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Resumen

El desarrollo de redes neuronales ha transformado nuestras actividades diarias,

especialmente en biomedicina, donde ha mejorado la comprensión de enfermeda-

des y el diagnóstico. Recientemente, se han logrado avances en el estudio de los

ARNs y las técnicas de secuenciación masiva. El transcriptoma, que incluye to-

dos los ARNs de una célula o tejido, varía según condiciones y tiempos. Aunque la

sangre es un tejido accesible, puede no ser representativa. El análisis del transcrip-

toma podría reflejar mejor los estados de salud y enfermedad, pero su complejidad

dificulta la interpretación individual de los ARNs.

Esta tesis tiene como objetivo principal desarrollar una plataforma que clasi-

fique transcriptomas de sangre entera mediante aprendizaje profundo. Se generó

una base de datos de transcriptomas de sujetos sanos y con patologías como insu-

ficiencia cardíaca y aterosclerosis. Se realizaron estudios clínicos para recolectar

datos y muestras. Se entrenó una red neuronal residual de 50 capas, logrando

una precisión del 93% en la clasificación de insuficiencia cardíaca y del 73.3% en

aterosclerosis. Los resultados sugieren que el análisis del transcriptoma mediante

redes neuronales profundas puede tener aplicaciones clínicas significativas.

Palabras Clave: Transcriptoma; Redes Neuronales; ARN; Aterosclerosis; Sangre
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Abstract

Use of artificial intelligence for the classification of

whole blood transcriptomes

The development of neural networks has transformed our daily activities, es-

pecially in biomedicine, where it has improved the understanding of diseases and

diagnosis. Recently, significant advances have been made in the study of RNAs

and mass sequencing techniques. The transcriptome, which includes all the RNAs

in a cell or tissue, varies according to conditions and times. Although blood is an

accessible tissue, it may not be representative. Analyzing the transcriptome could

better reflect health and disease states, but its complexity makes the individual

interpretation of RNAs challenging.

The main objective of this thesis is to develop a platform that classifies trans-

criptomes from whole blood using deep learning. A database of transcriptomes

from healthy subjects and those with conditions such as heart failure and athe-

rosclerosis was generated. Clinical studies were conducted to collect data and

samples. A 50-layer residual neural network was trained, achieving a classifica-

tion accuracy of 93% for heart failure and 73.3% for atherosclerosis. The results

suggest that analyzing the transcriptome using deep neural networks may have

significant clinical applications.

Keywords: Transcriptom; Neural Network; RNA; Atherosclerosis; Blood
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Introducción

3.1. Transcriptoma

Toda la información de un individuo está guardada en el ADN de su genoma.

Esta información es trasladada a moléculas de ARN a través del mecanismo de

transcripción. Los transcriptos así generados son traducidos en algunos casos a

proteínas a través de los ARN mensajeros (ARNm), o bien pueden ejercer diferen-

tes funciones como ARN no codificante (ARNnc). El concepto de transcriptoma

engloba el conjunto completo de transcriptos que se encuentra en una célula o

conjunto de células en un determinado momento (Peymani 2022). Entonces, in-

volucra a todos los genes expresados en un contexto biológico determinado. Com-

parado con el genoma, que se mantiene mayormente estable entre todas las células

y durante la vida de un individuo, el transcriptoma es inherentemente dinámico.

Obtener la expresión de los genes de un organismo en diferentes condiciones, teji-

dos o puntos en el tiempo, revela cómo estos genes están regulados por la presión

del entorno y las variantes individuales, convirtiéndose en un instrumento para la

comprensión de enfermedades (Lowe 2017).

La medición de la expresión de un gen en particular se utiliza para entender

la relación entre el genoma y el entorno. Esto se realiza por medio de la reacción

en cadena de la polimerasa con transcripción reversa cuantitativa (qRT-PCR, del

inglés quantitative Reverse Transcription Polymerase Chain Reaction). La qRT-PCR

es considerada una técnica gold standard para conocer los niveles de transcriptos

por ser rápida, reproducible, sensible y precisa. Sin embargo, su utilidad para la

comprensión de la expresión de muchos genes es limitada (Casamassimi 2017).

Para ello, se han desarrollado técnicas de medición de la expresión génica en masa,

como los microarreglos (microarrays) (Schena 1995) y la secuenciación de ARN

(RNAseq) (Wang 2009).

Los microarreglos se basan en la hibridación del ADN copia (ADNc) de ARN

marcado con fluorescencia con un oligonucleótido sonda unido ordenadamente

1
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a una superficie sólida. La presencia o ausencia del gen expresado se basa en la

detección de la fluorescencia. Es una técnica de bajo costo y sencilla, pero con al-

gunas limitaciones. Por ejemplo, la necesidad del conocimiento previo del genoma

para la preparación de las sondas no permite la identificación de genes desconoci-

dos. Otra desventaja es el limitado rango para cuantificar la expresión génica, ya

que la medición se realiza cuantificando la intensidad de la señal emitida por la

fluorescencia, lo que puede llevar a una saturación en genes altamente expresados

con lecturas de expresión inadecuadas, o la no detección de genes muy ligeramen-

te expresados.

Con los avances en la secuenciación de próxima generación (NGS) se ha lo-

grado la secuenciación del ARN para una cuantificación de la expresión génica

más precisa. Si bien inicialmente su costo era muy elevado, actualmente ha dis-

minuido al punto de poder realizar análisis de poblaciones grandes, lo que llevó a

desplazar casi por completo a los microarreglos. Dentro de las ventajas que ofrece

esta tecnología se pueden nombrar la posibilidad de detectar y cuantificar genes

poco expresados, descubrir nuevos eventos de splicing, analizar la expresión alelo-

específica y detectar fusión de transcriptos (Casamassimi 2017). Además, el rango

dinámico de expresión es mucho mayor.

Las tecnologías de NGS se basan en la ejecución simultánea de millones de

reacciones de secuenciación en paralelo, en volúmenes muy pequeños, de longitud

de lectura relativamente corta (200 pb) y en la generación de gigabases (GB) de

datos por experimento. Los pasos comunes en la mayoría de los enfoques NGS

son:

1. Obtención de fragmentos de ADN copia retrotranscriptos.

2. Adición de adaptadores específicos a ambos extremos de los fragmentos, los

cuales ligarán el fragmento al punto de polimerización y medición.

3. Amplificación clonal mediante el anclaje del fragmento de ADN, a través

de sus adaptadores, a una superficie sólida como microesferas o placa de

secuenciación (e.g. Emulsión PCR o bridge PCR).

4. Secuenciación (por síntesis o ligación) de los fragmentos y detección simul-

tánea de las bases de forma masiva y paralela.

5. Adquisición de datos crudos -raw data- (por ejemplo, captura de fluorescen-

cia en imágenes o detección de iones).
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6. Conversión de los datos crudos en bases de nucleótidos (o sea las secuencias

y/o lecturas).

7. Conteo bioinformático de las lecturas y normalización para obtener la in-

formación de la expresión génica (Mardis 2008, Metzker 2010, Maekawa

2014).

Las lecturas (o reads) finales de entre 50 a 150 bases obtenidas de una muestra

a partir de NGS, en el caso de genomas conocidos -como el humano-, se mapean

y alinean contra un genoma de referencia (Lee-Liu 2012). La sensibilidad y la

exactitud de un experimento de RNAseq depende del número de lecturas obtenidas

para cada muestra. Un número alto de lecturas asegura una buena cobertura de

la expresión del genoma y permite encontrar transcriptos poco abundantes (Lowe

2017).

La sensibilidad del experimento se puede incrementar enriqueciendo los ARNs

de interés o eliminando ARNs muy abundantes. Estos últimos pueden ser sepa-

rados mediante sondas que unen sus colas poliadeniladas o los RNAs pequeños

pueden ser purificados por tamaño en una electroforesis en gel. Por ejemplo, pa-

ra remover el abundante y no informativo ARN ribosomal (ARNr) existen sondas

taxón-específicas. Para muestras de sangre también se utilizan sondas específicas

para la remoción de los RNAs de las globinas. Los transcriptos ribosomales y de

la hemoglobina componen más del 90% de los encontrados en la sangre y, por

lo tanto, retirarlos antes de la secuenciación permite una mejor utilización de los

recursos.

En el análisis de secuenciación del ARN hay que tener especial consideración

al origen de la muestra, ya que los diferentes tejidos o tipos celulares presentan

grandes diferencias en los patrones de expresión y en los eventos de splicing al-

ternativo. La accesibilidad y la invasividad en la toma de muestra es un obstáculo

importante en la práctica clínica. Aunque la sangre es un tejido accesible con un

mínimo de invasividad, puede no ser representativa de la patología en estudio

(Peymani 2022). Otra decisión a tomar respecto al tejido es la posibilidad de ana-

lizar una fracción particular de la sangre. En muchos casos, se utiliza la separación

de las células mononucleares de sangre periférica (PBMC), lo cuál es una técnica

habitual para la extracción de ARN que sólo contiene linfocitos y monocitos, eli-

minando los basófilos, eosinófilos y neutrófilos. Esta separación pierde entre el

50 al 80% de la heterogeneidad de la sangre periférica generando un sesgo en
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el análisis (Koks 2021, Xing 2021). Por el contrario, la secuenciación de sangre

entera captura el promedio del perfil de expresión de los diferentes tipos celula-

res presentes en la misma, incluyendo las células hematopoyéticas, sus vesículas

extracelulares y el microbioma sanguíneo.

A lo largo de los últimos años se han desarrollado bases de datos, tales co-

mo GEO, ENCODE o GTEx, que compilan la información de expresión de genes

que ha sido extraída mediante diferentes tecnologías (microarray, secuenciación

o mixtas) y de diferentes organismos, tejidos y/o líneas celulares (Abouelwafa

2020, Lachman 2018). Esto ha derivado en una gran cantidad y variabilidad de

datos almacenados imposibles de procesar y comprender por las técnicas habitua-

les de laboratorio. El aumento sostenido en la capacidad de generación de datos

ha sobrepasado con creces los recursos bioinformáticos tanto humanos como de

equipamiento disponibles hasta la fecha, por lo que el análisis bioinformático es

altamente apreciado. Por otro lado, debido a la tasa de error inherente a la tecno-

logía (0.1-1%, o algo mayor en equipos de tercera generación), a la corta longitud

de las lecturas (de 100-200 pb) y a la mayor profundidad con la que se realiza la

secuenciación, el análisis de los datos de NGS (en especial con datos de huma-

nos) es computacionalmente costoso, intensivo y complejo. En este contexto, sin

lugar a dudas, surge la necesidad de desarrollar herramientas bioinformáticas que

permitan aplicar con éxito la secuenciación masiva al diagnóstico en la práctica

clínica (Kanzi 2020). En la era de los biomarcadores y de la medicina personaliza-

da, la transcriptómica ofrece la posibilidad de realizar la integración de miles de

biomarcadores, el desafío entonces es el análisis e interpretación de los mismos.

3.1.1. Uso de la transcriptómica en biomedicina

La transcriptómica no sólo permite ampliar el conocimiento científico, sino que

ya se trasladó a la clínica hace unos pocos años para su uso en el diagnóstico mole-

cular de enfermedades. Se comenzó a utilizar como un complemento a la secuen-

ciación del genoma o el exoma completo (WGS o WES) en enfermedades poco

frecuentes en las que no se hallaban variantes patogénicas responsables. Surgió co-

mo una manera de integrar información funcional para encontrar perturbaciones

transcripcionales causadas por cambios genéticos y aumentó la tasa de diagnóstico

entre 8% y un 36% en diferentes cohortes analizadas (Yépes 2022). Las principa-

les causas detectadas fueron eventos de splicing aberrante y desbalances alélicos,
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principalmente expresión monoalélica; también ayudó a confirmar variantes si-

nónimas patogénicas (Cummings 2017, Kernohan 2017, Gonorazky 2019, Yépes

2022). Es importante recalcar que, aunque la sangre puede no ser representati-

va de muchas patologías poco frecuentes, existen antecedentes de identificación

de enfermedades mendelianas no hematológicas mediante una transcriptómica de

sangre entera (Kernohan 2017, Frésard 2019).

En enfermedades frecuentes la transcriptómica se utiliza para encontrar isofor-

mas diferencialmente expresadas que explican la diferencia molecular entre casos

y controles o entre diferentes formas o etiologías de la patología (Kõks 2016). Sin

embargo, la factibilidad de la traslación de la transcriptómica en masa a la clínica

aún tiene muchos interrogantes, como la falta de métodos técnicos y computacio-

nales de referencia. Por lo tanto, es necesario desarrollar una rutina estandarizada

que responda al tipo de biblioteca, la técnica de mapeo, la normalización y la

prueba de expresión diferencial que debe utilizarse para alcanzar reproducibili-

dad (Kuksin 2021). En el estudio del cáncer se puede observar un esfuerzo de la

comunidad científica en este sentido. Se ha encontrado evidencia clínica relevante

cuando se adiciona la transcriptómica a los estudios de secuenciación de exoma

y de genoma completo a los pares de tejido normal y tumor. Por este motivo, la

transcriptómica ha sido recomendada en la evaluación y el manejo de cáncer reci-

divante o refractario (Newman 2021). La tendencia, que se observa en la figura 1,

de estudios clínicos en los cuales se integra la secuenciación del ARN en masa para

el estudio del cáncer evidencia el interés creciente de la comunidad médica (Kuk-

sin 2021). Actualmente, de los 72 estudios clínicos reportados en clinicaltrials.gov

que utilizan esta técnica, 24 son estudios relacionados al cáncer.

Otro ejemplo de utilización de la expresión génica en cáncer es la compara-

ción, ya no entre tejido sano y tumoral, sino entre diferentes puntos en el tiempo.

En una biopsia líquida se analiza una muestra de sangre, orina u otro líquido cor-

poral con el fin de buscar células cancerosas o trozos pequeños de ADN, ARN u

otras moléculas que las células tumorales liberan en los líquidos corporales. La

posibilidad de tomar varias muestras a lo largo del tiempo permite comprender

los cambios genéticos o moleculares que tienen lugar en un tumor. Monitorear un

tumor sólido con células circulantes en la sangre resulta de valor ya que los cam-

bios en la expresión de determinadas vías metabólicas de las células circulantes de

tumor (CTCs) están relacionadas a la respuesta terapéutica de los pacientes (Xu

2021). En el trabajo de Sharma y colaboradores desarrollaron un modelo para de-

https://clinicaltrials.gov/
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Figura 1: Utilización de transcriptomas en estudios clínicos en cáncer. Gráfico de la
evolución del número de estudios clínicos de cáncer que utilizaron análisis de secuencia-
ción de ARN en masa entre los años 2010 y 2019 según clinicaltrials.gov. La curva roja
representa a los estudios observacionales y la negra a los estudios intervencionales. Toma-
do de Kuksin 2021.

tectar cáncer de mama en pacientes asintomáticos basados en un patrón de genes

a partir de sangre periférica (Sharma 2005).

Finalmente, existen casos en que la transcriptómica se utiliza para diferenciar

entre formas o etiologías dentro de una patología. Un ejemplo de ello es la Clasi-

ficación de Consenso Internacional (ICC, por sus siglas en inglés) para neoplasias

mieloides y leucemias agudas. En esta circunstancia se integraron datos morfo-

lógicos, clínicos y genómicos para consensuar una clasificación moderna de estas

patologías (Arber 2022).

3.1.2. Antecedentes del uso de transcriptómica en enfermedad

cardiovascular

El uso del transcriptoma en enfermedades cardiovasculares se encuentra en

etapas iniciales. Como ejemplo, Asakura y Kitakaze recapitularon estudios de trans-

criptómica realizados mediante microarreglos en pacientes con insuficiencia car-

díaca reportados entre 2000 y 2009. Comparando los perfiles de expresión de

corazones sanos y con insuficiencia cardíaca en etapa terminal lograron determi-

nar 107 genes diferencialmente expresados, muchos involucrados en la disfunción

de la mitocondria y la fosforilación oxidativa (Asakura 2009). Más tarde, con el

advenimiento de la secuenciación del ARN, más sensible y confiable, Ramirez Flo-

res y otros aunaron el conocimiento de estudios realizados entre 2005 y 2019

generando una base de datos llamada ReHeat (Reference for the HEArt failure



Introducción FCEyN, Universidad de Buenos Aires

Transcriptome). En este repositorio agruparon los resultados de 16 estudios pú-

blicos de transcriptómicas sumando 263 muestras ventriculares sanas y 653 con

insuficiencia cardíaca en etapa terminal, combinando microarreglos y secuencia-

ción de próxima generación. Dentro de los resultados se destacan la subregulación

del factor de necrosis tumoral alfa (TNFα), NF-κB y el receptor de andrógeno (Ra-

mirez Flores 2021). Vale destacar que estos estudios analizan el transcriptoma del

tejido miocárdico, el cual no es de fácil acceso.

A diferencia del cáncer, donde la biopsia líquida es utilizada hace unos años,

los antecedentes de estudios del transcriptoma en enfermedad cardiovascular par-

ten, generalmente, de tejido que se ha logrado obtener de forma invasiva, con

pocos antecedentes de transcriptómicas de sangre entera. Un ejemplo lo brindan

Rosenberg y colaboradores al validar un clasificador de enfermedad coronaria obs-

tructiva utilizando un panel de expresión de 23 genes en pacientes no diabéticos.

Para ello extrajeron sangre periférica de pacientes que iban a recibir una angio-

plastía coronaria y obtuvieron los valores de expresión génica mediante RT-PCR.

Los resultados arrojaron una modesta, pero estadísticamente significativa, mejora

en la clasificación de los pacientes al compararla con las imágenes no invasivas y

los factores clínicos usualmente utilizados en la práctica clínica (Rosenberg 2010).

Estos estudios llevaron al desarrollo de un score sexo y edad específico (ASGES)

(Voora 2017) que culminaron en el lanzamiento de un producto al mercado dispo-

nible para el uso clínico (Corus® CAD) para predecir la presencia de enfermedad

coronaria obstructiva en aquellos pacientes con síntomas sugestivos (Gul 2019).

3.2. Enfermedad cardiovascular y factores de riesgo

En 1991 Braunwald y Dzau (Dzau 1991, 2006) introdujeron el concepto de

enfermedad cardiovascular como un continuo, una cadena de eventos (Figura 2)

iniciada desde factores de riesgo que van influenciando su evolución en mayor o

menor medida, por diversos mecanismos a través de muchas vías metabólicas para

desencadenar en insuficiencia cardíaca y muerte cardiovascular. Cabe destacar que

la presencia de alguno de estos factores dista mucho de significar la presencia de

enfermedad cardiovascular de manera taxativa. Son por lo tanto factores que sólo

predisponen el desarrollo de la enfermedad cardiovascular aterosclerótica.
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Figura 2: El continuo de la enfermedad cardiovascular. Imagen inspirada en Park 2021.
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3.2.1. Obesidad

La presencia de obesidad en una persona es un factor de riesgo cardiovascular.

La obesidad es una condición que se caracteriza por la acumulación excesiva de

grasa corporal y se define por un indice de masa corporal mayor a 30. La obesi-

dad se desencadena al ingerir constantemente en la dieta una cantidad de calorías

mayor a la necesaria para satisfacer las necesidades metabólicas. En las últimas

décadas se observa una mayor prevalencia de obesidad en la población humana

atribuida a un ambiente obesogénico que ofrece rápido acceso a comida y bebida

altas en calorías y una disminución en el ejercicio físico diario. Esta condición au-

menta el riesgo de desarrollar diabetes y problemas cardiovasculares, entre otras

enfermedades (Weihrauch-Blüher 2019, Aras 2021, Faulkner 2021, Jokela 2023).

En algunos casos la obesidad puede ser debida a trastornos genéticos monogéni-

cos. El gen MC4R es el más comúnmente implicado, encontrándose disminuído su

función en menos del 5% de los obesos pertenecientes a diferentes poblaciones

humanas. Este gen codifica al receptor de melanocortina-4. Los niños afectados

experimentan un marcado incremento del apetito y se vuelven obesos por hiper-

fagia. Se han encontrado variantes poco frecuentes en una decena de genes que

generan obesidad monogénica (Choquet 2011, OMIM entrada 601665). No obs-

tante, en la mayoría de los casos, la obesidad es multifactorial, siendo el resultado

de complejas interacciones entre varios genes y el ambiente, influenciados por

la microbiota intestinal y la epigenética (Walley 2009, Herrera 2011, Thompson

2012, Ang 2023).

Como se mencionó, el índice de masa corporal (IMC, definido como el peso

expresado en kg dividido por la altura en metros al cuadrado) se utiliza como

un indicador general para saber si una persona tiene un peso saludable para su

estatura. A pesar de sus muchas limitaciones es ampliamente utilizado para cuan-

tificar masa corporal y clasificar a las personas en obesas, con sobrepeso, peso

normal o de bajo peso (Jensen 2013). En la tabla 1 se detalla la clasificación de

masa corporal para hombres y mujeres de 20 años de edad o más (Garrow 1985).

Aunque es un indicador comúnmente utilizado por su practicidad, se deben

tener en cuenta sus limitaciones (Romero-Corral 2008). Al no tener en cuenta la

composición y la distribución de los tejidos -como los músculos, la grasa y los

huesos- deben considerarse otras medidas adicionales para determinar un peso

corporal saludable. En los adultos, el IMC se ve influenciado por la edad, el sexo,
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Clasificación de masa corporal Rango de IMC (Kg/m2)

Delgadez extrema <16

Delgadez moderada 16 - 17

Delgadez leve 17 - 18.5

Normal 18.5 - 25

Sobrepeso 25 - 30

Obesidad clase I 30 - 35

Obesidad clase II 35 - 40

Obesidad clase III >40

Tabla 1: Clasificación para el índice de masa corporal (IMC) para personas de 20 años o
más.

la etnia, la actividad física y la masa muscular, entre otros factores. Por lo tanto,

según los Centros para el Control y Prevención de Enfermedades (CDC 2022) de

Estados Unidos de Norteamérica:

Los adultos mayores tienden a tener mayor grasa corporal que los adultos

jóvenes con igual índice.

Las mujeres tienden a tener mayor grasa corporal que los hombres a igual

IMC.

Los individuos musculosos y los atletas altamente entrenados tienen menor

grasa corporal que los no atletas con igual índice.

A igual IMC, la cantidad de grasa corporal puede ser mayor o menor depen-

diendo del grupo étnico.

La obesidad es un factor de riesgo para muchas enfermedades, particularmen-

te para las enfermedades cardiovasculares. En la cohorte del estudio Framingham

hay evidencia que el aumento de 1 punto en el índice de masa corporal eleva el

riesgo de insuficiencia cardíaca un 5% en hombres y un 7% en mujeres (Ken-

chaiah 2002). Sin embargo también se asocia a la obesidad a una mayor tasa de

supervivencia entre los pacientes con insuficiencia, teniendo un 10% de reducción

en la mortalidad cada 5 puntos de aumento del índice de masa corporal (Fona-

row 2007). A esta contraintuitiva situación entre los pacientes con insuficiencia

cardíaca se la conoce como paradoja de la obesidad. A pesar de su evidencia, ac-

tualmente está en revisión ya que nuevos estudios han mostrado que, al ajustar
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el índice de masa corporal mediante otras variables pronósticas, la mayor tasa de

supervivencia en pacientes obesos desaparece (Butt 2023).

Desde el punto de vista fisiopatológico, la expansión del tejido adiposo visce-

ral es acompañado por la infiltración de células del sistema inmune que inducen

inflamación crónica, resistencia a la insulina y desregulación metabólica. La resis-

tencia a la insulina estimula la endotelina-1 que promueve un tono vasoconstrictor

elevado y aterogénesis (Triposkiadis 2022). De esta forma, la obesidad está aso-

ciada a un espectro metabólico que en su continuo puede llevar a la enfermedad

cardiovascular y al fenotipo de insuficiencia cardíaca (Figura 3).

Figura 3: Esquema de los factores de riesgo que contribuyen al desarrollo de un
espectro fenotípico de obesidad. Tomado de Triposkiadis et al. 2022.

3.2.2. Aterosclerosis

La aterosclerosis es una enfermedad vascular inflamatoria crónica que se define

como el engrosamiento de la pared arterial debido a la formación de lesiones

conocidas como placas de ateroma. Estas lesiones se localizan en la túnica íntima

de arterias de mediano y gran calibre. La placa de ateroma contiene un núcleo

lipídico compuesto principalmente por colesterol con una cubierta fibrosa y células

inflamatorias. La aterosclerosis se produce por un desequilibrio en el metabolismo

lipídico y la inadecuada respuesta del sistema inmune a la acumulación de lípidos

en las arterias. Esta placa puede crecer hasta obstruir la luz arterial, impidiendo el
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flujo y ocasionando hipoxia tisular en los tejidos ditales a la obstrucción o puede

romperse y causar una trombosis vascular obstructiva.

En el año 2020 en la Argentina la enfermedad cardiovascular fue la princi-

pal causa de muerte, siendo la responsable del 25,8% del total de defunciones

(Ministerio de salud de la República Argentina 2023).

El desarrollo de la aterosclerosis es un proceso lento y progresivo que comien-

za en la niñez y se mantiene asintomático por varias décadas. Las complicaciones

de la misma -infarto de miocardio, accidente cerebrovascular o isquemia vascular

periférica- aparecen a partir de los 30 años habitualmente y se tornan mucho más

frecuentes en edades avanzadas. Los factores de riesgos conocidos para el desarro-

llo de la enfermedad incluyen edad avanzada, hipertensión, diabetes, dislipemia,

hiperhomocisteinemia, obesidad, tabaquismo y sedentarismo. En general, ninguno

de estos factores de riesgo por sí mismo es suficiente para causar una lesión ate-

rosclerótica (Singh 2002) y, por otro lado, algunos de ellos presentan mecanismos

fisiopatológicos en común. La aterosclerosis es una enfermedad compleja que invo-

lucra un proceso fibroproliferativo inflamatorio que se desenvuelve en la capa más

interna de la pared arterial a través de una serie de eventos patológicos inflamato-

rios involucrando al sistema inmune, la coagulación y mecanismos de manejo de

colesterol y lípidos. La placa aterosclerótica evoluciona secuencialmente a partir

de un daño en el endotelio, una disfunción endotelial, resultando en la deposición

de lípidos por diferentes células hasta la formación de la placa característica.

3.2.2.1. Disfunción endotelial e inflamación

El endotelio vascular es un órgano endócrino ubicado estratégicamente entre

la sangre y la pared vascular que lleva a cabo importantes funciones regulato-

rias (Singh 2002). Sostiene el balance entre la prevención y la estimulación de

la agregación plaquetaria, la trombogénesis y la fibrinolisis, la vasoconstricción y

la vasodilatación, la promoción y la inhibición de la proliferación y migración de

las células hematopoyéticas (Pacher 2007). La ruptura de este delicado balance se

conoce como disfunción endotelial y es una de las primeras manifestaciones de la

aterosclerosis.

Los principales eventos que pueden causar disfunción endotelial incluyen, en-

tre otros, a la tensión tangencial generada por el flujo turbulento de la sangre

y las especies reactivas del oxígeno producidas por los factores de riesgo cardio-
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vasculares como el cigarrillo. Las células endoteliales dañadas o excesivamente

activadas secretan vasoconstrictores, tales como ET-1, dismuyen la producción de

vasodilatadores, tales como el óxido nítrico, y secretan factores que afectan la dife-

renciación y el crecimiento de las células musculares lisas de la túnica media. Esto

genera quimiotaxis de leucocitos y plaquetas que, a su vez, inducen la expresión

de moléculas de adhesión -selectinas, integrinas y proteínas de la superfamilia de

las inmunoglobulinas- que interactúan con ligandos específicos en la superficie de

leucocitos y plaquetas. Moléculas de adhesión celular como ICAM-1, VCAM-1 y

P-selectina median la adhesión de los monocitos al endotelio y la migración a la

íntima. Las ICAMs son expresadas en varios tipos celulares, incluyendo leucocitos

y células endoteliales. Una expresión defectuosa de las ICAMs no sólo se observa

en la aterosclerosis, sino también en otras patologías que interfieren en la función

inmune normal. TNF-α, IL-1, oxLDL y el aumento de la tensión tangencial cuan-

do el flujo sanguíneo deja de ser laminar contribuyen a aumentar la expresión de

ICAM-1. El aumento de ICAM-1 aumenta a su vez los depósitos de fibrinógeno y la

adhesión de los monocitos, seguido por la migración subendotelial, evento crítico

en la formación de la placa. La citoquina IL-1 está involucrada en la activación del

factor de transcripción NF-κB que regula la transcripción de genes involucrados en

la formación de MCP-1 y moléculas de adhesión como ICAM-1.

La ET-1 tiene actividad vasoconstrictora y mitogénica en las células de músculo

liso de la túnica media que resulta en la liberación de radicales libres y de cito-

quinas proinflamatorias a la circulación. En los sitios de daño o inflamación, las

citoquinas proinflamatorias, como IL-1 y TNF-α promueven la adhesión y la activa-

ción de los leucocitos. También se promueven activadores de neutrófilos como el

factor estimulante de colonia de macrófago, el factor activador de plasminógeno

e IL-8. Esto induce la activación de MAP quinasas, como ERK y p38 intracelulares,

como transducción de señales de estrés y de factores de crecimiento, potenciando

la activación de los neutrófilos aumentando su adhesividad (Takahashi 2001). Los

neutrófilos activados contribuyen al deterioro y al daño endotelial produciendo

más ROS. El proceso inflamatorio es perpetuado por las células endoteliales da-

ñadas gracias a las actividades antitrombóticas y la reducción de la expresión de

factores activadores de plasminógeno. Como el daño endotelial es considerado el

estímulo para la migración de los leucocitos, la aterosclerosis es clasificada como

una enfermedad inflamatoria.
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3.2.2.2. Especies reactivas del oxígeno (ROS)

El sistema renina-angiotensina-aldosterona es el encargado de regular la pre-

sión sanguínea, el volumen de líquido extracelular y mantener el balance sodio-

potasio fisiológico. La angiotensina II es el principal mediador del sistema. Un

desbalance en sus niveles sistémicos o locales promueve la aterosclerosis por la

formación de ROS en macrófagos, células endoteliales y células de la vasculatura

lisa aumentando la actividad NADH/NADPH oxidasa, la que oxida a los lípidos

en las partículas de LDL en el segmento del vaso afectado. Simultáneamente, el

aumento en la expresión de citoquinas como TNF-α, IL-1 y PDGF, estimula aún

más la producción de ROS y la proliferación celular (Figura 4) (Singh 2002). La

angiotensina II también ejerce efectos proaterogénicos, proinflamatorios y procoa-

gulantes en plaquetas y monocitos.

Figura 4: Diagrama esquemático de la formación de la placa aterosclerótica. Extraído
de Raja B Singh et al, 2002. ROS: especies reactivas del oxígeno, NO: óxido nítrico, O-
LDL: Lipoproteína de baja densidad oxidada. Realizado con Lucidchart.

El óxido nítrico (NO) es un mensajero intercelular ubicuo que modula el flu-

jo sanguíneo, la trombosis y la actividad neuronal. El óxido nítrico reacciona, sin
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necesidad de catalización enzimática, con el superóxido (O2•-) formando el oxi-

dante fuerte peroxinitrito (ONOO-) altamente tóxico para la célula. Las enzimas

superóxido dismutasas (SOD) remueven el superóxido previniendo su acumula-

ción y minimizando su toxicidad en condiciones fisiológicas. El NO posee un efecto

importante anti-aterosclerótico, con efecto antiagregante plaquetario, antioxidan-

te, antiproliferativo, anti-inflamatorio y vasodilatador. Dentro de la familia de las

óxido nítrico sintasas (NOS), en el sistema cardiovascular se presenta una forma

constitutiva, la NOS endotelial (eNOS) y una forma inducible (iNOS). La induc-

ción ocurre usualmente en ambiente oxidativo por citoquinas proinflamatorias,

por lo que la alta disponibilidad de NO (Figura 4) forma mediadores proaterogé-

nicos, como el peroxinitrito, que modifican lípidos y proteínas que median la lesión

aterosclerótica. Las ROS y las especies reactivas del nitrógeno a su vez activan a

NFκB (Pacher 2007).

La agregación plaquetaria se promueve por la disminución del efecto anticoa-

gulante de óxido nítrico y por el aumento de la molécula procoagulante inhibi-

dor 1 del activador de plasminógeno (PAI-1) (Morrow 2020). La Angiotensina II

también promueve la proliferación celular de la vasculatura lisa, factores de creci-

miento autócrinos, la expresión de enzimas proinflamatorias (fosfolipasa A2 y la

NADP/NADPH oxidasa) e induce la transcripción de protooncogenes. Todas estas

vías tienen en común ser proaterogénicas por ser generadoras de ROS.

3.2.2.3. Lípidos

En el plasma humano los lípidos más comunes son el colesterol, triglicéridos,

fosfolípidos y ácidos grasos. Estos lípidos insolubles son transportados en el plas-

ma en complejos lipoproteicos micelares incluyendo a la lipoproteína de muy baja

densidad (VLDL), lipoproteína de baja densidad (LDL) y lipoproteína de alta den-

sidad (HDL). Dependiendo de cuál de estas partículas se encuentra desregulada,

los desórdenes en el metabolismo de lípidos se expresan como hiperlipidemia o

hiperlipoproteinemia (Poznyak 2020). La lipoproteína LDL está formada por una

estructura externa de lípidos, colesterol y fosfolípidos, y un núcleo que consiste

en el colesterol y triglicéridos que transporta. En la parte externa de una par-

tícula LDL se encuentra una proteína esencial para mantener su estructura: la

apolipoproteína B (ApoB). La ApoB es sintetizada por el hígado y está presente

en quilomicrones, VLDL, IDL, LDL y partículas Lp(a). La lipoproteína HDL está
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compuesta, al igual que el LDL, de colesterol, triglicéridos y numerosas apolipo-

proteínas (Apo-AI, Apo-AII, Apo-AIV, Apo-AV, Apo-C1, Apo-CII, Apo-CIII y Apo-E).

