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Estudio de modelos dinámicos fenomenológicos del cerebro en

múltiples estados de conciencia

Resumen

Desde los albores de la ciencia moderna, los modelos matemáticos han sido un pilar esencial

para el avance en la comprensión de los sistemas dinámicos, desde el movimiento de los plane-

tas hasta la propagación de enfermedades. En las últimas décadas, los avances tecnológicos en

neuroimágenes no invasivas han permitido aplicar este enfoque para comprender el funciona-

miento del cerebro y, en particular, su propiedad emergente más enigmática: la conciencia. A

pesar de que múltiples avances han proporcionado conocimiento de carácter descriptivo sobre

los sustratos neurobiológicos de la conciencia, los mecanismos subyacentes aún no se compren-

den completamente. En particular, los modelos matemáticos se pueden aplicar al estudio de los

estados de conciencia, entendidos como modificaciones globales y sostenidas en el tiempo del

carácter cualitativo de la experiencia subjetiva. En este contexto, el modelado permite formular

y evaluar hipótesis falsables sobre los mecanismos implicados.

Los modelos fenomenológicos desempeñan un papel fundamental en la neurociencia contem-

poránea, dado que permiten representar y entender distintos procesos cerebrales haciendo énfasis

en sus caracteŕısticas dinámicas, sin adentrarse en detalles biológicos complejos. Al combinarlos

con datos emṕıricos obtenidos a partir de neuroimágenes funcionales, estos modelos permiten

captar aspectos generales de la actividad cerebral global, reflejando tanto las propiedades loca-

les de las regiones cerebrales como las influencias mutuas entre ellas. A lo largo de esta tesis,

los modelos fenomenológicos se utilizaron para avanzar en la comprensión de los mecanismos

subyacentes del cerebro transitando distintos estados de conciencia, incluyendo estados de con-

ciencia reducida, tal como el sueño profundo, y estados alterados inducidos farmacológicamente

mediante el psicodélico serotoninérgico N,N-dimetiltriptamina (DMT).

En primer lugar, se caracterizó el espacio de posibles modelos fenomenológicos en cuanto a

su capacidad para representar la actividad global del cerebro humano, registrada mediante reso-

nancia magnética funcional (fMRI). Para ello, se propusieron ecuaciones polinomiales genéricas

con coeficientes ajustables a partir de optimizar la reproducción de observables emṕıricos. Los

resultados demostraron que la actividad local se asocia a un tipo particular de dinámica y es-

tabilidad, que puede capturarse mediante formas normales de Hopf, también conocidas como

osciladores de Stuart-Landau. Además, se evidenció que el sueño profundo se caracteriza por
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un aumento de la estabilidad dinámica en comparación con el estado de vigilia.

En la segunda parte de esta tesis, se introdujo un enfoque novedoso basado en un modelo con

parámetros dependientes del tiempo para investigar los efectos del DMT, una droga psicodélica

con efectos de corta duración. Se encontró que los parámetros que regulan la dinámica temporal

tienden a ubicarse cerca de una bifurcación en el caso de la actividad generada por el DMT,

y que su evolución temporal se encuentra en concordancia con una descripción sencilla de la

farmacocinética de dicha sustancia. Además, al explorar la respuesta del modelo óptimo ante

forzantes externos, se descubrió que la modulación temporal propuesta introduce un intervalo

transitorio durante el cual la propagación de est́ımulos se vuelve óptima para las redes de

conexiones cerebrales que poseen una mayor densidad de receptores serotoninérgicos vinculados

al DMT.

Finalmente, se investigó el caos determinista como una alternativa a la multiestabilidad

inducida por ruido en la reproducción de observables de la actividad cerebral en estado de re-

poso. Estudios previos han señalado la falta de robustez de los modelos impulsados por ruido al

intentar captar simultáneamente múltiples observables emṕıricos de tipo estático y dinámico.

Este trabajo comparó formas normales de Hopf (osciladores de Stuart-Landau) con osciladores

de Rössler (capaces de exhibir caos determińıstico) en cuanto a la capacidad de estas diferentes

dinámicas a la hora de reproducir múltiples observables en simultáneo. Los hallazgos demos-

traron que el caos determinista cumple con el objetivo de ajustar métricas diśımiles dentro de

un mismo rango de parámetros, superando aśı ciertas limitaciones de los modelos de equilibrio

impulsados por ruido.

En resumen, los contenidos de esta tesis presentan una evaluación exhaustiva e integral

de los modelos fenomenológicos como descriptores cuantitativos de la dinámica cerebral global

registrada con fMRI, al mismo tiempo que demuestran cómo distintos estados de conciencia

pueden caracterizarse por su estabilidad ante perturbaciones endógenas y exógenas.

Palabras claves: Dinámica no lineal, Neurociencia computacional, Conciencia, Sistemas

complejos, Caos.
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Study of phenomenological whole-brain models across multiple

states of consciousness

Abstract

Throughout the evolution of modern science, mathematical models have stood as crucial pi-

llars for advancing the understanding of dynamical systems, ranging from celestial mechanics to

epidemiology. In recent decades, with the advent of non-invasive neuroimaging technologies, this

approach has found application in unraveling the intricacies of brain function, particularly focu-

sing on its most elusive aspect: consciousness. Despite significant efforts in providing descriptive

insights into the neurobiological underpinnings of consciousness, its underlying mechanisms are

not yet fully understood. In particular, mathematical modeling provides a method to explore

states of consciousness, which are conceptualized as enduring and global shifts over time in

the qualitative nature of subjective experience. Within this framework, modeling facilitates the

formulation and assessment of testable hypotheses concerning the underlying mechanisms.

Phenomenological models play a pivotal role in contemporary neuroscience, offering simpli-

fied representations and insights into various brain processes while particularly focusing on their

dynamic aspects, without delving into intricate biological details. When coupled with empiri-

cal data from functional neuroimaging, these models provide a glimpse into broader patterns

of global brain activity, capturing both the characteristics of local brain regions and their in-

teractions. This thesis explores phenomenological models to enhance our understanding of the

brain’s underlying mechanisms across various states of consciousness, including states of redu-

ced consciousness like deep sleep, as well as pharmacologically induced altered states achieved

by the administration of the serotonergic psychedelic N,N-dimethyltryptamine (DMT).

As a first step, the space of possible phenomenological models was characterized in terms

of their capacity to represent the overall activity of the human brain, as recorded through

functional magnetic resonance imaging (fMRI). This exploration entailed the proposal of generic

polynomial equations with adjustable coefficients, optimized to accurately replicate empirical

observations. Results highlighted a connection between local activity and a specific form of

dynamics and stability, notably encapsulated in the normal form of a Hopf model, also known as

a Stuart-Landau oscillator. Furthermore, the investigation revealed heightened dynamic stability

during deep sleep compared to wakefulness.

Subsequently, a novel approach was introduced, which relied on a time-dependent parameter
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model to investigate the effects of DMT, a short-acting psychedelic. It was found that the

parameters governing the temporal dynamics tend to be located near a bifurcation point in the

case of the activity generated by DMT. Additionally, the temporal evolution was aligned with a

simplified description of the substance’s pharmacokinetics. Furthermore, the examination of the

optimal model’s response to external stimuli unveiled a transient window during which stimulus

propagation is maximal and optimally synchronizes with brain networks presenting the highest

density of 5-HT2A serotonin receptors, the main pharmacological target of DMT.

Finally, deterministic chaos was proposed as an alternative to noise-driven multistability in

models aiming to replicate observables related to resting-state brain activity. Previous studies

have pointed out the lack of robustness of noise-driven models when attempting to capture

multiple empirical observables simultaneously, both static and dynamic. This work compared

normal forms of Hopf model (Stuart-Landau oscillators) with Rössler oscillators (capable of

exhibiting deterministic chaos) regarding the ability of these different dynamics to replicate

multiple observables simultaneously. The findings demonstrated that deterministic chaos fulfills

the goal of adjusting dissimilar metrics within the same parameter range, thus overcoming

certain drawbacks of noise-driven equilibrium models.

In summary, this thesis provides a thorough assessment of phenomenological models as

quantitative descriptors of global brain dynamics observed via fMRI. It also elucidates how

distinct states of consciousness can be characterized in terms of their dynamical stability against

external and internal perturbations.

Keywords: Nonlinear dynamics, Computational neuroscience, Consciousness, Complex sys-

tems, Chaos.
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Caṕıtulo 1

Introducción

1.1. El cerebro y la conciencia desde la ciencia

La relación entre la experiencia consciente subjetiva y su base biof́ısica ha sido siempre una

cuestión central para las ciencias de la mente y el cerebro. Sin embargo, desde los inicios de la

neurociencia como disciplina, el estudio de la conciencia ha sido en gran medida considerado un

tema marginal, o incluso excluido por completo, siendo considerado más bien como un problema

filosófico. La idea de que la mente es un tipo de sustancia con propiedades diferentes a las de la

materia f́ısica se abordó tempranamente en textos filosóficos antiguos como el Fedón de Platón

(siglo IV a.C.) o la Suma Teológica de Tomás de Aquino (1265-1274). Fue René Descartes (1596-

1650) quien formalizó esta idea en lo que hoy conocemos como dualismo cartesiano, según el

cual la mente está hecha de una sustancia inmaterial que escapa a las leyes normales de la f́ısica.

A la luz de los avances recientes, esta concepción dualista puede parecer arcaica o errónea,

sobre todo considerando la posición cient́ıfica actual más difundida, la cual plantea que la con-

ciencia es una propiedad emergente del cerebro. No obstante, el dualismo de Descartes fue

formulado a partir de argumentos lógicos que sugeŕıan que la libertad de la mente consciente

era imposible de replicar mediante una máquina (Dehaene 2014). De acuerdo con su argumento,

los estados mentales tienen propiedades distintas a las que poseen los estados f́ısicos del cerebro.

Un ejemplo es la propiedad de extensión espacial, la cual se aplica al cerebro, pero parece más

dif́ıcil de adscribir a los estados mentales. Otras dos propiedades aparentemente espećıficas de

los estados mentales son la conciencia (la capacidad de tener sensaciones subjetivas en primera

persona) y la intencionalidad (la capacidad de la mente de representar objetos, hechos o propie-

dades del resto del mundo). Un problema de esta visión dualista es que implica una desconexión

total de la mente respecto al mundo f́ısico, ya que, si los estados mentales interactuaran con el

mundo f́ısico, esta interacción debeŕıa poder ser medida y sujeta a nuevas reglas dentro de la

13



14 Caṕıtulo 1

f́ısica, desdibujando aśı los ĺımites entre mente y cuerpo planteados por Descartes.

Gracias a matemáticos como Pitágoras, Carl Friedrich Gauss y Bernoulli, aśı como f́ısicos

como Newton, Maxwell y Einstein, hoy poseemos una comprensión razonable de los principios

matemáticos que rigen el mundo f́ısico. Además, figuras como Charles Darwin, James Watson

y Francis Crick demostraron que la vida está compuesta por miles de millones de reacciones

qúımicas codificadas en el material genético y su evolución. Sin embargo, el problema de la

conciencia y su surgimiento a partir de la materia permanece envuelto bajo un velo de incer-

tidumbre. Preguntas como “¿quién es ese ‘yo’ que parece ser el autor de mis pensamientos?”

o “¿soy en parte un esṕıritu hecho de una sustancia distinta?” han desconcertado a mentes

brillantes a lo largo de la historia (Dehaene 2014).

Durante el siglo XIX y gran parte del siglo XX, el problema de la conciencia se mantuvo

fuera del alcance de la ciencia emṕırica, considerándose un ámbito dif́ıcil de abordar experi-

mentalmente. Aśı, por muchos años, pocos investigadores se atrevieron a estudiar la conciencia.

Sin embargo, desde mediados de los años 60 comenzó a gestarse un cambio significativo. Un

estudio destacado fue el de Roger Sperry y Michael Gazzaniga sobre el ‘cerebro dividido’ (o

callosotomı́a), el cual reveló que cada hemisferio cerebral pod́ıa percibir est́ımulos visuales de

forma independiente, y que solo el hemisferio izquierdo, en el caso de su paciente W.J., pod́ıa

verbalizar estas percepciones (Gazzaniga et al. 1962). Estudios posteriores continuaron esta

ĺınea, mostrando que el sistema somatosensorial, el sistema motor y otros pod́ıan ser igualmen-

te ‘divididos’, mientras que el sistema emocional permanećıa intacto (Gazzaniga 2014). Estos

hallazgos desafiaron la noción de que la conciencia es necesariamente unificada, un tema que

aún genera debate (Gazzaniga 2014; Pinto et al. 2017; Sasai et al. 2016).

La década de 1990 marcó un punto de inflexión en la neurociencia de la conciencia con la

publicación de un influyente art́ıculo de Crick y Koch en 1990 (Crick et al. 1990). Los autores

plantearon la necesidad de estudiar los “correlatos neuronales de la conciencia” (NCC, por sus

siglas en inglés) o los procesos neuronales mı́nimos asociados a cualquier percepción consciente.

Impulsada por la llegada de los escáneres de resonancia magnética (MRI, por sus siglas en inglés)

y el electroencefalograma (EEG), la búsqueda de los NCC se convirtió en el enfoque dominante,

permitiendo a los neurocient́ıficos investigar regiones o procesos cerebrales correlacionados con

experiencias conscientes espećıficas.

En el último cuarto de siglo, se ha avanzado considerablemente en la identificación de posibles

NCC, especialmente en contextos espećıficos como la percepción visual o auditiva (Koch et al.

2016; Metzinger 2000; Odegaard et al. 2017). Un método clásico ha sido comparar la actividad

cerebral registrada en condiciones ‘conscientes’ vs. ‘inconscientes’, manteniendo constante la
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estimulación sensorial y todas las otras variables relevantes para el experimento. Por ejemplo,

en la rivalidad binocular -forma de percepción biestable en la que el ojo izquierdo y el ojo

derecho están sometidos a est́ımulos visuales diferentes- la competencia entre los est́ımulos

sobre cada ojo provoca que la percepción fluctúe entre la imagen vista por el ojo izquierdo

y la imagen vista por el ojo derecho; es decir, la percepción consciente alterna mientras que

los est́ımulos permanecen inalterados. Paralelamente, otra ĺınea de investigación ha estudiado

los correlatos neuronales asociados a distintos estados de conciencia, tanto estados reversibles

-sueño y anestesia (Massimini et al. 2005)- como resultantes de lesiones cerebrales -coma y

estado vegetativo (Owen et al. 2009)-. Identificar los mecanismos neuronales que subyacen a los

estados de conciencia representa un desaf́ıo, ya que las transiciones entre los complejos patrones

de actividad cerebral afectan al cerebro y al cuerpo en su totalidad, dificultando la identificación

de aquellos espećıficamente relacionados con la conciencia.

Por otra parte, teoŕıas como la del ‘espacio global de trabajo’ de Baars, Changeux, Dehaene

y Naccache (Baars 1993) han ofrecido marcos conceptuales útiles, postulando que la informa-

ción sensorial ingresa a la conciencia cuando se representa en las neuronas del espacio global

de trabajo, en el cual se vuelve disponible para otros procesos tales como el informe verbal y

la acción motora. Versiones posteriores asocian este espacio global de trabajo con redes fron-

toparietales, vinculando la percepción consciente con una ‘ignición’ de actividad en estas redes

(Dehaene et al. 2001; Dehaene et al. 2011; Dehaene et al. 2003).

Los avances de las últimas décadas en ciencias cognitivas, neurofisioloǵıa y neuroimágenes

han transformado la conciencia en un campo experimental. Con una definición más precisa de

la conciencia, tal como daremos en la próxima sección (ver 1.2), su manipulación experimental y

un renovado interés por los fenómenos subjetivos, la ciencia de la conciencia ha dejado atrás su

estatus especulativo y se ha consolidado como un campo de investigación emṕırica y rigurosa.

A pesar de que aún estamos lejos de entender completamente cómo, a partir de la actividad

conjunta de células, emerge la conciencia, estos descubrimientos han sentado las bases para

nuevas intervenciones cĺınicas y una comprensión más profunda de nuestro lugar en la naturaleza

como seres conscientes, integrados en el mundo f́ısico.

1.2. Estados de conciencia

La palabra “conciencia”, como la usamos en el habla de todos los d́ıas, está cargada de sig-

nificados imprecisos que abarcan un amplio rango de fenómenos complejos. Se suele hacer una

distinción básica entre conciencia fenoménica y conciencia de acceso (Block 1995). La primera

representa la experiencia subjetiva de percepciones, emociones y pensamientos; es decir, lo que
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se siente al percibir algo o al experimentar una emoción o un proceso de pensamiento. La segun-

da representa la disponibilidad global del contenido consciente para funciones cognitivas como

el habla, el razonamiento y la toma de decisiones, permitiendo emitir reportes en primera perso-

na. El término conciencia también abarca los estados temporales y cualitativamente distintos de

conciencia (Revonsuo et al. 2009; Overgaard et al. 2010; Tassi et al. 2001). Ejemplos incluyen la

vigilia ordinaria, las fases del ciclo vigilia-sueño, los sueños durante el sueño REM, la sedación,

la anestesia general, trastornos post-comatosos como el śındrome de vigilia no responsiva, efec-

tos de ciertos fármacos psicodélicos y disociativos, y estados alcanzados a través de meditación,

hipnosis o trance chamánico. Estos estados son conocidos como estados alterados de conciencia

(LUDWIG 1966), para enfatizar su diferencia con la vigilia consciente común. Los estados al-

terados de conciencia han sido estudiados desde diversas perspectivas (Block 1995), revelando

diferencias interindividuales significativas en experiencias sensoriales, imágenes y pensamientos

en vigilia, sueños, hipnosis y otros fenómenos (Kuznetsov 1998). Además, un mismo fenómeno

consciente puede ser interpretado de manera distinta según el individuo, reflejando también

variaciones culturales (Pasricha et al. 1986). Sin embargo, los estados alterados de conciencia

comparten algunas caracteŕısticas comunes entre śı que permiten una posible definición general.

Primero, son temporalmente extendidos y, por lo general, reversibles. Segundo, no se definen

por experiencias subjetivas espećıficas, sino por modificaciones generales y cualitativas en los

contenidos de la conciencia, incluida la intensidad experimentada (Revonsuo et al. 2009). Ter-

cero, algunos estados pueden organizarse en una jerarqúıa, desde ’conciencia reducida’ (como

anestesia general o sueño) hasta estados considerados ”más ricos”(por ejemplo, ciertos estados

alcanzados durante la meditación o inducidos farmacológicamente) (Carhart-Harris et al. 2014).

Para nuestros fines, dividiremos los estados alterados de conciencia según las siguientes cate-

goŕıas: naturales o endógenos (por ejemplo, los estados dentro del ciclo de sueño), los inducidos

por medios farmacológicos (por ejemplo, anestesia general o el estado psicodélico), y los cau-

sados por procesos patológicos. A continuación, describiremos aquellos estados que nos serán

útiles durante el desarrollo de esta tesis.

1.2.1. Vigilia

Desde mediados de la década de 1990, la dinámica espontánea a gran escala 1 del cerebro

humano ha suscitado un creciente número de investigaciones (Raichle 2006). Anteriormente

descartada como ruido experimental, se hizo cada vez más claro que la dinámica fluctuante de la

1Aqúı empleamos el término a gran escala como sinónimo de actividad cerebral global, en referencia a la

actividad macroscópica del cerebro que abarca desde unos pocos cent́ımetros hasta toda la corteza.
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actividad cerebral endógena no es aleatoria, sino que es altamente estructurada en los dominios

espacial y temporal (Deco et al. 2011; Heuvel et al. 2010). Durante el reposo, esta actividad se

autoorganiza en patrones recurrentes que se superponen con diferentes sistemas funcionales del

cerebro, conocidos como redes de estado de reposo (RSN, por sus siglas en inglés) (Damoiseaux

et al. 2006). Dado que los patrones de actividad evocados por tareas cognitivas y estimulación

sensorial pueden ponerse en correspondencia con las RSN (Smith et al. 2009), se ha propuesto

que la dinámica espontánea del cerebro refleja una exploración metaestable de estados que

facilitan una reacción rápida ante demandas ambientales (Deco et al. 2011; Deco et al. 2012;

Deco et al. 2013; Cavanna et al. 2018). Según este punto de vista, la evolución ha moldeado el

cerebro como un sistema dinámico itinerante que siempre está cerca de configuraciones asociadas

con funciones sensoriales, cognitivas o motoras (Cole et al. 2016).

1.2.2. Estados alterados de conciencia endógenos: sueño

En un plano diametralmente diferente a la vigilia se encuentra el sueño, siendo una de

las manifestaciones más notables de estado de conciencia distinto a la vigilia. Esto ha llevado a

definir coloquialmente la consciencia como aquello que desaparece cada noche cuando dormimos

sin soñar (Tononi et al. 2008). Tradicionalmente, se asocia la etapa de sueño REM con la

aparición de sueños y vivencias intensas y a la fase de sueño de movimientos oculares no rápidos

(NREM) como aquella en la que no se sueña; sin embargo, la relación entre el sueño profundo

y los sueños no es tan directa (Windt et al. 2016).

Desde un enfoque experimental, el sueño NREM resulta particularmente interesante por su

carácter ćıclico, su evolución predecible a través de diversas etapas y su reversibilidad, per-

mitiendo observar al mismo individuo en estado consciente e inconsciente sin los efectos de

traumatismos cerebrales que son comunes en estados como el coma o el estado vegetativo. Fe-

nomenológicamente, el sueño NREM se caracteriza en los humanos por una reducción de la

actividad sensorial, baja respuesta a est́ımulos, inactividad muscular relativa y pérdida de cons-

ciencia (Berry et al. 2024). Aunque estas cualidades pueden observarse en el comportamiento, el

uso de la electroencefalograf́ıa (EEG) permite describir con mayor precisión las distintas etapas

de este sueño (ver figura 1.1)
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Figura 1.1: Caracteŕısticas del EEG e hipnograma de las etapas del sueño. El lado

derecho de la figura muestra un hipnograma, que describe las diferentes etapas del sueño durante

8 horas de descanso nocturno. Las caracteŕısticas del EEG correspondientes a cada etapa del

sueño se enumeran en el lado izquierdo. Abreviaturas: REM, sueño con movimientos oculares

rápidos; N1, etapa 1 del sueño no REM; N2, etapa 2 del sueño no REM; N3, etapa 3 del sueño

no REM. La imagen fue sacada de (Pan et al. 2021)

.

El sueño NREM puede dividirse en tres etapas, N1, N2 y N3 (Berry et al. ), cada una con

caracteŕısticas únicas en cuanto a fisioloǵıa y comportamiento (Berry et al. 2024). La etapa N1

marca el inicio del sueño ligero, caracterizado por una disminución progresiva en la actividad

muscular y movimientos oculares lentos. Es común observar sacudidas musculares que, a veces,

se asocian con una sensación de cáıda. En la etapa N2, desaparecen los movimientos oculares

y disminuyen la temperatura corporal, la frecuencia card́ıaca y la respiración. En la etapa N3,

que es la fase de sueño más profundo, la frecuencia card́ıaca y la respiratoria son mı́nimas y no

hay movimientos oculares.

Desde el punto de vista del EEG, cada una de estas etapas se identifica por patrones es-

pećıficos. En la vigilia, predomina el ritmo beta de baja amplitud con los ojos abiertos y el

ritmo alfa en un estado de relajación. Al ingresar a la etapa N1, los ritmos beta y alfa desapa-

recen, prevaleciendo ritmos theta (4-8 Hz). La etapa N2 presenta también ritmos theta, aunque

con patrones únicos como los husos de sueño (ondas sinusoidales de 12-14 Hz) y los complejos

K, caracteŕısticos de esta etapa. Estos complejos K, que involucran ondas delta (menos de 4

Hz), se cree que actúan como una respuesta al despertar breve, favoreciendo la continuidad del
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sueño (Jahnke et al. 2012). En la etapa N3, la actividad del EEG se sincroniza en oscilaciones

de alta amplitud y baja frecuencia, denominadas ondas delta, que son caracteŕısticas de este

sueño profundo.

Durante el sueño, el cerebro experimenta cambios en su conectividad funcional que afectan

su organización como red compleja. Estos cambios marcan una diferencia significativa entre el

estado de vigilia y las fases del sueño, pues, aunque algunas redes en estado de reposo (RSN)

persisten (Horovitz et al. 2007; Larson-Prior et al. 2009; Boly et al. 2012; Tagliazucchi et al.

2013), la transición a las etapas más profundas del sueño va acompañada de una disminución

de las conexiones entre distintas regiones cerebrales. Esto implica una coherencia reducida en

algunas redes o una menor conexión con otras, afectando la organización espaciotemporal del

cerebro.

La etapa N1 del sueño NREM presenta un desacoplamiento entre el tálamo, el hipotálamo

y la corteza, aunque las interacciones corticales se mantienen en cierta medida. A medida que

el sueño progresa hacia las etapas N2 y N3, se observa una pérdida paulatina de estas interac-

ciones cortico-corticales (Tagliazucchi et al. 2014). La conectividad fronto-parietal, crucial para

la consciencia, se ve reducida en el sueño profundo (Spoormaker et al. 2012), aśı como las cone-

xiones entre áreas frontales y posteriores de la red neuronal por defecto (DMN) (Horovitz et al.

2009; Tagliazucchi et al. 2013) y entre regiones de la red de atención dorsal (Tagliazucchi et al.

2013). También disminuye la conectividad tálamo-cortical (Spoormaker et al. 2010; Picchioni

et al. 2014), asociada a la sincronización de oscilaciones lentas durante el sueño.

La reducción de la conectividad funcional, que refleja los cambios en las oscilaciones de ondas

lentas observadas en el EEG, respalda teoŕıas de la consciencia que postulan que la disminución

de interacciones cortico-corticales y tálamo-corticales lleva a una reducción de la capacidad

de respuesta y el nivel de consciencia (Tagliazucchi et al. 2012; Massimini et al. 2005; Casali

et al. 2013). Estos hallazgos son consistentes con modelos que explican cómo una conectividad

reducida podŕıa afectar la consciencia, al desconectar el cerebro de est́ımulos externos y reducir

la alerta general del organismo (Koch et al. 2016).

1.2.3. Estados alterados de conciencia inducidos: psicodélicos

Las drogas psicodélicas han sido objeto de estudio debido a su capacidad para alterar pro-

fundamente la consciencia, influyendo en la percepción, las emociones y los pensamientos. Estas

sustancias, derivadas de plantas, hongos o sintetizadas qúımicamente, han estado presentes en

diversas culturas a lo largo de la historia, desempeñando un papel importante en contextos

religiosos, rituales y medicinales (Carhart-Harris et al. 2017).
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Entre los psicodélicos clásicos se incluyen la dietilamida de ácido lisérgico (LSD), la psilo-

cibina, la N,N-dimetiltriptamina (DMT) y la mescalina, los cuales comparten un mecanismo

principal de acción como agonistas del receptor 5HT2A, es decir, activándolo al unirse a él,

aunque otros receptores también están involucrados en sus efectos (Nichols 2016). Estas sus-

tancias no solo intensifican las percepciones, sino que también promueven recuerdos profundos

y experiencias mı́sticas (Griffiths et al. 2006). El interés por los psicodélicos como herramientas

terapéuticas y cient́ıficas se ha revitalizado en las últimas décadas. Durante los años 50 y 60,

se exploró su uso en psicoterapia para tratar diversas afecciones como la depresión, la ansie-

dad y las adicciones; sin embargo, debido a restricciones legales impuestas en ese peŕıodo, la

investigación quedó limitada durante muchos años (Dyck 2005).

En la actualidad, los avances en neuroimágenes han permitido investigar cómo estas sustan-

cias afectan las redes neuronales, facilitando la neuroplasticidad y alterando la actividad cerebral

(Carhart-Harris et al. 2012).Se ha encontrado que los psicodélicos aumentan la integración de

la red global medida con resonancia magnética funcional (fMRI) (Carhart-Harris et al. 2012;

Tagliazucchi et al. 2016; Preller et al. 2018; Luppi et al. 2021), y la evidencia de múltiples mo-

dalidades vincula sus efectos con un aumento de la entroṕıa y complejidad de las fluctuaciones

de la actividad cerebral espontánea (Tagliazucchi et al. 2014; Kaelen et al. 2016; Schartner et al.

2017; Viol et al. 2017; Timmermann et al. 2019; Pallavicini et al. 2021; Herzog et al. 2023). Un

aspecto central en el uso de los psicodélicos es la importancia del ’set’ y del ’setting’, es decir, el

estado mental del usuario y del entorno en el que se administran. Estas condiciones influyen sig-

nificativamente en la experiencia psicodélica, reduciendo riesgos y aumentando la probabilidad

de resultados positivos (Leary et al. 2008). Estudios recientes también destacan su capacidad

para catalizar experiencias transformadoras que pueden tener un impacto positivo a largo plazo

en la vida de los individuos (MacLean et al. 2011). Algunos de estos hallazgos respaldan su

uso potencial en el tratamiento de trastornos como la ansiedad terminal, las adicciones y la

depresión resistente a tratamientos convencionales (Ross et al. 2016).

