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Modelos del sector oscuro del universo y teoŕıas de gravedad modificadas

Resumen

Determinar la naturaleza y propiedades de la materia oscura es uno de los principales campos de

estudios dentro de la Cosmoloǵıa moderna. A lo largo de los años, diversos y numerosos modelos y

paradigmas alternativos fueron surgiendo en contraposición al modelo de ΛCDM, modelo más completo

y exitoso que se tiene hasta el momento. En el último tiempo especial interés fue tomando aquél donde

la materia oscura consiste en bosones ultralivianos, con números de ocupación extremadamente altos

de manera tal que se lo puede describir mediante la teoŕıa clásica de campos. Estos tipos de modelos

de materia oscura se los conoce como materia oscura ultraliviana (ULDM por sus siglas en inglés).

Esta tesis tiene como objetivo, pues, poner cotas al modelo mediante el estudio de la naturaleza

y comportamiento de uno de estos tipos de materia oscura, más espećıficamente de un modelo de

materia oscura ultraliviana de spin-2.

A diferencia de un campo de Klein-Gordon o uno de Proca, estudiar un campo bosónico masivo

de spin-2 en Relatividad General requiere de especial atención y cuidado. Esto es aśı ya que la in-

corporación de un campo masivo de spin-2 a la acción de Relatividad General podŕıa romper la bien

comportada teoŕıa, por ejemplo, dejando sin validez la invariancia frente a difeomorfismos. No fue hasta

principios de la segunda década del siglo XXI que se pudieron desarrollar teoŕıas bien comportadas

que describan un campo de spin-2 masivo en Relatividad General. El punto de partida para desarrollar

dichas teoŕıas fue la hoy en d́ıa conocida Teoŕıa de Gravedad Masiva, presentada por Claudia de Rham,

Gregory Gabadadze y Andrew Tolley a finales de 2010. Alĺı los autores mostraron cómo describir un

campo de spin-2 masivo en una métrica fija y sin dinámica, que pese al éxito de la misma, no es algo

deseable en un contexto cosmológico. A partir de esta fueron surgiendo diversas teoŕıas que śı admiten

este tipo de soluciones, entre ellas una de las más conocidas y que competerá a esta tesis es la de-

nominada Teoŕıa de Bigravedad. El campo de materia oscura ultraliviana de spin-2 estudiado en esta
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tesis está enmarcado en este tipo de teoŕıas, aunque cabe remarcar que varios de los resultados aqúı

obtenidos no se restringen a este tipo de teoŕıas solamente. Por ende, es parte de esta tesis también

dedicar un análisis y una descripción adecuada de la teoŕıa de bigravedad previamente mencionada,

teniendo en mente su contexto cosmológico y haciendo foco en cómo obtener a partir de esta el modelo

de materia oscura en cuestión.

El modelo de ULDM de spin-2 aqúı presentado trata de ahondar una de las diversas propuestas y

alternativas a ser candidato de materia oscura viable. Para estudiar dicha viabilidad, en pos de con-

frontar al modelo frente a datos y observaciones disponibles, se utilizaron para tal objetivo diversos

fenómenos del universo. A saber, se utilizaron púlsares binarios, arreglo de púlsares (PTA), y ondas

gravitacionales para poner cotas al modelo. Los resultados obtenidos y mostrados aqúı son fruto de una

serie de trabajos desarrollados durante el doctorado (Armaleo et al., 2020a,b, 2021) los cuales permi-

tieron poner varias de las cotas más restrictivas y novedosas al modelo de materia oscura ultraliviana

de spin-2. Este es el aporte principal de esta tesis a la comunidad cient́ıfica.

Palabras claves: materia oscura ultraliviana, spin-2, gravedad modificada, bigravedad, púlsares,

ondas gravitacionales.
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Models of the dark sector of the universe and modified gravity theories

Abstract

Determining the nature and properties of dark matter is one of the main fields of study within

modern Cosmology. Over the years, diverse and numerous alternative models and paradigms have

emerged in contrast to the ΛCDM model, the most complete and successful model available to date. In

recent times, special interest has been taken in those where dark matter consists of ultralight bosons,

with extremely high occupation numbers in such a way that it can be described by classical field theory.

These types of dark matter models are known as ultralight dark matter (ULDM). This thesis aims,

therefore, to put limits on the model by studying the nature and behavior of one of these types of dark

matter, more specifically a spin-2 ultralight dark matter model.

Unlike a Klein-Gordon or a Proca field, studying a massive spin-2 bosonic field in General Relativity

(GR) requires special attention. This is so since the incorporation of a massive spin-2 field into the action

of GR could break the well-behaved theory, for example, rendering invariance against diffeomorphisms

invalid. It was not until the beginning of the second decade of the 21st century that well-behaved

theories describing a massive spin-2 field in General Relativity could be developed. The starting point

for developing these theories was the now known as Massive Gravity Theory, presented by Claudia de

Rham, Gregory Gabadadze and Andrew Tolley at the end of 2010. There the authors showed how to

describe a spin-2 massive field in a fixed metric and without dynamics, which despite its success, is

not something desirable in a cosmological context. From this, various theories emerged that will admit

this type of solutions, among them one of the best known and that will be relevant for this thesis is

the so-called Bigravity Theory. The spin-2 ultralight dark matter field studied in this thesis is framed

within this type of theory, although it should be noted that several of the results obtained here are not

restricted to this type of theory only. Finally, it is also part of this thesis to dedicate an analysis and

an adequate description of the previously mentioned bigravity theory, keeping in mind its cosmological
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context and focusing on how to obtain the dark matter model in question from this.

The spin-2 ULDM model presented here tries to delve into one of the various proposals and alter-

natives to be a viable dark matter candidate. To study this feasibility, in order to confront the model

against available data and observations, various phenomena of the universe were used. Namely, binary

pulsars, pulsar timing array (PTA), and gravitational waves. The results obtained and shown here are

product of a series of works developed during the doctorate (Armaleo et al., 2020a,b, 2021) which

allowed us to put several of the most restrictive and novel limits on the spin-2 ULDM model. This is

the main contribution of this thesis to the scientific community.

Key words: ultralight dark matter, spin-2, modified gravity, bigravity, pulsars, gravitational waves.
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mis primos, primas, t́ıos, t́ıas, y demás. La familia no se elige, pero si aśı fuera volveŕıa a elegir a esta
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A.2. Datos de púlsares binarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2
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Bitácora

Abreviaturas: Salvo que se especifique lo contrario, vendrán dadas por sus siglas en inglés.

BH Agujero negro

BP Púlsar binario

BT Teoŕıa de bigravedad

DM Materia oscura

dRGT de Rham, Gabadadze, Tolley

EMT Tensor enerǵıa-momento

EOM Ecuación de movimiento

GR Relatividad general

GW Onda gravitacional

NS Estrella de neutrones

PTA Pulsar Timing Array

ULDM Materia oscura ultraliviana

Una letra "s" luego de la abreviatura denota plural. Por ejemplo BPs será "púlsares binarios".

Unidades y convenciones:

La convención de la signatura de la métrica será negativa (+,−,−,−), a excepción de cuando

se trate de un contexto cosmológico en cuyo caso se utilizará la signatura (−,+,+,+). A su vez se

denotan componentes espacio-temporales mediante ı́ndices con letras griegas (µ, ν, . . .), mientras que

las componentes espaciales estarán indicadas con ı́ndices latinos (i, j, . . .).

A lo largo de la tesis se trabajará con unidades tales que c = kB = ℏ = 1, hasta el momento de

incorporarlas pertinentemente para utilizar los datos.

Valores útiles a mano:

• MP ≡
√

ℏc/8πG ≈ 2.4× 1027eV, masa de Planck reducida.

• ρDM = 0.3 GeV/cm3, densidad de enerǵıa de materia oscura en el halo del sistema solar (valor

extráıdo de (Evans et al., 2019; McKee et al., 2015; Piffl et al., 2014)).
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Introducción

Desde comienzos de la humanidad las personas han mirado el cielo en búsqueda de respuestas,

explicaciones, motivaciones, etc. Pasando por obras de arte como La noche estrellada de Van Gogh

o por (hoy en d́ıa) monumentos históricos como las pirámides de Egipto que trataban de acercarse

al cielo para la resurrección y deificación de sus faraones, sin dudas la humanidad ha mirado con

diversos intereses y/o sentimientos la bóveda celeste. Pasando por fines art́ısticos y espirituales como

los comentados anteriormente, aśı como también con fines cient́ıficos como por ejemplo entender por

qué hay un d́ıa y noche, a lo largo de la humanidad las civilizaciones han mirado con distintos ojos el

cielo diurno y nocturno. Las primeras civilizaciones en utilizar las observaciones del cielo para con fines

cient́ıficos fueron los mayas y los egipcios, miles de años a.C., con el fin y la necesidad de tener una

noción de las épocas de siembra y cosecha. A partir de esto es que se realizan e inventan los primeros

calendarios, los cuales precisaban - en esencia - las distintas estaciones del año. Con el correr del tiempo

y el avanzar de las civilizaciones, las observaciones sobre el cielo fueron cobrando cada vez más interés

y relevancia, como aśı también se fueron desarrollando nuevas tecnoloǵıas y metodoloǵıas para mejorar

dichas observaciones.

Paradógicamente, quizás, con el avance de los años las tecnoloǵıas permitieron mirar cada vez

más profundo en el cielo; pasando por Galileo y Kepler hasta llegar a Penzias y Wilson, hoy en

d́ıa el entendimiento que se tiene sobre el cosmos es extremadamente amplio, desde el movimiento

astronómico de los cuerpos celestes hasta la propagación de la luz primordial del Universo temprano.

No obstante, a pesar del inmenso avance tecnológico y su entendimiento, aún hay numerosas inquietudes

que permanecen abiertas: ¿estamos solos en el Universo? ¿Hay otros Universos? ¿De qué está hecho el

mismo?, etc. Hay un sin fin de teoŕıas y propuestas que tratan de explicar estas inquietudes y muchas

más, muchas veces hasta contradiciéndose entre ellas. Más valiéndose del método cient́ıfico, hoy en d́ıa

se ponen a prueba estos modelos y se trata de estudiar su viabilidad frente a las observaciones.

En la actualidad se encuentran disponibles números gigantes de observaciones del Universo, pasando
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Introducción

por escalas astrof́ısicas hasta cosmológicas. Valiéndose de varias de estas observaciones (Bertone and

Hooper, 2018), el modelo cosmológico que mejor reproduce las observaciones en la actualidad es el

denominado modelo de ΛCDM. Este modelo asume que una parte apreciable del contenido de materia

del Universo viene dado por componentes oscuras, llamadas materia oscura fŕıa (CDM por sus siglas

en inglés). Esta componente se asocia t́ıpicamente a otro tipo de part́ıculas alternativas más allá de

las propuestas por el Modelo Standard de part́ıculas, y consiste en part́ıculas que se mueven muy

lentamente (de ah́ı el término fŕıo) y que interactúan muy débilmente con el baño térmico.

Aunque la existencia y la presencia de materia oscura (DM ) al d́ıa de hoy es casi indisputable,

varias de sus propiedades más básicas y fundamentales tal como lo son - por ejemplo - su masa, su spin

y su interacción con las part́ıculas conocidas del Modelo Standard, aún permanecen desconocidas1.

Esto se debe, principalmente, al hecho de que toda evidencia directa de DM se da de forma puramente

gravitacional; intentos de detectarla mediante el uso de otro tipo de fuerza fundamental ha otorgado

resultados nulos, por lo tanto los mismos han derivado en poner cotas a su fuerza de interacción. En

particular, la masa de la DM es un parámetro libre que barre un rango de posibles valores que van

desde m ∼ 10−23 eV hasta valores m ∼M⊙ ∼ 1066 eV y más también. Es decir, es tal la incerteza que

se tiene sobre su masa que hay casi 90 órdenes de magnitud entre los posibles valores de la misma.

Dentro de lo que comprende todo este rango mencionado, cabe remarcar, no todos los modelos

plantean que el comportamiento y la descripción de la DM vienen dados en términos de la ya men-

cionada CDM. En particular, en el último tiempo ha empezado a ganar especial interés el modelo

conocido como materia oscura ultraliviana (ULDM ), que comprende el rango más bajo posible de

10−23 eV ≲ m ≲ O(1) eV. El interés más atractivo en este tipo de modelos se debe a sus propiedades

en escalas chicas, el cual es notoriamente diferente de otros tipos de modelos con masas más pesadas,

tal como lo es el de CDM (Hui et al., 2021, 2017; Niemeyer, 2020). En este escenario alternativo,

la ULDM viene descripta por un campo clásico, y varios observables han sido ya identificados en la

literatura los cuales permiten explorar diferentes rangos de masas de ULDM aśı como también varias

de sus propiedades (Armengaud et al., 2017; Bar et al., 2018; Baryakhtar et al., 2017; Baumann et al.,

2019; Bullock and Boylan-Kolchin, 2017; Irsic et al., 2017; Marsh and Niemeyer, 2019; Nebrin et al.,

2019; Robles et al., 2019; Safarzadeh and Spergel, 2019; Wasserman et al., 2019; Zhang et al., 2018).

Esta tesis tiene como objetivo explorar uno de estos modelos de ULDM, particularmente en el

rango de masas que van desde 10−23 eV hasta valores de m ∼ 10−10 eV. Espećıficamente, se hará un

estudio profundo de un modelo de ULDM de spin-2 que comprenderá el rango de masas comentado

anteriormente. Los resultados presentados en esta tesis son producto de los trabajos (Armaleo et al.,

2020a,b, 2021) desarrollados durante el doctorado. Dichos trabajos, y esta tesis en particular, asumen

1Ver (Bertone and Tait, 2018) y las referencias alĺı para una discusión más detallada al respecto.
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que la formulación correcta para estudiar estos tipos de campos de spin-2 masivos en teoŕıas de gravedad

vienen de la mano de las llamadas Teoŕıas de Gravedad Masivas (de Rham et al., 2011). En particular, el

modelo de ULDM de spin-2 que se estudia aqúı se puede comprender a partir de una teoŕıa de Gravedad

Masiva particular, denominada Teoŕıa de Bigravedad (Hassan and Rosen, 2012a). Por completitud y

coherencia, previo a presentar los resultados obtenidos en esta tesis, primero se introducirán estos

tipos de teoŕıas para luego estudiar en detalle el modelo de ULDM spin-2 en cuestión. La tesis está

organizada de la siguiente manera:

En el Caṕıtulo 1 se hace una breve introducción teórica a los modelos de Gravedad Masiva, ha-

ciendo un recorrido sobre los hitos históricos que fueron marcando el rumbo para estudiar y entender

dichas teoŕıas. El objetivo final de este caṕıtulo es presentar el modelo de bigravedad utilizado en esta

tesis como punto de partida para el análisis del campo de ULDM de spin-2. Varias de las cuentas

exhibidas alĺı se muestran simplemente como resultados, dejando los detalles de las mismas en las refe-

rencias pertinentes. El caṕıtulo parte del primer intento de formular una teoŕıa de Gravedad Masiva en

Relatividad General, llevada a cabo por Markus Fierz y Wolfgang Pauli allá por los años 30’s cuando

intentaron estudiar la masa del gravitón, pasando por las diversas problemáticas que atravesó la teoŕıa

y sus (posibles) explicaciones, hasta llegar al d́ıa de hoy a la teoŕıa bien formulada de Gravedad Masiva.

El Caṕıtulo 2 tiene como objetivo presentar los modelos de ULDM de manera general, haciendo

posterior énfasis en el modelo de ULDM de spin-2 que se estudia aqúı. Se trata de presentar tanto su

formulación teórica como aśı también sus aspectos fenomenológicos, comentando sobre su comporta-

miento y las cotas existentes a dicho modelo. En este caṕıtulo se exhibe la ecuación de movimiento

correspondiente al campo en cuestión, y se comenta sobre algunos aspectos de su comportamiento en

escalas temporales y espaciales. A partir de este caṕıtulo, y en los tres siguientes, se hace uso de lo

mostrado aqúı para poner cotas al modelo bajo estudio de esta tesis.

En el Caṕıtulo 3 se utilizan sistemas de púlsares binarios para poner cotas al modelo. Se comienza

mostrando cómo es la interacción entre dichos sistemas y el campo de ULDM de spin-2, y cómo

este último afecta las órbitas de las binarias. Mediante el estudio detallado de las mediciones de los

parámetros orbitales, se pueden poner cotas a ciertos parámetros del modelo tal como son su masa y

su parámetro de acoplamiento.

El Caṕıtulo 4 posee el mismo esṕıritu que el anterior: utilizar púlsares para poner cotas al modelo.

Pero, a diferencia del caṕıtulo anterior, en este caṕıtulo se hace uso no de sistemas de púlsares indivi-

duales sino de arreglos de púlsares como un conjunto. El estudio del tiempo de llegada de los púlsos

de estos arreglos de púlsares es lo que se conoce como Pulsar Timing Array o, PTA por sus siglas en

inglés. El estudio de arreglos de púlsares permite, a su vez, estudiar señales correlacionadas entre ellos.

En este caṕıtulo se muestran nuevas cotas obtenidas mediante el uso de los datos del tiempo de llegada
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de PTA, como aśı también se discute sobre cómo es la función de correlación que se espera observar

mediante un estudio de las señales. Para el caso en el que se estudia la correlación de la señal producto

del paso de una onda gravitacional (GW ), la curva que se obtiene es la conocida como Hellings-Downs

en honor a sus autores.

El último caṕıtulo de esta tesis, el Caṕıtulo 5, hace uso de los detectores de GW para poner nuevas

cotas al modelo. El uso de los detectores de GW viene por el hecho de que la señal que podŕıa generar

el campo de spin-2 ULDM es similar a la señal que generan ciertos tipos de fuentes de GW, conocidas

como GW continuas ya que no se deben a eventos abruptos y breves tal como la colisión de agujeros

negros, sino que este tipo de señal (continua) es mucho más débil pero perdura más en el tiempo. Se

comienza, entonces, discutiendo sobre cómo es la señal que se espera que genere la ULDM de spin-2, y

cómo (posteriormente) se pueden utilizar los detectores actuales y futuros para poner cotas al modelo

o, incluso, poder detectar este tipo de DM.
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Caṕıtulo 1

Teoŕıas alternativas de gravedad:

gravedad masiva y teoŕıas de bigravedad

Desde el surgimiento de la Relatividad General (GR) de Einstein en 1915, a lo largo de los años

diversas y diversos autores han tratado de elucubrar si el gravitón posee masa o no, y de tener masa

cuánto seŕıa su valor. Durante las últimas décadas, mediante observaciones se han podido poner cotas

a la masa que podŕıa tener, resultando esta extremadamente pequeña (por ejemplo a partir de las

primeras detecciones de ondas gravitacionales, GW150914 y GW151226, se ha inferido una cota de

m < O(10−22) eV (Yunes et al., 2016) siendo m la masa del graviton). Sin embargo, tratar de formular

una teoŕıa masiva de GR no es una tarea sencilla desde el punto de vista técnico: agregar un término de

masa para el gravitón trae problemas a la - exitosa y bien formulada - Teoŕıa de la Relatividad General

de Einsten ya que, entre otras patoloǵıas, se pierde la invariancia ante difeomorfismos y aparecen

fantasmas en la teoŕıa. Luego de casi 70 años desde el primer intento de Fierz y Pauli (Fierz and

Pauli, 1939) por tratar de describir una teoŕıa linealizada de gravedad masiva (MG por sus siglas en

inglés), no fue sino hasta comienzos de la segunda década del siglo XXI cuando finalmente de Rham,

Gabadadze y Tolley pudieron formular una teoŕıa que sea libre de fantasmas y bien comportada, hasta

orden cuártico en las perturbaciones, mediante la introducción de un término de potencial no trivial en

la acción gravitatoria, hoy en d́ıa conocido como el potencial de dRGT por las siglas de dichos autores

(de Rham et al., 2011).

