐿caja/𝐿0 𝐿0/𝑙𝑑 𝐵0/𝑏0 𝑢𝑟𝑚𝑠/𝑣0 𝑅𝑒

NL1 1,146 × 101 2.53 59.79 8.97 1.73 2373

NL2 1,146 × 100 2.43 54.69 9.16 1.71 2419

NL3 2,865 × 10−1 2.83 65.86 8.49 1.49 2242

futuro en 𝑡ℓ+1 = (ℓ +1)𝜏𝑓. Esto asegura que el forzado sea continuo tanto en tiempo cómo en espacio,
evitando que introduzca fluctuaciones artificialmente bruscas en la dinámica del plasma. Este
tiempo de correlación es relevante para la dinámica del plasma, por lo que estudiamos su efecto
en la sección 3.3. Sin embargo, la amplitud de los forzados se ajusta en cada simulación para que
todas tengan niveles de energía (tanto cinética cómo magnética) similares.

Las escalas espaciales y temporales de cada simulación se definen individualmente, aunque
siempre son similares entre si. Para la longitud característica, usamos el tamaño de la caja 𝐿caja o la
escala de inyección de energía 𝐿0 = 2𝜋 ∫(𝐸(𝑘)/𝑘)𝑑𝑘/ ∫𝐸(𝑘)𝑑𝑘 donde 𝐸(𝑘) es el espectro isótropo de
energía total. Para la escala de velocidad, podríamos la raíz del valor cuadrático medio 𝑢𝑟𝑚𝑠 = ⟨|u|2⟩
(root mean squared value, en inglés). Sin embargo, usamos la velocidad de Alfvén de las fluctuaciones
de campo magnético 𝑣0 = 𝑏𝑟𝑚𝑠/√4𝜋𝜌0, donde 𝑏𝑟𝑚𝑠 = ⟨|b|2⟩1/2. Para la escala temporal, usamos bien
el tiempo de rotación de los remolinos más grandes 𝑡0 = 𝐿0/𝑣0 o el giroperiodo de las partículas
𝜏𝑐 = 2𝜋𝑚/𝑞|B0|, dependiendo de si estamos analizando propiedades del plasma o de las partículas.
Finalmente, para la masa usamos la densidad de referencia 𝜌0 que, junto con una presión de
referencia 𝑝0, permiten definir una velocidad del sonido característica 𝑐𝑠 = √𝛾𝑝0/𝜌0.

El campo guía estará orientado en la dirección B0 = 𝐵0𝐳̂, definiendo una velocidad de Alfvén
𝑣𝐴 = 𝐵0/√4𝜋𝜌0. En todas las simulaciones, se buscó que 𝐵0/𝑏0 ≈ 9 para compatibilizarlo con
observaciones en el viento solar (Hadid et al. 2017; Andrés et al. 2022) y se trabajó en el límite
de plasma magnetizado, con un 𝛽 = 𝑝0/(𝐵2

0/8𝜋) = (2/𝛾)(𝑐𝑠/𝑣𝐴)2 = 0,53 idéntico para todas las
simulaciones, donde 𝛾 = 5/3 es el exponente adiabático. En este capítulo, generamos 3 estados
estacionarios para las ecuaciones de MHD compresible (CMHD) (2.64)-(2.68), que identificamos
como NL1, NL2 y NL3 (por no lineal). La principal diferencia entre estas simulaciones es el tiempo
de correlación del forzado 𝜏𝑓, que genera estados levemente distintos y será central en la sección
3.3. Los valores exactos de las distintas magnitudes del plasma pueden apreciarse en la Tabla 3.1,
donde se ve que son comparables.

Por su parte, las partículas se moverán acorde a la segunda ley de Newton, bajo la acción de la
fuerza de Lorentz (2.1)

ẋ = v, v̇ =
𝑞
𝑚

(E +
v
𝑐
× B) . (3.1)

El campomagnéticoB = B0+b es el obtenidomediante la integración de las ecuaciones (2.64)-(2.68)
y el campo eléctrico E dado por la Ley deOhmgeneralizada (2.66). Durante este capítulo, ignoramos
el término de Hall a la hora de evolucionar el campo magnético tomando 𝜖𝐻 = 0 en (2.67), pero no
necesariamente en el campo eléctrico (2.66) usado para evolucionar las partículas. Aunque esto
sea inconsistente, vemos que no es particularmente relevante, la mayor inconsistencia reside en la
aproximación de carga de prueba. Para evaluar los campos en la posición exacta de la partícula,
GHOST utiliza una interpolación de orden 3, similar a los B-splines de la sección 2.2.5.

En todos los casos, se usaron 5 × 105 partículas, inyectadas una vez alcanzado el estacionario
(𝑡 = 0) y evolucionando en paralelo a los campos. Las partículas están inicialmente distribui-
das uniformemente en la caja, con una distribución de velocidades gaussiana comparable a las
velocidades características del plasma. El tipo de partícula en cuestión estará determinado por
su cociente carga-masa 𝑞/𝑚, dado que esa es la magnitud relevante en la ley de Newton (3.1).
Adimensionalizando esta ecuación con 𝑣0 para la velocidad, 𝐿0 para la longitud, 𝑏0 = 𝑣0√4𝜋𝜌0 para
el campo magnético y 𝐸0 = 𝑣0𝑏0/𝑐 para el campo eléctrico, obtenemos

̇v′ = 𝛼 (E′ + v′ × B′) , 𝛼 =
𝑞
e
𝑚𝑝

𝑚
𝐿0
𝑑𝑝

, (3.2)
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Figura 3.1: Energía (izquierda) y disipación (derecha) cómo función del tiempo, tanto previamente (𝑡 < 0) cómo una vez
alcanzado el estacionario 𝑡 > 0. Las partículas de prueba se inyectan en 𝑡 = 0.
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Figura 3.2: (Izquierda) Espectros de energía promediado a lo largo del estacionario (𝑡 > 0), junto con la ley de potencias de
Kolmogorov. (Derecha) Visualización 3D de la corriente paralela a B0, mostrando turbulencia y hojas de corriente.

donde e es la carga del proton (y del electrón, en módulo), 𝑚𝑝 es la masa del protón y 𝑑𝑝 =
𝑐𝑚𝑝/√4𝜋𝜌0e2 es la longitud inercial protónica y las primas denotan magnitudes adimensionales.
Aquí tomamos 𝑑𝑝 = 𝑙𝑑, donde 𝑙𝑑 = 2𝜋/𝑘𝑑 es la escala de disipación, dada la evidencia observacional
de que en el viento solar 𝑑𝑝 ∼ 𝑙𝑑 (R. Leamon et al. 1998). En estas simulaciones, para protones
tomamos 𝛼𝑝 = 𝐿0/𝑙𝑑 = 60 cómo valor representativo (ver Tabla 3.1). A partir de 𝛼𝑝, podemos
obtener el parámetro de Hall 𝜖𝐻, cuando sea necesario.

A modo ilustrativo, la figura 3.1 muestra la evolución de la energía (ignorando el factor 1/2 y
con b en unidades alfvénicas, por simplicidad) y disipación a lo largo del tiempo para la simulación
NL1. Los tiempos 𝑡 < 0 corresponden a estados transitorios del plasma, previos a alcanzar el estado
estacionario, donde estas magnitudes se mantienen estables. En particular, puede verse el pico de
disipación en 𝑡 ≈ −0,7𝑡0 que indica que la energía, inicialmente inyectada en modos 2 ≤ |k| ≤ 3, ha
poblado la totalidad del espectro.

A su vez, en la figura 3.2 se muestran espectros cinéticos y magnéticos isótropos promediados en
𝑡 > 0, con la ley de potencias de Kolmogorov cómo referencia para indicar la cascada de energía bien
establecida. Finalmente, se observa allí también una representación tridimensional del campo de
corriente paralela al campo guía B0 ∥ 𝐳̂, donde se ven claramente las hojas de corriente elongadas a
lo largo de esta dirección con un ancho característico ∼ 𝑙𝑑. Podemos ver la formación de estructuras
caóticas y de múltiples escalas, que identificamos con el régimen de turbulencia fuerte. Las demás
simulaciones NL2 y NL3 tienen un comportamiento muy similar.



34 Capítulo 3: Energización de partículas de prueba

10−3 10−2 10−1

Tiempo [t0]

10−4

10−3

10−2

10−1

100

〈∆
x

2
〉1/

2
/L

ca
ja

∼ t

∼ t3/4

Desplazamiento perpendicular

α = 60

α = 30

α = 15

α = 8

α = 4

α = 2

α = 1

10−3 10−2 10−1

Tiempo [t0]

10−4

10−3

10−2

10−1

100

〈∆
z2
〉1/

2
/L

ca
ja

∼ t

Desplazamiento paralelo

α = 60

α = 30

α = 15

α = 8

α = 4

α = 2

α = 1

Figura 3.3: Desplazamiento cuadrático medio en la dirección perpendicular (izquierda) y paralela (derecha). La línea negra
horizontal muestra 𝐿caja/2; el criterio de corte para la simulación.

3.2. El rol de las estructuras

En esta sección trabajaremos exclusivamente con el estado estacionario obtenido en NL1.
Nuestro interés se centra en estudiar la dinámica de iones con distinto 𝛼 = (𝑞/𝑒)(𝑚𝑝/𝑚)(𝐿0/𝑑𝑝)
en este plasma turbulento. Cómo mencionamos en la sección 2.2.4, todo ion tiene cocientes 𝑞/𝑚
menores o iguales al de los protones (iones de hidrógeno H+), pues elementos más pesados pueden
tener neutrones que aportan masa sin aportar carga. Por lo tanto, estudiaremos partículas con 𝛼 ≤
𝛼𝑝 = 60. Todas estas partículas serán inmersas en exactamente el mismo estado estacionario (NL1)
con la misma distribución espacial y de velocidades, con una energía cinética media ⟨𝑣2𝑖 ⟩ ≈ 2,2𝑣20
(un valor intermedio entre 𝑣20 y 𝑢2

𝑟𝑚𝑠 ≈ 3𝑣20 , vease tabla 3.1) donde 𝑖 es la componente y ⟨•⟩ indica
promedio sobre las partículas. De esta forma, nos aseguramos que toda diferencia en la dinámica
se origina exclusivamente por el cambio de 𝑞/𝑚 (a través de 𝛼).

3.2.1. Desplazamiento y energización

Comenzamos estudiando el desplazamiento cuadrático medio de los iones en el plasma. Dada
la simetría azimutal del problema, distinguiremos entre la dirección paralela 𝑧 y una de las
direcciones perpendiculares 𝑥 (elegir 𝑦 arroja los mismos resultados). En la figura 3.3 podemos ver
los desplazamientos en ambas direcciones. En el panel izquierdo, el desplazamiento perpendicular
comienza de manera balística (⟨Δ𝑥2⟩ ∝ 𝑡2), colapsando posteriormente en una curva sub-balística
(⟨Δ𝑥2⟩ ∝ 𝑡𝑎 con 𝑎 < 1) en diferentes momentos. Aunque ambos regímenes son idénticos para cada
𝛼, los tiempos de transición son proporcionales al giroperíodo 𝜏𝑐 ∼ 1/𝛼, lo que sugiere que este
comportamiento inicial se debe a efectos de la giración. Durante el desplazamiento sub-balístico, las
oscilaciones desaparecen y las curvas se vuelven indistinguibles. Esto sugiere, como mostraremos
más adelante, que el mecanismo de difusión perpendicular es en su mayoría independiente de
𝛼 a medida que el tiempo avanza. Este no es el caso para el desplazamiento paralelo en el panel
derecho, donde la pendiente de las curvas aumenta ligeramente con 𝛼. Además, los desplazamientos
paralelos muestran una difusión balística o super-balística a lo largo de toda la simulación.

Todas las curvas en la figura 3.3 se dibujan hasta que ⟨Δ𝑧2⟩1/2 ≈ 𝐿caja/2, cuando se detiene la
simulación. Seleccionamos este criterio para definir el tiempo de salida 𝑡(𝛼)𝑒 porque la componente
paralela del desplazamiento es dominante ⟨Δ𝑧2⟩1/2 ∼ 3⟨Δ𝑥2⟩1/2. Esta duración fue suficiente para
que las partículas interactuaran con múltiples estructuras, y los resultados no se ven afectados
cualitativamente cuando se elige ⟨Δ𝑧2⟩1/2 ≈ 𝐿caja en su lugar. Los tiempos de salida disminuyen
(lentamente) con 𝛼, variando desde 𝑡(60)𝑒 ≈ 0,71𝑡0 hasta 𝑡(1)𝑒 ≈ 0,86𝑡0. A ese tiempo, ninguna partícula
había recorrido toda la caja en la dirección 𝑥, y menos del 5% de las partículas lo habían hecho en
la dirección 𝑧.

Pasamos ahora a estudiar la energía cinética de los iones, la cual se muestra en la figura 3.4
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para algunos valores selectos de 𝛼. El panel izquierdo corresponde a la energía perpendicular
(por unidad de masa) 𝑣2𝑥 , mientras que el panel derecho corresponde a la energía paralela 𝑣2𝑧 .
Aunque ambas componentes comienzan con la misma energía media ⟨𝑣2𝑖 ⟩0 ≈ 2,2𝑣20 , la componente
perpendicular tiene un rápido incremento oscilatorio hasta que las oscilaciones cesan (como antes,
relacionado con la giración) alrededor de un valor cercano a la energía cinética del fluido 𝑢2

𝑟𝑚𝑠 ≈ 3𝑣20 ,
seguido de un aumento sostenido. En contraste, la energización paralela aumenta con 𝛼, pero es
insignificante excepto para los valores más altos de 𝛼. Para iones pesados (aquellos con 𝛼 < 𝛼𝑝), la
energización perpendicular es dominante, pero la dependencia con 𝛼 no es tan clara.

Para entender esto, en la figura 3.5 se muestra la tasa de energización (de ahora en más,
energización) en cada componente, definida según

𝜀⟂ =
⟨Δ𝑣2⟂⟩𝛼𝑒

𝑡𝛼𝑒
, 𝜀∥ =

⟨Δ𝑣2∥ ⟩
𝛼
𝑒

𝑡𝛼𝑒
(3.3)

donde ⟨Δ𝑣2𝑗 ⟩𝛼𝑒 es la diferencia entre la energía cinética media a tiempo 𝑡(𝛼)𝑒 y la inicial. Vemos clara-
mente que la energización paralela incrementa monotonamente con 𝛼mientras que la energización
perpendicular tiene un comportamiento variable con un máximo en 𝛼 ≈ 4.

Como han mostrado trabajos previos (Dmitruk et al. 2004b; Lehe et al. 2009), la energización
tiende a ser principalmente paralela para valores altos de 𝛼 ∼ Ω𝑐 (por ejemplo, para electrones) y
principalmente perpendicular para valores bajos de 𝛼 (por ejemplo, para protones). Esto se debe
a la interacción de las partículas con las hojas de corriente y otras estructuras de tamaño ∼ 𝑙𝑑
(González et al. 2016, 2017). Las partículas con bajo 𝛼 tienen un giroradio 𝑅𝑐 = |v⟂|/𝛼𝐵0 alto y
no pueden aprovechar la coherencia del campo eléctrico 𝐸𝑧 ∼ 𝜂𝑗𝑧 dentro de una hoja de corriente
como lo hacen las partículas con 𝑅𝑐 ≲ 𝑙𝑑. Por otro lado, para 𝑅𝑐 ≲ 𝑙𝑑, las partículas dentro de una
hoja de corriente experimentan un campo E⟂ casi constante, cuya fuerza neta promedia a 0 en un
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partículas cómo función del tiempo para todos los valores de 𝛼.

giroperíodo dado, y resulta en una pequeña energización perpendicular. Además, el aumento de 𝑅𝑐
permite a las partículas explorar regiones más grandes del plasma en busca de mayores gradientes
de E⟂. Así, la energización perpendicular aumenta a medida que 𝛼 disminuye. No obstante, esto
no puede sostenerse indefinidamente, ya que sabemos que en el límite 𝛼 → 0 no hay interacción y
ambas energizaciones deben ser nulas. Dado que 𝜀⟂(𝛼) debe ser una función suave y no nula con
𝜀⟂ = 0 para 𝛼 = 0 y 𝛼 → ∞, debe haber al menos un máximo 𝛼𝑐. Con esto en mente, esperamos
que la energización perpendicular para valores muy pequeños de 𝛼 aumente a medida que la
intensidad de la interacción crece hasta este valor crítico 𝛼𝑐. A partir de este 𝛼𝑐, la reducción en 𝑅𝑐
comienza a anular el efecto de E⟂.

En resumen, la competencia entre la intensidad de la interacción (relevante para altos valores de
𝛼) y la exploración/explotación (relevante para bajos valores de 𝛼) produce uno omásmáximos para
𝜀⟂(𝛼). En el contexto de este trabajo, parecería que uno de esosmáximos es𝛼𝑐 ≈ 4. Para independizar
nuestro análisis de esta competencia, graficamos la razón entre la energización perpendicular 𝜀⟂ y
la energización total 𝜀 = 𝜀⟂+𝜀∥ en el panel derecho de la figura 3.5; esta razón representa la fracción
de energía que termina en la componente perpendicular, independientemente de la energización
total. De esta manera, eliminamos el factor de la intensidad de interacción y nos enfocamos solo
en el aspecto geométrico/estructural, que claramente beneficia la energización paralela a medida
que 𝛼 aumenta. Es en términos de esta interpretación que podemos afirmar que la energización
perpendicular se vuelve dominante (aunque no necesariamente mayor) para valores bajos de 𝛼.

3.2.2. Modelo de centro guía

Como se muestra en la figura 3.3, el comportamiento del desplazamiento perpendicular se
vuelve independiente de 𝛼. Esto sugiere la presencia de un mecanismo que le otorga a las partículas
una velocidad independiente del valor de 𝛼. La velocidad de deriva en un campo eléctrico y
magnético constante dada por la ecuación (2.5) sería un posible candidato. Aunque el campo
magnético B podría ser aproximadamente constante dado el fuerte campo guía B0, esto no es
inmediato para el campo eléctrico E, incluso para partículas con 𝑅𝑐 ll 𝑙𝑑. Esta aproximación modela
el movimiento de las partículas siempre que los tiempos y las escalas características de los campos
sean mucho mayores que el giroperíodo y el radio de giro de las partículas, respectivamente.
Aunque la dependencia de 𝛼 no es explícita en la ecuación (2.5), puede estar implícita en las
posiciones x𝑖 de las partículas, afectando la velocidad de deriva V𝐷 experimentada por la partícula
(interpretando V𝐷(x) como un campo vectorial).

Para responder a esta pregunta, en el panel izquierdo de la figura 3.6 mostramos el valor
cuadrático medio de V𝐷 experimentado por partículas con diferentes 𝛼, confirmando una débil
dependencia de 𝛼. En esta aproximación V𝐷 corresponde a la velocidad del centro guía de la
partícula. Cómo mencionamos en la sección 3.2.2, estas expresiones para V𝐷 solo son relevantes en
la dirección perpendicular al campo magnético (que podemos asumir en 𝐳̂), por lo que solo tiene
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sentido analizar V𝐷⟂. Para poder reproducir la dinámica balística (⟨Δ𝑥2⟩1/2 ∼ 𝑡) seguida de una
sub-balística (⟨Δ𝑥2⟩1/2 ∼ 𝑡3/4), esta velocidad de deriva debe disponer de cierta coherencia. Para
confirmar esto, calculamos la función de autocorrelación de la velocidad de deriva perpendicular

𝐶𝐷(𝜏) =
⟨V𝐷⟂(𝑡) ⋅V𝐷⟂(𝑡 + 𝜏)⟩𝑡

⟨|V𝐷⟂(𝑡)|2⟩𝑡
, (3.4)

donde ⟨•⟩𝑡 representa el promedio sobre todas las partículas y todos los tiempos 0 ≤ 𝑡 ≤ 𝑡(𝛼)𝑒 −𝜏. Esta
autocorrelación se muestra en el panel derecho de la figura 3.6 y parece ser débilmente dependiente
en 𝛼. Como antes, hay un comportamiento inicial para 𝑡 ≲ 𝜏𝑐 debido a la giración de la partícula,
seguido de un colapso hacia un comportamiento común, muy probablemente relacionado con la
evolución de V𝐷. Definiendo el tiempo 𝜏𝐴 cuando 𝐶𝐷(𝜏𝐴) = 0,1 como el tiempo de autocorrelación,
obtenemos un valor comparable al tiempo de rotación de gran escala 𝜏𝐴 ≈ 𝑡0/2, lo que refuerza su
interpretación como un tiempo característico del campo de velocidad de deriva. Para la mayoría de
los valores de 𝛼, este tiempo de autocorrelación es mucho mayor que el giroperíodo de la partícula
𝜏𝐴/𝜏𝑐 ≈ 2𝛼, lo que proporciona una herramienta para cuantificar la aplicabilidad del modelo de
centro guía.