Finalmente, el resurgimiento del interés por estas sustancias ha permitido revalorar su po-

tencial no solo como tratamientos, sino también como herramientas para explorar la conciencia

humana. Como señaló Stanislav Grof, los psicodélicos podŕıan ser para la psiquiatŕıa lo que

el microscopio ha sido para la bioloǵıa, abriendo una ventana hacia aspectos de la mente que

normalmente permanecen inaccesibles (Grof 2008).
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1.3. Huellas de la conciencia y el rol de la neurociencia compu-

tacional

Uno de los principales desaf́ıos en el estudio de los estados alterados de conciencia ha sido

establecer huellas emṕıricas en las señales cerebrales que sean caracteŕısticas de los diferentes es-

tados sin depender del autorreporte o de tareas conductuales (Sergent et al. 2012). Establecer y

validar estas huellas también tiene relevancia desde una perspectiva cĺınica, ya que podŕıan llevar

al desarrollo de biomarcadores eficientes y espećıficos para ciertas condiciones neuropsiquiátri-

cas (Sitt et al. 2014; Watt et al. 2003). Además, algunas de estas huellas podŕıan proporcionar

nuevas perspectivas sobre la naturaleza de los estados conscientes correspondientes, avanzando

nuestra comprensión fundamental de la conciencia en śı misma. Desde la concepción de los

NCC, los neurocient́ıficos han recurrido a todas las tecnoloǵıas de neuroimagen disponibles en

la búsqueda de huellas de conciencia (Crick et al. 2003). Sin embargo, los datos de neuroimagen

suelen ser insuficientes para informar sobre los mecanismos subyacentes detrás de los fenóme-

nos neuronales que ocurren a diferentes escalas espaciales y temporales (Ramsey et al. 2010).

Además, dado que las consideraciones éticas limitan severamente la manipulación causal direc-

ta de la actividad cerebral humana, la mayoŕıa de la literatura de neuroimágenes se limita a

estudios correlacionales. La aplicación de modelos computacionales a los datos de neuroimagen

con el propósito de hacer afirmaciones causales y mecánicas ha sido propuesta y desarrollada

en paralelo como un complemento importante a esta investigación (Gerstner et al. 2012). Por

ejemplo, las redes neuronales profundas pueden usarse para modelar el procesamiento de la

información en el cerebro (Kriegeskorte et al. 2018) mediante la comparación de su contenido

representacional a través de isomorfismos de segundo orden (por ejemplo, análisis de similitud

representacional) (Kriegeskorte et al. 2008). Estos modelos se pueden usar para investigar la

plausibilidad de diferentes arquitecturas computacionales dentro de la neurociencia cognitiva

(Kriegeskorte et al. 2013). Otro ejemplo es el modelado causal dinámico (DCM, por sus siglas

en inglés), que fue desarrollado para hacer inferencias causales basadas en modelos a partir de

experimentos de neuroimagen (Friston et al. 2003). El DCM se basa en la simulación de señales

cerebrales bajo la suposición de diferentes interacciones causales y luego realiza una compara-

ción y selección de modelos. Finalmente, los modelos globales de cerebro (WBM, por sus siglas

en inglés) se basan en sistemas dinámicos acoplados por redes de conectividad anatómica a

gran escala y se desarrollan para reproducir las estad́ısticas de las señales cerebrales emṕıricas

en múltiples escalas (Schirner et al. 2018). Estos modelos proporcionan una especie de ’bis-

tuŕı digital’ práctico, ético y económico, que permite explorar las consecuencias alternativas de
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modificar aspectos estructurales o dinámicos del cerebro. De manera más general, los modelos

globales del cerebro establecen un puente entre las dinámicas locales de las redes neuronales y los

patrones de actividad a gran escala, los cuales son fundamentales para comprender las huellas

asociadas a la conciencia. Como tal, representan una herramienta valiosa para reducir el espacio

de explicaciones mecánicas compatibles con los datos de neuroimagen observados, incluidos los

datos adquiridos de sujetos que pasan por diferentes estados alterados de conciencia.

1.4. Modelos biológicos vs modelos fenomenológicos

A la hora de reproducir la dinámica cerebral podemos, como en el caso de todo sistema

dinámico complejo, utilizar distintos niveles de complejidad y múltiples escalas espaciales. En

la Figura 1.2 mostramos una selección de modelos posibles ordenados de acuerdo a estas dos

variables.

Por un lado, tenemos los modelos inspirados biológicamente, los cuales se basan en represen-

taciones detalladas de las dinámicas neurofisiológicas y biof́ısicas, como las interacciones entre

poblaciones neuronales, sus corrientes sinápticas, tasas de disparo y acoplamientos. Un ejemplo

de esto es el modelo de campo medio dinámico (DMF por sus siglas en inglés), que describe la

interacción entre grupos de neuronas excitatorias e inhibitorias (Deco et al. 2013; Deco et al.

2021). La variable de salida del modelo es la tasa de disparo de la población excitatoria, que

luego puede integrarse en un modelo hemodinámico no lineal para simular las señales regionales

de contraste dependiente del nivel de ox́ıgeno en la sangre (BOLD, por sus siglas en inglés),

las cuales se miden mediante fMRI. Aunque estos modelos buscan una representación precisa

de la actividad cerebral y tienen una interpretación biológica directa, su alta dimensionalidad

y complejidad pueden dificultar su ajuste y comprensión.

Por otro lado, los modelos fenomenológicos, como el modelo de osciladores no lineales de

Stuart-Landau, logran describir patrones dinámicos observados emṕıricamente sin modelar di-

rectamente los procesos biológicos subyacentes. Estos modelos son más simples y eficaces para

representar comportamientos colectivos mediante pocos parámetros, lo que facilita su análisis.

Aunque no reproducen la actividad eléctrica neuronal que subyace a las mediciones metabólicas

registradas por técnicas como la fMRI, pueden replicar la señal BOLD observada, lo que los

hace útiles para simular patrones de actividad global. A pesar de no detallar los aspectos biof́ısi-

cos, los modelos fenomenológicos pueden representar eficientemente los patrones de actividad

cerebral. De hecho, muchos modelos biológicos se reducen a algún tipo de bifurcación que puede

ser explicada con ecuaciones más simples. Esto permite que los modelos fenomenológicos sean

utilizados para obtener una representación efectiva de la actividad cerebral sin la necesidad de
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modelar la complejidad biológica subyacente. Serán estos modelos, en sus diversas variaciones,

los que utilizaremos a lo largo de esta tesis

Figura 1.2: Modelos de neuronas, redes neuronales y coaliciones meso- y macroscópi-

cas, que vaŕıan según su complejidad -cantidad de parámetros y detalle biológico- y

la escala espacial en la que se aplican. En la microescala, el modelo más simple (McCulloch-

Pitts) se basa en la suma de entradas ponderadas, que representan la intensidad de las conexio-

nes sinápticas, generando una salida mediante una función. Modelos más complejos incluyen el

modelo ’integrate and fire’, que es dinámico en lugar de discreto, y modelos donde la neurona

se representa como una serie de compartimientos con parámetros biof́ısicos independientes. En

la mesoescala, los modelos de masas neuronales, como Jensen-Rit o Wilson-Cowan, describen

la interacción de poblaciones excitatorias e inhibitorias, donde el grupo excitatorio recibe una

entrada externa, posee autoconexión e inhibe a otro conjunto de neuronas. Esto se modela con

dos ecuaciones diferenciales acopladas. Finalmente, en la macroescala, se pueden implementar

modelos como el propuesto en esta tesis, donde cada nodo se conecta con otros mediante esti-

maciones realistas de la conectividad cerebral y un solo parámetro libre de bifurcación. El ruido

aditivo genera dinámicas complejas cerca de la bifurcación. En esta escala se emplean técnicas

experimentales espećıficas para medir la actividad cerebral.
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1.5. Objetivos

La investigación sobre los estados de conciencia es un desaf́ıo multifacético, donde los mode-

los globales del cerebro han comenzado a jugar un papel crucial. La idea detrás de su uso es que

éstos pueden contribuir significativamente a la comprensión de los mecanismos subyacentes que

explican los diferentes estados de conciencia. Aunque no esperamos que los modelos globales

del cerebro identifiquen con precisión todos los mecanismos involucrados, creemos que pueden

reducir el espacio de explicaciones posibles, especialmente aquellas que vinculan los estados

de conciencia con distintos reǵımenes dinámicos del cerebro, sirviendo aśı como herramientas

complementarias a las teoŕıas actuales.

Esta tesis explora el uso de modelos fenomenológicos para comprender la dinámica cerebral

y los mecanismos subyacentes a distintos estados de conciencia, utilizando datos de resonan-

cia magnética funcional (fMRI). A través de la combinación de neuroimágenes funcionales y

modelos matemáticos, se investigaron estados como el sueño profundo y los inducidos por el

psicodélico DMT. En primer lugar, se propuso explorar ecuaciones generales para identificar las

dinámicas canónicas presentes en la actividad cerebral global durante la vigilia y el sueño. Una

vez encontrada la dinámica que reproduce de manera óptima los datos emṕıricos, se desarrolló

un modelo con parámetros dependientes del tiempo para capturar los estados transitorios in-

ducidos por el DMT. Finalmente, se evaluó el caos determinista como una alternativa robusta

a los modelos impulsados por ruido. Los hallazgos de esta tesis avanzan en la comprensión

cuantitativa y mecanicista de la conciencia y sus alteraciones.

1.6. Estructura de la tesis

La estructura de esta tesis doctoral es la siguiente: en el segundo caṕıtulo se presenta un

resumen de los conceptos de la teoŕıa de sistemas dinámicos que servirán para comprender

ciertos aspectos de los modelos del cerebro utilizados. Además, se proporcionará una breve

introducción a los modelos globales del cerebro para el lector no familiarizado, discutiendo sus

diferentes tipos y la metodoloǵıa detrás de su ajuste a los datos emṕıricos.

En el tercer caṕıtulo se describen los datos emṕıricos utilizados, aśı como los observables

empleados para caracterizar y comparar estos con los modelos dinámicos.

El cuarto caṕıtulo corresponde a contenidos adaptados de la publicación Data-driven dis-

covery of canonical large-scale brain dynamics (Piccinini et al. 2022). En esta se caracterizó el

espacio de posibles modelos fenomenológicos para representar la actividad global del cerebro

humano. Se utilizaron ecuaciones polinomiales genéricas con coeficientes ajustables, optimizan-
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do la reproducción de observables emṕıricos. Se encontró que la actividad local del cerebro está

asociada a un tipo espećıfico de dinámica y estabilidad, capturable mediante formas normales de

Hopf. Además, se observó que el sueño profundo se distingue por un aumento en la estabilidad

dinámica en comparación con el estado de vigilia.

En el quinto caṕıtulo -basado en la publicación Transient destabilization of whole brain dyna-

mics induced by DMT (Piccinini et al. 2024) (publicación aceptada en Nature Communications

Biology), se introdujo un enfoque innovador mediante un modelo con parámetros dependien-

tes del tiempo para estudiar los efectos de la DMT, una droga psicodélica de corta duración.

Los resultados mostraron que los parámetros que regulan la dinámica temporal de la droga

se encuentran cerca de una bifurcación, y que su evolución temporal se ajusta a una descrip-

ción simple de la farmacocinética de esta sustancia. Al explorar la respuesta del modelo ante

est́ımulos externos, se descubrió que la modulación temporal generada por la DMT optimiza la

propagación de est́ımulos en redes cerebrales con alta densidad de receptores serotoninérgicos

vinculados a este fármaco.

En el sexto caṕıtulo, se investigó el caos determinista como alternativa a la multiestabilidad

inducida por ruido en la reproducción de observables de la actividad cerebral en reposo. Modelos

previos mostraron limitaciones al intentar capturar múltiples observables emṕıricos simultánea-

mente. En este caṕıtulo se comparó osciladores de Stuart-Landau con osciladores de Rössler,

capaces de exhibir caos determińıstico, evaluando su capacidad para ajustar múltiples métricas

dentro de un mismo rango de parámetros. Los hallazgos indicaron que el caos determinista

logra reproducir estos observables de manera más robusta, superando las limitaciones de los

modelos impulsados por ruido. Los resultados de este caṕıtulo fueron publicados en (Piccinini

et al. 2021).





Caṕıtulo 2

Sistemas dinámicos y modelos del

cerebro

En este caṕıtulo introduciremos la teoŕıa de sistemas dinámicos la cual nos servirá como

plataforma para comprender y desarrollar los modelos f́ısicos del cerebro.

2.1. Teoŕıa de sistemas dinámicos

La teoŕıa de sistemas dinámicos se originó en el siglo XVII con Newton y Leibniz, quienes

desarrollaron el cálculo para estudiar la mecánica celeste: el movimiento de las estrellas, planetas

y satélites de estos últimos, aśı como otros astros presentes en el firmamento. En el núcleo de

esta teoŕıa están las ecuaciones diferenciales que expresan la dinámica temporal de las variables

de estado de un sistema de acuerdo con las leyes f́ısicas que gobiernan dicho sistema, tal como

muestra la ecuación 2.1

dx1
dt

= f1(x1, x2, . . . , xn, t),

...

dxn
dt

= fn(x1, x2, . . . , xn, t).

(2.1)

En este caso el sistema se describe a través de n variables. Si además contamos con el valor

de las variables para un dado tiempo inicial t0, tendremos definido lo que se llama un problema

de condiciones iniciales. El mismo se puede expresar de manera compacta como:

dx⃗

dt
= f(x⃗(t), t), x⃗(t0) = x⃗0 (2.2)

donde f : Rn → Rn, x⃗ ∈ Rn y x⃗0 denotan los valores de las variables x⃗ a t0.

27
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Para el movimiento de los cuerpos que estudiaban Newton y Leibniz, las variables de es-

tado corresponden a la posición y la velocidad de los mismos. Sin embargo, la teoŕıa de los

sistemas dinámicos hoy es utilizada en diversas áreas de la ciencia. En particular, en 1952

Hodgkin–Huxley describieron mediante ecuaciones diferenciales de primer orden los disparos de

neuronas individuales, trabajo por el cual fueron galardonados con el Premio Nobel (Hodgkin et

al. 1952). Basándose en registros neurofisiológicos detallados del axón gigante del calamar, este

modelo atribuye el origen de los picos a la interacción de corrientes de rápida despolarización

y de lenta hiperpolarización. En este modelo las variables de estado consisten en el potencial

de membrana y las conductancias de los canales iónicos. Las ecuaciones diferenciales se derivan

de la biof́ısica del flujo de iones a través de canales activados por voltaje, la conversión del

potencial de membrana en una tasa de disparo y otras propiedades biof́ısicas de las neuronas y

poblaciones neuronales.

Excepto en el caso en el que el campo vectorial f esté compuesto por funciones lineales,

resolver anaĺıticamente el problema de condiciones iniciales suele ser muy complicado. Incluso

en los pocos casos donde es posible encontrar soluciones, las expresiones resultantes suelen ser

complejas y no ofrecen una intuición clara sobre el comportamiento del sistema dinámico. Esto

subraya las limitaciones de un enfoque puramente algebraico.

2.1.1. Espacio de fases y retrato de fases

Para cada forma algebraica de un sistema dinámico existe un equivalente geométrico: el

espacio de fases. Este espacio está definido por todas las variables de estado del sistema y

sirve para analizar las caracteŕısticas cualitativas de las soluciones, aśı como su comportamiento

asintótico y su dependencia de los parámetros y condiciones iniciales. Para un sistema autónomo,

es decir, que no depende expĺıcitamente del tiempo, de primer orden en n dimensiones, el sistema

puede representarse como:

ẋ = f(x), (2.3)

donde x ∈ Rn es el vector de estado y f : Rn → Rn es un campo vectorial que define

la evolución del sistema. En este contexto, x representa un punto en el espacio de fases, y a

ẋ podemos pensarlo como un vector de velocidad en dicho punto. Este punto corresponde a

una combinación única de las variables de estado del sistema. Al seguir el flujo a lo largo del

campo vectorial, un punto en el espacio de fases traza una solución x(t), que corresponde a una

trayectoria que recorre el espacio de fases (ver Figura 2.1).
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Figura 2.1: Un punto en el espacio de fases traza una solución x(t). ẋ puede pensarse

como un vector de velocidad en dicho punto. La imagen fue sacada de (Strogatz 2018).

Además, todos los puntos del espacio de fases forman parte de una, y solamente una, tra-

yectoria, ya que cada punto puede actuar como una condición inicial. El retrato de fases se

construye visualizando las trayectorias de solución x(t) en el espacio de fases para diferentes

condiciones iniciales x(t0). El objetivo del retrato de fases es identificar caracteŕısticas geométri-

cas y topológicas de las soluciones. Estas caracteŕısticas proporcionan información esencial sobre

el comportamiento asintótico y la estabilidad de las soluciones, que frecuentemente es inalcan-

zable mediante métodos anaĺıticos exactos en sistemas no lineales.

Figura 2.2: Ejemplo de un retrato de fases para un problema bidimensional. Los puntos

A, B y C son puntos fijos inestables. La trayectoria D es un ciclo ĺımite estable. La imagen fue

sacada de (Strogatz 2018)

En la figura 2.2 se presenta un retrato de fases de un sistema bidimensional y del cual

podemos extraer varios conceptos que aparecen en los retratos de fases de cualquier sistema

dinámico:

1. Los puntos fijos, como A, B, y C en la Figura 2.2. Estos puntos satisfacen la ecuación
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f(x∗) = 0 y corresponden a los estados estacionarios o de equilibrio del sistema; es decir

que si la condición inicial del sistema es f(x∗) = 0, se quedará ah́ı por siempre.

2. Las órbitas cerradas, como D. Estas corresponden a soluciones periódicas, es decir, solu-

ciones para las cuales x(t+ T ) = x(t) para todo t y para algún T > 0.

3. La disposición de las trayectorias cerca de los puntos fijos y órbitas cerradas. Por ejemplo,

el patrón de flujo cerca de A y C es similar, y diferente del que se observa cerca de B.

4. La estabilidad o inestabilidad de los puntos fijos y órbitas cerradas. En este caso, los

puntos fijos A, B, y C son inestables, ya que las trayectorias cercanas tienden a alejarse

de ellos, mientras que la órbita cerrada D es estable.

Otro concepto importante que utilizaremos en la tesis es el de atractor. Un atractor es un

conjunto en el espacio de fases hacia el cual tienden a evolucionar las trayectorias del sistema

a medida que transcurre el tiempo, independientemente de las condiciones iniciales (dentro de

cierta vecindad). En términos formales, un atractor es un conjunto A que cumple las siguientes

propiedades:

Invariancia: Si una trayectoria entra en el atractor, permanece en él para siempre. Esto

significa que A es invariante bajo la dinámica del sistema.

Atracción: Existe una región (denominada cuenca de atracción) en el espacio de fases,

de modo que cualquier trayectoria que comience en esta región se acercará a A conforme

t → ∞. Es decir, cualquier estado inicial dentro de la cuenca de atracción eventualmente

se acercará al atractor.

Independencia de las condiciones iniciales dentro de la cuenca: Todas las trayec-

torias que se inician en la cuenca de atracción exhibirán un comportamiento asintótico

similar al acercarse al atractor.

Los puntos fijos estables (o nodos estables), aśı como la órbita cerrada de la figura 2.2,

llamada ciclo ĺımite, son ejemplos de atractores. Un ejemplo dentro de las neurociencias de

un atractor de ciclo ĺımite es el disparo regular y periódico de una neurona. Más adelante,

introduciremos el concepto de atractores extraños dentro de la teoŕıa del caos.

2.1.2. Puntos de equilibrio y estabilidad

En los sistemas dinámicos una de las preguntas más importantes a responder es acerca de la

clase de puntos fijos y de la estabilidad de los mismos. Sea x∗ un punto fijo (o punto cŕıtico),
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es decir, aquel donde f(x∗) = 0, podemos establecer la estabilidad de este punto fijo mediante

la linealización del sistema alrededor de x∗, obteniendo el sistema lineal asociado:

dy

dt
= J(x∗)y, (2.4)

donde J(x∗) es la matriz jacobiana de f evaluada en x∗ y y = x − x∗ es el desplazamiento

respecto al equilibrio. La naturaleza de los autovalores de J(x∗) determina el tipo de punto

de equilibrio (nodo, foco, centro o punto silla), aśı como su estabilidad (atractor, repulsor o

neutral).

Supongamos, a modo de ejemplo simple, que tenemos un sistema con dos variables de es-

tado al que hemos linearizado tal como se explicó más arriba. Tenemos entonces que la matriz

Jacobiana, J, viene dada por:

J =

∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

 (2.5)

donde fx, fy son las ecuaciones para dx
dt y dy

dt , respectivamente. Obtenemos entonces una

matriz de 2×2 calculando J(x∗, y∗) en cada punto que cumpla la condición de ser un punto fijo.

La estabilidad en cada uno de estos puntos se calcula a partir de los autovalores del Jacobiano.

En el caso bidimensional, la estabilidad también se puede calcular a partir de la traza, τ , y el

determinante, ∆, y los resultados se pueden clasificar de la siguiente manera (Shnol 2007) (ver

figura 2.3)

(i) ∆ ≤ 0: el punto fijo es un punto silla (atrae la dinámica a lo largo de una dirección,

mientras la repele a lo largo de otra);

(ii) ∆ > 0, τ < 0 y 4∆ − τ2 > 0: el punto fijo es un foco o espiral estable (oscilaciones

amortiguadas);

(iii) ∆ > 0, τ < 0 y 4∆− τ2 < 0: el punto fijo es un nodo estable (atrae la dinámica desde

todas las direcciones);

(iv) ∆ > 0, τ > 0 y 4∆ − τ2 > 0: el punto fijo es un foco o espiral inestable (oscilaciones

con amplitud creciente);

(v) ∆ > 0, τ > 0 y 4∆−τ2 < 0: el punto fijo es un nodo inestable (repele la dinámica desde

todas las direcciones).
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Figura 2.3: Clasificación de los puntos fijos. Estos pueden tomar tres formas: nodos y

espirales estables (oscilaciones amortiguadas), nodos y espirales inestables (oscilaciones con

amplitud creciente) y puntos silla. La imagen es una adaptación de (Kuznetsov 1998).

Figura 2.4: Espacio τ-∆. Este espacio condensa el tipo de punto fijo y su estabilidad según la

traza (τ) y el determinante (∆) del Jacobiano.
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La figura 2.4 resume en el espacio τ -∆ los casos descritos anteriormente.

2.1.3. Bifurcaciones

Un concepto de gran importancia dentro del estudio de los sistemas dinámicos es el de bifur-

cación. Una bifurcación se refiere a un cambio cualitativo en el comportamiento de un sistema

que ocurre cuando se modifica alguno de sus parámetros. Este cambio marca una transición en

la dinámica del sistema, dando lugar a nuevos comportamientos. En particular, los puntos fijos

pueden ser creados y destruidos, aśı como pueden aparecer o desaparecer oscilaciones periódicas

o incluso comportamientos caóticos. Las bifurcaciones son fundamentales en el análisis de los

sistemas dinámicos, ya que permiten identificar condiciones bajo las cuales el sistema puede

cambiar drásticamente la cualidad de la dinámica.

Existen diferentes tipos de bifurcaciones que ocurren en función de cómo vaŕıan los puntos

de equilibrio o las trayectorias del sistema. A continuación, enumeraremos algunas de ellas:

Bifurcación de nodo-silla: Es una de las bifurcaciones más simples y ocurre cuando

dos puntos de equilibrio se fusionan y se aniquilan entre si, o se crean y se separan a

medida que se cambia un parámetro. Es común en sistemas unidimensionales y marca el

nacimiento o la desaparición de estados de equilibrio.

Bifurcación transcŕıtica: En esta bifurcación, dos puntos de equilibrio intercambian su

estabilidad. Un punto de equilibrio estable se convierte en inestable y viceversa.

Bifurcación de pitchfork: Similar a la bifurcación de nodo-silla, pero con simetŕıa en

el sistema. Aqúı, un punto de equilibrio se descompone en tres puntos cuando se vaŕıa un

parámetro: uno de los nuevos puntos de equilibrio puede ser estable mientras que los otros

dos son inestables (o viceversa).

Bifurcación de Hopf supercŕıtica: En una bifurcación de Hopf, un punto de equi-

librio estable pierde estabilidad y da origen a un ciclo ĺımite, es decir, una oscilación

periódica estable. Este tipo de bifurcación ocurre cuando un par de autovalores complejos

de la matriz jacobiana del sistema cruzan el eje imaginario en el plano complejo. Tras la

bifurcación de Hopf, el sistema cambia de un estado estacionario a un comportamiento

oscilatorio, donde las soluciones se organizan en trayectorias cerradas alrededor del punto

de equilibrio.
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2.2. Osciladores autosostenidos

Dentro del estudio de sistemas dinámicos, los osciladores autosostenidos son sistemas que

exhiben oscilaciones periódicas estables, las cuales se representan como ciclos ĺımite en el espacio

de fases. A diferencia de los osciladores lineales, cuya oscilación depende de las condiciones ini-

ciales, los osciladores autosostenidos son sistemas no lineales que poseen un estado estacionario

dinámico al cual convergen a partir de diversas condiciones iniciales.

Las ecuaciones que describen la dinámica de estos osciladores suelen contar con paráme-

tros libres, los cuales, al modificarse, pueden generar bifurcaciones que alteren la dinámica del

sistema, como en una bifurcación de tipo Hopf. Además, el comportamiento de un oscilador

autosostenido puede ser significativamente modificado por la presencia de ruido aditivo, intro-

duciendo variabilidad en la amplitud y la fase de las oscilaciones.

Cuando múltiples osciladores autosostenidos interactúan, forman lo que se conoce como una

red de osciladores. En este caso, la interacción entre los osciladores puede modelarse mediante

términos de acoplamiento, lo que da lugar a fenómenos colectivos, como la sincronización global

o patrones más complejos de interacción. En la sección 2.4 veremos cómo se implementan

las dinámicas de estos osciladores, acoplados según la estructura cerebral, para estudiar los

mecanismos cerebrales.

2.3. Introducción a la Teoŕıa del Caos y Exponentes de Lyapu-

nov

Dentro del estudio de los sistemas dinámicos no lineales, la teoŕıa del caos estudia los siste-

mas caracterizados por un comportamiento impredecible y altamente sensibles a las condiciones

iniciales. Estos sistemas, aunque deterministas en su formulación, exhiben trayectorias que pa-

recen aleatorias debido a esta sensibilidad a las condiciones iniciales, lo que significa que

pequeñas diferencias en el estado inicial pueden llevar a resultados dramáticamente diferentes

con el tiempo. No existe una definición universalmente aceptada del término caos, pero he aqúı

una posible definición:

El caos es un comportamiento aperiódico a largo plazo en un sistema determinista, caracte-

rizado por una alta sensibilidad a las condiciones iniciales.

Esta definición resume tres caracteŕısticas esenciales de un sistema caótico:

1. Comportamiento aperiódico: las soluciones del sistema, en el espacio de fases, no

divergen a infinito, no se acercan a un punto fijo, no se acercan a una órbita periódica, ni

presentan un comportamiento quasiperiódico.



2.3. Introducción a la Teoŕıa del Caos y Exponentes de Lyapunov 35

2. Determinista: el sistema no tiene parámetros aleatorios o ruido aditivo. El comporta-

miento irregular surge de la no linealidad del sistema.

3. Alta sensibilidad a las condiciones iniciales: significa que trayectorias cercanas se

separan exponencialmente rápido, es decir, que el sistema tiene un exponente de Lyapunov

positivo (ver más adelante).

Figura 2.5: Representación de un atractor de Lorenz en el espacio de fases.

Si observamos el espacio de fases de un sistema caótico encontramos una estructura pecu-

liar: el atractor extraño. Este tipo de atractor se caracteriza por una geometŕıa compleja,

generalmente de naturaleza fractal. La sensibilidad a las condiciones iniciales se manifiesta en

la divergencia progresiva de trayectorias que, aunque inicialmente son infinitesimalmente cerca-

nas, se separan con el tiempo. A diferencia de otros atractores, como los puntos fijos o los ciclos

ĺımite, los atractores extraños describen comportamientos aperiódicos sin converger a un estado

estático o repetitivo. Sin embargo, permanecen confinados dentro de un conjunto acotado de
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volumen finito, donde las trayectorias pueden moverse indefinidamente sin cruzarse entre śı.

La figura 2.5 muestra el diagrama de fases de uno de los atractores extraños más icónicos: el

atractor de Lorenz.

2.3.1. Exponentes de Lyapunov

Los exponentes de Lyapunov son una medida cuantitativa fundamental en el análisis

del caos. Un exponente de Lyapunov describe la tasa a la cual dos trayectorias del sistema,

inicialmente cercanas en el espacio de fases, divergen o convergen con el tiempo. La existencia

de al menos un exponente de Lyapunov positivo es una condición necesaria y suficiente para

caracterizar un sistema como caótico, ya que indica que la distancia entre trayectorias adyacentes

crece exponencialmente con el tiempo.

Matemáticamente, dado un sistema dinámico y una perturbación infinitesimal inicial, el

mayor exponente de Lyapunov, λmax, se define como:

λmax = ĺım
t→∞

ĺım
δX(0)→0

1

t
ln

∥δX(t)∥
∥δX(0)∥

donde δX(0) y δX(t) son las distancias inicial y final entre dos trayectorias cercanas en el

espacio de fases después de un intervalo de tiempo t. En la figura 2.6 se muestra un diagrama

de la situación.

Figura 2.6: Diagrama de la evolución de dos trayectorias con condiciones iniciales

cercanas en el espacio de fases. La imagen fue sacada de Wikipedia
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Los exponentes de Lyapunov pueden ser positivos, nulos o negativos:

Negativo (λ < 0): indica que las trayectorias en el espacio de fases convergen hacia un

punto fijo estable o una órbita periódica estable. Es caracteŕıstico de sistemas disipativos

o no conservativos, como el oscilador armónico amortiguado. Cuanto más negativo es el

exponente, mayor es la estabilidad.

Cero (λ = 0): asociado a movimientos cuasi-periódicos, donde la distancia entre trayec-

torias es constante en el tiempo.

Positivo (λ > 0): señala que trayectorias inicialmente cercanas divergen exponencialmen-

te con el tiempo, lo que indica inestabilidad y caos. Todos los vecindarios en el espacio de

fases eventualmente son explorados, lo que es t́ıpico de sistemas caóticos.