A pesar del éxito del modelo de dRGT, la misma posee un problema: la teoŕıa es no dinámica (en

el sentido que no admite soluciones con un Universo en expansión), lo cual es algo no deseable en un

contexto cosmológico. Un año después de la formulación exitosa de dRGT, Hassan y Rosen obtuvieron
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una teoŕıa de gravedad masiva que śı posee dinámica (Hassan and Rosen, 2012a). A diferencia de

la teoŕıa de dRGT que posee una métrica dinámica y una métrica (estática) de referencia, en la

formulación de Hassan y Rosen ahora ambas métricas poseen dinámica, de ah́ı el nombre de estas

teoŕıas conocidas como bigravedad. En este caṕıtulo se tratará de abordar una descripción de los

problemas y soluciones que fueron surgiendo a la hora de formular una teoŕıa de gravedad masiva,

llegando finalmente a la teoŕıa de bigravedad. No es objetivo de este caṕıtulo - ni de esta tesis - hacer

un repaso exhaustivo de los trabajos previamente citados, sino que el rumbo a seguir en este caṕıtulo es

presentar y hacer énfasis en los principales resultados que dan pie para establecer una teoŕıa de spin-2

masiva en GR. No se tratará de demostrar sino más bien de mostrar y motivar cómo arribar a diversos

resultados. Por tal motivo se dejarán de lado varias cuentas y resultados (los cuales se recomienda al/la

lector/a ver las citas aqúı presentadas para más detalles) tratando de no perder el rumbo y mantener

la discusión lo más centrada posible. El objetivo final de este caṕıtulo será exhibir la acción de un

campo de spin-2 propagándose en un fondo curvo.

1.1. Perturbaciones cuadráticas en la acción de Einstein-Hilbert

En esta sección se repasarán los conceptos, definiciones y nociones básicas sobre GR que se usarán a

lo largo de la tesis, teniendo en mente que el objetivo final de esta sección es presentar el Lagrangiano

de GR linealizado a orden cuadrático, que es el punto de partida de la siguiente sección pero, más

importante aún, es el punto de partida para estudiar y entender los modelos de gravedad masiva.

1.1.1. Gravedad linealizada

La Teoŕıa de la Relatividad General - formulada por Einstein en 1915 - es sin duda la teoŕıa más

exitosa a la hora de estudiar diversos aspectos y fenómenos del universo. Según la misma, el espacio

y el tiempo conforman un único ente descripto matemáticamente por una variedad Lorentziana de

dimensión 4, y su curvatura está determinada por la distribucion de enerǵıa y de materia del universo,

relacionadas entre śı mediante las ecuaciones de Einstein. La acción que describe la curvatura del

espacio-tiempo 4-dimensional viene dada por la acción de Einstein-Hilbert

SEH =
1

2k

∫
d4x

√
−g R (1.1)

donde g = det(gµν) es el determinante de la métrica gµν (con signatura (−,+,+,+)) y k = 1/M2
P

es la constante gravitacional de Einstein con MP la masa de Planck reducida1. A su vez, si se tienen en

1Incorporando las unidades correspondientes y en términos de k, se puede escribir análogamente MP =
√

ℏ/kc3 donde

k = 8πG/c4.
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cuenta también los posibles campos de materia presentes en la teoŕıa, la acción en este caso se escribirá

según

S =
1

2k

∫
d4x

√
−g R+

∫
d4x

√
−gLm (1.2)

con Lm el Lagrangiano que da cuenta del contenido de materia de la teoŕıa, a partir del cual

utilizando el principio de mı́nima acción se obtienen las ecuaciones de Einstein con fuente dada por

Gµν ≡ Rµν − 1
2 gµν R = kTµν donde

Tµν =
−2√
−g

δ(
√
−gLm)

δgµν

con Tµν el tensor de enerǵıa-momento.

Al año siguiente en que Einstein presentara su Teoŕıa de la Relatividad General, Karl Schwarzschild

exhibe la primer solución exacta no trivial a las ecuaciones de Einstein. Dicha solución fue hallada

asumiendo una alta simetŕıa en las ecuaciones y suponiendo que se encontraba en vaćıo; es decir,

Gµν = 0 y con una simetŕıa esférica y, además, estática. Dicha solución es la solución de vaćıo exacta más

sencilla de hallar. Con el correr de los años se fueron encontrando nuevas soluciones a las ecuaciones de

Einstein, tales como las soluciones de Kerr, de Reissner-Nordström, y de Kerr-Newman, que describen

respectivamente un agujero negro rotante, un agujero negro con carga, y un agujero negro rotante y

cargado. A pesar que dichas soluciones son exactas, todas estas asumen ciertas simetŕıas en el problema

y se asumen sin fuentes. Sin embargo, y en contraparte, soluciones (sencillas) asumiendo cierto tipo

de fuente pero sin asumir necesariamente algún tipo de simetŕıas esferoidal y/o estaticidad se pueden

hallar de manera perturbativa. Esto es lo que se conoce como gravedad linealizada: la solución exacta

más trivial que se puede hallar a las ecuaciones de Einstein es aquella donde la métrica describe un

espacio plano de Minkowski, gµν = ηµν , en cuyo caso los términos de curvatura son todos nulos.

Suponiendo que ahora el espacio-tiempo está levemente curvado (o, dicho de otra manera, se estudian

pequeñas perturbaciones del espacio plano), la idea es ver qué sucede a primer orden no trivial, en

donde en tal caso se estudia la teoŕıa a orden lineal en la perturbación; de ah́ı el nombre de gravedad

linealizada. Para eso se propone que ahora la métrica venga dada por

gµν = ηµν + hµν (1.3)

con |hµν | ≪ 1 una pequeña perturbación de la métrica, por ende la teoŕıa linealizada será aquella

que respete el orden lineal en hµν en las ecuaciones de movimiento. Por tal motivo, para obtener

orden lineal en las ecuaciones de movimiento (ecuaciones de Einstein) se debe escribir la acción a

orden cuadrático. Por consistencia y completitud se escribe a continuación, también, la expansión en

perturbaciones de la métrica inversa gµν acorde a
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gµν = ηµν − hµν (1.4)

donde hµν = ηµρηνσhρσ (es decir que los ı́ndices suben y bajan con la métrica plana ηµν de manera

de preservar el orden - lineal - en hµν). Cabe notar que las definiciones (1.3) y (1.4) preservan la

invertivilidad de la métrica v́ıa la delta de Kronecker: gµνgνρ = δρµ (a orden lineal).

1.1.2. Acción a orden cuadrático

Partiendo de la acción de Einstein-Hilbert (1.1), es relevante notar que se deben expandir tanto

el término de curvatura R como el determinante de la métrica
√
−g. Para encontrar el primero de

ellos, cabe notar que R = gµνRµν = (ηµν − hµν)Rµν , por lo tanto hay que escribir al tensor de Ricci

en términos de la métrica de fondo ηµν y de la perturbación hµν hasta orden cuadrático en el mismo,

ya que se busca que la acción resulte de orden dos. El procedimiento para hallar dicha expresión es

un poco tediosa pero sin embargo canónica: teniendo en cuenta que Rµν = gρσRρµσν , se escribe al

tensor de Riemann en términos de los śımbolos de Christoffel, y a este último se lo expande según

(1.3) y (1.4). Teniendo dicha expresión, se reemplaza la misma en el tensor de Riemann para luego

hallar, aśı, el tensor de Ricci. Posteriormente se obtiene, entonces, el escalar de curvatura R. Los

detalles de las cuentas se pueden consultar en mejor medida en (Maggiore, 2007), aqúı se mostrarán

los resultados relevantes. Llamando R(1)
µν y R(2)

µν a los tensores de Ricci a orden lineal y cuadráticos en

las perturbaciones respectivamente, los mismos resultan

R(1)
µν =

1

2
[∂α∂µhνα + ∂α∂νhµα −□hµν − ∂µ∂νh] , (1.5)

R(2)
µν =

1

2

[
1

2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ − hαβ∂ν∂βhαµ − hαβ∂µ∂βhαν + hαβ∂α∂βhµν

+ ∂βhαν ∂βhαµ − ∂βhαν ∂αhβµ − ∂βh
αβ∂νhαµ − ∂βh

αβ∂µhαν + ∂βh
αβ∂αhµν

−1

2
∂αh∂αhµν +

1

2
∂αh∂νhαµ +

1

2
∂αh∂µhαν

]
(1.6)

con h = ηµνhµν . Debe notarse que para mantener el orden cuadrático en la perturbación, R(1)
µν se

podrá contraer tanto con ηµν como con hµν pero para R(2)
µν solamente será relevante la contracción con

ηµν . Lo que resta para obtener la expresión de la acción a orden cuadrático es la expansión de
√
−g.

Para eso basta con tener en cuenta la identidad det(1+H) = 1+TrH +O(H2) para cualquier matriz

H no degenerada. De esta forma,
√
−g ≃ 1 + h/2 con h = ηµνhµν y por ende la acción cuadrática

resulta

S
(2)
GR = −1

4

∫
d4xL(2)

GR (1.7)
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con

L(2)
GR :=

1

2k
hµνEµνρσhρσ (1.8)

siendo la densidad Lagrangiana cuadrática en perturbaciones de la métrica2 y donde se define

Eµν
ρσ := δµρ δνσ□ − ηµνηρσ□ + ηµν∂ρ∂σ + ηρσ∂

µ∂ν − δµσ∂ν∂ρ − δµρ∂ν∂σ conocido como el operador de

Einstein o asimismo como el tensor u operador de Lichnerowicz.

1.2. Gravedad Masiva

A la hora de hablar de Gravedad Masiva sin dudas vale la pena considerar la ĺınea histórica en la

que fueron sucediendo los avances (y trabas) sobre la misma. Los primeros intentos por estudiar una

teoŕıa de gravedad masiva vinieron de la mano de Fierz y Pauli (Fierz and Pauli, 1939) a finales de

la década del ’30. Alĺı los autores estudiaron la adición de un término de masa a la acción de GR,

S
(2)
GR, a orden lineal en las perturbaciones hµν . A pesar del éxito de la misma, esta teoŕıa poséıa un

problema que tardó 30 años en ser notado: si m→ 0 (con m siendo la masa del gravitón) la teoŕıa no

recupera los mismos resultados que GR. Este problema, conocido como discontinuidad vDVZ debido

a los autores (van Dam and Veltman, 1970; Zakharov, 1970), puede ser curado mediante la adición

de términos no-lineales en la acción, dando lugar a lo que hoy en d́ıa se conoce como apantallamiento

de Vainshtein (o Vainshtein screening) (Vainshtein, 1972). Sin embargo, la adición de dichos términos

no-lineales generan un fantasma, conocido como el fantasma de Boulware-Deser (BD) (Boulware and

Deser, 1972), que emerge como un grado de libertad (g.l.) extra en la teoŕıa. Es decir, en vez de

propagar 5 g.l. (helicidades) como debeŕıa tener una teoŕıa de spin-2 masiva, propaga 6. Este problema

fue dejado de lado, sea por incapacidad o por desinterés, durante casi 40 años hasta que finalmente

Claudia de Rham, Gregory Gabadadze y Andrew Tolley lograron formular consistentemente una teoŕıa

de gravedad masiva a orden no-lineal que posea el conteo correcto de grados de libertad y que recupere

los resultados de GR en el ĺımite en que la masa tiende a cero (de Rham and Gabadadze, 2010; de Rham

et al., 2011).

El objetivo en esta sección será explayar y exhibir con más detalle y precisión lo comentado en el

párrafo anterior, haciendo énfasis en los resultados principales que fueron dando lugar a los hitos hacia

el camino de Gravedad Masiva como se la conoce hoy en d́ıa. No se tratará de reproducir las cuentas y

resultados de los trabajos previos, sino más bien se tratará de entender cuáles son las ideas y aspectos

principales de los trabajos que permitieron establecer una teoŕıa de Gravedad Masiva bien formulada.

2El sub́ındice GR indica que es el Lagrangiano de Relatividad General usual, es decir el de Einstein-Hilbert, con la

excepción que es cuadrático en hµν .
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1.2.1. Teoŕıa de Fierz-Pauli: resultados, avances y problemas

Las Ec. de Einstein predicen la existencia de ondas gravitacionales (GW ). 100 años después de la

presentación de dicha teoŕıa, su primera detección y confirmación vino de la mano de la colaboración

LIGO/Virgo en 2015, observando la coalescencia de dos agujeros negros (Abbott et al., 2016a,b). Los

resultados hallados son consistentes con un campo gravitatorio que viene descripto por un campo

de spin-2 sin masa. Los resultados otorgan una cota a la posible masa del gravitón. A partir de las

obervaciones de dicha coalición, se estimó que si el gravitón posee masa, la misma no puede ser mayor

que ∼ 10−22eV/c2 (Yunes et al., 2016). De esta manera, los resultados otorgan una descripción en

términos de una teoŕıa de campos que se condice con una de un campo de spin-2 no masivo. Los

grados de libertad que se propagan deben ser, entonces, consistentes con dicha teoŕıa. Para un campo

de spin-2 no masivo, los grados de libertad son 2: usualmente se los denomina como los modos h+ y

h× del campo gravitatorio. Cabe destacar que los grados de libertad3 que se espera que propague un

campo de spin-j no masivo son dos: ±j.

Sin embargo la situación cambia si se considera que el campo pueda poseer masa. El caso más

didáctico y usual donde se observa esta caracteŕıstica es en un campo de Proca, el cual describe

un campo de spin-1 masivo. El campo electromagnético (no masivo) posee 2 helicidades, pero si se

considera que el campo posee masa se agrega una nueva helicidad dando como resultado los dos modos

transversales y el modo longitudinal del campo de Proca. Esto se condice con el conteo correcto de los

grados de libertad de un campo de spin-1 masivo, siendo este 2s+1 con s = 1 en este caso. De manera

análoga, si se considera que el campo gravitatorio posee masa, entonces el número de grados de libertad

que se espera que se propaguen serán 2 · (2) + 1 = 5. El Lagrangiano de Fierz-Pauli es precisamente

aquel que describe adecuadamente el conteo correcto de números de grados de libertad. A continuación

se verá cómo es la estructura de dicho Lagrangiano y cuáles son y fueron sus implicancias.

Sea hµν la perturbación de la métrica dada según (1.3); la acción de Fierz-Pauli será aquella que

describa las perturbaciones lineales de la métrica alrededor de un fondo plano en vaćıo, con un término

cinético dado por (1.8) y un término de masa dado por

m2

4
(hµνh

µν − hµµh
ν
ν) (1.9)

siendo m la masa del campo. Es evidente notar que las únicas combinaciones posibles que pueden

dar un término de masa cuadrático en el campo son de la forma hµνh
µν y h2 (siendo este último

h2 = hµµhνν). Menos evidente es que esta sea la única combinación posible que describe correctamente

los 5 g.l. esperados. Este fue precisamente el hallazgo de Fierz y Pauli: la combinación hµνhµν −ahµµhνν
con a = 1 es la única que da cuenta de los g.l. correctos que debeŕıa tener la teoŕıa. Cualquier otra

3Aqúı y en lo que sigue, el término grados de libertad refiere a las posibles helicidades del campo en cuestión.
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combinación de parámetros (esto es, cualquier otro valor de a) generará un fantasma, siendo este un

sexto g.l. (Hassan and Rosen, 2011; Hinterbichler, 2012; Maggiore, 2007).

La acción de Fierz-Pauli es entonces la acción correcta para describir gravitones masivos (a orden

lineal) propagándose en un fondo plano, sin interacciones y libre de fantasmas (Van Nieuwenhuizen,

1973). En el ĺımite en el que m → 0 debeŕıa cumplirse que se recuperen los 2 g.l. esperados para una

teoŕıa de spin-2 no masiva. Esto, sin embargo, no sucede y es lo que se conoce como la discontinuidad

vDVZ (van Dam and Veltman, 1970; Zakharov, 1970) que se presentará a continuación.

Discontinuidad vDVZ

Tal como se ha dicho anteriormente, una teoŕıa de spin-2 masiva posee 5 g.l. que pueden ser

descompuestos según un modo de helicidad-0 (conocido también como el modo escalar), los modos de

helicidad-±1 (modos vectoriales) y los modos de helicidad-±2 (modos tensoriales). Si la teoŕıa fuese

no masiva, los únicos modos que debeŕıan estar presentes son aquellos que den cuenta de los modos

tensoriales, es decir los modos con helicidad-±2. Sin embargo lo que termina sucediendo en el ĺımite

m → 0 es que además de recuperar los modos de helicidad-±2, aparece un nuevo modo que estará

asociado al escalar, dando entonces un g.l. extra. Para tratar de entender mejor de dónde surge este

problema, será de utilidad considerar que los gravitones se acoplan a cierta fuente Tµν según hµνTµν .

A partir de las ecuaciones de movimiento es posible ver que la traza de dichas ecuaciones otorga la

siguiente relación (Lüben, 2021; Maggiore, 2007)

3m2h = − T

M2
P

(1.10)

siendo h y T las trazas de hµν y Tµν respectivamente. Se puede entender de manera sencilla cómo

llegar a dicha expresión haciendo ciertas suposiciones que facilitarán su entendimiento4. Las ecuaciones

de movimiento para la acción de Fierz-Pauli con interacciones vienen dadas por una expresión de la

forma

(∂2h)µν = −Tµν
M2

P
+m2(hµν − ηµνh) (1.11)

con (∂2h)µν dando cuenta de los términos cinéticos en la ecuación de movimiento. Vale la pena

notar que la única diferencia con los resultados de GR es la adición del término de masa. La suposición

que facilitará el camino será decir que la fuente se conserva, ∂µTµν = 0, y que el campo hµν satisface

∂µhµν = ∂νh (esto equivale a decir que 0 = 0 en (1.11)). Tomando traza a (1.11) y teniendo en

4Dichas suposiciones se harán por la simple razón de mantener el eje de la discusión lo más centrada y sencilla posible.

Los mismos resultados, sin embargo, se pueden obtener sin hacer necesariamente ninguna suposición. Se recomienda la

lectura de las citas mencionadas previas a la ecuación (1.10) para más detalle y generalidad.
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cuenta las suposiciones previas, es fácil notar que se arriba exactamente a la misma expresión (1.10).

A partir de esta última se puede ver de manera muy clara que si m → 0 (y suponiendo un tensor de

enerǵıa-momento con traza no nula, T ̸= 0), entonces h → ∞ a diferencia de GR en donde h → 0.

Esto pone en evidencia el problema de la teoŕıa de Fierz-Pauli en el ĺımite de masa nula. Sin embargo,

certero es notar que no es tan evidente que esto se deba a un grado de libertad extra. Obtener que

esto se debe efectivamente a un g.l. adicional excede el objetivo de esta tesis y se recomienda ahondar

en los caṕıtulos 2 tanto de (Maggiore, 2007) como de (Lüben, 2021), como aśı también los trabajos

de (Van Nieuwenhuizen, 1973) y (Babichev and Deffayet, 2013) para más detalle. Sin embargo, śı

es sencillo entender que, suponiendo que el problema se debe a un g.l. extra, dicho g.l. debe ser el

escalar. Esto es aśı porque el modo escalar (aquel de helicidad-0) es el que se acopla a la traza del

tensor enerǵıa-momento, además de los modos de helicidad-±2. Como el problema en el ĺımite m→ 0

viene de la mano de la traza de Tµν , es de esperar que se evidencien diferencias en la componente de

helicidad-0 con respecto a los resultados de GR.

La discontinuidad vDVZ tardó casi 30 años en evidenciarse luego de la propuesta de Fierz y Pauli a

finales de la década del ’30. Empero, una solución a dicho problema fue dada a los pocos años a partir

de la propuesta de Arkady Vainshtein (Vainshtein, 1972) la cual se explicará a continuación.