La apolipoproteína AI es la principal encargada de mantener la estructura de HDL

y colabora en funciones enzimáticas que permiten el transporte, reciclaje y de-

gradación del colesterol desde los tejidos periféricos hasta su eliminación en el

hígado. ApoE es la principal proteína componente de las VLDL y funciona como

ligando en la eliminación mediada por receptor de los quilomicrones y la VLDL

remanentes en el hígado.

Las lipoproteínas son modificadas por diferentes reacciones químicas en la pa-

red arterial, de las cuales las principales son la oxidación llevada a cabo por las

ROS y la glicosilación no oxidativa en aquellos pacientes con diabetes mellitus. Las

lipoproteínas oxidadas (oxLDL) son más aterogénicas que la LDL nativa y lleva al

reclutamiento de macrófagos al lugar de la lesión. El sistema inmune identifica

estas lipoproteínas modificadas como exógenas y los leucocitos se infiltran para

eliminar estos oxLDL de la íntima arterial. Este es uno de los motivos por los cuales

la aterosclerosis es vista también como una forma de enfermedad autoinmune (Si-

ma 2018). Los macrófagos con las lipoproteínas modificadas fagocitadas forman

células espumosas y entran en apoptosis dejando una capa lipídica en la íntima

que progresa a placa aterosclerótica. Finalmente, otro tipo de LDL modificado es

el LDL modificado enzimáticamente (E-LDL) que activa a los macrófagos y al sis-

tema del complemento, también induce una citoquina quimioatractante (MCP-1)

selectivamente que estimula la secreción de IL-6 y la proliferación de las células

musculares lisas vasculares (Singh 2002).

3.2.2.4. Angiogénesis

La angiogénesis es el crecimiento de nuevos capilares a partir de estructuras

vasculares preexistentes. Tiene un rol crucial en la progresión de la aterosclerosis y,

en particular, en su complicación aguda llamada ruptura de placa. La placa ateros-

clerótica puede presentar microhemorragias a partir de estos neovasos, o romperse

por su fragilidad, lo que lleva a la exposición de las estructuras subendoteliales al

torrente sanguíneo, que a su vez desencadena la formación de trombos oclusivos.

La oclusión de un vaso por trombosis resulta en el cuadro clínico conocido como

síndrome coronario agudo o infarto de miocardio.

El factor de crecimiento endotelial vascular A (VEGF-A) es inducido por hipoxia
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en el engrosamiento de la íntima y activa receptores de las células endoteliales

de los vasos sanguíneos cercanos a la placa aterosclerótica. Las células activas,

también llamadas células punta, liberan proteasas para abrirse paso hacia la zona

de hipoxia. Las proteínas mediadoras de inflamación, tales como IL-1 y TNF-α,

aumentan la expresión de moléculas de adhesión (VCAM e ICAM) en la superficie

endotelial. VCAM-1 y E-selectina solubles son secretados y son mediadores en la

angiogénesis. Las células forman brotes que luego formarán aros hasta convertirse

en un vaso completo. Esta neovascularización permite el suministro de nutrientes

y promueve la infiltración de los macrófagos, el depósito de lípidos y la inflamación

en la progresión de la lesión aterosclerótica (Camaré 2017).

3.2.2.5. Progresión de la placa y calcificación

Luego de meses o años de evolución, la placa aterosclerótica genera zonas de

inflamación crónica que lentamente comienzan a depositar calcio. Los mediado-

res del proceso inflamatorio y un elevado contenido de lípidos en el contexto de

una lesión aterosclerótica inducen una diferenciación osteogénica de las células

de músculo liso vasculares. Este proceso no es exclusivo de la placa ateroscleróti-

ca, ya que se puede observar en otros tejidos luego de un proceso de inflamación

crónico. Estas células sufren una transdiferenciación a células tipo osteoblasto ela-

borando vesículas calcificantes y secretando factores que disminuyen la capacidad

de reabsorción mineral de las células tipo osteoclasto (Liu 2015). La vía del recep-

tor activador del ligando de NF-κB y osteoprotegerina podría ser la conexión entre

la osteoporosis y la calcificación coronaria (Demer 2008). La calcificación ocurre

en serie con la progresión de la aterosclerosis severa. Usualmente comienza como

micronódulos (0.5 a 15.0 µm) y luego progresa a partículas de mayor tamaño que

forman depósitos laminares (mayores a 3 mm) en las arterias.

La Tomografía Computarizada (TC) se utiliza habitualmente para la identifica-

ción y medición del calcio coronario. El score Agatston ha sido el método tradicio-

nalmente utilizado para expresar la carga de placa calcificada en el conjunto del

árbol arterial coronario y está basado en el análisis corte a corte de las imágenes

adquiridas sobre un estudio de TC sin contraste intravenoso. Se ha establecido

un valor arbitrario de 130 UH para separar las calcificaciones verdaderas de otros

pixeles de alta densidad. En cada corte, el usuario señala una región de interés

(ROI) alrededor de un grupo de placas que se encuentra en el curso de una arteria
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coronaria y el programa calcula el área de todos los píxeles por encima de 130

UH y la multiplica por un factor de ponderación (Ci), que depende de la máxima

densidad de la placa. El score Agatston es la suma de los scores individuales de

todas las placas (Agatston 1990).

3.2.2.6. Sexo

Es importante mencionar que las guías actuales para el diagnóstico, la investi-

gación y el tratamiento de la enfermedad cardiovascular aún no discriminan entre

los sexos y están basadas en estudios con mayor cantidad de hombres (Woodward

2019), por lo que las mujeres tienen mayor posibilidad de experimentar retrasos

en el diagnóstico y menores posibilidades de recibir atención médica (Mosca 2004,

Gurgoglione 2023). Algunos trastornos del embarazo, como la preeclampsia antes

de las 34 semanas, aumentan el riesgo de aterosclerosis por la disfunción endo-

telial resultante (Powe 2011). La menopausia está relacionada a un aumento del

colesterol ligado a lipoproteínas de baja densidad, la disminución de la concen-

tración de estrógenos y el aumento de los andrógenos generan mayor riesgo de

enfermedad cardiovascular, también el uso de anticonceptivos orales combina-

dos (Poznyak 2023, Curtis 2006). Otros factores como ovario poliquístico (Daan

2014), una menarca precoz, primer embarazo a edad temprana, antecedentes de

aborto, muerte fetal, parto prematuro y bebés con bajo peso al nacer se asocian

con un aceleramiento en la aterosclerosis (Geraghty 2021). Algunos algoritmos

para predicción del riesgo no tienen en cuenta los factores específicos por sexo,

por lo que tienden a subestimar el riesgo en mujeres, aún cuando la enferme-

dad cardiovascular es la principal causa de muerte en el sexo femenino a nivel

mundial, la mujer continúa estando en desventaja frente al hombre en prevención

primaria, secundaria y tratamiento (Woodward 2019).

3.2.2.7. Aspectos clínicos del desarrollo de la aterosclerosis

La detección temprana y precisa de aquellos individuos con alto riesgo de de-

sarrollar enfermedad cardiovascular continúa siendo un desafío. El enfoque tradi-

cional para identificar a individuos con mayor riesgo de desarrollar enfermedad

cardiovascular o muerte por esta causa se basa, en gran medida, en la identifica-

ción de variables individuales (Diabetes, colesterol, tabaquismo, etc.), un grupo

de variables convertidas en un score (Framingham Risk Score, SCORE, QRISK®,
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etc.) o biomarcadores individuales (Proteína C reactiva de alta sensibilidad (PCR-

Hs), péptidos natriuréticos tales como el BNP, etc.). A lo largo de los años se han

desarrollado estrategias basada en el uso de diferentes marcadores clínicos y de la-

boratorio implicados en la fisiopatología de la aterosclerosis (Chiorescu 2022). La

estratificación del riesgo para los pacientes susceptibles a un evento cardiovascular

agudo (habitualmente definido como infarto de miocardio, accidente cardiovascu-

lar o muerte) es fundamental para la aplicación en ellos de terapias preventivas.

Las ecuaciones de riesgo actuales sintetizan múltiples factores de riesgo de en-

fermedad cardíaca e infarto. El FRS (Framingham risk score) es un método muy

usado para estratificar el riesgo cardiovascular y ofrece una estimación individual

sexo-específica de desarrollar un evento cardiovascular fatal o no fatal (infarto

de miocardio, ACV) en 10 años (D’Agostino 2008). La Asociación Americana de

Cardiología (American Heart Association) desarrolló recientemente la ecuación

PREVENT para estimar el riesgo de eventos fatales y no fatales a 10 años (Khan

2024). La Sociedad Europea de Cardiología recomienda el uso del algoritmo SCO-

RE2 (Systematic coronary risk evaluation 2) que estima la probabilidad de eventos

fatales en las poblaciones europeas a 10 años. Aunque en el trabajo concluyen que

“el futuro de la estimación de riesgo debería expresarse como años de exposición

a un perfil de riesgo cardiovascular en lugar de riesgo sobre un período fijo de

tiempo, como a 10 años, y cómo los avances en genética permitirían una estima-

ción del riesgo individualizada desde la niñez” (Graham 2021). En la figura 5 se

puede observar como ejemplo el cuadro que propone la Organización Mundial de

la Salud para clasificar el riesgo de la población de la zona sur de Sudamérica

cuando no se cuenta con datos de estudios de laboratorio.

A pesar de estos avances, estos enfoques poseen una capacidad limitada de

predicción. Por ejemplo, el área bajo la curva (AUC) ROC para el Score de Fra-

mingham es de 0.61 (Rosenberg 2010, Wang 2020). Esta limitación es explicable

por diferentes motivos, por ejemplo, el 20% de los pacientes con enfermedad co-

ronaria no tiene factores de riesgo tradicionales y el 40% sólo tiene uno (Khot

2003). Además, los factores de riesgo predisponen a la enfermedad cardiovas-

cular, pero no son necesariamente la causa de la misma. Es claro entonces que

existe la necesidad de desarrollar nuevas metodologías para mejorar la detección

de aquellos pacientes de alto riesgo.

Las imágenes cardiovasculares, por otra parte, son útiles para detectar precoz-

mente el desarrollo de esta enfermedad, pero requieren de equipamientos costosos
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WHO cardiovascular disease risk laboratory-based charts
Southern Latin America
Argentina, Chile, Uruguay

Risk Level 0 <5% 5 5% to <10% 10 10% to <20% 20 20% to <30% 30 ≥30% Risk Level 0 <5% 5 5% to <10% 10 10% to <20% 20 20% to <30% 30 ≥30%

Age SBP Age SBP
(years)  (mmHg) (years)  (mmHg)

24 26 29 31 34 30 32 35 38 42 16 17 19 20 21 25 26 28 30 33 ≥180 32 34 38 41 45 39 42 46 49 54 27 29 31 33 36 40 43 46 49 52 ≥180

20 22 24 26 29 25 27 30 33 36 13 14 15 16 17 20 22 23 25 27 160-179 27 29 32 35 38 33 36 39 43 47 22 24 25 27 29 33 36 38 41 44 160-179
70-74 17 18 20 22 24 21 23 25 28 30 11 11 12 13 14 16 18 19 20 22 140-159 70-74 23 25 27 30 33 28 31 34 37 40 18 19 21 22 24 28 29 32 34 37 140-159

14 15 17 19 21 18 19 21 23 26 9 9 10 10 11 13 14 15 16 18 120-139 19 21 23 25 28 24 26 29 32 35 15 16 17 18 19 22 24 26 28 30 120-139
12 13 14 16 17 15 16 18 20 22 7 7 8 8 9 11 11 12 13 14 <120 16 17 19 21 24 20 22 24 27 30 12 13 13 15 16 18 20 21 23 25 <120

19 21 23 25 28 25 27 30 33 37 12 12 13 15 16 20 21 23 25 27 ≥180 27 29 32 36 39 35 38 42 46 50 21 23 25 27 29 35 38 41 44 48 ≥180

15 17 19 21 23 21 23 25 28 31 9 10 11 11 13 16 17 18 20 22 160-179 22 24 27 30 33 29 32 35 39 43 17 18 20 21 23 28 31 33 36 40 160-179
65-69 13 14 16 17 19 17 19 21 23 26 7 8 8 9 10 12 13 15 16 17 140-159 65-69 18 20 22 25 28 24 27 30 33 37 13 14 16 17 19 23 25 27 29 32 140-159

10 11 13 14 16 14 15 17 19 22 6 6 7 7 8 10 11 11 13 14 120-139 15 17 18 21 23 20 22 25 28 31 10 11 12 13 15 18 20 22 24 26 120-139
8 9 10 12 13 11 13 14 16 18 4 5 5 6 6 8 8 9 10 11 <120 12 14 15 17 19 16 18 20 23 26 8 9 10 11 12 14 16 17 19 21 <120

15 16 18 21 23 21 23 26 29 32 8 9 10 11 12 15 17 19 21 23 ≥180 22 25 28 31 34 31 34 38 42 47 16 18 19 22 24 30 33 36 40 44 ≥180

12 13 15 17 19 17 19 21 24 27 6 7 7 8 9 12 13 14 16 18 160-179 18 20 23 25 29 25 28 32 35 39 13 14 15 17 19 24 26 29 32 36 160-179
60-64 9 11 12 13 15 14 15 17 19 22 5 5 6 6 7 9 10 11 12 14 140-159 60-64 14 16 18 21 23 21 23 26 29 33 10 11 12 13 15 19 21 23 25 28 140-159

8 8 10 11 12 11 12 14 16 18 4 4 4 5 5 7 8 9 10 11 120-139 12 13 15 17 19 17 19 21 24 27 7 8 9 10 11 14 16 18 20 22 120-139
6 7 8 9 10 9 10 11 13 15 3 3 3 4 4 5 6 7 7 8 <120 9 11 12 14 16 13 15 17 20 22 6 6 7 8 9 11 12 14 16 17 <120

12 13 15 17 19 17 20 22 25 28 6 6 7 8 9 12 13 15 17 19 ≥180 19 21 23 27 30 27 31 34 39 44 13 14 15 17 19 26 29 32 36 40 ≥180

9 10 12 13 15 14 16 18 20 23 4 5 5 6 7 9 10 11 13 14 160-179 15 17 19 21 24 22 25 28 32 36 9 10 12 13 15 20 22 25 28 32 160-179
55-59 7 8 9 10 12 11 12 14 16 19 3 4 4 4 5 7 8 9 10 11 140-159 55-59 12 13 15 17 20 18 20 23 26 30 7 8 9 10 11 15 17 19 22 25 140-159

5 6 7 8 10 8 10 11 13 15 2 3 3 3 4 5 6 6 7 8 120-139 9 10 12 14 16 14 16 18 21 24 5 6 7 7 8 12 13 15 17 19 120-139
4 5 6 6 8 7 8 9 10 12 2 2 2 2 3 4 4 5 5 6 <120 7 8 9 11 13 11 13 14 17 19 4 4 5 6 6 9 10 11 13 15 <120

9 10 12 13 15 14 16 19 22 25 4 5 5 6 6 9 11 12 14 16 ≥180 16 18 20 23 26 24 28 31 36 40 10 11 12 14 16 22 25 28 32 37 ≥180

7 8 9 10 12 11 13 15 17 20 3 3 4 4 5 7 8 9 10 12 160-179 12 14 16 18 21 19 22 25 29 33 7 8 9 10 12 17 19 22 25 29 160-179
50-54 5 6 7 8 9 9 10 11 13 16 2 2 3 3 3 5 6 7 7 9 140-159 50-54 9 11 12 14 16 15 17 20 23 27 5 6 7 8 9 12 14 16 19 22 140-159

4 5 5 6 7 7 8 9 10 12 2 2 2 2 3 4 4 5 6 6 120-139 7 8 9 11 13 12 13 15 18 21 4 4 5 6 6 9 10 12 14 16 120-139
3 4 4 5 6 5 6 7 8 10 1 1 1 2 2 3 3 4 4 5 <120 5 6 7 9 10 9 10 12 14 17 3 3 4 4 5 7 8 9 10 12 <120

7 8 9 11 12 12 14 16 18 22 3 3 4 4 5 7 8 10 11 13 ≥180 13 15 17 19 23 22 25 28 33 38 8 8 10 11 13 19 22 25 29 34 ≥180

5 6 7 8 10 9 10 12 14 17 2 2 3 3 3 5 6 7 8 9 160-179 10 11 13 15 18 17 19 22 26 30 5 6 7 8 9 14 16 18 22 25 160-179
45-49 4 4 5 6 7 7 8 9 11 13 2 2 2 2 2 4 4 5 6 7 140-159 45-49 7 8 10 12 14 13 15 17 20 24 4 4 5 6 7 10 12 14 16 19 140-159

3 3 4 5 6 5 6 7 8 10 1 1 1 2 2 3 3 4 4 5 120-139 5 6 7 9 11 10 11 13 16 19 3 3 4 4 5 7 8 10 12 14 120-139
2 3 3 4 4 4 5 5 6 8 1 1 1 1 1 2 2 3 3 4 <120 4 5 6 7 8 7 9 10 12 15 2 2 3 3 3 5 6 7 9 10 <120

5 6 7 8 10 10 11 13 16 19 2 3 3 3 4 6 7 8 9 11 ≥180 11 12 14 17 20 19 22 25 30 35 6 7 8 9 10 16 19 22 26 31 ≥180

4 5 5 6 8 7 9 10 12 14 2 2 2 2 2 4 5 5 6 8 160-179 8 9 11 13 15 14 17 19 23 27 4 5 5 6 7 11 13 16 19 23 160-179
40-44 3 3 4 5 6 5 6 8 9 11 1 1 1 2 2 3 3 4 4 5 140-159 40-44 6 7 8 9 11 11 13 15 18 21 3 3 4 4 5 8 10 11 14 17 140-159

2 2 3 4 4 4 5 6 7 8 1 1 1 1 1 2 2 3 3 4 120-139 4 5 6 7 9 8 9 11 13 16 2 2 3 3 4 6 7 8 10 12 120-139
2 2 2 3 3 3 4 4 5 6 0 1 1 1 1 1 2 2 2 3 <120 3 4 4 5 6 6 7 8 10 13 1 2 2 2 3 4 5 6 7 9 <120
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Figura 5: Cuadros para la clasificación de riesgo cardiovascular. Cuadros propuestos
por la Organización Mundial de la Salud para la clasificación de riesgo cardiovascular en
la población de Argentina, Chile y Uruguay. Izquierda: Individuos sin diabetes. Derecha:
Individuos con diabetes.
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y personal especializado. Esto limita en parte su aplicación clínica. Asimismo, las

alteraciones tisulares estructurales detectables en una imagen corresponden a da-

ños establecidos, y los mismos pueden ser en muchos casos irreversibles. A pesar

de estas limitaciones, en los últimos años se han establecido aplicaciones para

la detección y estratificación de la enfermedad coronaria. Una de ellas, y la más

popular, es la detección y cuantificación de la presencia de calcificaciones en las

arterias coronarias. La aterosclerosis, como proceso inflamatorio crónico, sufre a lo

largo del tiempo el depósito de sales de calcio como se explicó previamente. Estas

calcificaciones presentan una correlación estrecha con la presencia de aterosclero-

sis y con su evolución clínica. Mientras que la calcificación por sí misma no tiene

una manifestación clínica específica, se encuentra asociada a una mayor cantidad

de eventos cardiovasculares y mayor mortalidad (Budoff 2010, Hou 2012, Sare-

mi 2012). Esto es debido a a dos motivos. En primer lugar, la presencia de calcio

coronario se asocia con la presencia de placas lipídicas que pueden romperse y

generar trombosis intravascular. En segundo lugar, la zona calcificada en la arteria

coronaria puede sufrir un proceso conocido como erosión endotelial, en el cual

existe una exposición de las capas intimales al flujo sanguíneo y se produce una

trombosis plaquetaria, llevando a un síndrome coronario agudo.

El calcio coronario es un marcador de la presencia de enfermedad coronaria

aterosclerótica. Su medición, por medio de radiografías o tomografías, es utilizado

para evaluar el riesgo de eventos cardíacos graves a futuro (Shreya 2021) y recla-

sificar los pacientes en categorías más precisas. En la figura 6 se destaca en forma

gráfica la correlación entre la categoría de score de calcio coronario y los even-

tos cardíacos (infartos) en las principales cohortes estudiadas: MESA (Bild 2002),

Framingham (Hoffmann 2008), Heinz Nixdorf RECALL (Schmermund 2002) y

Rotterdam (Oei 2002). Las guías clínicas de Estados Unidos y Europa consideran

que el score de calcio coronario puede mejorar la evaluación de riesgo cardio-

vascular en los pacientes asintomáticos. Además, los análisis de costo-efectividad

concluyeron que la evaluación del score de calcio coronario es costo efectiva en

la población asintomática, aunque las aseguradoras de salud aún no cubren las

imágenes para este propósito (Greenland 2018).

El esfuerzo de la comunidad médica por mejorar los clasificadores de riesgo en

enfermedades coronarias se hace patente a lo largo de una variedad de trabajos

(Panahiazar 2015, Taslimitehrani 2016, Peng M. 2023) demostrando el interés de

encontrar una herramienta con mayor grado de sensibilidad y especificidad para
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Figura 6: Número de eventos cardiovasculares de acuerdo a la severidad del score
de calcio coronario. Gráfico de la cantidad de eventos cardiovasculares en porcentajes en
cada cohorte (MESA: Multi-Ethnic Study of Atherosclerosis, HNR: Heinz Nixdorf RECALL,
Rotterdam, Framingham) por categoría de score de calcio coronario. CAC=0: Calcificación
no identificable. CAC 1 a 100: Calcificación leve. CAC 101 a 300: Calcificación moderada.
CAC >300: Calcificación severa. FU: Seguimiento. AER: Tasa de eventos anualizada. Datos
tomados de Greenland 2018.
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el manejo de los pacientes.

Dentro de los biomarcadores usados en la clínica se encuentra el péptido na-

triurético cerebral (BNP), nombrado así por haber sido descubierto en el cerebro

porcino. Tanto la forma activa como la forma inactiva, NT-proBNP, de esta hor-

mona peptídica se pueden medir en el suero sanguíneo. El péptido natriurético

es secretado en las paredes auriculares y ventriculares del corazón en respuesta

a aumento de volúmenes intravasculares y de las presiones intracavitarias. Sus

acciones son inducir la natriuresis y la diuresis. En contextos patológicos tiene

efectos de inhibir la activación neurohormonal y la remodelación cardíaca (Alcidi

2022). Los individuos con niveles de BNP en plasma mayor a 100 pg/mL o 300

pg/mL de NT-proBNP deben continuar siendo evaluados para diferenciar una en-

fermedad cardiovascular de otras patologías que aumenten el volumen sanguíneo.

Los péptidos natriuréticos también son utilizados en diagnóstico y pronóstico

en pacientes con insuficiencia cardíaca crónica debido a que correlacionan estados

más avanzados de la enfermedad con niveles más altos de péptido natriurético. Ca-

da 100 pg/mL de aumento en plasma de BNP existe un aumento del 35% de riesgo

relativo de muerte (Doust 2005). También, los niveles elevados de BNP agudos lo-

graron predecir el aumento de estancia en el hospital en pacientes hospitalizados

por insuficiencia cardíaca. Aunque es una metodología con una alta sensibilidad,

no es específica de insuficiencia cardíaca, por lo tanto, no se utiliza como una

única guía en el manejo clínico (Novack 2023). Asimismo, se debe tener especial

cuidado en pacientes con comorbilidades. Los niveles de péptido natriurético ce-

rebral en sangre son más altos en pacientes con falla renal, diabetes y síndrome

coronario agudo y más bajos en personas con un índice de masa corporal en el

rango de obesidad (Novack 2023).

Otro biomarcador utilizado en la atención clínica es la proteína C reactiva, una

proteína plasmática de fase aguda que aumenta su nivel en respuesta a la IL-6 para

activar el sistema del complemento (Sheriff 2021). A pesar de ser un marcador

de inflamación e infección inespecífico, puede orientar el riesgo, el diagnóstico y

el seguimiento de la enfermedad cardiovascular. En aterosclerosis, los niveles de

proteína C reactiva de alta sensibilidad (hs-CRP) en sangre señalan la cantidad de

inflamación de bajo grado que está presente en las paredes arteriales. La medición

clasifica el nivel de hs-CRP en bajo (<1.0 mg/L), intermedio (1.0 – 3.0 mg/L) o

alto (>3.0 mg/L). Las personas que pueden beneficiarse de esta información son

las que se encuentran ya clasificadas como de riesgo cardiovascular intermedio.
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Debido a que las personas de riesgo alto se encuentran igualmente en tratamiento

y las personas de bajo riesgo no se encontrarán con un riesgo tal que requiera

cambios en su estilo de vida, aún con niveles de hs-CRP alto. En Estados Unidos

(AHA, CDC y NACB) la recomendación es no medir hs-CRP en la población general

para determinar su riesgo cardiovascular, sino medir a los pacientes con riesgo

intermedio (10–20% de riesgo a 10 años) para decidir si comenzar la prevención

primaria con estatinas (Ridker 2003, Arnett 2019).

3.2.2.8. Aspectos genéticos

Los procesos fisiopatológicos implicados en el desarrollo de las enfermedades

son modulados por factores genéticos y ambientales. Algunos estudios (Maren-

berg 1994, Zdravkovic 2002) indican que la herencia genética explica entre un

38 y 57% de los eventos cardíacos fatales. Hasta el momento se han identificado

más de 300 loci independientes asociados con la enfermedad aterosclerótica en

estudios de asociación de genoma completo (GWAS)(Aragam 2022, Tcheandjieu

2022). Además, se han priorizado 114 genes a través de estudios de asociación de

transcriptoma completo (TWAS) (Li 2022). También se han encontrado 5 firmas

moleculares de lesiones ateroscleróticas avanzadas mediante transcriptomas masi-

vos de las placas (Mokry 2021) relacionadas al metabolismo, la respuesta inmune

y en la homeostasis de la matriz extracelular, las cuales correlacionan con rasgos

histológicos y síntomas clínicos. Sin embargo, a pesar de los avances, la descrip-

ción comprensiva y unificadora de las firmas genéticas identificadas con la causa

o la asociación con aterosclerosis continúa siendo imprecisa y parcial (Örd 2023).

Es de notar que, si bien estas mutaciones se asocian con mayor riesgo de eventos

cardiovasculares, las mismas no son, en general, determinantes.

La incorporación de la genética en las ecuaciones de riesgo ofrece la oportuni-

dad de refinar los riesgos potenciales más tempranamente y así lograr estrategias

de reducción de riesgo individualizadas. Tener un progenitor con antecedentes

de enfermedad cardiovascular prematura eleva las chances de desarrollarla en un

50%, independientemente de los factores de riesgo clínicos (Lloyd-Jones 2004).

Estudios de comparación de gemelos monocigóticos y dicigóticos muestran que la

variación en el desarrollo de enfermedad coronaria es atribuible a variantes gené-

ticas frecuentes (Zdravkovic 2002), lo que agrega evidencia a que la genética po-

dría ser aditiva en la predicción del riesgo (Crous-Bou 2016, O’Sullivan 2022). En
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los estudios de asociación del genoma completo (GWAS) se confirmó la base po-

ligénica de las enfermedades cardiometabólicas, mostrando que muchas variantes

(SNVs) de bajo riesgo colectivamente identifican a pacientes con un riesgo cardio-

vascular significativo (Mars 2020). De esta manera se desarrollaron los conocidos

como scores de riesgo poligénico (polygenic risk scores, PRS), los cuales resultan

de la suma ponderada por el peso de su efecto de las múltiples variantes de nu-

cleótido único asociadas a la enfermedad a través del genoma (O’Sullivan 2022).

Se ha recabado vasta evidencia de los aportes del riesgo poligénico a la mejora en

la clasificación de los pacientes (Tikkanen 2013, Inouye 2018, Elliott 2020). Esta

mejora es detectable antes de la aparición de los factores de riesgo clínicos y es

apreciable en todo el espectro de edades, poblaciones y ancestrías (Weale 2021,

Lu 2022, O’Sullivan 2022). En el estudio de Riveros-Mckay y otros se concluye que

adicionar el score de riesgo poligénico mejora la habilidad predictiva y la utilidad

clínica de las herramientas existentes de pronóstico de riesgo para enfermedad

cardiovascular a todas las edades y para ambos sexos, pero es especialmente pro-

nunciada para hombres de mediana edad (40 a 54 años) (Riveros-Mckay 2021).

La evidencia de los estudios clínicos realizados demuestra que la clasificación de

riesgo genético alta puede cambiar el manejo clínico de los pacientes. Entre los in-

dividuos de mediana edad asintomáticos considerados de riesgo intermedio por los

factores de riesgo convencionales un riesgo poligénico alto de enfermedad cardio-

vascular ayudó en la reclasificación de la prescripción de estatinas. Además entre

los asintomáticos jóvenes puede ayudar a intensificar los esfuerzos a un cambio de

vida más saludable y un potencial inicio del consumo de estatinas más temprano

para mitigar el riesgo a largo plazo (Aragam 2020).

Aunque el score de calcio coronario y el riesgo poligénico representan tecno-

logías totalmente diferentes y no han sido comparadas directamente ambas de-

mostraron mejorar la capacidad predictiva de las ecuaciones que solo utilizan los

factores de riesgo. Además la evidencia sugiere que las habilidades predictivas pa-

recen ser, al menos, comparables (Patel 2021, Saad 2021) aunque aún la evidencia

no es concluyente (Khan 2023).

Las variantes génicas comentadas hasta ahora son variantes germinales, es de-

cir, son heredadas y por lo tanto pueden ser encontradas en todas las células del

cuerpo del individuo ya que estaban presentes en las gametas de los progenitores.

Las variantes somáticas, sin embargo, ocurren mitóticamente en cualquier célula

del organismo (exceptuando las germinales) luego de la fecundación que dio ori-
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gen a ese individuo y no son heredables entre generaciones. Estos cambios en el

ADN suelen ser silentes, ya sea por no producir ninguna alteración en el funcio-

namiento celular, o encontrarse en una células aislada sin repercusión orgánica.

Si los cambios acumulados aportan a la célula y a sus clones una ventaja fren-

te a las otras células del organismo (variantes conductoras o drivers) la variante

puede conducir a manifestaciones clínicas. Particularmente interesante es el caso

de ciertas variantes con pérdida de función de los genes DNMT3A, TET2 y ASXL1

que confieren una ventaja selectiva a las células madre hematopoyéticas. Estos

cambios son detectables en los clones circulantes en sangre periférica ya que es-

tas células mantienen la capacidad de diferenciarse en granulocitos, monocitos y

linfocitos. Más del 10% de las personas mayores de 70 años portan este tipo de

variantes aumentando 10 veces el riesgo de desarrollar algún cáncer hematológico

frente a las personas que no las portan (Jaiswal 2014). A las personas portadoras

de este tipo de variantes y que no presentan ninguna anormalidad hematológica se

las definió como portadoras de hematopoyesis clonal de potencial indeterminado

(CHIP por sus siglas en inglés) (Steensma 2015). El 75% de los casos de CHIP se

encuentran en los genes DNMT3A, TET2 y ASXL1. Otras variantes se encontraron

en el gen JAK2 el cual está asociado a mayores tasas de trombosis, PPM1D y TP53

responsables de respuesta a daño celular, y en los genes de splicing SRSF2 y SF3B1

(Haring 2022).

Jaiswal y otros encontraron una asociación significativa entre enfermedad car-

diovascular o infarto de miocardio temprano y CHIP en humanos de una mane-

ra dosis dependiente. Además, observaron experimentalmente un empeoramiento

de la aterosclerosis en un modelo murino con la variante más frecuente de TET2

(Jaiswal 2017). Las variantes en DNMT3A, TET2 y ASXL1 aumentan el riesgo de

evento coronario en 2 veces mientras que la variante V617F en JAK2 se asoció a un

incremento del riesgo de 12 veces (Haring 2022). La secuenciación de ARN de las

células portadoras de las variantes de pérdida de función en TET2 mostraron un

aumento de la expresión de citoquinas proinflamatorias como IL-1β e IL-6 (Jais-

wal 2017). La búsqueda poblacional de las personas portadoras de CHIP podría

ayudar a los médicos a la identificación y el manejo de pacientes con mayor ries-

go cardiovascular. Una aplicación terapéutica posible sería la modulación de las

vías inflamatorias mediante fármacos específicos. También la inhibición de JAK2,

o de las integrinas río abajo, para reducir las complicaciones de la enfermedad

cardiovascular trombótica (Haring 2022).
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3.3. Insuficiencia cardíaca

La insuficiencia cardíaca es un síndrome clínico debido a la incapacidad del

corazón de bombear sangre en los volúmenes adecuados que demanda el meta-

bolismo de los diferentes órganos. Esta incapacidad generada por anormalidades

cardíacas estructurales o funcionales provoca signos y síntomas característicos,

incluyendo congestión pulmonar, retención de agua sistémica y baja perfusión ti-

sular. Estas alteraciones pueden, en muchos casos, ser graves y llevar a la muerte

del paciente por diferentes complicaciones.

La insuficiencia cardíaca es muy frecuente, con una prevalencia de 1 a 3% en la

población adulta de países industrializados y es especialmente prevalente en eda-

des avanzadas, llegando al 4-5% en mayores de 70 años. La incidencia estimada

es de 1 a 20 casos cada mil habitantes por año (Savarese 2023). La etiología más

frecuente en el mundo es la miocardiopatía isquémica producto de alteraciones

ateroscleróticas en la irrigación del corazón, siendo responsable en el 50% de los

casos. En Sudamérica le sigue como principal causa la cardiomiopatía chagásica

(Stanaway 2015). Dentro de otras causas que pueden desencadenar la insuficien-

cia cardíaca se incluyen la hipertensión arterial, la enfermedad valvular, la cardio-

miopatía dilatada idiopática (habitualmente producto de alteraciones genéticas

o por alteraciones estructurales luego de infecciones virales), la cardiomiopatía

inducida por quimioterapia y las cardiopatías congénitas (Savarese 2023).