El cálculo de los exponentes de Lyapunov requiere seguir una trayectoria en el espacio de

fases y evaluar cómo una perturbación inicial pequeña en esa trayectoria crece o disminuye en

cada paso temporal. Este proceso puede realizarse numéricamente mediante simulaciones para

sistemas complejos, utilizando algoritmos espećıficos como el método de Gram-Schmidt o la

ortogonalización de vectores de perturbación.

2.4. El cerebro y los sistemas dinámicos

La neurociencia moderna ha avanzado significativamente al tratar de comprender la com-

plejidad del cerebro, abarcando múltiples escalas espaciales y temporales. A pesar de los logros

en el estudio de neuronas individuales, como el modelo de Hodgkin y Huxley (Hodgkin et al.

1952), aún se sabe poco acerca de cómo las poblaciones neuronales se coordinan para facilitar

procesos cognitivos complejos. La cognición parece depender de la interacción entre diferentes

conjuntos neuronales distribuidos a lo largo de la corteza (Bressler et al. 2006). Estos avances

llevaron a la formulación de modelos de masa neuronal (Neural Mass Models), que conceptua-

lizan la actividad cerebral como una interacción dinámica entre poblaciones neuronales (Beurle

1956; Wilson et al. 1972). Tales modelos aprovechan el hecho de que, aunque el disparo de neu-

ronas individuales es altamente irregular (incluso caótico), la actividad promedio de conjuntos

neuronales sigue dinámicas de baja dimensión (Deco et al. 2008).

A fines del siglo XX, técnicas de neuroimagen como la tomograf́ıa por emisión de positrones

(PET, por sus siglas en inglés) y la resonancia magnética funcional (fMRI) comenzaron a ser

empleadas para estudiar la cognición, pero la naturaleza abstracta de los modelos existentes

dificultaba la interpretación de los datos emṕıricos. Los modelos de campo continuo, aunque
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útiles en algunos contextos, no pod́ıan abordar aspectos cĺınicos importantes, como la conecti-

vidad anatómica o las correlaciones funcionales entre regiones cerebrales. Por ello, se empezó a

integrar la conectividad anatómica derivada de imágenes de resonancia magnética por difusión

(DTI, por sus siglas en inglés) para simular interacciones neuronales mesoscópicas (Horwitz et al.

2000; Deco et al. 2009). Estos modelos permiten estudiar cómo las áreas cerebrales interactúan

bajo diversas condiciones, como est́ımulos, ruido o lesiones, y han sido fundamentales para com-

prender diversos déficits neurológicos (Popovych et al. 2019). Los nodos, que representan la

actividad media de áreas individuales del cerebro, evolucionan según ecuaciones diferenciales,

influenciados por el acoplamiento con otras regiones cerebrales, aśı como por entradas externas

y ruido (Deco et al. 2009). Los parámetros del modelo, que reflejan propiedades biológicas o

fenomenológicas de los nodos, se vaŕıan sistemáticamente para generar series temporales en cada

ejecución. A partir de los datos resultantes se calcula algún tipo de observable que se utiliza para

poder comparar las simulaciones con su contraparte emṕırica. Utilizando una métrica particular

se obtienen los reǵımenes óptimos de trabajo que mejor capturan los datos emṕıricos corres-

pondientes. La Figura 2.7 muestra un esquema general del procedimiento a seguir al emplear

modelos globales del cerebro.
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Figura 2.7: Esquema general para optimización del modelo. (A) Las correlaciones funcio-

nales interregionales (conectividad funcional emṕırica o eFC) se extraen de las series temporales

BOLD. (B) Para EEG/MEG, las series temporales de los electrodos/sensores crudos se utilizan

para estimar la actividad a nivel de fuente, la cual se filtra por bandas de frecuencia y se utiliza

la transformada de Hilbert para obtener envolventes de amplitud. La conectividad funcional

espećıfica de cada banda se estima a partir de las envolventes de amplitud. (C) La conectividad

estructural calculada por DTI proporciona información sobre la densidad de fibras de materia

blanca entre regiones. Las distancias euclidianas pueden utilizarse para obtener información

sobre los retardos temporales (delays). Se utiliza aqúı el modelo de Kuramoto para demostrar

cómo se incorpora la información estructural en la dinámica de los nodos. Para fMRI, se puede

realizar una convolución hemodinámica adicional (Balloon-Windkessel) para proyectar la sali-

da del modelo a escalas de tiempo BOLD antes de estimar la conectividad funcional simulada

(sFC). Para EEG/MEG, se extraen las envolventes de amplitud y se estima la sFC. Los proce-

dimientos para el ajuste del modelo estiman los parámetros óptimos del modelo basándose en

eFC y sFC. La figura es una reproducción del trabajo de (Pathak et al. 2022).
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2.4.1. Matriz de Conectividad Estructural (SC) y parcelación

Una de las primeras decisiones en el modelado global del cerebro (WBM, por sus siglas en

inglés) es la elección de la parcelación, que determina cómo dividir el cerebro en regiones de

interés (ROIs, por sus siglas en inglés). Las matrices de conectividad estructural extráıdas a

partir de DTI definen la conectividad anatómica entre estas regiones (Zalesky et al. 2010). Es

crucial seleccionar un esquema de parcelación adecuado, ya que influye en la resolución espacial y

la topoloǵıa del modelo. Existen tanto atlas anatómicos como funcionales para definir las ROIs.

Los atlas anatómicos suelen basarse en la anatomı́a gruesa o la citoarquitectura, mientras que

los funcionales asignan regiones en función de su correlación funcional (Craddock et al. 2011).

La elección de la parcelación debe adaptarse al objeto de estudio, considerando, por ejemplo,

si la patoloǵıa involucra estructuras subcorticales como el tálamo (Ji et al. 2015). Durante esta

tesis hemos utilizado la parcelación Automated Anatomical Labelling, o AAL, para todos los

casos de estudio. Esta es una parcelación anatómica que cuenta con 90 regiones corticales y

subcorticales, y 26 regiones que abarcan el cerebelo (una estructura posterior aledaña al cerebro

que no se encuentra vinculada a la conciencia). En particular, nos hemos centrado en las 90

regiones corticales y subcorticales, descartando las correspondientes al cerebelo.

2.4.2. Dinámica de los nodos

En el WBM, cada ROI se modela como un nodo cuya dinámica está determinada por

ecuaciones diferenciales que describen su evolución temporal. Estos modelos se basan en sim-

plificaciones de modelos neuronales, representados mediante aproximaciones de campo medio,

donde cada nodo puede corresponder a miles de neuronas. Las dinámicas de los nodos pue-

den ser simples, como en el modelo de Kuramoto (Breakspear et al. 2010), o estar inspiradas

biológicamente, como en los modelos de Wilson-Cowan (Wilson et al. 1972). A menudo, los

nodos presentan diferentes comportamientos, desde oscilaciones amortiguadas hasta ciclos ĺımi-

te de oscilaciones autosostenidas, dependiendo de los parámetros utilizados (Lord et al. 2017).

Además, la dinámica de los nodos puede incluir la variabilidad de frecuencias oscilatorias (Deco

et al. 2017) o modulación de tasas de decaimiento sináptico para reflejar heterogeneidades en

la actividad neuronal. En ciertos modelos es importante la implementación de los retrasos en

la transmisión sináptica, conocidos como delays, que ocurren en el rango de los milisegundos

(Nakagawa et al. 2014). Estos retrasos pueden influir significativamente en la sincronización

de osciladores neuronales y son clave para comprender fenómenos como la coherencia espectral

en la actividad cerebral (Cabral et al. 2017). Aunque los delays son esenciales en modelos que

simulan oscilaciones electrofisiológicas, suelen omitirse en aquellos que representan señales rela-
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cionadas con procesos hemodinámicos, debido a que estas operan en escalas de tiempo mucho

más largas (Deco et al. 2017).

2.4.3. Ajuste del modelo

Una vez definida la conectividad estructural, la parcelación y el modelo a utilizar, se proce-

de al ajuste de este último utilizando datos de neuroimágenes, como fMRI, EEG o MEG. En

particular, a partir de estas series temporales suelen calcularse observables que logren capturar

algún tipo de correlación o sincronización entre las distintas regiones cerebrales. Existen en-

foques tanto estáticos, como los que utilizan correlaciones promedio, aśı como dinámicos, que

capturan cambios temporales en la conectividad funcional (Hansen et al. 2015). A la hora de

ajustar el modelo se vaŕıan los parámetros del mismo sistemáticamente y se estiman las FCs

simuladas (estáticas o dinámicas) para cada grupo de estudio. La estimación del conjunto de

parámetros óptimos, que ofrece la mayor concordancia con el observable emṕırico, puede lo-

grarse minimizando una función de error o minimizando/maximizando alguna métrica elegida,

como puede ser la correlación entre las FC emṕıricas y las simuladas (Cabral et al. 2014).





Caṕıtulo 3

Datos y métodos generales

En este caṕıtulo se describen los datos y métodos que serán utilizados recurrentemente a lo

largo de la tesis. Se proporciona, además, el contexto necesario para comprender la naturaleza

de las simulaciones y los métodos estad́ısticos utilizados.

3.1. Datos

3.1.1. Sueño y Vigilia

Participantes y adquisiciones de datos EEG-fMRI

Una cohorte de 63 sujetos sanos participó en el protocolo de adquisición de datos (36 muje-

res, edad media ± DE de 23.4 ± 3.3 años). Se obtuvo el consentimiento informado por escrito

de todos los sujetos. El protocolo experimental fue aprobado por el comité de ética de la Uni-

versidad Goethe de Frankfurt, Alemania (número de protocolo: 305/07). Los sujetos recibieron

una compensación por su participación. Todos los experimentos se realizaron de acuerdo con

las pautas y regulaciones relevantes y la Declaración de Helsinki. Los participantes fueron esca-

neados durante 50 minutos utilizando parámetros de adquisición previamente publicados. Para

el análisis de los sujetos despiertos, se seleccionó un subgrupo de 9 participantes que no se

durmieron durante toda la duración del estudio (confirmado por evaluación de la electroence-

falograf́ıa simultánea según las reglas estándar de estadificación del sueño). De esta manera, se

obtuvieron registros de fMRI largos con el propósito de estimar de forma robusta los observables

relacionados con la dinámica de la conectividad funcional (FC).

43
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Procesamiento de datos de fMRI

Utilizando Statistical Parametric Mapping (SPM8, www.fil.ion.ucl.ac.uk/spm), los datos

de fMRI crudos se realinearon, normalizaron y suavizaron espacialmente utilizando un kernel

gaussiano con 8 mm3 de ancho total a la mitad del máximo. Luego, los datos se volvieron a

muestrear a una resolución de 4 × 4 × 4 mm. El remuestreo introdujo un promedio local de

las señales de contraste dependiente del nivel de ox́ıgeno en la sangre (BOLD por sus siglas en

inglés), que eventualmente se promediaron sobre regiones corticales y subcorticales de interés

determinadas por el atlas de etiquetado anatómico automático (AAL) (Tzourio-Mazoyer et al.

2002). Mediante la regresión de las series temporales card́ıacas, respiratorias y residuales de

movimiento estimadas con el método RETROICOR, se corrigieron posibles artefactos en los

datos, y luego se filtraron en la banda 0.01-0.1 Hz utilizando un filtro Butterworth de sexto

orden (Glover et al. 2000; Cordes et al. 2001).

3.1.2. N,N-dimetiltriptamina (DMT)

Participantes del estudio y diseño experimental

Este conjunto de datos de EEG-fMRI fue adquirido utilizando participantes sanos bajo los

efectos agudos de la DMT y publicado en (Timmermann et al. 2023). El estudio siguió un diseño

de un solo ciego, controlado con placebo, con todos los participantes proporcionando consen-

timiento informado por escrito. El protocolo experimental recibió la aprobación del Comité de

Ética de Investigación Nacional de Londres - Brent y de la Autoridad de Investigación en Salud,

llevada a cabo conforme a la Declaración de Helsinki (2000), las Directrices de Buenas Prácti-

cas Cĺınicas del Comité Internacional de Armonización y el Marco de Gobierno de Investigación

del Servicio Nacional de Salud. Los voluntarios completaron dos visitas en las instalaciones del

laboratorio de Imágenes Cĺınicas del Imperial College, separadas por dos semanas. En cada d́ıa

de prueba los participantes completaron dos sesiones de escaneo separadas. En la sesión inicial,

recibieron administración intravenosa de placebo (10 mL de solución salina estéril) o 20 mg de

DMT (en forma de fumarato disuelta en 10 mL de solución salina estéril). Esto se realizó en un

orden contrabalanceado, con la mitad recibiendo placebo y el resto recibiendo DMT. La primera

sesión comprendió escaneos continuos en estado de reposo con una duración de 28 minutos, con

la administración de DMT/placebo al final del octavo minuto, y el escaneo posterior durando

20 minutos después de la inyección. Los participantes se acostaron en el escáner con los ojos

cerrados ayudados por una máscara para los ojos, mientras se registraban los datos de fMRI.

En la segunda sesión, se indicó a los participantes que calificaran verbalmente la intensidad

subjetiva de los efectos de la droga cada minuto en tiempo real. Solo se utilizaron los datos de
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fMRI de la primera sesión de escaneo para el presente análisis. Una cohorte de 20 participantes

completó todas las visitas del estudio, compuesta por 7 mujeres con una edad media de 33.5

años y una desviación estándar de 7.9. Para el presente estudio se utilizaron datos solo de 15

de los 20 sujetos; los demás fueron descartados debido a artefactos de movimiento de cabeza

dentro del escáner (en las siguientes secciones se dan más detalles del criterio de exclusión).

Adquisición y preprocesamiento de fMRI

Las imágenes se adquirieron utilizando un escáner de resonancia magnética de 3T (Siemens

Magnetom Verio syngo MR B17) con una bobina de cabeza de 12 canales para compatibilidad

con la adquisición de EEG. La imagen funcional se realizó utilizando una secuencia de imagen

de eco de gradiente BOLD sensible a T2* (tiempo de repetición [TR] = 2000 ms, tiempo de

eco [TE] = 30 ms, tiempo de adquisición [TA] = 28.06 minutos, ángulo de volteo [FA] = 80°,

tamaño de vóxel = 3.0 × 3.0 × 3.0 mm3, 35 cortes, distancia entre cortes = 0 mm). Los

pasos de preprocesamiento implicaron la eliminación de picos, corrección del tiempo de corte,

corrección del movimiento, extracción del cerebro, registro ŕıgido al escaneo anatómico, registro

no lineal al cerebro MNI de 2 mm, eliminación de ruido (a través de Análisis de Componentes

Independientes) y limpieza (usando un umbral de desplazamiento de trama [FD] de 0.4, con

volúmenes limpios reemplazados por la media de los volúmenes circundantes) (Power et al.

2012). Otros pasos incluyeron suavizado espacial (FWHM) de 6 mm, filtrado pasa banda entre

0.01 y 0.08 Hz, eliminación de tendencias lineales y cuadráticas, regresión de nueve variables

de confusión. Las variables de confusión en la regresión consistieron en: seis relacionadas con el

movimiento (3 traslaciones, 3 rotaciones) y tres de ı́ndole anatómica (señales promedio extráıdas

de ventŕıculos, venas de drenaje, materia blanca local). Todas las variables de confusión fueron

filtradas con el mismo filtro pasa banda entre los 0.01 y 0.08 Hz. Finalmente, las series temporales

se extrajeron para cada región de la plantilla de Etiquetado Anatómico Automatizado (AAL)

(Tzourio-Mazoyer et al. 2002) promediando las series temporales de todos los vóxeles dentro de

la región correspondiente. De los 20 participantes, cinco fueron excluidos de los análisis grupales

debido a movimientos de cabeza excesivos durante el peŕıodo post-DMT de 8 minutos (>20%

de volúmenes limpios con un umbral de desplazamiento de trama [FD] de 0.4).

3.1.3. Matriz de conectividad anatómica

La matriz de conectividad anatómica fue obtenida aplicando imágenes tensoriales de difusión

(DTI, por sus siglas en inglés) a registros de imágenes ponderadas por difusión (DWI) de 16

participantes diestros sanos (11 hombres y 5 mujeres, edad media: 24.75 ± 2.54 años) reclutados
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en la Universidad de Aarhus, Dinamarca. Se excluyeron de la participación a los sujetos con

trastornos psiquiátricos o neurológicos (o con antecedentes de los mismos). Los datos de DWI se

recopilaron utilizando los siguientes parámetros: tiempo de repetición (TR) = 9000 ms, tiempo

de eco (TE) = 84 ms, ángulo de volteo = 90°, tamaño de matriz reconstruida de 106×106, tamaño

de vóxel de 1.98 mm3 con grosor de corte de 2 mm y un ancho de banda de 1745 Hz/Px. Los

datos se registraron con 62 direcciones de gradiente de difusión no lineales óptimas a b = 1500

s/mm2 con aproximadamente una imagen no pesada por difusión (b = 0) por cada 10 imágenes

pesadas. Las imágenes de DTI se registraron con direcciones de codificación de fase diferentes: un

conjunto se recopiló aplicando la dirección de codificación de fase anterior a posterior, mientras

que el segundo se adquirió en la dirección opuesta. Las redes de conectividad anatómica se

construyeron siguiendo un proceso de 3 pasos. Primero, se definieron las regiones de la red

cerebral completa utilizando el atlas AAL. En segundo lugar, se estimaron las conexiones entre

nodos en la red cerebral global aplicando tractograf́ıa probabiĺıstica a los datos de DTI obtenidos

para cada participante. A continuación, los resultados se promediaron entre los participantes.

El preprocesamiento de DTI se realizó utilizando la herramienta probtrackx del paquete de

herramientas de imágenes de difusión FSL (Fdt; www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) con

parámetros predeterminados. Luego, se estimaron las distribuciones de probabilidad locales de

direcciones de fibras en cada vóxel. La probabilidad de conectividad desde un vóxel semilla i

a otro vóxel j se definió como la proporción de fibras que pasan por el vóxel i que alcanzan el

vóxel j, muestreando un total de 5000 ĺıneas de flujo por vóxel. Esto se extendió desde el vóxel

hasta el nivel de región, con cada región de interés que consiste en n vóxeles, de modo que se

muestrearon 5000 × n fibras. La probabilidad de conectividad desde la región i a la región j

se calculó como el número de fibras muestreadas en la región i que conectaban las 2 regiones,

dividido por 5000 × n, donde n representa el número de vóxeles en la región i. Las matrices

de conectividad anatómica resultantes se limitaron al 0.1% (es decir, un mı́nimo de 5 ĺıneas

de flujo), lo que dió como resultado las matrices de conectividad anatómica utilizadas como

acoplamiento en los modelos globales del cerebro.

Es pertinente aclarar que esta conectividad estructural, aunque extráıda en un estudio di-

ferente, se utilizó como sustrato para las simulaciones de todos los trabajos realizados en esta

tesis. Su uso se puede justificar debido a la ausencia de datos de DTI espećıficos para los suje-

tos participantes de estos estudios, lo cual motivó la utilización de una SC promedio obtenida

mediante DTI de alta resolución, procesada con el mismo pipeline que fue utilizado en estudios

previos sobre modelado global del cerebro (Perl et al. 2021; Herzog et al. 2023). Por otro lado,

aunque los psicodélicos, como la DMT, pueden generar cambios estructurales a través de su im-
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pacto en la plasticidad neuronal, la evidencia disponible sugiere que dichos cambios ocurren en

escalas de tiempo más largas, y no durante efectos agudos ni después de una sola administración

(Vos et al. 2021).

3.2. Construcción general de los modelos globales del cerebro

Siguiendo trabajos anteriores (Ipiña et al. 2020), construimos modelos computacionales de

actividad cerebral global asignando ecuaciones dinámicas locales a 90 nodos que abarcan toda la

materia gris cortical y subcortical. Estos nodos se acoplaron utilizando la matriz de conectividad

anatómica C que conteńıa en su entrada Cns una estimación del número de tractos de materia

blanca que conectaban los nodos n y s (ver sección 3.1.3). Se introdujo un parámetro G para

escalar globalmente la matriz de conectividad, modelando aśı cambios en la intensidad general

del acoplamiento entre áreas cerebrales. La ecuación 3.1 muestra el caso general de la dinámica

local utilizada:

ẋi = f(xi) +G
90∑
p=1

Cnp(xp − xn), (3.1)

donde xi es un vector t́ıpicamente en R2 o R3 y f denota un campo vectorial no lineal que

define la evolución del sistema. En cada caṕıtulo daremos la definición de f según corresponda.

En todos los casos, la señal de fMRI correspondiente al nodo n-ésimo se simuló mediante

la primera variable de la ecuación diferencial que modelaba la dinámica local de dicho nodo,

que usualmente denotamos por xn. Para encontrar las soluciones requeridas, las ecuaciones se

integraron utilizando un algoritmo de Euler-Maruyama con un paso de tiempo de 0.1 s, salvo

cuando se indique lo contrario.

3.3. Observables

Dentro de las ciencias f́ısicas se denomina ’observable’ a toda propiedad del estado de un

sistema que puede ser determinada, u observada, por alguna secuencia de operaciones f́ısicas. En

el ámbito de las neurociencias algunos observables destacan por sobre otros a la hora de estudiar

las propiedades dinámicas y funcionales del cerebro, dependiendo de las técnicas experimentales

utilizadas. A continuación, se detallarán aquellos que hemos utilizado a lo largo de esta tesis.

3.3.1. Matriz de conectividad funcional (FC)

Uno de los observables más comúnmente utilizados es la matriz de conectividad funcional

(FC por sus siglas en inglés) (Friston 2011). La FC se define como una matriz cuadrada con sus
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filas y columnas representando a cada región cerebral y cada elemento de la misma cuantifican-

do alguna medida estad́ıstica - correlaciones, coherencia, información mutua- entre dos regiones

cerebrales. En esta tesis, los elementos de la FC se calcularon utilizando el coeficiente de corre-

lación lineal de Pearson entre las series temporales de cada par de regiones de interés; de esta

manera, se obtiene una matriz simétrica cuyo número de filas y columnas son iguales al número

de regiones de interés, que en nuestro caso fue de 90 × 90 (ver Figura 3.1B). Dado que, para

cada sujeto experimental o simulación, tendremos asociada una FC particular, para eliminar

cualquier tipo de variación estad́ıstica se calculó una matriz de conectividad funcional promedio

por cada condición estudiada o conjunto de parámetros del modelo utilizado. Debido a que la

distribución muestral del coeficiente de correlación de Pearson (rc) no sigue una distribución

normal, utilizamos la transformación de Fisher (z = atanh(R)) sobre cada una de las matrices

FC individuales para convertir rc en la variable z, que sigue una distribución normal, para luego

tomar el promedio entre estas matrices transformadas. A continuación, se aplicó sobre la matriz

promedio resultante la función inversa para aśı obtener una FC promedio.

3.3.2. Conectividad funcional dinámica (FCD)

Para caracterizar la estructura temporal de las fluctuaciones en estado de reposo, calculamos

las matrices de FCD (Hansen et al. 2015; Deco et al. 2008). Cada señal BOLD de longitud total

de T minutos se dividió en M ventanas deslizantes de 60 segundos, con un solapamiento de

40 segundos entre ventanas sucesivas. Para cada ventana deslizante centrada en el tiempo t,

calculamos una matriz de FC, FC(t). La FCD es una matriz simétrica de M ×M cuya entrada

(ti, tj) está definida por el coeficiente de correlación de Pearson entre las partes triangulares

superiores de las dos matrices FC(ti) y FC(tj) (ver Figuras 3.1C y 3.1D). Para capturar las

fluctuaciones en las correlaciones a lo largo de todo el espectro de señales, las series temporales

no se filtraron al evaluar este observable.

La forma comúnmente empleada para comparar las matrices de FCD consiste en extraer los

elementos de la matriz triangular superior de las FCD (considerando todos los participantes)

y comparar la distribución emṕırica resultante con aquella obtenida al aplicar el procedimien-

to en todas las simulaciones. Para llevar a cabo esta comparación, se utilizó el estad́ıstico de

Kolmogorov-Smirnov (KS), que cuantifica la diferencia máxima entre las funciones de distribu-

ción acumulativa de dos muestras.
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Figura 3.1: Cálculo de la Conectividad Funcional (FC) y la Conectividad Funcional

Dinámica (FCD). (A) Señal BOLD de 90 regiones cerebrales. (B) La FC estática se calcula

como la matriz de correlación (90 × 90) entre las series temporales BOLD durante el tiempo

total de la toma de datos. (C) Ejemplo de matrices de correlación FC(t) obtenidas para ven-

tanas deslizantes de 60 segundos centradas en diferentes puntos temporales t. Notar que puede

existir un solapamiento entre las sucesivas matrices FC(t) (D) La matriz de FCD se obtiene

correlacionando la FC(ti) centrada en el tiempo ti con la FC(tj) centradas en el tiempo tj para

todo par de valores de ti y tj . La figura es una reproducción del trabajo de (Cabral et al. 2017).

3.3.3. Sincronización, metaestabilidad y parámetro de orden

Para cuantificar el grado global de sincrońıa entre los nodos a lo largo del tiempo utilizamos

el parámetro de orden de Kuramoto, R(t), dada por la siguiente ecuación:

R(t) =
1

n

∣∣∣∣∑
j

eiϕj

∣∣∣∣ (3.2)

donde n es el número total de nodos de la red y ϕj(t) es la fase instantánea de la señal en

el nodo j (Jobst et al. 2017).

Este parámetro de orden mide la magnitud de la media de las fases del sistema en ca-

da instante de tiempo, y toma valores entre 0 y 1. Aqúı, 0 representa una ausencia total de

sincronización de fase, mientras que 1 indica una sincronización completa.

Para poder calcular la fase instantánea de cada una de las series temporales de las ROIs,

se aplicó la transformada de Hilbert a dichas series, previamente filtradas en algún rango de

frecuencias elegido, lo que resultó en la señal anaĺıtica asociada, a(t). La señal anaĺıtica a(t) de

una señal x(t) se define como a(t) = x(t) + iH[x(t)], donde i es la unidad imaginaria y H[x(t)]

denota la transformada de Hilbert de x(t).
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Si calculamos el promedio temporal y la desviación estándar del parámetro de orden de

Kuramoto obtenemos dos nuevos observables: la sincrońıa y metaestabilidad, respectivamente.

La sincrońıa representa el grado global de sincronización promediado temporalmente entre to-

dos los nodos en el sistema, mientras que la metaestabilidad proporciona información sobre la

variabilidad temporal en el nivel de sincronización.



Caṕıtulo 4

Ecuaciones canónicas de la dinámica

cerebral basada en datos

En este caṕıtulo, empleamos un algoritmo de optimización basado en datos para identi-

ficar y clasificar los tipos de dinámicas locales que permiten reproducir distintos observables

derivados de registros de resonancia magnética funcional. Al analizar el espacio de fases de las

ecuaciones resultantes, encontramos un predominio de atractores espirales estables, los cuales

optimizaron la similitud con los datos emṕıricos en términos de sincronización, metastabilidad y

conectividad funcional dinámica (FCD). En el caso de los ciclos ĺımite estables, las desviaciones

de las oscilaciones armónicas mejoraron el ajuste en relación con la FCD. Los análisis de los

autovalores del jacobiano del sistema linealizado indicaron que la proximidad a una bifurcación

mejoró la precisión de la simulación para el estado de vigilia, mientras que el sueño profundo se

asoció con una mayor estabilidad. Nuestros resultados proporcionan predicciones comprobables

que delimitan el rango de modelos biof́ısicos adecuados y respaldan las dinámicas impulsadas

por ruido cercanas a una bifurcación como un mecanismo canónico subyacente a las complejas

fluctuaciones que caracterizan la actividad cerebral endógena.

4.1. Introducción

La dinámica cerebral se describe frecuentemente como compleja, mostrando propiedades que

se encuentran a mitad de camino entre el orden y el desorden (Tononi et al. 1998; Chialvo 2010;

Bassett et al. 2011). Estas dinámicas complejas surgen a partir de dos factores principales: las

propiedades de la actividad poblacional local dentro de cada región cerebral y las influencias

mutuas que estas poblaciones ejercen entre śı (Bullmore et al. 2009; Sporns 2013). En los últimos

años, se han introducido múltiples tipos de modelos para desentrañar las diferentes contribu-
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ciones a la dinámica cerebral global y su relación con la cognición y el comportamiento (Deco

et al. 2008; Cofré et al. 2020). Al combinar datos emṕıricos con dinámicas locales simuladas, los

modelos de actividad cerebral global se han aplicado para describir múltiples estados fisiológi-

cos y patológicos, permitiendo explorar el panorama de los posibles mecanismos subyacentes

a diferentes fenómenos neurobiológicos, y ofreciendo la posibilidad de evaluar perturbaciones

externas in silico (Deco et al. 2014; Jirsa et al. 2017; Murray et al. 2018; Perl et al. 2021). Más

importante aún es que los modelos globales del cerebro son capaces de proporcionar hipóte-

sis concretas y falseables para casos emṕıricos individualizados con potencial uso dentro de la

medicina personalizada (Falcon et al. 2016).