Mecanismo de Vainshtein y fantasma de Boulware-Deser

Al poco tiempo de la observación sobre la discontinuidad vDVZ, Vainshtein notó que se pod́ıan

recuperar exitosamente los resultados de GR en el ĺımite de masa nula mediante la adición de términos

de autointeracción no-lineales en la acción (Vainshtein, 1972). Estos términos, precisamente, pueden

llegar a ser comparables con los términos lineales de manera de compensar, aśı, el problema de la

discontinuidad. Como consecuencia fenomenológica, el modo de helicidad-0 (aquel que ocasionaba la

discontinuidad) se veŕıa apantallado a escalas observacionales (Deffayet et al., 2002). Este mecanismo

en el que la adición de términos de interacción no-lineales curan la discontinuidad mediante un apan-

tallamiento del modo problemático se lo conoce como mecanismo de Vainshtein o simplemente como

apantallamiento de Vainshtein. A continuación se motivará y mostrará cómo surge esta idea, siguiendo

lo mostrado en (Deffayet et al., 2002; Vainshtein, 1972) de utilizar un ansatz que simplifique y exhiba

este comportamiento.

Sea un ansatz para una geometŕıa estática y esféricamente simétrica dada por el elemento de ĺınea

ds2 = −e−ν(ρ)dt2 + eσ(ρ)dρ2 + eµ(ρ)ρ2(dθ2 + sin2 θ dϕ2) (1.12)

Las funciones ν(ρ), σ(ρ) y µ(ρ) en el caso de GR (es decir, m = 0), resultan en la conocida geometŕıa

de Schwarzschild,
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ds2 = − (1− rS/r) dt
2 +

1

1− rS/r
dr2 + r2(dθ2 + sin2 θ dϕ2) (1.13)

siendo rS el radio de Schwarzschild. Es pertinente notar que para llegar a esta expresión se utilizó

el cambio

r ≡ ρeµ/2 , eλ ≡
(
1 +

ρ

2

dµ

dρ

)−2

eσ−µ (1.14)

Para el caso de GR, la función µ(ρ) es redundante debido a invariancia frente a reparametrizaciones,

y por lo tanto puede ser setteada a cero sin pérdida de generalidad (Carroll, 2019). En resumen, en el

caso de GR usual se tiene

ν(r) = −λ(r) = log
(
1− rS

r

)
= −rS

r
− 1

2

(rS
r

)2
+ . . . ,

µ(r) = 0 (1.15)

obteniendo aśı, por ejemplo, el resultado conocido para un agujero negro de Schwarzschild. Sin

embargo la situación cambia si ahora se considera que el gravitón tiene masa. En este caso se puede

demostrar que las funciones resultan ahora (Deffayet et al., 2002; Maggiore, 2007; Vainshtein, 1972)

ν(r) = −rS
r

[
1 +O

( rS
m4r5

)
+ . . .

]
, (1.16)

λ(r) =
1

2

rS
r

[
1 +O

( rS
m4r5

)
+ . . .

]
, (1.17)

µ(r) =
1

2

rS
m2r3

[
1 +O

( rS
m4r5

)
+ . . .

]
(1.18)

De comparar estas expresiones con aquellas obtenidas para el caso no masivo surgen algunas cues-

tiones importantes a notar:

A primer orden hay una discrepancia por un factor de 1/2 entre lo obtenido en el caso no masivo

al obtenido en el caso masivo. Esto se manifiesta en la función λ(r), y es precisamente el origen

de la discontinuidad vDVZ comentada previamente.

Más notorio aún es el hecho de que las correcciones de orden superior divergen en el ĺımite en

que m → 0 (manteniendo el radio fijo). Dichas correcciones vienen dadas en términos del ratio

rS/(m
4r5), a partir del cual se define

rV ≡
( rS
m4

)1/5
(1.19)

como el radio de Vainshtein.
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CAPÍTULO 1

Lo que muestra dicha expansión no es más que el rango de validez de la teoŕıa lineal. Esto es, las

correcciones a la teoŕıa lineal vienen dadas en términos de (rV /r)
5, por lo tanto la teoŕıa lineal será

válida siempre y cuando r ≫ rV . Para ejemplificar un caso donde la teoŕıa lineal se rompe, basta

con estudiar lo que sucede a nivel del sistema solar: considerando una longitud de onda Compton de

λ ∼ 200 kpc (esto correspondeŕıa a una masa m = 1/λ ∼ 10−29 eV), las correcciones a los efectos

gravitacionales del Sol (rS ∼ 3 km) tendrán un radio de Vainshtein de aproximadamente rV ∼ 40 pc.

La distancia Sol-Tierra es de O(10−6 pc), con lo cual rV es aproximadamente 107 mayor que dicha

distancia. Aśı, el cociente rV /r ≫ 1 y la teoŕıa lineal no es válida; por ende, los efectos de modificar

la gravedad mediante la consideración de un gravitón masivo no son apreciables5 para la teoŕıa lineal

en escalas del sistema solar.

En el caso en el que r ≪ rV , las funciones ν(r), λ(r) y µ(r) (1.16)-(1.18) se modifican y es posible

recuperar los resutados de GR reproduciendo adecuadamente la geometŕıa de Schwarzschild6. Esto

implica que, para r ≪ rV , no existe discontinuidad alguna. De esta manera se observa lo siguiente:

mientras r ≪ rV se recuperan exitosamente los resultados de GR y no se presenta ninguna disconti-

nuidad. A medida que r → rV para luego estar en el régimen en que r ≫ rV , la discontinuidad se hace

presente. Para que la teoŕıa sea bien comportada, seŕıa necesario que no haya ninguna discontinuidad

en ningún régimen. El problema recae, entonces, en cómo hacer para unir el ĺımite r ≫ rV con el ĺımite

r ≪ rV .

Podŕıa ocurrir, sin embargo, que a la hora de resumar las ecuaciones (1.16)-(1.18) para todo orden

perturbativo desaparezca la discontinuidad en el ĺımite m → 0, y de esta manera ambos regimenes

coincidan para r ∼ rV dejando aśı a la teoŕıa bien comportada. Cabe destacar que el matching de

soluciones para r ∼ rV asume que las mismas resultan asintóticamente planas, tal como ocurre con

la solución de Schwarzschild. Sin embargo, casi 30 años después de la propuesta de Vainshtein, se ha

demostrado mediante soluciones numéricas que el matching de soluciones en el ĺımite de m → 0 no

presenta apantallamiento (Damour et al., 2003). Más aún, desde el punto de vista teórico, Boulware y

Deser demostraron al poco tiempo de la propuesta de Vainshtein que, incluso suponiendo un espacio

asintóticamente no plano como es el caso de De Sitter (y como seŕıa el caso Cosmológico), emerge

un nuevo g.l. conocido como fantasma de Boulware-Deser (Boulware and Deser, 1972). Este fantasma

surge a partir de la traza de h el cual obtiene dinámica dejando aśı 6 g.l. en vez de los 5 que debeŕıa

tener una teoŕıa masiva de spin-2. Esto se puede entender y ver mejor de la siguiente manera: sea la

ecuación de movimiento dada por (1.11) pero generalizandola a espacios curvos (esto seŕıa, cambiando

5Otra forma de ver esto, tal como se muestra en (Deffayet et al., 2002), es decir que a distancias del orden del sistema

solar, las correcciones de orden superior resultan 1032 veces mayor que los términos de primer orden, por lo tanto la

expansión en términos de rV /r no resulta adecuada.
6Para más detalles y la forma expĺıcita de la expansión, consultar el final de la sección 2.3.2 de (Maggiore, 2007).
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∂ → ∇) y considerando un término de masa de manera genérica, incluyendo términos no-lineales,

m2
(
ahµν + bηµνh+O(h2µν)

)
(1.20)

El término de masa de Fierz-Pauli corresponde a a = −b = 1. Las Identidades de Bianchi junto

con la conservación del tensor enerǵıa-momento otorgan el v́ınculo

m2∇µ
(
ahµν + bηµνh+O(h2µν)

)
= 0 (1.21)

el cual permite eliminar 4 g.l. Para el caso de la acción lineal estudiada por Fierz y Pauli, la

ecuación (1.10) es la que otorga el 5to v́ınculo (sumado a los 4 provenientes de las Identidades de

Bianchi) que hace que la teoŕıa lineal propague 5 g.l. Este v́ınculo surge única y exclusivamente a

partir de la combinación de parámetros a = −b = 1 que genera la acción de Fierz-Pauli. Cualquier

otra combinación de parámetros generará un g.l. extra proveniente de la dinámica de la traza h. En

un fondo plano y en vaćıo, tal como es la acción de Fierz-Pauli, la ecuación (1.10) otorga el v́ınculo

h = 0 el cual elimina el 6to g.l. proveniente de la dinámica de la traza. Sin embargo, cuando el fondo

es curvo esta ecuación ya no elimina la dinámica de h y por ende el mismo resulta un fantasma.

Asimismo, introduciendo solamente términos cuadráticos en la ecuación de movimiento, la ec. (1.10)

se lee esquemáticamente (Babichev and Deffayet, 2013)

(∂2h2) +m2h ∝ T/M2
P (1.22)

la cual, salvo que h = 0, genera una dinámica para h. Esta fue la observación hecha por (Boulware

and Deser, 1972), denotando a partir de alĺı a este grado de libertad como fantasma de Boulware-Deser.

Más aún, mediante una descomposición ADM (Arnowitt et al., 2008), los autores (Boulware and Deser,

1972) mostraron también que la enerǵıa no está acotada por debajo para el caso en que el término

de masa sea lineal (i.e. Fierz-Pauli, ec. (1.9)), y en el caso en que se consideren términos no-lineales

entonces el espacio plano no es estable.

Pareciera ser entonces que la adición de términos no-lineales, a pesar de curar el problema de la

discontinuidad, hace emerger un 6to grado de libertad dinámico que genera un fantasma en la teoŕıa.

La observación de (Boulware and Deser, 1972), a pesar de ser correcta, no era del todo general ya que

consideraron solamente ciertos tipos de términos en el potencial (término de masa). En (Creminelli

et al., 2005) estudiaron la generalidad de estos términos, introduciendo órdenes superiores en la acción

de Fierz-Pauli. Aunque la conclusión hallada en ese trabajo no era del todo correcta7, fue uno de los
7Alĺı los autores conclúıan que la aparición de fantasmas emerǵıa para cualquier término no-lineal que se agregara a la

acción lineal. Como se discute en (de Rham and Gabadadze, 2010), la aparición de fantasmas con términos generales tal
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trabajos fundamentales que permitió el avance - luego de casi 40 años desde la observación de Boulware

y Deser - hacia una teoŕıa de gravedad masiva bien comportada como mostraron en (de Rham and

Gabadadze, 2010). En dicho trabajo se generaliza la acción de Fierz-Pauli exhibiendo por primera vez la

acción de gravedad masiva libre de fantasmas, a orden quinto en no-linealidades, con el comportamiento

correcto en el ĺımite no masivo. En la sección que sigue se estudia en más detalle dicho trabajo como aśı

también una serie de trabajos posteriores que permitieron un mejor entendimiento de la teoŕıa masiva

no-lineal.

1.2.2. Acción de dRGT y gravedad masiva

La idea novedosa mostrada en (de Rham and Gabadadze, 2010) fue escribir de una manera muy

particular el término de masa en la acción de Fierz-Pauli, generalizando y analizando detalladamente

lo hecho en (Creminelli et al., 2005) mediante la introducción de términos superiores no-lineales en la

acción. Motivados por este último trabajo y lo hecho en (Arkani-Hamed et al., 2003), en (de Rham and

Gabadadze, 2010) se exhibe la acción de gravedad masiva hasta orden quinto en no-linealidades, y en

el ĺımite de desacople de la teoŕıa efectiva8 presentada y estudiada en detalle en (Arkani-Hamed et al.,

2003; Creminelli et al., 2005). El éxito de la teoŕıa de de Rham y Gabadadze reside en el hecho de

que los términos (no-lineales) agregados a la acción compensan el mal comportamiento que genera los

fantasmas e impide que se recupere GR en el ĺımite de masa nula. A pesar del éxito de la misma, alĺı

los autores demostraron que la teoŕıa resultaba libre de fantasmas pero a quinto orden no-lineal (y en

el ĺımite de desacople, ver Ec. (1.28)). Sin embargo, e inmediatamente después de haber presentado la

teoŕıa, en (de Rham et al., 2011) se muestra la acción libre de fantasmas en el mismo ĺımite, pero a todo

orden no-lineal. Dicha teoŕıa resuma todos los términos no-lineales de una teoŕıa efectiva de gravedad

masiva. A su vez, los autores alĺı muestran que lejos del ĺımite de desacople, la teoŕıa permanece libre

de fantasmas hasta orden cuatro en las no-linealidades. La acción se presentará a continuación y en lo

que sigue se verá en más detalle cómo arribar a la misma, como aśı también las implicancias que tuvo.

La acción en cuestión viene dada por

LdRGT =
M2

P
2

√
−g
(
R− m2

4
U(g,H)

)
(1.23)

con U(g,H) denotando el potencial (i.e. el término de masa) cuya expresión es

como estudiaron en (Creminelli et al., 2005) puede ser evitado, hasta orden cuártico en la acción, mediante una elección

apropiada de coeficientes en el potencial.
8Una de las motivaciones y aplicaciones principales de obtener una teoŕıa efectiva de gravedad viene por el hecho de

construir una teoŕıa UV completa de la misma.
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U(g,H) = −4

∑
n≥1

dn ⟨Hn⟩

2

− 8
∑
n≥2

dn ⟨Hn⟩ (1.24)

donde dn denotan los coeficientes de los términos de potencial, y ⟨· · · ⟩ es la traza con respecto a

gµν , es decir ⟨H⟩ = gµνHµν ,
〈
H2
〉
= gαβgµνHαµHβν , etc. Aqúı Hµν representa la perturbación de la

métrica. Expandiendo la expresión para el potencial hasta orden quinto, tal como exhiben en (de Rham

et al., 2011), resulta

U(g,H) = (
〈
H2
〉
− ⟨H⟩2)− 1

2
(⟨H⟩

〈
H2
〉
−
〈
H3
〉
)− 1

16
(
〈
H2
〉2

+ 4 ⟨H⟩
〈
H3
〉
− 5

〈
H4
〉
)

− 1

32
(2
〈
H2
〉 〈
H3
〉
+ 5 ⟨H⟩

〈
H4
〉
− 7

〈
H5
〉
) + · · · (1.25)

Es importante notar que esta expresión satisface, mediante una elección apropiada de los coeficien-

tes, lo siguiente:

A orden lineal se recupera la misma expresión que la acción de Fierz-Pauli (1.9) como es de

desear.

A orden quinto se recuperan los mismos resultados que en (de Rham and Gabadadze, 2010) en el

ĺımite de desacople, los cuales otorgaban una teoŕıa de gravedad masiva libre de fantasmas hasta

ese orden y en ese ĺımite.

A continuación se ahondará y se dará más detalle a lo comentado anteriormente, tratando de en-

tender la construcción como aśı también el comportamiento de dicho potencial.

Sea el tensor Hµν definido según

gµν = ηµν +
hµν
MP

= Hµν + ηab∂µϕ
a∂νϕ

b (1.26)

con ηab = diag(−1, 1, 1, 1) y Hµν resultando un tensor covariante siempre y cuando los cuatro

campos de Stückelberg9 ϕa transformen como escalares. Más aún, ϕa puede ser expresado en términos

de las coordenadas xα y el modo de helicidad-0 del graviton, π, según ϕa = (xα − ηαµ∂µπ)δ
a
α. De esta

manera se obtiene que
9El truco de Stückelberg, explicado en más detalle en el caṕıtulo 4 de (Hinterbichler, 2012), consiste en introducir

nuevos campos y simetŕıas de gauge en una teoŕıa masiva - en este caso - de manera de a la hora de tomar el ĺımite

m → 0 no hay g.l. extras ni perdidos. Es decir, la teoŕıa no se ve alterada. Lo que hace dicho truco no es más que exhibir

de manera evidente que la simetŕıa de gauge no es otra cosa más que una redundancia. Eliminar dicha redundancia no

siempre es tarea sencilla y, a veces, conveniente; mediante el truco de Stückelberg se puede agregar y/o eliminar simetŕıas

de gauge de manera sencilla y manteniendo invariancia de Lorentz y localidad.
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Hµν =
hµν
MP

+ ∂µπν + ∂νπµ − ηαβ∂µπ
α∂νπβ (1.27)

donde πµ ≡ ∂µπ. Aqúı, los ı́ndices de πµ suben y bajan con respecto a Minkowski, ηµν . A conti-

nuación se mostrará la construcción del término cúbico del potencial siguiendo lo hecho en (de Rham

and Gabadadze, 2010), estudiando los modos de helicidad 2 y 0. Los órdenes siguientes se pueden

obtener de manera análoga, aunque se recomienda la lectura de dicho trabajo para más detalle. Para

que sea más evidente la escala la cual la teoŕıa efectiva es válida, será de utilidad hacer la sustitución

πα = ∂απ/Λ
3
3 donde Λn ≡ (mn−1MP)

1/n representa la escala en cuestión. El ĺımite de desacople viene

dado, pues, por hacer

m→ 0 , MP → ∞ , Λ3 fijo (1.28)

Mediante esta sustitución, resulta

Hµν =
hµν
MP

+
2

MPm2
Πµν −

1

M2
Pm

4
Π2

µν (1.29)

donde Πµν = ∂µ∂νπ y Π2
µν = ηαβΠµαΠβν . De esta manera el Lagrangiano cúbico en el ĺımite de

desacople resulta10

L = −1

2
hµνEαβ

µνhαβ + hµνX(1)
µν +

1

Λ3
3

hµνX(2)
µν

− 1

4Λ5
5

(
(8c1 − 4)[Π3] + (8c2 + 4)[Π][Π2] + 8c3[Π

3]
)

(1.30)

donde [· · · ] es la traza con respecto a la métrica de Minkowski, es decir [Π] = ηµνΠµν , [Π2] =

ΠµνΠµν , etc. Acá X
(1)
µν = [Π]ηµν − Πµν representa los términos lineales en Π (mientras que X(2)

µν es

cuadrático en Π) y ci son coeficientes a determinar. Tal como se ha dicho previamente, el ĺımite de

desacople de la teoŕıa se realiza para que la misma sea bien comportada en una escala efectiva Λ3.

Por tal motivo, el objetivo será deshacerse del último término en (1.30) el cual se encuentra suprimido

por la escala Λ5 (menor que Λ3) de forma tal que solamente sobrevivan los términos suprimidos por la

escala Λ3. Mediante la elección

c1 = 2c3 +
1

2
, c2 = −3c3 −

1

2
(1.31)

dicho término resulta

L ⊃ c3
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
(1.32)

10Ver caṕıtulo 3 de (de Rham and Gabadadze, 2010).
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La cuestión acá es que este término resulta una derivada total y, por ende, puede ser dejado de lado

en la ecuación de movimiento11. El Lagrangiano resulta (a menos de un término con derivada total)

entonces,

L = −1

2
hµνEαβ

µνhαβ + hµνX(1)
µν +

1

Λ3
3

hµνX(2)
µν (1.33)

con

X(2)
µν = −(6c3 − 1)

{
(Π2

µν − [Π]Πµν)−
1

2
([Π2]− [Π]2)ηµν

}
(1.34)

Cabe destacar que todos los términos de interacción de la forma hµνX(n)
µν :

Son transversales.

Satisfacen automáticamente las Id. Bianchi de manera de preservar invariancia frente a difeo-

morfismos.

Contienen como mucho hasta derivadas temporales de 2do orden.