Con esto en mente, proponemos calcular una posición de deriva x𝐷 para cada partícula

dx𝐷,𝑗

d𝑡
= V𝐷(x𝑗, 𝑡) ⟹ x𝐷,𝑗 = x𝑗(0) +∫

𝑡

0
V𝐷(x𝑗(𝑡′), 𝑡′)𝑑𝑡′ (3.5)

donde x𝑗(𝑡) es la posición real de la partícula y x𝐷,𝑗 la posición de deriva de la partícula 𝑗. Al ser
x𝑗(𝑡) conocido, integramos numéricamente la ecuación (3.5) para obtener x𝐷,𝑗(𝑡). El desplazamiento
perpendicular de esta posición de deriva puede apreciarse en el panel izquierdo de la figura
3.7, junto con un gráfico del cociente ⟨Δ𝑥2𝐷⟩1/2/⟨Δ𝑥2⟩1/2 a modo de comparación. Vemos que este
desplazamiento de deriva carece de oscilaciones, lo cual es consistente con su interpretación como
el centro guía. Debido a este hecho, la discrepancia es más notable en los tiempos iniciales, antes
de que la giración se promedie y las partículas alcancen su velocidad de deriva (comparable a
la velocidad característica del plasma). Esto explica el aumento repentino inicial en la energía
perpendicular en la figura 3.4. Para tiempos posteriores, los cocientes para 𝛼 ≥ 4 convergen en un
98% a 1, mostrando que este modelo de centro guía explica la mayor parte del desplazamiento;
incluso para 𝛼 = 1, 2 la discrepancia es menor al 10%. Recordando el resultado previo de la
autocorrelación, podemos notar 𝛼 = 1, 2 tienen 𝜏𝑐 ∼ 𝜏𝐴, lo cual explica porque esta aproximación
puede no ser del todo apropiada. Cabe destacar que el comportamiento balístico inicial es capturado
por este modelo, lo que muestra que no es solo debido a la giración.

Hasta ahora nos hemos abstenido de analizar la velocidad de deriva paralela y el desplazamiento
porque la giración de las partículas está casi completamente confinada al plano perpendicular.
Como se muestra en la figura 3.3, el movimiento en la dirección paralela es balístico o ligeramente
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(izquierda) y paralela (derecha), para todos los valores de 𝛼.

super-balístico, lo cual no puede explicarse mediante una velocidad de deriva estacionaria. Para
mostrar esto, calculamos la dirección media de la velocidad de cada partícula 𝑗 (y para cada
componente) a lo largo de su evolución, utilizando la función signo

⟨sg(v𝑗)⟩ =
1
𝑡(𝛼)𝑒

∫
𝑡(𝛼)𝑒

0
sg(v𝑗(𝑡))𝑑𝑡 ≈

1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

sg(v𝑗(𝑡𝑖)) (3.6)

donde 𝑁𝑡 es la cantidad de pasos temporales y 𝑡𝑖 los tiempos discretos en los cuales tenemos datos.

En la figura 3.8 podemos ver la función de densidad de probabilidad (FDP) de ⟨sg(𝑣𝑥)⟩ y ⟨sg(𝑣𝑧)⟩,
con comportamientos sumamente distintos. En la perpendicular, la dirección de la velocidad
alterna rápidamente dada la giración de las partículas, generando un fuerte pico en ⟨sg(𝑣𝑥)⟩ = 0.
Por otro lado, en la paralela las partículas están concentradas en ⟨sg(𝑣𝑧)⟩ = ±1, mostrando que los
cambios de sentido del movimiento son muy poco habituales, aunque no inexistentes.

Para concluir esta sección, buscamos la relación entre el desplazamiento y la energización. En
los tiempos finales 𝑡(𝛼)𝑒 , calculamos el desplazamiento y la energía (en cada componente) para todas
las partículas y las separamos de acuerdo con el primero. Tomamos el 20% de las partículas con
mayores desplazamientos (ad, por alto desplazamiento) y el 20% con menores desplazamientos
(bd, por bajo desplazamiento) de acuerdo con cada dirección, y luego combinados (desplazamiento
total). Posteriormente, calculamos su energía media, cuyo cociente se muestra en la figura 3.9
para los diferentes valores de 𝛼. En el panel derecho, vemos que la energización paralela aumenta
con un alto desplazamiento paralelo, pero disminuye con un alto desplazamiento perpendicular.
El primer resultado es consistente con la figura 3.8, ya que las partículas que no cambian de
dirección de movimiento tienen mayor |Δ𝑧| a medida que |𝑣𝑧| aumenta. El segundo se puede
entender al considerar que la energización paralela se debe principalmente a las hojas de corriente,
que están elongadas en la dirección paralela pero son delgadas en la dirección perpendicular. Por
lo tanto, el desplazamiento perpendicular puede fácilmente sacar a las partículas de estas hojas,
reduciendo su energización paralela. Por otro lado, la energización perpendicular aumenta con un
bajo desplazamiento, principalmente en la dirección paralela. Dejamos la interpretación de este
fenómeno para la próxima sección.

3.2.3. Concentración preferencial

Ponemos ahora nuestra atención en las ligeras discrepancias en la velocidad de deriva experi-
mentada por diferentes valores de 𝛼. Como se mencionó, dado que todas las partículas para todos
los 𝛼 están inmersas en los mismos campos y que la velocidad de deriva V𝐷 es independiente de 𝛼,
la única forma en que las partículas con diferentes 𝛼 podrían experimentar distintas velocidades
de deriva es a través de su distribución espacial. Si las partículas mantuvieran su distribución
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inicial uniforme en el espacio, todas las curvas de la figura 3.6 deberían colapsar. Por lo tanto, espe-
ramos una desviación de la uniformidad, que podríamos identificar con regiones de concentración
preferencial.

Para cuantificar esta concentración preferencial, usaremos el método de teselados de Voronoi y
compararemos la estadística de volumenes contra una distribución uniforme dada por un proceso
aleatorio de Poisson (PAP o RPP por Random Poisson Process, en inglés; Monchaux et al. 2010;
Obligado et al. 2014; Uhlmann 2020; Reartes y Mininni 2021; Angriman et al. 2022; Zapata et al.
2024). Un teselado de Voronoi consiste en fraccionar el dominio en celdas, una por cada partícula,
tal que todos los puntos de la celda estén más cerca de esa partícula que de cualquier otra. El
volumen 𝒱𝑖 de cada celda puede interpretarse cómo el inverso de la densidad local de partículas.
Por lo tanto, un alto 𝒱𝑖 está asociado con vacíos y un bajo 𝒱𝑖 con cúmulos.

Luego calculamos la FDP de los volúmenes normalizados 𝒱/⟨𝒱⟩ y la comparamos con la FDP
de un PAP correspondiente al caso uniforme. En la figura 3.10 mostramos estas FDP para todos los
𝛼 en los tiempos 𝑡 = 0 (inicial), 𝑡 = 0,33𝑡0 (intermedio) y 𝑡 = 0,66𝑡0 (cercano al final). A medida
que avanza el tiempo, la distribución se desvía de la correspondiente al caso uniforme, aunque no
al mismo ritmo para todos los 𝛼.

Para cuantificar esta idea, computamos la varianza de los volúmenes normalizados 𝜎2
𝒱 para

cada distribución y la comparamos con el valor conocido de la PAP 𝜎2
𝒱 ≈ 0,18. Esta varianza

incrementa a medida que la FDP se aleja de una distribución uniforme, según muestra la figura
3.11. Para la mayoría de los valores de 𝛼, 𝜎2

𝒱 aumenta con el tiempo a tasa decreciente, mostrando
un reordenamiento inicial explosivo seguido de un lento asentamiento. A tiempo final 𝑡 = 0,66𝑡0 la
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curva tiene un claro máximo, nuevamente localizado en 𝛼 = 4, lo cual induce a analizar la relación
entre energización y acumulación.

Para esto, requerimos una forma de determinar cuales partículas están acumuladas y cuales
no. Consideraremos que la partícula 𝑖 está acumulada si su volumen 𝒱𝑖 es menor que un cierto
volumen crítico 𝒱𝑐. Elegimos este 𝒱𝑐 cómo la intersección a izquierda entre la FDP de ese 𝛼 y la
FDP del caso uniforme. Para este criterio, las pequeñas desviaciones vistas en la figura 3.10 arrojan
una fracción considerable de partículas acumuladas (∼ 20%).

Aplicamos este criterio para cada 𝛼 a ciertos tiempos y calculamos las energías cinéticas medias
⟨𝑣⟂⟩acum y ⟨𝑣𝑧⟩acum de las partículas acumuladas. En la figura 3.12 se muestra el cociente entre estas
energíasmedias y la correspondiente energíamedia del sistema completo de partículas. Claramente,
las partículas acumuladas tienen, en promedio, una mayor energía perpendicular y una menor
energía paralela, especialmente a medida que avanza el tiempo. Esto sugiere la existencia de
regiones donde las partículas se concentran y experimentan alta energización perpendicular.

Hasta ahora hemos identificado tres fenómenos distintos en la dinámica de partículas de prueba:

(a) Alta (baja) energización perpendicular (paralela).

(b) Bajo desplazamiento.

(c) Concentración preferencial (acumulación).
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Hemos relacionado (a) con (b) a través de la figura 3.9 y (a) con (c) a través de la figura 3.12.
Esto sugiere que (b) y (c) podrían estar relacionadas también y entonces la acumulación sería
consecuencia de un fenómeno de captura, lo cual también reduciría el desplazamiento.

Para confirmar esta intuición, calculamos la fracción del tiempo 𝑓𝑎 durante el cual cada partícula
se encuentra acumulada. Luego agrupamos a las partículas en base a sus valores de 𝑓𝑎, calculamos
el desplazamiento medio final (a 𝑡 = 𝑡(𝛼)𝑒 ) para cada grupo y lo comparamos con el de la población
completa. En la figura 3.13 podemos ver una relaciónmayormente decreciente entre desplazamiento
y 𝑓𝑎, con débil dependencia en 𝛼. Esto nos dice que las partículas viajan mucho menos (hasta un
∼ 50%) a medida que pasan más tiempo acumuladas; están atrapadas en estas regiones. No
obstante, el máximo en 𝑓𝑎 ≈ 0,2 en la componente paralela muestra que también las partículas que
nunca se acumulan viajan poco (∼ 15%).

Hemos confirmado entonces la existencia de regiones que atrapan y energizan perpendicular-
mente partículas cargadas. Sin embargo, no hemos aún encontrado cual es la propiedad especial
de estas regiones ni el mecanismo detrás de estos fenómenos. Con esto en mente, analizamos los
campos experimentados por partículas acumuladas en contraste con aquellos que una hipotética
distribución uniforme experimentaría. Empezando por la acumulación, podemos notar que la
ecuación (3.5) es idéntica a la ecuación de evolución de un elemento de fluido (un trazador) en un
campo de velocidades V𝐷(x, 𝑡) (basta cambiar x𝑗 por x𝐷,𝑗). Es sabido que los trazadores solo pueden
vaciar o acumularse en regiones con divergencia positiva o negativa, respectivamente (Balkovsky
et al. 2001; Falkovich et al. 2001; Bec et al. 2004; Dhanagare et al. 2014).

Habiendo mostrado que este modelo reproduce el desplazamiento de las partículas en el
plano perpendicular en la sección 3.2.2, esperamos que la analogía aplique en el caso 2D. En
el panel izquierdo de la figura 3.14, mostramos el valor medio de la divergencia perpendicular
∇⟂ ⋅V𝐷 ≡ 𝜕𝑥𝑉𝐷,𝑥 +𝜕𝑦𝑉𝐷,𝑦 = ∇ ⋅V𝐷 −𝜕𝑧𝑉𝐷,𝑧 experimentada por las partículas, para distintos tiempos
y valores de 𝛼. Dado que la divergencia media del campo es nula, normalizamos utilizando la
desviación estándar para cuantificar la relevancia. Es claro que las partículas tienden a acumularse
en regiones con divergencia perpendicular negativa (∇⟂ ⋅V𝐷 < 0 ), según lo esperado. En el panel
derecho de la figura 3.14 mostramos la divergencia perpendicular del campo de velocidades MHD
u, con un comportamiento muy similar. Esto se debe a la relación entre V𝐷 y u⟂, que podemos ver
introduciendo la ley de Ohm (2.66) en la definición de la velocidad de deriva (2.5) y expandiendo

V𝐷 ≈ u⟂ −
𝜖𝐻
𝜌

j⟂ +
1
|B|

[𝜂j⟂ −
𝜖𝐻
𝜌
∇⟂𝑝𝑒] × 𝐳̂ (3.7)

donde aproximamos la dirección del campo magnético B/|B| ≈ 𝐳̂ cómo la del campo guía. El último
y anteúltimo término son proporcionales a |B|−1 ≈ 𝐵−1

0 y 𝜖𝐻 = 1/60, respectivamente, los cuales
deberían ser despreciables. El hecho de que se cumpla ⟨|V𝐷 − u⟂|

2⟩ ≤ 0,02⟨|V𝐷|
2⟩1/2⟨|u⟂|

2⟩1/2 para
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componente paralela del rotor del campo eléctrico E (derecha) experimentado por las partículas acumuladas, normalizado
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todo tiempo confirma esta observación. Esto es relevante pues, aunque las partículas sigan V𝐷,
podemos trabajar más fácilmente con u⟂ cómo una aproximación razonable.

Esta similitud es el nexo que conecta la acumulación con la energización perpendicular ex-
cepcional. En el panel izquierdo de la figura 3.15, ilustramos un escenario ideal para ∇⟂ ⋅ u⟂ < 0,
donde las líneas de corriente convergen a un único punto. Este campo de velocidades u⟂ genera un
campo eléctrico inducido perpendicular Eind

⟂ = −u⟂ × 𝐵𝑧𝐳̂ que rota en sentido horario dado que
𝐵𝑧 = 𝐵0 + 𝑏𝑧 > 0 (pues 𝐵0 ≫ 𝑏𝑟𝑚𝑠). Esta rotación horaria es equivalente a [∇ × E]𝑧 < 0, lo cual se
cumple para las partículas acumuladas cómo muestra el panel derecho de la figura 3.15. De hecho,
la clara similitud con la figura 3.14 se debe a que

[∇ × Eind
⟂ ]

𝑧
≈ − [∇ × (u × 𝐵0𝐳̂)]𝑧 = 𝐵0∇⟂ ⋅ u⟂

Todo ion atrapado en esta región también girará en sentido horario, resultando en una potencia
positiva 𝒫⟂ = 𝛼E⟂ ⋅ v⟂ > 0 y considerable energización. En condiciones menos ideales, este
alineamiento no será perfecto, pero debería ser suficientemente dominante cómo para asegurar
una energización neta a lo largo de un giroperiodo completo, en una resonancia de tipo betatron
(Swann 1933; Dalena et al. 2014).

Podemos visualizar el análisis anterior en la figura 3.16, dondemostramos el teselado de Voronoi
(coloreando cada celda por su volumen) junto con los campos subyacentes ∇⟂ ⋅V𝐷, ∇⟂ ⋅u⟂ y [∇ × E]𝑧



3.2 - El rol de las estructuras 43

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y
/L

ca
ja

Perpendicular

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z/
L
ca
ja

Paralela

0.08

0.3

1

2

4

0.08

0.3

1

2

4

V
/
〈V
〉

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y
/L

ca
ja

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z/
L

ca
ja

-60

-10

-2

-0.5

0

0.5

2

10

60

-60

-10

-2

-0.5

0

0.5

2

10

60

∇ ⊥
·V

D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y
/L

ca
ja

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z/
L

ca
ja

-60

-10

-2

-0.5

0

0.5

2

10

60

-60

-10

-2

-0.5

0

0.5

2

10

60

∇ ⊥
·u
⊥

0.0 0.2 0.4 0.6 0.8 1.0

x/Lcaja

0.0

0.2

0.4

0.6

0.8

1.0

y
/L

ca
ja

0.0 0.2 0.4 0.6 0.8 1.0

x/Lcaja

0.0

0.2

0.4

0.6

0.8

1.0

z/
L

ca
ja

-60

-10

-1.0

0

1.0

10

60

-60

-10

-1.0

0

1.0

10

60

(∇
×

E
) z
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para un corte perpendicular (𝑧 = 𝐿caja/2) y otro paralelo (𝑦 = 𝐿caja/2) a tiempo 𝑡 = 0,66𝑡0 para 𝛼 = 4.
La similitud entre los tres campos escalares es clara, cómo mostramos previamente. Sin embargo,
más relevante aún es la correlación entre la alta concentración de partículas (bajo volumen de
celda) y la negatividad de los campos. Aunque esto está presente en ambas direcciones, es más
apreciable en la dirección paralela, probablemente porque las estructuras son más elongadas a lo
largo del eje 𝑧.

No obstante, este mecanismo no nos dice nada sobre la dinámica de la componente paralela y
de hecho se invalida si las partículas no se encuentran confinadas también en esta dirección. Cómo
vimos en la figura 3.8, el movimiento paralelo tiende a mantener su dirección, lo cual implica
que solo partículas con bajo |𝑣𝑧| pueden estar suficiente tiempo en estas regiones para explotar
su energización perpendicular. El panel derecho de la figura 3.9 está en concordancia con esta
observación. Repitiendo un análisis similar al anterior con el campo escalar 𝑏𝑧 (no mostrado)
se observa también que las partículas tienden a acumularse en regiones con 𝑏𝑧 < 0. Dado que
𝐵0 ≫ |b|, a primer orden |B| ≈ 𝐵0 + 𝑏𝑧, por lo que las partículas se acumulan en regiones de campo
magnético débil. Esto sugiere un mecanismo de tipo espejo magnético (ver sección 2.1.3) cómo
candidato al confinamiento paralelo e implicaría que baja energización paralela es un requisito
para la acumulación en lugar de una consecuencia de la misma.

Con este modelo a mano, podemos explicar el máximo en la figura 3.11 (panel derecho) y, en
consecuencia, del máximo de la figura 3.5 (panel izquierdo). En base al argumento anterior, el
requisito de bajo |𝑣𝑧| para poder acumularse es claramente dificil de cumplir para partículas con
alto 𝛼, pues vemos en la figura 3.4 que tienden a tener alta energía cinética paralela. Por otro lado,
las particulas con bajo 𝛼 exhiben las mayores desviaciones respecto al modelo de centro guía, cómo
se muestra en la figura 3.7, y por lo tanto, no están completamente atrapadas cómo lo estaría un
verdadero trazador. Otra forma de ver esto es notando que partículas con bajo 𝛼 tienen mayor
giroradio 𝑅𝑐 ∼ 1/𝛼, que aumenta la probabilidad de que la partícula abandone la región a lo largo
de un giroperiodo. En todo caso, esta competencia es reminiscente a aquella que mencionamos al
final de la sección 3.2.1 y probablemente la refuerce.

Finalizamos este análisis revisitando el inesperado máximo en la componente paralela de la
figura 3.13. Dado que un bajo |𝑣𝑧| es un requisito para la acumulación, esto muestra que en ciertos
casos un bajo desplazamiento paralelo puede ir en detrimento de la acumulación. Aunque en
principio pueda ser contradictorio, es posible reconciliar estas afirmaciones concluyendo que
la posición inicial de las partículas determina si son o no capaces de explotar este mecanismo.
Partículas que empiezan lejos de estas regiones pueden nunca alcanzarlas sin adquirir previamente
una mayor velocidad paralela; esto les permite explorar la caja pero impide que la captura sea
efectiva o duradera. Este es probablemente el tipo de partículas con 𝑓𝑎 ≈ 0,2 en la figura 3.13,
aquellas que debieron recorrer la mayor distancia para alcanzar estas regiones y, en consecuencia,
son incapaces de explotarlas tanto.