La insuficiencia cardíaca puede presentar grados de severidad clínica muy va-

riados llegando, en muchas oportunidades, al fallecimiento a los pocos años del

diagnóstico (Emelia 2019). Para poder clasificar la gravedad y afectación se han

desarrollado diferentes escalas. De ellas, la más conocida y utilizada es la propues-

ta por la Asociación Cardíaca de New York (NYHA classification), la cuál agrupa a

los pacientes de acuerdo a la gravedad de los síntomas clínicos. Aquellos pacien-

tes en clase funcional I no presentan prácticamente limitaciones para la actividad

física. En el otro extremo se encuentran los pacientes en clase funcional IV, que

debido a las alteraciones extremas en la función cardíaca presentan síntomas en

reposo (Dolgin 1994). Además de clasificar a los pacientes de acuerdo a su sinto-

matología, la clase funcional es una forma de categorizar el riesgo de muerte de

los pacientes. De esta forma, los pacientes en clase funcional I tienen una mortali-

dad anual de 1-2%, mientras que aquellos pacientes en clase funcional IV tienen
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una mortalidad anual mayor al 8-10%.

Además de la capacidad funcional, la insuficiencia cardíaca también se clasifica

de acuerdo al volumen de sangre que eyecta en cada latido, lo que se denomina

habitualmente fracción de eyección (FEy). Cuando la eyección es menor o igual

al 40% se la denomina insuficiencia cardíaca con fracción de eyección reducida,

medianamente reducida entre 41 y 49% y preservada con FEy ≥50% (Bozkurt

2021). El 50% de los afectados tiene insuficiencia cardíaca con FEy reducida.

La insuficiencia cardíaca con FEy del ventrículo izquierdo reducida es el re-

sultado de varios procesos fisiopatológicos que culminan en la pérdida parcial de

la capacidad contráctil del corazón, ya sea regional (afectando sólo una zona del

ventrículo) o global (afectando todo el ventrículo). Estos procesos corresponden a

diferentes aspectos del aparato contráctil cardíaco desregulados que conducen al

deterioro de la fracción de eyección. Desde la activación neurohormonal sistémica

hasta el sustrato metabólico energético para lograr la contracción cardíaca, pasan-

do por la regulación de los iones implicados y variantes patogénicas en proteínas

de importancia mecánica, muchos de los procesos necesarios para el bombeo efi-

ciente del corazón se encuentran alterados. Las consecuencias, sin embargo, son

similares en todos los casos: congestión pulmonar por efecto retrógrado de flujo

sanguíneo, congestión sistémica y baja perfusión tisular por bajo flujo anterógra-

do. Estas alteraciones conducen a fenómenos fisiopatológicos asociados con las

consecuencias clínicas, la fracción de eyección se encuentra entonces fuertemente

asociada a la mortalidad de estos pacientes.

La acción mecánica de la contracción depende de la acción coordinada de los

cardiomiocitos, que son mayoritariamente proteínas contráctiles (actina y miosi-

na) y mitocondrias. La contracción comienza (Figura 7) con un potencial de ac-

ción que genera la liberación de cationes de calcio desde el canal de Ca++ tipo L

sensible al voltaje, el que a su vez estimula la liberación de calcio mediante los

receptores de rianodina (RyR) ubicados en el retículo sarcoplasmático. El Ca++

se une a la troponina C e induce cambios conformacionales en la actina, expo-

niendo los sitios de unión a la miosina, permitiendo que actina y miosina se unan

activando la contracción cardíaca (sístole). La contracción se produce porque la in-

teracción de la actina y la miosina produce una conformación tridimensional más

corta de la estructura fibrilar. Posteriormente, la relajación o diástole requiere la

captación activa del Ca++ hacia el retículo gracias a las Ca++ ATPasas del retículo

endo/sarcoplasmático (SERCA-2a) y hacia el exterior mediante intercambiadores
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sodio-calcio (Ge 2019), generando el desacople de actina-miosina y el retorno al

estado relajado.

Figura 7: Acoplamiento excitación-contracción en el cardiomiocito. El potencial de
acción cardíaco (1) se inicia por la entrada de iones de sodio Na+ por sus canales cam-
biando el potencial intracelular de negativo a positivo. Esto estimula la liberación de Ca++

desde los canales de calcio tipo L (LTCCs) (2) sensibles al voltaje que se encuentran en
invaginaciones de la membrana plasmática llamadas túbulos T. El aumento de Ca++ es-
timula la liberación de más Ca++ desde los receptores de rianodina (RyR) (3) ubicados
cercanamente en el retículo sarcoplasmático. La contracción (4) y la relajación (5) de los
miofilamentos son dependientes de la unión y de la disociación del Ca++ de la troponina.
La limpieza del Ca++ interior ocurre hacia el retículo sarcoplasmático (SR) vía la ATPasa
de Ca++ del retículo sarco/endoplasmático (SERCA) o hacia el exterior vía el intercam-
biador sodio-calcio (Na+ Ca++ exchanger) (6). Imagen tomada de Ge et al 2019.

En la insuficiencia cardíaca con FEy reducida se encuentran anormalidades

en el flujo de calcio que reducen la amplitud del calcio transitorio y el calcio en

el retículo, lo que perjudica la contracción y la relajación. Estas anormalidades

pueden ser una reestructuración de los túbulos T (Pinali 2017, Frisk 2021), des-

acoplamiento de los receptores de rianodina (Waddell 2023) y menor actividad

de la ATPasa de calcio del retículo sarco/endoplasmático (Mora 2023, Kho 2023).

Aunque esto ni siquiera soslaya el nivel de complejidad, ya que si se tienen en

cuenta las proteínas con función mecánica que están involucradas en la estructura

de los túbulos T, como la JPH-2 (junctophilin-2) (Howe 2021); los reguladores de

la SERCA, como el fosfolamban (PLB) (De Genst 2022) o su regulación postraduc-

cional (glutationalizacion (Stammers 2015), sumoilación (Kho 2011, Peng 2023))

se continúan agregando capas de dificultad en la fisiología de la insuficiencia car-
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díaca.

En las etapas iniciales de la enfermedad se activan los sistemas adrenérgicos

y renina-angiotensina-aldosterona como mecanismo de compensación. Pero la hi-

peractividad neurohormonal lleva a una desensibilización donde disminuyen los

adrenorreceptores, por lo tanto disminuyen los niveles de AMP cíclico para, final-

mente, disminuir los niveles intracelulares de Ca++ (Iravanian 2008).

Otro punto en la patofisiología de la enfermedad es el metabolismo energético.

El continuo trabajo mecánico del corazón depende de la generación constante de

ATP. Hasta el 70% de la energía es utilizada para la contracción y el 30% para

mantener las bombas de iones, especialmente la SERCA, por lo tanto, cualquier

decaimiento en el proceso puede llevar rápidamente a la disfunción contráctil. En

normoxia el 95% del ATP generado en el corazón deriva de la fosforilación oxida-

tiva en la mitocondria, utilizando como sustrato mayoritariamente ácidos grasos y

en menor medida glucosa, cuerpos cetónicos y lactato; el otro 5% corresponde a

la glicólisis anaeróbica (Doenst 2013). En la insuficiencia cardíaca se observa un

cambio en el sustrato usado, aumentando la dependencia de la glucosa y dismi-

nuyendo la de los ácidos grasos. Este desbalance no se debe a una reducción en

la disponibilidad de los ácidos grasos, sino a una alteración en la transcripción de

genes involucrados en su oxidación. Los receptores activados por proliferadores

de peroxisomas (PPARs) son los reguladores centrales del metabolismo de lípidos

en el corazón, siendo el PPARα el factor de transcripción más expresado en car-

diomiocitos y el responsable de controlar la expresión de genes involucrados con

la oxidación de los ácidos grasos (Da Dalt 2023). Entre otros factores de transcrip-

ción y promotores, PPARα se encuentra regulado negativamente en la insuficien-

cia cardíaca (Rowe 2010). Esto genera el paradigma del agotamiento energético a

pesar de una correcta disponibilidad del sustrato. Además la oxidación de piruva-

to derivado de la glucosa disminuye en el metabolismo anaeróbico, acumulando

lactato y piruvato. El miocardio de pacientes con insuficiencia cardíaca tiene re-

ducida la expresión de la enzima piruvato deshidrogenasa, de los transportadores

de piruvato mitocondrial y de las aminotransferasas de piruvato, sugiriendo que

el metabolismo y el transporte del piruvato se encuentran reducidos (Lopaschuk

2021).

Los defectos en la función mitocondrial también son causas fisiológicas de la

insuficiencia cardíaca. Cualquier disminución o interrupción en la cadena de trans-

porte de electrones resulta en un inadecuado funcionamiento del manejo de iones,



Introducción FCEyN, Universidad de Buenos Aires

un aumento de especies reactivas del oxígeno que llevan a apoptosis de miocitos,

remodelación patológica del miocardio y disfunción contráctil (Wu 2022).

3.4. Redes Neuronales - Aprendizaje profundo

En los primeros tiempos de la inteligencia artificial el campo rápidamente solu-

cionó problemas intelectualmente difíciles para los humanos, pero relativamente

sencillos para las computadoras, problemas que pueden ser definidos por una lista

formal, por reglas matemáticas. El verdadero desafío para la inteligencia artificial

fue resolver situaciones que eran fáciles de resolver para las personas, pero difí-

ciles de describir formalmente, problemas que se resuelven intuitivamente, que

parecen automáticos, como reconocer un automóvil en una foto. La solución a es-

tos problemas fue permitir a las máquinas aprender de la experiencia y entender el

mundo como conceptos jerarquizados, en los que cada concepto es definido por la

relación de conceptos más sencillos (neuronas) (Hopfield 1982). Si graficamos có-

mo estos conceptos se van construyendo unos sobre otros el gráfico es “profundo”,

con muchas capas. Por esto se llama a este enfoque aprendizaje profundo (Good-

fellow 2016). El aprendizaje profundo es un subtipo del aprendizaje automático.

Para los algoritmos de aprendizaje automático es muy importante la representa-

ción del dato que se le brinda, diferentes tipos de información relevante llamados

rasgos (features en inglés). Por ejemplo, si quisiéramos reconocer autos en imáge-

nes podríamos seleccionar el rasgo ruedas. La elección de la representación tiene

un efecto enorme en la performance del modelo, muchos problemas se pueden

resolver fácilmente diseñando los rasgos correctos para extraer, pero en otros es

muy difícil, hasta imposible, saber qué rasgos elegir debido a la sofisticación de las

representaciones posibles. En el ejemplo del auto, las ruedas pueden variar según

la posición del auto, la perspectiva de la imagen o cómo la luz refleja sobre estas.

El aprendizaje profundo resolvió este problema central ya que expresa las repre-

sentaciones en función de otras representaciones más sencillas (conexionismo)

logrando la variedad de matices necesaria, este tipo de aprendizaje automático

permite al sistema computacional aprender con experiencia y datos (Goodfellow

2016). Con muchas imágenes de automóviles el sistema aprende simultáneamen-

te muchas variantes de muchos rasgos no planteados de antemano. Una parte del

éxito actual de estos algoritmos de aprendizaje se debe a que podemos proveerlos
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de la cantidad de datos necesaria para que sean productivos. La cantidad de da-

tos digitalizados y su interacción en red es enorme y continúa aumentando, lo que

permite una buena generalización a partir de nueva información luego de observar

sólo una parte del universo de los datos, y la medicina no escapa a esta tendencia

(Minor 2017). Otra parte del éxito se debe a la capacidad computacional que per-

mitió aumentar el tamaño de los modelos y al advenimiento de las unidades de

procesamiento gráfico (GPU), gracias a la industria del video juego, que permitió

aumentar la velocidad de entrenamiento (Chellapilla 2006). Estos procesadores

permiten el cálculo simultáneo de una enorme cantidad de procesos, lo que acele-

ra los tiempos de entrenamiento de los modelos.

El nombre de la unidad básica de procesamiento que interacciona para al-

canzar el complejo sistema en red, la neurona, está inspirado en las neuronas

biológicas por su capacidad de activación al vencer un umbral de estímulo. Mate-

máticamente, los estímulos son los valores de entrada que pueden provenir de un

archivo de entrada con datos o de otras neuronas. La neurona (Fórmula 1) realiza

una suma ponderada de los valores de entrada (x j). La ponderación es el peso (w j)

que cada estímulo tiene sobre la respuesta de la neurona (y) más un término de

sesgo (b). El umbral que va a determinar si la neurona se activa o no es definido

por una función, la función de activación ( f ). Una función sencilla que logra eli-

minar la linealidad de la neurona y permite la suma entre neuronas para formar

la red. Es importante recalcar la relación no lineal entre neuronas, una propiedad

muy conveniente a la hora de aplicar la red neuronal en redes genéticas.

y = f (W X + b) = f (w1 x1 +w2 x2 + · · ·+ b) = f

�

∑

j

w j x j + b

�

(1)

Las neuronas que reciben la misma información se dice que se encuentran en la

misma capa. Así todas las neuronas de una misma capa entregan el resultado de

su cómputo a la siguiente capa, de manera secuencial y jerarquizada. La manera

en que se organizan las diferentes capas es la arquitectura de la red. A las capas

que se encuentran entre la capa de entrada y de salida se les llama capas ocultas.

Por ejemplo, en la figura 8 se observa una red neuronal totalmente conectada (feed

foward) con tres capas ocultas. Las flechas representan la conectividad entre las

neuronas o nodos de la red, ambas neuronas de la capa de entrada brindan su in-

formación hacia todas las neuronas de la primera capa oculta. A su vez, todas ellas
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pasan su resultado a todas las neuronas de la siguiente capa, lo que evidencia un

flujo de información direccional que permite la jerarquización de la información.

Figura 8: Representación esquemática de una red neuronal artificial totalmente co-
nectada. Su arquitectura consta de 1 capa de entrada con 2 neuronas (en amarillo), 3
capas ocultas (2 de ellas con 4 neuronas y la central con 5 neuronas, todas ellas en color
celeste) y 1 capa de salida con 1 neurona (representada en rojo).

Una red neuronal artificial es un modelo matemático que logra encontrar si-

militudes dentro de los datos para resolver un problema, como por ejemplo, de

clasificación. Estas similitudes van a permitir que un nuevo dato pertenezca a

una clase determinada debido a sus semejanzas con ese grupo: automóviles con

automóviles, helicópteros con helicópteros, etc... Matemáticamente esto lo logra

ajustando sus parámetros. La riqueza actual de estos modelos yace en la cantidad

de parámetros que se pueden utilizar y que, claro está, puede ajustarlos por su

cuenta, hacer un aprendizaje automático (machine learning). Existen tres tipos de

aprendizaje: supervisado, no supervisado y reforzado (que no será utilizado en

esta tesis). En el aprendizaje supervisado los datos que se brindan a la red tie-

nen su etiqueta, la foto del automóvil va acompañada del título “automóvil” que

previamente alguien identificó y señaló. Por lo tanto, las bases de datos son más

complicadas de conseguir y pueden conllevar el sesgo del etiquetador. En el apren-

dizaje no supervisado se encuentran los algoritmos de agrupamiento (clustering)

y de reducción de la dimensionalidad. Al no tener el conocimiento a priori de la

etiqueta el agrupamiento se efectúa sólo por características inherentes a los datos

y la evaluación e interpretación de los agrupamientos son subjetivos, dependiendo

de la experticia del operador.
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El aprendizaje supervisado de una neurona es un proceso iterativo y se modela

como la actualización del vector de ponderaciones (W) en cada iteración.

w′j = w j + Lr (δ− y) x j (2)

donde w′j es el elemento en la posición j del vector de ponderaciones W actualiza-

do. La tasa de aprendizaje (Lr) es una constante entre 0 y 1 que modula el error o

la diferencia entre la respuesta esperada (δ) y la salida de esa iteración (y). x(x j)

es el elemento en la posición j del vector de entrada X.

Para modelar la diferencia entre el resultado esperado y el resultado real global

en cada iteración se necesita una función de error (también llamada de costo o de

pérdida) que va a señalar cuál es el error para cada una de las combinaciones de

los parámetros (Por ejemplo el error cuadrático medio (MSE)). La necesidad de ir

reduciendo la diferencia entre el resultado esperado y el resultado observado, que

parte de parámetros iniciales al azar, nos lleva a buscar el mínimo de la función de

costo. Para ello (Fórmula 3) se hace la derivada de la función de costo en función

de los parámetros (dE/dW), resultando en un vector que señala la pendiente de la

función en el punto determinado en esa iteración o también llamado: el gradiente

(∇) de la función. La actualización de los parámetros (W ’) en una iteración va a

corresponder a restarle a los parámetros de la iteración anterior (W) el gradiente

de la función de error, ya que se quiere avanzar en el sentido de disminuir la

pendiente hasta que el error sea nulo.

W ′ =W − Lr∇ f (3)

En una red neuronal el error de cada capa depende del error de la capa ante-

rior, así que, para obtener el gradiente, se parte desde el error de la última capa

operando de forma recursiva capa tras capa hasta la capa de entrada, retropropa-

gando los errores. Entonces, “si se está mirando en la dirección correcta, lo único

que se debe hacer es seguir caminando”. La tasa de aprendizaje (Lr) es el hiper-

parámetro que indica cuánto moverse en la superficie de la función de error en

la siguiente iteración para repetir el cálculo, hasta que la pendiente desaparezca

y, por lo tanto, haber llegado a un mínimo. El algoritmo de retropropagación de

errores (Rumelhart 1986) es lo que permite a la red autoajustar sus parámetros,

aprender, de manera eficiente.
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Durante el entrenamiento de una red neuronal se divide el set de datos. Inicial-

mente, a la red se le muestra un porcentaje mayoritario de las fotos con su etiqueta

en cada iteración, esto es llamado grupo de imágenes de entrenamiento. Con este

grupo la red autoajusta sus parámetros. El resto de las fotos que la red no utilizó

para entrenar es el set de validación y es utilizado para evaluar la performance

del modelo. Este grupo es presentado a la red sin su etiqueta para que realice una

predicción la cual se compara con la etiqueta conocida. Existen diferentes métri-

cas para la evaluación de la red, una de ellas es la exactitud de la clasificación

(Classification Accuracy). La exactitud es un número entre 0 y 1 que representa el

número de predicciones correctas sobre el número total de predicciones realiza-

das. Es una métrica muy sensible al desbalance de los datos, pero funciona muy

bien si el número de muestras está equilibrado entre las clases. Otra métrica muy

utilizada y que brinda una descripción más completa de la performance del mo-

delo es la matriz de confusión. Como su nombre lo indica es una matriz, en ella

se ordenan tanto los verdaderos y falsos negativos como los verdaderos y falsos

positivos. Las predicciones correctas (verdaderos positivos y negativos) se encuen-

tran en la diagonal principal de la matriz, los falsos positivos y negativos, o las

“confusiones”, se encuentran esparcidas en los componentes de la matriz que no

pertenecen a la diagonal principal.

Una red neuronal convolucional es un tipo de aprendizaje profundo que aplica

convoluciones matemáticas (estrictamente son correlaciones) en una o más capas

internas de la red, esta arquitectura permite realizar una gran cantidad de opera-

ciones para lograr aprender de relaciones no lineales entre los datos de entrada y

de salida (Gu 2018).

Un problema que surge de los modelos con mucha profundidad es el desvane-

cimiento del gradiente. El algoritmo de retropropagación de errores, comienza a

fallar a medida que se agregan más capas, ya que el gradiente se va haciendo más

y más pequeño a medida que nos alejamos de la capa de salida, el resultado es

que en las capas más cercanas a la entrada el aprendizaje es nulo (Kolbusz 2017).

Una de las maneras que se abordó este problema es colocando una conexión que

saltee algunas capas, un atajo que no entra en el algoritmo de retropropagación

y puede mantener el gradiente en capas sucesivas (Identity shortcut connection),

así aparecen el aprendizaje residual profundo (He 2016) y las redes residuales

(ResNet) utilizadas en la presente tesis (Kaiming 2015).
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3.4.1. Antecedentes

El aprendizaje profundo se utiliza desde hace un tiempo para resolver múl-

tiples problemas de la bioinformática (Zhou 2015, Jin 2021). Particularmente en

transcriptómica de célula única existen programas para evadir el ruido inherente a

la técnica, reducir la dimensión y encontrar la señal para el agrupamiento de célu-

las y para una expresión génica diferencial mediante autoencoders (Eraslan 2019,

Grønbech 2020, Tran 2022, Pandey 2023) o redes neuronales profundas dentro

de un modelo probabilístico bayesiano (López 2018).

En transcriptómica masiva se utilizó para predecir la expresión diferencial de

genes a partir de rasgos en el ARNm y en la zona promotora (Tasaki 2020), a par-

tir de un subgrupo de genes (Subramanian 2017) o a partir de la expresión de un

grupo de factores de transcripción (Magnusson 2022). También se aprovechó la re-

ducción de la dimensionalidad de los autoencoders para aprender representaciones

latentes biológicamente relevantes de un subset de genes del transcriptoma para

encontrar las diferencias de expresión entre tejidos (Azevedo 2021). Holzscheck

y otros utilizaron redes neuronales lineales para hallar información valiosa en en-

vejecimiento en transcriptomas provenientes de la piel. Utilizaron una estrategia

que consistió en no permitir conexiones entre neuronas de diferentes vías metabó-

licas preseleccionadas hasta conseguir una neurona que refleje las características

esenciales de cada vía en el proceso de envejecimiento. Una neurona final integra

la información y predice una edad para la expresión génica brindada (Holzscheck

2021). En otro trabajo utilizaron redes adversarias generativas (GANs) en datos

de secuenciación de ARN masiva para estudiar la progresión de la enfermedad de

Alzheimer en un modelo de ratón (Park 2020). Un punto en común a todos los

trabajos es la búsqueda de la reducción de la dimensionalidad de la transcriptómi-

ca.

En el año 2018 se presenta el trabajo de Lyu y Haque en el cual utilizaron

redes neuronales convolucionales para clasificar 33 tipos de tumores prevalentes

a partir de datos de secuenciación de ARN. Por primera vez se utilizaron datos

transcriptómicos del Pan-Cancer Atlas llevados a imágenes de 2 dimensiones para

entrenar una red neuronal convolucional (Lyu 2018). En el mismo año, Ma tam-

bién aplicó datos de expresión génica disponibles en bases de datos ordenados en

imágenes para clasificar los grados de muestras de glioblastomas difusos con redes

neuronales convolucionales (Ma 2018).
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En el caso de las enfermedades cardiovasculares las redes neuronales artificia-

les se aplicaron al diagnósticos de infartos y arritmias a partir de electrocardio-

gramas (Khan 2001). También se han utilizado en la interpretación de imágenes

de resonancia magnética y radiografías. Varios trabajos utilizan redes neuronales

convolucionales para clasificar pacientes en categorías de riesgo cardiovascular a

partir de la determinación del calcio coronario en las imágenes (Cano-Espinosa

2018, Lessmann 2018, De Vos 2019, Chao 2021, Zeleznik 2021). Moon y otros

propusieron un modelo de procesamiento del lenguaje natural que predice si una

persona es susceptible a enfermedad cardiovascular a partir de identificar factores

de riesgo, síntomas, mecanismos y genes asociados a enfermedad cardiovascular

a partir de la búsqueda de palabras clave de consulta en bibliografía disponible

en PubMed (Moon 2023). En otro trabajo, con el objetivo de encontrar blancos

terapéuticos para la progresión de la aterosclerosis, entrenaron una red neuronal

artificial totalmente conectada con 5 capas ocultas con la expresión de 5 genes

asociados al progreso de la placa aterosclerótica. El estudio se basó en datos de

microarreglos de la base de datos GEO y tuvo un filtrado previo de genes a partir

de otros algoritmos (Miao 2024).



Hipótesis

Existen perfiles de expresión génica característicos de cada patología, que re-

sultan de la contribución de todos los transcriptos, no solo de los genes diferen-

cialmente expresados, y que pueden ser captados por modelos de aprendizaje au-

tomático.
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Objetivos

Visto que la actual estrategia para el manejo clínico de los pacientes continúa

siendo elegir algunos pocos biomarcadores dentro de las vías metabólicas implica-

das en la patología y que las enfermedades poligénicas tienen una correlación

genotipo-fenotipo baja, proponemos un paradigma diferente: no utilizar pocos

marcadores sino aprovechar la herramienta de las redes neuronales para lograr

una clasificación a la luz de la expresión de todos los genes representados en la

muestra.

El objetivo principal es desarrollar una metodología capaz de clasificar, por me-

dio de aprendizaje profundo, transcriptomas de diferentes patologías y controles

directamente desde sangre entera. Para esto se plantean los siguientes objetivos

particulares:

1. Generar una base de datos de transcriptomas de secuenciación propios de

sujetos sanos (controles) y de diferentes patologías (insuficiencia cardíaca y

aterosclerosis).

2. Generar agrupamientos no supervisados y correlacionar los mismos con los

datos clínicos disponibles.

3. Analizar los transcriptomas por medio de redes neuronales y obtener un

algoritmo con capacidad de clasificación.

4. Correlacionar los hallazgos de la clasificación con las características clínicas

y la evolución de los pacientes.
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6.1. Estudios clínicos

En base a los objetivos propuestos, se realizaron estudios clínicos a fin de po-

ner a prueba nuestras hipótesis. Los mismos se realizaron siguiendo las pautas

del método científico en seres humanos voluntarios (Saidon 2005, Thorat 2010)

y bajo un estándar internacional ético de buenas prácticas clínicas (Ministerio de

Salud Argentina Resolución 1490/2007, International Council for Harmonisation

of Technical Requirements for Pharmaceuticals for Human Use (ICH) General Con-

siderations for Clinical Studies). Cada estudio estuvo a cargo de un investigador

principal. Se diseñó el protocolo de estudio, el cual explica y contiene la informa-

ción en relación a los objetivos, requisitos de elegibilidad, la cantidad de partici-

pantes necesarios para el estudio, qué tratamiento se administra, de qué forma,

su dosis y frecuencia; qué tipo de información debe recopilarse y cuándo. Además

se redactó un consentimiento informado. Estos documentos fueron presentados y

aprobados por un comité de ética autorizado. Al momento del enrolamiento en

el estudio, los participantes deben atravesar un proceso mediante el cual, luego

de recibir información veraz acerca del mismo de manera clara y precisa, de tal

forma que pueda ser entendida al grado de que pueda establecer sus implicacio-

nes en su propia situación clínica, documenten por medio de un formulario de

consentimiento informado escrito, firmado y fechado, su colaboración voluntaria

al estudio (Saidon 2005).

Se realizaron 3 estudios clínicos con diferentes objetivos y poblaciones, inclu-

yendo un estudio en sujetos sanos, un estudio en pacientes en quienes se realizó

una evaluación de riesgo cardiovascular y un estudio en pacientes con insuficien-

cia cardíaca (Figura 9).
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Figura 9: Esquema del flujo de trabajo bioinformático. Los 2 ó 3 primeros pasos se
llevaron a cabo en el centro de salud correspondiente a cada estudio clínico. La extracción
de ARN se llevó a cabo en el Instituto de Neurociencias, Fleni - CONICET. La secuenciación
en Illumina, Reino Unido. Y todo el procesamiento de los datos se llevó a cabo en el
Instituto de Neurociencias, Fleni - CONICET.
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6.1.1. Estudio de sujetos sin enfermedad aguda

El objetivo de este estudio fue determinar el patrón del transcriptoma normal

en sangre periférica de sujetos sin enfermedad activa conocida por medio de una

secuenciación profunda del ARN de sangre de vena periférica, sin separación ce-

lular, incluyendo a los eritrocitos, leucocitos, plaquetas y todo ARN contenido en

otras estructuras celulares o vesiculares presentes en el plasma. El objetivo fue

considerar a la sangre como un tejido fluido, pero sin diferenciación de las es-

tructuras celulares que la conforman. En este estudio se extrajeron muestras de

participantes sanos para lograr asociar la expresión de decenas de miles de genes

con la edad, el sexo y los factores de riesgo presentes en la población general.

Se realizó un muestreo de conveniencia incluyendo a empleados de la Funda-

ción para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI).

Participaron 356 sujetos sanos sin enfermedades activas (aguda o subaguda). Para

ser elegidos para el estudio los sujetos debieron cumplir los siguientes criterios:

Mayor de 18 años.

Firma de consentimiento informado.

No presentar enfermedades recientes (en los últimos 3 meses), cardiovascu-

lares (Infarto agudo de miocardio, insuficiencia cardíaca, fibrilación auricu-

lar), ni respiratorias (Asma, EPOC, neumonía), ni neurológica (Demencia,

Parkinson, accidente cerebrovascular/AIT, migraña, ni ninguna otra que re-

quiera tratamiento farmacológico), ni gastrointestinal (Enfermedad inflama-

toria crónica: Crohn, colitis ulcerosa; ni úlcera gástrica o duodenal, ni diag-

nóstico de H. pylori reciente), ni metabólica (Diagnóstico reciente o cambio

reciente en el tratamiento).

No utilizar en forma crónica o en las últimas 96 horas por cualquier enfer-

medad ninguno de los siguientes medicamentos: antiinflamatorios, inmuno-

supresores, antialérgicos, antidiarreicos, antieméticos.

No presentar síntomas o signos de infección activa en los últimos 14 días,

incluyendo infecciones de las vías aéreas superiores, gastrointestinales, der-

matológicas o sospecha de infección viral.

No tener diagnóstico por hisopado nasal de CoViD en los últimos 90 días.
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A los individuos se les realizó una entrevista previa para descartar criterios de

no inclusión. Posteriormente se les realizó un exámen físico donde se relevaron

variables clínicas como el peso, la altura y la tensión arterial. Luego de un ayuno

mínimo de 8 horas se les extrajo, por punción de vena antecubital con técnica es-

tándar, una muestra de sangre para un análisis de laboratorio clínico básico y una

muestra para la transcriptómica en un tubo TempusTM Blood RNA Tube (Ther-

mo Fisher Scientific). Estos tubos contienen una solución que lisa inmediatamente

todas las estructuras celulares y preserva el ARN, estabilizándolo por 48 horas a

temperatura ambiente, 2 semanas a 4 grados e indefinidamente a -20°C.

6.1.2. Score de calcio coronario

El objetivo primario de este estudio fue evaluar la precisión diagnóstica de un

algoritmo de inteligencia artificial (Deep learning) para identificar la presencia de

calcificación coronaria estudiada con tomografía computada (TC) y discriminar

diversos grados de calcificación a partir del transcriptoma de sangre entera en pa-

cientes asintomáticos y sin antecedentes cardiovasculares. Los objetivos específicos

primarios fueron:

Análisis de los transcriptomas y su clasificación según la presencia y exten-

sión de la calcificación arterial coronaria por TC.

Entrenamiento y validación del algoritmo de inteligencia artificial (Deep

learning) utilizando los transcriptomas.

Determinar el grado de precisión del algoritmo para predecir diversos grados

de calcificación coronaria a partir del transcriptoma del grupo testeo.

Dentro de este estudio observacional se reclutaron 200 pacientes que asistieron

al Instituto Médico ENERI y la Clínica La Sagrada Familia para la realización de

una evaluación de riesgo cardiovascular. Se los invitó a participar en el estudio y,

como parte del protocolo, se les realizó una TC de tórax de baja dosis sin contraste.

Se recolectaron datos como el peso, la altura y la tensión arterial mediante una

entrevista médica en consultorio. De manera automatizada, se determinó el grado

de calcificación coronaria en las imágenes tomográficas. Luego se obtuvo sangre

por vena antecubital para el análisis del transcriptoma. Por 5 años se recolectarán

datos sobre la incidencia de eventos cardiovasculares fatales y no fatales mediante

un seguimiento clínico telefónico.
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Los siguientes fueron los criterios de inclusión:

Mujeres mayores de 50 años y menores de 75, hombres mayores de 40 años

y menores de 75.

Firma de consentimiento informado.

No presentar insuficiencia renal o hepática, ni enfermedad pulmonar acti-

va (asma agudizado, EPOC agudizado o fibrosis pulmonar), ni enfermedad

cardiovascular conocida (infarto previo de miocardio, insuficiencia cardíaca

o antecedentes de intervenciones vasculares/valvulares, coronarias, periféri-

cas o cerebrales).

No cursar hiper o hipotiroidismo.

No presentar insuficiencia suprarrenal, ni haber tenido cirugías en los últi-

mos 3 meses o algún traumatismo severo los últimos 6 meses. No padecer

enfermedad oncológica, ni ninguna patología bajo tratamiento inmunosu-

presor, ni ninguna otra enfermedad grave con pronóstico de vida estimado

menor a 12 meses.

No haber tenido un diagnóstico de CoViD en los últimos 3 meses.

No tener embarazo en curso o puerperio menor a 12 meses.

De la misma manera que en el estudio anterior, se extrajo una muestra de

sangre para la transcriptómica en un tubo Tempus.

La cuantificación de calcio coronario (CC) se realizó en una tomografía sin

contraste de tórax. El tomógrafo utilizado fue un multidetector de 16 cabezales

modelo MX8000 IDT de Philips. El cálculo del grado de calcificación coronaria se

realizó con un software específico de detección automática. La cuantificación se

realizó utilizando el score de Agatston 21. Habitualmente se clasifican los pacien-

tes según los siguientes grados de score de Agatston:

0: Patología no identificable

1 a 99: Patología leve

100 a 399: Patología moderada

Mayor a 400: Patología severa
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6.1.3. Insuficiencia cardíaca

El objetivo primario del estudio fue evaluar la utilidad diagnóstica del análisis

transcriptómico de sangre entera asistido por inteligencia artificial en pacientes

con antecedentes de insuficiencia cardíaca y deterioro de la fracción de eyección

del ventrículo izquierdo. Los objetivos específicos fueron:

Análisis de los transcriptomas y su clasificación según la fracción de eyección

del ventrículo izquierdo.

Entrenamiento del algoritmo de inteligencia artificial (Deep learning).

Determinar el grado de precisión diagnóstica del algoritmo para identificar

diversos grados de deterioro ventricular izquierdo a partir del transcriptoma.

Para este estudio observacional de cohorte prospectivo se reclutaron 116 parti-

cipantes con diagnóstico previo de insuficiencia cardíaca y deterioro de la función

ventricular izquierda que concurrieron a la institución médica Instituto Cardio-

vascular de Buenos Aires para la realización de un seguimiento en una unidad

especializada de insuficiencia cardíaca. Se recolectaron datos clínicos en una en-

trevista médica y se extrajo sangre para el análisis del transcriptoma y para un

análisis bioquímico de rutina. Se recolectarán datos durante 5 años sobre la in-

cidencia de muerte por todas las causas, eventos cardiovasculares fatales y no

fatales.