Desde un punto de vista f́ısico nos podemos preguntar: ¿Qué propiedades debe poseer un

modelo computacional para representar con precisión las dinámicas de actividad cerebral a gran

escala? Está claro que, si el objetivo es realizar un análisis en una escala neurobiológica, el mo-

delo debe incluir un grado suficiente de detalle biof́ısico que permita vincular los resultados

con las variables neurobiológicas de interés, como los retrasos en la conducción axonal, la esti-

mulación de receptores de neurotransmisores o los cambios en la modulación sináptica (Deco

et al. 2009; Deco et al. 2018; Kringelbach et al. 2020). Sin embargo, a escala macroscópica, el

realismo biof́ısico del modelo no garantiza que la actividad cerebral simulada reproduzca las

propiedades estad́ısticas observadas en los datos emṕıricos. Para lograr este objetivo, es crucial

que los modelos exhiban ciertos comportamientos estereotipados capaces de generar dinámicas

de suficiente complejidad. En otras palabras, las ecuaciones del modelo deben mostrar ciertos

comportamientos dinámicos que puedan entenderse mejor en términos de la topoloǵıa del espa-

cio de fases, es decir, del espacio de posibles soluciones, que en términos de los detalles biof́ısicos

del modelo. Un ejemplo es la metaestabilidad impulsada por ruido, donde las fluctuaciones es-

tocásticas desplazan el estado del sistema a través de una bifurcación, alternando entre dos

o más soluciones cualitativamente diferentes, por ejemplo, oscilaciones estables vs. atenuadas

(Deco et al. 2011). Por lo tanto, la capacidad central de un modelo para capturar dinámicas

cerebrales globales podŕıa caracterizarse por su repertorio de bifurcaciones y su clasificación.

Por ejemplo, los modelos impulsados por ruido, como el oscilador de Stuart-Landau, han sido

explorados ampliamente en publicaciones recientes (Deco et al. 2017; Jobst et al. 2017; Ipiña

et al. 2020; Perl et al. 2020; Perl et al. 2021). Aunque los modelos más realistas ofrecen ventajas

en términos de interpretabilidad, no pueden escapar al hecho de que la mayoŕıa de las veces, si

no siempre, los parámetros del modelo deben ubicarse junto a una bifurcación para reproducir

adecuadamente observables emṕıricos (Schirner et al. 2022).

El proceso de construcción y validación de un modelo de actividad cerebral global general-
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mente comienza con la propuesta basada en hipótesis de las ecuaciones que rigen la dinámica

local, seguida por la exploración del espacio de parámetros para maximizar la bondad del ajuste

a los datos emṕıricos (Cofré et al. 2020). Sin embargo, centrarse en un conjunto particular de

ecuaciones puede ser demasiado restrictivo, ya que la idoneidad de un modelo debeŕıa juzgarse

a un nivel diferente, es decir, por su capacidad para reproducir ciertas dinámicas estereotipadas

presentes en los datos emṕıricos (Schirner et al. 2022). Aqúı, abordamos este problema siguien-

do el procedimiento inverso: primero propusimos ecuaciones muy generales, y luego ajustamos

estas ecuaciones a observables derivados de datos de resonancia magnética funcional (fMRI),

caracterizando las ecuaciones resultantes en términos de sus atractores y su proximidad a bifur-

caciones. Este procedimiento es impulsado por datos e independiente de detalles espećıficos del

modelo, y su resultado puede interpretarse como la dinámica canónica que es deseable incluir

en modelos de actividad cerebral global de registros de fMRI.

4.2. Métodos

4.2.1. Ansatz de la dinámica local

Consideramos un enfoque general para la dinámica local impulsada por ruido del nodo n-

ésimo, dada por ecuaciones polinomiales de grado 5 en las variables x e y,

dxn
dt

=
∑

i+j≤5

αijx
i
ny

j
n +G

∑
s

Cns(xn − xs) + κηn(t) (4.1)

dyn
dt

=
∑

i+j≤5

βijx
i
ny

j
n +G

∑
s

Cns(yn − ys) + κηn(t) (4.2)

Aqúı ηn(t) corresponde al ruido aditivo gaussiano en el nodo n-ésimo escalado por el paráme-

tro κ, Cns es la matriz de acoplamiento anatómico escalada por el parámetro G, y αij , βij son

los coeficientes de los términos polinomiales, que determinan la naturaleza de la dinámica lo-

cal. La elección de los términos polinomiales sigue del objetivo de determinar la dinámica local

canónica óptima, dado que se sabe que los sistemas cercanos a una bifurcación son topológi-

camente equivalentes a una forma normal, que puede escribirse como un polinomio (Murdock

2006). Para cada combinación de parámetros, calculamos observables (ver abajo) promediando

un total de 30 simulaciones independientes. La cantidad de valumenes de datos de las series

temporales simuladas se redujeron siguiendo la frecuencia de muestreo de los datos de fMRI (1

volumen cada 2 segundos).
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4.2.2. Observables objetivo y métricas de bondad de ajuste

Obtuvimos la matriz de conectividad funcional (FC) calculando el coeficiente de correlación

de Pearson entre las señales de fMRI (emṕıricas o simuladas) en todos los pares de regiones de la

parcelación, como se explicó en la sección 3.3.1. Para medir la similitud entre las matrices de FC

simuladas y la FC emṕırica (promediadas sobre los 15 sujetos) utilizamos el ı́ndice de similitud

estructural (SSIM). Esta métrica se define como (
2µxµy+0,01
µ2
x+µ2

y+0,01
)(

2σxσy+0,03
σ2
x+σ2

y+0,03
)(

σxy+0,015
σxσy+0,015), donde x

e y representan las FC simuladas y promedio emṕıricas, y µx, µy, σx, σy y σxy corresponden

a las medias locales, desviaciones estándar y covarianzas de las matrices FC x e y, respectiva-

mente (Wang et al. 2004). La SSIM factoriza simultáneamente las distancias de correlación y de

Euclidiana entre matrices, y puede entenderse intuitivamente como un intermedio entre ambos

(Dosselmann et al. 2011).

Para caracterizar la estructura temporal de las fluctuaciones en estado de reposo, calculamos

la matriz de dinámica de conectividad funcional (FCD) (Deco et al. 2017) (ver sección 3.3.2).

Utilizando 148 ventanas deslizantes de 60 s con un solapamiento de 40 s, calculamos la evolución

temporal de la FC y luego obtuvimos la entrada ti, tj de la matriz FCD simétrica de 148 ×

148 calculando el coeficiente de correlación de Pearson entre la parte triangular superior de

las matrices de FC en los tiempos ti y tj . La comparación entre las correlaciones temporales

existentes entre la FCD emṕıricas y simuladas se calculó utilizando la distancia de Kolmogorov-

Smirnov (diferencia máxima entre las funciones de distribución acumulada de las 2 muestras)

entre las distribuciones de las matrices correspondientes.

Para calcular la sincronización y la metaestabilidad (Acebrón et al. 2005), primero extrajimos

las fases de las señales de fMRI con previa aplicación de un filtro pasa banda en cada una de las

90 regiones y de cada sujeto; luego obtuvimos la señal anaĺıtica de la señal a(t) = x(t)+iH[x(t)],

donde i es la unidad imaginaria, x(t) es la señal original y H[x(t)] es su transformada de Hilbert.

La fase instantánea se obtuvo como ϕ(t) = arg(a(t)). Calculamos entonces el parámetro de orden

de Kuramoto, R(t), como se detalló anteriormente en la ecuación 3.2. El promedio temporal y

la desviación estándar de R(t) representan la sincronización y la metaestabilidad instantáneas,

respectivamente.

Dado que tanto la SSIM como la distancia KS miden la similitud con un observable emṕırico,

normalizamos la sincronización y la metaestabilidad para que las métricas resultantes tengan

un rango comparable de valores que puedan interpretarse de manera similar. Para ello, restamos

los valores simulados de los emṕıricos y dividimos por el valor obtenido para los datos emṕıricos.
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4.2.3. Optimización de parámetros y algoritmo genético

Utilizamos un método de optimización estocástica, llamado algoritmo genético (ver 4.2.3),

para determinar los 42 parámetros óptimos (αij y βij , i + j ≤ 5) de la dinámica local para

maximizar la SSIM entre las matrices de FC emṕıricas y simuladas. El parámetro de escala

de acoplamiento global se fijó en G = 0.5, como se determinó previamente en (Ipiña et al.

2020). Después de la optimización, calculamos múltiples observables para comparar las series

temporales emṕıricas y simuladas.

Algoritmo genético

Para poder encontrar los parámetros que mejor ajustaban los datos se utilizó un algoritmo

genético. El algoritmo genético comenzó con una generación de 10 conjuntos de parámetros (’in-

dividuos’) elegidos aleatoriamente en el rango [-0.15, 0.15] para cada uno de los 42 parámetros.

Se asignó una puntuación proporcional a la función objetivo a cada individuo. Posteriormente,

se eligió un grupo de individuos (’padres’) en función de su puntuación. Las operaciones de

cruce entre ’padres’ generan nuevas posibles soluciones, a las que llamamos ’descendientes’. Se

aplicaron mutaciones y selección de élite para crear la siguiente generación de soluciones. Estas

operaciones se pueden describir brevemente de la siguiente manera: (i) la selección de élite ocu-

rre cuando un individuo de una generación muestra una función objetivo extraordinariamente

baja (es decir, alta bondad de ajuste) en comparación con los otros individuos, por lo que esta

solución se replica sin cambios en la siguiente generación; (ii) el operador de cruce consiste en

combinar 2 padres seleccionados para obtener un nuevo individuo que lleva información de cada

padre a la siguiente generación; (iii) el operador de mutación puede cambiar un individuo del

conjunto de descendientes para inducir una alteración aleatoria en cualquiera de sus paráme-

tros. Siguiendo trabajos anteriores (Ipiña et al. 2020), el 20% de cada nueva generación se creó

mediante selección de élite y el 80% mediante cruce de los padres, con un 5% de probabilidad

de posibles mutaciones en el grupo de ’descendientes’. Se generó aśı una nueva población siendo

una mezcla exacta de ’padres’ de élite y ’descendientes’ mutados. Cada generación se utilizó

de manera iterativa como semilla para la siguiente generación hasta que se crearon 125 gene-

raciones, lo que en este caso garantizaba la convergencia de todas las soluciones. Después de

aplicar el algoritmo de optimización, los valores de parámetros correspondientes al mejor ajuste

se utilizaron para explorar el espacio de fases (ver sección 4.2.4).
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4.2.4. Análisis de puntos fijos y clasificación

El procedimiento de optimización de parámetros se repitió 1000 veces, y para cada conjunto

de parámetros óptimos investigamos el comportamiento asintótico de las ecuaciones resultantes

para la dinámica local. Primero determinamos los puntos fijos, es decir, los puntos de invariancia

de la dinámica, al introducir una grilla en el rango x, y ∈ [−100, 100]× [−100, 100] y buscar las

ráıces de las ecuaciones para dx
dt y dy

dt (dxdt = 0 y dy
dt = 0). Una vez encontrados los puntos fijos,

los clasificamos según los criterios explicados en la sección 2.1.2.

Luego de calcular todos los puntos fijos y su estabilidad, volvimos a simular la dinámica con

condiciones iniciales cercanas a cada punto fijo y calculamos los observables de fMRI objetivo y

su bondad de ajuste asociada (ver subsección 4.2.2). Este procedimiento se repitió 30 veces para

cada punto fijo y se calculó un promedio de todas las iteraciones para las métricas resultantes

de bondad de ajuste.

4.2.5. Tamaño del efecto y bootstrapping

Obtuvimos estimaciones del tamaño del efecto entre dos grupos de valores calculando la

diferencia entre las medianas de ambos grupos, ya que los valores no necesariamente siguen una

distribución normal. Utilizamos el remuestreo para obtener una distribución de estimaciones

del tamaño del efecto, lo que nos permitió determinar los intervalos de confianza (IC) del

tamaño de efecto con un 95% de nivel de confianza. Todos los procedimientos de remuestreo se

realizaron extrayendo muestras (con reemplazo) de la distribución de valores bajo evaluación. El

tamaño del subconjunto muestreado fue igual al de la distribución original. Este procedimiento

se repitió 20000 veces, generando una distribución de remuestreo del estad́ıstico deseado, que

luego se utilizó para estimar los intervalos de confianza.

4.3. Resultados

Se presenta un diagrama general del procedimiento seguido en la figura 4.1, con los detalles

proporcionados en la sección de 4.2. En resumen, propusimos dinámicas locales dadas por 2

ecuaciones, correspondientes a las variables x(t) e y(t), las cuales se combinaron para formar

todos los posibles términos polinomiales con grado menor o igual a un valor C. Solo la variable

x(t) representa la señal de actividad cerebral simulada; la otra se considera una variable oculta

necesaria para dotar al sistema de dinámicas no triviales. Estas ecuaciones fueron acopladas por

el conectoma emṕırico escalado por el parámetro G y se les incluyó ruido aditivo ajustado por

el factor de escala κ. Las ecuaciones polinomiales fueron elegidas en función de su generalidad,
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ya que se sabe que otras funciones pueden ser reemplazadas por su aproximación polinomial de

bajo orden al investigar la forma normal de diferentes bifurcaciones (Murdock 2006).

Figura 4.1: Procedimiento seguido para el descubrimiento basado en datos de la

dinámica canónica de todo el cerebro. Cada iteración del modelo consistió en dinámicas

locales dadas por las 2 variables x, y combinadas en términos polinomiales hasta el grado C = 5

con coeficientes αij . El acoplamiento entre nodos fue fijado por el conectoma ajustado por el

factor de escala G. Se agregó ruido gaussiano a cada variable multiplicado po un parámetro κ.

Luego de fijar G, los parámetros αij se optimizaron para reproducir la conectividad funcional

(FC). Las dinámicas locales óptimas pueden caracterizarse en términos del espacio de fase 2D

de las variables x, y, donde se pueden identificar diferentes atractores y usarlos para caracterizar

las dinámicas resultantes.

Se realizaron 1000 iteraciones del modelo con C = 5, lo que resultó en un total de 42 paráme-

tros libres, los cuales fueron determinados mediante un algoritmo de optimización estocástica

(algoritmo genético, ver 4.2.3). El objetivo fue maximizar una métrica de similitud calculada

tanto para los datos simulados como para los emṕıricos, espećıficamente el ı́ndice de simili-

tud estructural (SSIM) de las matrices de conectividad funcional correspondientes (Zhou et al.
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2016). Luego de la optimización, las dinámicas locales resultantes se visualizaron en el espacio

de fases, y se utilizaron métodos numéricos para el análisis de la matriz Jacobiana, e inferir,

aśı, la presencia de diferentes atractores y la potencial proximidad a bifurcaciones (consulte la

sección de 2.1.2 para obtener una visión general de los criterios de clasificación).

Figura 4.2: Las dinámicas locales tienden a exhibir un único punto fijo. La similitud

entre las dinámicas simuladas y emṕıricas es independiente del número de puntos

fijos de las soluciones. (A) Número de iteraciones que resultan en 1, 3 y 5 puntos fijos. (B)

Cuatro métricas diferentes calculadas después de separar las soluciones por el número de puntos

fijos presentes en el espacio de fase. No existen diferencias al comparar las dinámicas locales

con diferentes números de puntos fijos.

Considerando la introducción de ruido en las dinámicas, no esperábamos que el algoritmo de

optimización convergiera al mismo conjunto exacto de coeficientes αij en todas las iteraciones;

en cambio, nos enfocamos en la caracterización estad́ıstica de las dinámicas óptimas y sus

propiedades. La Figura 4.2A presenta el número de soluciones con 1, 3 y 5 puntos fijos en el

espacio de fases, con parámetros optimizados para coincidir con la matriz FC de individuos

despiertos. Recordemos que un punto fijo corresponde a un par x, y donde las derivadas dx
dt y

dy
dt son ambas nulas, de modo que las dinámicas que comienzan en ese punto permanecen en el

mismo a lo largo del tiempo. Encontramos que el resultado más probable consist́ıa en un único

punto fijo, seguido de 3 puntos fijos, con un número comparativamente pequeño de ecuaciones

óptimas que presentaban 5 puntos fijos. A continuación, nos preguntamos si el número de puntos

fijos afectaba a la similitud de los datos simulados con los datos emṕıricos. Dicha similitud fue

evaluada por cuatro observables independientes de los datos de fMRI y sus correspondientes
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métricas de bondad de ajuste asociadas: 1-SSIM entre las matrices FC emṕıricas y simuladas,

sincronización, metaestabilidad (Acebrón et al. 2005) y la distancia de Kolmogorov-Smirnov

entre las distribuciones emṕıricas y simuladas de los valores FCD (Deco et al. 2017) (puede

consultar la sección de 4.2 para una definición de los observables y las métricas utilizadas). Los

resultados mostrados en la Figura 4.2B indican que estas métricas no depend́ıan del número de

puntos fijos en las dinámicas locales.

A continuación, clasificamos los puntos fijos individualmente en base al análisis de la matriz

Jacobiana, entre las siguientes posibilidades (ver Figura 4.1, ’attractor classification’): nodo

estable (SN), nodo inestable (UN), nodo de silla (S), espiral estable (SS) y espiral inestable

(US) -las siglas entre paréntesis son en base a la clasificación de los atractores en inglés-. Para

el caso de los puntos fijos aislados encontramos que todos eran espirales, con una predominancia

de espirales estables; es decir, oscilaciones amortiguadas (ver Figura 4.3A, izquierda).

Figura 4.3: Las espirales estables prevalecen para las dinámicas locales con un único

punto fijo. (A) Panel izquierdo: Número de iteraciones que resultan en dinámicas locales con

espirales estables e inestables. Panel derecho: 1-SSIM para ambos tipos de dinámicas locales. (B)

Ejemplos de espacios de fase con cada tipo de dinámica local. Se debe considerar que la espiral

inestable está rodeada por un ciclo ĺımite (atractor que consiste en una trayectoria periódica).

(C) Diagrama de dispersión de la parte real e imaginaria de los autovalores correspondientes a

los puntos fijos. Cada dato corresponde a una iteración independiente del modelo. El valor nulo

del eje real se corresponde con la separación en el tipo de estabilidad de la solución en espiral.

En el caso de las espirales inestables, todas las instancias estaban rodeadas por ciclos ĺımite,

llevando asintóticamente a soluciones oscilatorias acotadas. Solo un pequeño porcentaje (2%) de
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las ecuaciones óptimas resultaron en espirales estables rodeadas por ciclos ĺımite, que tienen el

potencial de mostrar dinámicas oscilatorias biestables. Aunque las espirales estables aparećıan

con más frecuencia en las dinámicas locales, la métrica de bondad de ajuste 1-SSIM fue com-

parable para ambos tipos de espirales (Figura 4.3A, derecha). Ambos tipos de puntos fijos se

ejemplifican en los retratos de fase mostrados en la Figura 4.3B. Finalmente, el panel C de la

Figura 4.3 contiene un gráfico de dispersión de la parte imaginaria de los autovalores frente a

la parte real para cada iteración realizada. Se ilustra la separación entre soluciones estables e

inestables dada por la ĺınea vertical de valores propios reales nulos. Como se puede observar en

los histogramas en el margen del eje y de esta figura, las partes imaginarias de los autovalores

no están distribuidas uniformemente, sino que presentan una distribución normal con una me-

dia cercana a 0.3. Estos valores corresponden a la frecuencia oscilatoria ω, que en este caso es

similar al valor emṕırico obtenido de las series temporales de fMRI, aunque esta información

no se incluyó en las ecuaciones del modelo y, por lo tanto, surgió de los datos en el proceso de

ajuste de la conectividad funcional.

Figura 4.4: Los puntos silla y las espirales estables son los más predominantes para

las dinámicas locales con 3 puntos fijos. (A) Las entradas de la matriz indican el número

total de puntos fijos (filas) que están presentes en una combinación espećıfica (columnas). El

gráfico de barras en el panel superior muestra el número de soluciones encontradas para cada

combinación de 3 puntos fijos, mientras que las barras de la derecha cuentan el número de puntos

fijos individuales, independientemente de sus combinaciones. (B) Ejemplificación del espacio de

fase de las cuatro combinaciones más predominantes cuando hay presencial de 3 puntos fijos.

Los puntos negros indican los valores aleatorios utilizados para inicializar la simulación.

Las dinámicas locales con 3 puntos fijos fueron el segundo resultado más probable (ver Figura

4.2A). Para mayor claridad, codificamos cada combinación de puntos fijos posibles utilizando

las abreviaturas introducidas anteriormente; por ejemplo, S − SN − SS identificó dinámicas
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locales con un punto silla, un nodo estable y una espiral estable. Las estad́ısticas para el caso de

3 puntos fijos se muestran en la Figura 4.4. Aqúı las entradas de la matriz indican la cantidad

de veces que cada tipo de punto fijo posible, indicado en las filas, apareció en las dinámicas

locales óptimas especificadas en las columnas. Por ejemplo, el valor 51 en la tercera fila y

tercera columna indica un total de 51 espirales estables dentro de la combinación S−SS−US,

mientras que la suma de todos los valores de la columna (denotados en las barras verticales)

indica la cantidad de veces que se encontró la combinación S − SS − US a lo largo de las

1000 iteraciones. Observamos que varias soluciones eran posibles, pero existe una dominancia

de espirales estables y nodos de silla, siendo la combinación S − SN − SS la más frecuente,

seguida de S − SS − SS y S − SS − US. En general, las dinámicas locales donde las espirales

estables aparećıan como parte del espacio de fase eran mucho más probables de encontrarse que

aquellas que conteńıan otros puntos fijos, en concordancia con los hallazgos obtenidos para los

puntos fijos aislados. En la Figura 4.4B se muestran ejemplos de trayectorias para diferentes

combinaciones de atractores.

Figura 4.5: Las dinámicas locales con espirales estables resultaron en una mejor

reproducción de los datos emṕıricos en términos de sincronización, metaestabilidad

y distancia de Kolmogorov-Smirnov entre las distribuciones de los valores de FCD.

Los gráficos de vioĺın presentan la distribución de las métricas de rendimiento para todas las

soluciones con las dinámicas locales indicadas por las etiquetas en la parte superior. Los paneles

inferiores muestran la distribución de los tamaños de efecto obtenidos mediante bootstrap. La

ĺınea vertical en el mismo indica al cero, es decir, el valor en el cual el tamaño de efecto es nulo.

Los intervalos de confianza del 95% están indicados mediante ĺıneas negras gruesas en el eje de

abscisas de las distribuciones.

A continuación, exploramos si la reproducción de observables emṕıricos depend́ıa de las

diferentes combinaciones de puntos fijos en las dinámicas locales. La Figura 4.5 presenta todos
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los pares de dinámicas locales que difirieron significativamente en la bondad de ajuste según

múltiples métricas: sincronización, metaestabilidad y distancia Kolmogorov-Smirnov entre las

distribuciones de valores FCD. Para cada par, calculamos una distribución de tamaño de efecto

(diferencia entre las medianas de ambos grupos, Figura 4.5, paneles inferiores) siguiendo un

procedimiento de bootstrap (ver sección 4.2) y seleccionamos como significativos aquellos pares

de dinámicas para los cuales el intervalo de confianza (IC) de la distribución del tamaño del

efecto no incluyera al cero con un nivel de confianza del 95%; es decir, igualdad en las medianas

a dicho nivel de confianza. Además, solo incluimos en la figura las comparaciones donde el

ĺımite inferior (superior) del IC estaba al menos a una distancia de 0.05 del cero. A partir de

estos resultados, queda claro que las dinámicas locales que inclúıan espirales estables superaron

sistemáticamente a las espirales inestables.

Figura 4.6: Comparación de las cuatro métricas de ajuste para soluciones con múlti-

ples espirales. Los puntos fijos en espiral cuya parte real del autovalor se encuentran más

cercanos a cero (indicado como minimum en el gráfico resultaron en una mejor representación

de los observables emṕıricos independientemente de si el punto fijo era un espiral estable o

inestable. Las ĺıneas punteadas negras denotan la mediana de cada distribución.

Es pertinente aclarar que, en el caso con dinámicas locales con más de una espiral estable,

excepto por un pequeño porcentaje de las soluciones, las dinámicas fueron atráıdas asintóti-

camente hacia una de las espirales. Tomando la combinación S − SS − SS como ejemplo,
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encontramos que la espiral estable con la mejor bondad de ajuste en términos de la métrica

1-SSIM fue aquella con el valor absoluto más bajo de la parte real del autovalor; es decir, la

espiral estable con el valor propio más cercano a cero superó a todos los demás puntos fijos

presentes. Este fue un resultado general válido para todas las combinaciones de puntos fijos y

todas las métricas de bondad de ajuste (Figura 4.6), lo que indica que las dinámicas locales

óptimas estaban cerca de un cambio en la estabilidad, desde espirales inestables hacia espirales

estables y viceversa.

En el caso en que encontraran presentes espirales inestables las dinámicas locales siempre

fueron atráıdas hacia un ciclo ĺımite estable, correspondiente a un comportamiento oscilato-

rio periódico. Es importante señalar que estas oscilaciones no necesariamente eran armónicas,

debido a la presencia de no linealidades en las ecuaciones. Investigamos, entonces, si las desvia-

ciones de las oscilaciones armónicas mejoraban el ajuste de los datos experimentales utilizando

las mismas métricas que en los análisis anteriores. Para obtener una medida de la armonicidad

extrajimos las series temporales para aquellas soluciones óptimas que incluyeran un ciclo ĺımite

estable. A continuación, convertimos estas series temporales al espacio de Fourier y calculamos

el contenido espectral relativo a la frecuencia dominante, es decir, todo el espectro se normalizó

por la potencia de la frecuencia dominante; luego sumamos la potencia de todo el espectro.

Aśı, una serie temporal altamente armónica concentra la mayor parte de la potencia espectral

en la frecuencia dominante, lo que da como resultado una potencia total cercana a uno; por

el contrario, valores altos de la suma corresponden a series temporales anarmónicas donde la

potencia espectral se distribuye en múltiples frecuencias. Consideramos solamente soluciones

oscilatorias correspondientes al cuartil superior e inferior de la distribución de armonicidad y

calculamos todas las métricas de bondad de ajuste; es decir, tomamos para analizar solamente

el 25% de las soluciones más armónicas y el 25% más anarmónicas. Los resultados se presentan

en la Figura 4.7. Se muestran ejemplos de dinámicas locales oscilatorias armónicas y anarmóni-

cas en la Figura 4.7A. Los gráficos de vioĺın en la Figura 4.7B resumen la distribución de las

métricas de rendimiento para todas las soluciones que presentan ciclos ĺımites estables de baja

y alta anarmonicidad. Mediante un procedimiento de bootstrap (Figura 4.7C), mostramos que

las soluciones armónicas y anarmónicas eran comparables en términos de 1-SSIM; sin embargo,

las soluciones armónicas mejoraron la bondad de ajuste con respecto a la sincronización y la

metastabilidad, mientras que las soluciones anarmónicas mejoraron la reproducción de la FCD.
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Figura 4.7: La anarmonicidad de los ciclos ĺımite estables en las dinámicas locales

influyó en el ajuste según diferentes métricas. (A) Ejemplos de ciclos ĺımite estables y

series temporales de alta (derecha) y baja (izquierda) anarmonicidad. (B) Gráficos de vioĺın que

resumen la distribución de las métricas de rendimiento para todas las soluciones que presentan

ciclos ĺımite estables de baja y alta anarmonicidad. (C) Distribución de los tamaños de efecto

para la diferencia entre ciclos ĺımites de alta y baja anarmonicidad las métricas de rendimiento

obtenidas mediante bootstrap. La ĺınea vertical indica cero, es decir, tamaño de efecto nulo,

mientras que los intervalos de confianza del 95% están indicados mediante ĺıneas negras gruesas

en el eje de las abscisas.

Como análisis final, evaluamos si las dinámicas locales óptimas inferidas utilizando nuestro

método depend́ıan del estado cerebral global de los participantes. Para este propósito, utilizamos

datos de fMRI adquiridos en el mismo escáner y con las mismas condiciones que los datos de

vigilia, pero con participantes en sueño profundo (etapa N3).
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Figura 4.8: El sueño profundo resultó en una mayor estabilización de la dinámica de

la fMRI. A) Número de puntos fijos en las dinámicas locales óptimas, para la vigilia y el sueño

profundo N3. B) Prevalencia relativa de espirales estables vs. espirales inestables para ambos

estados cerebrales. C) Distancia a los datos emṕıricos (1-SSIM) para la vigilia y el sueño N3. D)

Histograma de la parte real de los autovalores de los espirales estables calculados mediante un

procedimiento de bootstrap para ambos estados cerebrales. El desplazamiento hacia la izquierda

de la distribución para N3 indica una mayor estabilidad de las dinámicas locales en comparación

con la vigilia.

En trabajos anteriores se ajustó un modelo fenomenológico simple (osciladores de Stuart-

Landau, correspondientes al modo normal de una bifurcación de Hopf) a los datos durante el

sueño profundo, mostrando una mayor estabilidad, es decir, una mayor distancia a la bifurcación,

en comparación con la vigilia (Jobst et al. 2017). Por lo tanto, nuestra hipótesis fue que las



66 Caṕıtulo 4

dinámicas canónicas óptimas inferidas del sueño profundo consistiŕıan en espirales estables con

la parte real de los valores propios mayores en valor absoluto que aquellos encontrados para la

vigilia. Los resultados de este análisis se muestran en la Figura 4.8. El panel 4.8A muestra que,

al igual que para la vigilia, las dinámicas locales presentaron predominantemente un solo punto

fijo. Además, el punto fijo más probable consistió en espirales estables, con una preferencia

mayor por estas dinámicas en comparación con la vigilia (Figura 4.8B) (prueba de significancia

utilizando una test de chi-cuadrado, P ≤ 0.001). Además, la distancia a los datos emṕıricos de

la métrica 1-SSIM fue mayor para el sueño N3 en comparación con la vigilia, lo que indica una

mayor dificultad para captar adecuadamente la matriz de conectividad funcional. Este resultado

es consistente con publicaciones anteriores que aplicaron modelos computacionales globales del

cerebro al mismo conjunto de datos (Perl et al. 2021). Finalmente, para calcular un intervalo

de confianza del valor medio de la parte real de los autovalores se siguió un procedimiento de

bootstrap. Se compararon los valores medios de los valores propios reales de espirales estables

obtenidos para ambas condiciones siguiendo dicho procedimiento (Figura 4.8D). Encontramos

que la parte real de los valores propios estaban dentro del intervalo de confianza del 95% en

el rango [-0.017, -0.013] y en [-0.0149, -0.0089] para el sueño N3 y la vigilia respectivamente,

indicando un cambio significativo hacia valores más negativos para la vigilia, en concordancia

con investigaciones previas (Jobst et al. 2017).