De manera análoga se puede estudiar el Lagrangiano cuártico. En este caso, la escala que debe ser

relegada resulta Λ4, en cuyo caso nuevamente mediante una elección apropiada de coeficientes puede

ser dejada de lado mediante una expresión que resulta una derivada total, de forma completamente

similar a lo hecho para orden cúbico. De esta forma, mediante la elección de coeficientes que hagan

que los términos con escalas Λ < Λ3 sean eliminados mediante una expresión que resulta una derivada

total, el Lagrangiano de interacción a orden quinto puede escribirse según

L(int) = hµν
(
X(1)

µν +
1

Λ3
3

X(2)
µν +

1

Λ6
3

X(3)
µν +

1

Λ9
3

X(4)
µν

)
(1.35)

Dicha expresión tiene el comportamiento correcto en el ĺımite de desacople hasta orden quinto. Es

decir, generaliza la acción de Fierz-Pauli a términos de órdenes superiores, preservando la localidad e

invariancia de Lorentz, como aśı también evitando la aparición de fantasmas. Sin embargo, es preciso

notar dos cuestiones relevantes:

* La no aparición de fantasmas a orden quinto en el ĺımite de desacople no garantiza que no puedan

aparecer a órdenes superiores. Para ver que efectivamente la teoŕıa es estable, se debeŕıa estudiar

la misma para todo orden no-lineal.
11Cabe notar que los autores, a la hora de tomar el ĺımite de desacople, consideran campos que decaen lo suficientemente

rápido en el infinito espacial. Tomando como regulador infrarrojo de la teoŕıa una esfera de radio L ≫ 1/m, se toma

L → ∞ antes de realizar el ĺımite de desacople.

25



CAPÍTULO 1

* A su vez, podŕıa suceder que los fantasmas aparezcan lejos del ĺımite de desacople. Sin embargo,

cabe remarcar que incluso lejos de dicho ĺımite la teoŕıa preserva el v́ınculo Hamiltoniano hasta

orden cúbico.

El primero de estos puntos fue estudiado en detalle en (de Rham et al., 2011), en donde se construye

de manera análoga a lo mostrado previamente la acción en el ĺımite de desacople para todo orden no-

lineal. Sin embargo, no fue sino gracias a los trabajos de S.F. Hassan y Rachel A. Rosen que se pudo

tratar estas dos cuestiones de una manera más simple y evidente, dando aśı una teoŕıa de gravedad

masiva bien comportada para todo orden en el ĺımite de desacople como aśı también fuera de dicho

ĺımite (Hassan and Rosen, 2012b,c). A continuación se detallará la idea de dichos autores, mostrando

los principales resultados.

Gravedad masiva alla Hassan & Rosen

La idea principal presentada por los autores consistió en generalizar lo hecho por de Rham et al,

reescribiendo los términos de potencial de una manera más sencilla y más fácil de manipular, gene-

ralizando para una métrica genérica fµν y no necesariamente una plana ηµν . En (Hassan and Rosen,

2011) los autores construyen de manera sistemática la acción no-lineal de gravedad masiva, libre de

fantasmas, mediante términos que consisten en determinantes en cuyo caso un estudio más dedicado

sobre la estabilidad de la teoŕıa resulta más claro y evidente. La idea a continuación será explicar con

un poco más de detalle cómo son precisamente dichos términos, haciendo foco en la expresión final de

la acción de Hassan & Rosen.

A la hora de construir un término de masa no-lineal en gravedad, el mismo debe satisfacer lo

siguiente:

(a) No puede contener derivadas de gµν .

(b) Debe ser invariante frente a transformaciones generales de coordenadas.

Si solamente se restringe su construcción a la métrica gµν , el mismo no puede satisfacer lo anterior

ya que las únicas dos cantidades que pueden ser constrúıdas a partir de (solamente) gµν son det g

y Trg = 4, los cuales generan fantasmas tal como demostraron (Boulware and Deser, 1972). De esta

manera, una de las posibilidades para constrúır dicho término resulta en la introducción de un tensor

de rango-2 extra, fµν , tal como se motivó en (Arkani-Hamed et al., 2003; Boulware and Deser, 1972).

Alĺı los autores (junto con, posteriormente, los trabajos de de Rham, Gabadadze y Tolley) usaron

fµν = ηµν por simplicidad y practicidad a la hora de realizar las cuentas. Sin embargo, aqúı la idea

será no hacer dicha suposición y dejarla de manera genérica. De esta forma surgen dos posibles formas
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Teoŕıas alternativas de gravedad

que pueden tener los términos: F (g−1f) y F ′(f−1g). Aqúı gµν es la métrica dinámica, mientras que fµν

es el tensor de rango-2 (covariante) extra, el cual se lo denomina por tal motivo como métrica auxiliar.

Es posible ver que la construcción de los términos de masa a partir de F ′(f−1g) (es decir, a partir de

gµν) se pueden obtener, mediante una reescritura y redefinición, a partir de F (g−1f)12. De esta forma

se construirá, entonces, el término de masa a partir de la métrica inversa gµν (es decir, a partir de

F (g−1f)). La acción tendrá la forma

S = −M2
P

∫
d4x

√
−g R(g) +M2

Pm
2

∫
d4x

√
−g F (g−1f) (1.36)

y el objetivo será ver y entender la forma expĺıcita que debe tener F (g−1f). De manera análoga a

(1.26), se define el tensor covariante Hµ
ν según

gµλfλν = δµν −Hµ
ν (1.37)

donde, notando que Hµν ≡ gµλH
λ
ν = gµν − fµν , se recupera la misma expresión que en (1.26) pero

de manera más general mediante la parametrización de la métrica auxiliar según

fµν(x) =
∂ϕa

∂xµ
f̄ab(ϕ)

∂ϕb

∂xν
(1.38)

Aqúı f̄ab es una métrica auxiliar fija la cual debe ser elegida apropiadamente dada la f́ısica del

problema. Para el caso en que f̄ab = ηab se recuperan los resultados de la sección anterior. Más aún,

una de las primeras cosas que la función F (g−1f) debeŕıa cumplir es recuperar la misma expresión

del término de masa de Fierz-Pauli. En este caso se generalizará dicho término de masa a lo que los

autores denominaron como término de masa covariante de FP, dado por

m2

4
(Hµ

νH
ν
µ −Hµ

µH
ν
ν ) (1.39)

Dicho término se reduce al término de masa de FP original (1.9) a orden cuadrático en hµν y en

el gauge unitario13. Dicha expresión, tal como se vio en las secciones anteriores, tiene la estructura

correcta que deberia tener un término de masa cuadrático en la acción de forma tal que no haya fan-

tasmas en la teoŕıa. Sin embargo, todav́ıa resta el estudio de los términos de órdenes superiores. A

continuación se ahondarán en dichos términos.

Los términos de órdenes superiores vendrán dados por

12Para más detalle consultar sección 2 de (Hassan and Rosen, 2011).
13El gauge unitario (o f́ısico) corresponde a la elección ϕa(x) = xa. Notar que esta elección no es más que tomar

fµν = ηµν .
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CAPÍTULO 1

gµν = ηµν + hµν (1.40)

con14 hµν =
∑∞

n=1[(−η−1h)nη1]µν . Mediante la elección f̄µν = ηµν para simplificar los cálculos (y

recuperar los resultados de FP) y definiendo ϕµ(x) = xµ + πµ(x), se obtiene que

Hµ
ν = −∂µπν − ∂νπµ − ∂µπα∂νπ

α − hµρ(δ
ρ
ν + ∂νπ

ρ + ∂ρπν + ∂ρπα∂νπ
α) (1.41)

Es evidente notar que esta expresión es la versión general de (1.27). Para la posteridad, será

de extrema utilidad reescribir esta última expresión como aśı también la definición (1.37) de forma

matricial. Se define, entonces, H como la matriz cuyos elementos sonHµ
ν (esta definición es simplemente

para no confundir con la notación H = Hµ
µ ). Definiendo, al igual que antes, Πµ

ν = ∂µπν = ∂µ∂νπ se

obtiene

g−1f ≡ (1−H) = (1+ hη)(1+Π)2 (1.42)

Cabe remarcar que esta expresión es exacta para todo orden en h y π. Lo hecho en (de Rham and

Gabadadze, 2010; de Rham et al., 2011) (explicado anteriormente) consistió en reescribir el Lagrangiano

de una manera adecuada de forma tal que aparezcan derivadas totales en los términos correspondien-

tes a [Π]. Mediante este nuevo enfoque de Hassan & Rosen, dichos términos aparecen naturalmente

mediante la expansión de un término de la forma det(1+Π). Más explicitamente,

det(1+Π) =
4∑

n=0

−1

n!(4− n)!
ϵµ1···µnλn+1···λ4ϵ

ν1···νnλn+1···λ4∂µ1∂ν1π · · · ∂µn∂νnπ (1.43)

De esta manera, y en vistas de (1.42), una posible expresión satisfactoria para F (g−1f) podŕıa

ser F (g−1f)|h=0 ∼ det(1 + Π) (otra manera de pensar esto seŕıa decir que F (x) ∼
√

detx ). Sin

embargo, para no estropear lo obtenido a orden lineal para recuperar FP covariante (1.39), es necesario

deshacerse de los dos primeros términos de la sumatoria, es decir 1 + ∂µ∂µπ correspondientes a n = 0

y 1 respectivamente. La manera sencilla de entender por qué estos términos no pueden estar presentes

si se quiere recuperar FP es la siguiente: en (1.39) la acción resulta, por lo menos, cuadrática en π

(evidente a partir de (1.41)). Para obtener, cuanto menos, dicho orden, es claro que los dos primeros

términos no puedan estar presentes. De esta manera la expresión correcta para F será aquella que

tenga en cuenta el determinante pero quitando los dos primeros términos de su expansión, es decir

F (g−1f)|h=0 ∼ det(1+Π)− Tr(1+Π) + 3 (1.44)

14Es fácil notar que esta definición, a orden lineal (es decir n = 1), no es más que la definición usual de la perturbación

de la métrica preservando la ortonormalidad de la misma. Es decir, gµνg
νρ = (ηµν + hµν)(η

νρ − hνρ) = δρµ.
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Teoŕıas alternativas de gravedad

Es importante notar que las expresiones halladas anteriormente fueron considerando h = 0. Para

generalizar al caso más general, con h ̸= 0, basta con hacer la sustitución 1+Π →
√
g−1f mediante las

relaciones det(1+Π) =
√

det(g−1f)|h=0 junto con Tr(1+Π) = Tr
√
g−1f |h=0. Esto otorga, entonces,

una acción con términos no-lineales de la forma

m2

∫
d4x

√
−g F = 2m2

∫
d4x

√
−g

[√
det(g−1f)− Tr

√
(g−1f) + 3

]
(1.45)

Para ver que efectivamente esta acción es la misma que aquella presentada en (de Rham and

Gabadadze, 2010), se debe expandir la misma en potencias de H de forma tal de, a orden más bajo,

recuperar el término de masa de FP (covariante) (1.39), y a orden quinto lo hecho en (de Rham and

Gabadadze, 2010) mostrado en la sección anterior mediante (1.23). Sin embargo, hay una manera más

sencilla de evidenciar que esto es aśı sin la necesidad de expandir expĺıcitamente la acción. Para eso

lo que se hará será reescribir la acción (1.45) de una manera más general incluso, en términos de un

determinante deformado. Cabe aclarar, sin embargo, que en (Hassan and Rosen, 2011) se detalla una

discusión al respecto; se recomienda, para ahondar en más detalle y para ver expĺıcitamente cómo es

dicha expansión, ver la sección 3 de dicha cita.

La generalización viene de la mano del determinante deformado, definido según

d̂et
√
g−1f = d̂et(1+K) =

4∑
n=0

−αn

n!(4− n)!
ϵµ1···µnλn+1···λ4ϵ

ν1···νnλn+1···λ4Kµ1
ν1 · · ·K

µn
νn (1.46)

donde
√
g−1f = 1+ K y αn son los parámetros de deformación del determinante (notar que para

el caso αn = 1 se recupera la expresión usual para la expansión del determinante (1.43)). A su vez,

dicho determinante puede ser reescrito en términos de los autovalores de la matriz, lo cual simplificará

más aún la expresión y el manejo de cuentas de la acción. Para eso se definirá una matriz general X

de N ×N , cuyos autovalores son λi. El determinante se puede escribir entonces como

det(1+ X) =
N∏
i=1

(1 + λi) =

N∑
k=0

ek(λ1, . . . , λN ) (1.47)

Aqúı ek(λ1, . . . , λN ) son los polinomios simétricos elementales. Esto es, cualquier polinomio simétrico

puede ser expresado en términos de polinomios simétricos elementales, es decir, en polinomios de menor

grado. Más espećıficamente, los mismos vienen dados según
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e0(λ1, . . . , λN ) = 1,

e1(λ1, . . . , λN ) = λ1 + · · ·+ λN ,

e2(λ1, . . . , λN ) =
∑
i<j

λiλj ,

... (1.48)

eN (λ1, . . . , λN ) = λ1λ2 . . . λN = detX ,

ek(λ1, . . . , λN ) = 0 para k > N

A su vez, la traza de la matriz X y potencias de ella pueden ser escritos en términos de los autovalores

como

[Xm] =
N∑
i=1

λmi (1.49)

donde [. . . ] denota la traza. Mediante las Identidades de Newton es posible relacionar los polinomios

simétricos elementales ek con la traza según

ek(λ1, . . . , λN ) = −1

k

k∑
m=1

(−1)m[Xm]ek−m(λ1, . . . , λN ) (1.50)

Para una matriz general de 4 × 4 tal como es el interés aqúı, las expresiones expĺıcitas de los

polinomios resultan

e0(X) = 1 ,

e1(X) = [X] ,

e2(X) =
1

2!
([X]2 − [X2]) ,

e3(X) =
1

3!
([X]3 − 3[X][X2] + 2[X3]) , (1.51)

e4(X) =
1

4!
([X]4 + 8[X][X3]− 6[X]2[X2] + 3[X2]2 − 6[X4]) ≡ det(X) ,

ek(X) = 0 para k > 4 ,

Estos términos no son otra cosa más que aquellos que aparecen en la expresión del determinante

deformado (1.46), tal como es evidente a partir de (1.47). Más importante aún, si se hace la sustitución

X → K =
√
g−1f − 1 se obtiene

d̂et
√
g−1f =

4∑
n=0

αnen(K) (1.52)
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Teoŕıas alternativas de gravedad

en donde se utilizó N = 4. La acción no-lineal resulta entonces

S = −M2
P

∫
d4x

√
−g R(g) + 2M2

Pm
2

∫
d4x

√
−g

4∑
n=0

αnen(K) (1.53)

A partir de esta expresión es sencillo recuperar los resultados de la sección previa (es decir, aquello

presentado en (de Rham and Gabadadze, 2010; de Rham et al., 2011)). Para eso lo primero que debe

notarse es que hay ciertos parámetros que son redundantes y pueden ser dejados de lado en la sumatoria.

El primero de ellos es α0: este término no representa otra cosa más que una constante y por ende puede

ser reabsorbida en un término del tipo constante cosmológica. Para eliminar dicho parámetro se puede

reescribir al mismo según

α0e0(K) = α0 det
√
g−1f −

4∑
n=1

α0en(K) (1.54)

de manera tal que el término de masa resulta

2M2
Pm

2

∫
d4x

√
−g

{
4∑

n=1

ᾱnen(K) + α0 det
√
g−1f

}
(1.55)

con ᾱn ≡ αn−α0. Más aún, el último término también puede ser dejado de lado dado que el mismo

es no dinámico15. Por otro lado, si se quiere que Minkowski (espacio plano) sea una solución posible,

los términos lineales en h debeŕıan no estar presentes a la hora de expandir la acción alrededor de ηµν .

Se sigue que, por ende, ᾱ1 = 0. Por último, el coeficiente ᾱ2 puede ser fijado requiriendo que el término

de masa venga dado en forma canónica. A partir de (1.51) es evidente que ᾱ2 = 1. La acción entonces

se reduce a

S = −M2
P

∫
d4x

√
−gR(g) + 2M2

Pm
2

∫
d4x

√
−g(e2(K) + ᾱ3e3(K) + ᾱ4e4(K)) (1.56)

A partir de esta última expresión es posible notar lo siguiente:

◦ La acción posee dos parámetros libres16: ᾱ3 y ᾱ4.

◦ Si ᾱ3 = ᾱ4 = 0 se obtiene la teoŕıa resumada presentada en (de Rham et al., 2011), ecuación (1.23).

◦ Si ᾱ3 = ᾱ4 = 1 se recupera la acción deformada mı́nimamente por el determinante, (1.45).

◦ Mediante una elección apropiada y relacionando ᾱ3 y ᾱ4 con los coeficientes del potencial (1.24), se

recupera también el lagrangiano de interacción (1.35).
15Este término es no dinámino siempre y cuando fµν sea no dinámico. Dicho término junto con el

√
−g presente en la

acción, otorgan un término que resulta
√
−f . Por tal motivo puede ser dejado de lado en la ecuación de movimiento de

la métrica gµν .
16Además de la masa del gravitón m y, eventualmente, la constante cosmológica Λ
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De esta manera, Hassan & Rosen pudieron generalizar lo hecho por de Rham, Gabadadze y To-

lley, otorgando una descripción en términos de los polinómios simétricos elementales, extendiendo los

resultados previos. A su vez, en (Hassan and Rosen, 2011) presentaron los resultados análogos pero

escribiendo la acción no en términos de K sino de
√
g−1f , lo cual será de utilidad para el futuro. El

determinante deformado (1.46) se puede reescribir como

d̂et
√
g−1f =

4∑
r=0

−βr
r!(4− r)!

ϵµ1···µrλr+1···λ4ϵ
ν1···νrλr+1···λ4(

√
g−1f)µ1

ν1 · · · (
√
g−1f)µr

νr (1.57)

con

βr = (4− r)!
4∑

n=r

(−1)n+r

(4− n)!(n− r)!
αn (1.58)

La acción en cuestión resulta (Hassan and Rosen, 2011)

S = −M2
P

∫
d4x

√
−gR(g) + 2M2

Pm
2

∫
d4x

√
−g

3∑
n=0

βnen(
√
g−1f) (1.59)

donde los βn vienen dados (usando su definición) por

β0 = 6− 4ᾱ3 + ᾱ4 ,

β1 = −3 + 3ᾱ3 − ᾱ4 ,

β3 = 1− 2ᾱ3 + ᾱ4 , (1.60)

β4 = ᾱ3 − ᾱ4 ,

La motivación para escribir la acción en términos de
√
g−1f (es decir, en términos de los βn) y

no en términos de K (es decir, ᾱn) viene por el hecho de que las ecuaciones de movimiento, siempre y

cuando fµν no tenga dinámica, resultan más sencillas de calcular y se puede ver expĺıcitamente cómo

GR se ve modificado. Previo a detallar esto un poco más, es necesario aclarar ciertas cuestiones por

completitud: pareciera ser que la acción en términos de los βn, (1.59), posee - como mucho - términos

que son de orden tres en
√
g−1f mientras que la acción (1.56) (es decir, en términos de los αn) es

de orden cuatro. Pareciera ser, entonces, que hay una discrepancia en la f́ısica que describen ambas

acciones a pesar de ser simplemente redefiniciones. Esta diferencia, sin embargo, no es algo más que

una diferencia estética, y recae en la elección de parámetros que se quiera. Es importante remarcar que

ambas acciones son f́ısicamente equivalentes, siempre y cuando fµν no posea dinámica. La diferencia

entre ellas recae precisamente en esta observación, ya que la no-dinámica de fµν es lo que permite

describir la acción (1.56) en términos de polinomios en de menor orden, tal como se muestra en (1.59).