A lo largo de esta sección, la variación del parámetro 𝛼 de los iones nos permitió vislumbrar un
mecanismo de energización de iones dominante en plasmas con los parámetros estudiados. Un
mayor 𝛼 aumenta la intensidad de la interacción, pero también reduce el giroradio 𝑅𝑐 ∝ 1/𝛼 de las
partículas, magnetizándolas y forzándolas a seguir más fielmente las líneas de campomagnético. En
la componente paralela, ambos efectos incrementan la energización, pues facilita que las partículas
se mantengan dentro de las hojas de corriente explotando su aceleración 𝛼𝐸𝑧. En contraposición,
para la energización paralela estos dos factores entran en competencia, dando lugar a un máximo
para 𝛼𝑐 ≈ 4. Al considerar la fracción de la energía total correspondiente a cada componente,
eliminamos el efecto de la intensidad de la interacción y confirmamos que la disminución de 𝛼
implica una energización predominantemente perpendicular.

Entender el desplazamiento de las partículas es fundamental para explicar la diferencia de
energización entre ambas componentes y comprender el funcionamiento de estas estructuras.
En la componente paralela, el desplazamiento ligeramente superbalístico indica que los iones
tienden a mantener su dirección de movimiento inicial a lo largo del campo guía, más una pequeña
energización. En la perpendicular, el desplazamiento super-difusivo y débilmente dependiente de
𝛼 puede explicarse mayormente mediante una velocidad de deriva V𝐷 dada por (2.5) con tiempo
de correlación no nulo. Este modelo predice zonas de acumulación donde ∇⟂ ⋅ V𝐷 < 0, lo cual
confirmamos mediante un análisis de Voronoi. Partículas en estas regiones no solo experimentan
bajo desplazamiento (están atrapadas), sino que además tienen alta energización perpendicular.
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Esto último se debe a la alineación del campo eléctrico allí presente con la giración horaria de
las partículas (resonancia betatrón), pues (∇ × E)𝑧 ∼ 𝐵0∇⟂ ⋅ V𝐷 < 0. Aunque podría ser tentador
relacionar estas estructuras directamente con la compresibilidad del flujo, mecanismos similares
han sido observados en flujos incompresibles (Boffetta et al. 2005; Cressman et al. 2007; Stepanov
et al. 2020), siempre que la dinámica pueda aproximarse razonablemente como bidimensional¹. La
compresibilidad, sin embargo, podría propiciar la formación de estas estructuras.

Estemecanismo, aunquemuy eficiente para energizar perpendicularmente, tiene corta duración.
A medida que la energía perpendicular aumenta, la dispersión en el ángulo de inclinación (ver
sección 2.1.4) puede transferir parte de esta energía a la componente paralela, permitiendo que
la partícula escape verticalmente. Incluso si esto no ocurre, el radio de giro aumenta junto con la
energía hasta que eventualmente es comparable al tamaño de la región, permitiendole escapar. La
competencia previamente mencionada se manifiesta en que las partículas con 𝛼 intermedio (𝛼 ≈ 8)
son atrapadas más eficientemente, ya que las partículas con 𝛼 alto pueden alcanzar más fácilmente
el 𝑣𝑧 necesario para escapar, mientras que las de 𝛼 bajo son menos influenciadas por V𝐷 debido a
su mayor radio de giro. En particular, este mecanismo de captura solo es aplicable a partículas
más pesadas que los protones, para las cuales la velocidad de deriva es comparable a su velocidad
paralela y resulta fundamental para comprender su dinámica.

¹Incluso bajo la condición ∇ ⋅V𝐷 = 0, es posible tener ∇⟂ ⋅V𝐷 < 0 si 𝜕𝑧𝑉𝐷,𝑧 > 0.
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Figura 3.17: Esquema mostrando cómo se construyen las condiciones iniciales de cada simulación lineal a partir de NL1.

3.3. El rol de las ondas
En esta sección, continuaremos haciendo uso de la simulación NL1, pero fijaremos 𝛼 = 60

(protones) dejando los demás parámetros idénticos. En particular, nos interesa estudiar el rol que
las ondas presentes en el plasma tienen a la hora de energizar protones. Además, haremos uso
también de las simulaciones NL2 y NL3, con el objetivo de identificar el impacto que el tiempo de
correlación del forzado 𝜏𝑓 tiene en la dinámica. Todas las simulaciones se integran durante ∼ 300𝜏𝑐.

3.3.1. Lineal contra no lineal

Comenzaremos comparando la energización de protones en la simulación NL1 con la de
simulaciones de CMHD linealizado, dado por las ecuaciones (2.80)-(2.82). Para ello modificamos
el código GHOST anulando todos los términos no lineales. Al ser lineales, estas ecuaciones carecen
de cascada de energía, por lo que ningún modo fuera del cascarón 2 ≤ |k| ≤ 3 recibirá energía del
forzado. Esto sumado a la ausencia de disipación vuelve innecesaria la existencia de un forzado,
por lo que estas simulaciones son perfectamente conservativas. Más aún, usaremos un método
de Runge-Kutta de orden 4 para la integración temporal, al ser el método de orden 2 inestable
en ausencia de disipación. Por otro lado, estas simulaciones no requieren el uso de FFTs para
resolver convoluciones en espacio Fourier, lo que las vuelve considerablemente más rápidas que su
contraparte no lineal.

Todas las simulaciones lineales usan alguna variación de estas condiciones iniciales obtenidas
de NL1 (turbulencia desarrollada), según se resume en la figura 3.17. Esto es, se realiza una corrida
NL1 hasta un estado estacionario y se toma este estado cómo condición inicial. La simulación
L utiliza exactamente este estado alcanzado por NL1 cómo condición inicial, mientras que para
LA se modifican la fase de los modos Fourier aleatoriamente. Esto se logra transformando cada
modo Fourier 𝜓k ↦ 𝑒𝑖𝜙k𝜓k para cada campo escalar 𝜌, 𝑢𝑗 y 𝑏𝑗, donde 𝜙k son fases aleatorias
uniformemente distribuidas y elegidas independientemente para cada 𝜓k. Luego, se imponen
las condiciones necesarias sobre los campos resultantes (i.e., hermiticidad y gauge de Coulomb).
Estas dos primeras simulaciones inician con exactamente el mismo espectro de energía que NL1
(ver figura 3.2), pero las fases aleatorias en LA destruyen toda correlación y estructura presentes
en las condiciones iniciales de NL1 (Kuramoto 1984; Alexakis et al. 2007). En la figura 3.18 se
muestran cortes perpendiculares de 𝑗𝑧 para las condiciones iniciales de L y LA. La simulacion L
tiene estructuras coherentes en forma de hojas de corriente que son destruidas en LA, dejando en
su lugar una estructura granular aleatoria. Las últimas dos simulaciones LA80 y LA40 usan los
mismos modos Fourier que LA, pero imponiendo 𝜓k = 0 para |k| > 80 y |k| > 40, respectivamente.
Cómo este truncado reduce levemente la energía total, compensamos reescalando uniformemente
todos los coeficientes, preservando la estructura de ley de potencias del espectro.

Comenzamos comparando la evolución de la energía cinética media de las partículas, separando
nuevamente en la componente perpendicular y la paralela al campo magnético guía, en la figura
3.18. En todos los casos, la energización perpendicular es mucho mayor que la paralela, según
lo habitual. En ambas componentes, el caso lineal L presenta una energización mucho menor
respecto al caso no lineal NL1. No obstante, las fases aleatorias de LA parecen aumentar mucho la
energización, logrando superar incluso la de NL1. El truncado en |k| = 80 (LA80) cambia muy poco
esto, pero el truncado en |k| = 40 (LA40) reduce notoriamente la energización, llevándola a niveles
comparables con la simulación L. Más aún, en los casos perpendiculares las simulaciones lineales
muestran un comportamiento difusivo o subdifusivo (en espacio de velocidades) ⟨𝑣2𝑥 ⟩ ∼ 𝑡𝑎 con
𝑎 ≲ 1. Esto sugiere que en las simulaciones lineales el mecanismo subyacente para la energización
es análogo a un movimiento browniano, con incrementos de energía delta correlacionados. En
esta analogía, las partículas tendrían interacciones muy fuertes y localizadas en el tiempo con
los campos del plasma. En el contexto de la teoría casi lineal (Stix 1992), esta fuerte interacción
puede pensarse cómo una resonancia con alguna onda específica presente en el sistema. Esta
alta energización rapidamente remueve a la partícula de la condición de resonancia en pocos



3.3 - El rol de las ondas 47

0.0 0.2 0.4 0.6 0.8 1.0

x/Lbox

0.0

0.2

0.4

0.6

0.8

1.0
y
/L

bo
x

L

0.0 0.2 0.4 0.6 0.8 1.0

x/Lbox

0.0

0.2

0.4

0.6

0.8

1.0

y
/L

bo
x

LA

-200.0

-20.0

-2.0

0

2.0

20.0

200.0

J
z

[b
0
/L

0
]

Figura 3.18: Corte perpendicular de la corriente de densidad 𝑗𝑧 a 𝑡 = 0 (condición inicial) para las simulaciones L y LA,
mostrando cómo las fases aleatorias destruyen las estructuras coherentes (hojas de corriente) del plasma.
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giroperiodos, asegurando que la interacción esté localizada en el tiempo.

Por otro lado, la energización en el caso no lineal es superdifusivo, lo cual está relacionado con
la interacción entre partículas y estructuras coherentes presentes en el plasma, según discutimos en
la sección 3.2. Con esto en mente, podemos relacionar la caída en la energización cuando NL1→L
con la desaparición de estructuras en el plasma debido a la evolución lineal. En las relaciones de
dispersión de las ondas de Alfvén (2.86) y magnetosónicas (2.87), vemos que las ondas en CMHD
son dispersivas (i.e., la velocidad de grupo y fase no coinciden) y, por lo tanto, cualquier estructura
presente en el sistema al inicio tenderá a desarmarse. Para confirmar esto, calculamos la función
de autocorrelación radial de dos puntos Γ del campo ∇⟂ ⋅ u⟂ en el plano perpendicular al campo
magnético guía. En la figura 3.20(a), mostramos la autocorrelación para múltiples tiempos (colores
más oscuros representan tiempos posteriores). De estas curvas, calculamos la longitud de autoco-
rrelación ℓ𝑐, definida en este caso cómo el desplazamiento para el cual la autocorrelación cae debajo
del 10% (línea negra punteada). En la figura 3.20(b), mostramos la longitud de autocorrelación ℓ𝑐
cómo función del tiempo, donde notamos que para NL1 tenemos ℓ𝑐 ≈ 18𝑙𝑑 a lo largo de toda la
simulación. Por otro lado, para la simulación L comienza con el mismo valor pero rápidamente
decae a ℓ𝑐 ≈ 8𝑙𝑑 y luego decae lentamente hacia el valor de la simulación LA (ℓ𝑐 ≈ 2𝑙𝑑). El bajo
valor de ℓ𝑐 en la simulación LA confirma que las fases aleatorias destruyen toda correlación en el
sistema, pues la longitud de correlación es comparable con la escala mínima del sistema 𝑙𝑑. Por lo
tanto, vemos cómo la evolución lineal elimina las estructuras inicialmente presentes en el campo
en menos de 20𝜏𝑐, evitando que las partículas puedan explotar los mecanismos de energización
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Figura 3.21: Desvío estándar de los volumenes de Voronoi normalizados por el desvío estándar del caso uniforme cómo
función del tiempo, tanto para la simulación no lineal cómo para las lineales

descriptos en la sección 3.2. Para completar este argumento, en la figura 3.21 mostramos el desvío
estándar de los volumenes de Voronoi cómo función del tiempo. Vemos que la simulación NL1
rápidamente aumenta su acumulación mientras que las simulaciones lineales se mantienen muy
cerca del caso uniforme. El lento incremento de 𝜎𝒱 puede indicar que el mecanismo aún sobrevive
en pequeñas escalas, pero dada la energización difusiva de la figura 3.19 consideramos este efecto
secundario.

Nos volcamos ahora a comparar entre si la energización de las simulaciones lineales. Habiendo
descartado la interacción con estructuras cómo mecanismo dominante, nos queda la resonancia
onda-partícula. La primer observación es que las fases aleatorias L→LA parecen incrementar
enormemente la energización. Este hecho principalmente muestra la importancia de la hipótesis de
mezcla de fases en TCL. La simulación L claramente no cumple esta hipótesis, pues sus condiciones
iniciales son el producto de una evolución turbulenta no lineal y por lo tanto exhiben alta correlación
entre las fases. Alternativamente, podemos visualizar la interacción onda-partícula como una
conjunción de resonancia en términos de frecuencia y un alineamiento inicial entre el campo y la
velocidad de la partícula. Este alineamiento es más fácil de cumplir bajo la hipótesis de mezcla de
fases, mientras que para un estado turbulento las fases no logran llenar todo valor posible para
todas las frecuencias.

Podemos visualizar los distintos mecanismos de energización computando la función de den-
sidad de probabilidad (FDP) bidimensional de la velocidad de las partículas al final de cada
simulación. La clara diferencia geométrica en las FDP mostradas en la figura 3.22, sugiere que cada
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Figura 3.22: FDP bidimensional de la velocidad de las partículas, normalizada por su desvío estándar, a tiempo final para
las simulaciones NL1, L y LA (a izquierda a derecha). Las curvas de nivel exhiben distintas geometrías, implicando distintos
mecanismos subyacentes de energización.

mecanismo es fundamentalmente distinto, al estar las velocidades normalizadas por su desvío
estándar. Esta normalización remueve la notoria anisotropía en la energización (ver figura 3.19) y
nos permite concentrarnos en las propiedades estadísticas. Cerca del origen, todas las distribu-
ciones tienen curvas de nivel elípticas (aunque con distintos focos). A medida que nos alejamos
del origen, cada distribución cambia significativamente. En particular, para la simulación NL1,
tienden a rombos, reminiscentes a mantener constante la norma 1 (i.e., |𝑣𝑥| + |𝑣𝑧|), sugiriendo que
alta energización perpendicular y paralela en forma simultánea es improbable, cómo esperamos
de estas estructuras (partículas con alto |𝑣𝑧| son difíciles de capturar). Para la simulación L, las
formas son claramente circulares, que corresponde a una norma 2 constante (i.e., 𝑣2𝑥 + 𝑣2𝑧 ) o energía
cinética. Esto es consistente con dos variables gaussianas independientes, cómo se esperaría de
un proceso difusivo en espacio de velocidades. Finalmente, para la simulación LA la situación
es menos clara, con formas similares a rectángulos reminiscentes a una norma ∞ constante (i.e.,
máx{|𝑣𝑥|, |𝑣𝑧|}).

Volviendo a la figura 3.18, al comparar la simulación LA con sus versiones truncadas LA80
y LA40, notamos que el primer truncado (LA→LA80) tiene muy poco efecto en la energización,
implicando que las partículas resuenan principalmente con ondas de |k| < 80. Más aún, el segundo
truncado LA80→LA40 reduce la energización por debajo incluso de la simulación L, mostrando
que las partículas resuenan con ondas de |k| > 40. Las FDP bidimensionales de velocidades para
las simulaciones LA80 y LA40 (no mostradas aquí) son muy simulares a las de LA y L de la figura
3.22, respectivamente. Aunque la similitud entre LA80 y LA es esperable, la de LA40 y L no es
obvia y parece mostrar que ambas simulaciones comparten un mismo mecanismo de energización.
Este último hecho implica que cambios en la distribución de fases de las ondas pueden ser tan
importantes cómo cambios en el espectro de energía.

Con el objetivo de distinguir entre la presencia de ondas y estructuras en el plasma e investigar
cual domina la dinámica, haremos uso de espectros espaciotemporales (Clark di Leoni et al. 2015;
Andrés et al. 2017; Brodiano et al. 2021). Esto consiste en calcular el espectro en número de onda
y frecuencia para todos los modos Fourier presentes en la simulación. Así, es posible distinguir
modos que satisfacen una dada relación de dispersión (que asociamos con ondas) de aquellos
asociados con estructuras no lineales o remolinos turbulentos y cuantificar la cantidad de energía
que cada uno lleva. El espectro espaciotemporal de energía magnética se define según

𝐸𝑖𝑗(k, 𝜔) =
1
2
𝐵̂∗
𝑖 (k, 𝜔)𝐵̂𝑗(k, 𝜔), (3.8)

donde 𝐵̂𝑖(k, 𝜔) es la transformada Fourier en tiempo y espacio de la componente 𝑖 del campo
magnético B(k, 𝜔) y el asterisco es complejo conjugado. En esta notación, el espectro de energía
magnética es la traza del tensor 𝐸𝑖𝑗(k, 𝜔). Cómo el campomagnético guíaB0 apunta en la dirección 𝐳̂,
en la práctica consideraremos los casos 𝑖 = 𝑗 = 𝑦 o 𝑖 = 𝑗 = 𝑧 para identificar distintas ondas basadas
en su polarización (transversal o longitudinal al campo guía). En todos los casos, la frecuencia de
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Figura 3.23: Espectro espaciotemporal 𝐸𝑧𝑧(𝑘𝑥 = 0, 𝑘𝑦, 𝑘𝑧 = 15,𝜔) para las fluctuaciones de campo magnético paralelas a B0
para las simulaciones NL1 (izquierda) y L (derecha). Se muestran las relaciones de dispersión magnetosónicas (los modos
de Alfvén están ausentes en esta dirección) junto con la girofrecuencia Ω𝑐 de las partículas y la frecuencia de barrido 𝜔𝑠𝑤.

adquisición temporal es al menos 2 veces mayor que la frecuencia de la onda más rápida (𝜔𝑓(k)
con |𝑘| = 𝑘𝑚𝑎𝑥 y 𝑘∥ = 0) y el tiempo total de adquisición mayor que el periodo de la onda más lenta
(ignorando modos con 𝜔 = 0). Es importante mencionar también que asumiremos que la energía
concentrada alrededor de la relación de dispersión puede ser explicada por teorías lineales y de
turbulencia débil (Chandran 2005, 2008), mientras que cualquier ensanchamiento es una señal de
turbulencia fuerte que requiere una teoría no lineal completa para ser entendido.

La figura 3.23 muestra el espectro espaciotemporal de la energía magnética paralela 𝐸𝑧𝑧(𝑘𝑥 =
0, 𝑘𝑦, 𝑘𝑧 = 15,𝜔) para las simulaciones NL1 y L². Las ondas de Alfvén, al ser transversales, no
tienen componente en esta dirección, por lo que solo mostramos las relaciones de dispersión de
las ondas magnetosónicas. También mostramos la girofrecuencia característica Ω𝑐 = 𝛼𝐵0, que
se encuentra entre 40 < |k| < 80 y la frecuencia de barrido (en inglés, sweeping) 𝜔𝑠𝑤 = 𝑈𝑟𝑚𝑠|k|,
que interpretamos cómo la variación temporal de las estructuras advectadas por el flujo (Lugones
et al. 2016). Según lo esperado, para la simulación lineal L, la energía magnética está finamente
localizada alrededor de las ramas magnetosónicas, mientras que en la simulación no lineal NL1, la
energía se acumula principalmente en las ramas magnetosónicas lentas para todos los números de
onda. Una pequeña fracción de esta energía se ubica a lo largo de la rama magnetosónica rápida
para números de onda bajos. Sin embargo, en el caso no lineal, la mayor parte de la energía está
distribuida a lo largo del espectro debido a la dinámica turbulenta.

La ausencia de efectos de barrido en la simulación L es útil para entender su baja energización.
Cómo mostramos en la figura 3.20, la correlación decae rápidamente durante la evolución lineal
pero aún así no alcanza al caso de LA, lo que implica que algunas estructuras pueden sobrevivir
más tiempo. La ausencia de barrido debido a la evolución lineal implica que estas estructuras
supervivientes no son advectadas por el flujo. No obstante, las partículas si son advectadas, lo
cual vuelve la captura más dificil y evita que las estructuras supervivientes puedan energizar
efectivamente las partículas.

²Las demás simulaciones lineales tienen espectros idénticos a L, a lo sumo truncados.
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Tabla 3.2: Resumen de resultados para las simulaciones no lineales, variando el tiempo de correlación del forzado 𝜏𝑓.