Para poder participar en el estudio de insuficiencia cardíaca los pacientes cum-

plieron con los siguientes criterios de inclusión:

Ser mayor de 18 y menor de 80 años.

Firma de consentimiento informado.

No ser catalogado por el médico tratante en el estadio A de la clasificación

de insuficiencia cardíaca ACC/AHA.

Tener una fracción de eyección del ventrículo izquierdo menor a 50%.

No tener enfermedad renal crónica, ni insuficiencia renal o hepática cono-

cida, ni enfermedad pulmonar activa (asma agudizado, EPOC agudizado o

fibrosis pulmonar), ni enfermedad cardiovascular activa (infarto agudo de
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miocardio diagnosticado hace menos de 180 días, antecedentes de interna-

ción por insuficiencia cardíaca menores a 30 días, intervención coronaria o

vascular periférica hace menos de 90 días).

No estar en lista de espera para trasplante cardíaco.

No cursar hiper o hipotiroidismo.

No presentar insuficiencia suprarrenal, ni haber tenido cirugías en los últi-

mos 3 meses o algún traumatismo severo los últimos 6 meses.

No padecer enfermedad oncológica, ninguna patología bajo tratamiento in-

munosupresor, ni ninguna otra enfermedad grave con pronóstico de vida

estimado menor a 12 meses.

No presentar diagnóstico de CoViD en los últimos 3 meses.

No tener embarazo en curso o puerperio menor a 12 meses.

Todos los estudios fueron aprobados por los Comités de Ética de sus respecti-

vas instituciones y todos los participantes firmaron el consentimiento informado

respectivo a su estudio. Todos los datos de los participantes fueron anonimizados

durante los análisis.

6.2. Procesamiento de la muestra biológica

Las muestras de sangre fueron procesadas en el laboratorio de FLENI para la

extracción de ARN. Para ello se utilizó el kit Tempus™ Spin RNA Isolation Reagent

de Thermo Fisher Scientific. El ARN se mantuvo a -80°C hasta el procesado. La

preparación de la biblioteca de secuenciación desde sangre entera se llevó a cabo

con el kit TruSeq™ Stranded Total RNA with Ribo-Zero™ Globin. Este kit remueve

los ARN correspondientes a los ribosomas y la hemoglobina, el cual compone un

porcentaje mayoritario en una muestra de sangre y no aporta información alguna.

Brevemente, en el primer paso se depletó el ARN ribosomal y de la globina desde

el ARN total purificado previamente mediante el Ribo-Zero Plus rRNA Depletion

kit ™ según las especificaciones del fabricante. Luego se fragmentó y se desna-

turalizó el ARN para colocar primers utilizando hexámeros para síntesis de ADN

complementario al azar. En el tercer paso se retrotranscribió la primera hebra de
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ADNc a partir de los hexámeros, luego se removió el molde de ARN y se reemplazó

con la segunda hebra de ADN logrando así el ADNc doble cadena. El quinto paso

agrega un nucleótido de adenina en el extremo 3’ de los fragmentos para prevenir

que se liguen entre ellos durante la reacción de ligado de los adaptadores. Una

timina correspondiente en el nucleótido del extremo 3’ del adaptador provee la

complementariedad para el ligado y asegura una baja tasa de formación de qui-

meras. En este próximo paso se concatenaron los múltiples adaptadores índice al

fragmento que lo prepara para la hibridación a una celda de flujo del secuenciador.

Luego existe un paso de limpieza donde se removieron, con Agencourt AMPure XP

beads, los restos de la biblioteca. Los fragmentos ya están listos para su amplifica-

ción mediante PCR, en el cual se amplifican selectivamente los fragmentos de ADN

que tengan los adaptadores a ambos extremos de la molécula. La PCR se realizó

con PCR Primer Cocktail que se une al final de los adaptadores. Una vez finalizada

la amplificación hay un nuevo paso de limpieza con las esferas Agencourt AMPure

XP y un chequeo de calidad y concentración. El chequeo se realizó a partir de 1 µl

de una biblioteca con un kit DNA 1000 en un bioanalizador Agilent 2100.

6.3. Secuenciación

Las bibliotecas preparadas fueron secuenciadas en una plataforma Illumina

NovaSeq 6000 (Illumina, San Diego, CA, EE. UU.) empleando la química de celda

de flujo S4. Se realizó un pool de veinte bibliotecas, por cada carril de la celda de

flujo, garantizando una cantidad equitativa de ADN de cada biblioteca. Resulta-

ron 80 pacientes por cartucho. La secuenciación se llevó a cabo utilizando lecturas

pareadas de 150 pb, con el objetivo de alcanzar una profundidad mínima de, al

menos, 100 millones de lecturas por muestra. La identificación de bases y la eva-

luación de calidad se realizaron mediante el software Illumina Real-Time Analysis

(RTA).

6.4. Flujo bioinformático

A fin de desarrollar un flujo boinformático acorde a nuestras necesidades e in-

tereses, se realizó un extenso pipeline con todos los pasos necesarios para procesar

los archivos .fastq originados en el secuenciador y que termina en los archivos de
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imágenes para alimentar las redes neuronales (Figura 10).

Figura 10: Diagrama de flujo para el proceso desde la recepción del RNA extraído hasta
la red neuronal artificial.

Se analizó la calidad de las muestras secuenciadas mediante el programa FastQC

(Babraham Institute. v.0.11.4) y se obtuvieron informes sobre la cantidad de lectu-

ras, la calidad de la secuencia por base, la distribución de los largos de lectura, el

contenido de G-C, la cantidad de lecturas duplicadas y la cantidad de adaptadores

remanentes, entre otros parámetros. Dentro de los filtros de calidad se utilizó un

Phred score superior a 30 para eliminar lecturas de baja calidad. El nivel de cali-

dad Phred se define como una propiedad que está relacionada logarítmicamente

con las probabilidades de error de las llamadas de cada base (P). Si Phred asigna

un nivel de calidad de 30 a una base en concreto, las probabilidades de que esta

base sea incorrecta es de 1 entre 1000 bases secuenciadas, o sea una precisión de

99.9%.

Una vez obtenidas las lecturas y controlada su calidad se removieron los adap-

tadores remanentes mediante el programa Flexbar v.3.0 (Dodt 2012). Se utilizó

el programa alineador Bowtie2 v.2.5.1 para mapear lecturas a ARN ribosomal y

removerlo. De esta manera se logró un filtrado bioinformático del ARN ribosomal
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remanente luego del filtrado biológico en el laboratorio. En el siguiente paso se

ordenaron las lecturas y se buscó su ubicación dentro del genoma de referencia

GRCh38 por Genome Research Consortium human build 38 o Hg38. Mapear es

asignar a una lectura una posición en el genoma de referencia, para esto se utilizó

el programa STAR (por Spliced Transcripts Alignment to a Reference) (Dobin 2013).

Aunque los genomas están compuestos por secuencias de ácidos nucleicos lineal-

mente ordenadas, las células eucariotas generalmente reorganizan la información

en el transcriptoma cortando zonas intrónicas y empalmando exones no contiguos

para crear transcriptos maduros (splicing). Mapear las lecturas de transcriptos al

genoma de referencia presenta un gran desafío, principalmente dos tareas que son

muy intensas computacionalmente: primero, el correcto alineamiento de lecturas

que contienen diferencias en una sola base; segundo, el mapeo de secuencias de-

rivadas de regiones genómicas no contiguas.

Este alineador también encuentra las uniones de splicing quimeras para obte-

ner los ARN circulares, devolviendo un archivo .out.junction. Las lecturas mapea-

das resultaron en un archivo de formato .sam, un archivo de texto tabulado que

presenta un encabezado indicado con el símbolo “@” con información general

del alineamiento y luego cada renglón corresponde a una lectura alineada. Cada

línea está dividida en campos tales como nombre del fragmento, nombre de la

referencia, posición de mapeo, calidad de mapeo, la longitud del fragmento y su

secuencia, código CIGAR (código de cómo se encuentra alineada la base a la refe-

rencia. Por ejemplo, una “M” si el alineamiento coincide perfectamente o una “I”

si se encuentra una inserción respecto de la referencia.), entre otros.

Una vez ubicadas las lecturas al genoma de referencia se pasó a contar cuántas

lecturas pertenecían a cada gen mediante HTSeq-count de la librería de Python

HTSeq (Anders 2015). Sólo se contaron las lecturas que mapearon estrictamente

a un solo gen. Aquellas lecturas que mapeaban a múltiples posiciones o que sola-

paban con más de un gen fueron descartadas. Otro detalle importante es que se

contaron fragmentos y no lecturas, por ser una secuenciación por final de lectura

pareado en la cual las dos lecturas dan evidencia del mismo fragmento de ADNc y

deben ser contadas una sola vez.

Los conteos sin normalizar se utilizaron para los análisis de expresión diferen-

cial de genes ya que el DESeq2 corrige internamente por el tamaño de la biblioteca

y largo del gen. Los genes HBA-T2 (hemoglobin subunit-α2), HBA-T3 (hemoglobin

subunit-α1) y β-GLOBIN o CD113T-C (hemoglobin subunit β) fueron removidos
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bioinformáticamente de todos los análisis, en caso que algunas lecturas hayan

quedado presentes luego de la construcción de la librería.

6.5. Expresión diferencial de genes y contexto bio-

lógico

La regulación génica difiere entre tipo celulares y etapas del desarrollo, pero

también en respuesta al ambiente y a diferentes estímulos. Entonces, cuando la ex-

presión génica no está debidamente regulada, la homeostasis celular se perturba

pudiendo alterar las funciones celulares y llegar, incluso, a generar una patología.

Un análisis de rutina para los datos del conteo de genes por muestra de una se-

cuenciación de ARN en dos estados diferentes es la detección de genes diferencial-

mente expresados en dichos estados. La expresión diferencial es la cuantificación

y la inferencia estadística de los cambios sistemáticos entre condiciones. Los datos

del conteo de genes es una tabla que asigna el número de fragmentos de secuen-

cia que se mapean sin ambigüedad a cada transcripto (Love 2024). Estos datos no

responden a una distribución normal y tienen una dependencia de la varianza con

la media.

6.5.1. DEseq2

El paquete estadístico DEseq2 provee un método para testear expresión dife-

rencial utilizando un modelo lineal generalizado (GLM) con una distribución bino-

mial negativa. El marco estadístico ranquea los genes basándose en la estimación

del tamaño del efecto, el logaritmo de las veces de cambio (LFC), y testea la expre-

sión diferencial. Se ajusta un modelo lineal generalizado modelando los conteos

K de lecturas para cada gen (g) en cada muestra (m) siguiendo una distribución

binomial negativa con media µgm y dispersión αg (Fórmula 4). Las medias se es-

calan con un factor de normalización que va a independizarlas de la profundidad

de secuenciación. La función de link es el logaritmo en base 2.

K gm ∼ BN(µgm
,αg) (4)

Los estimadores de este modelo paramétrico se calculan con un método de con-

tracción (shrinkage) y no mediante máxima probabilidad, lo que le brinda mayor
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estabilidad y reproducibilidad a los resultados. Para testear la significancia de la

expresión diferencial el paquete utiliza el test de Wald. Los p valores obtenidos

se ajustan por comparaciones múltiples mediante Benjamini y Hochberg (Love

2014). Para esta tesis se agregaron a la variable en estudio las covariables sexo y

edad. A la covariable edad se la dividió en jóvenes (19 años hasta 35), adultos (en-

tre 36 y 64 años) y adultos mayores (desde 65 años hasta 89). Por ejemplo, para

el estudio de insuficiencia cardíaca (IC) el modelo planteado resultó el expuesto

en la fórmula 5.

log2(veces de cambio) = β0 + β1 femenino+ β2 edad2 + β3 edad3 + β4 IC+ ϵm (5)

6.5.2. Ontología génica

Las ontologías usualmente consisten en términos, clases o conceptos con re-

laciones que operan entre ellos. La ontología génica (GO) describe el cuerpo de

conocimiento biológico para los genes en tres aspectos: función molecular, com-

ponente celular y proceso biológico. En este trabajo nos enfocamos en el proceso

biológico definido como el objetivo biológico para el cual un gen o genes contri-

buyen (Ashburner 2000).

El análisis de enriquecimiento de ontología génica encuentra los términos onto-

lógicos sobrerrepresentados o subrepresentados para un conjunto de genes que se

encuentran sobreexpresados o subexpresados bajo ciertas condiciones. Por ejem-

plo, partiendo del genoma humano, la lista de referencia sería de 20 mil genes

codificantes aproximadamente (es necesario aclarar que el genoma humano cuen-

ta con más de 60,000 genes anotados, pero la función de la gran mayoría de los

genes no codificantes no es conocida y por ello no son utilizados habitualmente

en la construcción de ontología génica). Si 440 genes están involucrados en un

término ontológico, entonces el 2.2% de los genes de la lista de referencia ma-

pean a ese término. Si se analiza una lista de 500 genes se espera que 11 genes

(500 x 2.2%) en esa lista estén involucrados con ese término. Si hay más genes

que los esperados para ese término entonces se habla de sobrerrepresentación y,

de igual modo, si hay menos se habla de subrepresentación de ese término en el

subconjunto de genes.

El método estadístico usado para encontrar el estimador es el test binomial.

Se asume en la hipótesis nula que la probabilidad de encontrar genes para una
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categoría particular (p(c)) es la misma que para la lista de referencia y tiene una

distribución binomial (Mi 2013).

En este trabajo se realizó el análisis de enriquecimiento de ontología génica

para el subconjunto de genes que el DEseq2 entregó como resultado con un p

valor inferior a 0.05 (Cuando la lista de genes del DEseq2 lo permitió por ser

extensa se eligió un p valor más estricto: 0.01). Para esto se utilizó el paquete

estadístico de R llamado clusterProfiler (Wu 2021).

6.5.3. GAGE: generally applicable gene set enrichment for path-

way analysis

Se realizó un análisis de enriquecimiento de genes mediante GAGE en el len-

guaje computacional estadístico R. La estrategia de los métodos de enriquecimien-

to de un grupo de genes utiliza el conocimiento previo de vías de procesos bioló-

gicos (genes anotados juntos gracias a que intervienen en la misma vía biológica).

Este análisis determina si estos conjuntos de genes, definidos a priori, muestran

una expresión diferencial significativa en diferentes condiciones experimentales.

A diferencia de otros métodos que requieren una clasificación previa de los genes,

GAGE evalúa directamente los cambios en la expresión génica a nivel de conjuntos

de genes.

Para ser utilizado, en primer lugar GAGE necesita la identificación de las vías

canónicas (set de genes curado) y el set experimental derivado de la expresión

diferencial al asumir que los genes de las vías canónicas están regulados de ma-

nera heterogénea y los experimentales están regulados hacia la misma dirección,

sobre o subexpresados. Luego, para testear si un grupo de genes está correlacio-

nado significativamente con una condición experimental se examinan las veces de

cambio del nivel de expresión génica en la condición experimental vs la condición

control. También determina si la media de las veces de cambio de un set de genes

es significativamente diferente de la totalidad de los genes (del background set).

Esto lo realiza mediante una prueba t de Student a dos colas (Fórmula 6).

t =
(m−M)
q

s2

n +
S2

n

(6)

Donde m es la media de las veces de cambio de un set particular de genes y M

la de todos los genes del set de datos. La desviación estándar se nota como s en
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el set particular y como S en el set background. Y n es el número de genes en el

set particular. Finalmente, se calculan los valores p de las comparaciones con las

réplicas y, por último, se calcula un valor p global para las múltiples muestras de un

set de genes en un meta-test. Para calcular el valor q debe corregir los valores p por

múltiples comparaciones utilizando fdrtool que calcula la tasa de falsos positivos

(FDR) basado en la distribución nula empírica (Luo 2009).

La enciclopedia de genes y genomas de Kioto es un compendio de conocimiento

para el análisis sistemático de funciones génicas (Base de datos llamada GENES)

que conecta información genómica con información funcional de un orden supe-

rior (Base de datos llamada PATHWAY). PATHWAY es una base de datos con un

conjunto de representaciones gráficas de procesos celulares (Kanehisa 2000) en

las cuales se pueden mapear las expresiones diferenciales de interés.

En el desarrollo de esta tesis se trabajó con los datos de expresión diferencial

obtenidos en el DEseq2 y se buscó el marco biológico a través de GO. También

se realizaron estudios de enriquecimiento mediante GAGE con GO y KEGG. Se

utilizó la herramienta KEGG PATHWAY mapper para graficar algunos resultados

interesantes de destacar.

6.6. Análisis no supervisados

A medida que se agregan dimensiones al espacio matemático de los datos, el

volumen crece de manera que entre los datos se encuentra una mayor cantidad

de volumen vacío. El matemático Richard Ernest Bellman llamó a este fenómeno

la maldición de la dimensionalidad (Bellman 1961). Por ejemplo, dos puntos en

una recta tienen una porción de la recta que ocupan y otra porción que no, espa-

cio matemático desconocido. Dos puntos en un plano ocupan proporcionalmente

menor lugar obteniendo mayor cantidad de espacio vacío. Lo mismo puede imagi-

narse en tres dimensiones donde la zona que no ocupan los dos puntos es mucho

mayor que en una recta. Así, la cantidad de observaciones necesaria para describir

el espacio usualmente crece exponencialmente con la dimensionalidad. Encontrar

similitudes entre datos para organizarlos se dificulta cuando estos pueden ser di-

ferentes en tantos sentidos, lo que genera que las técnicas de agrupamiento fallen

o sean poco eficientes.

PCA y UMAP son métodos exploratorios ampliamente usados para la repre-
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sentación de expresión génica (Diaz 2021, Luecken 2019). La técnica de PCA se

utilizó con los conteos crudos de todos los transcriptos (en el orden de los 60 mil)

previamente a todos los análisis para la detección y eliminación de valores extre-

mos. En el caso de los agrupamientos no supervisados, para aliviar a las técnicas

de PCA y UMAP, se decidió utilizar los genes obtenidos en el análisis de expresión

diferencial como forma de reducir la dimensión matemática del análisis. De esta

manera, se redujo el número de genes a pocos miles o a decenas en algunos casos.

6.6.0.1. Análisis de componentes principales (PCA)

El análisis de componentes principales es una técnica lineal de reducción de

la dimensionalidad que prioriza la representación global de las observaciones (Jo-

lliffe 2016). Es una técnica exploratoria que procura hallar las combinaciones li-

neales de las variables originales que maximizan la varianza. El test minimiza el

error cuadrático entre las distancias de las observaciones en el espacio original y

las distancias en el espacio de baja dimensión. Se busca el vector que maximiza la

varianza y luego se observa, dentro de las infinitas direcciones ortogonales a éste,

cuál maximiza la varianza y así sucesivamente hasta tener una sola opción posible.

De esta manera se obtienen nuevas variables (los componentes principales) que

son combinaciones lineales de las originales ordenadas decrecientemente según

la varianza. Se obtienen coordenadas a partir de los vectores de los componentes

principales para graficar las observaciones en el espacio de baja dimensión. Es una

buena técnica para el reconocimiento de patrones ya que preserva la estructura ge-

neral de los datos, las correlaciones de las variables y las varianzas generales de las

observaciones. Sin embargo, no preserva las distancias entre los datos, particular-

mente las distancias pequeñas. No se encuentra optimizada para la cuantificación

de la separación de clases (calcular el centro de masa de cada clase en el espacio

del componente principal y reportar la distancia euclídea). La alternativa para la

separación de clases, el Análisis de discriminantes lineales (LDA), no puede ser

aplicada en este caso porque el desbalance en la cantidad de genes excede amplia-

mente la cantidad de muestras de cada clase (las covarianzas estimadas no tienen

la totalidad del rango y no pueden ser invertidas)(Martinez 2021).
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6.6.0.2. Uniform Manifold Approximation and Projection for Dimension Re-

duction (UMAP)

UMAP es otra técnica de reducción de la dimensionalidad, pero que, al con-

trario de PCA, trata de preservar las distancias locales ante las distancias globales

(la varianza) (McInnes 2020). Transforma la distancia entre observaciones en una

probabilidad de que sea un vecino. Luego, en un espacio de menos dimensiones,

recapitula esa probabilidad respetando, sobre todo, las distancias cortas. Busca

una representación de las observaciones del espacio de alta dimensión en uno de

baja dimensión (2 o 3) que minimice la función de pérdida. Esta función pondera

las diferencias de probabilidades medida desde las probabilidades inducidas por

las observaciones del espacio original, pondera alto las observaciones cercanas en

el espacio original. La función de pérdida se optimiza computando el gradiente

descendente, calculando el gradiente de la distancia entre observaciones en cada

iteración. Se utilizan hiperparámetros que van a designar:

El grado de localía (no es igual la distancia para ser vecino en un cluster

más denso que en uno más disperso). Por lo tanto, la ventana que indica

la distancia a la que una observación es vecina de otra (compromiso local-

global) se ajusta según los datos.

La distancia mínima deseada entre puntos en el espacio reducido (estético).

El número de épocas de entrenamiento cuando se optimiza la representación

de baja dimensión.

Para este trabajo también se utilizó t-distributed stochastic neighbor embedding (t-

SNE) dentro de los métodos que preservan la información local, pero UMAP se

comportó mucho mejor frente a la maldición de la dimensionalidad, formando

agrupamientos más claros y que coincidían mejor con las variables clínicas.

6.7. Normalización

Los conteos crudos mapeados a un cierto transcripto no son comparables entre

muestras o condiciones porque la profundidad de la secuenciación o los tamaños

de las bibliotecas (el tamaño total de lecturas mapeadas) varían de muestra en

muestra. Los conteos crudos que mapean a diferentes transcriptos dentro de una
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muestra tampoco son comparables porque los transcriptos más largos tienen más

lecturas mapeadas a ellos comparados con transcriptos más cortos con un nivel de

expresión similar. Entonces la normalización de los datos de secuenciación es ne-

cesaria para remover sesgos técnicos. Los transcriptos por millón (TPM) no tienen

unidades (Fórmula 7) y además cumple con el criterio de tener un promedio inva-

riante (El promedio de la abundancia de ARN de los genes dentro de una muestra

debe ser constante, o sea, la inversa del número de transcriptos mapeados). Los

transcriptos por millón (106) son las lecturas mapeadas al transcripto iésimo (Ti)

sobre largo del transcripto iésimo (Li) divididas por la suma de todas las lecturas

mapeadas a los n transcriptos luego de normalizarlas por el largo de cada trans-

cripto (L). Para una muestra de ARN, si se secuencian 1 millón de transcriptos, el

valor de TPM representa el número de transcriptos dado para un gen o isoforma

(Zhao 2020).

T PM = 106 ×
Ti/Li

(N1/L1+N2/L2+ ...+Nn/Ln)
(7)

6.8. Redes neuronales artificiales

Se entrenaron redes neuronales convolucionales con los datos transcriptómicos

convertidos a imagen. Para lograr obtener una imagen se utilizaron los valores

de los conteos de expresión normalizados (TPM) como el valor de los píxeles de

la imagen. Los cromosomas ordenados como un cariotipo se distribuyeron uno

tras otro desde el vértice superior izquierdo de la imagen hasta el vértice inferior

derecho y se dividió la imagen en 1350 x 1350 píxeles (Figura 11). Para ello se

dividieron a todos los cromosomas alineados en 1.822.500 partes a las cuales se les

asignó una intensidad, entre 0 y 255 (intensidad de cada píxel), que corresponde

a la expresión (normalizada al rango 0 a 255) en esa zona del genoma. Con esas

imágenes etiquetadas se alimentó el entrenamiento de la red residual.

Para entrenar la red neuronal y validar los resultados se utilizó fast.ai (v2) un

frontend de PyTorch y un GPU NVIDIA GeForce GTX 1080 Ti. Para disminuir la

carga al GPU se utilizaron números en 16 bit en vez de 32.

Se probaron arquitecturas neuronales preestablecidas, incluyendo ResNet de

18, 34, 50 y 101 capas. Se eligió la ResNet50 entre las diferentes arquitecturas de-

bido a su buen desempeño en todos los set de datos. Esta universalidad resultaría

valiosa para agregar sencillez a una posible aplicación del diseño experimental en
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Figura 11: Esquema de trabajo para la creación de la imagen utilizada en el entre-
namiento de la Red Neuronal Artificial. Desde el cariotipo hasta la ResNet pasando por
una imagen real tomada de un participante anónimo.

la práctica.

Para cada entrenamiento se utilizó el 80% de las imágenes, reservándose un

20% para validar los parámetros encontrados. Con estas imágenes reservadas sin

etiquetar se predijo el resultado de la clasificación y luego se lo comparó con el

resultado conocido. Con estos resultados se elaboraron, en cada caso, las métricas

para evaluar la performance del modelo: la exactitud de clasificación y la matriz

de confusión. Se eligieron al azar 5 semillas para la elección de 5 grupos de imá-

genes diferentes de entrenamiento y validación dentro de cada grupo, pero entre

los grupos de datos se mantuvieron las 5 semillas iguales. Los resultados se pre-

sentan como el promedio ± el desvío estándar. Se eligió siempre la corrida de la

menor semilla para mostrar los resultados gráficos como representativos de todas

las corridas.

Se probó de iniciar los entrenamientos con parámetros al azar en todas las ca-

pas y con los parámetros transferidos del entrenamiento de la red a partir de las

imágenes de ImageNet y sólo la última capa con parámetros al azar (ImageNet

es una base de datos de 14.197.122 imágenes etiquetadas y organizadas jerárqui-
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camente). Se decidió iniciar el entrenamiento con el conocimiento transferido en

todos los casos ya que los resultados fueron mínimamente mejores a los iniciados

completamente al azar.

La tasa de aprendizaje utilizada en todos los casos fue entre 1x10−5 hasta

1x10−3. Se empezó a entrenar el primer tercio de los lotes de imágenes con una

tasa de 1x10−5 y se comenzó a incrementar hasta que se llegó a la máxima 1x10−3

para los otros dos tercios se disminuyó hasta 1x10−5 nuevamente. Por este moti-

vo, sólo se tomaron los parámetros de entrenamiento de las últimas épocas como

modelo a ser validado.



Resultados

7.1. Secuenciación

Un total de 623 muestras alcanzaron los criterios de calidad en el conjunto de

los 3 estudios clínicos realizados. Se obtuvieron 59171 genes con lecturas en, al

menos, una de las muestras.

En la tabla 2 se presentan las lecturas obtenidas de la secuenciación de próxima

generación (NGS) de los transcriptomas de los tres estudios clínicos realizados. El

estudio de score de calcio coronario tiene la media más alta de lecturas por mues-

tra, seguido por el estudio de sujetos sanos. El estudio de insuficiencia cardíaca

presentó la mayor variabilidad en las lecturas y la menor cantidad de lecturas

promedio.

En la figura 12 se observa la distribución de las lecturas por muestra para cada

estudio clínico.

La base de datos GENCODE v46 cuenta con los datos de 63140 genes (feature

= gene) anotados. En las 623 muestras se encontraron 51382 genes con alguna

lectura en, al menos, un participante. En la primera columna de la 3 se observa la

composición de los genes anotados en GENCODE v46.

El consorcio GTEx considera que un gen está expresado si tiene 5 o más lec-

turas. Este umbral reduce el ruido drásticamente mientras mantiene a la muestra

Estadística Sujetos sanos Calcio coronario Insuficiencia cardíaca

Mediana 68.2 M 69.5 M 57.2 M

Media 67.9 M 69.6 M 58.2 M

Desviación estándar 18.9 M 19.8 M 20.1 M

Mínimo 18 M 34 M 17 M

Máximo 143 M 119 M 135 M

Total de muestras 334 196 108

Tabla 2: Resumen estadístico de las lecturas (M = millones de lecturas).
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Figura 12: Media de la cantidad de lecturas por muestra en los estudios clínicos
realizados. Gráfico de violín con la media de la cantidad de lecturas por muestra en los
estudios clínicos realizados: Sujetos sin enfermedad aguda (Biobanco), score de calcio
coronario e insuficiencia cardíaca.

Genes
anotados
(Total)

Hasta
1 lectura

Entre 1 y 5
lecturas

Más de
5 lecturas

Tipo de gen
Datos

propios GTEx
Datos

propios GTEx
Datos

propios GTEx

proteína 20089 17112 17167 1049 763 16063 16317
lncRNA 19258 15253 15143 3008 5468 12245 9364
Pseudogen 14481 11983 12905 4775 6651 7208 5514
miscRNA 2217 1910 1990 1013 1306 888 434
snRNA 1910 1603 1842 911 1134 692 181
miRNA 1879 1349 1528 656 937 693 90
snoRNA 942 649 789 323 406 326 145
Mitocondrial 24 19 24 5 5 14 19
Ribozima 8 5 5 3 3 2 2
Artificio 19 3 6 1 4 2 2
Otros 2313 1496 2209 389 759 1116 1243

Total de genes 63140 51382 53608 12133 17436 39249 33311

Tabla 3: Resultado de identificar en GENCODE v46 el tipo de gen hallado en las 623
muestras de todos los estudios propios y las 803 del consorcio Adult Genotype Tissue
Expression (GTEx).
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inclusiva (Melé 2015). Para analizar si los hallazgos de esta tesis coinciden con

los criterios de expresión planteados por GTEx se analizaron cuántos y qué tipo

de genes se encuentran en nuestros datos y en las muestras de tejido sanguíneo

de GTEx. El consorcio contó con 803 muestras de sangre post mortem. Los 51382

genes identificados en nuestro estudio con, al menos, 1 lectura en alguna muestra

corresponden al 81.38% de los genes anotados, mientras que GTEx reportó 53608

genes (84.91%). Cuando contamos los genes que tuvieron 5 lecturas o más en al-

guna de las muestras GTEx obtuvo un 60.01% de los genes totales y en nuestros

datos se alcanza un 70.70%. Lo que señala que la cantidad de genes expresados en

sangre es de alrededor del 85% de los genes totales actualmente conocidos. Pero,

teniendo en cuenta que una parte significativa de ellos sólo es detectada con entre

1 y 4 lecturas, una cifra de expresión que parecería biológicamente más relevante

u “operativa” ronda más cercana al 70%.

Figura 13: Cantidad de genes encontrados en los 3 estudios clínicos. Gráfico de barras
mostrando la cantidad de genes encontrados en los 3 estudios clínicos distinguiendo entre
Codificante, genes que codifican a proteína, ARNlnc, genes que resultan en ARN largo
no codificante, Pseudogen (procesados o no) y la categoría Otros que resume a todos los
otros ARNs encontrados como los no codificantes pequeños, los que están a la espera de
ser confirmados experimentalmente, artificios y misceláneos. Los colores diferencian la
población de genes utilizada para el análisis: Todos los genes anotados en el GENCODE
v46 en azul. Los que sobrevivieron por tener al menos una lectura en alguna de las 623
muestras en rojo y, al menos, 5 lecturas en amarillo.

Respecto al tipo de gen expresado en ambos estudios se encontró una propor-

ción similar de genes codificantes. Sin embargo, en el caso de los lncRNA nuestros

datos alcanzaron un 80.28% de genes frente al 61.85% de GTEx. En la figura

13 se observa un gráfico de barras con los tipos de genes encontrados en los da-

tos propios. Se hace evidente la disminución más abrupta en la clase pseudogen

y otros en la población de genes que tienen más de 5 lecturas en alguna de las

muestras (Barra amarilla) que en codificante y largo no codificante.
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7.2. Experimentos de control

A medida que pasan los años se va produciendo un declive en las funciones fi-

siológicas de los tejidos de todo el cuerpo, resultando por sí mismo en un factor de

riesgo para muchas enfermedades frecuentes (Savji 2013). El envejecimiento in-

volucra una compleja red de vías metabólicas críticas en la respuesta homeostática

al ambiente (Campisi 2019). El transcriptoma de una persona joven es esperable

que sea diferente al de una persona adulta mayor (Peters 2015) y, por esta razón,

se decidió incluir el análisis de la expresión diferencial entre estos grupos a es-

ta tesis como un control; como un patrón que identifica cómo deberían verse los

resultados en dos situaciones a sabiendas diferentes.

Con este mismo propósito se realizaron análisis poniendo en contraste a hom-

bres y mujeres, dado que el dimorfismo sexual que presenta nuestra especie se

debe en gran medida a la expresión diferencial de genes presentes en ambos sexos

(Gershoni 2017). También por todo esto, los análisis estadísticos fueron controla-

dos por sexo y edad.

7.2.1. Edad

Para evitar un umbral arbitrario que convierta la variable continua edad en

una variable dicotómica y para encontrar diferencias de expresión génica más

pronunciadas, se agrupó a los participantes de todos los estudios (pacientes y

controles) por edad con un criterio biológico en tres grupos y se eliminó al grupo

de edad intermedia.

Jóvenes (19 años hasta 35)

Adultos jóvenes (entre 36 y 64 años)

Adultos mayores (65 años hasta 89)

Al eliminar del análisis a los adultos jóvenes se obtuvieron un total de 202 mues-

tras, 99 pertenecientes a menores de 35 (media de 29±4 años) y 103 mayores de

65 años (media de 71±4 años). Se contabilizaron 103 participantes femeninas y

99 masculinos.
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7.2.1.1. Expresión diferencial de genes

Se encontraron 12836 genes diferencialmente expresados por edad con un p

ajustado menor a 0.01. De estos, la mayoría tiene un log2(VC) (veces de cambio)

menor a 1 (1996 genes tienen un log2(VC) mayor a 1). Con una amplitud desde

-5.62 hasta 4.64 log2(VC). En la figura 14 se observa el mapa de calor para los

genes diferencialmente expresados en las filas y los participantes en las columnas.

La barra verde señala el grupo joven y la barra coral el grupo adulto mayor. En el

cuadrante superior izquierdo se aprecian los genes sobreexpresados en los sujetos

jóvenes, mientras que estos mismos genes se encuentran subexpresados en los

sujetos adultos mayores (cuadrante superior derecho). Lo opuesto sucede en los

cuadrantes inferiores. Como es esperable, el cambio general en la expresión génica

es de muchos genes con baja sobre o subexpresión.