4.4. Discusión

En este trabajo abordamos un problema central en la neurociencia computacional: ¿Qué

tipo de dinámicas son suficientes para representar las fluctuaciones emergentes de la actividad

macroscópica del cerebro? Una ĺınea de investigación de larga data ha abordado este problema

desde una perspectiva ’bottom-up’, ensamblando descripciones biof́ısicas detalladas de neuro-

nas individuales y luego caracterizando el repertorio dinámico de las ecuaciones de masa neural

resultantes (Deco et al. 2008). Aunque este enfoque ha demostrado ser fruct́ıfero, depende de

los detalles espećıficos de la construcción e implementación de cada modelo, lo que deja abierta

la posibilidad de que diferentes dinámicas puedan mejorar la caracterización de los observa-

bles emṕıricos. Por ello, adoptamos un enfoque novedoso de tipo ’top-down’, complementario

al anterior, que explora exhaustivamente un amplio espacio de posibles dinámicas locales. Pos-

teriormente, nos centramos en caracterizar los comportamientos dinámicos más recurrentes, los

cuales identificamos como canónicos. Esto implica que los modelos computacionales de acti-

vidad a gran escala debeŕıan ser capaces de reproducir estos comportamientos para capturar

adecuadamente los observables emṕıricos, independientemente de su nivel de realismo biof́ısico.
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Por lo tanto, nuestro enfoque es útil para delinear las dinámicas que deben incluirse en los

modelos globales del cerebro, y aśı limitar el proceso de desarrollo de modelos fundamentados

en neurobioloǵıa.

Un corolario de nuestros resultados es que el realismo neurobiológico solo puede mejorar el

ajuste a observables emṕıricos provenientes de las neuroimágenes en la medida en que ciertos

tipos de dinámicas locales estén incluidos en el modelo. Además, nuestro análisis reveló que ni

el número de puntos fijos ni la combinación precisa de puntos fijos que aparecen en el espacio de

fase son factores importantes para determinar el rendimiento de un modelo global del cerebro.

En cambio, las dinámicas locales debeŕıan desplegarse en la proximidad de un tipo espećıfico de

atractor y también cerca de un cambio cualitativo en el espacio cerca de ese atractor o, como se

le suele llamar, bifurcación. Aunque la inclusión de ruido aditivo introdujo variabilidad en las

dinámicas locales encontradas por el algoritmo de optimización, descubrimos que las espirales

estables estaban sobrerrepresentadas en las soluciones óptimas. Además, como se muestra en

la Figura 4.3, la parte imaginaria de los autovalores de las espirales estables podŕıa tomar un

amplio rango de valores positivos, mientras que su parte real eran predominantemente valores

negativos y cercanos a cero. Este resultado no solo indica que las dinámicas locales consisten

preferentemente en oscilaciones amortiguadas (espirales estables), sino también que el sistema

está ubicado cerca de una bifurcación (cambio en el signo del valor propio real). Esta observación

está respaldada por los hallazgos mostrados en la Figura 4.6: cuando hay múltiples espirales en

las soluciones, los mejores valores de múltiples métricas de ajuste se obtienen para aquellos con

parte real de los autovalores más cercanos a cero. Cuando las dinámicas impulsadas por el ruido

están cerca de una bifurcación de Hopf, un fenómeno conocido como multistabilidad inducida

por ruido, pueden resultar en el desplazamiento intermitente entre reǵımenes dinámicos (es

decir, a través de la bifurcación; (Ghosh et al. 2008; Deco et al. 2011)). Por lo tanto, incluso si

las dinámicas se despliegan en la proximidad de un atractor de espiral estable, la amplitud de

las oscilaciones podŕıa no disminuir constantemente. En cambio, la presencia de ruido aditivo

es capaz de cambiar la naturaleza de las soluciones, dando lugar a complejas modulaciones en

la amplitud de las oscilaciones (Juel et al. 1997).

Algunos comportamientos están descartados de antemano por consideraciones de plausibili-

dad biológica; por ejemplo, las dinámicas debeŕıan desplegarse dentro de una región acotada del

espacio de fase. Sin embargo, dentro de estas restricciones, muchos escenarios posibles también

fueron descartados por nuestro análisis. Aunque las dinámicas lineales impulsadas por el ruido

(procesos multivariados de Ornstein-Uhlenbeck) están incluidas dentro del espacio de modelos

posibles que exploramos (Saggio et al. 2016), nuestros resultados señalan hacia la relevancia de
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las no linealidades en las dinámicas locales de los modelos globales del cerebro. Las dinámicas

biestables (u otras soluciones dadas por nodos silla conectados) también fueron descartadas por

nuestro análisis (Freyer et al. 2011; Freyer et al. 2012; Buend́ıa et al. 2020). Sin embargo, es

pertinente mencionar que estos trabajos anteriores abordaron dinámicas medidas utilizando una

modalidad diferente (EEG), cuya biestabilidad no puede ser excluida por el presente análisis.

Las oscilaciones son ubicuas en la actividad macroscópica emergente del cerebro; sin embar-

go, solo aquellas en el régimen amortiguado predominaron entre las ecuaciones óptimas para las

dinámicas locales. Este resultado coincide con resultados emṕıricos, aśı como con el repertorio

dinámico de múltiples modelos de actividad cerebral a gran escala que presentan transiciones

hacia espirales estables a través de diferentes bifurcaciones (Hutcheon et al. 2000; Galinsky

et al. 2020; Schirner et al. 2022; Spyropoulos et al. 2022). Finalmente, en el caso de dinámicas

oscilatorias (ciclo ĺımite estable), la presencia de anarmonicidades influyó en las métricas de

ajuste, con desviaciones de las formas de onda sinusoidales beneficiando la reproducción del

FCD emṕırico.

El mejor rendimiento de las dinámicas locales con autovalores con parte real pequeña resalta

la importancia de la proximidad a una bifurcación. Además, esto sugiere que la presencia de una

bifurcación de Hopf (es decir, la transición entre dinámicas ruidosas y oscilatorias) es necesaria

para capturar múltiples observables independientes derivados de datos de fMRI, independien-

temente de la sofisticación biof́ısica del modelo. En consecuencia, los modelos fenomenológicos

globales del cerebro que incluyen este tipo de bifurcación han sido utilizados en los últimos años

para simular diferentes estados fisiológicos y patológicos del cerebro, aśı como para estudiar in

silico su comportamiento bajo múltiples formas de perturbaciones externas (Deco et al. 2017;

Jobst et al. 2017; Perl et al. 2020; Perl et al. 2021; Ipiña et al. 2020). Por lo tanto, nuestros re-

sultados pueden interpretarse como una validación del modelo de Hopf (también conocido como

oscilador Stuart-Landau), aunque en nuestro caso las oscilaciones no siempre fueron armónicas.

Investigaciones futuras debeŕıan explorar si ciertas desviaciones de las oscilaciones armónicas

son necesarias para mejorar la descripción de la actividad macroscópica del cerebro, como ya

ha sido respaldado por experimentos.

Es importante tener en cuenta que solo exploramos dinámicas locales descritas por dos varia-

bles, una de estas interpretada como una medición directa de la señal BOLD registrada y la otra

necesaria como variable auxiliar para aumentar la diversidad de comportamientos mostrados por

el modelo. Incluir una tercera variable abriŕıa la posibilidad de caos determinista en las ecuacio-

nes, que podŕıa representar una alternativa a la metastabilidad inducida por ruido para generar

complejas modulaciones de las dinámicas oscilatorias. En el caṕıtulo 6 de esta tesis mostramos
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que el caos determinista puede favorecer la reproducción simultánea de múltiples observables

provenientes de neuroimágenes, ya que ’extiende’ el rango donde se producen oscilaciones com-

plejas, en contraste con el ajuste fino de parámetros necesario para la multiestabilidad inducida

por ruido (Piccinini et al. 2021). Además, el caos y el ruido pueden ser complementarios, ya

que su combinación puede mejorar el repertorio dinámico de los modelos globales del cerebro,

dotándolos de propiedades deseables para la reproducción de datos emṕıricos (Orio et al. 2018).

Nuestros resultados también corroboraron que las dinámicas locales óptimas dependen del

estado cerebral global. Investigamos diferencias en los parámetros encontrados para la vigilia

y el sueño profundo (N3). Aunque el número óptimo de puntos fijos no cambió entre ambas

condiciones, encontramos que las espirales estables se volvieron más predominantes durante

el sueño. De manera consistente, también encontramos un cambio hacia autovalores reales más

negativos, indicio que indica una estabilización de las dinámicas locales durante la inconsciencia,

como sugieren múltiples trabajos experimentales (Massimini et al. 2005; Solovey et al. 2015).

En particular, esto es consistente con un estudio previo que mostró el mismo resultado para un

modelo basado en osciladores Stuart-Landau (Jobst et al. 2017); sin embargo, nuestro resultado

debeŕıa considerarse más general ya que se encontró analizando un conjunto mucho más grande

de dinámicas posibles, sin restringir, a priori, que las soluciones estén cerca de una bifurcación

de Hopf.

En resumen, desarrollamos una caracterización de las dinámicas canónicas que deben incluir-

se en modelos de actividad cerebral global para capturar adecuadamente observables emṕıricos.

El trabajo futuro debeŕıa abordar las implicaciones de estas dinámicas en términos de proce-

samiento de información a gran escala asociado con el comportamiento y la función cognitiva,

ampliando nuestros resultados hacia otros organismos como modelo y modalidades de neuro-

imágenes, e incorporando nuestros hallazgos al proceso de construcción y validación de modelos

biológicamente realistas de actividad macroscópica del cerebro.





Caṕıtulo 5

Desestabilización transitoria de la

dinámica cerebral durante el

consumo de N,N-dimetiltriptamina

(DMT)

En este caṕıtulo estudiamos la transición hacia el estado cerebral agudo inducido por la

DMT. La transición entre estados de conciencia asociada al consumo de las drogas psicodélicas

es frecuentemente ignorada en favor de una descripción estática de los efectos agudos. Para este

estudio utilizamos un modelo dinámico global del cerebro dependiente del tiempo para repro-

ducir la dinámica cerebral a gran escala medida con fMRI en 15 voluntarios que recibieron 20

mg de DMT por v́ıa intravenosa, un psicodélico de corta duración. Para capturar sus efectos

transitorios, parametrizamos la proximidad a una bifurcación global utilizando una ecuación

farmacocinética. Además, empleamos perturbaciones simuladas que revelaron cambios transi-

torios en la reactividad, focalizados en las regiones frontoparietales y las cortezas visuales. Este

resultado está correlacionado con la densidad de receptores de serotonina 5HT2a, un sitio de

acción clave para los psicodélicos. Estos avances sugieren un mecanismo para explicar algunos

rasgos fundamentales de la actividad cerebral durante el estado psicodélico, y predicen que

la evolución temporal de estos rasgos se alinea con la farmacocinética. En conjunto, nuestros

resultados contribuyen a una mejor comprensión de cómo los psicodélicos inducen un estado

transitorio en el cual perturbaciones mı́nimas pueden generar un efecto máximo, arrojando luz

sobre cómo los episodios psicodélicos breves pueden mantener una influencia predominante a lo

largo del tiempo.
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5.1. Introducción

Las drogas psicodélicas ofrecen una oportunidad para investigar cómo los cambios en el ce-

rebro interactúan con la conciencia y cognición humanas a lo largo de múltiples escalas espacio-

temporales (Kwan et al. 2022). A nivel molecular, los psicodélicos se unen al receptor de seroto-

nina 5HT2A (Nichols 2016), reclutando v́ıas de señalización intracelular espećıficas que difieren

de las implicadas en la acción de agonistas no psicodélicos de 5HT2A (González-Maeso et al.

2007; Wallach et al. 2023). Los efectos subjetivos de los psicodélicos pueden depender además de

otros factores farmacológicos, aśı como también de algunos no farmacológicos (Zamberlan et al.

2018), incluyendo el contexto durante la ingesta de drogas -setting- y el estado mental del usua-

rio -set-(Carhart-Harris et al. 2018). A nivel cerebral, los psicodélicos aumentan la integración

de la red global cerebral medida con resonancia magnética funcional (fMRI) (Carhart-Harris

et al. 2012; Tagliazucchi et al. 2016; Preller et al. 2018; Luppi et al. 2021; Bedford et al. 2023;

Timmermann et al. 2023), y la evidencia obtenida mediante múltiples modalidades de neu-

roimágenes también vincula sus efectos con un aumento de la entroṕıa y complejidad de las

fluctuaciones de la actividad cerebral espontánea (Tagliazucchi et al. 2014; Kaelen et al. 2016;

Schartner et al. 2017; Viol et al. 2017; Timmermann et al. 2019; Pallavicini et al. 2021; Her-

zog et al. 2023). En los últimos años, los modelos generativos de actividad cerebral global han

sido utilizados para evaluar los posibles mecanismos subyacentes a los datos provenientes de

neuroimágenes, con aplicaciones exitosas al caso espećıfico de la psilocibina y la dietilamida

de ácido lisérgico (LSD, por sus siglas en inglés) (Cofré et al. 2020). Para estudiar estos dos

compuestos se han utilizado modelos biof́ısicos que consisten en poblaciones locales excitatorias

e inhibitorias con conexiones excitatorias de largo alcance, proporcionando evidencia que res-

palda la modulación inducida por estos psicodélicos en el receptor 5HT2a en la escala sináptica

(Deco et al. 2018; Kringelbach et al. 2020; Burt et al. 2021). Herzog y colegas implementaron

un modelo similar para mostrar que la estimulación del receptor 5HT2A es consistente con un

aumento de la entroṕıa en todo el cerebro (Herzog et al. 2023), resultado que está en acuerdo

con el modelo teórico de acción psicodélica propuesto por Carhart-Harris (Carhart-Harris et al.

2014). Un enfoque complementario es considerar modelos fenomenológicos para investigar cam-

bios en la dinámica cerebral global de acuerdo a una perspectiva de sistemas complejos (Girn

et al. 2023). Este enfoque fue adoptado para demostrar que la LSD aumenta la complejidad de

la actividad cerebral espontánea evaluada mediante fMRI (Jobst et al. 2021). Esta observación

es consistente con estudios previos que muestran un repertorio expandido de estados cerebrales

y una mayor facilidad para las transiciones entre ellos (Tagliazucchi et al. 2014; Singleton et al.

2022), constituyendo un potencial mecanismo para explicar la mejora en la flexibilidad neuronal
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inducida por psicodélicos (Doss et al. 2021). Además, esta caracterización dinámica de la acción

psicodélica revela un escenario opuesto al del estado de inconsciencia, donde se observa una

reducción del repertorio de estados cerebrales y un aumento de su estabilidad frente a perturba-

ciones (Solovey et al. 2015; Demertzi et al. 2019; Girn et al. 2023), tal como se ha hipotetizado

en trabajos teóricos previos (Carhart-Harris et al. 2014). Hasta la fecha, los modelos globales

del cerebro se han utilizado para investigar los mecanismos subyacentes a los efectos estacio-

narios de la LSD y la psilocibina, dos drogas psicodélicas clásicas. Sin embargo, actualmente

se desconoce si los mecanismos de acción psicodélica, identificados por estos modelos también

explican las transiciones entre el estado basal previo a la dosis y los efectos agudos de la dro-

ga. Para esta descripción es necesario introducir modelos dependientes del tiempo capaces de

representar la dinámica de la transición debido a la modulación neuroqúımica de la actividad

cerebral y su alineamiento con la farmacocinética de la droga, aśı como con sus efectos sub-

jetivos (Kwan et al. 2022). El desarrollo de modelos computacionales sensibles a fluctuaciones

temporales lentas en la actividad cerebral podŕıa también contribuir a determinar si la farma-

coloǵıa de ciertos psicodélicos es multifásica, tal como se ha propuesto para el caso de la LSD

(Marona-Lewicka et al. 2005). Los efectos psicodélicos de corta duración de la DMT intravenosa

son ideales para este propósito, ya que son dinámicos y la recuperación del estado basal ocurre

después de aproximadamente unos 30 minutos (Strassman 1995), en contraste a otras drogas

como la psilocibina y la LSD, cuyos efectos agudos duran varias horas. En esta dirección, es-

tudios recientes han encontrado que caracteŕısticas espećıficas del EEG durante el consumo de

DMT están correlacionadas con la concentración sérica de la droga (Timmermann et al. 2019;

Eckernäs et al. 2023). Sin embargo, los principios dinámicos detrás de la transición al estado

de conciencia alterada no han sido aun abordados desde la perspectiva del modelado con sis-

temas dinámicos. En este trabajo, adoptamos un modelo previamente utilizado para investigar

los efectos de las drogas psicodélicas (Jobst et al. 2021), introduciendo una nueva dependencia

temporal en el parámetro que gobierna la proximidad a la criticalidad dinámica, es decir, hacia

una transición de fase entre dinámicas cualitativamente diferentes (caos/ruido vs. regularidades

estad́ısticas/oscilaciones, como se mostró en (Piccinini et al. 2021)). Para modelar los efectos

farmacológicos relativamente cortos inducidos por el DMT, la evolución temporal del parámetro

de bifurcación del modelo se limitó a representar una versión simplificada de la farmacocinética

de la DMT (Salway et al. 2008). La optimización de los parámetros libres subyacentes a es-

ta evolución temporal nos permitió reproducir la dinámica de la conectividad funcional (FCD)

emṕırica (Deco et al. 2017), y posteriormente la intensidad máxima y su latencia para los efectos

de la DMT vs. una condición de control (placebo). Finalmente, investigamos la estabilidad de
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las dinámicas simuladas frente a perturbaciones externas, evaluando aśı posibles correlaciones

entre la reactividad regional local y la densidad de receptores 5HT2A, el principal sitio de acción

farmacológico de la DMT(Nichols 2016).

5.2. Métodos

5.2.1. Participantes del estudio y diseño experimental

Los datos emṕıricos utilizados en este trabajo se detallan en la sección 3.1.2.

5.2.2. Modelo computacional global del cerebro

Simulamos la actividad cerebral global medida con fMRI utilizando osciladores de Stuart-

Landau (es decir, una forma normal de Hopf) para la dinámica local (ver Fig. 5.1A, ’Local Mo-

del’). Este modelo fenomenológico tiene como objetivo simular directamente las señales BOLD

medidas experimentalmente. Las dinámicas globales emergentes se simulan incluyendo interac-

ciones mutuas entre áreas cerebrales según la matriz de conectividad anatómica Cij obtenida

por DTI (ver Fig. 5.1, ’Inter-areal coupling’). El modelo global consta de 90 nodos acoplados

que representan 90 áreas cerebrales corticales y subcorticales de la parcelación AAL, con la

siguiente evolución temporal para la región n-ésima:

dxn
dt

=
[
a(t)− x2n − y2n

]
xn − ωnyn +G

90∑
p=1

Cnp(xp − xn) + γηn(t)

dyn
dt

=
[
a(t)− x2n − y2n

]
yn + ωnxn +G

90∑
p=1

Cnp(yp − yn) + γηn(t)

(5.1)

Aqúı, ηn representa ruido gaussiano aditivo con desviación estándar γ (establecida en 0.05),

Cnp son los elementos de la matriz de conectividad anatómica, G es un factor que escala la

conectividad anatómica (fijado en G = 0.5, como se determinó previamente en (Ipiña et al.

2020)), ωn es la frecuencia dominante del nodo n-ésimo en la banda de 0.01-0.08 Hz (determinada

utilizando un filtro de Fourier aplicado a las series temporales emṕıricas y promediando luego

entre los participantes), y la variable xn representa la señal de actividad BOLD emṕırica del

nodo n-ésimo, que se utilizó para calcular las matrices de FC y FCD simuladas. Las dinámicas

locales presentan una bifurcación supercŕıtica en a = 0, de modo tal que si a > 0, el sistema

entra en un ciclo ĺımite estable (es decir, oscilaciones estables) con frecuencia angular ωn. Cuando

a < 0, las dinámicas locales son atráıdas hacia un punto fijo estable que representa un estado

de baja actividad dominado por ruido. Cerca de la bifurcación, el ruido aditivo puede inducir

un comportamiento dominado por el cambio espontáneo entre ambos reǵımenes, resultando en
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oscilaciones con una envolvente compleja (Deco et al. 2017). Para modelar los efectos de corta

duración de la DMT, introdujimos un parámetro de bifurcación dependiente del tiempo a(t)

siguiendo una función gamma que representa una descripción simplificada de la farmacocinética

de la droga (Salway et al. 2008):

a(t) = λ

(
te−t/β

N

)
(5.2)

donde N es una constante que normaliza el término entre corchetes, λ es un parámetro

de escala que determina la amplitud del pico, y β es el parámetro que controla la tasa de

decaimiento de la función, y por lo tanto está relacionado con la latencia del pico (ver Fig.

5.1B).

5.2.3. Ajuste del modelo a los datos emṕıricos

Para caracterizar la dinámica cerebral global calculamos las matrices FCD (ver Fig. 5.1D)

(Hansen et al. 2015). Cada sesión de fMRI de 28 minutos se dividió en M = 82 ventanas

deslizantes de 60 s cada una, con una superposición de 40 s entre ventanas sucesivas. Para cada

ventana deslizante centrada en el tiempo t, se calculó la matriz de conectividad funcional FC(t).

Estas matrices se calcularon para cada uno de los quince participantes y para 15 simulaciones

explorando exhaustivamente los parámetros libres del modelo relacionados con la evolución

temporal del parámetro de bifurcación mediante la función gamma. Para comparar las matrices

FCD teniendo en cuenta su estructura temporal, utilizamos la distancia Euclidiana entre las

matrices emṕıricas y simuladas.

5.2.4. Ajuste del modelo a los datos de referencia

Para ajustar el modelo a las condiciones basales previas a la administración de la droga,

realizamos una búsqueda del valor óptimo del parámetro de bifurcación ajustando la submatriz

de la FCD correspondiente a las primeras 22 ventanas temporales. Esto corresponde a los

primeros 8 minutos previos a la inyección de DMT. El ajuste se realizó para ambas condiciones

(DMT y placebo), resultando en el mismo valor (a = 0.07) para ambas condiciones, tal como

se esperaba.

5.2.5. Ajuste de la evolución temporal del parámetro de bifurcación

Fijamos el valor del parámetro de bifurcación en el valor de referencia de a=0.07 para los

primeros 8 minutos de la simulación e introdujimos la dependencia temporal a partir de dicho

instante, tomando como valor inicial el basal y los valores siguientes evolucionando de acuerdo a
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la función gamma λ te−t/β

N , con t = 0 aqúı indicando el momento de la inyección de la sustancia.

A continuación, realizamos una exploración exhaustiva del espacio de parámetros abarcado por

λ y β, buscando la combinación óptima de parámetros. Para este propósito, exploramos una

grilla en el rango de valores dado por λ = [0, 200] y β = [20, 900] en pasos de 5 y 20 unidades,

respectivamente. Para cada combinación de parámetros, calculamos la matriz de FCD 15 veces

(una vez por participante) cambiando aleatoriamente las condiciones iniciales del modelo. Las

matrices FCD resultantes se promediaron y se compararon con la FCD emṕırica utilizando la

distancia Euclidiana. Este procedimiento se repitió 50 veces para cada par de parámetros.

5.2.6. Perturbaciones simuladas

Modelamos una perturbación oscilatoria e investigamos la respuesta del modelo previamente

ajustado como se explicó en la sección anterior. La perturbación se efectuó agregando un término

periódico externo aditivo forzante al nodo n-ésimo, Fn = Fext(cos(ωnt) + i sin(ωnt)), donde la

parte real de la perturbación se suma a la componente x de la Ecuación 6.1 y la parte imaginaria

a la y. En la ecuación anterior, ωn es la frecuencia natural correspondiente al n-ésimo nodo (la

misma que aparece en la Ecuación 6.1).

Para facilitar la interpretación de los resultados, aplicamos esta perturbación a nodos ubi-

cados dentro de seis redes de estado de reposo (RSN, por sus siglas en inglés) identificadas

mediante análisis de componentes independientes (ICA) según (Beckmann et al. 2005). Para

tener en cuenta la variación temporal de la reactividad, muestreamos valores equiespaciados de

a(t), denotados aqúı como ap, donde p denota el punto temporal muestreado. En total tomamos

42 valores de ap correspondientes a la función gamma muestreada en los correspondientes pun-

tos temporales. Luego, para cada uno de estos valores, realizamos una simulación independiente

manteniendo ap constante hasta el final de la misma. Es decir, para cada simulación configura-

mos a=0.07 durante los primeros 8 minutos -correspondientes al intervalo de tiempo previo a

la administración de la dosis- y posteriormente mantuvimos constante el valor ap hasta el final

de la simulación. Por lo tanto, la forma funcional del parámetro de bifurcación está dada por la

concatenación de dos funciones constantes, a=0.07 y ap, con p = 0, ..., 42. Este procedimiento

permitió calcular cómo las dinámicas respond́ıan a la perturbación externa en cada valor ap

durante el peŕıodo extendido de tiempo utilizado para obtener la FCD.

En cuanto a la estimulación, aplicamos la perturbación después de los primeros 8 minutos

correspondientes al periodo basal, variando la amplitud Fext desde 0 hasta 0.015 en incrementos

de 0.00125. El valor máximo de este rango fue elegido debido a que valores más altos saturaban la

reactividad local, aplanando las curvas. En resumen, para cada combinación de RSN, amplitud
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Fext y valor de ap calculamos la FCD resultante y su distancia a la condición emṕırica, evaluando

posteriormente el impacto de la perturbación como se detalla en la siguiente sección.

5.2.7. Medida de reactividad a perturbaciones externas

Interpretamos la reactividad del modelo global del cerebro como la sensibilidad de la acti-

vidad cerebral a la estimulación periódica externa. Siguiendo una analoǵıa con el concepto de

susceptibilidad en la termodinámica, definimos la reactividad como la siguiente derivada:

χ(t) =
∂M

∂Fext
(5.3)

con M denotando la distancia Euclidiana entre las matrices FCD simuladas y emṕıricas. A

medida que Fext aumenta, esperamos que la FCD estimulada se aleje del valor basal emṕırico.

χ(t) mide la velocidad con la que ocurre esta divergencia. Por lo tanto, un valor alto de χ(t)

indica que, en el tiempo t, el efecto de variar Fext es máximo, medido en términos de su impacto

en la distancia euclidiana entre las matrices FCD simuladas y emṕıricas. Por el contrario,

un valor bajo de χ(t) representa un régimen en el que el cambio en Fext ejerce un impacto

relativamente menor en la FCD.

La reactividad χ(t) se calculó utilizando un método de diferencias finitas de segundo orden.

Evaluamos, además, χ(t) en relación con su valor en t = 0 restando χ(t = 0) para tiempos

posteriores. Esto se realizó para capturar los cambios de la perturbación en relación con la

parte basal. Además, dado que el número de nodos difiere entre las RSN, y que la reactividad

puede depender del número de nodos estimulados, normalizamos su valor por el número de

nodos de cada RSN.

5.2.8. Método de bootstrap

Para determinar la máxima reactividad durante toda la duración de la simulación, utiliza-

mos un procedimiento de bootstrap para obtener una distribución de valores máximos que nos

permitió calcular un intervalo de confianza para el valor promedio resultante. Los procedimien-

tos de bootstrap se realizaron tomando muestras aleatorias con reemplazo de la distribución

de valores, creando diferentes curvas χ(t) en cada iteración y calculando su valor máximo. El

tamaño del subconjunto muestreado fue igual al de la distribución original. Este procedimiento

se repitió 200 veces, generando una distribución bootstrap de la magnitud deseada. Al calcular

las correlaciones entre la densidad local de receptores 5HT2A y la reactividad máxima por RSN,

el método de bootstrap se realizó 1000 veces para generar los histogramas.
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5.2.9. Pruebas estad́ısticas e intervalos de confianza

Los intervalos de confianza del 95% se calcularon utilizando el error estándar de la media

(SEM) y un z-score de 1.96. Las comparaciones entre métricas se lograron utilizando una prueba

t de Student bilateral asumiendo varianza diferente entre pares de métricas. Para determinar la

ubicación del pico y la significancia de χ(t) en toda la duración de la simulación implementamos

un procedimiento de bootstrap (ver sección 5.2.8).

5.2.10. Mapas de densidad de receptores

Los mapas de densidad de receptores utilizados se estimaron en base a estudios con traza-

dores PET obtenidos por Hansen y colegas (Hansen et al. 2022). Todas las imágenes PET se

registraron en la plantilla MNI-ICBM 152 no lineal 2009 (versión c, asimétrica) y posteriormen-

te se parcelaron en el atlas AAL de 90 regiones (Tzourio-Mazoyer et al. 2002). Para obtener

más detalles sobre las adquisiciones y limitaciones del conjunto de datos, se puede consultar la

publicación original (Hansen et al. 2022).