ID 𝜏𝑓/𝜏𝑐 ℓ𝑐/𝑙𝑑 ⟨Δ𝑣2𝑥 ⟩/𝑣20 𝜎𝒱/𝜎𝑃𝐴𝑃 ⟨𝒮⟩/𝜏𝑐
NL1 1,146 × 101 18.0 24.3 1.87 2.23

NL2 1,146 × 100 15.2 20.3 1.98 2.13

NL3 2,865 × 10−1 14.4 15.6 1.70 1.85

3.3.2. Impacto del tiempo de correlación del forzado
Pasamos ahora a analizar los resultados de las simulaciones NL2 y NL3, cuya diferencia con NL1

es el tiempo de correlación del forzado 𝜏𝑓 (ver tabla 3.1). La energización es cualitativamente similar
a la de NL1 (ver figura 3.19), pero no cuantitativamente. Lo mismo ocurre para la longitud de
autocorrelación ℓ𝑐 y el desvío estándar de los volumenes 𝜎𝒱, resumido en la tabla 3.2 (la energización
perpendicular ⟨Δ𝑣2𝑥 ⟩ y 𝜎𝒱 están calculados al final de la simulación). Vemos que tanto la energización
cómo la longitud de autocorrelación decrecen junto con 𝜏𝑓, mientras que 𝜎𝒱 carece de una tendencia
clara y parece mantenerse constante. La reducción de ℓ𝑐/𝑙𝑑 era esperable, pues un forzado más
rápido (con tiempo de correlación más corto) evita que las estructuras sean estables, sea por falta
de tamaño o intensidad. Luego, podriamos concluir que las partículas tienden a acumularse de
forma similar en todos los casos, pero su capacidad de explotar el mecanismo de energización
decrece junto con 𝜏𝑓.

Para cuantificar la interacción de partículas con estructuras que incluya información de la
dinámica individual, computamos teselados de Voronoi para cada paso temporal y en cada uno
determinamos que partículas están acumuladas (usando el criterio de acumulación explicado en
3.2.3). Cómo muestra la figura 3.21, este proceso de acumulación toma cierto tiempo en estabili-
zarse y por lo tanto la etiqueta de “acumulada” puede no significar mucho inicialmente. Para el
final de la simulación, “acumulada” es prácticamente equivalente a “atrapada en una estructura”.
Entonces, podemos determinar cuando y donde las partículas se están acumulando y así calcular
cuanto tiempo ininterrumpido pasan acumuladas. Definimos una racha cómo un intervalo de
tiempos (discretos) para el cual la partícula está acumulada y la longitud de este intervalo cómo 𝒮.
En particular, calculamos la longitud media de estas rachas ⟨𝒮⟩ para cada simulación promediando
sobre todas las rachas de todas las partículas. Este resultado se muestra en la última columna de
la tabla 3.2. En promedio, las partículas están acumuladas durante dos giroperiodos en todos los
casos, pero este valor decrece con 𝜏𝑓. Esto muestra que a pesar de que la acumulación es instantá-
neamente similar para todas las simulaciones, hay una mayor tasa de intercambio (entre partículas
acumuladas y no acumuladas) en aquellas con bajo 𝜏𝑓. Esto sugiere que los cúmulos se vuelven más
susceptibles e inestables para tiempos de correlación bajos. Para bajos 𝜏𝑓, el forzado rápidamente
cambiante puede ser experimentado cómo golpes bruscos por las partículas, removiéndolas de las
estructuras que las atrapan.

Para profundizar este análisis de rachas, lo relacionamos directamente con la energización
de partículas. Para esto, separamos nuestros datos en intervalos de duración 𝑛𝜏𝑐 con 𝑛 = 1, 2, 3
y seleccionamos partículas que se mantengan acumuladas durante este tiempo (aquellas con
rachas contenidas en el intervalo en cuestión). Para estas partículas, calculamos su energización
perpendicular durante estos intervalos y lo graficamos en la figura 3.24. Podemos ver que tras
∼ 100𝜏𝑐 (suficiente para que la acumulación se establezca), la energización se vuelve exponencial
en el tiempo.

Para entender esto, proponemos unmodelomuy simple para la interacción con estas estructuras.
Usando la formulación introducida en la sección 2.1.4, podemos estimar la potencia neta 𝒫⟂
entregada por el campo eléctrico a lo largo de un giroperiodo. Recordando que una partícula
acumulada tiene bajo 𝑣𝑧 y que la girofrecuencia de las partículas es alta respecto a las variaciones
de campo electromagnético, podemos estimar el valor medio usando una aproximación análoga a
la de la sección 2.1.3,

⟨𝒫⟂⟩ =
1
𝜏𝑐

∫
𝜏𝑐

0
𝛼E⟂ ⋅ v⟂d𝑡 ≈

𝛼
𝜏𝑐

∮
𝒞
E⟂ ⋅ dℓ = −

𝛼
𝜏𝑐

∬
𝑆(𝒞)

(∇ × E⟂) ⋅ dS (3.9)

donde 𝒞 es la trayectoria de la partícula aproximada por un círculo de radio 𝑅𝑐 y usamos el teorema
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Figura 3.24: Energización perpendicular media de las partículas acumuladas durante intervalos de duración 𝑛𝜏𝑐 (𝑛 = 1, 2, 3)
para distintos tiempos a lo largo de cada simulación.

de Stokes con un signo negativo teniendo en cuenta la giración horaria de los protones. Para un
campo magnético guía intenso, podemos aproximar (2.66) cómo E⟂ ≈ −u⟂ × B0 y al ser dS ∥ 𝐳̂,
podemos calcular su componente 𝑧 cómo

(∇ × E)𝑧 ≈ 𝐵0∇⟂ ⋅ u⟂,

donde usamos la ecuación (2.117) para B = 𝐵𝑧𝐳̂ y u = u⟂. Expandiendo la integral (3.9) al orden
más bajo en 𝑅𝑐, obtenemos

⟨𝒫⟂⟩ ≈ −
𝛼2𝐵2

0
2𝜋

∬
𝑆(𝒞)

∇⟂ ⋅ u⟂dS ≈ −
𝛼2𝐵2

0
2𝜋

𝜋𝑅2
𝑐∇⟂ ⋅ u⟂. (3.10)

Usando que 𝑅𝑐 = |v⟂|/𝛼𝐵0 y 𝜀⟂ = |v⟂|
2/2 podemos estimar la tasa de energización cómo

d𝜀⟂
d𝑡

= 𝜆𝜀⟂, 𝜆 = −∇⟂ ⋅ u⟂, (3.11)

que para ∇⟂ ⋅ u⟂ < 0 y aproximadamente constante predice un crecimiento exponencial para 𝜀⟂.
Este modelo simplificado captura la resonancia de tipo betatron que introdujimos en la sección
3.2.3 para explicar la relación entre acumulación y energización.

Las pendientes de la figura 3.9 representan este 𝜆 y son bastante similares, sugiriendo una tasa
de energización similar para todas las partículas acumuladas. La diferencia en la energización
observada en la tabla 3.2 debe entonces estar relacionada con el tiempo que cada partícula está
acumulada, cómo indica ⟨𝒮⟩. Existen básicamente tres formas en que una partícula puede escapar
de una estructura: (a) escapando verticalmente gracias a un alto 𝑣𝑧, (b) alcanzando el máximo
giroradio permitido por la estructura o (c) siendo empujada por alguna fluctuación. Descartamos
la opción (a) al notar que todas las partículas tienen una energización paralela muy similar (no
mostrado aquí). La opción (b) implicaría que el giroradio 𝑅𝑐 = |v⟂|/𝛼𝐵0 es comparable al tamaño de
las estructuras, que podríamos identificar con ℓ𝑐 y sería razonable dada su dependencia en 𝜏𝑓 (ver
tabla 3.2). Podemos estimar la energía cinética necesaria para esto cómo |v⟂|

2 ∼ (𝛼𝐵0ℓ𝑐)2 ∼ 1600𝑣20 ,
lo cual es alcanzado por menos de 1 de cada 104 partículas y, por lo tanto, no puede ser la causa
dominante. Esto deja (c) cómo la última opción, sugiriendo que las estructuras son menos robustas
ante fluctuaciones y, en algún sentido, más débiles. En la dicotomía de ondas contra turbulencia,
podríamos atribuir esta debilidad al predominio de las ondas sobre la estructuras.

Podemos cuantificar esta relevancia de las ondas mediante espectros espaciotemporales mag-
néticos. La figura 3.25 muestra el espectro espaciotemporal de la fluctuación perpendicular del
campo magnético 𝐸𝑥𝑥(𝑘𝑥 = 0, 𝑘𝑦 = 15, 𝑘𝑧, 𝜔) para las simulaciones NL1, NL2 y NL3. Para facilitar
la comparación, mostramos la relación de dispersión de las ondas de Alfvén (2.86) y las ondas
magnetosónicas lentas y rápidas (2.87). Marcamos también la girofrecuencia Ω𝑐 de la partícula y la
frecuencia de barrido 𝜔𝑠𝑤. Observamos que la energía está principalmente localizada alrededor de
la rama lenta y, en menor medida, la de Alfvén. Más aún, a medida que 𝜏𝑓 disminuye (i.e., pasamos
de NL1 a NL3), la energía alrededor de los modos ondulatorios incrementa para valores de 𝑘𝑧
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Figura 3.25: Espectro espaciotemporal 𝐸𝑥𝑥(𝑘𝑥 = 0, 𝑘𝑦 = 15, 𝑘𝑧, 𝜔) de las fluctuaciones de campo magnético perpendiculares
a B0. Se muestran las relaciones de dispersión de de las ondas de Alfvén 𝜔𝐴, de las ondas magnetosónicas lentas 𝜔𝑆 y de las
ondas magnetosónicas rápidas 𝜔𝐹. Incluimos la frecuencia de giro de las partículas Ω𝑐 y la frecuencia de barrido 𝜔𝑠𝑤.
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Figura 3.26: Espectro espaciotemporal 𝐸𝑥𝑥(𝑘𝑥 = 0, 𝑘𝑦, 𝑘𝑧 = 15,𝜔) de las fluctuaciones de campo magnético perpendiculares
a B0. Se muestran las relaciones de dispersión de las ondas magnetosónicas rápidas 𝜔𝐹 y de las ondas magnetosónicas lentas
𝜔𝑆. Incluimos la frecuencia de giro de las partículas Ω𝑐 y la frecuencia de barrido 𝜔𝑠𝑤.

menores. De hecho, vale la pena notar que a medida que incrementamos el tiempo de correlación la
energía tiende a desplazarse levemente hacia la frecuencia de barrido. Este resultado es compatible
con el comportamiento de ℓ𝑐/𝑙𝑑, pues la energía de barrido está principalmente relacionada con las
estructuras no lineales (ver tabla 3.2).

Para analizar los modos magnetosónicos, estudiamos el espectro espacio tempoeral de las
fluctuaciones magnéticas paralelas al campo guía 𝐸𝑧𝑧(𝑘𝑥 = 0, 𝑘𝑦, 𝑘𝑧 = 15,𝜔) en la figura 3.26,
mostrando lamisma tendencia observada en la figura 3.25. De hecho, la energía alrededor de la rama
magnetosónica rápida decrece notoriamente a medida que aumentamos 𝜏𝑓. Desafortunadamente,
la rama magnetosónica lenta está completamente sumergida en la región de barrida, por lo que no
podemos concluir nada sobre la variación de energía magnética alrededor de ella.

En esta sección, encontramos que la energización en el caso lineal es mucho menor que en el
caso no lineal, pero solo cuando las fases de los campos se encuentran correlacionadas. Esto nos
permite reinterpretar el papel de las fases en la energización de partículas, ya que usualmente
se consideran secundarias en comparación con el espectro de energía. Además, este resultado
muestra que la evolución lineal, sin importar cuán realista sea el espectro, no puede reproducir



54 Capítulo 3: Energización de partículas de prueba

fielmente la energización observada en una evolución no lineal. En particular, demostramos que
las interacciones onda-partícula ocurren principalmente en modos con 40 < |k| < 80, lo cual, para
ondas de Alfvén, es consistente con 𝜔𝐴 ≈ Ω𝑐. Esto podría estar relacionado con la energización
de Fermi de segundo orden, 𝜔 ± 𝑘𝑧𝑣𝑧 = Ω𝑐, en el límite razonable Ω𝑐 ≫ 𝑘𝑧𝑣𝑧. Por otro lado,
la energización de Fermi de primer orden (𝜔 = ±𝑘𝑧𝑣𝑧) requiere |𝑣𝑧| ≈ 𝑣𝐴 ≈ 9𝑣0, lo cual no es
probable dada la energización paralela observada en la figura 3.19, ya que la energía media de las
partículas es mucho menor que (9𝑣0)2. Podemos aplicar un razonamiento análogo para las ondas
magnetosónicas rápidas, cuya frecuencia 𝜔𝐹 y velocidad resonante 𝜔𝐹/𝑘𝑧 son aún mayores. Por
otro lado, la energización de Fermi de primer orden es más probable en las ondas magnetosónicas
lentas y es el único mecanismo posible en la simulación LA40.

El hecho de que las simulaciones L y LA40 presenten mecanismos y tasas de energización
similares es sorprendente, ya que refuerza aún más el papel de las fases en la energización de
partículas. Si las ondas magnetosónicas lentas son responsables de la energización en la simulación
LA40, también deberían serlo en la simulación L. Sin embargo, esto es poco probable, ya que
la distribución de fases y energía es diferente en cada caso, debido a que la aleatorización de
fases tiende a decorrelacionar y distribuir uniformemente la energía entre las distintas ramas. De
acuerdo con nuestros resultados, la distribución de fases parece ser muy importante para ondas de
gran longitud de onda, pero prácticamente irrelevante para ondas de longitud de onda pequeña.
Este resultado sugiere que la visión simplificada de partículas resonando con una sola onda a la
vez puede ser engañosa, y que quizás el ensanchamiento de la resonancia se vea amplificado en
espectros tan complejos. Las FDPs de la figura 3.22 parecen indicar que la energización en los casos
L/LA40 y LA/LA80 es fundamentalmente distinta.

En contraposición, mostramos que la energización de una partícula atrapada en una de las
estructuras identificada en la sección anterior es exponencial. En base a este modelo, estas estruc-
turas pueden asociarse a tubos de flujo en contracción, predominantemente paralelos al campo
magnético guía, advectados por el flujo (Kagan et al. 2013; Du et al. 2018). Este mecanismo solo
existe en las simulaciones no lineales, pues la linealización anula la advección e impide la captura
de los iones. Estas estructuras son más eficientes a la hora de atrapar partículas cuando el tiempo
de correlación del forzado 𝜏𝑓 es mayor, incrementando la energización neta. En particular, forzados
con mayor 𝜏𝑓 parecen tener menos energía en las ramas magnetosónica rápida y Aflvénica, a la vez
que incrementan la energía en la región de barrido. Combinando ambas observaciones, concluimos
que forzados de alta frecuencia (bajo 𝜏𝑓) tienden a inducir más ondas en el sistema, no solo quitando
energía de las estructuras sino también facilitando que las fluctuaciones expulsen a las partículas
atrapadas por ellas. Por lo tanto, la energización de las partículas decrece a medida que aumenta la
fracción de energía en ondas, confirmando que las estructuras juegan un papel protagónico.
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Comparación con modelos cinéticos

Así, la presencia de iones y electrones supratérmicos es ampliamente observada
en la naturaleza, y siempre parece originarse en regiones de plasmas suficientemente
agitados que contienen campos magnéticos.

Eugene Parker & Derek Tidman, Suprathermal particles, 1958

Habiendo estudiado la energización de partículas de prueba con interacción unilateral de los
campos electromagnéticos turbulentos sobre las partículas, pasamos ahora a un enfoque autocon-
sistente. Este enfoque se basa en el modelo cinético híbrido donde los protones son considerados
cinéticamente y los electrones cómo fluido, ambos interactuando bilateralmente con los campos
electromagnéticos según lo descripto en la sección 2.2.4. Esta interacción bilateral inevitablemente
reducirá la energización, al imponer limitaciones cómo la conservación de la energía total.

En este capítulo, nos concentramos en el módulo híbrido de partícula en celda, empezando por
explicar y justificar su correcto funcionamiento. Luego, lo utilizamos en un estudio comparativo
para evaluar la validez de la aproximación de partícula de prueba. Tomando el modelo híbrido
cómo verdad fundamental, analizamos que fenomenología física se pierde al tomar la interacción
cómo unilateral.

4.1. Implementación de módulo PIC híbrido en GHOST

En esta sección se describe de la implementación del módulo híbrido de partícula en celda
(HPIC, por sus siglas en inglés) en el código GHOST. Se explican los algoritmos utilizados para la
evolución y paralelización, seguido de una sección donde verificaremos que el módulo es capaz de
reproducir la física de plasmas no colisionales a escala protónica.

4.1.1. Evolución temporal

Empecemos considerando cómo evolucionar la ecuación de Newton de las partículas (2.58),
asumiendo los campos E y B cómo dados. El estándar utilizado en la comunidad es el algoritmo de
Boris (Boris 1970). Este método es de tipo salto de rana (leapfrog, en inglés), lo cual implica que la
posición y velocidad se evaluan en distintos tiempos, por lo que buscamos calcular x𝑛 = x(𝑡𝑛) y
v𝑛−1/2 = v(𝑡𝑛 − Δ𝑡/2) donde Δ𝑡 es el paso temporal y 𝑡𝑛 = 𝑛Δ𝑡 el tiempo en cuestión. Estos métodos
permiten obtener fácilmente esquemas simétricos, lo cual asegura la reversibilidad temporal y, en
este caso particular, vuelve al algoritmo simpléctico¹ (Qin et al. 2013). De esta forma, se asegura
que el balance de energía se cumple con muy alta precisión, alcanzando la precisión de máquina
en ausencia de campo eléctrico.

¹En realidad, el algoritmo preserva el volumen de fases a lo largo de la evolución, que es condición necesaria pero
no suficiente para ser considerado simpléctico. Al ser esta preservación la propiedad más importante de un algoritmo
simpléctico, en esta tesis dejaremos de lado la sutil distinción.
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El esquema de Boris puede escribirse cómo

x𝑛+1 − x𝑛
Δ𝑡

= v𝑛+1/2, (4.1)

v𝑛+1/2 − v𝑛−1/2
Δ𝑡

=
𝑞
𝑚

(E𝑛 +
v𝑛+1/2 + v𝑛−1/2

2
× B𝑛) , (4.2)

donde E𝑛 = E(x𝑛, 𝑡𝑛) y B𝑛 = B(x𝑛, 𝑡𝑛). En principio, este esquema es implícito pues v𝑛+1/2 aparece a
ambos lados de (4.2). Sin embargo, al ser lineal es posible obtener una solución exacta, que por
simplicidad escribimos cómo

v− = v𝑛−1/2 +
Δ𝑡
2

𝑞
𝑚

E𝑛, (4.3)

v+ = v− +
2

1 + |𝜙𝑛|
2 (v

− × 𝜙𝑛 + v−) × 𝜙𝑛, (4.4)

v𝑛+1/2 = v+ +
Δ𝑡
2

𝑞
𝑚

E𝑛, (4.5)

donde 𝜙𝑛 = Δ𝑡𝑞B𝑛/2𝑚 es el vector de rotación asociado a B𝑛. El algoritmo finaliza aplicando (4.1)
para obtener x𝑛+1 = x𝑛 + Δ𝑡v𝑛+1/2.

A pesar de todas sus ventajas, el hecho de no disponer x𝑛 y v𝑛 impide realizar los depósitos
(2.63) a tiempo 𝑡𝑛². En muchos códigos (Matthews 1994; Muñoz et al. 2018; Bird et al. 2022),
se obtienen valores intermedios para la velocidad mediante interpolaciones cómo, por ejemplo,
v𝑛 = (v𝑛+1/2 + v𝑛−1/2)/2. Muchos de estos códigos también usan grillas escalonadas (staggered grids,
en inglés) donde el campo eléctrico E y magnético B se evalúan en grillas entrelazadas, tal que no
es posible conocer ambos campos en el mismo punto. Al haber nacido en el contexto de fluidos,
GHOST pone especial protagonismo en los campos, por lo que cualquier módulo agregado debe
respetar esa filosofía. Puntualmente, la idea de que todos los campos son conocidos para los mismos
tiempos y puntos de grilla entra en contradicción con lo mencionado previamente.

Con esto en mente, proponemos modificar el esquema de Boris anterior para que opere correc-
tamente dentro del Runge-Kutta 2 (RK2) del método pseudoespectral utilizado para evolucionar
los campos descripto en la sección 2.3.4. La idea fundamental es hacer un nexo entre los pasos
intermedios del algoritmo de Boris (4.3)-(4.5) y el paso intermedio de RK2. Por lo tanto, conside-
raremos x𝑛 = x(𝑡𝑛), v𝑛 = v(𝑡𝑛), E𝑛 = E(x𝑛, 𝑡𝑛) y B𝑛 = B(x𝑛, 𝑡𝑛) donde 𝑛 puede ser semi-entero para
tener así en cuenta el paso intermedio. Asumiendo que al inicio de cada paso temporal disponemos
de las posiciones x𝑛 y velocidades v𝑛 de cada partícula y el campo magnético B(x, 𝑡𝑛), proponemos
cómo esquema

1. Realizar el depósito a tiempo 𝑡𝑛 utilizando x𝑛 y v𝑛 para obtener los campos 𝑛𝑝(x, 𝑡𝑛) y u𝑝(x, 𝑡𝑛).

2. Computar el campo eléctrico E(x, 𝑡𝑛) utilizando B(x, 𝑡𝑛), 𝑛𝑝(x, 𝑡𝑛) y u𝑝(x, 𝑡𝑛) en (2.47) y (2.48).

3. Evolucionar medio paso temporal el campo magnético utilizando E(x, 𝑡𝑛) para obtener
B(x, 𝑡𝑛+1/2). Esto corresponde al primer paso del esquema de RK2 (2.98) sobre la ecuación de
inducción (2.49).