7.2.1.2. Agrupamientos no supervisados

Se estudiaron los más de 12 mil genes resultantes del DEseq2 mediante análisis

de componentes principales (Figura 15, izq.) y se observó un ordenamiento según

la edad en el primer componente principal, el cual explica el 22% de la varianza.

En naranja se observa el grupo de menor edad y en azul el de mayor edad en

ambos modelos. Aparece un subgrupo de adultos mayores que se separa de la

nube mayor que son los mismos sujetos que se separan en UMAP (Figura 15,

der.), sin embargo, no se encontró otra variable medida como responsable de ese

pequeño agrupamiento. Se probaron sexo, índice de masa corporal y tabaquismo.

En ambos métodos de agrupamiento no supervisados se llega a un ordenamiento

por edad sin una verdadera clusterización.

7.2.1.3. Red neuronal

Se entrenó 5 veces independientes una red neuronal residual de 50 capas con

161 imágenes y se retiraron 40 para la validación. En el proceso de entrenamiento

se le mostraron a la red las 161 imágenes 30 veces (en lotes de 4 imágenes por

cuestiones de capacidad de memoria), configurando 30 épocas. En cada época se

calcula el error de entrenamiento y, con las imágenes de validación, el de vali-

dación. Con estos datos se elaboró un gráfico (figura 16, izquierda) en el que se

puede apreciar la mejora en cada iteración: con los nuevos valores de los paráme-

tros el error o pérdida calculado es cada vez más cercano a cero.
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Figura 14: Mapa de calor de la expresión diferencial según edad. Mapa de calor de
la expresión diferencial de genes entre jóvenes (ageCat 1: personas entre 19 y 35 años) y
adultos mayores (ageCat 3: participantes entre 65 y 89 años). Las participantes del sexo
femenino (F) se marcan en esmeralda y las columnas de sujetos de sexo masculino (M)
en rosa. Se muestran los 12836 genes con p ajustado menor a 0.01 en las filas y los 201
participantes en las columnas. Expresión aumentada en rojo, expresión disminuida en
azul.
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Figura 15: Análisis de agrupamientos no supervisados según edad. Izq: Gráfico de
análisis de los componentes principales (PCA) para los participantes de todos los estudios
clínicos con los genes diferencialmente expresados entre jóvenes (19 a 35 años) y adultos
mayores (65 a 89 años). Der: Uniform Manifold Approximation and Projection (UMAP)
distancia mínima = 0.7, número de vecinos = 10. En ambos gráficos se diferencian los
jóvenes en naranja y los adultos mayores en azul.

Figura 16: Análisis de redes neuronales según edad. Gráfico de la función de pérdida
o error por lote de imágenes para 30 épocas en el entrenamiento de edad para todos los
estudios. Der.: Matriz de confusión resultado de una de las validaciones.
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El promedio de la exactitud de clasificación de las 5 validaciones (classification

accuracy) fue de 0.980 (±0.011). En la figura 16, a la derecha, se observa la

matriz de confusión para una de las corridas. En el caso de esta corrida de ejemplo,

las predicciones de las 40 imágenes coincidieron con la verdadera etiqueta de la

imagen. La red fue capaz de clasificar correctamente a los 22 adultos mayores y

a los 18 jóvenes. En general, en todos los set de validación presentados la red

se equivocó en la clasificación de 1 o, en un caso, 2 participantes. Logrando una

excelente performance en la clasificación.

7.2.2. Sexo

Para agrupar a los participantes por sexo se unieron todos los estudios resul-

tando en un total de 623 muestras de las cuales 310 fueron masculinas y 313

femeninas, con un promedio de edad de 52±14 y 48±14 años respectivamente.

7.2.2.1. Expresión diferencial de genes

Una vez realizado el modelo lineal generalizado se obtuvieron unos 4996 ge-

nes que se expresaron diferente entre hombres y mujeres con una significancia

ajustada de 0.01. Dentro de estos, unos 186 genes tuvieron una expresión mayor

(o menor) a 2 veces el grupo de comparación (un log2(VC) mayor a 1 (o menor a

-1)).

En el mapa de calor presentado en la figura 17 se pueden observar los ge-

nes mayormente expresados en mujeres en el cuadrante superior izquierdo y los

mayormente expresados en hombres en el cuadrante inferior derecho. En este ca-

so, hay más participantes que en el caso de la edad, por lo que cada cuadrado

representando la expresión de un gen de un participante es más pequeño y la vi-

sibilización es menos evidente. Además, hay proporcionalmente menor cantidad

de genes con una diferencia de log2(VC) mayor a 1, por lo que no se encuentran

muchos cuadrados con color rojo o azul intenso correspondientes a diferencias de

expresión más intensa, resultando en un mapa de calor más pálido que en el caso

de la edad.

7.2.2.2. Agrupamientos no supervisados

En el caso de los agrupamientos no supervisados (Figura 18) se observa un

agrupamiento claro tanto para el análisis de componentes principales (izq.) como
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Figura 17: Mapa de calor de la expresión diferencial de genes entre sexos. Mapa de
calor de la expresión diferencial de genes entre participantes femeninas (barra coral) y
masculinos (barra magenta). Los sujetos con menos de 50 años se distinguen en cian (1),
los mayores o iguales a 50 años y menores o iguales a 65 años en mostaza (2) y los sujetos
mayores de 65 años en verde (3). Se muestran los 4996 genes con p ajustado menor a
0.01 y log2(VC) <-1 y >1 en las filas y los 623 participantes en las columnas. Expresión
aumentada en rojo, expresión disminuida en azul.
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para UMAP (der.). En PCA una combinación de los componentes principales 1 y

2 logran agrupar a hombres (en naranja) y mujeres (en azul) por separado. En

ambos casos se observan unos pocos casos mal clasificados. En el caso de PCA,

4 mujeres fueron clasificadas como sujetos masculinos, pero ningún hombre fue

mal clasificado; en el de UMAP unas decenas de hombres fueron clasificados como

mujeres y unas 3 mujeres como hombres. Entonces, la representación global (la

varianza) parecería representar mejor las diferencias entre hombres y mujeres.

Figura 18: Gráficos de análisis no supervisados aplicados a sexo. Gráfico de análisis de
los componentes principales (PCA) para participantes femeninas y masculinos de todos los
estudios; CP: componente principal. Der: Uniform Manifold Approximation and Projection
(UMAP) distancia mínima = 0.7, número de vecinos = 50, épocas = 500. En ambos
gráficos se diferencian los sujetos masculinos en naranja y los femeninos en azul.

7.2.2.3. Red neuronal

Se utilizaron 499 imágenes para entrenar a la ResNet50 y se reservaron 124 pa-

ra validar, obteniéndose una exactitud de clasificación promedio de 0.990 (±0.007).

En un 99% de los casos la red clasificó correctamente. Como se observa en la ma-

triz de confusión de una de las corridas, a la derecha de la figura 19, sólo 2 mujeres

fueron predichas como sujetos masculinos. Como en el caso de la edad, en gene-

ral hubo muy pocas equivocaciones, no superando los 2 sujetos mal clasificados,

superando aún a PCA y sin filtrado previo de genes.
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Figura 19: Análisis por redes neuronales aplicados a sexo. Izq.: Gráfico de la función
de pérdida o error por lote de 4 imágenes para 30 épocas en el entrenamiento para cla-
sificar por sexo para todos los estudios. Der.: Matriz de confusión resultado de una de las
validaciones para las imágenes correspondientes a los 60 masculinos y 64 femeninos.

7.3. Factores de Riesgo

7.3.1. Obesidad

Con el dato de la altura y el peso se calculó el índice de masa corporal para

todos los participantes. Para dicotomizar la variable IMC se utilizaron los valores

más extremos de la distribución, por lo que se retiró a los participantes con peso

intermedio. Los que obtuvieron un índice entre 25 y 30 inclusive fueron clasifica-

dos como personas con sobrepeso (ver tabla 1) y fueron eliminados del análisis.

Se tomaron como control las personas con un índice menor a 25 y como obesos

a quienes obtuvieron un índice mayor a 30. En total, 162 sujetos presentaron un

IMC mayor a 30, con un promedio de edad de 53±12 años y 227 controles con un

promedio de edad de 46±14 años. Se contabilizaron 208 mujeres (edad promedio

47±13 años) y 181 hombres (edad promedio 51±14 años).

7.3.1.1. Expresión diferencial de genes

Al realizar el análisis en el DEseq2 se le asignó al modelo lineal generalizado

como covariable a los sujetos con insuficiencia cardíaca, debido a la paradoja de

la obesidad en esta enfermedad. Se obtuvieron 570 genes diferencialmente expre-

sados que se pueden observar en el mapa de calor de la figura 20. En la parte

izquierda de la figura se encuentran los controles señalados con la barra lila y en

la zona derecha los obesos con los genes menos expresados que los controles en

azul en el cuadrante superior y los más expresados en rojo en el cuadrante inferior.
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Figura 20: Mapa de calor de la expresión diferencial de genes entre obesos. Mapa
de calor de la expresión diferencial de genes entre obesos (barra coral) y controles (barra
lila). Las participantes del sexo femenino (F) se marcan en mostaza y las columnas de
sujetos de sexo masculino (M) en esmeralda. Los sujetos <50 años se distinguen en verde
(1), 50 ≥sujetos ≤65 en rosa (2) y los sujetos >65 en cian (3). Se muestran los 570 genes
con p ajustado menor a 0.01 y log2(VC) <-1 y >1 en las filas y los 389 participantes en
las columnas. Expresión aumentada en rojo, expresión disminuida en azul.
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Con intención de tener una aproximación al significado biológico de los genes

hallados se utilizó la herramienta de ontología génica GO enrichment analysis (Mi

2013). El Consorcio de GO provee una representación computacional del actual

conocimiento científico sobre las proteínas y los ARNs no codificantes para mejorar

la comprensión de cómo los genes individualmente contribuyen a la biología de

un organismo desde el nivel molecular pasando por las vías metabólicas, hasta el

nivel de organización celular o de organismo.

Al analizar el conjunto de genes diferencialmente expresados entre obesos y

controles se encuentra el término “respuesta ante nutrientes”, del cual derivan a

su vez términos hijos como: regulación del apetito, respuesta a la restricción ca-

lórica, utilización de carbohidratos, entre otros en el mismo sentido. Este término

describe el cambio de expresión génica como resultado de un estímulo que refleja

la presencia, ausencia o concentración de nutrientes. Un término pertinente para

una condición que, en la mayoría de los casos, se debe al consumo en exceso de

nutrientes en la dieta. Algunos ejemplos dentro de los 11 genes encontrados para

este término se encuentran: la subunidad catalítica de la glutamato-cisteína ligasa

(GCLC), la ATPasa transportadora de calcio de membrana 1 (ATP2B1), el recep-

tor coactivador nuclear 1 (NCOA1), la lipoproteín lipasa (LPL), el miembro de la

familia de cadena larga de la acetil-CoA sintetasa 1 (ACSL1) y la endopeptidasa

fosforregulada ligada al X (PHEX).

En la figura 21 se observan procesos biológicos que dieron resultados signifi-

cativos. La mayoría relacionados a procesos de la sangre, como la coagulación,

diferenciación de progenitores en células sanguíneas, procesos relacionados a la

hemoglobina, como también otros relacionados a la respuesta inmune proinflama-

toria como la cascada del complemento y la vía de señalización del receptor tipo

toll.

Posteriormente realizamos análisis de ontología génica. Al utilizar el método

de enriquecimiento de un grupo de genes para el análisis de vías biológicas GAGE

(generally applicable gene set enrichment) se agregan procesos celulares de vías

energéticas como la organización mitocondrial y la cadena de electrones en res-

piración celular o la generación de metabolitos precursores y energía, y procesos

catabólicos de ácidos carboxílicos y de aminoácidos. Además de coincidir con las

vías de respuesta inmune e inflamación ya mencionadas por el GO.

En la figura 22 se muestra en detalle la vía de señalización de PPAR (Peroxi-

some proliferator-activated receptor), un receptor hormonal nuclear que se activa



Resultados FCEyN, Universidad de Buenos Aires

Figura 21: Gráfico de burbuja para el análisis de ontología génica en obesidad. Cada
fila en el eje y describe un proceso biológico descrito en la ontología génica. En el eje x se
expresa el ratio génico, qué proporción de los genes señalados en el proceso biológico se
encuentran en la lista de genes diferencialmente expresados según el DEseq2. El tamaño
de la burbuja señala la cantidad de genes involucrados en el proceso. El color indica la
significancia, p valor ajustado hasta 0.05.
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por ácidos grasos y sus derivados, como un ejemplo de vía energética diferen-

cialmente expresada. En la imagen resalta en verde la lipoproteinlipasa, lo que

significa que en el grupo de personas obesas se encuentra disminuida su expresión

respecto al grupo control. La LPL es una enzima clave en el metabolismo lipídico,

encargada de hidrolizar a los triglicéridos de los quilomicrones y VLDL, por lo tan-

to, su disminución genera un aumento de triglicéridos en la sangre y los tejidos

(Balasubramanian 2024). Como se comentó anteriormente, los PPARs son los re-

guladores centrales del metabolismo de lípidos del corazón. Entonces, no resulta

sorprendente que se encuentre desregulada esta vía del metabolismo energético

en uno de los factores de riesgo de enfermedad cardiovascular en el cual el exceso

de energía consumido en la dieta es el responsable.

Figura 22: Esquema de la vía de señalización de PPAR en obesos Esquema de la vía de
señalización de PPAR (Peroxisome proliferator-activated receptor) de KEGG (Kyoto Ency-
clopedia of Genes and Genomes) en el análisis de obesos vs controles. En verde genes
menos expresados en el grupo obeso que en el grupo control. Gris: sin diferencias signifi-
cativas. Rojo: mayor expresión que el grupo control.

En general, las vías y los procesos que mostraron diferencias significativas

muestran un metabolismo energético e inflamatorio diferenciado en la expresión
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génica entre personas obesas y controles.

7.3.1.2. Agrupamientos no supervisados

En el caso del análisis de componentes principales se observan dos agrupa-

mientos (Figura 23, izquierda) de los cuales el primer componente explica el

18.09% de la varianza y el segundo explica el 10.43%. Aunque no es el índice

de masa corporal la condición que estaría explicando los agrupamientos, sino el

sexo. A pesar de haber sido elegidos solo los transcriptos diferencialmente expre-

sados entre obesos y controles, la señal del sexo es más fuerte para agrupar a los

y las participantes. Siendo el grupo superior izquierdo el femenino y el inferior

derecho el masculino.

Figura 23: Análisis de los componentes principales (PCA) en obesos. Izq: Gráfico de
análisis de los componentes principales (PCA) entre obesos y controles; CP: componente
principal. Der: Uniform Manifold Approximation and Projection (UMAP): distancia mí-
nima = 0.7, número de vecinos = 50, épocas = 500. En ambos gráficos se marcan los
controles en naranja y los obesos en azul.

En el caso de UMAP (Figura 23, derecha) aparecen dos clusters no muy bien

definidos, con una mayoría de controles (naranja) en uno y una mayoría de obesos

(azul) en el otro, aunque con muchas muestras mal clasificadas por la condición.

Al identificar las muestras por sexo se da el mismo caso que en PCA, los dos agru-

pamientos aparecen bien definidos, casi sin equivocaciones; uno con muestras fe-

meninas y otro con muestras masculinas. También la señal de la condición sexual

es más detectada en los agrupamientos no supervisados que la señal captada por

el índice de masa corporal en este caso, aún recortando las variables por los genes

diferencialmente expresados para esta condición.
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7.3.1.3. Red neuronal

Con 308 imágenes, correspondientes a la expresión de todos los genes y etique-

tadas diferencialmente en obesos y controles, se entrenó una ResNet50 durante 30

épocas obteniéndose una exactitud de clasificación de 0.793 (±0.033). Como pue-

de observarse en la matriz de confusión de ejemplo de la figura 24, a la derecha,

en aproximadamente un 80% de los casos la red logra clasificar a las personas

con índice de masa corporal control de los obesos con la información de los 49840

genes totales. A pesar de lo imperfecto de este índice se logra alcanzar una bue-

na diferenciación génica entre los índices extremos (excluyendo los participantes

con sobrepeso), captando la señal que los métodos de clusterización no lograron

captar.

Figura 24: Análisis por redes neuronales aplicados a obesidad. Izq.: Gráfico de la
función de pérdida o error por lote de 4 imágenes para 50 épocas en el entrenamiento
para clasificar entre obesidad y control para todos los estudios. Der.: Matriz de confusión
resultado de una de las validaciones de ResNet50 para las 77 imágenes correspondientes
para obesos y controles.

A la izquierda de la figura 24 se detalla un entrenamiento de 50 épocas con

las imágenes de la expresión génica de obesos y controles. En este caso se puede

ver que la pérdida de entrenamiento continúa disminuyendo, mientras que la de

validación se mantiene sin poder ser menor que 0.50, lo que podría deberse a un

sobreajuste. Por este motivo se decidió hacer los entrenamientos hasta 30 épocas,

donde, en general, no se observó este comportamiento.
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Variable clínica Media (SD) Mediana Mínimo Máximo

Hemoglobina (g/dl) 14.0 (1.4) 13.9 8.3 18.2

HbA1C (%) 5.3 (0.7) 5.2 4.3 14.2

Glucosa (mg/dl) 93 (16) 90 71 204

Colesterol Total (mg/dl) 196 (41) 194 92 353

Colesterol HDL (mg/dl) 56 (15) 55 22 110

Colesterol LDL (mg/dl) 118 (36) 113 42 260

Triglicéridos (mg/dl) 115 (76) 96 33 648

Proteína C reactiva (mg/l) 2.3 (7.1) 1.3 0 122.7

Leucocitos (cél.×mil/mm3) 6.8 (1.6) 6.6 3.5 14.4

Creatinina en sangre (mg/dl) 0.75 (0.18) 0.74 0.39 1.76

Bilirrubina Total (mg/dl) 0.62 (0.30) 0.55 0.23 1.94

GOT-ASAT (UI/l) 20 (8) 18 0.2 96

GPT-ALAT (UI/l) 22 (16) 17 7 171

Presión Sistólica (mmHg) 116 (17) 113 78 172

Presión Diastólica (mmHg) 70 (10) 70 42 104

Índice de masa corporal 26 (5) 25 17 47

Tabla 4: Estadísticos muestrales de las variables clínicas obtenidas en el estudio de sujetos
sin enfermedad aguda.

7.4. Resultados del estudio clínico de sujetos sin en-

fermedad aguda

Al cierre del estudio se alcanzó un total de 337 participantes, 211 mujeres y

126 hombres. Las características clínicas se describen en la tabla 4. La distribución

etaria se desvía hacia los sujetos más jóvenes con un promedio de edad de 43

(±13) años (42 (±12) para las mujeres y 44 (±13) para los hombres). La amplia

mayoría de los participantes (283) no padecen hipertensión arterial, 53 tienen

hipertensión o están bajo tratamiento y sobre un participante no se obtuvieron

datos al respecto.

De acuerdo a los criterios de inclusión, los sujetos de este estudio no presenta-

ban patologías agudas en curso, pero una parte de ellos presentaban enfermedades

metabólicas crónicas, o estados preclínicos de las mismas. Se analizaron entonces

diferentes fenotipos de acuerdo al grado de afectación. Para incrementar las dife-
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rencias esperables de encontrar, se dividieron los grupos en tercios y se realizaron

las comparaciones entre los grupos extremos. Se analizaron tres fenotipos utili-

zando las siguientes variables:

1. Porcentaje de hemoglobina glicosilada, como marcador de diabetes.

2. Colesterol total, como marcador de dislipemia.

3. Proteína C reactiva, como marcador de inflamación.

7.4.1. Prediabetes

Se retiraron del análisis a todos los participantes del estudio diagnosticados

con diabetes y/o con valores superiores a 6.4% (límite superior para un valor

normal) de hemoglobina glicosilada y/o utilizaran insulina o metformina como

variables subrogantes del diagnóstico de diabetes. Se dividió a los participantes

restantes entre:

Hemoglobina glicosilada baja, con valores inferiores o iguales a 4.9%.

Media, con valores superiores a 4.9% y menores a 5.7%.

Prediabéticos con valores mayores o iguales a 5.7% y menores o iguales a

6.4%.

Para dicotomizar la variable continua se retiraron del análisis las muestras con

hemoglobina glicosilada media, quedando sólo los valores más extremos de la

distribución. Resultaron un total de 52 participantes de los cuales 23 son predia-

béticos y 29 tienen hemoglobina glicosilada baja. 23 participantes eran de sexo

femenino con un promedio de edad de 41 (±15) años y 29 al sexo masculino con

un promedio de edad de 41 (±14) años.

7.4.1.1. Expresión diferencial de genes

Al utilizar el modelo lineal generalizado del DEseq2 con sexo y edad como

covariables se encontraron 185 genes diferencialmente expresados entre partici-

pantes con porcentaje de hemoglobina glicosilada baja y alta. De estos, sólo 29

tuvieron un log2(VC) mayor a 1. En la figura 25 se muestran los genes en un ma-

pa de calor identificando a los participantes prediabéticos con la barra coral a la

derecha y a los sujetos con hemoglobina glicosilada baja con la barra violeta a la
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izquierda de la imagen. Se notan una mayoría de genes mayormente expresados

al tener la hemoglobina glicosilada baja.

Figura 25: Mapa de calor de la expresión diferencial de genes entre prediabéticos.
Mapa de calor de la expresión diferencial de genes entre prediabéticos (barra coral) y he-
moglobina glicosilada baja (barra lila). Las participantes del sexo femenino (F) se marcan
en mostaza y las columnas de sujetos de sexo masculino (M) en esmeralda. Los sujetos
<50 años se distinguen en verde (1), 50 >= sujetos <= 65 en rosa (2) y los sujetos >65
en cian (3). Se muestran los 185 genes con p ajustado menor a 0.05 en las filas y los
52 participantes en las columnas. Expresión aumentada en rojo, expresión disminuida en
azul.

Al analizar el grupo de genes diferencialmente expresados, el GO (Figura 26)

los ubicó mayormente en procesos biológicos de división celular mitótica y en

procesos inmunes. La alteración del ciclo celular, vital en la homeostasis del orga-

nismo, podría ser una respuesta al estrés metabólico inducido por la prediabetes.

Así como la modulación de la respuesta inmune es relevante ante la inflamación

crónica de bajo grado característica de esta condición.

En el análisis realizado mediante GAGE los procesos biológicos hallados en la

ontología génica coinciden en encontrar significativas las vías de respuesta inmu-

ne y agregan las vías de “Respuesta inflamatoria”, “Coagulación”, “Hemostasis”
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Figura 26: Análisis de ontología génica en pacientes prediabéticos. Gráfico de bur-
buja del análisis de ontología génica para los genes diferencialmente expresados de los
participantes prediabéticos y controles del estudio de sujetos sin enfermedad activa. En el
eje x se nota el enriquecimiento como el porcentaje de genes encontrado en el análisis de
los genes totales de la vía.

y “Regulación de procesos catabólicos”. El mismo análisis con la Enciclopedia de

Genes y Genomas de Kioto (KEGG) coincidió con las vías involucradas en procesos

inflamatorios, inmunes y agregó la vía de la insulina.

En la figura 27 se detallan los genes diferencialmente expresados en la vía de la

insulina donde aparece SOCS (suppressor of cytokine signaling proteins) sobreex-

presado (en rojo). La familia SOCS consta de 8 proteínas que tienen la capacidad

de unirse a residuos de los receptores de citoquinas para bloquear la capacidad

de activar vías de señalización intramolecular evitando consecuencias dañinas de

la estimulación excesiva de estas vías. SOCS3 es importante en la reducción de la

actividad de citoquinas inflamatorias, pero su sobreexpresión resulta en la resis-

tencia a la leptina y la insulina. La reducción de la entrada de insulina al músculo

esquelético y al tejido adiposo favorece el desarrollo de diabetes tipo 2 (Pedroso

2019, Salminen 2021).

También se observa sobreexpresión de PP1 (protein phosphatase 1) en las per-

sonas prediabéticas en la vía de la insulina de la figura 27. La insulina en el

músculo esquelético y en el hígado regula la síntesis de glucógeno suprimiendo

la glucogenólisis y promoviendo la actividad de la glucógeno sintetasa (GYS) des-

fosforilándola mediante PP1 (Newgard 2000). En tejido adiposo blanco PP1 des-
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Figura 27: Análisis KEGG de la vía de insulina en pacientes prediabéticos. Esquema de
la vía de señalización de la insulina de KEGG (Kyoto Encyclopedia of Genes and Genomes)
en el análisis de prediabéticos vs porcentaje de hemoglobina glicosilada (HbA1C) baja.
En verde genes subexpresados en prediabéticos. Gris: sin diferencias significativas. Rojo:
genes sobreexpresados en prediabéticos.

fosforila proteínas regulatorias lipolíticas suprimiendo la lipólisis (Lee 2022). En

oposición a SOCS se vió en animales que sobreexpresan PP1 una limpieza rápida

de la glucemia y una mejora de la sensibilidad a la insulina en estado postprandial

(Li 2019).

El hígado, los riñones y el intestino delgado tienen la capacidad de volcar glu-

cosa a la sangre gracias a la unidad catalítica de la enzima glucosa-6-fosfatasa

(G6PC) que sólo se expresa en estos tejidos. Se observa (Figura 27) que en el caso

de los participantes prediabéticos del estudio de sujetos sin enfermedad aguda la

G6PC se encuentra mayormente expresada que en los controles con hemoglobina

glicosilada baja. Este gen se encuentra sobreexpresado cuando existe hipergluce-

mia independientemente del efecto de la insulina, ya que metabolitos de la glucosa

inducen su transcripción y estabilizan su ARNm (Gautier-Stein 2012). Sobre el gen

G6PC se tiene un particular interés dado que su represión es un componente del

mecanismo de acción de la metformina, la principal droga administrada para la

hiperglucemia (Moonira 2020). Su sobreexpresión en hígados de rata es suficiente

para desencadenar desregulaciones hepáticas y periféricas asociadas a la diabetes



Resultados FCEyN, Universidad de Buenos Aires

(Gautier-Stein 2012).

Según lo expuesto, se pudo ver una diferencia en la expresión de algunos de

los genes relacionados con la diabetes de los participantes con hemoglobina glico-

silada baja contra los que aún no entran en los parámetros de diagnóstico de la

enfermedad, por lo que son considerados prediabéticos y no están medicados.

7.4.1.2. Agrupamientos no supervisados

Al correr los modelos de clusterización no se observaron agrupamientos ni en

PCA ni en UMAP. Al parecer la señal de los 185 genes diferencialmente expresados

en los 52 participantes no alcanzó a ser detectada por los algoritmos (Figura 28)

que mostraron un patrón azaroso en la distribución de la condición de prediabetes

de los participantes.

Figura 28: Análisis de agrupamientos no supervisados en pacientes prediabéticos.
Izq: Gráfico de análisis de los componentes principales (PCA) entre prediabéticos y con-
troles; CP: componente principal. Der: Uniform Manifold Approximation and Projection
(UMAP): distancia mínima = 0.7, número de vecinos = 30, épocas = 500. En ambos grá-
ficos se marcan los controles en azul y los prediabéticos en naranja.

7.4.1.3. Red neuronal

Sin embargo, la red neuronal residual de 50 capas logró clasificar bien entre

8 y 9 participantes de los 10 utilizados en la validación (Figura 29, derecha).

Se entrenó con 42 imágenes, un número muy bajo para entrenamientos visuales,

por lo que se bajaron las épocas a 8 para no sobreajustar el modelo. Un ejemplo

de entrenamiento se puede observar en el gráfico de la función de error vs las

épocas a la izquierda de la figura 29. El promedio de la exactitud de clasificación
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para las 5 corridas fue 0.880 (±0.045). Al tener un número tan bajo de imágenes

para la validación cada imágen tuvo un peso muy grande en la exactitud final,

queda pendiente a futuro analizar con mayor cantidad de imágenes para tener un

resultado más robusto en este ítem.

Figura 29: Análisis de redes neuronales en pacientes prediabéticos. Izq.: Gráfico de
la función de pérdida o error por lote de 4 imágenes para 7 épocas en el entrenamiento
para clasificar entre prediabetes y control para el estudio de participantes sin enfermedad
activa. Der.: Matriz de confusión resultado de una de las validaciones de ResNet50 para
las 10 imágenes correspondientes para prediabéticos y controles.

7.4.2. Dislipemia

En el caso de dislipemia primero se retiraron del análisis a los participantes que

consumían algún tipo de fármaco para reducir el colesterol (estatinas o ezetimibe),

ya que se consideró que la ingesta de hipolipemiantes podría introducir ruido en

la expresión génica. Luego se ordenó a los participantes en tres grupos de acuerdo

a los tercios encontrados:

Colesterol total alto, definido como mayor o igual que 207 mg/dl.

Colesterol total medio, definido como entre 207 y 183 mg/dl.

Colesterol total bajo, definido como menor o igual que 183 mg/dl.

A fin de magnificar las diferencias significativas entre dos grupos para los aná-

lisis se descartó al grupo intermedio. Se obtuvieron un total de 237 muestras (120

con colesterol alto y 117 con colesterol bajo) con un promedio de edad de 41 (+/-

11) años para las 154 muestras de participantes femeninas y de 41 (+/- 12) años

para las 83 masculinas.
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7.4.2.1. Expresión diferencial de genes

Ajustando el modelo en DEseq2 por sexo y edad se encontraron 26 genes di-

ferencialmente expresados con un límite de p ajustado de 0.05, no encontrándose

ningún proceso biológico significativo en GO para este grupo de genes, probable-

mente por el bajo número de genes involucrados. En la tabla 5 se listan los 26

genes hallados, 15 de ellos codifican para proteínas, 3 son pseudogenes procesa-

dos, 1 gen de la cadena variable de una inmunoglobulina que sufre recombinación

somática antes de la transcripción y de 7 genes no se encuentran datos. Estos ge-

nes y pseudogenes están involucrados en regulación génica, síntesis de proteínas,

respuesta inmune y función mitocondrial. También se observan algunos genes ubi-

cados en el cromosoma Y con roles en funciones específicas masculinas, como la

espermatogénesis.

Al realizar el análisis mediante GAGE con GO sólo se encuentran 3 vías signifi-

cativamente (p ajustado menor a 0.05) enriquecidas: “Hemostasis” (GO:0007599),

“Coagulación” (GO:0050817) y “Coagulación sanguínea” (GO:0007596).

En el análisis con las anotaciones de la Enciclopedia de Genes y Genomas de

Kioto no se encuentran vías con una significancia menor a 0.05 del valor q ( p ajus-

tado por la tasa de falsos positivos en testeos de comparaciones múltiples (FDR)).

Se encontraron vías enriquecidas con una significancia ajustada de 0.28 como la

“vía de la insulina”, “vía de señalización de adipocitoquinas”, la “vía de señaliza-

ción del calcio” y en “contracción del músculo liso vascular”. También en procesos

biológicos del aparato digestivo como: “secreción pancreática”, “secreción de ácido

gástrico”, “secreción de bilis” y en procesos de respuesta inmune: “procesamiento

y presentación de antígenos”, “vía de señalización del receptor de células B” y “vía

de señalización del receptor tipo toll”.

Dentro de la vía de la insulina (Figura 30) se encuentra subexpresada AMPK

(proteína quinasa activada por AMP) en las personas con colesterol total alto. La

AMPK es un importante sensor de energía y se activa en respuesta a la falta de

glucosa, restricción calórica o un incremento en la actividad física. Se encarga

de cambiar las vías metabólicas hacia la formación de ATP y la inhibición de su

consumo. Su activación a largo plazo promueve la génesis de mitocondrias, reduce

la acumulación intramuscular de lípidos y mejora la acción de la insulina. En el

tejido graso inhibe la síntesis de ácidos grasos, eleva la β-oxidación e inhibe la

lipólisis. La desregulación de la AMPK está asociada a desórdenes metabólicos,
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Ensemble ID Nombre log2(FC) p ajust. Tipo

ENSG00000067048.17 DDX3Y -2.415 6.4×10-7 codifica para proteína

ENSG00000183878.16 UTY -2.686 1.6×10-5 codifica para proteína

ENSG00000240661.3 – -2.506 1.6×10-5 –

ENSG00000211658.2 IGLV3-27 -1.303 1.6×10-5 IG_V_gene

ENSG00000067646.12 ZFY -1.941 2.1×10-5 codifica para proteína

ENSG00000198692.10 EIF1AY -2.778 4.2×10-5 codifica para proteína

ENSG00000131002.13 – -2.884 5.1×10-5 –

ENSG00000231535.8 – -2.567 6.2×10-5 –

ENSG00000012817.16 KDM5D -2.641 0.2×10-4 codifica para proteína

ENSG00000198695.2 MT-ND6 -0.934 0.3×10-4 –

ENSG00000129824.16 RPS4Y1 -2.495 0.7×10-4 codifica para proteína

ENSG00000215048.13 HLA-DPB1 -2.070 0.001 codifica para proteína

ENSG00000114374.13 USP9Y -2.321 0.002 codifica para proteína

ENSG00000247627.2 MTND4P12 -1.055 0.002 pseudogen procesado

ENSG00000234810.4 – 0.500 0.003 –

ENSG00000140265.14 ZSCAN29 -0.133 0.005 codifica para proteína

ENSG00000131018.25 SYNE1 -0.223 0.011 codifica para proteína

ENSG00000178162.8 – -0.535 0.011 –

ENSG00000151468.11 CCDC3 0.590 0.012 codifica para proteína

ENSG00000225840.2 – -4.202 0.013 pseudogen procesado

ENSG00000257473.7 HLA-DQA2 2.267 0.014 codifica para proteína

ENSG00000147206.17 NXF3 -1.239 0.022 codifica para proteína

ENSG00000169330.9 MINAR1 -0.412 0.030 codifica para proteína

ENSG00000254481.1 PTP4A2P2 0.371 0.030 pseudogen procesado

ENSG00000241431.1 – -0.780 0.041 –

ENSG00000230385.1 – 0.410 0.044 –

Tabla 5: Genes diferencialmente expresados hallados por el DEseq2 entre participantes
con colesterol total alto (mayor o igual que 207 mg/dl) y bajo (menor o igual que 183
mg/dl) del estudio de sujetos sin enfermedad aguda.
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síndrome metabólico, resistencia a la insulina y a la diabetes tipo 2 (Szkudelski

2019). También se vió que un grado de inflamación bajo, pero crónico, regula

disminuyendo la expresión de AMPK en múltiples tejidos (Ruderman 2013).