32
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Habiendo escrito la acción de dos maneras distintas pero f́ısicamente equivalentes, a continuación se

mostrará cómo resultan las ecuaciones de movimiento a orden no-lineal, utilizando (1.59). La variación

del primer término de la acción no otorga más que el tensor de Einstein, Rµν − 1/2 gµνR. La cuestión

aqúı es detallar cómo resulta la variación del segundo término. Para eso será de sumo interés tener en

cuenta la siguiente relación:

δTr
[(√

g−1f
)n]

=
n

2
Tr
[
g
(√

g−1f
)n
δg−1

]
(1.61)

A partir de esta se obtiene que

2√
−g

δ
(√

−g en(
√
g−1f)

)
=

n∑
m=0

(−1)m+1Tr
[
g
(√

g−1f
)m

δg−1
]
en−m(

√
g−1f) (1.62)

La variación de la acción resulta entonces

Rµν −
1

2
gµνR+

m2

2

3∑
n=0

(−1)nβn

[
gµλY

λ
(n)ν + gνλY

λ
(n)µ

]
= GNTµν (1.63)

donde Y(n) ≡ Y(n)(
√
g−1f) que para X =

√
g−1f se definen

Y(0)(X) ≡ 1 ,

Y(1)(X) ≡ X− 1[X] ,

Y(2)(X) ≡ X2 − X[X] +
1

2
1 ([X]2 − [X2]) ,

Y(3)(X) ≡ X3 − X2[X] +
1

2
X ([X]2 − [X2])− 1

6
1 ([X]3 − 3[X][X2] + 2[X3]) , (1.64)

Cabe mencionar que, en notación de ı́ndices, resulta
√
g−1f

√
g−1f = gµλfλν , es decir que se com-

porta como un tensor de rango (1, 1). La ecuación (1.63) es el resultado principal presentado en (Hassan

and Rosen, 2011) y es evidente a partir de esta cómo se modifican los resultados de GR mediante la

adición del último término en el lado izquierdo de la ecuación. Importante es notar que dichos re-

sultados fueron asumiendo que fµν no posee dinámica. El hecho de tomar fµν como no-dinámico es

puramente por simplicidad en las cuentas y para comparar con los resultados conocidos en donde se

tomó siempre como caso fµν = ηµν . Sin embargo, un análisis más correcto y general debeŕıa tener en

cuenta que fµν podŕıa llegar a ser no-dinámico, aunque un estudio sobre la estabilidad (fantasmas) de

la teoŕıa vendŕıa al poco tiempo después del trabajo de (Hassan and Rosen, 2011), precisamente de

la mano de los mismos autores (Hassan and Rosen, 2012a,c). Además de ganar generalidad a la hora

de estudiar la teoŕıa con fµν no-dinámico, una de las motivaciones principales viene por el hecho de

que, asumiendo fµν como plana, hay ciertas soluciones f́ısicamente relevantes que no están permitidas,
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tales como soluciones Cosmológicas del tipo FLRW17. Por tal motivo, un análisis con fµν es de sumo

interés, y será el tema principal de la siguiente sección. Cabe destacar que hay diversas teoŕıas donde

pueden estudiarse la dinámica de fµν . Aqúı en esta tesis, sin embargo, se tratará de estudiar una de

ellas solamente, conocida como teoŕıas de bigravedad o teoŕıas bimétricas, que representa un modelo

concreto para un campo de spin-2 masivo en un fondo curvo. A continuación, en el siguiente caṕıtulo,

se recapitulará lo hecho en (Hassan and Rosen, 2012a), donde alĺı se presenta por primera vez la cons-

trucción de una teoŕıa de bigravedad libre de fantasmas, basándose en lo explicado en los caṕıtulos

anteriores.

1.3. Bigravedad

El hecho de darle dinámica a fµν debe ser consistente con tener una teoŕıa de gravedad masiva

que siga siendo libre de fantasma. Más espećıficamente, dos cosas de vital interés deben ser tenidas en

cuenta:

- Las fluctuaciones de fµν no deben romper el buen comportamiento de la teoŕıa para el sector de gµν .

- Debe introducirse un término cinético para fµν de manera tal que el sector de fµν también sea libre

de fantasmas.

El primero de estos puntos fue demostrado en (Hassan et al., 2012) y se recomienda su lectura para

un análisis más detallado. En (Hassan and Rosen, 2012a) se estudia, precisamente, el segundo punto

previamente mencionado, y es lo que compete a este caṕıtulo: la construcción libre de fantasmas de

una teoŕıa de bigravedad.

El punto de partida es la acción (1.59) pero generalizando al caso en que fµν posee dinámica. Esto

es,

S =M2
P

∫
d4x

√
−g

[
R+ 2m2

4∑
n=0

βn en(
√
g−1f)

]
(1.65)

Para la construcción del término cinético para fµν será de interés notar que el último término del

potencial (es decir, aquel con e4) resulta

√
−g β4e4(

√
g−1f) = β4

√
−f (1.66)

en donde se ha usado la definición (1.51), con e4(
√
g−1f) = det

√
g−1f . La importancia de esto es

que dicho término es independiente de gµν y por ende no contribuye a las ec. de movimiento de gµν .
17Para una discusión más en detalle consultar sección 3.3 de Hassan and Rosen (2011) y las referncias alĺı mencionadas.

34
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De aqúı surge la discrepancia entre las acciones (1.59) y (1.65) en cuanto a los términos del potencial.

Como el objetivo acá es estudiar la dinámica de fµν , dicho término śı debe ser tenido en cuenta. El

parámetro extra en este caso, en comparación con fµν no-dinámico, actuará de constante cosmológica

para esta métrica. Para hallar el término cinético de fµν , lo primero será reescribir al potencial mediante

la relación
√
−g =

√
−f
√
f−1g. De esta manera se obtiene

√
−g

4∑
n=0

βn en(
√
g−1f)) =

√
−f e4(

√
f−1g)

4∑
n=0

βn en(
√
g−1f) (1.67)

El objetivo es reescribir al término de masa de manera tal que se asemeje a un potencial para fµν .

Por tal motivo es de interés, a su vez, expresar en(
√
g−1f) en términos de la métrica inversa

√
f−1g.

Los mismos resultan

e0(
√
f−1g) = 1 ,

e1(
√
f−1g) =

1

λ1
+

1

λ2
+

1

λ3
+

1

λ4
,

e2(
√
f−1g) =

1

λ1λ2
+

1

λ1λ3
+

1

λ1λ4
+

1

λ2λ3
+

1

λ2λ4
+

1

λ3λ4
, (1.68)

e3(
√
f−1g) =

1

λ1λ2λ3
+

1

λ1λ2λ4
+

1

λ1λ3λ4
+

1

λ2λ3λ4
,

e4(
√
f−1g) =

1

λ1λ2λ3λ4
,

(1.69)

donde λi son los autovalores de la matriz
√
g−1f . La relación entre los en de la matriz y su inversa

es fácil de notar:

ek(
√
g−1f) =

e4−k(
√
f−1g)

e4(
√
f−1g)

(1.70)

Aśı se obtiene la expresión para el término de masa (1.67)

√
−g

4∑
n=0

βn en(
√
g−1f)) =

√
−f

4∑
n=0

βn e4−n(
√
f−1g) (1.71)

pero de una manera que resulta un término de potencial para fµν . Es evidente que la estructura

del potencial no es otro más que el mismo que el de gµν pero con coeficientes distintos. Esto implica

que, por consiguiente, un término de masa posible para fµν que no posea fantasmas podŕıa ser, al igual

que gµν , un término cinético del estilo Einstein-Hilbert. De esta manera la acción resultante es

S =M2
g

∫
d4x

√
−g R(g) +M2

f

∫
d4x
√

−f R(f) + 2m2M2
eff

∫
d4x

√
−g

4∑
n=0

βn en(
√
g−1f) (1.72)

35
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donde R(g) (R(f)) denota el escalar de curvatura para gµν (fµν). A su vez, se han introducido

diferentes masas de Planck, Mg y Mf, para las dos métricas, definiendo aśı una masa de Planck efectiva

dada por

M2
eff =

(
1

M2
g
+

1

M2
f

)−1

(1.73)

La acción (1.72) es el resultado principal de esta sección y de este caṕıtulo, siendo el pilar funda-

mental para comenzar a estudiar campos de spin-2 masivos en gravedad, haciendo foco en el estudio de

materia oscura tensorial. Aśı, de esta manera, se ha constrúıdo hasta aqúı una acción que, basándose

en la sección anterior, resulta libre de fantasmas en el sector de gµν siempre y cuando fµν no posea

dinámica. En esta sección, en cambio, se ha constrúıdo una acción libre de fantasmas - gúıandose por

(1.67) - en el sector de fµν siempre y cuando gµν sea no-dinámica. Resta entonces por ver cómo resul-

ta la acción cuando ambas métricas poseen dinámica. Sin embargo, tal como se muestra en (Hassan

and Rosen, 2012a), la acción presentada anteriormente es la correcta incluso cuando ambas métricas

tienen dinámica. La sutileza, empero, viene por estudiar los grados de libertad que se propagan en la

teoŕıa, de manera de propagar los correctos y que no hayan g.l. extras que surgan como fantasmas.

Cabe remarcar que en las teoŕıas de bigravedad se esperan que se propaguen 7 g.l., correspondientes

a un campo de spin-2 masivo (5 g.l.) y uno no-masivo (2 g.l) (Boulware and Deser, 1972; Damour

and Kogan, 2002; Isham et al., 1971; Salam and Strathdee, 1977). Para ver que efectivamente la teoŕıa

propaga 7 g.l. como es de esperar, un análisis Hamiltoniano en la formulación ADM es necesario (Ar-

nowitt et al., 2008). En las secciones 5 y 6 de (Hassan and Rosen, 2012a) se puede ver en detalle cómo

resulta el análisis Hamiltoniano otorgando, efectivamente, los 7 g.l. deseados. Aqúı lo que se hará, sin

embargo, será tratar de motivar y entender de dónde vienen esos 7 g.l., dejando las cuentas y detalles

más profundos sugeridas en las secciones mencionadas de la cita.

Sea la descomposición ADM para la métrica gµν dada según las funciones N,Ni y γi, siendo el

lapso, el shift, y la métrica 3-dimensional respectivamente. De forma análoga se pueden definir, para

la métrica fµν , las funciones L,Li y 3fij . En las teoŕıas bimétricas, las funciones lapso y shift son

no-dinámicas dado que no poseen derivadas temporales. Restan, entonces, los 6 g.l. dados por gij y los

6 g.l. dados por 3fij , que junto con sus momentos canónicamente conjugados representan 24 variables

en el espacio de fases; es decir, hasta 12 modos de propagación, con cada modo refiriéndose a un par de

variables conjugadas. Se necesitan, pues, 10 v́ınculos de manera de obtener 14 variables en el espacio

de fases, que corresponden a 7 g.l. de propagación. Esos 10 v́ınculos vendrán dados por lo siguiente: 4

variables serán removidoa mediante un fijado de gauge. Otras 4 serán removidas mediante los v́ınculos

Hamiltonianos y de momentos. Las 2 variables que restan serán removidas mediante dos v́ınculos extras
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que aparecen en teoŕıas de gravedad masiva18 (Hassan and Rosen, 2012b; Hassan et al., 2012). De esta

manera se obtienen las 14 variables, asociados a los 7 modos de propagación de la teoŕıa de bigravedad

consistentes con un campo de spin-2 masivo y otro no masivo.

Antes de finalizar este caṕıtulo y a modo de consistencia, caben hacer ciertos comentarios: Desde

el punto de vista fenomenológico, es remarcable notar que las teoŕıas de bigravedad presentan propie-

dades interesantes y relevantes para modificaciones a Relatividad General. Entre ellas se encuentran el

estudio de soluciones cosmológicas y test observacionales (von Strauss et al., 2012), como aśı también

soluciones con simetŕıa esférica (Comelli et al., 2012a), de interés para el estudio de agujeros negros.

Por completitud, a su vez, se presentarán las ecuaciones de movimiento en este tipo de teoŕıas: de

forma análoga a (1.63), las mismas resultan (Hassan and Rosen, 2011; von Strauss et al., 2012)

Rµν −
1

2
gµνR+

m2M2

2M2
g

3∑
n=0

(−1)nβn

[
gµλY

λ
(n)ν(

√
g−1f) + gνλY

λ
(n)µ(

√
g−1f)

]
=
Tµν
M2

g
(1.74)

R̄µν −
1

2
fµνR̄+

m2M2

2M2
f

3∑
n=0

(−1)nβ4−n

[
fµλY

λ
(n)ν(

√
f−1g) + fνλY

λ
(n)µ(

√
f−1g)

]
= 0 (1.75)

donde, para no cargar la notación y reducirla al mı́nimo, se definen las cantidades con tilde arriba

X̄ asociadas a la métrica fµν , y donde se ha llamado Meff ≡ M . Necesario es remarcar que aqúı se

ha tenido en cuenta que solamente la métrica gµν se acopla a la materia, motivo por el cual del lado

derecho de la ecuacion de movimiento aparece la fuente. Aśı finaliza este caṕıtulo, siendo el mismo el

puntapié inicial para el comienzo del estudio de un campo de materia oscura de spin-2, tal como se

ahondará en más detalle en el caṕıtulo siguiente.

18Similar al v́ınculo (1.21).
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Caṕıtulo 2

Materia oscura ultraliviana de spin-2

2.1. Introducción

El término materia oscura fue designado por primera vez por el astrónomo suizo F. Zwicky en

el año 1933 cuando estaba realizando un estudio cinemático (el primero en su tipo) de un cúmulo de

galaxias1. En dicho estudio Zwicky notó que hab́ıa una discrepancia entre la masa observada y la masa

que debeŕıa haber en la galaxia para que la misma tenga sentido gravitacionalmente. Por otro lado,

a su vez, un año antes el astrónomo holandés J. Oort mirando el movimiento de las estrellas sobre el

plano galáctico observó que debeŕıa haber casi un 50% más de masa en el disco que la masa inferida

por la materia luminosa. Años más tarde, en (Roberts, 1966; Roberts and Whitehurst, 1975; Rogstad

and Shostak, 1972) estudiaron las ĺıneas espectrales de 21cm del hidrógeno en las regiones exteriores

de las galaxias, notando que la velocidad de rotación del gas pareciera no decrecer con la distancia al

centro de la galaxia, tal como debeŕıa suceder para una masa en una región acotada. Por otro lado y

casi al mismo tiempo - finales de 1970 - las observaciones hechas por Vera Rubin (junto con K. Ford

y N. Thonnard) en el telescopio del Observatorio Nacional de Kitt Peak permitieron entender de una

manera más precisa las curvas de rotación de galaxias tipo espirales, presentando aśı uno de los gráficos

más precisos de la velocidad de rotación de las galaxias vs. su radio. Similarmente, Albert Bosma en

su tesis doctoral a finales de los ’70 y posteriormente en un (reconocido) trabajo a principios de los

’80 (Bosma, 1981), obtuvo un gráfico (al igual que Rubin et al.), de las curvas de rotación en función

del radio. En los gráficos presentados en estos trabajos previamente mencionados se mostraba que,

efectivamente, la velocidad de rotación no decae con el radio, sino que se observa el comportamiento

mostrado - a modo de ejemplo - en la Fig. 2.1.
1Alĺı el autor suizo la denota como dunkle Materie, luego traducido al inglés según dark matter. Se utilizarán las siglas

DM para denotar a dicho objeto.
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Figura 2.1: Curvas de rotación para la galaxia Andómeda. Se observan las curvas de rotación esperadas y

observadas (crédito de la imágen: Douglas College Astronomy, British Columbia).

Sin dudas, los gráficos de las curvas de rotación fueron unas de las primeras y más fuertes evidencias

de que hab́ıa algo extra que no se estaba viendo ni teniendo en cuenta en la teoŕıa a la hora de realizar

los cálculos para obtener dichas curvas de rotación. Diversas propuestas se han postulado para tratar

de explicar dicho comportamiento; entre ellas, quizás las más famosas son la propuesta de materia

oscura y las teoŕıas de gravedad modificadas conocidas como Modified Newtonian Dynamics (MOND)

presentada por el f́ısico israeĺı Mordehai Milgrom en 1983. Sin ahondar en detalle (ya que no es objetivo

de esta tesis hacer una disertación sobre ambas teoŕıas) a pesar que esta última describe de manera

fehaciente el comportamiento a escalas galácticas, la misma presenta problemas cuando se trata de

describir fenómenos a otras escalas. Entre ellos, quizás la discrepancia más notoria entre ambas teoŕıas

se manifiesta a escalas cosmológicas, donde la propuesta de DM permite describir adecuadamente

lo predicho por las mediciones del CMB, favoreciendo la existencia de DM en contraposición con la

modificación de la gravedad MOND. A su vez, y por otro lado, otra evidencia a favor de DM es aquella

arrojada por las mediciones del Bullet Cluster (Clowe et al., 2004; Markevitch et al., 2004). Tal como

se ha dicho anteriormente, en esta tesis no se trata(rá) de motivar la propuesta de DM por sobre otras

teoŕıas, sino que se toma como punto de partida dicha propuesta. Sin embargo, śı cabe mencionar

cuáles fueron los hitos que llevaron a postular la existencia de DM de una manera robusta, tal como

se ha descripto en los párrafos anteriores.

A pesar de que hoy en d́ıa la comunidad cient́ıfica está más inclinada a pensar en la existencia

de DM, aún se desconocen diversas cosas sobre la misma tales como su composición, cómo interactúa

con la materia ordinaria, cuál es su oŕıgen, etc. Suponiendo que existe, lo que śı se sabe es que la
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misma interactúa - por lo menos - gravitacionalmente y podemos entender el efecto que produce sobre

los objetos. No obstante, es necesario remarcar que hay una cantidad enorme de candidatos de DM,

variando tanto su rango de masas como su comportamiento y fenomenoloǵıa (ver Fig. 2.2).

Figura 2.2: Algunos de los posibles candidatos para materia oscura. Cada uno de estos candidatos posee una

masa (enerǵıa) muy distinta, barriendo un rango de alrededor de 80 órdenes de magnitud para explorar por el

candidato en cuestión. Imágen extráıda de (Bertone and Tait, 2018).

En esta tesis se estudiará uno de estos tipos de materia oscura, conocido como materia oscura ultra-

liviana o ULDM por sus siglas en inglés. Dicho tipo de candidato a DM viene dado por part́ıculas

bosónicas cuyas masas son extremadamente pequeñas (alrededor de 10−25 eV ≲ m ≲ eV). En particular

se hará foco sobre ULDM del tipo tensorial, es decir, un campo de spin-2. En el caṕıtulo a continuación

se presentarán las caracteŕısticas más relevantes del modelo de ULDM, siguiendo principalmente como

referencia el review (Ferreira, 2021), recomendando su lectura para una mayor profundización. El

objetivo en dicho caṕıtulo es presentar el modelo de materia oscura ultra-liviana de manera general,

para aśı luego en la siguiente sección remarcar las principales caracteŕısticas y fenomenoloǵıa del modelo

de spin-2 en cuestión.
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2.2. Materia oscura ultraliviana

Determinar la naturaleza y propiedades de la DM es uno de los campos de estudios de la Cos-

moloǵıa moderna. Dentro del modelo estándar de la Cosmoloǵıa (Weinberg, 2008) - conocido como

modelo ΛCDM, hasta el momento el modelo más exitoso - el contenido energético del Universo está

dominado por contribuciones oscuras: a saber, materia y enerǵıa oscura. Más espećıficamente, dichas

componentes contribuyen aproximadamente un 25 % y 70 % del contenido total del Universo, respec-

tivamente. Asimismo, dicho modelo describe la expansión acelerada del Universo bajo cierto ajuste

adecuado de la denominada constante cosmológica Λ. Bajo el mismo modelo, la DM podŕıa consistir

en una distribución de part́ıculas fŕıas; esto es, una distribución tal que su dispersión de velocidades

es pequeña. Se denomina, de esta manera, a la DM como CDM (por sus siglas en inglés, Cold Dark

Matter). Sin embargo, paradigmas alternativos fueron surgiendo con el correr del tiempo, tomando

especial interés aquel donde la DM consiste en bosones ultralivianos, con números de ocupación extre-

madamente alto de manera tal que se lo puede describir mediante la teoŕıa clásica de campos (Ferreira,

2021; Marsh, 2016). El interés en este último consiste en lo siguiente: sabido es el éxito del modelo

CDM en escalas grandes donde dicho modelo muestra una alta compatibilidad con - por ejemplo - las

mediciones del CMB y LSS. Sin embargo, a medida que se estudian escalas más pequeñas como lo

son las galácticas y subgalácticas, el modelo de CDM presenta discrepancias en comparación con lo

observado. Por nombrar quizás las más conocidas se encuentran2:

Missing satellites problem: el modelo de CDM predice más cantidad de satélites pequeños de los

que se observan en la Vı́a Lactea y en el Grupo Local.