4. Evolucionar x𝑛 y v𝑛 medio paso temporal mediante

x𝑛+1/2 = x𝑛 +
Δ𝑡
2

v𝑛, (4.6)

v− = v𝑛 +
Δ𝑡
4

𝑞
𝑚

E𝑛, (4.7)

v+ = v− +
2

1 + |𝜙𝑛|
2 (v

− × 𝜙𝑛 + v−) × 𝜙𝑛, (4.8)

v𝑛+1/2 = v+ +
Δ𝑡
4

𝑞
𝑚

E𝑛, (4.9)

donde 𝜙𝑛 = Δ𝑡𝑞B𝑛/4𝑚.

²Con excepción de la densidad 𝑛𝑝 correspondiente a 𝑔(v) = 1.
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Figura 4.1: (Izquierda) Conservación de la energía para distintos valores de 𝐸0 durante los primeros 100 giroperiodos
para el algoritmo propuesto. (Derecha) Escaleo del error promedio en la conservación cómo función del paso temporal Δ𝑡,
comparando el algoritmo propuesto con el original de Boris.

5. Realizar el depósito a tiempo 𝑡𝑛+1/2 utilizando x𝑛+1/2 y v𝑛+1/2 para obtener los campos
𝑛𝑝(x, 𝑡𝑛+1/2) y u𝑝(x, 𝑡𝑛+1/2).

6. Computar el campo eléctrico E(x, 𝑡𝑛+1/2) utilizando B(x, 𝑡𝑛+1/2), 𝑛𝑝(x, 𝑡𝑛+1/2) y u𝑝(x, 𝑡𝑛+1/2) en
(2.47) y (2.48).

7. Evolucionar un paso temporal el campo magnético B(x, 𝑡𝑛) utilizando E(x, 𝑡𝑛+1/2) para obtener
B(x, 𝑡𝑛+1). Esto corresponde al segundo paso del esquema de RK2 (2.98) sobre la ecuación de
inducción (2.49).

8. Evolucionar x𝑛 y v𝑛 un paso temporal completo mediante

v− = v𝑛 +
Δ𝑡
2

𝑞
𝑚

E𝑛+1/2, (4.10)

v+ = v− +
2

1 + |𝜙𝑛+1/2|
2 (v

− × 𝜙𝑛+1/2 + v−) × 𝜙𝑛+1/2, (4.11)

v𝑛+1 = v+ +
Δ𝑡
2

𝑞
𝑚

E𝑛+1/2, (4.12)

x𝑛+1 = x𝑛 + Δ𝑡
v𝑛+1 + v𝑛

2
, (4.13)

donde 𝜙𝑛+1/2 = Δ𝑡𝑞B𝑛+1/2/2𝑚.

Analicemos un poco este algoritmo, concentrandonos en los pasos 4 y 8 correspondientes al
algoritmo de Boris modificado. Los primeros 3 pasos corresponden a la primera fase del esquema
RK2, que utilizamos para obtener una estimación de B(x, 𝑡𝑛+1/2). Claramente, esto no basta para
aplicar el algoritmo de Boris original, pues no solo falta el campo eléctrico E(x, 𝑡𝑛+1/2), sino además
el x𝑛+1/2 donde evaluarlos. Para remediar esto, en el paso 4 estimamos x𝑛+1/2 y v𝑛+1/2 aplicando un
el algoritmo de Boris a medio paso (Δ𝑡 → Δ𝑡/2) pero evaluando los campos electromagnéticos a
tiempo y posición iniciales en vez de intermedias. Esto ciertamente niega parte de las virtudes del
esquema de Boris, pero resulta de todos modos una estimación razonable, cómo veremos en las
pruebas más adelante. Los siguientes pasos 5 y 6 nos permiten obtener el E(x, 𝑡𝑛+1/2) faltante, junto
con el paso 7 que cierra la segunda fase del esquemaRK2.Nótese entonces que tenemos estimaciones
de todos los ingredientes necesarios para aplicar el esquema de Boris original (4.3)-(4.5). Hacemos
esto mismo en el paso 8, cambiando la estimación original de v𝑛+1/2 por (v𝑛+1+v𝑛)/2. Esto se debe a
que todas estas estimaciones intermedias a tiempo 𝑡𝑛+1/2 son considerablemente menos confiables
que las estimaciones a tiempo final 𝑡𝑛+1. Más aún, nótese que en el paso 8 no hacemos uso de x𝑛+1/2
y v𝑛+1/2 más que para computar e interpolar los campos E y B: el punto de partida sobre el que se
suma el incremento es siempre x𝑛 y v𝑛. Es por este tipo de aspectos que consideramos este esquema
cómo un híbrido entre RK2 y Boris y lo llamamos algoritmo de Boris adaptado. Este algoritmo
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Figura 4.2: Descomposición en fetas utilizada por el método pseudoespectral implementado en GHOST, tanto en espacio
real cómo Fourier. Véase el texto para las definiciones de los distintos parámetros. Adaptada de Mininni et al. 2011

es también de orden 2 y, a pesar de no ser exactamente simpléctico ni reversible temporalmente,
hereda mucha de la robustez del algoritmo de Boris original. Aunque trivial, es importante notar
que en caso de campos electromagnéticos uniformes, este nuevo algoritmo es idéntico al original.

Cómo primera prueba, consideremos un campo electromagnético dado externamente y estudie-
mos la dinámica de una única partícula. A modo de verificación, usaremos el diagnóstico empleado
en Qin et al. 2013, comparando el algoritmo de Boris original con el aquí propuesto. Al no necesitar
evolucionar los campos electromagnéticos, el algoritmo reduce simplemente a los pasos 4 y 8. En
unidades arbitrarias, los campos utilizados son

B(𝑥, 𝑦) = √𝑥2 + 𝑦2𝐳̂, 𝜙(𝑥, 𝑦) =
𝐸0

√𝑥2 + 𝑦2
, E = 𝐸0

𝑥𝐱̂ + 𝑦𝐲̂
(𝑥2 + 𝑦2)3/2

, (4.14)

donde 𝜙 es el potencial electrostático, tal que E = −∇𝜙. La energía de la partícula es una magnitud
conservada y toma la forma

ℰ =
|v|2

2
+ 𝜙(x). (4.15)

En la figura 4.1 podemos observar la variación de esta energía mecánica para 3 valores distintos
de 𝐸0 durante los primeros 100 giroperiodos de evolución. Para el caso sin campo eléctrico, la
conservación se da prácticamente a precisión de máquina, con una leve acumulación de error tras
∼ 50𝜏 mientras que en los otros 2 casos el error se mantiene acotado, poniendo de manifiesto su
estabilidad. En el panel derecho, podemos observar cómo escala el error medio en función del paso
temporal utilizado para ambos métodos. Ignorando las fluctuaciones para Δ𝑡 altos, ambos métodos
tienen un desempeño idéntico.

4.1.2. Descomposición del dominio
Pasamos ahora a detallar cómo se realizan las interpolaciones y depósitos necesarias para

evolucionar el sistema. En particular, nos interesa un algoritmo paralelizable, capaz de ser eje-
cutado en múltiples procesadores simultáneamente, cada uno de ellos cargando parte del costo
computacional. En su concepción original, GHOST descompone el dominio espacial tridimensional
en fetas bidimensionales, asignando una feta a cada procesador (Mininni et al. 2011). En espacio
Fourier, realiza una descomposición similar pero a lo largo de una dirección ortogonal, para poder
así paralelizar las FFTs. En el contexto del módulo PIC, solo nos importa la primera de estas
descomposiciones, pues toda la información de las partículas corresponde al dominio espacial. En
la figura 4.2 esta esquematizada esta descomposición tanto en espacio real cómo Fourier, donde 𝑁𝑥,
𝑁𝑦 y 𝑁𝑧 son las resoluciones en cada dirección. Para una descomposición en 𝑛 procesadores, cada
uno tendrá una feta de base 𝑁𝑥 × 𝑁𝑦 y altura 𝑀 = 𝑁𝑧/𝑛 en la dirección restante³. Análogamente,
en espacio Fourier serán fetas de base 𝑁𝑦 × 𝑁𝑧 y espesor 𝑃 = (𝑁𝑥/2 + 1)/𝑛.

El código GHOST dispone ya de un módulo para el tratamiento de partículas Lagrangianas,
inerciales y de prueba, este último utilizado para las simulaciones del capítulo 3. Estos módulos se

³Asumiremos que 𝑁𝑧 es un múltiplo entero de 𝑛 por simplicidad. En general, el 𝑖-esimo procesador (𝑖 = 0, .., 𝑛 − 1)
tendrá 𝑀𝑖 = 𝑞 + 𝛿𝑖 con 𝛿𝑖 = 1 si 𝑖 < 𝑟 y 𝛿𝑖 = 0 sino, donde 𝑞 y 𝑟 son el cociente y resto de dividir 𝑁𝑧 por 𝑛 (i.e. 𝑁𝑧 = 𝑞𝑛 + 𝑟 con
0 ≤ 𝑟 < 𝑛).
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=
Figura 4.3: (Izquierda) Esquema de la descomposición del dominio (caso 2D) indicando un dominio central (azul) junto
con sus 2 dominios adyacentes (verde y rojo). (Derecha) Disgregado de los dominios por separado, indicando sus regiones
fantasma superpuestas en tono más claro.

basan en la descomposición anterior, distribuyendo las partículas entre los distintos procesadores
tal que cada uno disponga de las partículas dentro de su feta. Sin embargo, partículasmuy cercanas a
los bordes pueden requerir información fuera de la feta a la hora de interpolar. Es por esto que estos
módulos utilizan regiones fantasma por fuera del dominio propio del procesador, amodo de disponer
de una copia parcial de la información de los procesadores adyacentes. Son así llamadas porque
cada procesador puede verlas y usar su información, pero es incapaz de modificarlas. En la figura
4.3 podemos ver una representación esquematica de estas regiones fantasma para un procesador
y sus dos procesadores adyacentes (inferior y superior). La información correspondiente a estas
regiones fantasma puede entonces usarse para completar las interpolaciones (2.59) necesarias para
PIC. Al final de cada paso temporal y cada paso intermedio (ver sección anterior), los procesadores
comunican sus regiones fantasma a los procesadores adyacentes para mantener así la información
actualizada.

Todas las funcionalidades descriptas hasta ahora estaban ya presentes en GHOST, por lo que
pudieron ser trasladadas al módulo PIC con relativamente poco esfuerzo. Más aún, GHOST dispone
de algoritmos para que cada procesador detecte cuando una partícula escapa de su dominio y así
pueda ser reasignada. Sin embargo, en su formulación original esto implica una comunicación todos-
con-todos donde los procesadores hacen una puesta en común. Allí, construyen una misma lista con
toda la información de todas las partículas y luego cada uno busca aquellas que le correspondan.
Esto implica que, en principio, cada procesador necesita tener asignada suficiente memoria⁴ cómo
para almacenar todas las partículas, lo cual es posible únicamente para simulaciones con pocas
partículas cómo las del capítulo anterior. Para simulaciones PIC, el número de partículas es
considerablemente mayor, por lo que es habitual que los procesadores no dispongan de suficiente
memoria para aplicar este método.

Frente a esto, implementamos algoritmos de intercambio de partículas a primeros vecinos. En
esta formulación, el procesador se asegura de enviar la información de la partícula saliente al
procesador adyacente que corresponda, dependiendo de si escapó del dominio por arriba o por
debajo. Esta comunicación, al igual que el de las regiones fantasma, no es todos-con-todos, sino
de a pares tal que ningún procesador deba comunicarse con más que sus dos vecinos, reduciendo
considerablemente el tiempo de comunicación.Más importante aún, esto reduce considerablemente
la memoria necesaria. Sin embargo, ya no es posible en principio saber cuanta memoria requerirá
cada procesador para ejercutar su evolución, pues siempre es posible que todas las partículas
terminen acumuladas en un mismo dominio. Para solucionar este problema, implementamos un
uso de memoria dinámico para cada procesador. Cada procesador comienza la simulación con la
memoria exacta que necesita para almacenar las partículas que le corresponden inicialmente más
un 10% adicional para tomar en cuenta pequeñas fluctuaciones. Sin embargo, si en algún momento
esta memoria se encuentra completamente utilizada y el procesador debe recibir nuevas partículas,
expandirá esta memoria en un 10% adicional, pausando temporalmente la evolución. Esta pausa no
es despreciable, por lo que el valor de 10% fue elegido cómo un compromiso entre entre la necesidad
de minimizar la cantidad de expansiones y el consumo neto de memoria. En contraposición, cada
una cierta cantidad de pasos temporales⁵, cada procesador revisa cuanta memoria tiene sin utilizar
y la contrae en múltiplos del 10% original hasta tener la cantidad necesaria (más un pequeño
margen, cómo semencionó anteriormente). Esta contracción es fundamental, pues habitualmente la
memoria es un recurso compartido entre múltiples procesadores y esta es una forma de devolverlo
al conjunto, tal que posteriormente pueda ser usada por otro procesador.

El ingrediente faltante para poder implementar el algoritmo de la sección anterior es la ca-

⁴Nos referimos a la memoria de acceso aleatorio (RAM, por sus siglas en inglés). Un nodo de cómputo moderno tiene
habitualmente entre 64GB y 256GB, compartida entre sus procesadores tal que cada uno dispone de ∼2GB.

⁵Por defecto, son 100 pasos, pero esto es configurable dentro del código.
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Figura 4.4: (Izquierda) Evolución de las distintas energías en una simulación cinética híbrida unidimensional, con una
energía total aproximadamente constante. (Derecha) Error relativo de la energía total, mostrando que el error se mantiene
acotado y tolerable.

pacidad de hacer depósitos de las distintas propiedades de partícula. Al igual que una partícula
puede necesitar información fuera del dominio para poder interpolar un campo sobre ella, su
depósito puede afectar puntos de grilla fuera del dominio. Puntualmente, para una simulación con
funciones de forma de orden ℓ, tanto la interpolación cómo el depósito interactuan con ℓ +1 puntos
de grilla en cada dirección, para un total de (ℓ + 1)𝑑 puntos de grilla totales con 𝑑 la dimensión
del problema (véase apéndice A). Por lo tanto, en general basta tomar regiones fantasma de altura
⌈(ℓ + 1)/2⌉, que para los ordenes más habituales reduce a 1 para ℓ = 0, 1 y 2 para ℓ = 2, 3. Tanto la
interpolación como el depósito tienen el mismo alcance, por lo que las regiones fantasma también
resuelven este problema. Con esto en mente, cada vez que se realiza un depósito, cada procesador
depositará las propiedades de sus partículas dentro de su dominio y también en su región fantasma.
Luego, se comunicará con sus vecinos, intercambiando regiones fantasma y sumándolas al depósito
hecho en su propio dominio, completando así el proceso.

4.1.3. Verificación
Habiendo verificado que el método es robusto para campos magnéticos impuestos externamente

en la sección 4.1.1, pasamos ahora al caso autoconsistente. Consideraremos algunas pruebas
utilizadas en Muñoz et al. 2018 para verificar que el módulo es capaz de reproducir la dinámica
conocida de plasmas no colisionales a escala iónica. Al igual que en ese trabajo, nos concentraremos
en simulaciones unidimensionales y funciones de peso de orden 1 para poder utilizar resoluciones
moderadas sin pagar un alto tiempo de cómputo. A pesar de que la dependencia sea unidimensional,
los campos y velocidades seguirán trabajándose cómo tridimensionales.

Empezaremos por la más fundamental de estas pruebas: la conservación de la energía ℰ = ℰ𝑐 +
ℰ𝑇+ℰ𝑚+ℰ𝑒 con las energías definidas según las ecuaciones (2.50), (2.51) y (2.52). Cómo nos interesa
principalmente la estabilidad a largo plazo, inicializamos una simulación unidimensional de
resolución𝑁 = 1024 y 2500 partículas por celda (ppc) y un grillado uniforme de tamaño Δ𝑥 ∼ 𝑑𝑝/4
capaz de resolver la dinámica protónica. Consideramos un campo guía perpendicular B0 = 𝐵0 ̂𝑦 y
fluctuaciones magnéticas con energía ⟨|b|2⟩ = 𝐵2

0 en un cascarón en espacio Fourier con 1 ≤ |k| ≤ 2
con fases al azar. Usaremos un paso temporalΩ𝑐Δ𝑡 ≈ 4,4×10−5 dondeΩ𝑐 = 𝑞𝐵0/𝑚𝑐 es la frecuencia
de ciclotrón característica, que nos asegura unos 14000 pasos por giroperíodo característico⁶.
Tomando en cuenta ambas componentes, inicializamos al sistema con una distribución de Maxwell-
Boltzmann (2.40) en reposo (u𝑝 ≡ 0) con temperatura isótropa 𝑇𝑝 tal que 𝛽𝑝 = 𝛽𝑒 = 1 (véase
definición de 𝛽𝑠 en (2.42)). Según lo discutido en la sección 2.4, este sistema experimenta una cascada
de energía hacia escalasmás chicas, activandomodos demayor frecuencia. En la figura 4.4, podemos
ver la evolución de la variación de cada energía, incluyendo la total durante aproximadamente

⁶En principio, este paso temporal Δ𝑡 podría parecer excesivamente pequeño. Sin embargo, dadas las fluctuaciones, es
posible que algunas partículas experimenten hasta ∼ 4𝐵0, donde pasaríamos a ∼ 3500 pasos por giroperíodo. El objetivo es
poder resolver correctamente incluso estos casos extremos.
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Figura 4.5: Espectro espacio temporal del campo 𝑏𝑥 + 𝑖𝑏𝑦 obtenido con el módulo cinético híbrido, mostrando modos
paralelos y ondas de plasma según predice la teoría.

100 giroperiodos. En el panel izquierdo, vemos que todas las energías oscilan con un periodo
característico de aproximadamente 20 giroperiodos, mientras que la energía total se mantiene
aproximadamente constante. En el panel derecho, vemos la variación relativa de la energía total,
que oscila alrededor de 0 y en promedio resulta aproximadamente 5 × 10−4, algo mayor que la
precisión de máquina⁷ pero tolerable.

Pasaremos ahora a estudiar la dinámica oscilatoria de sistemas ante pequeñas perturbaciones
respecto al equilibrio. Tomaremos un plasma en reposo con campo guía paralelo B0 = 𝐵0𝐳̂ y con
distintos valores de 𝛽𝑝 = 𝛽𝑒 (equilibrio térmico entre especies). Este sistema genera modos parale-
los, ondas circulares que pueden tener polarización izquierda o derecha y pueden identificarse
analizando el campo complejo 𝑏𝑥 + 𝑖𝑏𝑦 donde 𝑖 es la unidad imaginaria. Su frecuencia viene dada
por la relación de dispersión (Muñoz et al. 2018)

(𝑘𝑧𝑑𝑝)2 =
(𝜔/Ω𝑐)2

1 ± 𝜔/Ω𝑐
, (4.16)

donde Ω𝑐 = 𝑞𝐵0/𝑚𝑐 es la frecuencia de ciclotrón característica y ± indica la polarización. Estas
polarizaciones derecha e izquierda también son conocidas cómo ondas whistler y onda ion-ciclotrón
Alfvénica y corresponden a extenciones cinéticas de las discutidas en la sección 2.3.3. Además,
dada la velocidad térmica finita de las partículas se generan también ondas de plasma con un
amplio rango de frecuencias. Para una distribución de Maxwell-Boltzmann, estas frecuencias están
aproximadamente acotadas por (Muñoz et al. 2018)

𝜔
Ω𝑐

= 1 ± 3√𝛽𝑝𝑑𝑝𝑘𝑧, (4.17)

donde reescribimos el radio de cicloctrón térmico cómo 𝑅𝑐 = 𝑣T,p/Ω𝑐 = √𝛽𝑝𝑑𝑝 y 𝑣T,p = √𝑇𝑝/𝑚𝑝 es
la velocidad térmica de los protones (ver sección 2.2.3).