Figura 30: Análisis GAGE de la vía de insulina en pacientes dislipémicos con KEGG.
Esquema de la vía de señalización de la insulina de KEGG (Kyoto Encyclopedia of Genes
and Genomes) en el análisis de colesterol total alto vs bajo. En verde: genes subexpresa-
dos. Gris: sin diferencias significativas. Rojo: genes sobreexpresados.

Dentro de los genes diferencialmente expresados en la vía de señalización de

las adipocitoquinas se encuentra NPY. Este gen codifica para el neuropéptido Y,

una pequeña proteína orexigénica que se expresa en el sistema nervioso central y,

periféricamente, en tejido adiposo, páncreas, hígado, músculo esquelético y osteo-

blastos. Se encontró que NPY se halla sobreexpresado en participantes con coles-

terol alto al compararlo con participantes con colesterol bajo.

La calcio-ATPasa de membrana plasmática (PMCA) es una bomba ubicua de las

células eucariotas encargada de la regulación fina de la concentración de calcio ci-

tosólico. Su actividad es regulada de muchas maneras, pero al ser una enzima

proteica de membrana la composición lipídica es importante, ya que se encuen-

tra asociada a las balsas lipídicas de membrana, nanodominios enriquecidos en

colesterol. Existe evidencia de que las proteínas de transporte de calcio están mo-

duladas por su microambiente lipídico, por ejemplo, los fosfolípidos ácidos, como

fosfatidil serina o ácidos grasos poliinsaturados, estimulan la PMCA (Krebs 2022)
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y la eliminación del colesterol celular inhibe su actividad (Jiang 2007). Mutaciones

en esta bomba se relacionaron con patologías relacionadas al estrés oxidativo co-

mo aterosclerosis, diabetes y enfermedades neurodegenerativas (Conrard 2019).

En los sujetos con colesterol alto se observó una fuerte sobreexpresión de PMCA

frente a los sujetos con colesterol bajo, apareciendo significativamente en la “vía

de señalización del calcio” y en “secreción pancreática” en células acinares del

páncreas de la Enciclopedia de Genes y Genomas de Kioto.

7.4.2.2. Análisis no supervisados en pacientes con dislipemia

Al realizar el análisis de componentes principales (Figura 31, arriba a la iz-

quierda) con los genes diferencialmente expresados entre la condición de coleste-

rol alto y bajo se logran separar dos grupos en el primer componente que explica

el 83.7% de la varianza. La condición de colesterolemia alta no explica esta clus-

terización. Como se observa en la figura 31, los participantes tanto con colesterol

alto (naranja), como con colesterol bajo (celeste) aparecen aleatoriamente distri-

buídos entre ambos clústeres. Para tratar de explicar el misterioso agrupamiento

se coloreó en el análisis a los participantes con los datos clínicos conocidos, pero

todos se ubicaron azarosamente entre ambos grupos. El sexo y la trigliceridemia se

exponen de ejemplo en la figura 31, centro y derecha. También se constató edad,

tabaquismo e índice de masa corporal.

Con el análisis de UMAP se puede trazar un paralelismo, ya que también logra

agrupar a los participantes en dos clusters bien definidos que no responden a

ninguna de las variables conocidas (Figura31 , abajo) ni siquiera la condición para

la que se planteó el análisis.

7.4.2.3. Red neuronal

Se entrenó la red con 190 imágenes del estudio de sujetos sin enfermedad acti-

va etiquetados dentro del grupo colesterol alto o colesterol bajo durante 25 épocas.

A la izquierda de la figura 32 se observa el gráfico de la función de error para un

entrenamiento de 30 épocas, a partir del cual se decidió recortar el entrenamiento

a 25 épocas ya que no se observaron mejores resultados para el set de validación

a partir de ese umbral. Para validar se utilizaron 47 imágenes, obteniéndose una

exactitud de clasificación promedio de 0.634 (±0.088). A la derecha de la figu-

ra 32 se aprecia una de las matrices de confusión donde 30 sujetos fueron bien
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Figura 31: Análisis no supervisados en pacientes con dislipemia. Arriba: Gráfico de
análisis de los componentes principales (PCA) entre colesterol alto (>= 207 mg/dl) y
colesterol bajo (<= 183 mg/dl); CP: componente principal. Abajo: Uniform Manifold
Approximation and Projection (UMAP) para participantes con colesterol alto vs bajo. Dis-
tancia mínima = 0.7, número de vecinos = 30, épocas = 500. Izq.: Condición en análisis,
colesterol alto en naranja, colesterol bajo en celeste para ambos gráficos. Centro: En la
condición de análisis se pintaron en celeste los participantes femeninos y en naranja los
masculinos en ambos gráficos. Der.: En el análisis de colesterol alto vs. colesterol bajo se
pintaron en azul los participantes con nivel de triglicéridos en sangre alto (>150 mg/dl);
a los participantes con triglicéridos en valores normales se los dividió en normal (<=150
y >80 mg/dl) en verde y normal bajo (<80 mg/dl) en naranja.
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clasificados.

Figura 32: Redes neuronales en pacientes con dislipemia. Izq.: Gráfico de la función de
pérdida o error por lote de 4 imágenes para 30 épocas en el entrenamiento para clasificar
entre colesterol alto y colesterol bajo para el estudio de participantes sin enfermedad
activa. Der.: Matriz de confusión resultado de una de las validaciones de ResNet50 para
las 47 imágenes correspondientes a los transcriptomas de sujetos con colesterol alto y
bajo.

7.4.3. Inflamación

Con la distribución de la proteína C reactiva en los sujetos sin enfermedad

activa se formaron cuatro grupos:

No detectable (0 mg/l)

Baja (entre 0 y 1.3 mg/l)

Media (igual o mayor a 1.3 y menor a 2.45 mg/l)

Alta (mayor o igual a 2.45 mg/l)

Se descartaron las muestras con proteína C reactiva baja y media, obteniéndose

207 participantes luego del filtrado, de los cuales 123 no tenían proteína C reac-

tiva detectable en sangre y 84 personas la tenían alta. Este grupo contó con 133

mujeres con un promedio de edad de 41 (±11) años y 74 participantes varones

con un promedio de edad de 44 (±13) años.

7.4.3.1. Expresión diferencial de genes

Se realizó un análisis de expresión por medio del DEseq2 con un modelo li-

neal generalizado con distribución binomial negativa y se obtuvieron 106 genes

diferencialmente expresados entre las personas con proteína C reactiva alta y las
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personas control con un p ajustado igual a 0.01. A excepción de 8 genes, todos con

un nivel de expresión dentro del rango de las 2 veces de cambio. En la figura 33 se

muestra el mapa de calor con los genes listados en las filas y los participantes en

las columnas. Se destaca que la mayoría de los genes diferencialmente expresados

están sobreexpresados en el grupo del cuadrante superior izquierdo que coincide

con los sujetos con proteína C reactiva alta (barra lila).

Figura 33: Mapa de color de acuerdo a niveles de PCR. Mapa de calor de la expresión
diferencial de genes entre sujetos con proteína C reactiva alta (>= 2.45) en coral y con-
troles (PCR = 0) en lila. Las participantes del sexo femenino (F) se marcan en mostaza
y las columnas de sujetos de sexo masculino (M) en esmeralda. Los sujetos <50 años se
distinguen en verde (1), 50 >= sujetos <= 65 en rosa (2) y los sujetos >65 en cian (3).
Se muestran los 106 genes con p ajustado menor a 0.01 en las filas y los 207 participantes
en las columnas. Expresión génica aumentada en rojo, disminuída en azul..

Se realizó el análisis de enriquecimiento génico y no se encontraron genes di-

ferencialmente expresados con la notación de GO. Con la enciclopedia de genes

y genomas de Kioto tampoco se encontraron resultados significativos (q menor

a 0.05). En la figura 34 se observa la vía de señalización de los receptores tipo

toll (q = 0.30) que juegan un rol central en la respuesta inmune desencadenada

por inflamación (Sameer 2021). Se observa una subexpresión de citoquinas proin-
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flamatorias en el grupo control respecto del grupo con proteína C reactiva alta.

También se observaron otras vías de señalización como la de las MAPK (proteínas

quinasas activadas por mitógeno) (q = 0.36) en la cual se observa una subex-

presión de NFκB en el grupo control; la de la apoptosis (q = 0.61) donde TNFα

aparece subexpresada en el grupo con proteína C reactiva indetectable; la de los

receptores tipo NOD (q = 0.61) donde aparecen subexpresadas en el grupo con-

trol citoquinas proinflamatorias como IL-1β , TNFα y RANTES (quimioquina de

regulación por activación expresada y secretada por los linfocitos T) entre otras.

Aunque los pocos resultados hallados no alcanzaron un umbral satisfactorio para

considerar que tienen una tasa de falsos positivos aceptable, van de la mano con

lo esperado para un marcador de inflamación como la proteína C reactiva.

Figura 34: Análisis GAGE en pacientes con diferentes niveles de PCR: via de MAPK.
Esquema de la vía de señalización de los receptores tipo toll de KEGG (Kyoto Encyclopedia
of Genes and Genomes) en el análisis de sujetos con proteína C reactiva alta vs proteína
C reactiva no detectable. En verde genes subexpresados en controles. Gris: sin diferencias
significativas entre ambos grupos. Rojo: genes sobreexpresados en sujetos con proteína C
reactiva no detectable. p = 0.006, q = 0.30.

7.4.3.2. Agrupamientos no supervisados

Se analizó la expresión de los genes diferencialmente expresados para los par-

ticipantes del estudio de sujetos sin enfermedad activa que tuvieron la proteína

C reactiva alta vs los controles mediante PCA y UMAP. En ambos casos se encon-

traron dos clusters bien separados. Como se detalla en la figura 35 a la izquierda
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arriba, el primer componente principal hallado explica el 37.6% de la varianza,

sin embargo, no responde a la condición en estudio sino al sexo. En la figura 35

a la izquierda abajo se observa el mismo análisis, pero aparecen los participan-

tes coloreados por sexo, dando cuenta que el primer componente principal separa

perfectamente femeninos de masculinos a partir de los transcriptos en estudio.

El segundo componente principal no alcanza a dividir a los participantes en dos

grupos, pero sí logra un ordenamiento que coincide con la condición en estudio.

En los cuadrantes superiores del gráfico de PCA se acumulan los participantes con

proteína C reactiva alta en naranja y en los cuadrantes inferiores los que tienen

proteína C reactiva indetectable en azul. En el caso de UMAP sucede algo similar

aunque no se pueden ubicar a los participantes en el gráfico, debido a la naturaleza

estocástica del análisis. En el caso de la corrida de la figura 35 a la derecha arriba,

también parece haber una acumulación de participantes con cada condición en

cada nube, casualmente también aparecen los cuadrantes superiores enriquecidos

en participantes con proteína C reactiva alta. En el gráfico que se encuentra a la

derecha abajo en la figura 35 se observa el mismo análisis coloreando a los partici-

pantes por sexo y los resultados coinciden en dar crédito al sexo por la separación

de los grupos como en el caso de PCA.

7.4.3.3. Red neuronal

A partir de 139 imágenes etiquetadas como nivel de proteína C reactiva alto y

mínimo se entrenó la red por 20 épocas. En la figura 36 a la izquierda se obser-

va el gráfico de la función de pérdida para uno de los entrenamientos en el que

se puede apreciar un leve sobreajuste. A partir del lote 450 aproximadamente, el

error de entrenamiento continúa disminuyendo mientras que el error de valida-

ción comienza a aumentar, por tal motivo se decidió no hacer entrenamientos más

largos. Se validó el modelo con 35 imágenes y se obtuvo una exactitud promedio

de clasificación de 0.771 (±0.089) para las 5 corridas. En la matriz de confusión

de la figura 36 a la derecha se pueden ver los resultados de una validación en la

que en el 50% de los casos la red no logró clasificar bien las imágenes presentadas.
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Figura 35: Agrupamientos no supervisados en pacientes con diferentes niveles de
PCR. Arriba izquierda: Gráfico de análisis de componentes principales (PCA) en el estu-
dio de sujetos sin enfermedad activa para los genes diferencialmente expresados en los
participantes con proteína C reactiva alta (>= 2.45 mg/l) y no detectable (0 mg/l); CP:
componente principal. Arriba derecha: Uniform Manifold Approximation and Projection
(UMAP) para participantes con proteína C reactiva alta vs no detectable. Distancia mí-
nima = 0.7, número de vecinos = 10, épocas = 500. En celeste proteína C reactiva no
detectable, en naranja proteína C alta en ambos gráficos. Abajo izquierda: Análisis de com-
ponentes principales para el análisis de proteína C reactiva coloreando los participantes
por sexo. Abajo derecha: UMAP del análisis de los genes diferencialmente expresados para
proteína C reactiva coloreados por sexo. Femenino en naranja, masculino en celeste para
ambos gráficos.
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Figura 36: Red neuronales en pacientes con diferentes niveles de PCR. Izq.: Gráfico de
la función de pérdida o error por lote de 4 imágenes para 20 épocas en el entrenamiento
para clasificar entre proteína C reactiva alta y no detectable para el estudio de participan-
tes sin enfermedad activa. Der.: Matriz de confusión resultado de una de las validaciones
de ResNet50 para las imágenes correspondientes a los transcriptomas de sujetos con nivel
de proteína C reactiva alto (alto) y no detectable (mínimo).

7.5. Estudio en pacientes con score de calcio

7.5.0.1. Características generales del estudio

El estudio reclutó a 200 participantes. Luego de aplicar el filtrado bioinfor-

mático, se obtuvieron 196 muestras válidas para el análisis final y 4 muestras se

descartaron por problemas técnicos. La distribución de los participantes por sexo

fue de 108 hombres (55.4%) y 87 mujeres (44.6%). La edad promedio de los

participantes fue de 58 (+/- 8) años, con una media de 60 (+/- 7) años para

las mujeres y 56 (+/- 9) años para los hombres, lo que responde a la restricción

en los criterios de elegibilidad del estudio que establecían un mínimo de 40 años

para los hombres y de 50 años para las mujeres. En la evaluación de los hábitos

de fumar, se encontró que 29 participantes eran fumadores activos, 152 partici-

pantes (77.9%) no fumaban y 14 participantes habían dejado de fumar hacía más

de 12 meses. Finalmente, mediante la tomografía computarizada, se diagnosticó

esteatosis hepática en 56 de los 195 participantes, lo que representa el 28.7% de

la muestra.

El análisis del score de calcio coronario (CAC) permitió clasificar a los partici-

pantes según el grado de aterosclerosis presente. Los resultados obtenidos fueron

los siguientes:

CAC 0 (Patología no identificable): 114 participantes

CAC 1 a 99 (Patología leve): 46 participantes
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CAC 100 a 399 (Patología moderada): 19 participantes

CAC 400 a 2785 (Patología severa): 16 participantes

CAC (Puntuación)

0 1 a 99 100 a 399 400 a 2785

SIS (Puntuación)

0 99 0 0 0

1 a 2 15 30 2 0

3 a 4 0 13 6 2

5 a 7 0 3 11 3

>8 0 0 0 11

CAC - puntaje de calcio en las arterias coronarias.
SIS - puntaje de involucramiento de segmentos.

Tabla 6: Puntuaciones de CAC y SIS en la población del estudio.

Más de la mitad de los participantes (55.9%) no presentaron evidencia de

calcificaciones coronarias (CAC 0). La prevalencia de aterosclerosis leve fue de

25.6%, mientras que los casos de aterosclerosis moderada y severa fueron menos

comunes (10.3% y 8.2%, respectivamente). Estos resultados muestran la hetero-

geneidad en la progresión de la aterosclerosis entre la población de estudio. La

evaluación del SIS muestra que los niveles más altos de CAC están asociados con

un mayor número de segmentos coronarios afectados. Todos los participantes con

CAC en el rango de 400 a 2785 y un SIS de 8 o más, indicando una enfermedad

aterosclerótica extensa, se concentraron en este grupo de alta puntuación.

7.5.1. Análisis de la aterosclerosis coronaria

Para el análisis de la aterosclerosis en el estudio de calcio coronario se designó

al grupo con aterosclerosis (67 participantes, media edad = 63 (±7) años) cuando

el calcio coronario encontrado fue extenso, moderado o leve en las arterias coro-

narias y se eliminó del análisis a los pacientes cuando la lesión aterosclerótica se

encontró en la aorta. El grupo control se asignó a los participantes con ausencia

de calcio coronario (66 participantes, media edad = 52 (±6) años). La distribu-

ción del sexo fue de 55 mujeres con un promedio de edad de 59 (±7) años y 78

hombres con un promedio de edad de 56 (±10) años (Tabla 7).
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Controles Casos p-valor

Media de la edad (años) 52 63 <0.01

Sexo Femenino (%) 20 21 0.45

Diabetes (%) 12 12.5 1

Hipertensión (%) 29.0 46.9 <0.01

Dislipidemia (%) 23.0 36.5 0.01

Fumador Actual (%) 13 16.7 0.60

Obesidad (%) 39.0 37.5 0.95

Tratamiento con Estatinas (%) 15.0 31.3 0.01

Riesgo de ECV <10% 76.0 51.0

Riesgo de ECV 10 a 19% 13.0 31.3

Riesgo de ECV ≥20% 11.0 17.7 <0.01

Tabla 7: Características clínicas de la población del estudio de score de calcio coronario.

7.5.1.1. Análisis de expresión de genes

En la tabla 8 se detallan los 13 genes diferencialmente expresados estadísti-

camente significativos (p ajustado <0.05) que entregó como resultado el DEseq2

entre individuos con aterosclerosis y controles. El modelo fue ajustado por sexo y

edad. Esta lista de genes no dió un resultado estadísticamente significativo al bus-

car asociaciones a procesos biológicos en GO. Sin embargo, algunos de los genes

identificados podrían estar involucrados en la fisiopatología de la aterosclerosis.

Por ejemplo, la alteración en la expresión de CNTNAP3B podría afectar la integri-

dad de las uniones celulares y la estabilidad de la matriz extracelular. La expresión

diferencial de RCCD1 sugiere que la dinámica del citoesqueleto podría estar com-

prometida en las células de los pacientes. Estos factores son importantes en el

proceso de migración celular, clave en la progresión de la aterosclerosis. GPR15

codifica para un receptor de quimioquina. Las quimioquinas están implicadas en

la respuesta inflamatoria y en la migración de células inmunitarias, procesos invo-

lucrados en la patogénesis de la aterosclerosis. CNOT3 codifica para una proteína

que regula el mantenimiento de células madre. La expresión diferencial de CNOT3

podría influir en la capacidad de regeneración y reparación de tejidos en pacientes

con aterosclerosis.

Se realizó un análisis de enriquecimiento génico utilizando el método GAGE

con anotaciones de GO para comparar la expresión génica diferencial entre parti-

cipantes con aterosclerosis y controles sin aterosclerosis. Los resultados del análisis
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Nombre log2(FC) p ajust. Tipo Función
PPDPF 1.171 0.048 Codificante Involucrado en dife-

renciación celular
GPR15 1.018 0.029 Codificante Receptor de quimio-

quina
CNTNAP3B 1.950 0.1 × 10-4 Codificante Involucrado en

adhesión celular
RCCD1 1.037 0.021 Codificante Estabilidad de mi-

crotúbulos
ESPN 1.463 0.029 Codificante Regulación en mi-

crovilli en células
mecano y quimio-
sensoriales

RPL10P6 -4.201 2.99 × 10-7 Pseudogen Pseudogen de pro-
teína ribosomal

LINC02641 0.472 0.048 lncRNA Asociado a altura
corporal en GWAS

LINC01362 1.171 0.048 lncRNA Asociado a altura
corporal en GWAS

RPL10P9 -1.803 3.11 × 10-5 Pseudogen Pseudogen de pro-
teína ribosomal

RN7SL4P -1.272 0.021 miscRNA Facilita la transloca-
ción de proteínas a
través de las mem-
branas

KMT2B 0.948 0.048 Codificante Metiltransferasa
CNOT3 1.454 3.11 × 10-5 Codificante Regulación del man-

tenimiento de célu-
las madre

LOC101928438 0.726 0.032 lncRNA Sin datos

FC: Fold Change (cambio en la expresión); Codificante: codifica para proteína; lncRNA: ARN largo
no codificante; GWAS: estudio de asociación del genoma completo; miscRNA: RNA misceláneo.

Tabla 8: Genes diferencialmente expresados identificados en el análisis de aterosclerosis
coronaria.
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del enriquecimiento (Figura 37) muestran que los participantes con aterosclerosis

presentan una sobrerrepresentación de genes asociados con procesos inflamato-

rios, respuesta inmune y coagulación sanguínea. Estos hallazgos son consistentes

con la patogénesis de la aterosclerosis, que se caracteriza por la inflamación cró-

nica, la disfunción endotelial y la formación de placas ateroscleróticas. El enri-

quecimiento de genes relacionados con la respuesta a citoquinas y la cascada de

I-κB kinasa/NF-κB muestra una activación de vías inflamatorias en los participan-

tes con aterosclerosis. Además, la sobrerrepresentación de genes involucrados en

la regeneración de tejidos y la regulación de la coagulación sanguínea muestra la

importancia de estos procesos en la reparación y mantenimiento de la integridad

vascular en el contexto de la aterosclerosis.

Figura 37: Análisis GAGE en pacientes con aterosclerosis coronaria. Gráfico de bur-
buja del análisis de enriquecimiento de genes con GAGE en procesos biológicos de GO
para el estudio de calcio coronario para los sujetos con aterosclerosis vs controles sin ate-
rosclerosis.

Al buscar contexto biológico de las vías alteradas en la aterosclerosis mediante

GAGE con anotaciones de KEGG se encuentran algunas coincidencias. La vía de

señalización de quimioquinas, crucial para la respuesta inmune y la inflamación
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es la que aparece con mayor número de genes sobrerrepresentados. Pero también

agrega dos ejes diferentes: metabolismo energético y detoxificación celular.

La desregulación del metabolismo del glutatión y de la vía de los peroxisomas,

crucial para la defensa antioxidante y la detoxificación celular, refleja el aumento

del estrés oxidativo en la aterosclerosis. La desregulación energética se vió refle-

jada en la vía del metabolismo del piruvato, las vías del metabolismo de hidratos

de carbono (Fructosa y manosa, la vía de la glucólisis y la gluconeogénesis), de

lípidos (Metabolismo del butirato y propionato) y de proteínas (Degradación de

aminoácidos de cadena ramificada, metabolismo de glicina, serina y treonina).

Se ha visto en estudios de transcriptomas de placas ateroscleróticas que su

composición no sólo depende de la progresión sino también de su ubicación. Se

encontraron diferencias significativas entre placas de carótidas y femorales. A las

femorales se las identificó con enriquecimiento de genes involucrados en osteogé-

nesis y morfogénesis ósea, mientras que las placas carotídeas se vieron enriqueci-

das con genes de respuesta inmune y metabolismo de lípidos (Steenman 2018).

En este caso, al tener el transcriptoma sanguíneo, se observa el amplio espectro

de las diferencias de todas las placas ateroscleróticas, tanto las placas tendientes

a microcalcificaciones como a las predispuestas a metaplasia osteoide.

7.5.1.2. Análisis no supervisados

Se realizó un análisis de componentes principales y se aplicó UMAP a las mues-

tras de los participantes con aterosclerosis y sin aterosclerosis con los 13 genes

encontrados como diferencialmente expresados por el DEseq2. Como se observa a

la izquierda de la figura 38, se encontró un pequeño agrupamiento que no respon-

de a ninguna variable medida en el estudio. Se analizó sexo, edad, tabaquismo,

índice de masa corporal, presión sanguínea, efecto lote y zona de la lesión ate-

rosclerótica, sin embargo todas respondieron de manera aleatoria. Tampoco se

encontró un ordenamiento de los sujetos con aterosclerosis (en naranja) y los con-

troles (en azul en la figura) que haga sospechar que alguno de los componentes

esté explicando la condición en estudio.

En el caso de UMAP se observó un comportamiento similar al de PCA, pero los

participantes agrupados no coincidieron con los de PCA. Tampoco respondieron a

ninguna de las variables estudiadas.

Estos resultados mostrarían que los 13 genes hallados son insuficientes para ex-
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Figura 38: Análisis no supervisados en pacientes con aterosclerosis coronaria. Izq:
Gráfico de análisis de los componentes principales (PCA) entre muestras con ateroscle-
rosis y controles; CP: componente principal. Der: Uniform Manifold Approximation and
Projection (UMAP): distancia mínima = 0.7, número de vecinos = 30, épocas = 500. En
ambos gráficos se marcan los controles en azul y los participantes con aterosclerosis en
naranja.

plicar la complejidad de la aterosclerosis a nivel de organismo. Los métodos utili-

zados no tienen la sensibilidad para encontrar la diversidad de genes responsables

que, dada la naturaleza de la fisiopatología de la aterosclerosis, actúan sutilmente

y en conjunto orquestado sostenido en el tiempo.

7.5.1.3. Red neuronal

Se entrenó la red con 111 imágenes representando la expresión de todos los

transcriptos de los participantes del estudio de calcio coronario etiquetadas como

aterosclerosis o control. El entrenamiento se realizó por 12 épocas. A la izquierda

de la figura 39 se observa la función de pérdida para un entrenamiento de 100

épocas en la que se aprecia una mejora del error de entrenamiento, pero el de

validación se mantiene prácticamente constante. Por lo tanto, se decidió entrenar

hasta 12 épocas para evitar el sobreajuste. La exactitud de clasificación alcanzada

promediando las 5 corridas fue de 0.733 (±0.066). Un punto interesante a des-

tacar es que la red logra encontrar una señal en una patología complicada por su

diversidad fisiológica y su sutileza en la diferencia de expresión en la que los al-

goritmos no supervisados no alcanzaron a encontrarla. En la matriz de confusión

de la figura 38 se observan las cantidades de imágenes que corresponden a los

participantes controles y con aterosclerosis verdaderos y los predichos por la red

para una de las corridas. En 8 imágenes la red no logró diferenciar a los controles
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y los predijo como ateroscleróticos y, a la inversa, predijo 4 controles cuando real-

mente padecían aterosclerosis. En este ejemplo, resultan un total de 12 imágenes

mal clasificadas sobre 27 analizadas.

Figura 39: Análisis de red neuronal en pacientes con aterosclerosis coronaria. Izq.:
Gráfico de la función de pérdida o error por lote de 4 imágenes para 100 épocas en el
entrenamiento para clasificar entre participantes con aterosclerosis y controles para el es-
tudio de calcio coronario. Der.: Matriz de confusión resultado de una de las validaciones
de ResNet50 para las imágenes correspondientes a los transcriptomas de sujetos con ate-
rosclerosis y controles.

7.6. Estudio en pacientes con insuficiencia cardíaca

Al finalizar el estudio se reclutaron un total de 108 pacientes con insuficiencia

cardíaca, siendo 89 de ellos masculinos y 19 femeninos; por lo que la muestra

representa el desbalance propio de la enfermedad hacia el sexo masculino. En la

figura 40 A se puede observar la distribución de la edad sesgada hacia la izquierda,

con una mayor concentración de pacientes en el rango de 50 a 70 años y una

media de 62 (±12) años. Este rango de edad es consistente con la prevalencia de

insuficiencia cardíaca en la población general, donde la incidencia aumenta con la

edad. Las pacientes femeninas tienen un promedio de edad de 63 (±11) años y

los masculinos 61 (±12) años.

Los valores de fracción de eyección del ventrículo izquierdo (FEVI) varían entre

el 15% y el 57%, con una media aproximada de 35%. La figura 40 B muestra la

distribución de la FEVI entre los pacientes y confirma la insuficiencia cardíaca del

tipo con fracción de eyección reducida.
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La mayoría de los pacientes pertenecen a la clase funcional 1 y 2 de la New

York Heart Association (47 pertenecen a la clase 1 y 48 a la clase 2), 12 se en-

cuentran en la clase 3 y sólo 1 en la clase más severa 4. La figura 40 C presenta

un histograma con la distribución de los pacientes según la clase funcional NYHA,

mostrando la diversidad en la severidad de los síntomas entre los participantes.

La etiología de la insuficiencia cardíaca en los pacientes del estudio es variada,

con una predominancia de causas coronarias. Aproximadamente el 50% de los

pacientes tienen insuficiencia cardíaca de origen coronario, seguida por etiologías

idiopáticas y otras causas menos comunes como la valvulopatía, la hipertensión y

la amiloidosis (Figura 40 D).

Figura 40: Distribución de variables clínicas en pacientes con insuficiencia cardíaca.
Datos clínicos de los participantes del estudio de insuficiencia cardíaca. A: Distribución
de edad. B: Distribución de la fracción de eyección del ventrículo izquierdo (FEVI). C:
Histograma con el número de pacientes en cada una de las clases funcionales según la
New York Heart Association (NYHA). D. Histograma con el número de pacientes según la
causa de insuficiencia cardíaca diagnosticada.

Los resultados presentados hasta ahora, sumados a los que se especifican en la

tabla 9, proporcionan en detalle el perfil clínico de los pacientes con insuficiencia

cardíaca.

En este estudio sólo participaron pacientes con insuficiencia cardíaca, por lo

tanto, los controles para los análisis posteriores fueron tomados del estudio de

sujetos sin enfermedad aguda activa con algunos criterios específicos. Se tuvo en

cuenta que los participantes utilizados como control tengan un nivel de riesgo car-

diovascular bajo (o leve de no ser posible bajo) según las tablas de la Organización

Mundial de la Salud para la zona sur de América del Sur (Argentina, Chile y Uru-

guay)(Figura 5). Además, se buscó un control de igual sexo y de similar edad para

cada paciente. Por lo tanto, para los siguientes análisis el total de participantes

asciende a 215. La distribución de pacientes con insuficiencia cardíaca y controles
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Variable clínica Media Mediana Mínimo Máximo
Hemoglobina (g/dl) 14.0 (±1.5) 14.0 9.7 18.0
Índice de masa corporal 29 (±5) 28 18 45
Glucosa (mg/dl) 111 (±25) 104 70 216
Colesterol HDL (mg/dl) 43 (±12) 41 21 76
Colesterol LDL (mg/dl) 85 (±36) 81 5 180
Triglicéridos (mg/dl) 144 (±115) 115 54 1100
Na plasmático (mEq/l) 139 (±3) 140 126 145
Leucocitos (cél./mm3) 7817 (±2250) 7200 4105 15650
Creatinina sérica (mg/dl) 1.11 (±0.33) 1.10 0.26 2.36
NT-pro-BNP (pg/ml) 1924 (±1892) 1405 42 4921
GOT-ASAT (UI/l) 22 (±9) 20 10 72
GPT-ALAT (UI/l) 23 (±15) 19 9 129
Presión Sistólica (mmHg) 117 (±17) 120 90 190
Presión Diastólica (mmHg) 72 (±10) 70 50 100
Frecuencia cardíaca (p/min) 69 (±10) 68 46 90

Tabla 9: Variables clínicas y sus estadísticos descriptivos.

queda determinada de la siguiente manera:

108 pacientes con una media de edad de 62 (±12) años

107 controles con una media de edad de 52 (±12) años

38 sujetos femeninas (62 (±11) años)

177 sujetos masculinos (56 (±13) años)

7.6.0.1. Expresión diferencial de genes

El resultado del DEseq2 arrojó 11971 genes diferencialmente expresados entre

pacientes con insuficiencia cardíaca y controles (p ajustado ≤ 0.01). Este resultado

dimensiona el desbalance metabólico de una enfermedad grave como la insuficien-

cia cardíaca con fracción de eyección reducida. En la figura 41 se observa un mapa

de calor con los 2511 genes que aparecen diferencialmente expresados con un p

ajustado menor a 0.01 y un log2(VC) mayor a 1 y menor a -1 (Desde 18 log2(VC)

hasta -26). Se aprecia una mayor cantidad de genes mayormente expresados en

los pacientes que en los controles.

Al observar los procesos biológicos del GO que resultaron significativos para

los genes diferencialmente expresados entre pacientes con insuficiencia cardíaca

y controles se encuentran procesos de inmunidad, respuesta a estímulos externos

e internos y diferenciación celular mayormente. Se señalan algunos genes que se
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Figura 41: Mapa de color de la expresión génica en pacientes con insuficiencia car-
díaca. Mapa de calor de la expresión diferencial de genes entre pacientes con insuficiencia
cardíaca (barra coral) y controles (barra lila). Las participantes del sexo femenino (F) se
marcan en verde y las columnas de sujetos de sexo masculino (M) en cian. Los sujetos <50
años se distinguen en mostaza (1), 50 >= sujetos <= 65 en esmeralda (2) y los sujetos
>65 en rosa (3). Se muestran los 2511 genes con p ajustado menor a 0.01 y log2(VC) >1
y <-1 en las filas y los 215 participantes en las columnas. Expresión aumentada en rojo,
expresión disminuida en azul.
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encontraron en la vía de la producción de interleuquina 4 como ejemplo de res-

puesta inmune humoral: genes del complejo mayor de histocompatibilidad (HLA-

E, HLA-DRB1), receptores de linfocitos como CD3E, CD28, CD83 y CD40LG. Otros

genes que sus productos regulan las vías de inmunidad como GATA3, TNFSF4,

FOXP3, LGALS9, CEBPB y ZFPM1. En la figura 42 se pueden apreciar algunos de

los procesos biológicos que resultaron significativos y, dentro de ellos, se encuen-

tra “respuesta celular a la hipoxia”. Algunos genes relativos a este término que

se encuentran diferencialmente expresados entre pacientes y controles son: genes

que codifican proteínas inducidas por hipoxia como EPAS1, HILPDA, HIF1AN y

endotelina 1. EPAS1 es parte del grupo de las proteínas de unión a ADN llamadas

factores inducibles por hipoxia (HIF). Es un factor de transcripción que regula a la

hormona eritropoyetina que llevará a aumentar la eritropoyesis para contrarrestar

los bajos niveles de oxígeno (Kristan 2019). Induce la expresión de interleuquina 1

y NF-kappa B en adipocitos regulando el proceso inflamatorio. Alivia la resistencia

a la insulina previniendo la activación del inflamasoma NLPR3. En el sistema car-

diovascular es esencial para mantener la homeostasis de catecolamina y promueve

la angiogénesis regulando positivamente la expresión de VEGF. Estudios muestran

que tiene un rol importante en la patofisiología de la hipertensión pulmonar que

puede llevar a insuficiencia cardíaca (Wang 2023).