Too-big-to-fail problem: Las simulaciones basadas en ΛCDM predicen subhalos suficientemente

masivos como para formar galaxias y estrellas los cuales sin embargo no se observan.

Cusp-core problem: muchos perfiles de densidades de varios sistemas no presentan un perfil del

tipo NFW (Navarro et al., 1996).

Para tratar de afrontar dichos problemas, surgen dos caminos posibles a seguir (tomando como

válido el paradigma de DM y dejando de lado posibles modificaciones a gravedad en escalas pequeñas):

o bien se deben tener en cuenta en mayor medida y precisión los procesos astrof́ısicos involucrados en

las escalas pequeñas, o bien podŕıa ser que el modelo de CDM no es el adecuado para describir la f́ısica

en dichas escalas y el modelo de DM debe ser revisto. El primero de estos puntos es un área activa en śı

misma, involucrando principalmente herramientas de simulaciones cada vez más precisas y completas
2Se recomiendo la lectura de (Weinberg et al., 2015) como aśı también el caṕıtulo 2 de (Ferreira, 2021) y/o sección

6.4 de (Marsh, 2016) y las referencias alĺı para una discusión más detallada.
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(Del Popolo and Le Delliou, 2017; Niemeyer, 2020; Oñorbe et al., 2015). En cuanto al segundo punto,

uno de los posibles modelos que trata de abordar estos problemas es el conocido como materia oscura

ultraliviana (ULDM por sus siglas en inglés), cuyas caracteŕısticas principales se detallarán a continua-

ción. No es objetivo de esta tesis explicar ni discutir por qué los modelos de ULDM podŕıan otorgar una

posible solución a los problemas mencionados3, sino que la idea es tomar como punto de partida la vali-

dez de dichos modelos, haciendo posterior hincapié más precisamente en el modelo de ULDM de spin-2.

Caracteŕısticas principales

Diversos modelos de DM existen para tratar de explicar aquello donde CDM exhibe ciertos pro-

blemas. El interés principal en estos modelos recae en lo que sucede en escalas pequeñas, alĺı donde

CDM presenta las mayores discrepancias con respecto a lo observado. Los modelos de ULDM fueron

introducidos para tratar de afrontar precisamente dichas vicisitudes. Estos modelos, además, presentan

una rica - y novedosa - fenomenoloǵıa la cual puede ser testeada en escalas galácticas mediante obser-

vaciones. Su caracteŕıstica principal es que a grandes escalas se comporta como CDM, mientras que

para escalas chicas (galácticas) presentan un comportamiento ondulatorio que puede caracterizarse en

términos de superposiciones de ondas. De este manera, estos tipos de modelos presentan el comporta-

miento esperado a grandes escalas donde se recuperan los resultados de CDM, mientras que a escalas

pequeñas se diferencia de este último y es alĺı donde se hace foco en tratar de estudiar la viabilidad de

dichos modelos.

En pos de estudiar estos modelos, lo primero a notar es que debido a lo extremadamente pequeño

de la masa, una descripción apropiada para el comportamiento de este tipo de DM viene dado por una

teoŕıa clásica de campos. Más espećıficamente, la longitud de onda de Broglie de la DM viene dada

por (Zhang, 2023)

λdB ∼ (mv)−1 ∼ 1kpc
(
10−23eV

m

)(
10−3

v

)
(2.1)

por lo que su número de ocupación será gigante, resultando este (Khmelnitsky and Rubakov, 2014)

N ∼ 1096
(

ρDM

0.3GeV/cm3

)(
10−23eV

m

)
(2.2)

donde se utilizó que la densidad de enerǵıa local en el sistema solar de la DM es ρDM = 0.3GeV/cm3

(Evans et al., 2019; McKee et al., 2015; Piffl et al., 2014). El rango de masas permitidos en estos modelos

se encuentra acotado, dependiendo espećıficamente de cada modelo en particular. Sin embargo, se puede

obtener y entender una cota de manera general. La misma resulta
3Para dicha discusión se recomienda la lectura profunda de (Ferreira, 2021).
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10−25 eV ≲ m ≲ O(1) eV (2.3)

La cota inferior surge a partir del tamaño del núcleo de DM. Este último no debe ser mayor que

el tamaño del halo ya que se desea que el comportamiento ondulatorio ocurra solamente para dichas

escalas; a escalas grandes, en cambio, se desea el comportamiento de CDM. Esta cota saturará cuando

la longitud de onda de Broglie de la ULDM sea del orden del tamaño del halo. Tomando a esta cota en

el caso en que el halo se encuentra virializado, lo que se plantea no es otra cosa más que λdB < R200,

siendo R200 el radio virial4 y λdB dado por (2.1) con v la velocidad efectiva de la ULDM cuyo valor

en el halo galáctico puede estimarse a partir de la velocidad virial. Considerando halos esféricos con

masas del orden 1012M⊙, la cota resulta (Ferreira, 2021; Rindler-Daller and Shapiro, 2012)

m > 10−25

(
M

1012M⊙

)−1/2( R200

100kpc

)−1/2

eV (2.4)

Por otro lado, la cota superior vendrá dada por la masa máxima que puede tener la DM de manera

tal de formar núcleos dentro de las galaxias, región donde se esperan las mayores diferencias con

CDM. Precisamente para ver dichas diferencias con CDM, la región de interés será aquella donde el

comportamiento ondulatorio de la ULDM tome lugar. Es decir, la longitud de onda de Broglie de la

DM deberá ser mayor que la escala galáctica. Pero, a su vez, una superposición de ondas podŕıan llegar

a generar un tamaño de onda comparable con el tamaño de la galaxia, siempre y cuando se consideren

ondas individuales más pequeñas que el tamaño de la galaxia. Se pedirá, entonces, una masa máxima

para cada paquete de ondas - que se traduce en λdB más chico - de forma tal que la superposición de

ondas no exceda el tamaño de la galaxia5. La cota, entonces, vendrá dada por pedir que λdB > l con

l = (m/ρ)1/3 la separación entre part́ıculas. Considerando halos formados a partir del colapso esférico,

la densidad y velocidad vienen dados por (Berezhiani and Khoury, 2016)

ρ200 = 200ρcr ∼ 10−26 g/cm3 ,

V200 ∼ 102
(

M

1012M⊙

)1/3

km/s (2.5)

4El halo de DM se define como la región esférica donde la densidad es aproximadamente 200 veces mayor que la

densidad cŕıtica del Universo para un dado redshift, con una masa dada por M200 = (4π/3)R3
200200ρcr. La velocidad

virial será, entonces, la velocidad circular media en el radio virial, V200 ≡
√

GM200/R200.
5Esta cota se puede entender de una manera análoga a lo que ocurre con un condensado de Bose-Einstein. En este

tipo de sistemas, la condición para que haya condensado surge de pedir que la temperatura del sistema sea menor a la

cŕıtica, T < Tc. Sin embargo, se puede obtener una condición análoga en términos de la longitud de onda de Broglie

pidiendo que nλ3
dB ≫ 1 con n la densidad numérica. El caso ĺımite será aquel donde nλ3

dB ∼ 1. Es necesario remarcar,

sin emabargo, que la condición pedida en (2.6) no significa que la DM condensa; esta analoǵıa sirve simplemente a fines

didácticos. Consultar caṕıtulo 3 de (Ferreira, 2021) para más detalle al respecto.
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lo cual resulta en una cota para la masa de

m <
( ρ
v3

)1/4
∼
(

M

1012M⊙

)−1/4

eV (2.6)

donde se utilizó que el halo se encuentra virializado, tomando zvir ∼ 2.

Cabe remarcar que, tal como se ha dicho anterioremente, el rango de masas (2.3) es simplemente una

cota estimativa6. Una cota concreta dependerá de cada modelo espećıfico, sea considerando distintos

spines, escalas, componentes de DM, etc. A su vez, es necesario notar que las cotas aqúı mostradas

son considerando procesos astrof́ısicos solamente. Si, por otro lado, se tiene en cuenta un contexto

cosmológico, las cotas también se verán afectadas. En esta tesis se ahondará en lo que a ULDM de

spin-2 respecta; para más detalle sobre los casos de spin-0 y spin-1 en un contexto cosmológico se puede

indagar en (Armengaud et al., 2017; Hu et al., 2000; Hui et al., 2017; Marsh, 2016) y (Abac et al.,

2024; Chase and López Nacir, 2024; Knapen et al., 2017) respectivamente.

Hasta el momento se tiene, entonces, un modelo de DM que a escalas grandes se comporta como

CDM, mientras que a escalas galácticas y más pequeñas presenta un comportamiento ondulatorio.

Precisamente este tipo de comportamiento es lo que comprende a los modelos de ULDM; entre los

modelos más conocidos en la literatura7 se encuentran, por nombrar los de mayor interés, los axiones

y las Axion Like Particles (ALPs) (Marsh, 2016, 2018; Niemeyer, 2020), junto con los modelos de DM

Difusa (Fuzzy DM )(Hu et al., 2000; Hui et al., 2017), también conocidos como DM Ondulante (Wave

DM )(Hui, 2021).

A modo de resumen, y para enfatizar, a continuación se transcriben las caracteŕısticas principales

de los modelos de ULDM de manera general (sin especificar ningún modelo):

⋆ Part́ıculas bosónicas con masas ultralivianas, dadas por (2.3).

⋆ Tratamiento a partir de una teoŕıa clásica de campos.

⋆ A escalas grandes se comporta como CDM, dándole un tratamiento hidrodinámico, mientras que

para escalas chicas presenta un comportamiento ondulatorio con una longitud de onda de Broglie

dada por (2.1).

Teniendo esto en mente, se procederá a continuación a ahondar en más detalle en los modelos de

spin-2 de ULDM.

6Hay que tener en cuenta, también, que la cota asume que la abundancia de DM es debida en su totalidad a ULDM.

Consultar (Hlozek et al., 2015, 2018) para el caso contrario.
7Para una lista más completa sobre los posibles modelos se recomienda mirar (Lee, 2018) junto con las referencias alĺı

citadas. Una descripción pictórica que puede resultar útil, a su vez, es la Fig. 9 de (Ferreira, 2021).
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2.3. Spin-2

En la sección anterior se ha visto el modelo de ULDM de manera general; en esta sección se

profundizará sobre uno de estos modelos, espećıficamente en el modelo denominado como ULDM de

spin-2. El punto de partida para estudiar y entender estos modelos es la Ec. (1.72), la cual permite

estudiar un campo masivo de spin-2 en un fondo curvo de manera general. Sin embargo, y en vistas de

(1.74)-(1.75), es necesario notar que a pesar que dicha acción describe dos campos tensoriales, el hecho

de que haya uno masivo propagándose en un fondo curvo todav́ıa no es del todo claro. Esto se debe a

que para obtener eso, se debe hacer una rotación de dichos campos para obtener estados de masa bien

definidos, donde en las ec. de movimiento para cada campo aparezca un término de masa bien definido

del estilo m2Ψ, donde Ψ representa al campo en cuestión. Para presentar dicho procedimiento y en

vistas de los caṕıtulos siguientes, se seguirá lo hecho en (Marzola et al., 2018).

Partiendo de (1.72), se puede reescribir la acción mediante una redefinición de las masas de Planck

de cada métrica según (Babichev et al., 2016b)

M2
g =

M2
P

1 + α2
, M2

f =
α2M2

P
1 + α2

, m2M2 =
M2

P
1 + α2

α2M2
P

1 + α2
(2.7)

por lo que la acción resulta

S =
M2

P
1 + α2

∫
d4x

[√
−g R(g) + α2

√
−f R(f) + 2

α2M2
P

1 + α2

√
−g V (g, f ;βn)

]
+

∫
d4x

√
−gLm(g, ψ) (2.8)

donde se ha llamado resumidamente V (g, f ;βn) al término de potencial de la acción de bigravedad

(1.72). La idea en hacer esta redefinición es dejar fija una escala de enerǵıa para las masas (dada por la

masa de Planck reducida, MP ≃ 2.4× 1027 eV), cuantificando aśı la interacción entre las dos métricas

mediante la constante adimensional α ≡ Mf/Mg. Notar que en el ĺımite en que α → 0 la teoŕıa se

reduce a GR.

En (2.8) se ha inclúıdo, a su vez, el término de materia. Dicho término será relevante a futuro cuando

se estudien, en los siguientes caṕıtulos, la interacción de la DM con púlsares y GW más precisamente.

Lo importante a notar acá es que se está considerando que solamente una métrica (la métrica g) se

acopla a la materia, Lm(g, ψ) donde ψ representa los campos de materia. Que solamente una métrica

sea la que se acopla a la materia tiene una relevancia f́ısica importante de notar, que es la siguiente: en

un principio se podŕıa tener que ambas métricas se acoplen a campos de materia, con términos de la

forma
√
−gLg(g, ϕ

A) para la métrica g y
√
−f Lf (f, ϕ

B) para la métrica f , donde ϕA,B representan

campos de materia. Sin embargo, si ambas métricas se acoplasen a los mismos campos de materia, las
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geodésicas de las part́ıculas se veŕıan modificadas, violando generalmente el principio de equivalencia.

Mediante observaciones y/o experimentos, estos tipos de acoples se veŕıan fácilmente dejados de lado.

No obstante, podŕıa ocurrir que ambas métricas se acoplasen a una efectiva, ĝµν , constrúıda a partir

de gµν y fµν , de la forma
√
−ĝLĝ(ĝ, ϕ

C). Sin embargo, un término de este tipo genera un nuevo g.l.

llevando a la teoŕıa a que presente fantasmas (Hassan and Rosen, 2012a). En conclusión, los posibles

acoples con la materia se encuentran altamente restringidos en las teoŕıas de bigravedad, y en esta tesis

se considerará que solamente la métrica g se acopla a la materia8. Para una discusión más detallada

sobre los posibles acoples en este tipo de teoŕıas se sugiere consultar (de Rham, 2014; de Rham et al.,

2014, 2015; Schmidt-May and von Strauss, 2016; Yamashita et al., 2014).

Retomando la Ec.(2.8), el objetivo a continuación es realizar una rotación adecuada de los campos

de manera de generar estados de masa bien definidos. De esta manera, se tendrá un campo de spin-2

masivo propagándose en un fondo curvo. Para eso se considerarán perturbaciones de las métricas9

dadas por

gµν = ḡµν + ϵ hµν , (2.9)

fµν = ḡµν + ϵ ℓµν (2.10)

con ϵ ≪ 1 un parámetro de expansión y donde se han desarrollado ambas métricas alrededor de

un mismo fondo ḡµν . Expandiendo la acción a orden cuadrático en las perturbaciones se obtiene la

acción cuadrática de GR, S(2)
GR - Ec.(1.7) - para cada campo hµν y ℓµν , pero generalizando el operador

de Lichnerowicz a espacios curvos,

Eµν
ρσ := δµρ δ

ν
σ□− ḡµν ḡρσ□+ ḡµν∇ρ∇σ + ḡρσ∇µ∇ν − δµσ∇ν∇ρ − δµρ∇ν∇σ (2.11)

junto con la expansión pertinente del término potencial V (g, f ;βn).

Hasta este punto, y recapitulando, se tiene lo siguiente: partiendo de (1.72) se define el parámetro

adimensional α según (2.7), llegando a la acción de bigravedad escrita en términos de este último,

Ec.(2.8). Expandiendo la acción a orden cuadrático en las perturbaciones según (2.9) y (2.10), se

llega a la acción cuadrática de GR para cada campo, es decir a términos en la acción de la forma

L(2)
GR(X) ⊃ XµνEρσ

µνXρσ donde Xµν representa al campo hµν o bien al campo ℓµν . Sin considerar el

término de potencial, lo que se tiene hasta acá no es otra cosa más que dos términos de la misma forma

(correspondientes a L(2)
GR tanto para hµν como para ℓµν). Más expĺıcitamente, se obtiene que

8Además, en vistas de la observación de que para α → 0 se recupera GR, la suposición de que solamente la métrica

g se acopla a la materia adquiere más sentido.
9Aqúı y en lo que sigue (salvo que se especifique lo contrario) se seguirá lo hecho en (Marzola et al., 2018).
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S
(2)
GR ⊃

M2
P

1 + α2

∫
d4x

√
−ḡ
[
hµνEρσ

µνhρσ + α2ℓµνEρσ
µν ℓρσ

]
(2.12)

Si ahora se tiene en cuenta el término de potencial V (g, f ;βn), habrá que expandir al mismo

en términos de hµν y ℓµν . El procedimiento sobre cómo obtener el mismo se puede consultar con más

detalles en el Apéndice B de (Babichev et al., 2016b); el objetivo acá es motivar y entender la idea para

obtener un campo masivo (de spin-2) propagándose en un fondo curvo. Una vez hecha la perturbación

y expandiendo el potencial a orden cuadrático, el mismo resulta (ver ecuación (B.9) de (Babichev et al.,

2016b))

L(2)
V (h, ℓ) ⊃ h2 − hµνh

µν + ℓ2 − ℓµνℓ
µν + 2(hµνℓ

µν − hℓ) (2.13)

donde las cantidades sin ı́ndices representan la traza de los campos. Mediante la sustitución

hµν =
1

MP
(Gµν − αMµν) , (2.14)

ℓµν =
1

MP
(Gµν + α−1Mµν) (2.15)

es sencillo obtener que el término de interacción (potencial) resulta

L(2)
V (G,M) ⊃MµνM

µν −M2 (2.16)

De esta manera, y en términos de los campos Gµν y Mµν , la acción resulta

S(2) =

∫
d4x

√
ḡ

[
L(2)
GR(G) + L(2)

FP (M)− 1

MP
(Gµν − αMµν)T

µν(ψ)

]
(2.17)

donde se define el Lagrangiano de Fierz-Pauli según

L(2)
FP (M) ≡ L(2)

GR(M)−
m2

FP
4

(MµνM
µν −M2) (2.18)

Aqúı mFP es la masa de Fierz-Pauli, definida según mFP ≡ MP
√
β1 + 2β2 + β3. El hecho de que

mFP no dependa de β0 ni de β4 se puede interpretar de la siguiente manera: teniendo en cuenta que el

potencial V (g, f ;βn) involucra 5 βn’s, quizás la idea inmediata que surge es que dicha masa dependa

de β0, . . . , β4. Sin embargo, en vistas de la observación hecha en (1.66) y lo comentado posteriormente

alĺı, justamente los términos de potencial que involucran tanto β0 como β4 resultan constantes en las

ecuaciones de movimiento de las métricas, y por lo tanto se pueden (re)interpretar (o reabsorber) en

un término del tipo constante cosmológica. En lo que aqúı respecta, no se tendrá en cuenta ningún

término con constante cosmológica.
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A partir de la Ec.(2.17) se puede evidenciar cómo obtener un campo de spin-2 masivo propagándose

en un fondo curvo. Aqúı, el campo tensorial Mµν resulta el campo masivo (aquel que involucra un

término de masa, dado por (2.18)). De esta forma, se pudo obtener un campo de spin-2 no masivo

(dado por Gµν) junto con un campo masivo también de spin-2 (Mµν), dando entre ellos el conteo

correcto de g.l. que resultan 7 g.l. tal como era de esperar en la teoŕıa, correspondientes a un campo

masivo y no masivo de spin-2. A su vez, en (2.17) se ha tenido en cuenta la interacción con la materia,

donde se puede ver que el último término alĺı no resulta otro más que hµνTµν , en completa consistencia

con lo dicho anteriormente que solamente la métrica gµν se acopla a la materia. Más aún, y teniendo

en cuenta que para α→ 0 se recupera GR, se puede ver que el acople con la materia del campo masivo

se encuentra suprimido por un factor α con respecto al acoplamiento del campo no masivo.