5.3. Resultados

5.3.1. Descripción metodológica

La Figura 5.1 proporciona un resumen de los métodos y el procedimiento general. Para

describir la dinámica local en el modelo global del cerebro se utilizaron osciladores no lineales

Stuart-Landau, que corresponden al modo normal de una bifurcación de Hopf en a = 0 (Deco

et al. 2017). Para a > 0, el modelo presenta oscilaciones estables, mientras que a < 0 resulta

en espirales estables que extinguirán la amplitud de la oscilación hasta que la dinámica esté

dominada por el término de ruido aditivo, η(t). Cerca de la bifurcación, el ruido introduce

cambios espontáneos entre ambos reǵımenes, lo que resulta en oscilaciones con fluctuaciones

de amplitud complejas. Para modelar los cambios dependientes del tiempo introducidos por

la DMT, proponemos una ecuación para el parámetro de bifurcación a(t) dada por la función

gamma descrita en la ecuación 5.2. Los parámetros λ y β determinan la amplitud máxima y su

latencia, respectivamente. Para una elección adecuada de los parámetros esta función aumenta

rápidamente y luego presenta una lenta disminución, constituyendo una descripción aproximada

de la farmacocinética de la administración intravenosa en bolo de DMT (Salway et al. 2008).

Los osciladores de Stuart-Landau locales se acoplaron utilizando la matriz de conectividad

estructural (ver 3.1.3) y escalada por el parámetro de acoplamiento global G.
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Figura 5.1: Descripción general del modelo global del cerebro y elección del obser-

vable para el proceso de optimización. (A) Dinámica de un único nodo (’Local Model’),

compuesto por un oscilador no lineal de Stuart-Landau con el parámetro de bifurcación a, y

la parte imaginaria y real de la variable compleja z en función de a, mostrando una transición

entre espirales estables y ciclos ĺımite en a = 0. (B) Parametrización temporal del parámetro

de bifurcación a(t), dado por una función gamma con parámetros λ (máximo de amplitud) y

β (pico de latencia). (C) Ilustración de cómo se acoplaron los nodos (’Inter-areal coupling’)

siguiendo la conectividad estructural dada por DTI y escalada por G para reproducir la matriz

de FCD emṕırica. (D) Representación del cálculo de la matriz FCD, que contiene en su entrada

i, j la correlación entre matrices FC calculadas sobre ventanas cortas que comienzan en los pun-

tos temporales i y j. El bloque diagonal delimitado en rojo indica el peŕıodo basal antes de la

administración de la DMT (FCD: dinámica de conectividad funcional; DMT: dimetiltriptamina;

DTI: imagen por tensor de difusión).
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Dado que nuestro objetivo era capturar la evolución temporal introducida por los efectos

de corta duración de la DMT, optimizamos los parámetros de la función gamma, λ y β, para

ajustar la reproducción de la FCD media calculada en la muestra de 15 participantes (ver 5.2.3).

Nótese que, a diferencia de las aplicaciones previas de este modelo a datos de estado de reposo

(Hansen et al. 2015; Deco et al. 2017; Deco et al. 2018; Piccinini et al. 2021), no optimizamos la

similitud estad́ıstica entre las matrices FCD emṕıricas y simuladas; en su lugar, empleamos la

distancia Euclidiana para su comparación, ya que estamos interesados en capturar la evolución

temporal introducida por el DMT.

5.3.2. Optimización del modelo

Figura 5.2: Exploración del espacio de parámetros y dinámica de conectividad fun-

cional (FCD) correspondiente a los parámetros óptimos del modelo. (A) Distancia

Euclidiana normalizada entre FCD simulada y emṕırica promediada a través de n = 50 simula-

ciones para cada par de parámetros λ y β. Las matrices revelan diferentes valores de amplitud

máxima (λ) y latencia (β) para placebo vs. DMT. El rendimiento óptimo del modelo para DMT

se restringe a una región más estrecha del espacio de parámetros. Las estrellas rojas indican el

par de parámetros óptimos seleccionados para cada condición. (B) FCD emṕırica y simulada

óptima (columnas) para las condiciones de placebo y DMT (filas) promediadas sobre n = 15

sujetos (simulaciones independientes). Las matrices FCD simuladas se calcularon utilizando los

parámetros óptimos λ y β marcados con las estrellas rojas en el panel izquierdo. Las distancias

Euclidianas entre las FCD simulada y emṕırica fueron 0.19 ± 0.03 y 0.14 ± 0.02 (95% inter-

valo de confianza [CI]) para DMT y placebo, respectivamente (FCD: dinámica de conectividad

funcional; DMT: dimetiltriptamina).

Para determinar los parámetros óptimos de la función gamma que reprodujesen la dinámica

global representada por la FCD, realizamos una exploración exhaustiva de todas las combina-

ciones de pares de parámetros λ y β dentro de un rango de valores compatibles con la farmaco-
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cinética esperada para la DMT (ver 5.2.5). Los resultados de esta exploración se muestran en

la Figura 5.2A para las condiciones de placebo (izquierda) y DMT (derecha), con valores más

bajos indicando un mejor ajuste del modelo. Para la condición de placebo, los valores óptimos

se hallaron dentro de una región extensa de amplitud, aunque baja en magnitud y además de la-

tencia variable, evidenciando una débil dependencia temporal sin un pico de máxima intensidad

claramente definido. Por el contrario, para la DMT esta región se desplazó y se redujo logrando

abarcar latencias más cortas y menos variables, junto con valores de amplitud más grandes en

magnitud. La Figura 5.2B representa las matrices FCD emṕıricas (columna izquierda) y simula-

das óptimas (columna derecha) para las condiciones de placebo (primera fila) y DMT (segunda

fila). Nótese que los dos bloques diagonales de las matrices FCD separan los peŕıodos de la ĺınea

de base (ver Figura 5.1D) y posteriores a la administración. Se puede observar que el modelo

es capaz de aproximar esta estructura temporal, aśı como la intensidad general de los valores

de los elementos de la matriz.

Después de determinar los valores óptimos de λ y β para cada instancia independiente de

la simulación, exploramos las gráficas correspondientes de a(t) mostradas en la Figura 5.3A

para placebo y DMT. Las ĺıneas gruesas indican la curva gamma obtenida con los parámetros

promedio entre todas las simulaciones. Esta figura muestra que la dinámica comienza desde una

ĺınea de base de oscilaciones sostenidas en a=0.07. Después de la infusión de la DMT, observamos

una disminución brusca y rápida de a(t) que desplazó la dinámica de todo el cerebro hacia la

bifurcación en a = 0. Luego de alcanzar un máximo después de ≈ 4 minutos, el parámetro a(t)

se recuperó gradualmente hacia los valores del estado basal al final de la sesión de escaneo. En

contraste, los resultados para la condición de placebo mostraron una amplitud de pico más baja

combinada con latencias más largas, hasta el punto en que los picos no se alcanzaron durante

la sesión de escaneo. Como consecuencia, a(t) para la condición de placebo aproximó el valor

constante del estado basal con una variación temporal comparativamente menor. La Figura

5.3B resume las diferencias entre las dinámicas de a(t) encontradas para placebo y DMT en el

espacio bidimensional abarcado por λ y β, donde cada punto representa los valores óptimos para

una instancia independiente de la simulación, y los ćırculos más grandes indican la media entre

todas las simulaciones. Para la condición de DMT, podemos observar que λ y β se agrupan en la

esquina superior izquierda, lo que indica latencias comparativamente bajas y picos de amplitud

altos (λ=159.3 ± 7, β=284 ± 37, intervalo de confianza del 95% [IC]). Por el contrario, la

condición de placebo resultó en valores de amplitud bajos y latencias más variables, sesgadas

hacia valores más grandes en comparación con DMT (λ=65.6 ± 9, β=588 ± 69, IC del 95%).

Ambos grupos de valores pueden separarse claramente en este espacio de dos parámetros, lo que
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respalda que las dinámicas de a(t) son cualitativamente diferentes entre las condiciones (prueba

t de Student, p <0.0001 para ambos parámetros).

Figura 5.3: La evolución temporal del parámetro de bifurcación a(t) distingue entre

DMT y la condición placebo. (A) a(t), definida como una función gamma, para n = 50

instancias independientes de la optimización de parámetros, comparada entre ambas condicio-

nes. Las gráficas con ĺıneas más gruesas indican las curvas asociadas a los valores medios. (B)

Representación bidimensional de los parámetros óptimos de la función gamma, λ y β, tanto

para placebo como para la DMT. Los puntos individuales indican los resultados de las n = 50

instancias independientes de la optimización de parámetros, mientras que los ćırculos grandes

representan el promedio entre las simulaciones. Las comparaciones para las medias de ambos

parámetros se realizaron con t-test de dos colas con p− valor <0.0001 para ambos parámetros

(DMT: dimetiltriptamina).

5.3.3. Perturbaciones oscilatorias producen transitorios de alta reactividad

bajo los efectos de la DMT

Una vez determinados los parámetros óptimos para ajustar la FCD, utilizamos los modelos

resultantes para investigar los efectos dependientes del tiempo de la estimulación debido a

perturbaciones externas. Este análisis está motivado en reportes previos que indican que los

psicodélicos aumentan la reactividad a los est́ımulos externos y facilitan las transiciones entre

los estados metaestables del cerebro (Jobst et al. 2021; Singleton et al. 2022). Basándonos en

estos resultados, hipotetizamos que la DMT resultaŕıa en un episodio transitorio de dinámicas

cerebrales más sensibles a perturbaciones externas debido a una desestabilización de la dinámica

cerebral global, es decir, debido a la mayor proximidad a la dinámica cŕıtica.
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Figura 5.4: El efecto dependiente del tiempo de las perturbaciones simuladas indica

mayor reactividad para DMT vs. placebo. (A) Reactividad, χ(t), normalizada por el

número de nodos en la RSN correspondiente, para placebo (arriba) y DMT (abajo). Las curvas

de DMT alcanzan su máximo aproximadamente 4 minutos después de la dosis, regresando a los

valores basales al final de la sesión. El placebo muestra una amplitud máxima más baja y laten-

cias más largas que permanecen constantes durante todo el estudio. Las regiones sombreadas

de cada ĺınea denotan la desviación estándar de las reactividades (n = 25 simulaciones). (B)

Gráficos del pico de χ(t) en el tiempo (χmax) para cada RSN y tres diferentes intensidades de

perturbación externa (Fext) (n = 200 muestras bootstrap). Las comparaciones entre condiciones

(para una intensidad de perturbación dada) y entre intensidades sucesivas (para una condición

dada) se realizaron con pruebas t de dos colas, dando valores p < 0.0001 para todas las compa-

raciones. La red de control ejecutivo (EC) fue una excepción al comparar Fext = 0.005 y Fext

= 0.01 (p = 0.23) (DMT: dimetiltriptamina; RSN: red de estado en reposo).

Para probar nuestra hipótesis, aplicamos una perturbación externa periódica con la misma

frecuencia que las oscilaciones endógenas, previamente identificada como la que maximiza el

efecto sobre la actividad cerebral (Jobst et al. 2017; Ipiña et al. 2020). Determinamos aśı la

reactividad, o sensibilidad, a la perturbación en cada punto temporal, aqúı denominada por

χ(t), calculando la derivada de los cambios inducidos en la FCD con un algoritmo de diferencia-

ción numérica (consultar los métodos para más detalles). Para facilitar la interpretación de los

resultados, introdujimos esta perturbación en nodos ubicados dentro de seis posibles redes de

estado de reposo (RSN, por sus siglas en inglés) (Beckmann et al. 2005) conocidas por abarcar

diferentes sistemas funcionales del cerebro: corteza visual primaria (Vis), extraestriada (ES),
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auditiva (Aud), sensorimotora (SM), neuronal por defecto (DM) y control ejecutivo (EC). La

Figura 5.4A muestra χ(t) para cada RSN, tanto para las condiciones de placebo (arriba) como

para la DMT (abajo). Para esta última, está claro que χ(t) se alinea con la evolución esperada

dada la dinámica de la intensidad del efecto del fármaco, con la reactividad más grande obte-

nida en la corteza visual extraestriada. Por el contrario, la dependencia temporal de χ(t) fue

considerablemente menos marcada para el grupo de placebo. La Figura 5.4B muestra el pico de

χ(t), es decir, χmax, para cada RSN y para tres intensidades diferentes de perturbación externa

(Fext), comparando las condiciones de DMT y placebo. Consistentemente con los resultados

mostrados en la Figura 5.4A, los valores máximos fueron sistemáticamente más bajos en place-

bo vs. DMT para todas las intensidades, indicando una mayor reactividad a las perturbaciones

externas durante los efectos agudos de la droga.

5.3.4. Correlación entre la reactividad diferencial máxima y la densidad local

de receptores 5HT2a

Por último, investigamos la correlación entre la densidad de receptores 5HT2A y la reac-

tividad máxima (χmax) en las RSN. Basados en la acción farmacológica conocida de la DMT

(Nichols 2016), esperábamos una correlación positiva entre estas dos variables, es decir, que las

RSN con una mayor densidad de receptores 5HT2A mostraŕıan valores más altos de χmax, y

viceversa. La Figura 5.5A ilustra la configuración espacial de las RSN, mientras que la den-

sidad media de receptores 5HT2A por RSN se muestra en la Figura 5.5B. Para evaluar si la

diferencia en χmax entre las condiciones se encuentra asociada a la densidad local de recepto-

res de serotonina, primero calculamos la diferencia entre las curvas de reactividad de DMT y

placebo, lo que resultó en una cantidad a la que llamamos ∆χ(t). La Figura 5.5C muestra el

pico de ∆χ(t), al que denominamos ∆χmax, frente a la densidad de receptores 5HT2A de cada

RSN, junto con el mejor ajuste lineal por cuadrados mı́nimos. Para estimar la significancia de

esta correlación, realizamos un procedimiento de bootstrap que resultó en la distribución de

coeficientes de correlación, ρ, presentada en el recuadro superior de esta figura (valor medio de

ρ = 0.9059 ± 0.0003, intervalo de confianza del 95%). Además, la Figura 5.5D muestra el ρ

medio (∆χmax vs. densidad de receptores 5HT2A) a lo largo de un rango de intensidades de

perturbación externa (Fext). Este gráfico indica que las amplitudes de estimulación baja ejercen

un efecto que es comparativamente independiente de la densidad local de receptores 5HT2A.

Sin embargo, a medida que aumenta la intensidad de la perturbación, la densidad de receptores

se vuelve más relevante, alcanzando un valor de ρ > 0.9. Finalmente, a medida que la intensidad

sigue aumentando, la reactividad se desvincula nuevamente de la densidad de receptores.
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Figura 5.5: El pico de ∆χmax ante perturbaciones externas entre DMT y placebo

correlaciona con la densidad local del receptor 5HT2a. (A) Configuración espacial de

las seis RSN donde se simuló la perturbación externa (Vis: visual primaria, nVis = 7; ES:

extraestriada, nES = 9; Aud: auditiva, nAud = 26; SM: sensoriomotora, nSM = 13; DM: modo

por defecto, nDM = 12; EC: control ejecutivo, nEC = 24). (B) Densidad del receptor 5HT2a por

RSN (puntos individuales y media ± SE). (C) Pico de ∆χ(t) (n = 200), ∆χmax, vs. la densidad

del receptor 5HT2a de cada RSN junto con el mejor ajuste lineal por cuadrados mı́nimos.

El recuadro muestra la distribución de coeficientes de correlación (ρ) obtenida mediante un

procedimiento bootstrap (ncorr = 1000). (D) Coeficiente de correlación ρ (media ± SD) vs. la

intensidad de la perturbación externa, Fext, n = 200 (DMT: dimetiltriptamina; RSN: red de

estado en reposo; 5HT: 5-hidroxitriptamina).

5.4. Discusión

Este estudio representa un primer paso hacia la modelización computacional de los efectos

psicodélicos dependientes del tiempo. Nuestro hallazgo principal es que la DMT desestabiliza

(es decir, acerca a la bifurcación global, o dinámica cŕıtica) la dinámica cerebral global, y que

la magnitud de esta desestabilización es compatible con la farmacocinética caracteŕıstica de la

droga, aqúı representada mediante una función gamma (Salway et al. 2008). Por el contrario,
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un placebo inactivo resultó en valores extremos de los parámetros que aplanaron esta función,

aproximándola aśı a un valor constante en el tiempo. Una consecuencia de esta pérdida de

estabilidad es la menor sensibilidad a perturbaciones externas (Jobst et al. 2017), siguiendo la

dinámica del parámetro de bifurcación y siendo máxima cuando la perturbación se aplica en

nodos pertenecientes a RSNs con alta densidad de receptores 5HT2A. Esta mayor sensibilidad

de la DMT ante perturbaciones puede afectar cómo responde el cerebro a est́ımulos sensoriales

externos bajo los efectos del fármaco, y también puede afectar su capacidad para amplificar

eventos endógenos relacionados con el estado mental y el procesamiento cognitivo. De hecho, un

trabajo reciente mostró que la estimulación externa administrada durante el estado psicodélico

tiene efectos más fuertes en comparación con una condición de control, los cuales incluyen

cambios en la intensidad de la experiencia, aśı como una modificación sustancial de las métricas

basadas en entroṕıa de la actividad neuronal (Mediano et al. 2024). También es importante

señalar que, en el estudio de Mediano et al., el contenido y la estructura de la estimulación

estaban vinculados al cambio en la entroṕıa cerebral, y que los resultados fueron impulsados

parcialmente por el aumento de la entroṕıa en la condición basal. En contraste, en nuestros

análisis, la naturaleza estructurada y periódica de la estimulación externa ejerció un efecto

comparativamente débil entre la condición de placebo y la de la droga.

Estudios anteriores han utilizado modelos similares al nuestro para investigar los mecanismos

subyacentes a los cambios inducidos por psicodélicos en la actividad de resonancia magnética

funcional en estado de reposo (Deco et al. 2018; Kringelbach et al. 2020; Burt et al. 2021;

Jobst et al. 2021). Sin embargo, estos estudios se centraron principalmente en los efectos agudos

estacionarios de las drogas, sin tomar en consideración el análisis de peŕıodos en los que su

intensidad puede variar con el tiempo, como las transiciones entre el estado basal y el estado

agudo. Estas transiciones son dif́ıciles de capturar para la administración oral de la LSD o la

psilocibina, debido a que la misma resulta en un inicio más paulatino y una transición menos

marcada hacia el estado psicodélico (Dolder et al. 2017; Holze et al. 2023). Por el contrario, la

administración intravenosa de DMT resulta en una transición rápida y un episodio psicodélico

relativamente breve que alcanza su máxima intensidad subjetiva solo unos minutos después de

la infusión (Strassman 1995), como fue demostrado en un trabajo anterior (Timmermann et al.

2019; Timmermann et al. 2023). Nuestro estudio muestra que la dinámica de la FCD global

inducida por DMT en registros de fMRI recapitula esta evolución temporal, lo que no se observó

para el placebo. Es importante señalar que, incluso si la intensidad de los efectos de la DMT no

se refleja en la amplitud de las señales de fMRI en el dominio del tiempo, la FCD global contiene

suficiente información para determinar la evolución temporal de la experiencia con DMT, como



5.4. Discusión 87

se muestra por el ajuste óptimo del modelo a los datos de FCD. Un resultado que cabe destacar

es que la posición del máximo de intensidad capturado por el modelo (≈ 12min) coincide con

el momento pico de la experiencia subjetiva, reportado por los sujetos durante la sesión dentro

del escáner (Timmermann et al. 2023).

La desestabilización transitoria de la dinámica cerebral inducida por DMT es consistente

con múltiples resultados experimentales y teoŕıas de la acción psicodélica en el cerebro humano

(Carhart-Harris et al. 2014). Basándonos en la teoŕıa de bifurcaciones en sistemas dinámicos, a

medida que el modelo se aproxima al punto de bifurcación, se espera que tanto la complejidad

como la entroṕıa de la actividad cerebral simulada aumenten (Tagliazucchi et al. 2014; Kaelen et

al. 2016; Schartner et al. 2017; Viol et al. 2017; Timmermann et al. 2019; Pallavicini et al. 2021;

Herzog et al. 2023), junto con una expansión en el repertorio de posibles estados metaestables

(Tagliazucchi et al. 2014). Además, cerca del punto de bifurcación, la sensibilidad del sistema a

las perturbaciones externas se maximiza (Jobst et al. 2017; Jobst et al. 2021), lo que predice una

respuesta más grande a una perturbación dentro del estado psicodélico. El tiempo creciente que

el sistema necesita para recuperarse de una perturbación externa se conoce como ralentización

cŕıtica y se considera uno de los signos caracteŕısticos de estados cŕıticos, como ocurre en la

proximidad de una bifurcación (Toker et al. 2022). Usando estimulación magnética transcraneal

no invasiva (TMS por sus siglas en inglés) combinada con electroencefalograf́ıa (EEG), Ort y

colegas no pudieron encontrar cambios en la reactividad cortical inducidos por psilocibina; sin

embargo, informaron cambios en el contenido espectral y la experiencia subjetiva vinculada a la

estimulación (Ort et al. 2023). Este resultado es parcialmente consistente con nuestra predicción,

especialmente teniendo en cuenta las diferencias entre TMS y una perturbación periódica a la

frecuencia dominante de las oscilaciones endógenas. Emṕıricamente, esta perturbación podŕıa

lograrse mediante métodos no invasivos como la estimulación transcraneal con corriente alterna

(tACS) (Helfrich et al. 2014); sin embargo, hasta la fecha esta forma de estimulación no ha sido

investigada en participantes que experimentan los efectos de drogas psicodélicas.

Nuestros resultados establecen un paralelo entre los efectos de la DMT en la dinámica

cerebral global y la teoŕıa de la dinámica cŕıtica y estad́ıstica. La principal diferencia entre

las condiciones fue el comportamiento del parámetro de bifurcación a lo largo del tiempo,

resultando en valores más cercanos al valor cŕıtico coincidente con los efectos máximos de la

DMT. Este hallazgo, que es consistente con trabajos anteriores que implican mayores signos de

criticalidad en el estado psicodélico (Atasoy et al. 2017; Varley et al. 2020; Toker et al. 2022),

puede interpretarse a través de la hipótesis del cerebro cŕıtico, que establece que las principales

caracteŕısticas de la dinámica cerebral en reposo pueden explicarse por la proximidad a una
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transición de fase de segundo orden (Chialvo 2010; Cocchi et al. 2017). Cerca de este punto

cŕıtico, el sistema exhibe susceptibilidad divergente, permitiendo que perturbaciones externas

relativamente pequeñas se propaguen por todo el sistema (Tian et al. 2022). Extendiendo esta

analoǵıa, podemos postular que la activación de los receptores 5HT2A desplaza la dinámica de

la red cerebral hacia el régimen cŕıtico, lo que es consistente con múltiples reportes relacionados

con la dinámica cerebral bajo los efectos de las drogas psicodélicas, como se discute en (Girn

et al. 2023). También reportamos que la sensibilidad a perturbaciones externas se correlaciona

con la densidad de receptores 5HT2A. Dado que normalizamos este valor por el número total de

nodos en cada RSN, la explicación de esta correlación debe basarse en la influencia de 5HT2A

en la organización de la conectividad funcional y estructural. Además, al acercarse a la dinámica

cŕıtica, la activación de los receptores 5HT2A podŕıa facilitar un cambio del acoplamiento entre

áreas que juegan un rol fundamental en los efectos cerebrales de los psicodélicos (Petri et al.

2014; Roseman et al. 2014) y en la flexibilidad cognitiva inducida por los mismos (Doss et al.

2021). Esta activación también podŕıa abrir una ventana transitoria donde la mayor diversidad

funcional resultante podŕıa ejercer un efecto en la conectividad estructural subyacente a través

de efectos de plasticidad (Rocha et al. 2022). Eventualmente, esto podŕıa contribuir a consolidar

los efectos a largo plazo asociados con episodios psicodélicos breves (Aday et al. 2020). Para

valores altos de la amplitud de la perturbación externa, la reactividad se desacopló de la densidad

de receptores 5HT2A, indicando posiblemente la saturación de los efectos inducidos por la

estimulación en la dinámica global del cerebro.

Más allá de la aplicación en este estudio, la parametrización temporal de los modelos cere-

brales globales puede encontrar otros usos para evaluar si ciertos procesos temporales subyacen

a datos de neuroimágenes. Los pasos de preprocesamiento aplicados a la señal de fMRI en esta-

do de reposo t́ıpicamente incluyen filtros pasa altos que son necesarios para atenuar artefactos

del escáner aśı como el movimiento de la cabeza de los participantes (Cordes et al. 2001) (ver

sección 3.1.2); por lo tanto, las series temporales de fMRI podŕıan no reflejar directamente la

dinámica del fenómeno cerebral estudiado, a menos que el experimento esté diseñado para ma-

ximizar la relación señal-ruido, por ejemplo, mediante tareas o estimulación estructuradas de

acuerdo con un diseño de bloque adecuado (Liu et al. 2017). Sin embargo, existen situaciones

donde no seŕıa posible controlar experimentalmente el inicio y la duración del proceso tempo-

ral en estudio, por ejemplo, en el estudio de convulsiones (Chaudhary et al. 2013), episodios

transitorios relacionados con el sueño (por ejemplo, la aparición de complejos K) (Duyn 2012),

pensamientos o procesamiento cognitivo espontáneo (Bréchet et al. 2019), u otros fenómenos

endógenos con una estructura temporal interesante pero dif́ıcil de manipular emṕıricamente. En
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estos casos, el uso de modelos cerebrales globales dependientes del tiempo podŕıa ser útil para

detectar el proceso dinámico subyacente mediante su efecto en la FCD, lo cual podŕıa lograrse

comparando diferentes parametrizaciones temporales del modelo.

Una limitación importante de nuestro enfoque es que la parametrización temporal limita a

priori el modelo y su capacidad para detectar las dinámicas temporales subyacentes. Al elegir una

función gamma, nuestro enfoque solo nos permitió evaluar si las dinámicas de la FCD bajo los

efectos de la DMT podŕıan explicarse mejor por esta evolución temporal espećıfica del parámetro

de bifurcación en relación con la condición de placebo. Sin embargo, dado que no especificamos

a priori la dirección del efecto, este enfoque nos permitió evaluar si la DMT acerca las dinámicas

hacia la bifurcación global y, por lo tanto, hacia un punto de menor estabilidad. La elección de

la función gamma puede justificarse por la literatura previa sobre la evolución temporal de los

efectos inducidos por la DMT, aśı como sus efectos sobre la actividad del EEG y su correlación

con la farmacocinética de la sustancia (Strassman 1995; Timmermann et al. 2019; Pallavicini et

al. 2021; Timmermann et al. 2023). Si bien podŕıan implementarse modelos más complejos para

describir adecuadamente estas dinámicas (Eckernäs et al. 2023), nuestra elección tiene el mérito

de constituir una descripción cualitativa de los efectos transitorios de la DMT sin incurrir

en una proliferación de parámetros libres requeridos para un mayor realismo neurobiológico.

Además, la resolución temporal comparativamente pobre de fMRI puede constituir un ĺımite

para las ventajas obtenidas al incluir una descripción más sofisticada de la farmacodinámica.

Esta limitación podŕıa abordarse reproduciendo nuestro trabajo con datos de modalidades de

imágenes con mayor resolución temporal, tales como EEG y MEG.

En resumen, nuestro trabajo modela por primera vez la transición hacia el estado psicodéli-

co inducida por una dosis intravenosa de DMT. En el futuro, la implementación de modelos

biológicos más realistas podŕıa contribuir a nuestra comprensión de cómo la interacción entre

drogas, neurotransmisores y receptores es capaz de iniciar una cascada de eventos neuronales

que, en última instancia, resulta en un estado cerebral global asociado con alteraciones pro-

fundas en la conciencia y el procesamiento cognitivo (Aday et al. 2020). La combinación de

estos modelos con una descripción más detallada de la farmacocinética y farmacodinámica de

las drogas también podŕıa contribuir a explicar los efectos multifásicos potenciales de algunos

compuestos psicodélicos, y para investigar los mecanismos detrás de sus efectos duraderos, los

cuales constituyen un aspecto fundamental para su uso cĺınico en el tratamiento de pacientes

con depresión y otros trastornos psiquiátricos.





Caṕıtulo 6

Multiestabilidad impulsada por

ruido vs. caos determinista en

modelos fenomenológicos de

actividad cerebral

En este caṕıtulo exploramos el caos determinista como una alternativa a la multiestabilidad

inducida por ruido con el fin de reproducir observables estad́ısticos calculados a partir de regis-

tros de resonancia magnética funcional (fMRI) en estado de reposo. La dinámica caótica ocurre

en la proximidad de atractores extraños, es decir, conjuntos fractales que dan lugar a trayecto-

rias acotadas pero aperiódicas y altamente dependientes de las condiciones iniciales. Entre otros

mecanismos posibles (como el ciclo heterocĺınico y la itinerancia caótica), la presencia de estos

atractores proporciona a los sistemas dinámicos caóticos una dinámica metaestable compleja

sin necesidad de incorporar ruido al sistema. Si bien la posibilidad de caos determinista ha sido

explorada en registros neuronales en distintos organismos y escalas de medición, las consecuen-

cias de incluir caos determinista en la dinámica local de modelos de la actividad global cerebral

humana no han sido investigadas sistemáticamente hasta el momento. Nuestro objetivo no es

entrar en la discusión de larga data sobre si el caos determinista es una propiedad fundamental

de la actividad cerebral. En cambio, nos centramos en una cuestión más pragmática: determinar

si el caos determinista permite construir modelos que reproduzcan mejor los datos emṕıricos,

superando algunas limitaciones de los modelos de equilibrio impulsados por ruido aditivo. En

particular, nos interesa evaluar la capacidad de ambos enfoques para reproducir simultánea-

mente múltiples observables emṕıricos. Nuestra principal motivación es identificar la dinámica
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más sencilla capaz de reproducir varias caracteŕısticas fundamentales de la actividad cerebral

espontánea de forma simultánea, esperando que estos resultados puedan contribuir al futuro

desarrollo de modelos biológicamente realistas. Los resultados y discusiones de este caṕıtulo

fueron publicados en (Piccinini et al. 2021).