En el enriquecimiento génico realizado mediante GAGE con anotaciones del

GO 115 procesos biológicos dieron significativos con un q menor a 0.05. En gene-

ral, se observaron alteraciones en procesos críticos de desarrollo y diferenciación

celular, como el desarrollo y la morfogénesis embrionaria. También procesos de

señalización y regulación, como la señalización de proteínas Rho y la cascada de

MAPK. Se identificaron procesos relacionados con la homeostasis de iones de cal-

cio y la respuesta a estímulos hormonales y mecánicos. Como se vio en la figura

7 la homeostasis de iones es esencial para la función cardíaca normal, por lo que

las respuestas alteradas son esperables en la fisiología de la insuficiencia cardíaca.

La coagulación sanguínea y la diferenciación de leucocitos también fueron proce-

sos significativamente enriquecidos. La figura 43 muestra algunos de los procesos

biológicos significativos (q <0.05) hallados.

En el caso de la angiogénesis la media del estadístico es alta y positiva, in-

dicando un aumento en la actividad de los genes relacionados con el desarrollo

de vasos sanguíneos en los pacientes con insuficiencia cardíaca en comparación

con los controles. Los factores de crecimiento, la migración celular, cambios en
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Figura 42: Ontología génica en pacientes con insuficiencia cardíaca. Gráfico de bur-
buja para el análisis de ontología génica de los genes diferencialmente expresados en
pacientes con insuficiencia cardíaca frente a controles. Cada fila en el eje y describe un
proceso biológico descrito en la ontología génica. En el eje x se expresa el enriquecimien-
to como la proporción de los genes de la lista de los diferencialmente expresados que se
encuentran en esa vía sobre el total de genes de esa vía. El tamaño de la burbuja señala la
cantidad de genes involucrados en el proceso. El color indica la significancia, p ajustado
hasta 0.05.

la adhesión célula-célula, la formación de nuevos vasos sanguíneos son procesos

importantes en la reparación y remodelación del tejido, y su respuesta alterada

puede influir en la progresión de la enfermedad. El potencial de membrana es cru-

cial para la excitabilidad celular y la función del músculo cardíaco por lo que su

desequilibrio puede afectar la integridad del tejido cardíaco. A diferencia de los

otros conjuntos de genes, los relacionados a la organización mitocondrial tienen

una media del estadístico negativa, lo que indica una disminución en la organiza-

ción mitocondrial. Las mitocondrias son esenciales para la producción de energía

en las células cardíacas y su disfunción está bien documentada en la falla contráctil

en la insuficiencia cardíaca (Zhou 2018).

El resultado del enriquecimiento mediante GAGE con las anotaciones de KEGG

arrojó, con un q = 0.14 de significancia y -2.98 la media del estadístico, la vía del

peroxisoma. Los peroxisomas son orgánulos celulares esenciales presentes en casi

todas las células eucariotas, desempeñando funciones vitales tanto en el metabo-

lismo como en la protección celular. Entre sus roles se encuentran la β-oxidación

de ácidos grasos y la degradación del peróxido de hidrógeno. Además, los pero-
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Figura 43: Análisis GAGE en pacientes con insuficiencia cardíaca. Gráfico de burbu-
ja para el análisis de enriquecimiento génico mediante GAGE con anotaciones de GO en
pacientes con insuficiencia cardíaca frente a controles. Cada fila en el eje y describe un
proceso biológico descrito en la ontología génica. En el eje x se señala la media de los
estadísticos individuales de las múltiples pruebas de conjuntos de genes; su valor absoluto
mide la magnitud de los cambios a nivel del conjunto de genes y su signo indica la direc-
ción de los cambios. El tamaño de la burbuja señala la cantidad de genes del conjunto. El
color indica la significancia, q menor que 0.05.
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xisomas participan en vías especializadas como la biosíntesis de ácidos biliares y

lípidos éter. También están implicados en el metabolismo de radicales libres de

oxígeno y óxido nítrico, así como en la señalización intra e intercelular. Su nú-

mero y tamaño se incrementan cuando se añaden activadores del receptor PPARα,

reguladores centrales del metabolismo de lípidos en el corazón (Página 30). Todas

las proteínas de la matriz peroxisomal necesarias para que realice sus funciones

deben ser importadas al interior desde el citoplasma. Existen dos tipos de señal

para dirigir las proteínas al peroxisoma: PTS1 (reconocida por PEX5) y PTS2 (re-

conocida por PEX7) (Salceda 2008). En la figura 44 se aprecia un gráfico con

los genes diferencialmente expresados entre pacientes con insuficiencia cardíaca

y controles en las diferentes vías donde está involucrado el peroxisoma. La expre-

sión diferencial de los genes involucrados en la importación de proteínas, tanto

de matriz como de membrana, sugiere un desbalance en la composición de los

peroxisomas entre pacientes y controles. Los participantes con insuficiencia car-

díaca tienen sobreexpresada la vía PTS1-PEX5 y subexpresada la vía PTS2-PEX7.

Además, se observa una subexpresión en los genes involucrados en la oxidación

de ácidos grasos (alfa y beta oxidación) apoyando la explicación del cambio en

el sustrato usado para la alta demanda energética cardíaca que se observa en la

insuficiencia cardíaca (aumentando la dependencia de la glucosa y disminuyendo

la de los ácidos grasos). Sin embargo, se observa una sobreexpresión de los genes

involucrados en la oxidación de ácidos grasos insaturados. La subexpresión del

sistema antioxidante del peroxisoma pone en evidencia la responsabilidad del au-

mento de las especies reactivas del oxígeno en la fisiopatología de la insuficiencia

cardíaca como se mencionó anteriormente.

7.6.0.2. Agrupamientos no supervisados

En el análisis de componentes principales para las muestras de pacientes con

insuficiencia cardíaca vs. controles, el primer componente logra explicar algo más

del 29% de la varianza (Figura 45 arriba izquierda). En este sentido se encuen-

tran 2 clusters, uno más pequeño conteniendo solamente controles (en naranja)

y uno mayor con pacientes (azul) y controles. En este grupo mayor pacientes y

controles se ordenan de manera distinguible, aunque no se separan. El segundo

componente principal explica el 8% de la variabilidad, pero no coincidió con nin-

guna variable clínica medida en este estudio. Detalladamente se podría decir que
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Figura 44: Vía de peroxisomas en pacientes con insuficiencia cardíaca. Gráfico de la
vía de los peroxisomas con genes sobreexpresados (en rojo) y subexpresados (en verde) en
el análisis de enriquecimiento de grupo de genes realizado con GAGE con anotaciones de
la Enciclopedia de Genes y Genomas de Kioto para los pacientes con insuficiencia cardíaca
frente a controles. q = 0.14. stat mean = -2.98.
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se encuentra un grupo muy pequeño de pacientes que se separan en un tercer

cluster. Al tratar de encontrar una variable conocida que explique la separación

de estos participantes, ni edad, sexo, tabaquismo, consumo de oxígeno, IMC, ni la

clasificación de la NYHA al que pertenece cada paciente lograron diferenciarse en

los clústeres formados. De hecho, el único paciente en el grupo 4 de la NYHA, el

de presentación más grave de la enfermedad, se encuentra en el centro de la nube

mayor, en el límite entre controles y pacientes. También se descartó un efecto del

lote debido a las tandas de secuenciación. Por lo tanto, no se logró encontrar el

motivo por el cual esos grupos de pacientes o controles se diferenciaron en mayor

medida de su grupo mayor de pacientes o controles respectivamente.

Figura 45: Agrupamientos no supervisados en pacientes con insuficiencia cardíaca.
Izq: Gráfico de análisis de los componentes principales (PCA). Der: Uniform Manifold
Approximation and Projection (UMAP) distancia mínima = 0.7, número de vecinos =
30, épocas = 500. Arriba: Gráficos para la condición en estudio, insuficiencia cardíaca
vs control. En ambos gráficos se diferencian los controles en azul y los pacientes con
insuficiencia cardíaca en naranja. Abajo: Gráficos de PCA y UMAP de insuficiencia cardíaca
vs controles coloreados con datos de seguimiento. Con eventos cardíacos o muerte en los
siguientes dos años de tomada la muestra en naranja y sin eventos en azul para ambos
gráficos.

El gráfico de UMAP, en la parte derecha y arriba en la figura 45, muestra dos

agrupamientos que tampoco pudieron ser explicados por las variables conocidas
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antes mencionadas. Un cluster más pequeño formado sólo por muestras de per-

sonas con insuficiencia cardíaca (naranja) que son más semejantes entre sí que el

cluster más grande formado por pacientes y controles (azul). Aunque en este grupo

mayor se observan algo ordenadas, donde logra colocar las muestras de personas

con insuficiencia cardíaca más próximas entre sí y las personas sin insuficiencia

también más próximas entre sí.

Para la cohorte con insuficiencia cardíaca se contó con datos parciales de segui-

miento (de dos años a partir de la toma de muestra) al momento de la realización

de este análisis. Como se aprecia en la figura 45, en la línea de abajo, los eventos

cardíacos y las muertes reportadas tampoco lograron explicar los grupos formados

en los gráficos de PCA y UMAP.

7.6.0.3. Redes neuronales

El modelo se entrenó durante 30 épocas utilizando un conjunto de datos com-

puesto por 172 imágenes de transcriptomas de pacientes con insuficiencia cardíaca

y controles. Para la validación se emplearon 43 imágenes adicionales. En la figura

46 a la izquierda, se muestra el gráfico de la función de pérdida o error por lote de

4 imágenes a lo largo de 100 épocas de entrenamiento. Este gráfico permite obser-

var cómo la función de pérdida disminuye progresivamente a medida que avanza

el entrenamiento, indicando que el modelo está aprendiendo a clasificar de mane-

ra más precisa las imágenes de los transcriptomas. La disminución constante de la

pérdida sugiere que el modelo está mejorando su capacidad de generalización y

reduciendo el error de clasificación. Se decidió entrenar hasta 30 épocas ya que en

los modelos con una buena cantidad de imágenes se consiguen buenos resultados

antes de un posible sobreajuste, lo que permite una generalización entre diferentes

análisis.

A la derecha de la figura 46, se presenta la matriz de confusión resultante

de una de las validaciones del modelo ResNet50. Esta matriz de confusión pro-

porciona una visión del rendimiento del modelo al clasificar las imágenes de los

transcriptomas en las categorías de sujetos con insuficiencia cardíaca y controles.

La matriz muestra el número de verdaderos positivos, verdaderos negativos, fal-

sos positivos y falsos negativos, lo que permite evaluar la precisión y la capacidad

del modelo para distinguir entre las dos clases. El modelo alcanzó una exactitud

de clasificación de 0.930 (±0.028) entre las 5 corridas realizadas. En un análisis
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donde la señal es fuerte y diversa, el modelo alcanzó un alto nivel de precisión en

la clasificación de las imágenes.

Figura 46: Análisis por redes neuronales en pacientes con insuficiencia cardíaca.
Izq.: Gráfico de la función de pérdida o error por lote de 4 imágenes para 100 épocas en
el entrenamiento para clasificar entre participantes con insuficiencia cardíaca y controles
para el estudio de insuficiencia cardíaca y sujetos sin enfermedad activa. Der.: Matriz de
confusión resultado de una de las validaciones de ResNet50 para las imágenes correspon-
dientes a los transcriptomas de sujetos con insuficiencia cardíaca y controles.



Discusión

Durante el desarrollo de esta tesis se buscó la aplicación de diferentes técnicas

analíticas de grandes datos sobre el transcriptoma de sangre entera, con particular

interés en las redes neuronales. De tener éxito, el desarrollo de esta metodología

puede conducir a métodos de diagnóstico superadores. El transcriptoma de un

tejido presenta características únicas para el desarrollo de una tecnología diagnós-

tica ya que el ARN es una molécula fundamental en la conexión entre el genoma

(nuestra herencia) y el medio ambiente que lo modula.

El trabajo de esta tesis se basó principalmente en los hallazgos iniciales de tres

estudios clínicos, incluyendo uno en sujetos sanos, otro en sujetos sanos con posi-

bilidad de sufrir enfermedad coronaria y un tercero en pacientes con insuficiencia

cardíaca. Los trabajos fueron realizados en cumplimiento de los estándares inter-

nacionales para asegurar la calidad de los mismos y la seguridad de los sujetos

participantes. Las muestras de sangre obtenidas fueron procesadas y secuenciadas

con metodologías de última generación. Finalmente, el procesamiento bioinformá-

tico aplicado fue elaborado para obtener la expresión génica con el menor ruido

posible. Todo este trabajo asegura la fiabilidad de los datos obtenidos.

A pesar de esta ventaja biológica, varios problemas se pueden mencionar co-

mo posibles dificultades para lograr nuestro objetivo. En primer lugar, existe un

gran desconocimiento acerca de qué es exactamente el transcriptoma y cómo pro-

cesarlo. En los últimos años se han descrito nuevas formas de ARNs debido a

un extenso post-procesado luego de su transcripción. Es más, muchos de estos

cambios son ahora llamados epitranscriptoma en analogía al epigenoma y son, al

momento, muy poco comprendidos. Lo único claro es que aumentan enormemen-

te la variedad del transcriptoma y que los mismos tienen implicancias funcionales

(Bove 2024, Cerneckis 2024). Pero esta variedad genera otro problema para los

algoritmos de grandes datos: las bases de datos generadas presentan una enorme

variedad entre muestra y muestra. Para estos algoritmos, el ruido para detectar se-

ñales puede conducir a pobres resultados. Una posibilidad a futuro es aumentar el

112
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número de muestras para generar entrenamientos más robustos. Alternativamen-

te, otra posibilidad es aumentar el post-procesado de las muestras para reducir el

universo analítico. Ambas opciones, sin embargo, no están exentas de problemas.

Otro inconveniente de la metodología desarrollada es el ARN en sí mismo. Es

bien conocido que el ARN es una molécula altamente inestable ante la presencia

extendida y universal de enzimas que lo degradan, así como también la rápida

degradación y síntesis de los mismos al presentar una tasa de recambio de sólo 20

minutos. Para evitar estos inconvenientes, se decidió aplicar en los estudios clíni-

cos la técnica de extraer la sangre e inmediatamente colocarlas en un buffer estabi-

lizador de ARN. La gran mayoría de los desarrollos de estudios de ARN en sangre

periférica utilizan preparados celulares obtenidos por métodos de separación. De

esta manera, al realizar los estudios de expresión génica sobre poblaciones celula-

res definidas, como por ejemplo monocitos, neutrófilos o simplemente la fracción

mononuclear de la sangre periférica (conocida como PBMC), pueden obtener una

mejor definición del transcriptoma de las mismas y reducir el ruido de la presencia

de una mezcla de células. Sin embargo, consideramos que esta metodología no es

aplicable en campo, ya que la traslación a la clínica de las metodologías de labora-

torio conlleva una degradación de las capacidades y consistencias. Invariablemen-

te, introducir deficiencias en la toma y el procesado de muestras conllevaría a una

tasa de ruido mayor cuando estas técnicas sean aplicadas en el campo clínico.

En la tabla 10 se presentan los resultados de los entrenamientos de todos los

estudios. En términos generales, los modelos de clasificación demostraron un ren-

dimiento variable dependiendo de la tarea específica. Los modelos para clasificar

entre sujetos femeninos y masculinos, así como entre jóvenes y adultos mayores,

mostraron los mejores resultados, como era esperable, con funciones de pérdida

bajas y altas exactitudes. La clasificación entre insuficiencia cardíaca y controles

obtuvo resultados semejantes a sexo y edad lo que sugiere diferencias más marca-

das y consistentes en los transcriptomas para esta patología.

El tercio medio de la tabla comprendido por el análisis del índice de masa

corporal, hemoglobina glicosilada y proteína C reactiva obtuvieron resultados al-

rededor del 80% de exactitud. Estos muy buenos resultados van en línea con el

uso de estos biomarcadores en el uso clínico habitual. Tienen una señal metabólica

clara que se refleja en los transcriptomas.

El tamaño y la calidad del conjunto de datos de entrenamiento y validación

jugaron un papel importante en el rendimiento de los modelos. Los modelos en-
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FPE FPV Exactitud Épocas
Tiempo

(ms)

Femenino vs.
masculino

0.120
(± 0.022)

0.040
(± 0.028)

0.990
(± 0.007)

30 1:54
(± 0)

Jóven vs. adulto
mayor

0.181
(± 0.094)

0.094
(± 0.015)

0.980
(± 0.011)

30 0:37
(± 0)

Insuficiencia
cardíaca vs.
control

0.244
(± 0.113)

0.228
(± 0.024)

0.930
(± 0.028)

30 0:40
(± 0)

Índice de masa
corporal
(Obesidad)

0.269
(± 0.074)

0.701
(± 0.122)

0.793
(± 0.033)

30 0:50
(± 0.0003)

BBK -
hemoglobina
glicosilada
(Prediabetes)

0.706
(± 0.061)

0.499
(± 0.281)

0.880
(± 0.045)

8 0:10
(± 0)

BBK - proteína C
reactiva
(Inflamación)

0.218
(± 0.055)

0.558
(± 0.157)

0.771
(± 0.089)

20 0:33
(± 0)

Aterosclerosis vs.
control

0.502
(± 0.260)

0.838
(± 0.217)

0.733
(± 0.066)

12 0:25
(± 0)

BBK - colesterol
total
(Dislipemia)

0.440
(± 0.244)

0.900
(± 0.153)

0.634
(± 0.088)

25 0:44
(± 0)

FPE: Función de Pérdida de Entrenamiento
FPV: Función de Pérdida de Validación

Tabla 10: Métricas de rendimiento para diferentes clasificaciones
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trenados con un mayor número de imágenes generalmente mostraron un mejor

rendimiento, lo que destaca la importancia de disponer de grandes conjuntos de

datos para entrenar modelos de clasificación robustos. La hemoglobina glicosilada

fue una excepción, con muy pocos datos (sólo 10 imágenes para validar) no es

un resultado robusto y deberían realizarse mayor cantidad de estudios, pero los

resultados preliminares son prometedores.

En las líneas finales de la tabla se encuentran los análisis que presentaron

mayores desafíos, aterosclerosis y colesterol total. Estos modelos mostraron fun-

ciones de pérdida más altas y exactitudes más bajas, indicando que estas tareas

son más complejas y que los modelos tienen más dificultades para distinguir entre

las diferentes clases. Esto puede deberse a la naturaleza más sutil y variada de las

diferencias en los transcriptomas asociados con la aterosclerosis. En el caso de la

dislipemia refleja el uso coordinado de diversos marcadores como las lipoproteínas

de alta y baja densidad y los triglicéridos para un diagnóstico de dislipemia. Por lo

que un sólo marcador tampoco parece reflejar una señal clara del metabolismo de

lípidos en el transcriptoma.

La exactitud de validación y la función de pérdida en validación son indica-

dores clave de la capacidad de generalización de los modelos. Los modelos que

mostraron una menor diferencia entre la función de pérdida en entrenamiento y

validación tuvieron una mejor capacidad de generalización, lo que es un requisito

crítico para su aplicación clínica real.

El tiempo de entrenamiento por época varió entre los diferentes modelos, re-

flejando la complejidad de las tareas y el tamaño del set de entrenamiento. Los

modelos con tiempos de entrenamiento más largos generalmente correspondie-

ron a tareas más complejas y conjuntos de datos más grandes. Sin embargo, es

importante equilibrar el tiempo de entrenamiento con la precisión del modelo pa-

ra asegurar que los recursos computacionales se utilicen de manera eficiente. El

modelo ResNet50 se comportó bien en este aspecto, ResNet101 conseguía valores

similares de exactitud con mayores tiempos de entrenamiento. A su vez, ResNet18

conseguía entrenamientos más rápidos, pero que no lograban alcanzar los valores

de exactitud de los modelos con mayor número de capas.

El análisis de componentes principales es utilizado de rutina en el análisis de

datos transcriptómicos para identificar outliers y tener un panorama general inicial

resumiendo la enorme cantidad de datos en 2 o 3 dimensiones. UMAP, aunque más

usado en transcriptómicas de célula única, también es muy utilizado para reducir
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la información de transcriptomas en masa gráficamente. Al realizar los gráficos

con los genes diferencialmente expresados según el DEseq2 para cada condición,

en general no se lograron agrupamientos bien definidos, a excepción del sexo.

En la figura 47 se muestran los gráficos del análisis de componentes principales

de todos los análisis realizados. Como era esperable, la señal transcriptómica más

fuerte fue la del dimorfismo sexual, entreviéndose aún cuando los genes diferen-

cialmente expresados seleccionados fueron para otra condición. Como fue el caso

del índice de masa corporal y la proteína C reactiva. El gráfico del análisis de insufi-

ciencia cardíaca se asemeja más al de comparación entre la población joven frente

a los adultos mayores. Parecería que la señal es suficientemente fuerte para gene-

rar un ordenamiento en el primer componente, pero no tanto como para lograr

una verdadera clusterización. Este también es el caso del gráfico de la proteína C

reactiva que, a pesar de clusterizarse por sexo, logra un ordenamiento de los par-

ticipantes en el segundo componente según tengan el marcador de inflamación

alto o no detectable. Otro es el caso del colesterol total que separa a los partici-

pantes en dos grupos debido al primer componente con el 84% de la varianza,

pero no por la condición de colesterol total alto o bajo, no pudiéndose encontrar

ninguna de las variables clínicas medidas como responsable. Por último, en los

gráficos de prediabetes y aterosclerosis los participantes aparecen sin ningún tipo

de agrupamiento ni ordenamiento en el primer y segundo componente.
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Figura 47: Análisis de componentes principales de todos los análisis realizados.

Tratando de paralelizar el desempeño de ambos tipos de modelos, tanto super-

visado como no supervisados, siguiendo un razonamiento de captación de señal

biológica relevante se encuentra al sexo como la señal más fuerte y, por lo tan-

to, el mejor desempeño para ambos tipos de modelos. Seguido, en ambos casos,

por los análisis de edad e insuficiencia cardíaca. También parecen coincidir en el

caso del colesterol total como la señal más confusa con la peor performance en

ambos tipos de modelos, con la peor exactitud de clasificación en la red neuronal
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y una clusterización muy fuerte sin respetar la condición de estudio en PCA. En

el caso de la hemoglobina glicosilada los modelos parecen diferir dado que los no

supervisados no encontraron una estructura latente, sin embargo, la red logró una

muy buena exactitud de clasificación. Aunque se debe tener en cuenta que son

muy pocas imágenes de validación y el resultado no es tan robusto como los otros

análisis planteados. Para el análisis de aterosclerosis vs control la red alcanzó un

buen desempeño, sin embargo los modelos no supervisados no lograron agrupar a

los participantes con aterosclerosis en un grupo diferente de los controles, lo que

muestra limitaciones en su capacidad para discernir señales más sutiles.

8.1. Uso de base de datos

Generar una base de datos propia para el entrenamiento de algoritmos de

aprendizaje automático fue una gran ventaja, tanto en el caso de los transcrip-

tomas como en el de las micrografías de cultivos celulares.

Los datos a los que se pueden acceder a partir de repositorios públicos de datos

de expresión, por ejemplo el Gene Expression Omnibus (GEO), son muy heterogé-

neos debido a que cada estudio suele tener un número reducido de muestras. La

estrategia de muchos trabajos que analizan estos datos es agrupar estudios lo que

genera un gran efecto lote. Esta variabilidad se debe a que las bases de datos pue-

den reunir transcriptomas obtenidos a partir de diferentes metodologías y cada

tipo de técnica, ya sea secuenciación masiva o microarreglos, tiene su variabilidad

asociada. Además, no contar aún con un protocolo bioinformático estandarizado

agrega mayor variación al conteo de expresión génica aunque provengan del mis-

mo tipo de metodología. Tampoco hay un fenotipado clínico común entre países

y entre estudios, ya que los criterios de elegibilidad para pacientes y controles

pueden ser diferentes, lo que puede llevar a incongruencias en la asignación de

etiquetas a las muestras cuando se agrupan los datos.

Una base de datos muy utilizada es Adult Genotype Tissue Expression (GTEx)

(GTEx consortium 2013). Es un recurso público que estudia en diversos tejidos

humanos la expresión génica y su regulación. El proyecto colectó muestras hasta

de 54 tejidos sanos de 946 personas fallecidas, sumando 19788 muestras. Se ac-

cedió a los datos de expresión génica de cada tejido mediante una secuenciación

de ARN a granel. En la figura 48 se puede observar el análisis de componentes
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principales que arrojan los datos de expresión en sangre entera para la base de

datos GTEx. A la izquierda de la figura los datos están coloreados según la escala

Hardy que clasifica el tipo de muerte de los participantes a los cuales se les extrajo

la muestra de sangre para la base de datos. Esta escala agrupa los tipos de muerte

de la siguiente manera:

0. Respirador: Todos los casos en los que se utiliza un respirador inmediata-

mente antes de la muerte.

1. Muerte violenta rápida: Debida a un accidente, suicidio o el impacto de un

golpe no penetrante.

2. Muerte natural rápida: Súbita y no esperada de personas razonablemente

sanas con una fase terminal menor a 1 hora. El infarto de miocardio es un

ejemplo modelo de esta categoría.

3. Intermedia: Luego de una fase terminal entre 1 y 24 horas que no puedan

clasificarse como 2 o 4. Son pacientes enfermos, pero su muerte no es espe-

rada.

4. Muerte lenta: Luego de una larga enfermedad, con fase terminal mayor a

24 horas, son muertes esperables, como el caso del cáncer o enfermedades

respiratorias.

A la derecha de la figura 48 se observa el mismo análisis destacando con di-

ferentes colores los diferentes tiempos en que el tejido dejó de recibir oxígeno y

nutrientes antes de tomar la muestra. Tanto en el gráfico de escala Hardy como en

el de isquemia, se observan clústeres que separan a los participantes del estudio,

explicando en el primer componente la varianza que, ni el sexo, ni la edad logran

explicar (Esto se puede observar en la fila inferior de la figura 48). Estudios indican

que en la muerte súbita hay genes diferencialmente expresados que, al realizar los

análisis de enriquecimiento, se asociaron a aterosclerosis, enfermedad cardiovas-

cular, enfermedad renal e infarto de miocardio (Zhou 2022). Por lo tanto, evitar

las diferencias de expresión que trae aparejada la isquemia de la toma de muestra

post mortem, como así también el tipo de deceso, es una ventaja importante al

analizar los datos de una base propia y, más aún, en el estudio de enfermedad

cardiovascular dada la conocida diferencia de expresión génica en la muerte súbi-

ta. En nuestra metodología de toma de muestra y procesamiento la sangre entra

https://gtexportal.org/home/expressionPca
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en contacto inmediatamente con el buffer en el tubo de extracción. Este buffer

lisa las células y vesículas sanguíneas, y estabiliza el RNA intracelular evitando

la degradación o modificación del mismo. Además, se evita la síntesis de nuevos

ARNs. De esta manera se evitan los problemas encontrados en GTEx. Otros estu-

dios con muestras de sangre realizan una separación y selección de los elementos

celulares o utilizan plasma o suero. Cualquiera de estas opciones significa tiem-

pos de procesamiento largos y complejos. Además, debido a la alta inestabilidad

del ARN, proporcionan ventanas en las cuales el transcriptoma se puede alterar

significativamente.

Figura 48: Análisis de componentes principales de los datos de GTEx de sangre ente-
ra. Gráficos de análisis de componentes principales de los datos de GTEx de sangre entera.
Izquierda arriba: Escala de Hardy (0: Respirador, 1: Muerte violenta rápida, 2: Muerte na-
tural rápida, 3: Intermedia, 4: Muerte lenta ). Derecha arriba: Tiempo de isquemia en
minutos. Izquierda abajo: Sexo. Derecha abajo: Edad categorizada en decenas.

Otra ventaja de generar una base de datos propia recae en el desempeño de

las ecuaciones de riesgo poligénico ya que se ve afectado por las características de

la población en la cual se utiliza. Múltiples estudios señalan la necesidad de cali-
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brar el cálculo de riesgo según la cohorte y la ancestría genética (Cook 2016). En

el mismo camino, una proporción significativa de la variabilidad en la expresión

es heredable (Skelly 2009) entonces, es valioso contar con datos de expresión de

nuestra población. Es importante destacar que la población argentina tiene poca

representatividad en los datos públicos disponibles. En los países desarrollados se

destina una gran cantidad de fondos de los Estados como un esfuerzo para ace-

lerar las estrategias de medicina de precisión para la prevención, el diagnóstico

y el tratamiento de las enfermedades. Tal es el caso del Programa de Investiga-

ción Todos Nosotros (All of Us Research Program Genomics Investigators 2024)

en Estados Unidos, en el cual los Institutos Nacionales de Salud (NIH) invirtieron

130 millones de dólares para reclutar a más de 1 millón de personas que den su

consentimiento para recabar información digital de su salud, datos biométricos y

biológicos. Además, en el reclutamiento pusieron especial atención en la diversi-

dad, incluyendo poblaciones históricamente subrepresentadas, para entender las

disparidades en el manejo de la salud y que los resultados sean aplicables a todas

las poblaciones de manera más personalizada y equitativa. Sin embargo, en los

países en vías de desarrollo como la Argentina los fondos invertidos en medicina

de precisión son mucho más escasos y al momento no existen iniciativas similares

de tal magnitud. En este trabajo no se tuvo especial cuidado en la ancestría de los

participantes de los estudios clínicos, ni pretendió ser representativa del país en su

totalidad (Luisi 2020), ya que los participantes fueron reclutados exclusivamente

en la ciudad y la provincia de Buenos Aires (AMBA zona norte). Aunque, sin duda,

es una mejor aproximación a la representatividad de la población argentina que

las bases de datos internacionales asequibles al momento.

Una dificultad titánica que afrontan las enfermedades poligénicas es despejar

su variabilidad inherente de la señal biológica para lograr un modelo que permita

predecir. Los resultados de los algoritmos de aprendizaje automático se limitan a

la información disponible en los datos de entrenamiento, por lo tanto, no solo se

debe priorizar la cantidad sino la calidad de los datos para su entrenamiento. La

información debe ser abarcativa, representativa y con un fenotipado estandarizado

para sacar el máximo provecho de estas técnicas. Entonces, los estudios clínicos

permitieron lograr datos controlados desde su obtención, su procesamiento y su

análisis ayudando a disminuir la variabilidad no deseada. En este trabajo se tuvo

en cuenta un criterio unificado de fenotipado para un objetivo común a través de

los tres estudios clínicos para lograr abarcar la enfermedad cardiovascular en todo
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su espectro clínico.

Este somero compendio resalta la importancia de recabar información propia

para el entrenamiento de una red neuronal.

Una mención aparte merece el origen de la muestra de los estudios clínicos. Por

un lado, la sangre es un tejido accesible y su obtención es mínimamente invasiva,

lo que facilita su uso en la práctica clínica y permite la recolección de muestras

de manera repetida para el monitoreo de enfermedades. Por otro, gracias a traba-

jos previos que validaron la exactitud diagnóstica de estudios de expresión génica

para enfermedad obstructiva coronaria (Rosenberg 2010) y a los resultados ob-

tenidos en este trabajo, se puede afirmar que la sangre es un sustrato ideal para

el sondeo poblacional, ya que refleja el estado fisiológico general del organismo

y puede proporcionar información sobre procesos patológicos en diversos órganos

y sistemas. Además, el uso de muestras de sangre facilita la estandarización de

protocolos en la aplicación clínica. Por lo que podría plantearse la expansión de la

red a otras patologías de interés con las cuales pueda entrenarse.

8.2. Agrupamientos no supervisados

Los resultados de los agrupamientos no supervisados de los participantes no

fueron satisfactorios para los análisis planteados. Los métodos utilizados de re-

ducción de la dimensionalidad no lograron encontrar una estructuración tal en los

datos transcriptómicos que logre separar a los participantes con las condiciones

planteadas de los controles. Estos modelos tuvieron limitaciones en la capacidad

de discernir cuando las señales eran sutiles.

Al correlacionar los datos clínicos disponibles tampoco se pudieron explicar los

agrupamientos hallados, a excepción del sexo que sí explicó en algunos casos los

cluster que no respondían a la condición en estudio.

Los análisis de ontología génica de los genes expresados diferencialmente re-

sultaron más enriquecedores. En general respondieron a las vías biológicas involu-

cradas directa o indirectamente con la patología o factores de riesgo planteados en

los análisis. El GO se desempeñó mejor, logrando encontrar vías significativas con

mayor relevancia biológica, cuando la cantidad de genes diferencialmente expre-

sados fue mayor. Por el contrario, cuando el DEseq2 hallaba pocos genes (decenas)

diferencialmente expresados, la estrategia de enriquecimiento de genes de GAGE
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logró contextualizar biológicamente mejor, con vías más apropiadas según la pa-

tología o factor de riesgo planteado. En el rango de los cientos de genes ambas

estrategias lograron complementarse con varias coincidencias.

Aún con los avances en los métodos que se utilizan para dar un contexto bioló-

gico a la inmensa información transcriptómica todavía es un proceso dificultoso y

dependiente de la herramienta utilizada. La regulación génica se ejerce mediante

una red de genes que interactúan (Ding 2020), las relaciones entre estos genes

es compleja y dista mucho de ser lineal, esta falta de linealidad imposibilita a la

mayoría de los métodos disponibles para estudiar la expresión génica basados en

regresión o correlación. Las listas de genes, los clústeres o los análisis de enriqueci-

miento de genes no abarcan la totalidad de la complejidad (Diaz 2020). Además,

los genes que interactúan con genes desregulados sin estar ellos mismos expre-

sados diferencialmente no son visibles en los estudios de expresión diferencial

tradicionales (Magnusson 2022).