Para excitar estas ondas, usaremos el ruido de disparo producido por el número finito de
partículas (particle shot noise, en inglés), que implica que ninguna de las magnitudes depositadas
será realmente uniforme, sino que estará perturbada por fluctuaciones en todo el espectro de
frecuencias espaciales. Este ruido decrece a medida que aumentamos el ppc y el orden de la
función de forma, por lo que para mantenerlo apreciable trabajaremos con 512 ppc y orden
1. Finalmente, usaremos una resolución 𝑁 = 1024 puntos grilla con tamaño Δ𝑥 ∼ 𝑑𝑝/5 y un
paso temporal Ω𝑐Δ𝑡 ≈ 3 × 10−4, asegurando 18000 pasos por giroperíodo y 𝜔maxΔ𝑡 ≈ 3 × 10−2
donde 𝜔max = Ω𝑐(𝑘max𝑑𝑝)2 es la máxima frecuencia posible según (4.17). Aunque pueda parecer
excesivamente pequeño, vemos que es necesario para poder resolver la dinámica de los whistlermás
rápidos. En la figura 4.5 podemos observar un espectro espaciotemporal (análogo a los utilizados
en la sección 3.3) junto con las relaciones de dispersión (4.16) y (4.17), mostrando que el código es

⁷Estas simulaciones utilizan precisión simple, para la cual el error de máquina se encuentra en ∼ 10−7.
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capaz de resolver estas ondas correctamente. Inevitablemente, el bajo valor de ppc genera ruido en
el espectro de hasta 2 ordenes de magnitud menor que los modos principales (más detalles en el
apéndice A).

Para finalizar esta sección, estudiaremos el caso icónico de amortiguamiento de Landau (D. C.
Montgomery et al. 1965, Capítulo 5). Nuevamente, siguiendo Muñoz et al. 2018, hacemos 4
simulaciones con distinto valor de 𝑇𝑝/𝑇𝑒, en ausencia de campo magnético, con una perturbación
inicial en la densidad

𝑛𝑝(𝑥, 0) = 𝑛0 [1 + 𝜖 cos (𝑘𝑥)] , 𝑘 = 𝑚
2𝜋
𝐿
, (4.18)

donde 𝑛0 es la densidad de referencia, 𝜀 = 0,03 es la amplitud de la perturbación inicial, 𝑚 = 4
es el modo elegido y 𝐿 el tamaño del dominio. Estas simulaciones tienen resolución 𝑁 = 256 y
4000ppc. En ausencia de campo magnético, el giroperíodo Ω𝑐 carece de sentido y 𝑑𝑝 desaparece de
la ecuación de Newton (2.58) al usar (2.47). Por lo tanto, la escala espacial y temporal del sistema
vienen dadas por 𝐿 y 𝑘𝑣𝑇,𝑝 con 𝑣𝑇,𝑝 = √𝑇𝑝/𝑚𝑝 la velocidad térmica. En la figura 4.6, podemos
observar la evolución de la amplitud del modo excitado 𝑘 = 4 (tomamos 𝐿 = 2𝜋 por simplicidad).
Vemos un claro decaimiento exponencial inicialmente, seguido de una dinámica más caótica
probablemente inducida por los efectos no lineales del sistema. Además, vemos que las tasas de
decaimiento obtenidas de los ajustes exponenciales sobre los picos se corresponden con lo predicho
por la teoría

1
√𝜋

∫
∞

−∞

𝑒−𝑥
2

(𝑥 − 𝜉𝑝)2
d𝑥 = −2

𝑇𝑝

𝑇𝑒
, (4.19)

donde 𝜉𝑝 = (𝜔 + 𝑖𝛾)/√2𝑘𝑣𝑇,𝑝 con 𝜔 la frecuencia de oscilación y 𝛾 la tasa de disipación.

Vemos entonces con estas pruebas que elmódulo es capaz de reproducir correctamentemúltiples
fenómenos cinéticos de plasmas a escala de protones. Aunque no se muestren aquí, realizamos otras
de las pruebas propuestas en Muñoz et al. 2018, que consideramos menos relevantes, y obtuvimos
resultados compatibles con la dinámica esperada. Teniendo entonces seguridad respecto al código,
pasamos ahora a utilizarlo en un estudio físico novedoso en la próxima sección.
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4.2. Relevancia de la interacción autoconsistente
En esta sección haremos uso del módulo híbrido de partícula en celda (HPIC, por sus siglas

en inglés) descripto en las secciones 2.2.4 y 2.2.5, con el objetivo de comparar esta descripción
autoconsistente con el enfoque de partículas de prueba. Los campos electromagnéticos para las par-
tículas de prueba serán provistos por el modelo compresible Hall MHD (CHMHD) descripto por las
ecuaciones (2.64)-(2.68), esta vez para un parámetro de Hall finito (ver más abajo). La formulación
jerárquica y constructiva de los modelos híbrido y magnetohidrodinámico de las secciones 2.2.4 y
2.3.1, respectivamente, permiten una compración directa de los campos y parámetros en ambos
modelos. Para simplificar la notación, en esta sección minimizaremos el uso de subíndices para
denotar especies: a menos que se explicite lo contrario, nos referimos a magnitudes protónicas.

4.2.1. Parámetros de las simulaciones
Empezando por las escalas características, para la densidad de partículas y la densidad de masa,

usaremos de referencia 𝑛0 y 𝜌0 = 𝑚𝑝𝑛0. La existencia de un campo guía B0 nos permite definir un
tiempo característico en términos de la girofrecuencia protónica Ω𝑐 = e|B0|/𝑚𝑝𝑐, con un periodo
asociado 𝜏𝑐 = 2𝜋/Ω𝑐. Además, podemos definir una velocidad característica 𝑣𝐴 = |B0|/√4𝜋𝜌0,
correspondiente a la velocidad de propagación de las ondas de Alfvén (ver sección 2.3.3). A partir
de estas elecciones surge naturalmente la longitud inercial protónica 𝑑𝑝 = 𝑣𝐴/Ω𝑐 = 𝑐√𝑚𝑝/4𝜋𝑛0e2,
la cual es independiente del campo guía. Esta longitud de inercia protónica 𝑑𝑝 coincide con la
llamada escala de Hall, por debajo de la cual las ondas de tipo whistler se vuelven relevantes y
pueden aparecer efectos cinéticos.

Las escalas definidas anteriormente están relacionadas con los protones y pertenecen a las escalas
cinéticas del plasma. Sin embargo, las características globales del flujo tienen sus propias escalas
características, como la escala de inyección de energía 𝐿0 = 2𝜋 ∫(𝐸(𝑘)/𝑘)𝑑𝑘/ ∫𝐸(𝑘)𝑑𝑘, donde 𝐸(𝑘)
es el espectro de energía isotrópico. Ambos campos, u𝑝 y b, definen velocidades características de
fluctuación 𝑢0 = ⟨|u𝑝|

2⟩1/2 y 𝑣0 = ⟨|b|2/4𝜋𝜌0⟩1/2, así como sus tiempos de rotación correspondientes
a través de 𝐿0. Es importante notar que, para simplificar, de aquí en adelante trabajaremos con
el campo magnético en unidades Alfvénicas (es decir, b debe entenderse como b/√4𝜋𝜌0). Para
el modelo CHMHD, la adición de 𝜇 y 𝜂 da lugar a un número de Reynolds 𝑅𝑒 = 𝜌0𝑢0𝐿0/𝜇 y su
contraparte magnética 𝑅𝑚 = 𝑢0𝐿0/𝜂. También existe un número de Prandtl magnético Pr = 𝜇/𝜌0𝜂,
que tomaremos igual a 1 en todas nuestras simulaciones tal que 𝑅𝑒 = 𝑅𝑚.

Otro parámetro importante es el 𝛽 del plasma, definido como la razón entre la presión térmica
y la presión magnética: 𝛽 = 8𝜋𝑝0/|B0|

2 = 2(𝑝0/𝜌0)/𝑣2𝐴. Para modelos fluidos como CHMHD, es
más natural relacionar 𝑝0/𝜌0 con la velocidad del sonido 𝑐𝑠 mediante 𝑐2𝑠 = 𝛾𝑝0/𝜌0. Esta elección
arroja 𝛽 = (2/𝛾)(𝑐𝑠/𝑣𝐴)2, lo que puede interpretarse en términos del número de Mach de las ondas
de Alfvén propagantes. Como introdujimos en la sección 2.2.3, cada especie tiene su propio 𝛽 de
plasma y ambos contribuyen a la presión total de modo que 𝛽 = 𝛽𝑝+𝛽𝑒. Para descripciones cinéticas,
es más común utilizar las velocidades térmicas 𝑣𝑇 = √𝑇/𝑚, de modo que 𝑝𝑝,0/𝜌0 = 𝑇𝑝/𝑚𝑝 = 𝑣2𝑇,𝑝.
Por lo tanto, en el modelo híbrido es más natural escribir 𝛽 = (𝑣𝑇,𝑝/𝑣𝐴)2 + 𝛽𝑒, donde 𝑣𝑇,𝑝 y 𝛽𝑒 son los
parámetros relevantes en la simulación para establecer la distribución inicial de partículas y 𝑝𝑒,0
(ver más abajo). Además, en la descripción cinética también tenemos el radio de ciclotrón térmico
𝑅𝑐 = 𝑣𝑇,𝑝/Ω𝑐 = √𝛽𝑝𝑑𝑝.

Para configurar las simulaciones, comenzaremos construyendo un estado turbulento estaciona-
rio utilizando un forzado puramente electromotriz ∇ × m (para asegurar que ∇ ⋅ b = 0), el cual
se agrega en el lado derecho de la ecuación (2.67). Este forzado se genera en espacio Fourier con
fases aleatorias y amplitud constante en modos con 1 ≤ |k| ≤ 2, con un tiempo de correlación
𝜏𝑓 ≈ 4,5Ω−1

𝑐 . A diferencia del utilizado en la sección 3.1, este forzado no es interpolado en el
tiempo para asegurar continuidad, sino que sus fases se generan en cada paso, manteniendo cierta
correlación con las fases (determinado por 𝜏𝑓).

Llevamos a cabo este proceso en dos casos. Primero, para una simulación 2,5D con resolución
N𝑥 ×N𝑦 ×N𝑧 = 512 × 512 × 1, donde los campos vectoriales tienen sus tres componentes pero solo
dependen de 𝑥, 𝑦 (es decir, el plano perpendicular a B0). En esta simulación, fijamos 𝐿caja ≈ 140𝑑𝑝,
de modo que 𝑘min𝑑𝑝 ≈ 4,5 × 10−2 y 𝑘max𝑑𝑝 ≈ 7,7, lo que proporciona aproximadamente una década
completa de escalas tanto por encima como por debajo de la longitud inercial protónica 𝑑𝑝.
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Tabla 4.1: Parámetros de las condiciones iniciales utilizadas para las simulaciones CHMHD y HPIC.

ID N𝑥 ×N𝑦 ×N𝑧 𝐿caja/𝑑𝑝 𝐿0/𝑑𝑝 𝑣𝐴/𝑣0 𝑣𝐴/𝑢0 𝑅𝑒 = 𝑅𝑚

2,5D 512 × 512 × 1 140 84.4 3.24 4.55 8340

3D 128 × 128 × 48 34.9 21.4 4.80 3.69 750
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Figura 4.7:Densidad 𝜌 and fluctuaciones perpendiculares del campo magnético |b⟂| obtenidas para el estacionario CHMHD
y utilizados cómo condiciones iniciales para las simulaciones 2,5D. Pueden observarse estructuras coherentes de múltiples
tamaños, incidando un régimen de turbulencia fuerte.

En segundo lugar, realizamos una simulación 3D con una resolución reducida en la dirección
del campo guía, N𝑥 ×N𝑦 ×N𝑧 = 128 × 128 × 48, con 𝐿caja ≈ 35𝑑𝑝, de modo que 𝑘min𝑑𝑝 ≈ 1,8 × 10−1 y
𝑘max𝑑𝑝 ≈ 7,6. Si bien este rango es considerablemente más pequeño, nuestro principal interés es
verificar que los resultados en 2,5D se mantienen al pasar a 3D. Estos y otros parámetros relevantes
de ambas simulaciones se resumen en la Tabla 4.1. Además, se fijó 𝛽𝑒 = 𝛽𝑝 ≈ 0,47, lo cual implica
un giroradio térmico inicial comparable a la longitud inercial protónica: 𝑅𝑐 = √𝛽𝑝𝑑𝑝 ≈ 0,7𝑑𝑝.

Nótese que el cociente entre la fluctuación magnética y el campo guía es ⟨|b|⟩1/2/|B0| = 𝑣0/𝑣𝐴 ∼
1/4 en ambas simulaciones, lo que indica un campo magnético fuerte. Esto nos permite tratar el
sistema como casi bidimensional, con una débil dependencia en la coordenada paralela 𝑧. Si bien las
fluctuaciones son débiles, el sistema evoluciona naturalmente hacia un estado de turbulencia fuerte,
como se muestra en la figura 4.7 para la simulación 2,5D. Estructuras coherentes, como ondas de
choque y vórtices, están presentes en una amplia gama de escalas, desde la escala de inyección
hasta la escala más pequeña resuelta (en CHMHD, la escala de disipación). Las estructuras más
grandes son no propagantes y persisten durante la mayor parte de la simulación (ver más adelante).

Una vez que se alcanza el estado estacionario de la simulación CHMHD, se introducen partículas
en el sistema. Las partículas se distribuyen uniformemente dentro del dominio, formando su
propia subgrilla dentro de cada celda. Para la simulación 2,5D utilizamos 625 ppc, mientras
que para la simulación 3D usamos 512 ppc. Dado que cada celda tiene la misma cantidad de
partículas, emulamos la densidad inicial 𝜌 ajustando el peso de cada partícula 𝑤𝑗 = 𝜌(x𝑗, 𝑡)/𝑚𝑝 en la
ecuación (2.56). Si bien este proceso no es perfecto, la densidad resultante 𝑚𝑝𝑛𝑝 presenta pequeñas
desviaciones respecto a 𝜌 (puntualmente, ⟨(𝑚𝑝𝑛𝑝 − 𝜌)2⟩1/2 ≤ 1,6 × 10−2𝜌0 en ambas simulaciones).
De manera similar, la velocidad v𝑗 de cada partícula se inicializa muestreando una distribución de
Maxwell-Boltzmann (2.40) con media u(x𝑗) y temperatura 𝑇𝑝(x𝑗), definida a través de 𝑇𝑝 = 𝑚𝑝𝑝𝑝/𝜌
y 𝑝𝑝 = 𝑝/2 junto con la hipótesis adiabática de la ecuación (2.68). Finalmente, el orden de la
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Figura 4.8: Espectro de energía cinética (panel superior) y magnética (panel inferior) a tiempos selectos a lo largo de
ambas simulaciones CHMHD y HPIC. Puede apreciarse un claro espectro de Kolmogorov 𝑘𝑑𝑝 ≲ 1, indicando que ambas
simulaciones tienen un flujo a gran escala similar. Se muestra también el valor 𝑘 = 𝑅−1

𝑐 correspondiente al giroradio térmico
𝑅𝐶 = 𝑣𝑇,𝑝/Ω𝑝 de cada simulación.

función de forma 𝑆 se establece en 3, lo que permite una rápida convergencia en ppc en ausencia
de gradientes de densidad pronunciados, gracias a la baja compresibilidad del sistema.

Dadas las condiciones iniciales para partículas y campos, la simulación se divide en dos casos.
En el primero, el modelo CHMHD continúa su evolución y las partículas evolucionan siguiendo la
ecuación (2.58), reaccionando a los campos CHMHD pero sin afectarlos (es decir, la aproximación
de partículas de prueba). En el segundo, las partículas representan los protones en el modelo HPIC
y evolucionan de forma autoconsistente según lo descrito en la seccion 2.2.5. Aunque la disipación
no está presente, mantenemos el forzado para asegurar que ambas simulaciones tengan dinámicas
similares a gran escala, incluso si esto inyecta energía en las simulaciones HPIC (ver más adelante).
Todos los demás parámetros se mantienen iguales en ambos casos y la integración se lleva a cabo
dentro de un cuadrado periódico en el caso 2,5D y un cubo periódico en el caso 3D.

4.2.2. Caso 2,5D
Comenzamos graficando los espectros de energía cinética y energía magnética para ambas

simulaciones en varios tiempos seleccionados en la figura 4.8. En todos los casos, se observa
claramente un espectro de Kolmogorov para 𝑘𝑑𝑝 ≲ 1, que luego da paso a un espectro más
empinado, diferente en cada simulación. Según lo esperado, la simulación HPIC exhibe un espectro
plano debido al ruido de disparo de partículas a altos valores de 𝑘, mitigable aumentando el
valor de ppc (ver apéndice A). Esto implica que el flujo a gran escala en ambas simulaciones es
estadísticamente similar, especialmente para el campo magnético. Por lo tanto, podemos comparar
estas simulaciones sabiendo que cualquier diferencia se deberá principalmente a efectos cinéticos y
a la aproximación de partícula de prueba. También mostramos el giroradio térmico de los protones
en esos tiempos, el cual es bastante similar a su longitud inercial 𝑑𝑝. Esto es consistente con el valor
inicial de 𝑅𝑐 ≈ 0,7𝑑𝑝 y con el hecho de que la energización de las partículas es modesta (ver más
adelante).

Ahora, nos enfocamos en las energías medias en ambas simulaciones, definidas en (2.50)-(2.52)
y (2.69), cuya evolución en el tiempo se muestra en la figura 4.9. Omitiremos la notación ⟨⟩ y
multiplicaremos todas las energías por 2 para simplificar. Para mostrar todas las energías en
la misma escala, restamos el valor inicial de las energías térmica ℰ𝑇 y electrónica ℰ𝑒, las cuales
comienzan en el mismo valor ≈ 1,42𝜌0𝑣2𝐴, mucho mayor al del resto. En primer lugar, en el panel
izquierdo podemos confirmar que el estado alcanzado es estacionario bajo el modelo CHMHD, ya
que todas las energías fluctúan principalmente alrededor de sus valores iniciales. Esto no ocurre en
el caso HPIC, donde hay una rápida redistribución inicial de la energía (Ω𝑐𝑡 ≲ 30) seguida de un
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Figura 4.9: Evolución de las diferentes energías para las simulaciones CHMHD (izquierda) y HPIC (derecha). ℰ𝑐 se refiere a
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energía se equilibra con la disipación y las energías permanecen estacionarias, en HPIC la energía inyectada se convierte
principalmente en energía térmica y magnética, mientras que el resto permanecen estacionarias.

intervalo de ∼ 100Ω−1
𝑐 en el que la energía magnética y electrónica permanecen constantes mientras

que la energía cinética a gran escala disminuye. Después de eso, la energía magnética comienza a
aumentar, mientras que la energía cinética y electrónica permanecen constantes. Durante toda la
simulación, la energía térmica aumenta de manera continua, lo que sugiere algún tipo de disipación
no colisional.

En el caso HPIC, el hecho de que tanto la energía magnética como la térmica aumenten hasta
el final de la simulación se debe a la inyección constante de energía por el forzado electromotriz.
Para comprender este proceso, calculamos la energía inyectada

ℐ(𝑡) = ∫
𝑡

0
⟨b ⋅ ∇ ×m⟩d𝑡′, (4.20)

donde ⟨b ⋅ ∇ × m⟩ es la tasa media de inyección de energía. La figura 4.10 muestra la variación
total de cada energía Δℰ(𝑡) = ℰ(𝑡) − ℰ(0) normalizada por la energía total inyectada acumulada
ℐ(𝑡)⁸. Los tres regímenes discutidos previamente se observan claramente aquí, con algunas etapas
intermedias. Como se mencionó anteriormente, el primer régimen corresponde a una rápida
redistribución de energía, probablemente debido a una reorganización inicial del sistema al partir
de condiciones iniciales no completamente estables para HPIC. Durante la segunda etapa, ℰ𝑇 recibe
aproximadamente 3 veces la energía inyectada a expensas de ℰ𝑐 y ℰ𝑚. En la última etapa, ℰ𝑐 y ℰ𝑒
permanecen constantes, de modo que toda la energía inyectada se divide entre ℰ𝑚 (∼ 30%) y ℰ𝑇
(∼ 70%). Este hecho apunta a algún mecanismo de disipación no colisional, en el cual la mayor
parte de la energía inyectada se convierte en energía térmica, que generalmente identificamos
como calor.