6.1. Introducción

En los últimos años, los modelos de actividad cerebral global han sido ampliamente explora-

dos para investigar los mecanismos subyacentes a distintos estados cerebrales, tanto saludables

como patológicos. También han sido utilizados para simular los efectos de la estimulación ce-

rebral y para generar bases de datos que optimicen la clasificación de neuroimágenes mediante

aprendizaje automático (Deco et al. 2018; Jirsa et al. 2017; Kringelbach et al. 2020; Deco et al.

2019; Deco et al. 2018; Deco et al. 2017; Perl et al. 2020; Perl et al. 2020; Perl et al. 2021; Ipiña

et al. 2020; Jobst et al. 2017; Kunze et al. 2016). En estos modelos, la elección de la dinámica

local determina el rango de comportamientos cualitativamente distintos que pueden obtenerse,

su complejidad (es decir, el número de parámetros libres), y el grado de realismo biof́ısico (Deco

et al. 2008; Breakspear 2017). Cuando se trata de modelar las caracteŕısticas de la actividad ce-

rebral espontánea registrada con técnicas como fMRI, los modelos fenomenológicos surgen como

una elección natural. Una propiedad frecuentemente observada en los modelos fenomenológicos

es la dinámica impulsada por ruido desarrollándose cerca de una bifurcación (Deco et al. 2012;

Deco et al. 2017; Golos et al. 2015; Hansen et al. 2015). Para los modelos deterministas atráıdos

hacia soluciones estables o periódicas, el ruido es fundamental para evitar que la dinámica es-

tacionaria quede atrapada en un estado de equilibrio. Aśı, la introducción ad hoc de ruido en

un sistema dinámico cerca de una bifurcación asegura el cambio estocástico entre diferentes

atractores, proporcionando a la simulación la variabilidad observada en los datos emṕıricos.

Otra elección clave a tomar al construir un modelo global del cerebro es el observable a

reproducir por el mismo. Dado que la evolución temporal exacta de sistemas complejos como el

cerebro humano se considera muy dif́ıcil de predecir, los observables suelen codificar el compor-

tamiento del sistema en un sentido estad́ıstico. Dos ejemplos bien conocidos son la matriz de

conectividad funcional (FC) (Smith et al. 2013; Ipiña et al. 2020), y la conectividad funcional

dinámica (FCD), que representa la similitud entre las matrices de FC calculadas en ventanas

cortas en diferentes momentos (Hansen et al. 2015; Deco et al. 2017). El primero de estos dos

observables es útil para representar el acoplamiento funcional en escalas de tiempo largas o

’estáticas’, mientras que el segundo tiene como objetivo capturar cambios dinámicos (Cavan-

na et al. 2018). También es posible definir otros observables, ya sea evaluando caracteŕısticas
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estáticas o dinámicas de la actividad cerebral.

La posibilidad de definir múltiples observables plantea un problema en el proceso de cons-

trucción de modelos de actividad cerebral global. Este problema aparece especialmente para

el caso de modelos basados en dinámicas de equilibrio impulsadas por ruido. Si un sistema

impulsado por ruido debe estar en una combinación particular de parámetros para asegurar

la cercańıa a una bifurcación para lograr la reproducción de un cierto observable estad́ıstico,

¿es posible asumir que la misma combinación de parámetros reproducirá con éxito otros obser-

vables estad́ısticos igualmente significativos? Alternativamente, ¿qué tipo de dinámicas locales

permiten dinámicas cerebrales complejas sobre un amplio rango de valores de parámetros? Para

responder estas preguntas, es necesario investigar sistemáticamente la capacidad de los mode-

los de equilibrio impulsados por ruido para reproducir simultáneamente múltiples observables

emṕıricos.

Para responder estas preguntas, investigamos las dinámicas de osciladores de Stuart-Landau

(Deco et al. 2017) y Rössler (Letellier et al. 2006; Petkoski et al. 2019) acoplados mediante la

conectividad estructural definida en la sección 3.1.3. Estos sistemas dinámicos constituyen ejem-

plos simples capaces de exhibir multiestabilidad impulsada por ruido y caos determinista, res-

pectivamente. El oscilador de Stuart-Landau experimenta una bifurcación de Hopf supercŕıtica,

capturando aśı la dicotomı́a entre la dinámica de punto fijo gobernada por ruido y la actividad

oscilatoria armónica (Deco et al. 2017). Debido a su simplicidad conceptual, se ha utilizado

como base de modelos fenomenológicos en varias publicaciones previas (Jobst et al. 2017; Ipiña

et al. 2020; Deco et al. 2019; Deco et al. 2018; Perl et al. 2020; Perl et al. 2021). Por otro lado, el

oscilador de Rössler puede dar lugar a un atractor extraño, y se considera uno de los ejemplos

más simples de dinámica caótica (Letellier et al. 2006). A continuación, exploramos y compa-

ramos cómo estos dos modelos reproducen varios observables emṕıricos calculados a partir de

registros de fMRI, enfatizando la capacidad de reproducir varios observables en simultáneo.

6.2. Métodos

6.2.1. Participantes y adquisición de datos de EEG-fMRI

Los datos emṕıricos utilizados en este trabajo se detallan en la sección 3.1.1.

6.2.2. Construcción del modelo global del cerebro

El procedimiento general para la construcción del modelo global del cerebro se presenta

en la Figura 6.1. Siguiendo el procedimiento descrito en la sección 2.4, construimos modelos
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computacionales de la actividad global del cerebro asignando reglas dinámicas locales a 90 nodos

que abarcan toda la materia gris cortical y subcortical. Estos nodos se acoplaron utilizando la

matriz de conectividad anatómica detallada en la sección 3.1.3. Introdujimos el parámetro G

para escalar globalmente los acoplamientos anatómicos, modelando aśı cambios en la intensidad

general de las interacciones entre regiones cerebrales.

Figura 6.1: Esquema del proceso seguido para construir los modelos globales del

cerebro. Los 90 nodos que abarcan la materia gris cortical y subcortical se acoplaron mediante

la matriz de conectividad anatómica Ci,j estimada utilizando tractograf́ıa probabiĺıstica aplicada

a datos de DTI. Construimos dos modelos que difieren en la elección de la dinámica local: un

modelo presenta multiestabilidad impulsada por ruido (osciladores de Stuart-Landau, en rojo),

y el otro modelo presenta caos determinista local (osciladores de Rössler, en verde). En ambos

casos, la dinámica local se acopló según la matriz Ci,j escalada por un factor G. A la derecha,

ilustramos proyecciones t́ıpicas del espacio de fases 2D y series temporales para el oscilador de

Stuart-Landau cerca de la bifurcación de Hopf, y para el oscilador de Rössler en el régimen

caótico. En el primer caso, la dinámica presenta modulaciones complejas de amplitud debido a

la alternancia estocástica entre los atractores de punto fijo y de ciclo ĺımite. En el segundo caso,

la dinámica presenta un comportamiento aperiódico que se desarrolla en la proximidad de un

atractor extraño.

Para determinar la frecuencia natural de la dinámica local, estimamos la frecuencia domi-
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nante en cada nodo (ωj) como el pico de la transformada de Fourier (promediada en todos los

participantes) en el espacio de frecuencias de la serie temporal de fMRI.

La señal de fMRI correspondiente al nodo j fue simulada por la variable xj de la ecuación

diferencial que modela la dinámica local, integrada utilizando un algoritmo de Runge-Kutta

de segundo orden con un paso de tiempo de 0.1. Para cada modelo y cada combinación de

parámetros, generamos un número de simulaciones que coincid́ıan con el número de sujetos en

el conjunto de datos emṕıricos. Las series temporales simuladas se muestrearon de manera que

coincidieran con la frecuencia de muestreo de los datos de fMRI (downsampling).

Modelo de Hopf

Para la multiestabilidad impulsada por ruido, consideramos una dinámica local dada por el

oscilador de Stuart-Landau, que es equivalente a la forma normal de una bifurcación de Hopf

supercŕıtica. Las ecuaciones diferenciales para el nodo j-ésimo están dadas por,

dxj
dt

=
[
a− x2j − y2j

]
xj − ωjyj +G

∑
i

Cij(xi − xj) + βηj(t)

dyj
dt

=
[
a− x2j − y2j

]
yj + ωjxj +G

∑
i

Cij(yi − yj) + βηj(t)

(6.1)

donde ηj(t) representa ruido gaussiano aditivo, β es el parámetro de escala del ruido, G es

el parámetro de escala de la conectividad anatómica, y a es el parámetro de bifurcación. Para

una bifurcación de Hopf no acoplada, a < 0 resulta en un atractor de punto fijo y a > 0 en

un ciclo ĺımite atractivo, lo que conduce a oscilaciones armónicas en la frecuencia natural del

nodo ωj . Para a ≈ 0, el sistema alterna entre ambas soluciones como consecuencia del término

de ruido aditivo, como se muestra en la Figura 6.1 y la Ecuación 6.1.

Modelo de Rössler

Para el caos determinista consideramos dinámicas locales dadas por el oscilador de Rössler,

que es un sistema de tres ecuaciones diferenciales ordinarias no lineales que exhiben dinámicas

caóticas para ciertas combinaciones de parámetros. Las ecuaciones diferenciales para el nodo

j-ésimo están dadas por,

dxj
dt

= −ωjyj − zj +G
∑
i

Cij(xi − xj)

dyj
dt

= ωjxj − ayj

dzj
dt

= b+ zj(xj − c)

(6.2)
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donde a, b y c son parámetros libres del modelo y G es el factor de escala global de la

conectividad anatómica. Como punto inicial fijamos los parámetros b=0.01 y c=13.44 usando un

algoritmo genético (ver la siguiente sección). Dado que las frecuencias naturales de la actividad

cerebral son ω0 ∼ 0.3, las ecuaciones se reescalaron usando un factor γ = 0.3 para coincidir con

las frecuencias emṕıricas y al mismo tiempo preservar las dinámicas de los osciladores. Nótese

que los parámetros elegidos conducen a dinámicas caóticas (ver Figura 6.1).

6.2.3. Selección de parámetros de Rössler

Dado que hay una discrepancia en el número de parámetros libres entre los dos modelos,

aplicamos un procedimiento de optimización estocástica (algoritmo genético) para fijar dos de los

tres parámetros del modelo de Rössler. Siguiendo trabajos previos (Ipiña et al. 2020), utilizamos

uno menos el ı́ndice de similitud estructural (1-SSIM) como la métrica de distancia entre las

matrices de conectividad funcional simuladas y emṕıricas (Dosselmann et al. 2011) (remitirse

a la sección 6.2.7 para su definición). El algoritmo genético comenzó con una generación de

10 conjuntos de parámetros (’individuos’) elegidos al azar en el rango [0.0, 0.3], [0.0, 0.3],

[0.0, 14] y [0.0, 3.0] para a, b, c y G, respectivamente. Se asignó una puntuación proporcional

a la función objetivo a cada individuo. Posteriormente, se eligió un grupo de individuos en

función de su puntuación (’padres’), y se aplicaron operaciones de cruce, mutación y selección

de élite para crear la siguiente generación. Estas tres operaciones se pueden describir brevemente

de la siguiente manera: 1) la selección de élite ocurre cuando un individuo de una generación

muestra una función objetivo extraordinariamente baja en comparación con los otros individuos,

por lo que esta solución se replica sin cambios en la siguiente generación; 2) el operador de

cruce consiste en combinar dos padres seleccionados para obtener un nuevo individuo que lleve

información de cada padre a la siguiente generación; 3) el operador de mutación puede cambiar

un individuo seleccionado para inducir una alteración aleatoria.

Siguiendo el trabajo de Ipiña et al. (Ipiña et al. 2020), el 20% de cada nueva generación se

creó mediante selección de élite y el 80% mediante cruce de los padres, con una probabilidad

del 5% de posibles mutaciones dentro de este último grupo. Se generó aśı una nueva población

(”descendencia”) y se utilizó de manera iterativa como la siguiente generación hasta que se

cumplieron los criterios de finalización, que consist́ıan en alcanzar una función objetivo promedio

menor que 10−5 a lo largo de las últimas 50 generaciones, u obtener un valor constante para

la función objetivo durante 50 generaciones. Después de aplicar el algoritmo de optimización,

los valores de parámetros correspondientes al mejor ajuste fueron a = 0.3, b = 0.01, c = 13.44

y G = 1.5. Este procedimiento se utilizó para fijar los parámetros b y c. La exploración de los
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parámetros a y G se realizó exhaustivamente a posteriori (ver sección 6.2.6).

6.2.4. Sincrońıa de fase y metaestabilidad

Extrajimos las fases de las señales de fMRI, filtradas mediante un filtro pasa banda, para

cada una de las 90 regiones cerebrales y para cada sujeto. Las fases se obtuvieron aplicando la

transformada de Hilbert tal como se explicó en la sección 3.3.3. A partir de estas calculamos el

parámetro de orden de Kuramoto del sistema y dos magnitudes asociadas al mismo: la sincrońıa

(promedio temporal) y la metaestabilidad (desviación estándar del parámetro de orden). Esto

se hizo por sujeto y posteriormente se promediaron estas medidas entre los sujetos. Recordemos

que la sincrońıa representa el grado global de sincronización promediado temporalmente entre

todos los nodos del sistema, mientras que la metaestabilidad proporciona información sobre la

variabilidad temporal en el nivel de sincronización.

6.2.5. Cuantificación del exponente de Lyapunov global

Establecer si un sistema tiene un comportamiento caótico depende del cálculo del exponente

de Lyapunov 2.3.1. En particular, un exponente de Lyapunov máximo (MLE) mayor que cero se

utiliza como indicador de caos (Pikovsky et al. 2001). Para evaluar el comportamiento caótico

de la red de osciladores de Rössler acoplados calculamos el MLE a partir de trayectorias en el

espacio de variables completo, siguiendo un método numérico estándar publicado por Sprott

(Sprott 2003; Xu et al. 2018).

6.2.6. Ajuste del modelo

Para cada métrica de distancia a optimizar, realizamos una exploración exhaustiva del es-

pacio de parámetros variando los dos parámetros libres de los modelos, correspondientes al

parámetro de acoplamiento global G y al parámetro de modelo libre a, donde a se cambió ho-

mogéneamente en todos los nodos. La fuerza de acoplamiento global G se varió de 0 a 3 en

pasos de 0.05, el parámetro de bifurcación de Hopf a de -0.15 a 0.15 (rango elegido para incluir

el punto de bifurcación), y el parámetro de Rössler a de 0.01 a 0.31 (rango aśı definido para

asegurar exponentes de Lyapunov positivos de la dinámica local), ambos en pasos de 0.005.

Para cada combinación de parámetros calculamos múltiples observables: FC, FCD, sincrońıa y

metaestabilidad ; posteriormente, utilizamos diferentes métricas de distancia para comparar los

observables emṕıricos y simulados. Este procedimiento se realizó nueve veces - el equivalente a

la cantidad de sujetos utilizados- bajo exactamente las mismas condiciones, y las métricas de

distancia resultantes se promediaron, seleccionando los parámetros óptimos como aquellos que
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produjeron el valor más bajo del promedio de la métrica de distancia determinada.

6.2.7. Métricas

Comparación entre FCs

Para calcular la distancia entre las matrices de FC emṕıricas y simuladas utilizamos tres

métricas diferentes: distancia de Frobenius (o Euclidiana) (normalizada por la norma de la

matriz de FC emṕırica), distancia de correlación (1-Correlación) y la distancia 1-SSIM. Con

estas tres métricas se obtuvo un valor de cada métrica de distancia para cada combinación de

parámetros y por cada simulación.

Comparación entre sincrońıa y metaestabilidad

La sincrońıa de fase y la metaestabilidad se calcularon para cada elección de parámetros a

partir de las series temporales simuladas filtradas aplicando el mismo procedimiento que para

los datos emṕıricos. Para poder comparar las magnitudes emṕıricas vs simuladas, calculamos

la diferencia entre los observables simulados y emṕıricos, y luego normalizamos los resultados

dividiendo por el valor emṕırico:

M =
Osimulated −Oempirical

Oempirical
(6.3)

donde M representa la métrica de distancia, Osimulated denota la sincrońıa o metaestabilidad

obtenida a partir de los datos simulados, y Oempirical denota los valores emṕıricos.

FCDs y métrica asociada

Para caracterizar la estructura temporal de las fluctuaciones en estado de reposo, calcula-

mos las matrices de FCD (Hansen et al. 2015; Deco et al. 2008). Cada señal BOLD de longitud

completa de 50 minutos se dividió en M = 148 ventanas deslizantes de 60 segundos, con un

solapamiento de 40 segundos. Para comparar las matrices de FCD recopilamos los elementos de

la matriz triangular superior y comparamos la distribución resultante (entre todos los partici-

pantes) con la obtenida entre todas las simulaciones utilizando el estad́ıstico de Kolmogorov-

Smirnov (KS) como métrica de distancia. Esta métrica cuantifica la diferencia máxima entre

las funciones de distribución acumulativa de dos muestras.
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6.3. Resultados

6.3.1. Observables emṕıricos promediados por grupo

Calculamos un conjunto de observables estad́ısticos a partir de datos emṕıricos de resonan-

cia magnética funcional (fMRI) en estado de reposo adquiridos durante sesiones de escaneo

relativamente largas (50 minutos) para 9 participantes sanos y despiertos. La Fig.6.2 muestra

la matriz de FCD y el histograma obtenido a partir de la parte diagonal superior de la matriz

(agrupada entre todos los participantes).

Figura 6.2: Observables estáticos y dinámicos emṕıricos promediados. La matriz de FC

promediada (arriba), la matriz de FCD de un sujeto a modo de ejemplo (centro), y el histograma

de los valores de FCD (abajo).
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Otros observables emṕıricos relacionados con la dinámica de la actividad cerebral, como la

sincrońıa de fase y la metastabilidad (Jobst et al. 2017), se calcularon para cada participante y

luego se promediaron en toda la muestra, siguiendo el procedimiento descrito en la sección de

Métodos.

6.3.2. Ajuste de modelos globales del cerebro a las matrices FC emṕıricas

Realizamos una exploración exhaustiva del espacio de parámetros para los modelos de Hopf

y Rössler, calculando cada uno de las tres métricas diferentes descritas en la sección de Métodos

(1-Correlación, 1-SSIM y distancia Frobenius) para cada combinación de valores de parámetros.

Los resultados (promediados entre todas las realizaciones) se muestran en la Fig.6.3A.

Como se esperaba a partir de trabajos previos (Jobst et al. 2017; Piccinini et al. 2022; Ipiña

et al. 2020), observamos que para el modelo de Hopf, el mejor ajuste ocurrió cerca del punto de

bifurcación (a = 0) para todas las métricas. Para el modelo de Rössler, en cambio, se obtuvieron

ajustes comparativamente buenos para las tres métricas en un rango más amplio de valores de

parámetros. La dinámica global del modelo de Rössler presentó exponentes de Lyapunov nulos

y positivos en el rango explorado de parámetros (mostrados como la curva roja superpuesta

sobre la matriz de 1-Correlación).

Notemos que los resultados mostrados en la Figura 6.3 se obtuvieron explorando el parámetro

a de Rössler. La Figura 6.3B muestra las matrices de FC obtenidas para las combinaciones de

parámetros óptimos usando cada métrica como función objetivo. A simple vista observamos

una mayor consistencia entre las matrices de FC simuladas con el modelo de Rössler. Una

caracterización adicional de estos resultados se muestra en la Figura 6.3C, presentando una

comparación de las distancias normalizadas (1 menos la bondad de ajuste, 1−GoF ), en función

del parámetro de escala G, utilizando como parámetro a del modelo el obtenido al optimizar

la distancia Frobenius. Se puede observar un parámetro de acoplamiento óptimo para varias de

las métricas, con la excepción de la distancia Frobenius y 1-SSIM en el modelo de Hopf. Para

el modelo de Rössler, todas las métricas presentaron un valor óptimo de G claramente definido,

que también fue comparativamente similar entre ellas.



6.3. Resultados 101

Figura 6.3: Modelos cerebrales ajustados a métricas FC estáticas. (A) Exploración

exhaustiva del espacio de parámetros para los modelos de Hopf y Rössler. Las matrices codifi-

cadas por colores muestran la distancia entre las matrices de FC simuladas y emṕıricas según

tres métricas diferentes: 1-Correlación, 1-SSIM y distancia Frobenius. El exponente de Lyapu-

nov para la dinámica global del modelo de Rössler se muestra como una curva roja superpuesta

sobre la matriz de 1-Correlación en función del parámetro a. (B) Las matrices de FC calculadas

usando las combinaciones de parámetros óptimos obtenidas a partir de cada métrica de distan-

cia. (C) Las tres métricas en cuestión calculadas para ambos modelos en función del parámetro

de acoplamiento G, utilizando el mejor parámetro a obtenido a partir de la optimización de la

distancia Frobenius.

6.3.3. Ajuste de modelos cerebrales a observables dinámicos

A continuación, realizamos el mismo análisis pero con el propósito de reproducir tres obser-

vables ’dinámicos’: la distribución de valores de FCD, la sincrońıa y la metastabilidad. El panel

izquierdo de la Figura 6.4A muestra la distancia KS entre la distribución de valores de FCD

simulados y emṕıricos para todas las combinaciones de parámetros.
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Figura 6.4: Modelos cerebrales ajustados a observables dinámicos. (A) Distancia KS

entre la distribución de valores de FCD simulados y emṕıricos calculados para todas las com-

binaciones de parámetros y para ambos modelos. El mejor ajuste se obtuvo para a ≈ 0 para el

modelo de Hopf y para valores altos de a para el modelo de Rössler. El panel derecho mues-

tra los histogramas de los valores de FCD obtenidos para los parámetros óptimos optimizados

utilizando la distancia KS, junto con la distribución emṕırica. (B) Ejemplos de matrices de

FCD para ambos modelos calculadas utilizando los parámetros óptimos obtenidos a partir de la

optimización de la distancia KS. (C) Distancia KS, metastabilidad (K) y distancia de sincrońıa

(C) entre datos simulados y emṕıricos en función de G, calculados para el mejor a obtenido

utilizando la estad́ıstica KS.

Una vez más, podemos ver que el modelo de Rössler presentó una región amplia de valores

óptimos. El panel derecho de la figura presenta los histogramas de los elementos de las FCDs

obtenidas con los parámetros óptimos, determinados mediante la distancia KS, junto con la

distribución emṕırica representada en azul. Podemos ver que la distribución óptima de la FCD

para el modelo de Rössler parece estar sesgada hacia la derecha, mientras que la distribución
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óptima para el modelo de Hopf sigue una distribución normal centrada alrededor de la media

emṕırica.

La Figura 6.4B muestra, para ambos modelos, ejemplos de matrices de FCD simuladas

utilizando los parámetros que minimizaron la métrica. Para el modelo de Rössler, las correlacio-

nes positivas fueron más generalizadas; en particular, la observación de correlaciones positivas

lejos de la diagonal principal implica matrices de FC similares para ventanas temporales en

tiempos distantes. Se observa un patrón similar en el ejemplo de la matriz de FCD emṕırica

proporcionada en la Figura 6.2.

Calculamos la distancia entre los valores de metastabilidad y sincrońıa simulados y emṕıricos

restando los valores simulados y normalizando, como se explica en la sección 6.2.7. La Figura

6.4C muestra cómo cambian la distancia KS, la distancia de metastabilidad (K) y la de sincrońıa

(C) en función de G para el mejor parámetro a obtenido utilizando la estad́ıstica de KS. Ningún

modelo presentó un mı́nimo de la curva de distancia KS que coincidiera con los de las otras dos

métricas. Vale aclarar que, más allá de obtener acá valores negativos para algunas métricas, los

óptimos fueron siempre valores cercanos a cero.

6.3.4. Comparación de los valores óptimos de distancia entre modelos

La Figura 6.5 presenta una comparación de 1−GoF para todas las métricas y observables

emṕıricos reproducidos por ambos modelos.

Figura 6.5: Comparación de 1 − GoF para todas las métricas y observables entre

ambos modelos. El panel inferior presenta el tamaño del efecto (Cohen’s d) entre ambos

modelos para cada una de las métricas.
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Estos valores se obtuvieron a partir de los procedimientos de optimización exhaustiva pre-

sentados en las Figuras 6.3 y 6.4, es decir, extrajimos el mı́nimo de cada grilla de exploración

exhaustiva y los condensamos todos en la Figura 6.5 (panel superior). Evaluamos, también, el

tamaño del efecto entre las bondades de ajuste de los modelos óptimos utilizando la medida

de Cohen’s d (Figura 6.5, panel inferior) (Fritz et al. 2012). Se observa que, en general, todas

las métricas de distancia muestran valores similares para ambos modelos, con excepción de la

distancia de Frobenius calculada entre las matrices de FC simuladas y emṕıricas, para la cual

el modelo de Hopf exhibió una bondad de ajuste significativamente superior.

6.3.5. Ajuste de múltiples observables simultáneos

A continuación, exploramos la capacidad de cada modelo para reproducir simultáneamente

múltiples observables. Para ello, primero obtuvimos los parámetros óptimos que reprodućıan

un observable espećıfico (siguiendo el procedimiento de exploración exhaustiva mostrado en las

Figuras 6.3 y 6.4). Luego, utilizando estos parámetros, evaluamos qué tan bien las dinámicas

de los modelos pod́ıan reproducir los demás observables analizados.

Los resultados de este análisis se presentan en la Figura 6.6A. Cada entrada de la matriz

corresponde a la métrica indicada en la columna, evaluada usando los parámetros que optimizan

la métrica de la fila. Por ejemplo, el valor 0.28 en la segunda fila y tercera columna de la matriz

del modelo de Hopf representa la distancia Frobenius entre las matrices de FC emṕıricas y

simuladas, obtenidas al simular el modelo de Hopf con los parámetros que optimizan la métrica

1-SSIM. Las barras al lado derecho de las matrices muestran el promedio de los valores a lo largo

de cada fila, permitiendo visualizar cuán bien los parámetros que optimizan la métrica de cierta

fila pueden reproducir todos los demás observables. La Figura 6.6B muestra una representación

gráfica de las matrices de generalización presentadas en la Figura 6.6A. Cada nodo representa

una métrica de distancia, y una flecha que conecta dos nodos indica que los parámetros que

optimizan la métrica de origen generan valores bajos para la métrica de destino. Para un par

dado de métricas A y B, calculamos el tamaño del efecto Cohen’s d entre los valores óptimos de

la métrica A, obtenidos tras la exploración exhaustiva del espacio de parámetros, y los valores

de la métrica B, obtenidos utilizando los mismos parámetros. Un valor bajo de Cohen’s d indica

que ambas métricas producen valores similares para los mismos parámetros del modelo, lo que

significa que esos parámetros logran reproducir simultáneamente ambos observables. Calculamos

el tamaño del efecto Cohen’s d para todos los pares de métricas y luego aplicamos un umbral,

mostrando solo el 25% inferior de los valores de Cohen’s d, los cuales se representan como

conexiones entre los nodos correspondientes.
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Figura 6.6:Generalización entre observables emṕıricos.(A)Matriz que contiene las métri-

cas de distancia indicadas en las columnas evaluadas utilizando los parámetros que optimizan

las métricas de distancia indicadas en las filas. Las barras en el lado derecho de la matriz indican

el promedio por fila (B) Cada métrica de distancia se representa como un nodo en un gráfico,

donde las flechas indican que los parámetros que optimizan la métrica de origen también pro-

ducen valores bajos para la métrica de destino. Para cada par de métricas A y B (representadas

por dos nodos en el gráfico), se calculó el tamaño del efecto Cohen’s d entre los valores óptimos

de la métrica A, obtenidos tras la exploración exhaustiva del espacio de parámetros, y los valores

de la métrica B, obtenidos utilizando los mismos parámetros. Ádemás, se aplicó un umbral para

mostrar solo el 25% de las conexiones con los valores más bajos de Cohen’s d.
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Se observa que el modelo de Hopf, optimizado para reproducir K y C, superó al modelo

de Rössler en todas las demás métricas (pues no se observan flechas saliendo de estas métricas

para el oscilador de Rössler). Sin embargo, para las matrices de FC comparadas mediante la

distancia de 1-Correlación, y para las distribuciones de FCD comparadas usando la distancia

KS, el modelo de Rössler superó al modelo de Hopf en todas las demás métricas.

Es importante destacar que, a pesar de su rendimiento relativamente bajo en las métricas

C y K, el modelo de Rössler, optimizado para reproducir la dinámica emṕırica codificada en la

FCD, dio lugar a parámetros que también replicaron la matriz de FC ’estática’ según los tres

criterios de distancia (1-Correlación, 1-SSIM y distancia de Frobenius). Por otro lado, al ajustar

el modelo de Rössler a la FC ’estática’, los parámetros obtenidos también se aproximaron a la

distribución emṕırica en el caso de la FCD. Este comportamiento no se observó en el modelo de

Hopf, cuyo ajuste a la FCD produjo parámetros que no coincid́ıan con la FC estática, y viceversa.

En otras palabras, el modelo de Rössler no presenta una dicotomı́a clara entre reproducir la

FC en escalas temporales largas (matriz de FC) o reproducir la FCD, sino que es capaz de

aproximarse a ambas simultáneamente.