8.3. Redes Neuronales

En los estudios clínicos presentados se trató de cubrir el amplio espectro de

la enfermedad cardiovascular para poder aplicar la plataforma planteada en el

objetivo principal en cada una de las etapas en curso de la enfermedad. Es cla-

ro que el desbalance metabólico va a ser mayor en una persona con insuficiencia

cardíaca que en una que esté en los primeros estadíos de la enfermedad cardio-

vascular, por lo tanto, es importante, y muy alentador, que la clasificación tenga

una buena exactitud de clasificación a etapas tempranas, cuando no hay sínto-

mas de enfermedad cardiovascular. En la etapa de insuficiencia cardíaca las redes

pueden plantearse como una herramienta para la prognosis, una subclasificación

dentro de la patología más que una clasificación frente a controles. Para esto se

utilizarán los resultados del seguimiento a 5 años que se está realizando a la co-

horte del estudio de insuficiencia cardiaca. Con los datos preliminares de 2 años

de seguimiento no es posible aún tener un número suficiente de pacientes con

eventos cardiovasculares como para lograr un entrenamiento de la red. Con estos

resultados solamente se identificaron los pacientes en los modelos no supervisados

utilizados (PCA y UMAP), pero no se logró ninguna clasificación relevante, como

se vio en los resultados.
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En el desarrollo de la plataforma también se probaron redes neuronales linea-

les o totalmente conectadas a partir de los datos de expresión brindados directa-

mente a partir de la matriz de expresión génica (No se muestran los datos). Se

probaron diferentes arquitecturas con una variedad de cantidad de capas con ta-

maños diferentes, pero no se logró convergencia al mantener la cantidad de genes

totales originales. La función de pérdida siempre se disparó a miles en estos ca-

sos. Como se vio en trabajos anteriores (Miao 2024) para la utilización de redes

lineales existe un filtrado de genes previo que puede sesgar el análisis.

Es importante recalcar que al resumir la información de la expresión de todos

los genes en la imágen planteada en esta tesis, la red convolucional fue capaz de

resolver diferentes clústeres de datos sin necesidad de un filtrado previo de genes,

que es la manera en la que usualmente se afronta el problema de tener mucha

menor cantidad de muestras que el número de genes (Kakati 2022). Además se

logró tener evidencia que la estrategia de resumir la información transcriptómica

en imágenes también es válida para clasificar pacientes con enfermedades cardio-

vasculares a partir de una muestra de sangre periférica, ya que los trabajos hasta

el momento fueron realizados sobre muestras de tumores de pacientes (Lyu 2018,

Ma 2018), en los cuales las diferencias en la transcripción son mucho mayores al

comparar tejidos diferentes. La particularidad de lograr entrenar a la red con un

resumen de toda la expresión génica más que con unos pocos genes preseleccio-

nados conlleva la ventaja de aportar la información del sexo y la edad fisiológica,

más que estrictamente cronológica, del individuo que es sabido que correlacionan

con la enfermedad cardiovascular. Sumado esto a la información de su sistema in-

mune y los matices de expresión resultantes de la presión que ejerce el ambiente

al que está expuesto el individuo que se deja traslucir en una muestra de sangre

entera.

El mayor desafío para la incorporación de las redes neuronales para el cálculo

del riesgo cardiovascular en la población es el escepticismo de la comunidad cien-

tífica frente a una metodología de caja negra. Los conceptos de interpretabilidad

y explicabilidad, usados comúnmente como sinónimos, tienen un matiz en el uso

de los modelos de aprendizaje automático. La interpretabilidad está ligada a la

capacidad para explicar a un ser humano los resultados de un modelo, mientras

que la explicabilidad está asociada con la comprensión de la lógica interna del

algoritmo, es la medida en que la mecánica interna de un sistema de aprendizaje

automático se puede explicar en términos humanos (Lage 2019). En los modelos
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muy complejos, como las redes neuronales con muchos nodos, la explicabilidad es

aún un reto no resuelto. Sin embargo, se han desarrollado muchas técnicas para

mejorar la interpretabilidad. Igualmente, la comunidad médica podría no querer

utilizar una herramienta sin comprender el mecanismo exacto de funcionamiento.

Otro desafío para la aplicabilidad de las redes neuronales artificiales es que

estas pueden ser entrenadas para adaptarse a variados escenarios, pero, luego del

entrenamiento, pueden no generalizar bien en escenarios desconocidos (Cheng

2024). Para un profesional de la salud no familiarizado con la optimización de

modelos de aprendizaje automático la herramienta puede entregar peores resulta-

dos que las ecuaciones tradicionales de riesgo. Para atacar este problema se debe

alcanzar un entrenamiento amplio y representativo, con una gran cantidad de da-

tos y una interfaz amigable para el operador. En la actualidad se está llevando a

cabo otro estudio con 800 participantes para la evaluación de calcio coronario con

el cual se podrá testear la plataforma y ampliar el entrenamiento con mayor canti-

dad de muestras de la población local. Paradójicamente, una forma de mejorar el

rendimiento del modelo sería la propia implementación. Cuando una red neuronal

se implementa en una plataforma que permite la incorporación dinámica de nue-

vos datos operativos, se establece un ciclo de retroalimentación que potencia su

capacidad predictiva de forma iterativa. Este proceso, conocido como aprendizaje

incremental adaptativo, permite que el modelo evolucione y se adapte a patrones

emergentes.

8.4. Contexto biológico de los hallazgos

Dentro de los objetivos planteados en esta tesis se encuentra correlacionar

los hallazgos de la clasificación con las características clínicas y la evolución de

los pacientes. Las vías metabólicas que se encontraron desreguladas, en general,

coincidieron con lo esperado por los antecedentes bibliográficos. Sin embargo, los

cambios en la expresión génica observados son efectos de correlación con la enfer-

medad cardiovascular que pueden ser debido tanto a causas de la patología como

a efectos de respuesta a ella, reflejando un riesgo general debido a la enfermedad

y a la actividad inflamatoria de cada participante del estudio. Entonces, los hallaz-

gos de los genes diferencialmente expresados deben ser validados, abriendo líneas

de investigación interesantes para ensayos funcionales de proteínas y análisis de
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mecanismos de regulación génica dentro de la enfermedad cardiovascular.

Con la mirada puesta en la traslación de la plataforma a la práctica clínica exis-

ten, al menos, dos caminos para plantear un score de riesgo coronario. Un método

más indirecto es la clasificación de las personas según su score de calcio coronario.

Como vimos, el calcio correlaciona muy bien con el riesgo a 10 años de padecer

un evento cardiovascular. Clasificando el score de riesgo coronario a partir del

agregado de la transcriptómica al análisis de sangre de rutina, se obtendría indi-

rectamente el riesgo de evento cardiovascular. Un testeo de la expresión génica en

sangre periférica tiene mayores ventajas clínicas respecto a otros ensayos no inva-

sivos, ya que requiere solo de una extracción sanguínea estándar, sin necesidad de

radiaciones ionizantes, contrastes intravenosos ni estresores farmacológicos ni psi-

cológicos (Rosenberg 2010). Sin embargo, desde una perspectiva molecular, otros

tejidos involucrados como el músculo liso, el endotelio o el hígado, por mencionar

algunos, podrían brindar información complementaria de productos inflamatorios

que no sean detectados en la sangre. Además este enfoque no responde la pregun-

ta de por qué algunas personas con varios factores de riesgo y un estilo de vida

desfavorable cardiovascularmente hablando llegan a edades avanzadas. O cuál es

el motivo por el cual personas con estilos de vida saludables y sin factores de riesgo

se enfrentan a eventos cardiovasculares tempranos.

El otro método propuesto debe seguir su estudio en un futuro cercano. Con los

datos de seguimiento a 5 años de los pacientes se podrá investigar si la plataforma

puede clasificar a los participantes según su evolución. El planteo más interesante

sería replantear los entrenamientos enfrentando a las personas que tuvieron even-

tos cardiovasculares dentro de los 5 años de tomada la muestra de sangre y a las

que no los tuvieron. De esta manera analizar si la plataforma es capaz de detectar

cambios tempranos en la expresión de los genes que puedan predecir los eventos

cardiovasculares con una ventana de tiempo que le permita al médico la interven-

ción temprana del tratamiento. Esta estrategia encontraría directamente el riesgo

de padecer el evento independientemente de la medición previa de los factores de

riesgo. Mientras para algunos individuos la calcificación puede ser la causa prin-

cipal de su elevada susceptibilidad, para otros puede ser la inflamación crónica o

una falta de homeostasis de lípidos hereditaria (Biros 2008). El estilo de vida y

todas las variables clínicas tradicionales estarían ya contempladas y pesadas por

el valor de su responsabilidad en el desarrollo del evento. Igualmente comparte la

desventaja de la falta de información complementaria de productos inflamatorios
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en otros tejidos que no sean detectados en la sangre ya que, en ambos casos, la

muestra parte del tejido sanguíneo.

Hallar a las personas que van a sufrir un evento cardiovascular 5 años antes

del suceso con mayor exactitud que los métodos tradicionales sería, sin duda, un

arma poderosa para el médico en la lucha en el acompañamiento clínico de sus

pacientes. Además de los beneficios personalizados, epidemiológicamente se po-

drían redireccionar recursos económicos y humanos para un manejo poblacional

de la enfermedad cardiovascular más eficiente.

Las herramientas existentes para la evaluación de riesgo cardiovascular no son

universales debido a diferencias genéticas, culturales y socioeconómicas de cada

población. En la población argentina no se han realizado estudios de cohortes

prospectivas para la validación de los métodos de evaluación de riesgo cardiovas-

cular que se utilizan en países desarrollados. En entornos de atención sanitaria

de bajos recursos, cuando algunos de los factores de riesgo no se encuentran dis-

ponibles, se pueden utilizar los cuadros de la Organización Mundial de la Salud

(Figura 5, página 23). Los cuadros categorizan incorrectamente a muchos indivi-

duos en el grupo de bajo riesgo, lo que lleva al subtratamiento de la población, a

subsecuentes complicaciones y, finalmente, a un mayor gasto del sistema de salud.

Por el contrario, las ecuaciones implementadas en países con alta inversión sanita-

ria requieren un mayor desembolso inicial para screenings, exámenes y un sistema

informático apropiado para una evaluación de riesgo más precisa (Badawy 2022).

La continua baja en el costo de secuenciación abre una oportunidad para desa-

rrollar una herramienta de evaluación de riesgo cardiovascular que contemple al

transcriptoma y tenga una buena relación costo-efectividad para nuestro país.

8.5. Perspectivas a futuro

La implementación de las tecnologías ómicas en la medicina de precisión es un

gran desafío por diversas causas (Babu 2023), pero el esfuerzo de su integración

a diferentes niveles de complejidad es sabido que rendirá sus frutos en un futuro

algo más lejano. Cada tecnología ómica por separado se ha utilizado con diferen-

tes grados de éxito, pero una gran meta de la medicina es poder implementar una

combinación que brinde información superadora. Por ejemplo, combinar la trans-

criptómica y la proteómica agrega información funcional que no puede capturar
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la genómica. Estas combinaciones permiten deshojar la complejidad molecular

de las enfermedades mediante una visión holística. En la figura 49 se ejemplifica

un flujo de trabajo de tres tecnologías ómicas integradas mediante aprendizaje

automático. Se puede observar la formación de un cuerpo tridimensional en el

cual cada cara es una imagen que representa los datos ómicos de una persona.

Con el objetivo de una integración sinérgica de varias tecnologías de punta en

el campo de la cardiología nace el concepto de gemelo digital, tomado de la in-

geniería, donde representaciones in silico de un sistema físico, como podría ser

un motor, son usadas para optimizar procesos. En sanidad, el gemelo digital de-

nota una herramienta virtual que integra coherente y dinámicamente los datos

clínicos del paciente que fueron adquiridos a través del tiempo usando modelos

estadísticos, mecanísticos y simulaciones (Corral-Acero 2020). Los modelos meca-

nísticos engloban, principalmente, el conocimiento sobre fisiología. Por ejemplo,

las ecuaciones de Navier-Stokes para el modelado del flujo sanguíneo humano o

el modelo de bidominio para la actividad eléctrica del corazón (Leslie 1978). Los

modelos estadísticos encapsulan el conocimiento y las relaciones provenientes de

los datos. El objetivo es brindar al médico conocimiento individualizado sobre la

salud cardiovascular general del paciente. Un beneficio importante para el médico

es la capacidad de probar en el gemelo digital terapias cardiovasculares para un

paciente en particular y así poder evaluar el desempeño sin poner en riesgo al

paciente real (Singh 2024). Ya se obtuvo evidencia del escalado de este concepto

en ensayos clínicos in silico (Faris 2017). Un robusto modelado matemático ayudó

a reducir los requerimientos de los estudios para la aprobación por la FDA de un

marcapasos seguro en el contexto de resonancias magnéticas. La integración me-

diante inteligencia artificial de todos los datos ómicos, clínicos y de dispositivos de

uso diario (Wearables) sumado al gran desempeño de las computadoras cuánticas

podrán brindar al médico y al científico en el futuro una grandiosa herramienta

para la lucha contra las enfermedades.
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Figura 49: Esquema del flujo de trabajo de la integración de diferentes tecnologías
ómicas. Esquema del flujo de trabajo de genómica, transcriptómica y proteómica median-
te inteligencia artificial. Gráfico tomado de Sopić 2023.



Conclusión

En este trabajo se desarrolló un flujo de trabajo que incluyó un modelo de red

neuronal artificial para clasificar datos transcriptómicos de sangre entera de pa-

cientes y controles convertidos en imágenes RGB. La red convolucional residual

de 50 capas fue capaz de extraer rasgos de los datos que diferenciaron las ca-

racterísticas fenotípicas propuestas con diferente grado de exactitud. La evidencia

presentada mediante datos propios tomados de estudios clínicos realizados ava-

lan una posible aplicación clínica. Los datos de seguimiento serán cruciales para

definir el alcance del test no invasivo que pueda ser implementado. Actualmente

el aporte suma evidencia a la posibilidad del uso de la transcriptómica y las redes

neuronales en la medicina de precisión.

SantiagoMiriuka María NelbaPérez
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Anexo

Anexo I: Aplicación de redes neuronales en un

modelo de muerte celular

Introducción

Parte de la inteligencia artificial desarrollada para esta tesis se gesta en trabajos

previos en los cuales se lograron clasificar cultivos celulares, separando los que

iban a morir de los que sobrevivían, a partir de imágenes de microscopio invertido.

Este trabajo anterior devino en una herramienta de uso libre llamada celldeath

accesible en https://github.com/miriukaLab/celldeath.

La muerte celular es un evento complejo y muy estudiado que ocurre en pro-

cesos fisiológicos y patológicos (D’Arcy, 2019). Es un mecanismo ampliamente

utilizado en investigación básica (Kabore 2004; Merino 2018), por lo que se han

desarrollado múltiples técnicas para analizar la muerte celular. Todas ellas involu-

cran el estudio de rasgos particulares de la célula en los diferentes estadíos hacia

la muerte celular final, incluyendo la fragmentación del ADN, las modificaciones

proteicas o la inversión de proteínas de membrana, entre otros (Elmore 2007;

Majtnerová 2018; Kay 2019). Estos estudios moleculares se pueden realizar de

muchas maneras, e incluyen ensayos basados en microscopía, citometría de flujo

o western-blot. Todos ellos, eventualmente, demandan tiempo y dinero.

La camptotecina es un inhibidor de la topoisomerasa I que induce rápidamente

una señal en células madre embrionarias humanas que deriva en apoptosis (Gar-

cía 2014) y es un quimioterapéutico ampliamente utilizado en investigación para

generar apoptosis en células tumorales (Cheng-Wu 2012). La inhibición de la to-

poisomerasa I genera cortes en las dos cadenas del ADN (DSB) (Strumberg 2000)

que lleva a la fosforilación de H2AX (γH2AX) y a la activación de la proteína

supresora de tumores p53 (Sedelnikova 2003; Sordet 2009).
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La propuesta fue clasificar cultivos celulares que ya habían definido su vía hacia

la muerte celular de los cultivos sanos mediante micrografías de campo claro, con

las ventajas que esto trae aparejado: Para obtenerlas no se pierde el cultivo y

no se utilizan reactivos ni equipos costosos, sólo un microscopio de uso habitual

en cualquier laboratorio, siendo una técnica rápida y económica. Clasificar estas

fotografías es imposible para el ojo humano, aún para el científico más entrenado

en cultivo celular. Por este motivo se entrenó una red neuronal residual (Kaiming

2015) con micrografías de 7 cultivos celulares a los cuales se indujo la muerte

celular o se los mantuvo como control.

Objetivo

Desarrollar un flujo de trabajo con redes neuronales que pueda determinar,

por medio de la utilización de redes neuronales, la existencia de muerte celular en

cultivos celulares en los estadíos iniciales del proceso.

Materiales y Métodos

Se generaron las etiquetas necesarias para clasificar -muerte celular/control-

incubando 7 líneas celulares con camptotecina (CPT) o su vehículo: dimetilsul-

fóxido (DMSO). Se determinó la concentración óptima de CPT para cada línea

celular y se incubaron las líneas celulares control con el volumen correspondiente

de DMSO. Se fotografiaron a la hora en un experimento, a las dos horas en otro y

a tres en otro para ambas condiciones, control y muerte celular.

Se confirmó en cada caso que las líneas entraron en apoptosis mediante in-

munofluorescencia, observando a H2AX fosforilada y la acumulación de p53; y

mediante citometría de flujo, identificando la exposición en la membrana plasmá-

tica de la fosfatidilserina mediante su interacción con anexina V.

Se utilizaron 4 líneas de células tumorales y 3 líneas de células madre pluri-

potentes inducidas que se mantuvieron en una atmósfera humidificada y filtrada

a 37 grados centígrados y 5% de CO2. En la tabla A1 se detallan los medios de

cultivo utilizados para cada una. Todas las células fueron removidas del plato de

cultivo mediante TrypLETM Select 1X (ref. A1217702; Thermo Fisher Scientific,

United States) cada 4 ó 5 días dependiendo de su densidad.
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Línea Medio

U2OS (Osteosarcoma);
MCF7 (Mama epitelio
luminal)

Dulbecco’s Modified Eagle Medium (ref. 12430054, DMEM;
Thermo Fisher Scientific, United States) suplementado con
10% de suero fetal bovino (NTC-500, FBS; Natocor, Argentina)
y 1% de penicilina/estreptomicina (ref. 15140–122, Pen/Strep;
Thermo Fisher Scientific, United States)

PC3 (Próstata); T47D
(Mama epitelio
luminal)

Roswell Park Memorial Institute medium (ref. 22400089, RP-
MI; Thermo Fisher Scientific, United States) suplementado con
10% de suero fetal bovino y 1% de penicilina/estreptomicina

IPS1, IPS2 (Células
madre pluripotentes
inducidas); H9 (Célula
madre embrionaria)

Se utilizaron platos de cultivos cubiertos en GeltrexTM (ref.
A1413302; Thermo Fisher Scientific, United States) y medio de-
finido Essential 8 flex (ref. A2858501, E8 flex; Thermo Fisher
Scientific, United States), reemplazado todos los días.

Tabla A1: Detalle de los medios de cultivos utilizados en las 7 líneas celulares mantenidas
para obtener las micrografías.

Para inducir la muerte celular, se sembraron aproximadamente 3x105 células

en los 4 pocillos centrales de un plato de cultivo de 12 pocillos (ref. 3513; COR-

NING Inc., United States) y, al día siguiente, se les retiró el suero a las células

tumorales por 24 h. Luego se trataron 2 pocillos con camptotecina 1–10µM (ref.

C9911, CPT; Sigma-Merck, Argentina) y a los restantes pocillos de control con

la misma cantidad de vehículo (DMSO) (ref. D2660, dimethyl sulfoxide; Sigma-

Merck, Argentina) por 1, 2 y 3 horas.

Las imágenes fueron tomadas antes del tratamiento, a 1 h, 2 h y 3 h posteriores

al tratamiento.

Para analizar el daño al ADN causado por la CPT se realizaron imágenes de mi-

croscopía de inmunofluorescencia. Las células se fijaron con 4% de formaldehído

por 30 minutos a temperatura ambiente y se las lavó 3 veces con PBS, luego se

las permeabilizó con 0.1% de BSA/PBS y 0.1% de solución de Tritón X-100 por

1 h, seguido de un bloqueo con 10% de suero de cabra/PBS y 0.1% de solución

Tween20. La incubación con anticuerpos primarios anti-γH2AX (rabbit IgG, ref.

ab2893; Abcam, United States) y p53 (mouse IgG, ref. ab1101; Abcam, United

States) se realizó durante toda la noche a 4°Cen dilución 1:100 en solución blo-

queante y la incubación con el anticuerpo secundario con Alexa Fluor 594 (anti-

mouse, ref. R37121; Thermo Fisher Scientific, United States) y Alexa Fluor 488

(anti-rabbit, ref. A11034; Thermo Fisher Scientific, United States) se realizó en

cuarto oscuro a temperatura ambiente por 1 h junto con DAPI. Las células fueron
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lavadas y fotografiadas con un microscopio de fluorescencia EVOS (Thermo Fisher

Scientific, United States). Se evaluó la unión no específica de anticuerpo secunda-

rio en ausencia de anticuerpo primario. Se tomaron imágenes de 4 campos de 3

réplicas independientes y se analizaron con el software ImageJ para determinar

el promedio de la intensidad de fluorescencia por núcleo y la significancia esta-

dística entre cultivos tratados y controles se evaluó con un t-test de Welch de dos

muestras utilizando el paquete estadístico R.

Se realizó además un ensayo de anexina en las células, el cual mide la muerte

celular en estadios tempranos. Para detectar la translocación de los residuos de

fosfatidilserina (PS) en células apoptóticas se utilizaron los kits comerciales de

Anexina V-FITC (ref. 556547; BD Pharmingen, United States) y Anexina V-PE (ref.

559763; BD Pharmingen, United States). Las células fueron colectadas incluyendo

el sobrenadante e incubadas con los reactivos provistos por el fabricante del kit y

finalmente se las hizo correr por el citómetro BD Accuri Flow. Los resultados de

3 réplicas independientes se analizaron utilizando el software FlowJo (v7.6) y la

significancia estadística entre tratadas y controles del tercer cuadrante se evaluó

con un t-test de Welch de dos muestras utilizando el paquete estadístico R.

Para capturar las imágenes para el aprendizaje automático se utilizó un mi-

croscopio EVOS con un objetivo 20x y una intensidad constante de luz de 40%.

Se tomaron entre 30 y 50 micrografías al azar a través de los 4 pocillos centrales,

2 tratados y 2 controles, en 4 réplicas biológicas independientes de las 7 líneas

celulares evitando la superposición de campos y las zonas con pocas células. Se

guardaron en archivos .png. El tamaño original de estas imágenes fue de 960 x

1280 píxeles y fueron cortadas para obtener de cada una 4 imágenes de 480 x 640

x 3, produciendo un total de 58596 micrografías considerando todos los tiempos

(15224 imágenes pertenecientes a 1h, 15312 a 2h y 15032 al tratamiento de 3h).

Para entrenar la red neuronal y validar los resultados se utilizó fast.ai (v1.0.60)

un frontend de PyTorch (v1.4). Se eligió la ResNet50 entre las diferentes arqui-

tecturas probadas (ResNet34, ResNet50, ResNet101 y DenseNet121) debido a su

excelente resultado. Se dejó una réplica de las cuatro para testear el modelo. De

las tres réplicas restantes se dejó un 70% de las imágenes para entrenamiento y

un 30% para validación. Se puede acceder a una rutina de Python con los deta-

lles de los hiperparámetros utilizados en los entrenamientos en celldeath: a deep

learning-based tool for classification of cell death.
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Resultados y Discusión

En primer lugar, buscamos confirmar que en los tiempos estipulados se produ-

cía el fenómeno de muerte celular en las líneas celulares utilizadas. En la figura

A1 se observa una inmunofluorescencia representativa de una de las líneas tumo-

rales, MCF7, luego de 6h de tratamiento con 10µM de CPT y su control (DMSO).

Consistentemente con las consecuencias del daño al DNA (DSB) el cultivo mues-

tra un incremento en la señal nuclear de H2AX fosforilada y la acumulación de

p53 significativamente dependiente de CPT. Se observan resultados similares para

todas las líneas tumorales entre 3 y 6h de tratamiento. Las líneas pluripotentes

inducidas de nuestro laboratorio (IPS1 e IPS2) y las embrionarias H9 también

mostraron diferencias significativas en el aumento de γH2AX y p53, pero en gene-

ral se mostraron más sensibles a la droga, observándose la aparición de apoptosis

a concentraciones y tiempos de exposición menores que las líneas tumorales. En la

figura A2 se puede observar la cuantificación de la intensidad de fluorescencia de

las inmunofluorescencias de los cultivos de IPS1 sometidos a CPT 1µM por 1.5h

mostrando diferencias significativas entre tratamiento y control.

Figura A1: Evaluación de muerte celular por medio de inmunofluorescencia en célu-
las tumorales MCF7 Izq: Inmunofluorescencia representativa con anti-γH2AX y anti-p53
de la línea tumoral MCF7 tratada con 10µM de CPT y su control (DMSO) por 6h (n=3).
Barra de escala = 200µm. Der: Distribución del promedio de intensidad de fluorescencia
por núcleo de todos los campos de la inmunofluorescencia que vemos a la izquierda me-
dida en unidades arbitrarias (log10 u.a.) para γH2AX a la izquierda y p53 a la derecha.

Como segundo ensayo utilizamos la detección de muerte celular con Anexina-

V/7-AAD. Se detectó un incremento significativo y temprano de muerte celular

(Figura A3) en los cultivos tratados con CPT comparados con los cultivos control.

Con las imágenes obtenidas se formó un conjunto de datos con las etiquetas

DMSO y CPT en las que el objetivo fue clasificar el tratamiento independiente-
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Figura A2: Izq: Inmunofluorescencia representativa con anti-γH2AX y anti-p53 de la lí-
nea iPS1 tratada con 1µM de CPT y su control (DMSO) por 1.5h (n=3). Barra de escala
= 200µm. Der: Distribución del promedio de intensidad de fluorescencia por núcleo de
todos los campos de la inmunofluorescencia que vemos a la izquierda medida en unida-
des arbitrarias (log10 media de intensidad [u.a.]) para γH2AX a la izquierda y p53 a la
derecha.

Figura A3: Análisis de las citometrías de flujo para annexina V/7-AAD Análisis de las
citometrías de flujo entre células tratadas (celeste) y células control (rojo) discriminando
células en apoptosis temprana (Q3) de células muertas (Q2). La exposición de fosfatidil-
serina en la membrana plasmática de la célula es un marcador de apoptosis temprana. Se
pueden diferenciar células apoptóticas ya que la fosfatidilserina interacciona con la proteí-
na anexina V, pero al estar intactas no están exponiendo el núcleo por lo que serán 7-AAD
negativas. Las células en apoptosis tardía o necróticas son anexina V positivas y 7-AAD
positivas, las células sanas no se tiñen. Izq.: Citometría de las células de la línea MCF7 tra-
tadas con CPT 10µM por 6h, análisis con anexinaV-FITC y 7-AAD; n=3. Der.: Citometría
de las células de la línea IPS1 tratadas con CPT 1µM por 3h, análisis con anexinaV-PE y
7-AAD; n=3.
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mente de la línea celular utilizada. Otro experimento que se realizó fue “todos

vs todos”, tenía el objetivo de clasificar tratamiento y línea celular, lo que resultó

en 14 etiquetas (DMSO-MCF7, CPT-MCF7, DMSO-H9, CPT-H9, DMSO-PC3, ...).

Por último, se entrenó cada línea celular por separado para predecir tratamien-

to o control (CPT o DMSO). La clasificación a 1h de aplicado el tratamiento o el

vehículo (“CPT vs DMSO”, tabla A2) fue exitosa con una exactitud promedio de 5

corridas de 98.18 ± 0.33% en el grupo de validación y un 96.58 ± 0.24% en el

grupo de testeo cuando se comparan las imágenes sin identificar la línea celular.

Comenzar el entrenamiento con parámetros pertenecientes a un modelo entrena-

do con imágenes pertenecientes a la base de datos ImageNet (Russakovsky, 2015)

no modificó la exactitud. La matriz de confusión (Figura A4, Izq) muestra pocos

eventos mal clasificados: de 4188 imágenes, 65 fueron falsos positivos (predijo

CPT cuando en realidad era DMSO) y 52 falsos negativos (predijo DMSO, siendo

CPT en realidad). El caso de todos vs todos también arrojó muy buenos valores de

exactitud y mejoró con los parámetros preentrenados (“Todos vs todos”, tabla A2).

La matriz de confusión (Figura A4, derecha) muestra pocas clasificaciones erradas,

pero la mayor cantidad de confusiones son generadas entre líneas pluripotentes

inducidas (IPS1-CPT/IPS2-CPT e IPS1-DMSO/IPS2-DMSO) y no entre tratamien-

tos, probablemente por su parecido fenotípico. La alta densidad de eventos en la

diagonal indica que la red neuronal fue capaz de identificar rasgos específicos de

la muerte celular que le permite clasificar las etiquetas eficazmente. Cada línea

por separado mostró muy buenos resultados, con valores de exactitud algo mayo-

res en las líneas pluripotentes, confirmando que el modelo puede ser utilizado en

experimentos de línea única o múltiples líneas en paralelo.

Para mayor evidencia de que la red advierte rasgos específicos de muerte celu-

lar, sorprendentemente, en algunas líneas, el modelo pudo discriminar entre tra-

tadas y control aún sin haber sido entrenada con esa línea específica (Tabla A3).

Entrenamos la red con todas las líneas menos una que apartamos para testear. La

red no pudo discriminar tratadas de control en las líneas tumorales PC3 (53%)

y U2OS (64%) como se esperaba, pero tuvo una buena performance con el resto

de líneas tumorales y una excelente con las líneas pluripotentes, alcanzando la

exactitud del grupo de validación.

La generalización es un objetivo de los modelos matemáticos, pero en el apren-

dizaje profundo, si queremos clasificar a una imagen en el grupo de imágenes de

automóviles, se debe entrenar a la red con imágenes de automóviles. En este caso,



Anexo FCEyN, Universidad de Buenos Aires

Condición FPE FPV Exactitud
(validación)

Exactitud
(test)

CPT vs DMSO 0.068 0.045 0.9837 0.9723
CPT vs DMSO* 0.055 0.051 0.9825 0.9790
Todos vs todos 0.068 0.330 0.9979 0.8271
Todos vs todos* 0.029 0.035 0.9900 0.8658
PC3 0.138 0.041 0.9860 0.9550
MCF7 0.081 0.146 0.9528 0.9234
T47D 0.204 0.054 0.9746 0.8667
U2OS 0.141 0.002 1.000 0.9444
IPS1 0.379 0.056 0.998 0.970
IPS2 0.091 0.0007 1.000 0.948
H9 0.007 0.002 1.000 0.996

FPE: Función de Pérdida de Entrenamiento
FPV: Función de Pérdida de Validación

Tabla A2: Tabla de valores de la función de pérdida para el conjunto de entrenamiento y
validación de los valores de exactitud más altos logrados para los conjuntos de validación
y entrenamiento de ResNet50 con las imágenes tomadas a 1h del tratamiento. Se incluyen
los resultados de comenzar el entrenamiento con los parámetros preentrenados (*) con
imágenes de ImageNet.
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Figura A4: Matriz de confusión para CPT vs DMSO. Matriz de confusión para el con-
junto de testeo de CPT vs DMSO a 1h del tratamiento a la izquierda y para Todos vs todos
a la derecha.
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Línea de testeo FPE FPV Exactitud
(validación)

Exactitud
(test)

PC3 0.053 0.032 0.9872 0.5283
MCF7 0.054 0.038 0.9901 0.8688
T47D 0.071 0.047 0.9858 0.7734
U2OS 0.043 0.059 0.9800 0.6363
IPS1 0.063 0.052 0.9820 0.9871
IPS2 0.046 0.056 0.9826 0.9708
H9 0.076 0.058 0.9822 0.9752

FPE: Función de Pérdida de Entrenamiento
FPV: Función de Pérdida de Validación

Tabla A3: Mayores valores de exactitud alcanzados por el conjunto de imágenes de testeo,
la línea de testeo no era conocida por la red ya que fue totalmente excluida del entrena-
miento. También se muestran los valores correspondientes a la función de pérdida para el
entrenamiento y la validación de cada corrida.

la red pudo clasificar las imágenes de líneas celulares con las que no fue entre-

nada. Este inesperado resultado sugiere que la red fue capaz de extraer rasgos

asociados a la muerte celular de las líneas con las que fue entrenada y extrapolar-

los a imágenes desconocidas aunque relacionadas. Aunque esto no deja de ser una

curiosidad. Para un buen desempeño en la generalización la red debe ser entre-

nada con las líneas que quieren ser clasificadas. Esto se pudo comprobar con las

líneas tumorales en las cuales el desempeño de la red fue mucho menor.

Para un laboratorio que mida muerte celular rutinariamente utilizar el cell-

death puede ser una buena inversión de tiempo inicial. Con una simple imagen

tomada en un microscopio disponible en cualquier laboratorio, y sin matar el cul-

tivo, se puede saber si las células entraron en proceso de muerte o no mucho antes

de observar cambios morfológicos a simple vista. Esto repercute en evitar gastos

de reactivos y tiempo, además de la versatilidad del diseño experimental al no

tener que ponerle fin al cultivo.

Conclusión

Se creó y compartió una herramienta (celldeath) para clasificar micrografías de

cultivos celulares en proceso de muerte celular o control. En un principio es nece-

sario contar con una gran cantidad de imágenes de los cultivos celulares anhelados

para entrenar la red convolucional residual. Pero, luego de la puesta a punto, cada

micrografía puede predecir si el cultivo continuará su desarrollo normalmente o
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entrará en un camino de muerte celular luego de algún detonante experimental.
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