En esta tesis, proponemos inestabilidades cinéticas, particularmente la inestabilidad espejo,
como un posible mecanismo de disipación no colisional. La expresión 𝑇⟂/𝑇∥ ≳ 1 + 𝛽−1

∥ captura
aproximadamente la condición para la inestabilidad de espejo y 𝑇⟂/𝑇∥ ≲ 1 − 𝛽−1

∥ la inestabilidad
de manguera (firehose, en inglés), donde

𝛽∥ =
8𝜋𝑝∥
|B|2

=
8𝜋𝑛𝑝𝑇∥

|B|2
, (4.21)

y definimos 𝑇⟂ = (𝑇𝑥 + 𝑇𝑦)/2 y 𝑇∥ = 𝑇𝑧. En la figura 4.11, mostramos la función de densidad
de probabilidad (FDP) de los campos Eulerianos junto con los límites aproximados de ambas

⁸En principio, esta magnitud es igual a la variación de energía total Δℰtotal(𝑡) = ℰtotal(𝑡) − ℰtotal(0), pero consideramos
que el enfoque de energía inyectada es más claro e interpretable.
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inestabilidades en diferentes momentos de la evolución HPIC. Inicialmente, el sistema se encuentra
dentro de la zona de estabilidad, pero para Ω𝑐𝑡 ≳ 50, algunas regiones del plasma cruzan el umbral
de la inestabilidad espejo. Sin embargo, el umbral de la inestabilidad demanguera nunca es cruzado.
Aunque no se muestra aquí, la mayoría de estos cruces ocurren en regiones específicas del sistema,
probablemente relacionadas con algunas estructuras no propagantes presentes en esas zonas.
Estas excursiones fuera de la región de estabilidad son breves, con una duración característica de
alrededor de 20Ω−1

𝑐 . Lo más probable es que la inyección constante de energía esté impulsando
este efecto, sacando partes del plasma de la zona de estabilidad para que la inestabilidad espejo las
fuerce de vuelta, transformando energía en calor en el proceso.

Ahora nos enfocamos en cómo se distribuye este calentamiento y en las diferencias entre el
caso de partículas de prueba en CHMHD y el caso HPIC. En el panel izquierdo de la figura 4.12,
mostramos la energización total de las partículas (equivalente a Δ(ℰ𝑐 + ℰ𝑇) en el caso HPIC) en
función del tiempo. Inicialmente, ambos casos presentan un rango balístico ∝ 𝑡2 muy similar (en
el espacio de velocidades), pero después de unas pocas giraciones, las partículas de prueba en
CHMHD superan a sus contrapartes autoconsistentes en HPIC. Este intervalo balístico en el caso
HPIC coincide aproximadamente con la redistribución inicial de energía (Ω𝑐𝑡 ≲ 30). Luego, sigue
un periodo casi estacionario correspondiente a la segunda etapa descrita previamente, donde la
energía cinética del flujo se convierte en energía térmica, manteniendo constante la energía cinética
total. Para Ω𝑐𝑡 ≳ 100, consistente con el régimen donde ∼ 70% de la energía inyectada se convierte
en térmica, las partículas en el caso HPIC alcanzan una pendiente comparable a las partículas de
prueba en CHMHD, indicando un régimen difusivo. Sin embargo, esta energización no distingue
entre el flujo a gran escala y las fluctuaciones térmicas. Por ello, en el panel derecho de la figura
4.12, mostramos solo las energías térmicas 𝑇ℓ definidas en (2.41), donde ℓ indica la dirección,
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promediadas en todo el dominio. Según lo esperable, ambos casos muestran temperaturas más
altas en dirección perpendicular (𝑥, con resultados similares en 𝑦) que en la dirección paralela (𝑧).
En particular, Δ⟨𝑇𝑥⟩ ≈ 2Δ⟨𝑇𝑧⟩. No obstante, las partículas de prueba experimentan un incremento
de temperatura aproximadamente 3 veces mayor (en ambas direcciones) que sus contrapartes
autoconsistentes, lo cual es casi idéntico a la diferencia en energización total mostrada en el
panel izquierdo. Esto sugiere que, en ambos casos, casi toda la energización de las partículas
se convierte en energía térmica. Para el caso HPIC, esto era de esperarse, ya que la figura 4.9
muestra que la energía cinética del flujo se mantiene aproximadamente constante. Para el caso
CHMHD, sin embargo, esto no es trivial, ya que la velocidad media de las partículas de prueba
u𝑝 no necesariamente coincide con la velocidad del fluido u. Aunque no se muestra aquí, ambos
campos son muy similares al inicio de la simulación CHMHD y con el tiempo se diferencian
considerablemente, aunque conservan propiedades estadísticas similares, como su energía media y
espectro a gran escala.

Para cuantificar la producción de partículas supratérmicas, analizamos su distribución de
velocidades. En particular, nos interesa determinar cuántas partículas tienen una energía cinética
superior a la esperada en una distribución de Maxwell-Boltzmann (gaussiana). Dado que las
partículas en diferentes regiones del dominio poseen velocidades medias y temperaturas distintas,
en lugar de calcular directamente la FDP global, proponemos evaluar el campo de kurtosis 𝜅ℓ de la
componente ℓ, definido cómo

𝜅ℓ(x, 𝑡) =
⟨(𝑣ℓ − 𝑢𝑝,ℓ)4⟩𝑝
⟨(𝑣ℓ − 𝑢𝑝,ℓ)2⟩2𝑝

, (4.22)

con ⟨•⟩𝑝 definido en la ecuación (2.39), sabiendo que para la distribución de Maxwell-Boltzmann
de la ecuación (2.40) se tiene 𝜅ℓ = 3. Valores más altos de kurtosis indican una mayor fracción
de partículas supratérmicas en esa región del dominio. Para analizar la evolución de este campo,
los paneles superiores de la figura 4.13 muestran la fracción de puntos de grilla con 𝜅ℓ > 3 para
cada dirección. Inicialmente, todas las distribuciones comienzan con 𝑃(𝜅ℓ > 3) ≈ 0,47, debido al
inevitable ruido de tamaño finito en la distribución gaussiana inicial. En la dirección perpendicular,
ambas simulaciones muestran un aumento con el tiempo, aunque el caso de partículas de prueba en
CHMHD alcanza rápidamente una probabilidad de 1. Esto implica que no hay una sola región en
el dominio sin una fracción considerable de partículas supratérmicas. En el caso HPIC, el aumento
es más moderado, pero no parece detenerse durante la simulación, probablemente debido a la
inyección constante de energía. En la dirección paralela, ocurre lo opuesto: en CHMHD la fracción
fluctúa en torno al valor inicial, mientras que en HPIC se observa un leve incremento, aunque
menor que en la dirección perpendicular. La distribución espacial de estas partículas supratérmicas
puede apreciarse en los paneles inferiores de la figura 4.13. Aquí, las regiones en rojo indican
la presencia de partículas supratérmicas, confirmando que en CHMHD las partículas de prueba
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eventualmente pueblan toda la caja en la dirección perpendicular. En la dirección paralela, en
cambio, las partículas supratérmicas se organizan en estructuras que recuerdan a las presentes en
el sistema (vease figura 4.7). Esta estructura subyacente está presente en todos los casos, aunque
no parece limitar la localización de partículas supratérmicas en la componente perpendicular.
Vemos entonces que la aproximación de partículas de prueba no solo sobreestima el aumento de
temperatura, sino que también genera una población supratérmica mucho mayor (menor) en la
dirección perpendicular (paralela).

Para concluir este análisis, en la figura 4.14 mostramos la FDP global de las velocidades nor-
malizadas al final de la simulación. Esta normalización se logra restando el flujo medio local y
dividiendo por las velocidades térmicas locales en cada dirección, de modo que 𝛿v𝑗 = v𝑗 − u(x𝑗)
y 𝜎ℓ

𝑗 = √𝑇ℓ(x𝑗). Las observaciones previas pueden verse claramente aquí: ambas simulaciones
presentan colas más pesadas que la distribución gaussiana en la dirección perpendicular, especial-
mente para el caso CHMHD. En la dirección paralela, la distribución de CHMHD es prácticamente
indistinguible de la gaussiana, mientras que en HPIC las colas son ligeramente más pesadas. Vemos
que este enfoque promedia sobre todo el dominio, perdiendo la información sobre la distribución
espacial y proporcionando resultados similares a 𝑃(𝜅ℓ) en la figura 4.13. Por lo tanto, podríamos
concluir que en el caso CHMHD no se crean partículas supratérmicas en la dirección paralela,
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contraposición al caso 2,5D donde la energía magnética también aumenta).

sino que simplemente se redistribuyen. Esto podría ser consecuencia de la aproximación 2,5D,
donde se descartan variaciones en la dirección paralela. Sin embargo, es notable que las partículas
autoconsistentes del caso HPIC logren desarrollar poblaciones supratérmicas adicionales a pesar
de esta limitación.

4.2.3. Caso 3D

Repetimos parte del análisis para el caso 3D, con una resolución más baja debido a limitaciones
computacionales. La menor resolución implica una separación diferente entre escalas, en particular
entre la escala de inyección y la escala protónica, además de una duraciónmás corta de la simulación
(medida en Ω−1

𝑐 ). Esto inevitablemente modifica algunos resultados, por lo que nuestro enfoque es
principalmente cualitativo. Comenzamos mostrando en la figura 4.15 la evolución de la energía
en ambos casos. El caso CHMHD es bastante similar a su contraparte 2,5D, manteniéndose en un
estado estacionario (aunque la energía cinética del fluido es ahora mayor que la energía magnética).
El caso HPIC, en cambio, presenta diferencias significativas, especialmente en tiempos tardíos. La
reorganización inicial dura aproximadamente 15Ω−1

𝑐 , pero luego la energía magnética se mantiene
estacionaria mientras que la energía cinética del fluido disminuye ligeramente. Por otro lado, la
energía térmica aumenta de manera continua a lo largo de toda la simulación, lo que sugiere que
toda la energía inyectada se convierte en calor. Esto puede entenderse recordando que en esta
simulación 3D la escala de inyección está mucho más cerca de la escala protónica: 𝑘iny𝑑𝑝 ≈ 1,8×10−1

en contraposición a 𝑘iny𝑑𝑝 ≈ 4,5 × 10−2 en el caso 2,5D. Esto reduce el rango de la cascada MHD y
facilita su transición a la escala sub-protónica, donde la energía se convierte en energía térmica.

Ahora nos enfocamos en la energización de partículas, mostrada en la figura 4.16. El incremento
cuadrático inicial en el panel izquierdo es muy similar, aunque el caso HPIC presenta una disminu-
ción inicial (i.e., ⟨Δ|v|2⟩ < 0) que no se muestra. A tiempo posterior, la energización en HPIC parece
ser más lenta (subdifusiva) en comparación con la simulación 2,5D. Más interesante es la evolución
de la temperatura media en el panel derecho, donde observamos que el aumento de temperatura
en HPIC es muy similar al de su contraparte 2,5D. Sin embargo, en el caso CHMHD, las partículas
de prueba aumentan su temperatura mucho más (aproximadamente el doble) en comparación
con su contraparte 2,5D y alrededor de 6 veces más que en el caso HPIC. Las relaciones entre los
incrementos paralelos y perpendiculares dentro de cada caso permanecen prácticamente iguales.
Por lo tanto, vemos que el cambio de 2,5D a 3D tiene un efecto mucho más significativo en las
partículas de prueba que en las partículas autoconsistentes.

Repetimos ahora el cálculo y el análisis del campo de kurtosis para los casos 3D. Esto se muestra
en la figura 4.17, donde se observan varias diferencias con respecto al caso 2,5D de la figura 4.13.
En la dirección perpendicular, en el caso 3D vemos que ambas fracciones son más parecidas y, en
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tiempos tempranos (Ω𝑐𝑡 ≲ 20), incluso indistinguibles. Sin embargo, aparecen diferencias en su
distribución espacial, mostrando que CHMHD alcanza valores más extremos. Hacia el final de
la simulación, CHMHD nuevamente alcanza un punto donde todo el dominio está poblado por
partículas supratérmicas, mientras que HPIC parece estabilizarse en ∼ 85%, un poco más alto que
en el caso 2,5D. En la dirección paralela, CHMHD se comporta demaneramuy similar a la dirección
perpendicular, en fuerte contraste con su contraparte 2,5D. No obstante, el caso HPIC se asemeja a
su versión 2,5D, alcanzando un nivel comparable al final de la simulación. La distribución espacial
vuelve a ser relevante, especialmente en la componente paralela, lo que sugiere una localización
preferencial de las partículas supratérmicas. Algo similar ocurre en las velocidades normalizadas
de la figura 4.18, donde el caso HPIC 3D es casi indistinguible de su versión 2,5D de la figura
4.14, en particular en la componente paralela. Por otro lado, el caso CHMHD muestra diferencias
significativas en la componente paralela, pero menores en la perpendicular.

En esta sección, hemos mostrado que la aproximación de partícula de prueba (CHMHD) sobre-
estima la energización respecto a una formulación autoconsistente (HPIC). Aunque esto pueda
resultar obvio dadas las restricciones que el enfoque autoconsistente impone (cómo la conservación
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de la energía total), dimos una caracterización cuantitativa de la sobreestimación. Inicialmente, la
temperatura media es muy similar por aproximadamente 50Ω−1

𝑖 en 2.5D (ver panel derecho de la
figura 4.12) y 10Ω−1

𝑖 en 3D (ver panel derecho de la figura 4.16), lo que en ambos casos equivale a
∼ 0,13𝑡0, con 𝑡0 = 𝐿0/𝑢0 el tiempo de rotación de los remolinos más grandes. Posteriormente, las
partículas de prueba de CHMHD se calientan considerablemente más, especialmente en el caso
3D, mientras que las partículas de HPIC presentan tasas de calentamiento similares en 2,5D y 3D.
Sin embargo, todas las simulaciones muestran que Δ⟨𝑇𝑥⟩ ∼ 2Δ⟨𝑇𝑧⟩, lo que indica que la aproxi-
mación de partículas de prueba es capaz de capturar la dirección preferencial de calentamiento.
Incidentalmente, notamos la importancia de la separación entre la escala de inyección y protónica
𝑘iny𝑑𝑝 en la energización autoconsistente.

Las figuras 4.13 y 4.17 muestran que las distribuciones de partículas supratérmicas se separan
rápidamente, en la mayoría de los casos incluso más rápido que la temperatura media. Esto implica
que, en el caso de partículas de prueba, la distribución de velocidades desarrolla colas más pesadas,
lo que indica una mayor fracción de partículas supratérmicas en comparación con el caso autocon-
sistente. En otras palabras, la aproximación de partículas de prueba captura peor los momentos de
orden superior. Adicionalmente, las simulaciones HPIC arrojan resultados muy robustos al pasar
de 2,5D a 3D, mostrando partículas supratérmicas en ambas direcciones pero principalmente en la
perpendicular. En cambio, las simulaciones CHMHD presentan esta robustez solo en la dirección
perpendicular, mientras que en la paralela la distribución es mayormente Gaussiana en 2,5D, pero
en 3D aumenta su población supratérmica de manera similar a la dirección perpendicular. Esto
sugiere que las fluctuaciones a lo largo del campo guía son necesarias para que las partículas de
prueba desarrollen una población supratérmica en esa dirección, pero son mayormente irrele-
vantes para las partículas autoconsistentes. Esto implicaría que las partículas autoconsistentes
logran explotar mecanismos de energización paralela inaccesibles para las partículas de prueba,
probablemente de origen cinético, como la inestabilidad espejo propuesta previamente. Esto se
refuerza notando que el caso HPIC desarrolla partículas supratérmicas solo en regiones específicas
del plasma, mientras que en el caso CHMHD estas ocupan todo el dominio rápidamente (ver
figuras 4.13 y 4.17). Nuestros resultados muestran que, incluso si se tiene en cuenta la tasa de
calentamiento normalizando las distribuciones de velocidades como en las figuras 4.14 y 4.18, la
aproximación de partículas de prueba seguiría prediciendo una mayor concentración de partículas
supratérmicas.
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Conclusiones y perspectivas

Pero sí parece apropiado enfatizar que se debe tener mucho cuidado al interpretar
los fenómenos del mundo real en términos de soluciones asintóticas de tratamientos
estadísticos aproximados de la teoría idealizada. En algunos casos, la teoría idealizada
puede ser más válida para proporcionar un lenguaje para la discusión en lugar de una
verdadera explicación.

Robert Kraichnan & David Montgomery, Two-dimensional turbulence, 1980

A lo largo de esta tesis, hemos estudiado la energización de iones (principalmente protones)
mediante múltiples enfoques, primero desde la (supuesta) dicotomía de estructuras contra ondas y
luego desde la interacción unilateral contra bilateral. Ambos enfoques son fundamentales para
entender los mecanismos de calentamiento en turbulencia de plasmas no colisionales y, en menor
medida, la dinámica de rayos cósmicos.

En el contexto de interacción unilateral correspondiente a partículas de prueba (capítulo 3),
el uso de simulaciones numéricas directas (SND) nos permitió obtener estados de turbulencia
magneohidrodinámica realistas. En estos estados, observamos que la energización está fuertemente
influenciada por estructuras que identificamos cómo tubos de flujo magnético en compresión.
El flujo medio de plasma atrae a los iones hacia estas estructuras, cuya compresión genera un
campo eléctrico horario alineado a la giración, maximizando la energización. Este mecanismo es
inherentemente no lineal, pues no solo requiere la formación de una estructura coherente sino
también la presencia de advección no uniforme en el plasma. Los tubos de flujo magnético juegan
un rol importante en la dinámica de la corona solar, donde sufren considerable deformación y
recombinación. Esto último lleva a eyecciones de masa coronal donde se genera gran cantidad de
partículas energéticas. El mecanismo aquí propuesto apuntaría a una producción suplementaria
durante la deformación de estos tubos, menos abrupta pero sistemática. Fuera de la corona solar,
estas estructuras estarán presentes en el viento solar gracias a la turbulencia, aportando un me-
canismo adicional al calentamiento no colisional allí observado. Las tasas de energización para
distintos iones (distintos cocientes entre carga y masa, representado por su 𝛼) aquí halladas no
deberían tomarse cómo referencia, pues podrían ser altamente dependientes de los números de
Reynolds asociados al estado turbulento. Sin embargo, el hecho de que este mecanismo genere
distinta energización para distintos iones es consistente con el calentamiento diferencial observado
en el viento solar.

La linealización de las ecuaciones magnetohidrodinámicas permite eliminar este mecanismo
y concentrarnos pura y exclusivamente en el rol de las ondas. Al utilizar condiciones iniciales
turbulentas alcanzadas por la evolución no lineal de MHD, el espectro obtenido es realista, si-
guiendo la ley de escala de Kolmogorov. Más aún, las fases en espacio Fourier resultan fuertemente
correlacionadas por la presencia de estructuras coherentes en el plasma. Aunque las estructuras se
desarmen rápidamente, esta correlación persiste y reduce la energización de protones considera-
blemente. Solo aleatorizando estas fases es posible obtener una energización mayor a la del caso no
lineal, ya que el mecanismo subyacente de energización y la condición de resonancia entre ondas y
partículas parecen estar fuertemente influenciadas por la distribución de fases en el sistema. En
algunos casos, las fases resultan tan relevantes cómo el propio espectro de energía, lo cual va en
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contra de la mayor parte de los modelos, que ponen el foco en el espectro y dejan de lado las fases,
limitándose a considerarlas aleatorias. Independientemente de esto, en todos los casos lineales la
energización perpendicular es siempre difusiva (⟨Δ|v⟂|

2⟩ ∝ 𝑡), pero superdifusiva (⟨Δ|v⟂|
2⟩ ∝ 𝑡𝑎

con 𝑎 > 1) para el caso no lineal, mostrando que estas estructuras son más eficientes a largo plazo.