Lo que resta por ver a continuación es que efectivamente la acción (2.17) describe un campo de

spin-2 propagándose en un fondo curvo. Hasta el momento se ha demostrado que se obtienen dos

campos tensoriales, uno masivo y otro no masivo, pero aún queda por evidenciar que efectivamente

se obtiene un campo masivo de spin-2 propagándose en un fondo curvo, tal como ocurre por ejemplo

para un campo de Proca o de Klein-Gordon en el caso vectorial y escalar, respectivamente. Para ello

se define un nuevo fondo Gµν según

Gµν = ḡµν +
Gµν

MP
(2.19)

En términos de este nuevo fondo, y dejando de lado el término de interacción, la acción resulta

(Babichev et al., 2016a,b; Marzola et al., 2018)

Sspin-2 =M2
P

∫
d4x

√
−GR(G) +

∫
d4x

√
−G L(2)

FP (M) (2.20)

y por ende la teoŕıa exhibe un campo masivo de spin-2, Mµν , propagándose en un fondo curvo

genérico dado por Gµν . A continuación se estudiará la ecuación de movimiento de dicho campo y

ciertas consecuencias fenomenológicas al respecto.

2.3.1. Ecuación de movimiento y consecuencias fenomenológicas

Variando la acción (2.20) con respecto a Mµν se obtiene la EOM correspondiente para el campo

de spin-2 masivo, dada por (Marzola et al., 2018)

Eρσ
µνMρσ −RMµν + GµνR

ρσMρσ +
1

2
m2

FP(Mµν − GµνM) = 0 (2.21)

donde M es la traza, con los ı́ndices que suben y bajan a partir de Gµν . Más aún, la ecuación se

puede simplificar más si se tienen en cuenta las Identidades de Bianchi, dadas en este caso por
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∇µMµν = ∇νM −→ ∇µ∇νMµν = □M (2.22)

Sustituyendo esto último en (2.21), se obtiene que

M = 0 =⇒ ∇µMµν = 0 (2.23)

Es decir, el campo Mµν resulta sin traza y transverso, tal como ocurre con las ondas gravitacionales.

Sin embargo, es remarcable notar que en el caso masivo, Mµν , la transversalidad y no-traza surgen

naturalmente a partir de las Id. de Bianchi y no a partir de una elección de gauge. En lo que sigue a

continuación se estudiará la dinámica de Mµν mediante la solución a las EOM en un fondo del tipo

FLRW, Gµν = diag(−1, a2(t), a2(t), a2(t)) con t el tiempo cósmico. La EOM en un fondo de FLRW

resulta10 (Comelli et al., 2012b; Lagos and Ferreira, 2014; Marzola et al., 2018)

M̈ij + 3HṀij −∆Mij +m2
FPMij = 0 (2.24)

Aqúı y en lo que resta de la tesis, el punto indica derivada con respecto al tiempo cósmico t. A

partir de esta ecuación vale la pena remarcar ciertas cuestiones:

⋄ La estructura de la ecuación es la misma que la de, por ejemplo, un campo escalar, con el término

con derivada segunda, el término de fricción de Hubble, un término con gradiente, y el término de

masa. La diferencia recae en la estructura tensorial que aqúı se presenta con los dos ı́ndices.

⋄ De los 10 g.l. presentes en un principio en el tensor simétrico Mµν , solamente Mij aparece en la

EOM. Esto es aśı debido a la transversalidad y la traza nula del mismo, las cuales eliminan las

componentes M0ν y M i
i respectivamente. Por ende, la EOM (2.24) describe la dinámica de los 5 g.l.

de Mµν .

Para la solución a la EOM se considerarán solamente los modos homogéneos, despreciando el

término con gradiente. La ecuación diferencial a resolver, entonces, tiene la forma

f̈ + pHḟ +m2f = 0 (2.25)

con H = H0a
−q = 1/qt con q y p constantes numéricas. La solución a este tipo de ecuaciones viene

dada por
10Cabe remarcar que para obtener la EOM correcta, esto es con el factor 3H en el término de fricción de manera que

el campo Mij se comporte como materia, se utilizó una separación entre fondo y perturbaciones según gµνdx
µdxν =

−dt2 + a(t)2(δij + 2hij)dx
idxj para la métrica gµν y fµνdx

µdxν = −dt2 + a(t)2(δij + 2γij)dx
idxj para fµν .
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f(t) = a(q−p)/2
(
CJJ p

2q
− 1

2
(mt) + CY Y p

2q
− 1

2
(mt)

)
(2.26)

donde Jn(x) e Yn(x) son funciones de Bessel y CJ y CY son constantes arbitrarias. Considerando

que el campo oscila rápidamente, mt≫ 1, la solución para el caso de spin-2 resulta

Mij =

√
2ρDM

ma(t)3/2
cos (mt+Υ)εij (2.27)

donde se ha renombrado mFP ≡ m para no cargar la notación11. A partir de (2.27) es necesario

remarcar ciertos comentarios pertinentes:

• La amplitud del campo se ha fijado de manera tal que la densidad de enerǵıa de la ULDM de spin-2,

Mij , coincida con la densidad de enerǵıa observada hoy en d́ıa, ρDM. Υ es una fase aleatoria.

• Cuando se dice que el campo oscila rápidamente, mt ≫ 1, lo que se está diciendo es que en la

EOM (2.24) se puede despreciar el término con el parámetro de Hubble, 3HṀij , y por lo tanto

la ecuación resulta la misma que la de un oscilador armónico, motivo por el cual el campo oscila.

Cosmológicamente, se pedirá que el campo empiece a oscilar en radiación, por lo tanto se pedirá que

m > Heq para que se comporte como materia (Marsh, 2016).

• La densidad de enerǵıa y presión de la DM resultan ρDM ∼ ṀijṀ
ij + m2MijM

ij y PDM ∼

ṀijṀ
ij −m2MijM

ij respectivamente. Promediando temporalemente (cosmológicamente), se obtie-

ne que ṀijṀ
ij = m2MijM

ij y por lo tanto, en promedio, PDM ≃ 0 y ρDM ∼ a(t)−3, comportándose

entonces como materia.

• εij es una matriz angular cuadrupolar con norma 1, traza nula y simétrica, que da cuenta del caracter

tensorial de Mij .

La solución (2.27) es totalmente análoga y reminiscente a aquella obtenida, por ejemplo, para un

campo escalar de ULDM, un axión, o una ALP, en un fondo de FLRW. Sin embargo, la diferencia

más caracteŕıstica y principal aqúı es el hecho de que el campo posee una estructura tensorial que

viene caracterizada por el tensor εij . A continuación se explicará con más detalle cómo resulta dicha

estructura.

Descomposición angular de un campo de spin-2

Siguiendo lo hecho en (Maggiore, 2007)12, se puede descomponer cualquier tensor simétrico, sin

traza y constante en términos de armónicos esféricos según εij :=
∑

m amY2m
ij donde se define Y 2m :=

11De aqúı en adelante se utilizará esta notación para dejar la misma lo más sencilla posible.
12Ver caṕıtulo 3.5.2 de dicha referencia para más detalle al respecto.
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Y2m
ij ninj con Y2m(n̂) siendo los armónicos esféricos reales, y n̂ := (x, y, z) el versor coordenado de

forma tal que x2 + y2 + z2 = 1. Más aún, se normalizarán los armónicos esféricos según

Y 2,−2 =
√
2xy, Y 2,2 =

(
x2 − y2

)
/
√
2 ,

Y 2,−1 =
√
2yz, Y 2,1 =

√
2zx ,

Y 2,0 =
(
x2 + y2 − 2z2

)
/
√
6 . (2.28)

De esta manera, las matrices multipolares Y2m
ij resultan

Y2,−2 =
1√
2


0 1 0

1 0 0

0 0 0

 , Y2,2 =
1√
2


1 0 0

0 −1 0

0 0 0

 ,

Y2,−1 =
1√
2


0 0 0

0 0 1

0 1 0

 , Y2,1 =
1√
2


0 0 1

0 0 0

1 0 0

 ,

Y2,0 = − 1√
6


1 0 0

0 1 0

0 0 −2

 , (2.29)

Se puede ver que las cinco matrices resultan sin traza tal como era de esperar. Utilizando esta

descomposición, la matriz de polarización εij , en términos de los parámetros am, se escribirá entonces

como

εij =
1√
2


a2 − a0/

√
3 a−2 a1

a−2 −a2 − a0/
√
3 a−1

a1 a−1 2a0/
√
3

 . (2.30)

De esta manera se obtiene que los 5 g.l. del tensor masivo Mij quedan codificados en los parámetros

am con m = 0,±1,±2. Sin embargo, se puede realizar una reparametrización según

a−2 := a× := εT sinχ , a2 := a+ := εT cosχ ,

a−1 := aL := εV sin η , a1 := aR := εV cos η ,

a0 := aS := εS , (2.31)

donde εS2 + εV
2 + εT

2 = 1. Esta parametrización viene caracterizada por dos variables angulares,

χ y η, y los tres parámetros εS, εV y εT. Esta descomposición permite reescribir al tensor εij según
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εij =
1√
2


εTcχ − εS/

√
3 εTsχ εVcη

εTsχ −εTcχ − εS/
√
3 εVsη

εVcη εVsη 2εS/
√
3

 , (2.32)

donde se ha usado la notación breve sx := sinx, cx := cosx. Mediante esta parametrización, la

descomposición en componentes escalares, vectoriales y tensoriales resulta más evidente y sencilla de

manejar. Cabe destacar, no obstante, que dicha separación de las componentes depende de la elección

del sistema de referencia. Esta definición es una conveniencia realizada principalmente para entender

y visualizar la interacción de las cinco componentes del tensor con los sistemas f́ısicos relevantes para

esta tesis, tales como son los púlsares y ondas gravitacionales. Precisamente esta descomposición per-

mite estudiar y comparar con los casos estudiados con más detalle en la literatura como son el escalar

y vectorial. Por notar y citar solamente algunas de sus caracteŕısticas principales, si por ejemplo se

considera que la componente tensorial es la única presente (es decir εS = εV = 0), se obtiene una

descomposicón análoga a los modos TT de las ondas gravitacionales. De la misma manera, si ahora se

considera εV = εT = 0, solamente la componente escalar entrará en juego, presente únicamente en las

componentes diagonales de εij .

En resumen, se tiene un campo masivo de spin-2 dado por (2.27), cuya evolución es análoga a la de

un campo escalar ultraliviano o un axión, donde la diferencia principal reside en su carácter tensorial

del mismo, caracterizado por la matriz angular εij (2.32). Lo que resta por ver, aún, es cómo interactúa

el campo con la materia. Incorporando dicha interacción a (2.20), se agrega un término que resulta

Sint =
α

2MP

∫
d4x

√
−GMµνT

µν(ψ) (2.33)

Este término no es más que el último término presente en la acción (2.17). En este sentido se dice

que α cuantifica la interacción del campo de spin-2 con la materia. Uno de los objetivos principales de

esta tesis es mostrar las cotas halladas sobre este parámetro utilizando diversos objetos y fenómenos

f́ısicos. Cabe remarcar que, a pesar que α resulta el parámetro de acoplamiento, en este tipo de teoŕıas

surge naturalmente y no se necesita agregar a mano. Esta observación resulta de sumo interés ya

que las teoŕıas de bigravedad, y en particular el modelo bajo estudio en esta tesis, permite estudiar

y poner a prueba tanto gravedad como modificaciones a ella a la vez, particularmente materia oscura13.

13Más aún, en el caṕıtulo 5 se verá que el parámetro α cuantifica la interacción del potencial de Yukawa, emergiendo

este como una modificación al potencial gravitatorio como una quinta fuerza.

53
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La idea a continuación, y a modo de cierre de caṕıtulo, será brindar ciertos números y escalas del

campo de spin-2 que resultarán relevantes para los caṕıtulos siguientes.

♢ El valor que se tomará como normalización con respecto a la densidad de enerǵıa observada en el

sistema solar, ρDM, será de ρDM = 0.3 GeV/cm3 (Evans et al., 2019; McKee et al., 2015; Piffl et al.,

2014).

♢ El campo permanecerá homogéneo en escalas menores a λdB, dada por

λdB ≡ 2π/mv ≃ 4 kpc
(
10−3

V

)(
10−23eV

m

)
(2.34)

donde V es la velocidad virial en el halo, la cual - para la Vı́a Láctea - se toma V0 ∼ 10−3.

♢ El campo permanecerá coherente en el tiempo siempre y cuando tcoh > tobs, donde tcoh es el tiempo

de coherencia dado por

tcoh := π/mv2 ∼ 106yr
(
10−3

V

)2(
10−23eV

m

)
(2.35)

con tobs el tiempo de observación. Si no fuese aśı, entonces la dependencia temporal en (2.27) debeŕıa

modificarse.

Recapitulando, hasta aqúı se ha constrúıdo una teoŕıa masiva de spin-2 bien comportada, pro-

pagándose en un fondo curvo genérico, interactuando con los campos de materia. Más aún, se ha

mostrado que es posible extender estos resultados a un modelo de materia oscura ultraliviana (ULDM)

tensorial, y se ha visto cuáles son sus caracteŕısticas más relevantes. En lo que resta de la tesis, el

objetivo será poner cotas al modelo. Más precisamente, se estudiará cuáles son los posibles valores

del parámetro de acoplamiento α como función de la masa de la materia oscura, y cuáles son sus co-

tas. Para eso se utilizarán púlsares binarios, pulsar timing array, y ondas gravitacionales. El siguiente

caṕıtulo estará dedicado el primero de estos: púlsares binarios.
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Púlsares binarios

Los púlsares binarios (BPs) son excelentes objetos - astrof́ısicos - para testear y estudiar materia

oscura (ultraliviana). Dichos objetos funcionan como faros de la naturaleza dada su incréıble estabi-

lidad en el peŕıodo orbital. Sus parámetros orbitales se pueden medir con suma precisión, por lo que

estudiando pequeñas variaciones de los mismos, es posible poner cotas a distintos modelos alternativos

de gravedad. En este caṕıtulo se estudiará cómo se ve modificado el peŕıodo orbital junto con otros

parámetros orbitales de un sistema de púlsares binarios cuando el mismo se encuentra en presencia de

un campo de ULDM de spin-2. En particular, las oscilaciones (coherentes) del campo de DM perturban

la dinámica del sistema binario conduciendo aśı a efectos seculares1 para ciertos valores de la masa

del campo que resuena con dicho sistema. Para el rango de masas 10−23 eV ≲ m ≲ 10−17 eV se pudo

acotar el acople universal de la DM con la materia ordinaria al orden de α ≃ 10−5. Los resultados

de este caṕıtulo son fruto del trabajo "Binary Pulsars as probes for Spin-2 Ultralight Dark Matter",

(Armaleo et al., 2020a).

El objetivo en este caṕıtulo es mostrar y explicar cómo los BPs pueden ser utilizados para poner

cotas al modelo de ULDM de spin-2. Para ello, primero se hará un breve repaso sobre cómo los púlsares

son objetos de sumo interés y relevantes para testear modelos de gravedad, en particular para testear

modelos de ULDM. Posteriormente, se proseguirá a explicar en detalle cómo resultan las cotas para el

modelo de ULDM de spin-2 presentado en el caṕıtulo anterior.

1Dada una serie temporal, en contraposición con una variación periódica, una variación secular es aquella la cual es

de larga duración con respecto al peŕıodo orbital del sistema binario, que se amplifica con el tiempo de observación.
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3.1. Púlsares binarios y ULDM

Un púlsar es una estrella de neutrones que emite radiación electromagnética de sus polos magnéticos,

que rota extremadamente rápido y con suma estabilidad (ver Fig. 3.1). Precisamente debido a esta

estabilidad en el peŕıodo, los púlsares funcionan como faros en el Universo. En 1974, R.A. Hulse y J.H.

Taylor descubrieron el primer sistema binario formado por un púlsar y una estrella de neutrones (Hulse

and Taylor, 1975) el cual les valió un premio Nobel en 1993. La importancia de dicho descubrimiento

recae en el hecho de que los sistemas binarios debeŕıan perder enerǵıa en forma de emisión de GW,

tal como lo predice GR; el sistema binario observado por Hulse y Taylor (también conocido como2

PSR B1913+16, PSR J1915+1606 o bien PSR 1913+16) fue el primero donde se observó que la órbita

de dicho sistema decrećıa con el tiempo debido a la emisión de GW, en completa concordancia con

las predicciones de GR (Weisberg and Taylor, 2005). De esta manera se terminaba de abrir un nuevo

paradigma para poner a prueba GR mediante tests de mediciones extremadamente precisas arrojadas

por las observaciones de púlsares, particularmente de púlsares en sistemas binarios.

La Fig. 3.1, presentada en (Wex, 2014), muestra dos de las caracteŕısticas más principales de los

púlsares: su peŕıodo de rotación P y su variación temporal Ṗ debida a la pérdida de enerǵıa. Los

púlsares cuya variación temporal es extremadamente pequeña (aquellos denominados como millise-

conds pulsars) resultan objetos sumamente estables y por ende funcionan como relojes para realizar

tests de gravedad mediante astronomı́a de precisión. Estos "relojes" se utilizan mediante el conteo de

los pulsos que arriban de los púlsares mediante su emisión electromagnética. Midiendo exactamente el

tiempo de arribo de la señal de los pulsos de radio emitidos por los púlsares, se pueden medir diversos

efectos gravitacionales y aśı poner a prueba distintas teoŕıas. La técnica utilizada donde se miden estos

pulsos de radio y se ajusta la señal mediante cierto modelo se la conoce como pulsar timing. Una breve

descripción de esta técnica se detalla en el recuadro debajo, y se recomienda consultar la bibliograf́ıa

(Lorimer and Kramer, 2004) para más detalles al respecto3.

Pulsar timing

La idea de la técnica de pulsar timing es aprovechar la estabilidad de los (milliseconds) púlsares

para extraer la mayor información posible a partir de las observaciones temporales de los pulsos

que arriban del mismo. La técnica consiste, en esencia, en medir los tiempos de arribo de los pulsos

en los radiotelescopios terrestres y ajustar la señal recibida con un modelo apropiado para dichos

2La nomenclatura hace referencia a la posición del púlsar en el cielo, denotando la ascensión recta y la declinación.
3Ver caṕıtulo 8 de dicha referencia.
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Figura 3.1: Gráfico de la variación del peŕıodo orbital P con respecto al tiempo, como función de su peŕıodo

(medido en segundos). Cada uno de los puntos representa un púlsar, donde los puntos redondeados en rojo son

púlsares que se encuentran en sistemas binarios. (crédito de la imágen: (Wex, 2014)).

pulsos. Cabe mencionar que dado que las señales que se reciben en los detectores son muy débiles

(en comparación con el ruido generado por el medio interestelar), lo que se hace a la hora de realizar

los análisis es integrar los perfiles de los pulsos recibidos durante un peŕıodo de tiempo prolongado.