6.3.6. Comparación del rendimiento de generalización entre modelos ajusta-

dos a FC y FCD

La Figura 6.7 muestra que el modelo de Rössler puede aproximar simultáneamente la FC

estática y dinámica, mientras que el modelo de Hopf genera resultados inconsistentes al opti-

mizarse para un observable y luego evaluarse en el otro. La primera fila, tanto de los paneles

izquierdo como derecho, muestra la matriz de FC óptima -usando la distancia de Frobenius-

junto con la distribución de valores de FCD obtenida al emplear los parámetros que optimizan la

matriz de FC con la mencionad distancia. Por el contrario, la segunda fila muestra la matriz de

FC calculada utilizando los parámetros que minimizan la distancia KS entre las distribuciones

emṕırica y simulada de las FCD. Además se muestra la distribución de valores de FCD obtenida

al utilizar esos mismos parámetros. A partir del panel izquierdo, se observa que el modelo de

Hopf, ajustado para representar la matriz de FC, no logró capturar la distribución de valores

de FCD, y viceversa. En contraste, como era de esperar según los resultados de la Figura 6.6,

el modelo de Rössler aproximó simultáneamente ambos observables con la misma combinación

de parámetros.
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Figura 6.7: El modelo de Rössler es capaz de aproximar simultáneamente la matriz

de FC emṕırica y la distribución de valores de FCD. Cada panel (izquierdo y derecho)

presenta en su primera fila la mejor reproducción de la matriz de FC optimizada según la

distancia de Frobenius, junto con la distribución de valores de FCD obtenida al emplear esos

mismos parámetros. En contraste, la segunda fila muestra la matriz de FC calculada utilizando

los parámetros que minimizan la distancia KS entre las distribuciones emṕırica y de FCD,

seguida de la distribución de valores de FCD correspondiente.

6.4. Discusión

Al referirse a la segunda ley de Newton, el astrónomo británico Arthur Eddington definió

’fuerza’ de la siguiente manera: ”Una fuerza es lo que necesitamos poner en el lado izquierdo de

la ecuación para obtener resultados que concuerden con los movimientos observados”(Kleppner

et al. 2014). Desde esta perspectiva, la f́ısica se concibe como un esfuerzo por desarrollar mo-

delos cada vez más precisos para describir la dinámica de la naturaleza. Aunque en la f́ısica

contemporánea las estructuras matemáticas abstractas son consideradas en śı mismas una gúıa

fundamental para la construcción teórica, la neurociencia es un campo mucho más joven que aún

debe explorar diversos mecanismos para explicar la dinámica observada en los datos emṕıricos

(Einevoll et al. 2019). En este sentido, su enfoque comparte similitudes con la interpretación de

Eddington sobre la segunda ley de Newton.

Desde los descubrimientos de Hodgkin y Huxley, los modelos computacionales de la activi-

dad neuronal pueden formularse con un alto grado de realismo biof́ısico (Abbott et al. 1990). Los

avances en microscoṕıa y tecnoloǵıas relacionadas han contribuido a revelar intrincadas redes

de conexiones sinápticas en la escala de pocas neuronas individuales, permitiendo reconstruir
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el cableado completo de columnas corticales (Oh et al. 2014). Grandes esfuerzos colaborati-

vos, como el HUMAN BRAIN PROJECT, intentan integrar esta información para producir

simulaciones altamente detalladas de pequeñas regiones corticales (Markram 2012). A medida

que aumenta la potencia computacional y se expanden los mapas disponibles de conectividad

sináptica, se espera que los modelos realistas basados en la optimización multiobjetivo sobre

un gran espacio de parámetros comiencen a proporcionar predicciones a escala macroscópica,

es decir, la escala investigada con herramientas de neuroimágenes como fMRI, EEG y MEG.

Estas predicciones tendrán que ser consistentes con los modelos fenomenológicos previos que

describieron con éxito la dinámica y la conectividad funcional de la actividad cerebral a gran

escala. Por lo tanto, nuestra investigación sobre los mecanismos potenciales subyacentes a la

dinámica en esta escala está motivada por la necesidad de informar y limitar el desarrollo de

modelos biof́ısicamente realistas.

En este capitulo, exploramos dos mecanismos diferentes para generar la compleja dinámica

espacio-temporal de la actividad cerebral en estado de reposo. Como se muestra en las figuras

6.3 y 6.4, un modelo basado en la multiestabilidad impulsada por ruido entre soluciones de

equilibrio (modelo de Hopf) requirió una sintonización fina del parámetro de bifurcación para

reproducir adecuadamente diferentes observables emṕıricos. Por el contrario, un modelo basado

en el caos determinista (modelo de Rössler) reprodujo estos observables en un rango más amplio

del parámetro del modelo, para el cual la dinámica global también exhibió exponentes de Lya-

punov positivos. Sin embargo, debe tenerse en cuenta que, debido a la naturaleza diferente de

ambos modelos, los parámetros no juegan el mismo papel en la determinación de la dinámica de

ambos sistemas, y por lo tanto no son directamente comparables. Esta limitación es inherente

a la comparación entre modelos que presentan dinámicas cualitativamente diferentes.

Los modelos computacionales se desarrollan e implementan con el propósito de capturar

ciertas caracteŕısticas de la actividad cerebral, que dependen de la pregunta cient́ıfica y de las

hipótesis asociadas. Sin embargo, los modelos pueden ser dif́ıciles de interpretar si son inconsis-

tentes al intentar reproducir múltiples caracteŕısticas de los datos emṕıricos al mismo tiempo.

Como se muestra en el panel izquierdo de la figura 6.7, el ajuste óptimo del modelo de Hopf

a la distribución de FCD resulta en parámetros que producen una matriz de FC muy diferen-

te a la emṕırica. Es importante notar que la matriz de FC es posiblemente la métrica más

utilizada para describir datos de fMRI en estado de reposo (Heuvel et al. 2010). El fracaso

de los modelos de equilibrio impulsados por ruido para reproducir múltiples observables en si-

multáneo también se destaca en el trabajo reciente de Courtiol et al. (Courtiol et al. 2020),

quienes realizaron exploraciones exhaustivas del espacio de parámetros para revelar la presencia
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de puntos de trabajo óptimos muy diferentes en sistemas de osciladores acoplados. Idealmente,

los modelos fenomenológicos de la actividad cerebral en su totalidad debeŕıan ser capaces de

aproximar tanto la FC ’estática’ como la dinámica; sin embargo, esto podŕıa ser dif́ıcil para

los modelos de equilibrio impulsados por ruido que requieren una sintonización fina en la criti-

calidad dinámica para producir fluctuaciones temporales de FC suficientemente complejas. En

el modelo de Rössler encontramos un amplio rango de parámetros del modelo que ajustaban

simultáneamente múltiples observables emṕıricos. Este resultado sugiere que la dicotomı́a entre

reproducir caracteŕısticas de FC estática o dinámica podŕıa evitarse mediante la introducción

de caos determinista en la dinámica local.

Los modelos basados en la multiestabilidad impulsada por ruido han encontrado aplicacio-

nes generalizadas en la neurociencia computacional (Rolls et al. 2010). Dado que su dinámica

puede entenderse en términos de atractores conectados por transiciones inducidas por ruido,

estos modelos son más fáciles de interpretar y construir con el propósito de producir ciertos

comportamientos predefinidos. Dentro del contexto espećıfico de los modelos cerebrales, la in-

teracción entre el ruido y la dinámica en equilibrio es suficiente para describir el repertorio de

configuraciones cerebrales en reposo (Deco et al. 2012). La adición de ruido a este tipo de mode-

los produce fluctuaciones dinámicas en la conectividad funcional, las cuales se han establecido

de manera robusta utilizando varias modalidades de imágenes (Hansen et al. 2015; Tagliazucchi

et al. 2012; Hutchison et al. 2013). La inclusión del ruido no debe ser desestimada como un

mecanismo ad hoc necesario para producir dinámicas interesantes. En su lugar, debeŕıa consi-

derarse como la manifestación de procesos biológicos y f́ısicos que ocurren a múltiples escalas

espaciales y temporales. Los sistemas neuronales están sujetos a diversas fuentes de ruido: la

actividad de una población de neuronas inevitablemente ocurre en presencia de fluctuaciones es-

tocásticas debido a la enerǵıa térmica, al cierre y apertura de los canales de iones, la liberación

intermitente de neurotransmisores y la estimulación sinápticas irregulares de otras neuronas,

entre otras fuentes de ruido (Faisal et al. 2008; Rolls et al. 2010). Sin embargo, la interpretación

biológica de los términos de ruido aditivo en modelos globales del cerebro noo está claramente

definida. Siguiendo el principio de la navaja de Ockham (Blumer et al. 1987), introducir fuentes

desconocidas de variabilidad al modelo debeŕıa considerarse menos satisfactorio que generar va-

riabilidad de forma endógena, producida por dinámicas intŕınsecas fuera del equilibrio. Aunque

el caos determinista puede ser una alternativa para inducir este comportamiento en modelos

fenomenológicos a gran escala, no está claro aún cómo construir sistemáticamente modelos

biof́ısicamente realistas cuya variabilidad se derive de dinámicas caóticas, y cuyos resultados

sean consistentes con los datos experimentales.
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Otro punto relevante es si los datos emṕıricos respaldan la existencia de caos en la dinámica

cerebral. Este es un tema controvertido, posiblemente porque las herramientas experimentales

actuales son insuficientes para producir evidencia que pueda considerarse como definitiva. En las

últimas décadas, varios estudios indican la presencia de dinámicas caóticas en series temporales

obtenidas de una amplia variedad de sistemas neuronales (Faure et al. 2001; Korn et al. 2003);

sin embargo, una cantidad comparable de trabajos se ha publicado argumentando en contra de

esta posibilidad (Rapp 1995; Preissl et al. 1996). Teóricamente, se acepta que la inestabilidad

inherente de las dinámicas caóticas facilitaŕıa la extraordinaria capacidad de los sistemas neu-

ronales para responder rápidamente a los cambios externos (Hansel et al. 1992), para generar

transiciones de manera flexible entre patrones de comportamiento como consecuencia a cambios

del entorno, y para explorar el amplio repertorio de estados dinámicos que dota a los circuitos

neuronales de notables capacidades computacionales (Rabinovich et al. 1998). Las dinámicas

caóticas en el cerebro podŕıan surgir de varias maneras, como a partir de mecanismos intŕınsecos

dentro de neuronas individuales (Hindmarsh et al. 1997), o de la dinámica colectiva de redes

neuronales (Hansel et al. 1996; Battaglia et al. 2007; Kadmon et al. 2015). Si bien nuestros

resultados no demuestran la presencia de caos determinista en la actividad cerebral a gran es-

cala, ilustran cómo, incluso el modelo más simple de osciladores caóticos acoplados, es capaz de

reproducir simultáneamente observables de FC ’estáticos’ y dinámicos. Este resultado debeŕıa

tenerse en cuenta en la futura construcción de modelos globales del cerebro, independientemente

de la cuestión más profunda de si la dinámica caótica representa una caracteŕıstica intŕınseca

de la actividad cerebral.

Debe destacarse que el ruido y el caos determinista no son mecanismos mutuamente exclu-

yentes para producir dinámicas cerebrales multiestables. Como mostraron recientemente Orio

et al. (Orio et al. 2018), el ruido moderado puede aumentar el comportamiento multiestable de

las redes neuronales caóticas, lo que resulta en una exploración más amplia del repertorio de

estados del sistema. Si bien este trabajo investigó un modelo neuronal basado en conductancia

y acoplado mediante una red de tipo small world, presumiblemente la dinámica caótica multi-

estable inducida por el ruido también se podŕıa encontrar en osciladores de Rössler acoplados

mediante la conectividad anatómica realista del cerebro, una posibilidad que debeŕıa abordarse

en futuros estudios.

También es importante señalar algunas limitaciones de nuestro estudio, las cuales abren

oportunidades para futuras mejoras. En primer lugar, aunque consideramos interacciones ins-

tantáneas entre los nodos de la red, la interacción entre el ruido y los retardos de conducción

es un factor que puede ser relevante aa la hora de reproducir la dinámica de las fluctuaciones
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espontáneas de la actividad cerebral (Deco et al. 2009). No obstante, dado el muestreo temporal

relativamente lento de los datos de fMRI en comparación con la rápida conducción a través de

axones mielinizados de largo alcance, es probable que los efectos de omitir estos retardos sean

atenuados en nuestros modelos. Estudios previos han demostrado que los retardos de trans-

misión pueden influir en la frecuencia de la actividad cerebral simulada (Petkoski et al. 2018;

Petkoski et al. 2019) y que su inclusión es relevante para reproducir correlaciones emṕıricas

entre las envolventes de oscilaciones cerebrales medidas con MEG (Cabral et al. 2014). Sin em-

bargo, debido a que esta información no puede extraerse a partir de datos de fMRI, nuestros

modelos no pueden incorporarla. En segundo lugar, nuestros modelos no utilizaron redes de

conectividad anatómica obtenidas de los mismos sujetos registrados en reposo con fMRI. En

su lugar, empleamos registros de DTI de otro grupo de participantes sanos, representativos de

una población adulta. Aunque este enfoque es válido, futuras investigaciones debeŕıan incorpo-

rar matrices de conectividad individuales, especialmente al modelar la dinámica a gran escala

de sujetos con anomaĺıas estructurales derivadas de trastornos neurológicos o psiquiátricos. En

tercer lugar, interpretamos directamente la variable de salida de nuestro modelo como la señal

BOLD de fMRI, a partir de la cual construimos los observables simulados. Este enfoque no

considera posibles interacciones entre múltiples escalas temporales, es decir, las dinámicas más

rápidas que podŕıan influir en las fluctuaciones BOLD en escalas más lentas (Cabral et al. 2014;

Schirner et al. 2018). Futuras investigaciones, basadas en datos emṕıricos con mayor resolución

temporal (por ejemplo, MEG), debeŕıan explorar esta posibilidad en el contexto de la dinámica

caótica vs. estocástica. Por último, nuestro estudio se centró en registros inusualmente largos

(50 minutos) de sujetos despiertos, lo que permitió obtener estimaciones más robustas de las

medidas de FCDs. Sin embargo, para comprender mejor las implicaciones biológicas de nuestros

hallazgos, será fundamental explorar la dinámica cerebral en otros estados de conciencia, como

el sueño profundo, la anestesia general o en pacientes con trastornos de la conciencia (Bayne

et al. 2016). Especulamos que el nivel de conciencia podŕıa estar relacionado con el grado de

caos en el modelo de mejor ajuste, una hipótesis que podrá ser evaluada en estudios futuros.

En conclusión, en esta sección mostramos que la dinámica caótica da lugar a algunas carac-

teŕısticas interesantes en los modelos globales de actividad cerebral, superando a los modelos de

equilibrio impulsados por ruido en la reproducción simultánea de múltiples observables emṕıri-

cos. Aunque los modelos fenomenológicos estudiados pueden parecer distantes de los detalles

biológicos del cerebro humano, resultan fundamentales para identificar principios dinámicos que

los modelos más realistas debeŕıan ser capaces de reproducir. Nuestros resultados destacan el

valor del caos determinista como un mecanismo que no debeŕıa ser ignorado en futuros esfuerzos
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de modelado, incluso cuando se considere la presencia simultánea de ruido. Abordar el desaf́ıo

de integrar e investigar el caos determinista en modelos biof́ısicamente realistas podŕıa apor-

tar claves para comprender la capacidad del cerebro humano de generar un flujo constante y

dinámico de patrones complejos de actividad.
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Conclusiones

Los desarrollos tecnológicos de los últimos años han permitido comenzar a explorar el fun-

cionamiento del cerebro desde una mirada cient́ıfica y, en particular, comenzar a comprender

su cualidad más particular: la conciencia. A pesar de los avances, el conocimiento generado

hasta ahora ha sido principalmente descriptivo, enfocándose en los sustratos neurobiológicos de

la conciencia. Sin embargo, el problema de cómo surge la experiencia consciente a partir de la

actividad cerebral sigue siendo un desaf́ıo donde la f́ısica, a través del modelado computacio-

nal, puede hacer aportes significativos. En particular, los modelos fenomenológicos utilizados

en esta tesis juegan un papel crucial en la neurociencia contemporánea, al permitir representar

dinámicas cerebrales destacando sus caracteŕısticas generales, sin adentrarse en detalles biológi-

cos complejos.

En esta tesis se implementaron modelos fenomenológicos para comprender los mecanismos

que subyacen a diferentes estados de conciencia, incluyendo el sueño profundo y los estados

alterados inducidos por el psicodélico serotoninérgico N,N-dimetiltriptamina (DMT). La com-

binación de estos modelos con datos emṕıricos provenientes de neuroimágenes permitió capturar

aspectos globales de la actividad cerebral, reflejando tanto las propiedades locales de las regiones

como sus interacciones mutuas.

Inicialmente, nos preguntamos cuáles son las propiedades esenciales que debe poseer un

modelo computacional para representar con precisión las dinámicas macroscópicas del cerebro.

Abordamos este interrogante proponiendo ecuaciones polinomiales genéricas con coeficientes

libres que luego ajustamos utilizando observables derivados de datos de resonancia magnética

funcional (fMRI) de sujetos en estado de vigilia y sueño profundo. Los resultados demostraron

que la actividad local de las regiones cerebrales se asocia a un tipo particular de dinámica y

estabilidad, que puede capturarse mediante formas normales de Hopf. Además, se evidenció que

el sueño profundo se caracteriza por un aumento de la estabilidad dinámica en comparación

113
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con el estado de vigilia. En resumen, en esta primera parte hicimos una caracterización de las

dinámicas canónicas que deben incluirse en modelos de actividad cerebral global para lograr

capturar adecuadamente observables emṕıricos.

En la segunda parte de esta tesis, y con los resultados anteriores a disposición, exploramos

si estos modelos eran capaces de explicar las transiciones producidas entre estados de conciencia

con dinámicas cualitativamente diferentes. Para ello, decidimos enfocarnos en los efectos psi-

codélicos de la N,N-dimetiltriptamina (DMT) intravenosa ya que la corta duración de sus efectos

es ideal para este propósito. Al mismo tiempo, para lograr reproducir estas caracteŕısticas, in-

trodujimos un enfoque novedoso basado en la implementación de un modelo con parámetros

dependientes del tiempo que tuviese la capacidad de representar la dinámica de la transición

debido a la modulación neuroqúımica de la actividad cerebral dada por la farmacocinética de la

droga. Observamos que, en presencia de DMT, los parámetros que regulan la dinámica temporal

tienden a ubicarse cerca de una bifurcación en el caso de la actividad generada por la DMT, y

que su evolución temporal logra reproducir, fenomenológicamente, la farmacocinética de dicha

sustancia.

Dado que una de las grandes ventajas de los modelos es la posibilidad de producir ensayos

de perturbaciones in silico que sirvan para probar hipótesis propuestas, nos propusimos, a conti-

nuación, explorar la respuesta del modelo ya optimizado ante forzantes externos. En esta etapa

encontramos que la modulación temporal propuesta introduce un intervalo transitorio durante

el cual la propagación de est́ımulos se vuelve óptima para las redes de conexiones cerebrales que

poseen una mayor densidad de receptores serotoninérgicos vinculados al DMT.

Finalmente, decidimos abordar una de las principales limitaciones que surgen al utilizar los

modelos del cerebro impulsados por ruido: su falta de robustez para reproducir simultáneamente

múltiples observables emṕıricos. Este problema se acentúa especialmente al intentar captar

observables que reflejan escalas de tiempo largas -’estáticas’- frente a aquellos que describen

cambios dinámicos. Con esta problemática en mente, propusimos que la actividad local de

las regiones cerebrales estuviese gobernada por el caos determinista como una alternativa a la

multiestabilidad inducida por ruido, con el objetivo de mejorar la capacidad de los modelos para

ajustar los datos emṕıricos. Para investigar esta hipótesis, comparamos las formas normales de

Hopf, representadas por osciladores de Stuart-Landau, que identificamos al inicio de esta tesis,

con osciladores de Rössler, conocidos por su capacidad de exhibir caos determinista. Analizamos

la eficacia de cada modelo para reproducir múltiples observables emṕıricos de forma simultánea.

Los hallazgos demostraron que el caos determinista cumple con el objetivo de ajustar métricas

diśımiles dentro de un mismo rango de parámetros, superando aśı algunas de las limitaciones
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de los modelos de equilibrio impulsados por ruido.

A lo largo de estos caṕıtulos, hemos buscado contribuir al entendimiento de los mecanismos

que permiten replicar las distintas caracteŕısticas de la dinámica cerebral a gran escala. Nuestro

trabajo abarcó desde la identificación de los requisitos mı́nimos que deben cumplir los modelos

para emular con precisión dicha dinámica, hasta la exploración de alternativas que mejoren su

robustez frente al análisis de múltiples observables, incluyendo potenciales estrategias para cap-

turar transiciones entre diferentes estados de conciencia. Si bien reconocemos las limitaciones

inherentes de los modelos fenomenológicos empleados y su aparente desconexión con los deta-

lles biológicos del cerebro humano, es importante destacar que su valor radica en su simpleza

y generalidad para identificar mecanismos dinámicos fundamentales que modelos más realis-

tas debeŕıan, eventualmente, ser capaces de reproducir. Es importante, además, comprender

que estos modelos representan una primera aproximación en la comprensión de los complejos

mecanismos cerebrales. Desde una perspectiva f́ısica aplicada a un sistema biológico altamen-

te complejo, consideramos esencial, como primer paso, abordar el estudio del sistema con un

enfoque simplificado, que permita captar su comportamiento general sin perderse en detalles

que, en esta etapa, podŕıan dificultar el análisis sin aportar un valor significativo. Por otro lado,

entendemos que, a escala macroscópica, incluso el realismo biof́ısico de un modelo no garantiza

que las propiedades estad́ısticas observadas en los datos emṕıricos sean reproducidas de forma

precisa. En este contexto, nuestros hallazgos representan un humilde aporte a la ciencia, frente

al monumental desaf́ıo de comprender cómo un órgano de apenas 1.3 kg es capaz de generar

una propiedad tan asombrosa y enigmática como la conciencia.
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1073/pnas.1119598109. url: https://www.pnas.org/doi/10.1073/pnas.1119598109

(visitado 10-01-2025).

Carhart-Harris, Robin Lester et al. (2014). ((The entropic brain: a theory of conscious states in-

formed by neuroimaging research with psychedelic drugs)). English. En: Frontiers in Human

Neuroscience 8. Publisher: Frontiers. issn: 1662-5161. doi: 10.3389/fnhum.2014.00020.

url: https://www.frontiersin.org/articles/10.3389/fnhum.2014.00020 (visitado

14-05-2024).

https://doi.org/10.7554/eLife.69320
https://doi.org/10.7554/eLife.69320
https://doi.org/10.7554/eLife.69320
https://doi.org/10.1016/j.neuroimage.2017.03.045
https://www.sciencedirect.com/science/article/pii/S1053811917302537
https://www.sciencedirect.com/science/article/pii/S1053811917302537
https://doi.org/10.1016/j.neuroimage.2013.11.047
https://doi.org/10.1016/j.neuroimage.2013.11.047
https://www.sciencedirect.com/science/article/pii/S1053811913011968
https://www.sciencedirect.com/science/article/pii/S1053811913011968
https://doi.org/10.1177/0269881118754710
https://doi.org/10.1177/0269881118754710
https://doi.org/10.1177/0269881118754710
https://doi.org/10.1038/npp.2017.84
https://www.nature.com/articles/npp201784
https://doi.org/10.1073/pnas.1119598109
https://doi.org/10.1073/pnas.1119598109
https://www.pnas.org/doi/10.1073/pnas.1119598109
https://doi.org/10.3389/fnhum.2014.00020
https://www.frontiersin.org/articles/10.3389/fnhum.2014.00020


Bibliograf́ıa 121

Casali, Adenauer G. et al. (2013). ((A Theoretically Based Index of Consciousness Independent

of Sensory Processing and Behavior)). En: Science Translational Medicine 5.198. Publisher:

American Association for the Advancement of Science, 198ra105-198ra105. doi: 10.1126/

scitranslmed.3006294. url: https://www.science.org/doi/10.1126/scitranslmed.

3006294 (visitado 18-12-2024).

Cavanna, Federico et al. (2018). ((Dynamic functional connectivity and brain metastability

during altered states of consciousness)). En: NeuroImage. Brain Connectivity Dynamics
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Publishing Group, págs. 119-126. issn: 1546-1726. doi: 10.1038/nn0203-119. url: https:

//www.nature.com/articles/nn0203-119 (visitado 10-01-2025).

Damoiseaux, J. S. et al. (2006). ((Consistent resting-state networks across healthy subjects)).

En: Proceedings of the National Academy of Sciences 103.37. Publisher: Proceedings of the
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págs. 671-682. issn: 1065-9471. doi: 10.1002/hbm.20428. url: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC6871022/ (visitado 18-12-2024).

Horovitz, Silvina G. et al. (2009). ((Decoupling of the brain’s default mode network during deep

sleep)). En: Proceedings of the National Academy of Sciences 106.27. Publisher: Proceedings
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of the National Academy of Sciences, págs. 4489-4494. doi: 10.1073/pnas.0900924106.

url: https://www.pnas.org/doi/10.1073/pnas.0900924106 (visitado 18-12-2024).

Leary, Timothy, Ralph Metzner y Ram Dass (2008). The Psychedelic Experience: A Manual

Based on the Tibetan Book of the Dead. en. Google-Books-ID: 44dvPwAACAAJ. Penguin.

isbn: 978-0-14-118963-5.

Letellier, Christophe y Otto E. Rossler (2006). ((Rossler attractor)). en. En: Scholarpedia 1.10,

pág. 1721. issn: 1941-6016. doi: 10 . 4249 / scholarpedia . 1721. url: http : / / www .

scholarpedia.org/article/Rossler_attractor (visitado 15-01-2025).

https://doi.org/10.1016/j.tics.2013.06.007
https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(13)00127-7
https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(13)00127-7
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008
https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/neuro.06.004.2008/full
https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/neuro.06.004.2008/full
https://doi.org/10.1073/pnas.1921475117
https://doi.org/10.1073/pnas.1921475117
https://www.pnas.org/doi/full/10.1073/pnas.1921475117
https://doi.org/10.1016/j.neuroimage.2016.02.015
https://www.sciencedirect.com/science/article/pii/S1053811916001221
https://www.sciencedirect.com/science/article/pii/S1053811916001221
https://doi.org/10.1038/s41593-022-01177-4
https://www.nature.com/articles/s41593-022-01177-4
https://www.nature.com/articles/s41593-022-01177-4
https://doi.org/10.1073/pnas.0900924106
https://www.pnas.org/doi/10.1073/pnas.0900924106
https://doi.org/10.4249/scholarpedia.1721
http://www.scholarpedia.org/article/Rossler_attractor
http://www.scholarpedia.org/article/Rossler_attractor


Bibliograf́ıa 133

Liu, Jia et al. (2017). ((Comparison of fMRI analysis methods for heterogeneous BOLD responses

in block design studies)). En: NeuroImage 147, págs. 390-408. issn: 1053-8119. doi: 10.1016/
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Brain 140.5, págs. 1231-1237. issn: 0006-8950. doi: 10.1093/brain/aww358. url: https:

//doi.org/10.1093/brain/aww358 (visitado 16-12-2024).

Popovych, Oleksandr V. et al. (2019). ((What Can Computational Models Contribute to Neuro-

imaging Data Analytics?)) English. En: Frontiers in Systems Neuroscience 12. Publisher:

Frontiers. issn: 1662-5137. doi: 10 . 3389 / fnsys . 2018 . 00068. url: https : / / www .

frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2018.

00068/full (visitado 24-12-2024).

Power, Jonathan D. et al. (2012). ((Spurious but systematic correlations in functional connec-

tivity MRI networks arise from subject motion)). En: NeuroImage 59.3, págs. 2142-2154.
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Neuroscience 87.1, págs. 5-14. issn: 0306-4522. doi: 10.1016/S0306-4522(98)00091-8.

url: https://www.sciencedirect.com/science/article/pii/S0306452298000918

(visitado 15-01-2025).

Raichle, Marcus E. (2006). ((The Brain’s Dark Energy)). En: Science 314.5803. Publisher: Ame-

rican Association for the Advancement of Science, págs. 1249-1250. doi: 10.1126/science.
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issn: 0006-8950. doi: 10.1093/brain/awu141. url: https://doi.org/10.1093/brain/

awu141 (visitado 10-01-2025).

Smith, Stephen M. et al. (2009). ((Correspondence of the brain’s functional architecture during

activation and rest)). En: Proceedings of the National Academy of Sciences 106.31. Publisher:

Proceedings of the National Academy of Sciences, págs. 13040-13045. doi: 10.1073/pnas.
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Network Neuroscience 6.4, págs. 1148-1185. issn: 2472-1751. doi: 10.1162/netn_a_00269.

url: https://doi.org/10.1162/netn_a_00269 (visitado 14-05-2024).

Timmermann, Christopher et al. (2019). ((Neural correlates of the DMT experience assessed with

multivariate EEG)). en. En: Scientific Reports 9.1. Publisher: Nature Publishing Group,

pág. 16324. issn: 2045-2322. doi: 10.1038/s41598-019-51974-4. url: https://www.

nature.com/articles/s41598-019-51974-4 (visitado 25-10-2024).

Timmermann, Christopher et al. (2023). ((Human brain effects of DMT assessed via EEG-

fMRI)). En: Proceedings of the National Academy of Sciences 120.13. Publisher: Proceedings

of the National Academy of Sciences, e2218949120. doi: 10.1073/pnas.2218949120. url:

https://www.pnas.org/doi/abs/10.1073/pnas.2218949120 (visitado 25-10-2024).

Toker, Daniel et al. (2022). ((Consciousness is supported by near-critical slow cortical electrody-

namics)). En: Proceedings of the National Academy of Sciences 119.7. Publisher: Proceedings

of the National Academy of Sciences, e2024455119. doi: 10.1073/pnas.2024455119. url:

https://www.pnas.org/doi/abs/10.1073/pnas.2024455119 (visitado 14-05-2024).

Tononi, Giulio y Gerald M. Edelman (1998). ((Consciousness and Complexity)). En: Science

282.5395. Publisher: American Association for the Advancement of Science, págs. 1846-1851.
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