La linealización, sin embargo, es un método artificial y extremo para inducir ondas en un
sistema. El modelo no lineal completo genera naturalmente estados turbulentos donde estas ondas
pueden coexistir con estructuras coherentes (propagantes o no). Mediante el tiempo de correlación
𝜏𝑓 del forzado externo, vimos que es posible controlar la cantidad de ondas en el plasma. Así,
generamos 3 estados turbulentos con distinta proporción de energía entre ondas y estructuras,
a modo de poder distinguir la relevancia de cada una en la energización de protones. Mediante
espectros espaciotemporales, hallamos que forzados más rápidos (menor 𝜏𝑓) generan estados
turbulentos con más energía alrededor de las relaciones de dispersión de ondas magnetosónicas
rápidas y Alfvénicas. Esto ocurre en detrimiento de la energía asociada a estructuras coherentes,
probablemente porque estas fluctuaciones rápidas atentan contra su estabilidad. A su vez, estos
estados generan menor energización de protones, reforzando la idea de que los mecanismos
ondulatorios son menos eficientes que aquellos asociados a estructuras coherentes. Más aún,
notamos que la mayor presencia de ondas en el sistema puede interferir con el mecanismo de tubo
de flujo en compresión observado, liberando a las partículas de su captura. Bajo la hipótesis de que
energizar protones es análogo a disipar energía térmicamente, esta imagen es compatible con la
concepción habitual en turbulencia de flujos neutros, donde la disipación de energía viene dada
por estructuras (normalmente remolinos) de pequeña escala.

No obstante, no es inmediato cómo estas consideraciones se traducirían en el caso de rayos
cósmicos, cuya energía cinética es considerablemente mayor y para los cuales este mecanismo de
captura podría ser notoriamente menos eficiente. Es para estos rayos cósmicos que la hipótesis
de partícula de prueba es más apropiada, dada su alta energía y baja concentración. Al eliminar
uno de los acoplamientos (es decir, el efecto de las partículas sobre los campos), facilitamos
que las partículas se liberen de la influencia de los campos del plasma: solo necesitan suficiente
energía cinética para hacer que la aceleración debida al campo electromagnético de pequeña escala
(turbulento) sea despreciable. Por el contrario, el calentamiento no colisional generalmente ocurre a
escala mesoscópica y, por lo tanto, involucra una mayor concentración de partículas. Su efecto sobre
los campos electromagnéticos puede no ser despreciable, exigiendo un tratamiento autoconsistente
para la dinámica de los protones. Si se mantiene el acoplamiento (como en el caso autoconsistente),
una gran energía cinética podría no ser suficiente, ya que una alta concentración de partículas
supratérmicas generaría a su vez campos electromagnéticos más fuertes, limitando la aceleración.

En el capítulo 4, vimos que esta limitación parece manifestarse no solo en una menor energi-
zación media, sino también en una reducción de la probabilidad de velocidades extremas. Para
esto, describimos la implementación de un módulo de partícula en celda (PIC) sobre el código
pseudoespectral GHOST. Por un lado, utilizamos este módulo junto con una descripción magnetohi-
drodinámica compresible con efecto Hall (CHMHD) a modo de obtener una descripción de tipo
partícula de prueba comparable con aquella del capítulo 3. Por otro lado, también lo utilizamos
en un modelo cinético híbrido para obtener una descripción autoconsistente del plasma a escala
protónica y comparamos ambos enfoques. Para cuantificar la desviación respecto a la gaussianidad
de la distribución de velocidades de los protones, introdujimos el campo de kurtosis 𝜅(x, 𝑡), notando
que 𝜅 > 3 indica la presencia de partículas supratérmicas.

Con todo esto, pudimos determinar que la aproximación de partícula de prueba sobreestima la
energización media, especialmente a largo plazo. Sin embargo, notamos también que es capaz de
captar los regimenes balístico (⟨Δ|v⟂|

2⟩ ∝ 𝑡2) y difusivo del modelo autoconsistente. También es
capaz de capturar las tasas de energización relativa entre las componentes paralela y perpendicular.
En ese aspecto, podemos decir que la aproximación de partícula de prueba es capaz de captu-
rar cualitativamente la dinámica del calentamiento, aunque no cuantitativamente. Sin embargo,
notamos que los momentos de mayor orden (cómo la kurtosis) son peor capturados por esta aproxi-
mación, pues arroja una notoria sobreestimación de la concentración de partículas supratérmicas.
En este aspecto, parecería que la interacción bilateral (autoconsistente) es necesaria para detener la
energización de las partículas más extremas. A su vez, el modelo autoconsistente parece capaz de
acceder a mecanismos ausentes en el modelo magnetohidrodinámico, cómo evidencia la generación
de partículas supratérmicas en la dirección paralela del caso 2,5D (ver figura 4.13). Además, arroja
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resultados muy robustos ante el cambio 2,5D → 3D tanto en términos de energización media cómo
concentración de partículas supratérmicas, lo cual es esperable dada la bidimensionalización del
flujo en presencia del campo magnético guía intenso. Esto no ocurre para partículas de prueba,
poniendo en duda su aplicabilidad más allá de la estimación de las tasas de energización.

Las distribuciones de energías más modestas del modelo autonconsisnte, aunque más realistas,
nos indican que estas simulaciones no continen partículas que puedan considerarse rayos cósmicos.
Esto ocurre a pesar de que, en principio, el enfoque autoconsistente debería ser capaz de capturar
también la producción y dinámica de rayos cósmicos. En principio, la posibilidad de formación
de haces de partículas de alta energía y la interacción de estos con el plasma podría llevar al
desprendimiento de una pequeña población de partículas similares a rayos cósmicos. Esto, sin
embargo, atañe a una fracción tan pequeña que es difícil de observar sin un aumento considerable
en el número de partículas utilizadas en la simulación. Desde este punto de vista, la interacción
unilateral simplemente sobreestima tanto la concentración de partículas supratérmicas que vuelven
este efecto apreciable para un número de partículas mucho más modesto.

Todo esto apunta a que el enfoque magnetohidrodinámico es incapaz de capturar ciertos
fenómenos cinéticos (cómo la inestabilidad de espejo) relevantes en el calentamiento, sea a favor o
en detrimiento. Elmecanismo de captura y energización propuesto en el capítulo 3 no fue observado
en la simulación HPIC autoconsistente ni en la CHMHD con partículas de prueba. Probablemente,
esto se deba al rango de escalas elegido, pues una comparación entre los espectros 3.2 y 4.8 muestra
que el primero tiene un rango inercial (compatible con espectro de Kolmogorov) mucho mayor.
Esto es inevitable, pues dada una resolución fija (𝑁 = 512) la única forma de obtener un rango
subprotónico es a expensas del rango inercial. Es posible que estas estructuras estén ausentes si el
rango inercial no es suficientemente extenso. Esto amerita un futuro estudio con mayor resolución,
a modo de determinar si estas tubos de flujo en compresión están presentes en el modelo cinético
autoconsistente. Aún si existiesen, la introducción de efectos cinéticos podría afectar notoriamente
su eficiencia de captura y energización, pues la presión térmica generada por este calentamiento
puede rápidamente destruir la estructura.

En particular, podríamos descartar el análisis de Voronoi, pues realmente no es más que una
estimación de la densidad de partículas 𝑛𝑝(x, 𝑡). En las simulaciones del capítulo 3, tendríamos
el equivalente a ppc = 5 × 105/5123 ≈ 3 × 10−3 ll 1, insuficiente para realizar los depósitos.
Simulaciones con ppc comparables a las del capítulo 4 permitirían vislumbrar más claramente la
estructura fina de 𝑛𝑝 y correlacionarla mejor con las estructuras subyacentes. Adicionalmente, el
estado del arte en simulaciones PIC en general trabaja con un valor de ppc hasta 2 ordenes mayor
al utilizado en esta tesis. Para tan considerable ppc, esperamos que la métrica de no gaussianidad
dada por 𝜅(x, 𝑡) sea sumamente robusta, complementando la determinación fina de la estructura
espacial de la producción de partículas supratérmicas. Más aún, podría habilitarnos a observar
partículas supraenergéticas a niveles comparables a rayos cósmicos, que esperariamos tengan un
comportamiento similar a partículas de prueba dada su alta energía y baja concentración.
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Apéndice A

Funciones de peso

Cómo introdujimos en la sección 2.2.5 las funciones de peso 𝑊 pueden obtenerse mediante la
convolución sucesiva de funciones galera Π definidas según (2.57). Las primeras de estas funciones
de peso pueden visualizarse en la figura 2.3, pero aquí daremos la expresión exacta de algunas
de ellas. Llamando 𝑊ℓ a la función de peso de orden ℓ, tenemos simplemente que 𝑊0(x) = Π(x)Δ.
Intuitivamente, vemos que esta función peso simplemente asignará el valor 1 (todo su peso)
al punto de grilla más cercano, también conocido cómo criterio de vecino más cercano. Para las
siguientes funciones, es más práctico notar que la función de peso siempre podrá descomponerse
en el producto de funciones de peso unidimensionales adimensionalizadas por el tamaño de grilla
Δ

𝑊ℓ(𝑥, 𝑦, 𝑧) = 𝑊ℓ (
𝑥
Δ
)𝑊ℓ (

𝑦
Δ
)𝑊ℓ (

𝑧
Δ
) , (A.1)

por lo que basta analizar el caso 1D con Δ = 1. La siguiente función en la familia es

𝑊1(𝑥) ≡ Λ(𝑥) =
⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

0 si 𝑥 ≤ −1
1 + 𝑥 si −1 < 𝑥 < 0
1 − 𝑥 si 0 ≤ 𝑥 < 1
0 si 1 ≤ 𝑥

. (A.2)

Vemos que esta función asigna fracciones de 1 a los dos puntos de grilla más cercanos, pesando
linealmente la distancia a cada una. Las siguientes dos funciones son bastante más complejas y
difíciles de interpretar, pero las incluimos por completitud

𝑊2(𝑥) =
1
8

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 si 𝑥 ≤ −3/2
(3 + 2𝑥)2 si −3/2 < 𝑥 ≤ −1/2
6 − 8𝑥2 si −1/2 < 𝑥 ≤ 1/2
(3 − 2𝑥)2 si 1/2 < 𝑥 ≤ 3/2

0 si 3/2 < 𝑥

, (A.3)

𝑊3(𝑥) =
1
6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 si 𝑥 ≤ −2
(2 + 𝑥)3 si −2 < 𝑥 ≤ −1

4 − 3𝑥3 − 6𝑥2 si −1 < 𝑥 ≤ 0
4 + 3𝑥3 − 6𝑥2 si 0 < 𝑥 ≤ 1

(2 − 𝑥)3 si 1 < 𝑥 ≤ 2
0 si 2 < 𝑥

. (A.4)

Podemos notar que estas funciones tienen un dado alcance, pues tienen valor no nulo para los
ℓ + 1 puntos de grilla más cercanos. Sobre estos puntos, estas funciones asignan una fracción de su
peso, tal que la suma del total es 1. Si 𝑥0, .., 𝑥ℓ son estos puntos, podemos expresar esto

ℓ

∑
𝑛=0

𝑊ℓ(𝑥 − 𝑥𝑛) = 1, (A.5)

para todo 𝑥. Es interesante notar que para ℓ ≤ 1, tenemos 𝑊ℓ(0) = 1, lo que muestra que si una
partícula está ubicada en el centro del punto de grilla, asignará todo su peso allí. Esto no ocurre
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Figura A.1: (Izquierda) Espectro de la densidad depositada, mostrando el ruido de disparo, y (derecha) la dependencia de
su amplitud media para distintos valores de ppc y orden de la función peso.

para ℓ > 1, mostrando que efectivamente las partículas tienen volumen, integrando el valor del
campo en toda una región.

Además de notar que estas funciones son pares (invariantes ante 𝑥 → −𝑥), notamos que son más
suaves a medida que aumentamos ℓ (ver figura 2.3). Puntualmente, podemos probar que 𝑊ℓ ∈ 𝐶ℓ−1

para ℓ ≥ 1, teniendo en mente que 𝑊0 es discontinua. El efecto de esta suavidad es importante a
la hora de reproducir perfiles de densidad. Generalmente, funciones de orden más alto implican
partículas más grandes, por lo que tienen problemas a la hora de reproducir gradientes bruscos en
las magnitudes depositadas.

El hecho de que el número de partículas sea finito implica que los depósitos tendrán un cierto
ruido, conocido cómo el ruido de disparo (particle shot noise, en inglés). Al ser un error de naturaleza
estadística, la amplitud de este ruido suele escalar cómo 1/√𝑁 donde 𝑁 es el número total de
partículas. A su vez, notando que el depósito implica una convolución con la función de forma
𝑆ℓ¹, el Teorema de la Convolución (B.2) nos dice que la amplitud de este ruido dependerá de la
transformada Fourier de 𝑊ℓ. Sabiendo que Π̂(𝑘) ∝ sinc(𝑘) y usando nuevamente el teorema de la
convolución, sabemos que

𝑊̂ℓ(𝑘) ∝ [sinc(𝑘)]ℓ+1 ∼ 𝑘−(ℓ+1). (A.6)

Por lo tanto, esperamos que este ruido en el espectro cuadrado (densidad de energía) decaiga
exponencialmente con el orden ℓ e inversamente con ppc ∝ 𝑁. Para verificar esto, inicializamos
un sistema unidimensional con partículas distribuidas uniformemente y al alzar. Agregamos una
pequeña modulación sobre los pesos 𝑤𝑗 en el modo 𝑘 = 4, idéntico al caso de amortiguamiento
de Landau de la sección 4.1.3. Luego, las depositamos para obtener su densidad 𝑛(x) utilizando
(2.63) para 𝑔(v) = 1 y calculamos su espectro. En la figura A.1, podemos observar un ejemplo de
este espectro para un dado orden y ppc, donde vemos que efectivamente existe un ruido constante
poblando todas las frecuencias. Más importante aún, vemos el comportamiento de la amplitud
media de este ruido cómo función del valor de ppc. El comportamiento exponencial es dificil de
verificar al tener solo 3 ordenes², pero los resultados obtenidos son consistentes con él.

El costo computacional escala linealmente con el valor de ppc (lineal en el número de partículas),
pero polinómicamente en el orden ℓ. Esto se debe a que cada depósito/interpolación opera sobre
ℓ + 1 puntos de grilla, que en 𝑑 dimensiones implica (ℓ + 1)𝑑 operaciones. Por lo tanto, en ausencia
de fuertes gradientes y a partir de un dado valor de ppc, es más económico aumentar el orden de
la función, al reducir este ruido exponencialmente.

¹Pues 𝑊ℓ = Π ∗ 𝑆ℓ, con 𝑆ℓ definido de forma análoga.
²El caso ℓ = 0 tiene error nulo, pues al ser un criterio de vecino más cercano, al ser ppc una constante el ruido es nulo.

Esto es un artefacto del método utilizado para distribuir las partículas.



Apéndice B

Solapamiento

Cómo introdujimos en la sección 2.3.4, los coeficientes Fourier de 𝑔 y 𝑔𝑁 no coinciden en
principio y podemos verlo introduciendo la expansión (2.90) en la definición de ̃𝑔k (2.96), que
arroja

̃𝑔k = ̂𝑔k + ∑
m∈Z𝑑

𝑁
m≠0

̂𝑔k+m𝑁. (B.1)

Decimos entonces que los modos k +m𝑁 se solapan (alias, en inglés) con el modo k, volviéndose
indistinguibles de él. En la figura B.1 podemos ver un ejemplo unidimensional para 𝑁 = 5 donde
los modos 𝑘 = 7 y 𝑘 = 12 se solapan con el modo 𝑞 = 2 ∈ ℤ5. Esto es un problema, pues contamina la
dinámica del modo k con aquella de los modos k+m𝑁, posiblemente generando comportamientos
poco físicos.. En el límite𝑁 → ∞, dada la convergencia espectral, estos modos solapados ̂𝑔k+m𝑁 → 0
y, por lo tanto, ̃𝑔k → ̂𝑔k. Este solapamiento (aliasing, en inglés) se ve intensificado por la presencia
de no linealidades. Veamos esto aplicando el Teorema de la Convolución (Folland 2009, Capítulo 7)
tenemos

(̂𝑔ℎ)k = ∑
q∈ℤ𝑑

̂𝑔qℎ̂k−q. (B.2)

Consideremos que ambos campos carecen de solapamiento, tal que ̃𝑔k = ̂𝑔k y ℎ̃k = ℎ̂k, lo cual ocurre
para 𝑔𝑁 = 𝑔 y ℎ𝑁 = ℎ En particular, tenemos ̂𝑔k = 0 = ℎ̂k para k ∉ ℤ𝑑

𝑁 y la sumatoria de (B.2) sobre
ℤ𝑑 puede reemplazarse por una sobre ℤ𝑑

𝑁. A pesar de esto, 𝑔ℎ tendrá modos fuera de ℤ𝑑
𝑁, cómo

por ejemplo n = (−𝑁, −𝑁, ..)
(̂𝑔ℎ)n = ∑

q∈ℤ𝑑
𝑁

̂𝑔qℎ̂n−q = ̂𝑔n/2ℎ̂n/2,

donde notamos que q,n−q ∈ ℤ𝑑
𝑁 si y solo si q = n/2. En general, tendremos (̂𝑔ℎ)k ≠ 0 para k ∈ ℤ𝑑

2𝑁,
por lo que inevitablemente tendremos solapamiento al querer reexpresarlo con modos en ℤ𝑑

𝑁.

La solución más ingenua para eliminar este solapamiento sería anular los modos que puedan
salir de ℤ𝑑

𝑁 al sumarse. Algorítmicamente, esto equivaldría a tomar ̂𝑔k = 0 = ℎ̂k para k ∉ ℤ𝑑
𝑀

donde 𝑀 = ⌊𝑁/2⌋, lo cual reduce a la mitad el número de modos disponibles y, en consecuencia, la
resolución. Sin embargo, en 1971 Orszag propuso su regla de los dos tercios al mostrar que basta
tomar 𝑀 = ⌊2𝑁/3⌋, permitiendo retener mayor número de modos (Orszag 1971). Podemos ver esto
notando que, usando (B.2), el máximo k (en módulo) para el cual (̂𝑔ℎ)k ≠ 0 será el construido por
q = (− ⌊𝑀/2⌋ , − ⌊𝑀/2⌋ , ..) y resulta k = (−2 ⌊𝑀/2⌋ , −2 ⌊𝑀/2⌋ , ..) ∉ ℤ𝑑

𝑁. Estemodo k se solapará con
el modo p = (−2 ⌊𝑀/2⌋ + 𝑁, −2 ⌊𝑀/2⌋ + 𝑁, ..) ∈ ℤ𝑑

𝑁, pues 2 ⌊𝑀/2⌋ ≤ 𝑀 < 𝑁 junto con 𝑀 > ⌊𝑁/2⌋
implican 0 < 𝑁−2 ⌊𝑀/2⌋ < ⌊𝑁/2⌋. Sin embargo, p ∉ ℤ𝑑

𝑀, ya que en virtud de 2 ⌊𝑀/2⌋ ≤ 𝑀 ≤ 2𝑁/3
tenemos

𝑁 − 2 ⌊𝑀/2⌋ ≥ 𝑁/3 ≥ ⌊2𝑁/3⌋ /2 = 𝑀/2 ≥ ⌊𝑀/2⌋

donde usamos múltiples veces que ⌊𝑥⌋ ≤ 𝑥 ∀𝑥 ∈ ℝ. Por lo tanto, este modo pertenecerá a los
anulados al imponer (̂𝑔ℎ)k = 0 ∀k ∉ ℤ𝑑

𝑀. Este proceso se conoce cómo desolapamiento (en inglés,
dealiasing).
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Figura B.1: Solapamiento en el caso unidimensional para 𝑁 = 5. Vemos que el muestreo a 𝑁 puntos no permite distinguir
los modos 𝑘 = 7 y 𝑘 = 12 del modo 𝑞 = 2 ∈ ℤ5.

Sin embargo, pueden existir no linealidades de mayor orden: aquellas que se construyen
multiplicando 𝑝 funciones en 𝑆𝑁. Para estas no linealidades polinómicas, es necesario truncar
la expansión en 𝑀𝑝 = ⌊2𝑁/(𝑝 + 1)⌋. Alternativamente, es posible descomponer el producto de 𝑝
elementos en 𝑝 − 1 productos de 2 elementos, aplicando desolapamiento luego de cada uno. Esto
último permite retener un mayor número de modos, pero puede ser menos fiel a la dinámica
real del problema. En todo caso, no linealidades que no son el resultado de productos no son
alcanzadas por este método, cómo serían los cocientes (i.e., por 𝜌 en (2.66)) o las potencias no
enteras (i.e., 𝑝 ∝ 𝜌𝛾 con 𝛾 = 5/3). No existe un método seguro para estas no linealidades, pero
normalmente si 𝜌 no varía demasiado es posible expandir estos términos en una serie de Taylor
truncada, recuperando no linealidades polinómicas. Esto permite usar la regla de los dos tercios
con cierta robustez, manteniendo el solapamiento en niveles manejables.
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