A su vez, hay que mencionar que mientras la forma de los pulsos individuales en general es distinta

para cada pulso, los perfiles integrados poseen una gran estabilidad en la frecuencia e intensidad.

Este procedimiento se lo conoce como folding y es la esencia de la técnica. Mediante un análisis

geométrico del tiempo de llegada (TOA por sus siglas en inglés) de los pulsos, caracterizando

las interferencias del medio interestelar y teniendo en cuenta las correcciones relativistas, permite

definir los parámetros caracteŕısticos de la órbita del púlsar. Debido a que los pulsos poseen cierto

ancho, el TOA se refiere a cierto punto fiducial del perfil de la señal.

Dado que los perfiles de los pulsos, en lineas generales, presentan formas estables para toda

frecuencia observada, los TOA se pueden determinar de manera precisa mediante correlaciones

(cross-correlations) entre los perfiles observados; dado un template T (t) para los perfiles, se podrá

describir al perfil P(t) según
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P(t) = a+ bT (t− τ) +N (t) (3.1)

donde a es un offset arbitrario y b es un factor de escaleo, y se ha introducido el ruido co-

rrespondiente, N (t) (notar que impĺıcitamente se está asumiendo que el perfil P(t) es una función

reescaleada y corrida del template T (t)). El corrimiento temporal entre el perfil y el template, τ ,

otorga el TOA relativo entre el punto fiducial del template y el tiempo inicial de observación.

Con el fin de minimizar el ruido N (t) en (3.1), idealmente se construye un template que sea

libre de ruido tal como, por ejemplo, representar el perfil de los pulsos como suma de Gaussianas;

este método resulta adecuado para observaciones cuyas mediciones presentan perfiles que cambien

su forma con la frecuencia. Para producir un template a partir de una frecuencia adicional obser-

vada, solamente las amplitudes y anchos relativos de las Gaussianas se ajustarán, mientras que su

posición se deja fija. Dado que el punto fiducial es el mismo para todas las frecuencias, es posible

comparar los TOA para diferentes frecuencias de una manera no sesgada.

Para calcular expĺıcitamente el TOA de los distintos púlsares, es necesario tener en cuenta

todos los posibles efectos que podŕıan estar produciendo variaciones en el tiempo de llegada del

mismo a los relojes terrestres. Dado que se utilizan telescopios ubicados en la Tierra la cual gira

alrededor del Sol, previo a analizar las mediciones de los TOA en los relojes (tiempo de arribo

topocéntrico), se deben referir los mismos al centro de masa del Sistema Solar. Es decir, cambiar

del frame no inercial de la Tierra al frame SSB (Solar System Barycenter por sus siglas en inglés)

que se puede aproximar por un frame inercial. Luego, también, se deberán tener en cuenta los

efectos producidos por la aceleración relativa entre el SSB y los púlsares, como aśı también los

efectos relativistas producidos por objetos masivos dentro del Sistema Solar. El TOA del SSB,

tSSB, teniendo en cuenta todos los efectos posibles se podrá escribir entonces como

tSSB =ttopo + tcorr −∆D/f2 +∆R⊙ +∆S⊙ +∆E⊙

+∆RB ++∆SB +∆EB +∆AB (3.2)

donde ttopo es el TOA topocéntrico, tcorr da cuenta de las correcciones intŕınsecas a los TOA

topocéntricos de los relojes, ∆D/f2 brinda las correcciones correspondientes a la dispersión debido

al medio interestelar, ∆R⊙ es el Römer time delay, ∆S⊙ es el Shapiro time delay y ∆E⊙ el Einstein

time delay (ver sección 8.2.2 de (Lorimer and Kramer, 2004) para ahondar al respecto). El segundo

renglón de (3.2) corresponde a los efectos en el TOA cuando el pulsar se encuentra en un sistema

binario, los cuales resultan en un Römer delay ∆RB debido a la órbita binaria, un Shapiro y
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Einstein delay ∆SB y ∆EB, respectivamente, debidos al campo gravitacional del objeto binario,

y un término ∆AB debido a la aberración del movimiento orbital.

Más espećıficamente, la técnica de pulsar timing se utiliza para determinar ciertos parámetros

orbitales de los púlsares binarios, particularmente su peŕıodo. En este caṕıtulo se ahondará sobre cotas

al modelo de ULDM de spin-2 mediante la utilización de los datos obtenidos a partir de esta técnica.

Cuando un sistema binario se encuentra en presencia de un campo (de DM), los parámetros orbitales

se ven modificados. En particular, el campo de ULDM considerado en esta tesis se encuentra oscilando

con una frecuencia dada por su masa, ec.(2.27); precisamente esta oscilación perturba la dinámica

orbital del sistema, y en el caso en que la frecuencia de oscilación sea un múltiplo (entero) de la

frecuencia orbital, el sistema entrará en resonancia generando efectos seculares los cuales son medibles

con los datos actuales. Esta es la idea principal y novedosa presentada en (Blas et al., 2017), estudiando

el caso en donde el sistema binario entra en resonancia con un campo de ULDM de spin-0. La adaptación

y descripción para el caso de spin-2 es lo que compete a este caṕıtulo de la tesis, haciendo foco en la

interacción entre el campo de ULDM y la materia ordinaria que constituyen las estrellas, púlsares, etc.

El comportamiento para el campo de spin-2 de ULDM vendrá dado en términos de (2.27), donde en

este caso como se estudiará lo que sucede en escalas astrof́ısicas, el factor de escala a(t) = 1. Vale la

pena notar que en las escalas relevantes para los púlsares binarios, la solución (2.27) será válida pero

con la salvedad de que la densidad de enerǵıa de ULDM ρDM y la fase Υ vendrán dadas en términos

de su valor local, el cual dependerá espećıficamente de la locación espacial del sistema binario dentro

del halo de ULDM. Es decir, las escalas que se están considerando podŕıan ser del mismo orden que

λdB, Ec.(2.34), y por lo tanto los gradientes podŕıan llegar a ser relevantes. Sin embargo, en lo que

sigue se trabajará a orden lineal en los gradientes (que serán de orden λ−1
dB), despreciando términos de

orden superior en las derivadas del campo de ULDM. A continuación se desarrollará de manera más

expĺıcita cómo resulta la interacción entre el campo de ULDM y el sistema binario en cuestión.

Interacción ULDM de spin-2 - Sistema binario

La interacción entre el campo de ULDM y la materia viene dada por (2.33),

Sint := λ

∫
d4x

√
−gMµνT

µν , (3.3)

donde se ha definido, para acortar la notación, λ := α/2MP. Aqúı Tµν es el EMT de la mate-

ria ordinaria, que en este caso representa a los BPs. Para poder dilucidar cómo afecta la DM a los

parámetros orbitales de los BPs y poder estudiar el modelo de forma fehaciente, es menester desarrollar

el EMT del sistema en términos de cantidades observables. Para eso lo que se hará será aproximar
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a cada estrella en el sistema binario como una part́ıcula puntual de masa MA, enerǵıa EA, posición

x⃗A y cuadri-velocidad uµA, donde el sub́ındice A = [1, 2] representa a cada una de las dos estrellas del

sistema binario. El EMT del sistema binario vendrá dado entonces por

Tµν = E1u
µ
1u

ν
1δ(x⃗− x⃗1) + E2u

µ
2u

ν
2δ(x⃗− x⃗2) . (3.4)

Dado que las estrellas son no-relativistas, es posible aproximar EA ≃ MA y uiA = viA, con viA :=

dxiA/dt siendo la velocidad del cuerpo A. Con este EMT, el Lagrangiano de interacción para cada

estrella se escribe según LA
int = λMAMµνu

µ
Au

ν
A, por lo que el Lagrangiano de interacción total resulta

Lint = λMT

[
M00 + 2M0iV

i
CM +MijV

i
CMV

j
CM

]
+ λµvivjMij , (3.5)

donde se ha definido MT como la masa total del sistema binario (MT := M1 +M2), µ la masa

reducida (µ :=M1M2/MT ) y vi := vi1−vi2 es la velocidad relativa de las estrellas. A su vez, la velocidad

del centro de masa del sistema viene dada por V i
CM := (M1v

i
1 +M2v

i
2)/MT . Aqúı es necesario notar

que, dado que el campo es transversal (∂µMµν = 0):

∂0M0j = −∂iMij =⇒ M0i es de primer orden en gradientes de Mij .

∂0M00 = −∂iM0i =⇒ M00 es de segundo orden en gradientes de Mij .

Teniendo la interacción entre la ULDM y el sistema binario, lo que se hará a continuación será

calcular y estudiar cómo resultan los efectos seculares observables en los parámetros del BP.

3.2. Efectos seculares

Para calcular los efectos seculares sobre los parámetros orbitales se usará el método de las órbitas

osculantes4, donde el objetivo será estudiar cómo se ven modificados los seis parámetros orbitales

Keplerianos, descriptos por las ecuaciones planetarias de Lagrange, en términos de la perturbación

generada por el campo de DM. Antes de calcular expĺıcitamente cómo resulta la perturbación a la

aceleración relativa entre las dos estrellas, que vendrá parametrizada en términos de la fuerza (por

unidad de masa) Fi según v̇i → v̇i + δv̇i := v̇i + Fi, lo primero que se hará será reportar cómo son las

ec. Planetarias de Lagrange, siguiendo lo hecho y la notación de (Blas et al., 2020; López Nacir and

Urban, 2018).

4Una órbita osculante es la órbita Kepleriana que describiŕıa un objeto en presencia de un cuerpo central si no hubiera

perturbaciones.
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Ec. Planetarias de Lagrange

Las ec. Planetarias de Lagrange vienen dadas por (Danby, 1970)

ȧ

a
=

2

ωb

{
e sin θ

aә
Fr +

ә
r
Fθ

}
, (3.6a)

ė =
ә
aωb

{(cos θ + cosE)Fθ + sin θFr} , (3.6b)

Ω̇ =
r sin(θ + ω)

a2ωbә sin ι
Fz , (3.6c)

ι̇ =
r cos(θ + ω)

a2ωbә
Fz , (3.6d)

ϖ̇ =
ә

aeωb

{[
1 +

r

aә2
]
sin θFθ − cos θFr

}
+ 2 sin2 (ι/2) Ω̇ , (3.6e)

ϵ̇1 = − 2r

a2ωb
Fr + (1− ә) ϖ̇ + 2ә sin2 (ι/2) Ω̇ , (3.6f)

Aqúı los seis elementos orbitales (independientes) son: a el semieje mayor5, e la excentricidad

orbital, Ω la longitud del nodo ascendente, ι el ángulo de inclinación del plano orbital con

respecto al plano de referencia del cielo, ϖ = ω + Ω la longitud del periastro (con ω el argumento

del periastro) y t0 el tiempo del periastro. A su vez, se define ϵ1 = ωb(t− t0) +ϖ −
∫
dt ωb donde

ωb =
√
GMT /a3 = 2π/Pb es la frecuencia orbital del sistema binario, con Pb su peŕıodo orbital. E

es la anomaĺıa excéntrica, definida según ωb(t − t0) = E − e sinE. Asimismo se define ә :=
√
1− e2.

El punto sobre las cantidades denota derivadas con respecto al tiempo t. Se ha utilizado, a su vez,

coordenadas cartesianas (x, y, z) y cilindricas (r, θ, z) en el plano orbital (ver Fig. 3.2) de manera que

r⃗ := r̂ = r cos θ x̂+ r sin θ ŷ con θ la posición angular de M1 con respecto a la dirección del pericentro,

x̂, y donde se ha descompuesto la perturbación según F⃗ = Frr̂+Fθθ̂+Fz ẑ (una expresión expĺıcita de

las componentes de F⃗ , o de cualquier vector genérico, en las coordenadas (X,Y, Z) se puede ver con

más detalle en (Poisson and Will, 2014)). Teniendo las expresiones para los parámetros orbitales, dados

por las ec. Planetarias de Lagrange, la idea a continuación será calcular cómo resultan las componentes

de la fuerza en el caso en que la perturbación venga dada por el campo de ULDM de spin-2, Ec. (3.5).

Para calcular la perturbación, el punto de partida será la ecuación (3.5). Definiendo la distancia

relativa entre las estrellas según ri := ri1 − ri2, la idea es calcular cómo resulta la perturbación a la

aceleración relativa entre ambas, r̈i = v̇i → v̇i + δv̇i := v̇i + Fi. La órbita sin perturbar no es otra cosa

más que la fuerza gravitatoria (por unidad de masa) del sistema de dos cuerpos, v̇i = −GMT ri/r
3 con

G := 8π/M2
P la constante de Newton. La perturbación a dicha aceleración vendrá dada por la EOM

calculada a partir de (3.5). Es decir, a la fuerza gravitatoria del sistema de dos cuerpos comentada
5No confundir con el factor de escala a(t).
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Figura 3.2: Descripción de las órbitas Keplerianas en términos de los elementos orbitales vistos en el sistema

de referencia fundamental (X,Y, Z). Se muestran, a su vez, los sistemas de referencias orbitales cartesianos

(x, y, z) y polares (r, θ, z), centrados en M2 por conveniencia.

previamente, se le agrega un término extra que resulta

v̇i + 2λ
(
Mij v̇

j + Ṁijv
j
)
+
GMT

r3
ri = 0 , (3.7)

De esta manera la expresión para la perturbación - que viene parametrizada en términos de la

fuerza por unidad de masa Fi - resulta

Fi = 2λ

[
GMT

r3
Mijr

j − Ṁijv
j

]
. (3.8)

En este punto vale la pena notar dos cosas:

◦ Mediante la definición de la distancia relativa ri := ri1 − ri2, las ecuaciones para el centro de masa

del sistema binario se desacoplan de aquellas que describen el movimiento relativo.

◦ La perturbación en el centro de masa oscila acorde al campo de ULDM y promedia a cero en escalas

de tiempo mucho mayores que el peŕıodo de oscilación y, por ende, no produce ningún efecto secular.

Con la expresión para las componentes de la fuerza, (3.8), el próximo paso es calcular expĺıcitamente

cómo resulta este en términos de los parámetros orbitales y de los parámetros de la teoŕıa de spin-2.

Para eso se utilizará la expresión (2.27), teniendo en cuenta que rj = r r̂j y vj = ṙ r̂j + rθ̇ θ̂j , donde

se ha tomado el sistema de referencia del sistema binario en coordenadas polares (r, θ, z) con (r̂, θ̂, ẑ)

denotando los versores polares. La fuerza Fi resulta entonces
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Fi = 2λ
√
2ρDM εij

[
GMT

r3
rj

m
cos (mt+Υ) + vj sin (mt+Υ)

]
(3.9)

El factor que acompaña al coseno se puede reescribir en términos de la frecuencia orbital ωb y el

semieje mayor a a partir de la definición del periodo obital

Pb :=
2π

ωb
= 2π

√
a3

GMT
, (3.10)

En cuanto al factor que acompaña al seno, es decir vj , la idea será reescribir ṙ y rθ̇ en términos de los

parámetros orbitales. Para ello serán útiles las relaciones otorgadas a partir de las órbitas Keplerianas

(ver recuadro Órbitas de Kepler).

Órbitas de Kepler

A continuación se detallan ciertas relaciones útiles que surgen a partir de las órbitas Keplerianas:

r =
a(1− e2)

1 + e cos θ
, θ̇ =

ωb a
2
√
1− e2

r2
,

ṙ =
a(1− e2)

(1 + e cos θ)2
e sin θ θ̇ =

ωb ae sin θ√
1− e2

De esta manera la perturbación se puede escribir entonces como

Fi =
√
2κ
{
ωb

m

(a
r

)2
r̂j cos(mt+Υ)

+
1

ә

[
r̂je sin θ + θ̂j (1 + e cos θ)

]
sin(mt+Υ)

}
εij , (3.11)

donde se definió κ := 2λaωb
√
ρDM (recordar que, a su vez, se utilizó la definición ә :=

√
1− e2).

Tal como se puede ver a partir de (3.11), la perturbación causada por la ULDM sobre el sistema

binario oscila. Sin embargo, tal como se ha mostrado en (Blas et al., 2020, 2017; López Nacir and Urban,

2018), si la frecuencia de oscilación del campo (dada por su masa m) es algún múltiplo entero de la

frecuencia orbital ωb del sistema binario, esto es Nωb con N ∈ N, entonces el sistema experimentará

efectos seculares producidos gracias a la resonancia en las perturbaciones. Para ver cómo resultan

estos efectos seculares sobre los parámetros orbitales del sistema binario, el primer paso es obtener

una expresión expĺıcita para estos parámetros como función del tiempo, que estarán dados por las

ec. Planetarias de Lagrange. En lo que sigue del texto se hará el cálculo expĺıcito para uno de estos

parámetros, el semieje mayor a; las ecuaciones para los demás parámetros se pueden obtener de manera

análoga, y los resultados de estos se pueden consultar en el Apéndice A. La variación del semieje mayor

veńıa dada por (3.6a),
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CAPÍTULO 3

ȧ

a
=

2

ωb

{
e sin θ

aә
Fr +

ә
r
Fθ

}
,

El objetivo, entonces, es escribir de manera expĺıcita las componentes polares de Fi a partir de

(3.11). Para eso se descompondrá al tensor de polarización εij según (2.32), definido en el mismo

sistema de referencia orbital que la fuerza, el cual se escrib́ıa según

εij =
1√
2


εTcχ − εS/

√
3 εTsχ εVcη

εTsχ −εTcχ − εS/
√
3 εVsη

εVcη εVsη 2εS/
√
3

 ,

Con esta descomposición en mente, lo que resta hacer es calcular las contracciones del tensor de

polarización εij con los versores r̂i y/o θ̂i (y, asimismo, con ẑi). Por completitud, será relevante recordar

que r̂ = (cos θ, sin θ, 0), θ̂ = (− sin θ, cos θ, 0) y ẑ = (0, 0, 1). Haciendo las contracciones pertinentes, es

sencillo ver que las mismas dan

εij r̂
ir̂j ∝ εTcχ−2θ − εS/

√
3 , (3.12a)

εij r̂
iθ̂j ∝ εTsχ−2θ , (3.12b)

εij θ̂
iθ̂j ∝ −εTcχ−2θ − εS/

√
3 , (3.12c)

εij r̂
iẑj ∝ εVcη−θ , (3.12d)

εij θ̂
iẑj ∝ εVsη−θ , (3.12e)

donde el factor de proporcionalidad que se ha omitido es 1/
√
2, y se ha usado la notación abreviada

cx := cosx, sx := sinx. Con estas contracciones a mano, las componentes de la fuerza se pueden

expresar de la siguiente manera:

Fr = κ
{
ωb

m

(a
r

)2 [
εTcχ−2θ −

εS√
3

]
cmt+Υ +

1

ә

[
εTsχ−2θ + eεTsχ−θ − e

εS√
3
sθ

]
smt+Υ

}
, (3.13a)

Fθ = κ
{
ωb

m

(a
r

)2
[εTsχ−2θ] cmt+Υ − 1

ә

[
εTcχ−2θ + eεTcχ−θ +

εS√
3
(1 + ecθ)

]
smt+Υ

}
, (3.13b)

Fz = κ
{
ωb

m

(a
r

)2
[εVcη−θ] cmt+Υ +

1

ә
[εVsη−θ + eεVsη] smt+Υ

}
. (3.13c)

Teniendo las componentes de la fuerza, el próximo paso es reemplazar las mismas en la expresión

para ȧ/a para luego estudiar, entonces, los efectos seculares. Es necesario notar que para poder estudiar

los efectos seculares, lo primero que debe hacerse es escribir ȧ/a como función del tiempo. Esto significa

que habrá que escribir a todos los parámetros que dependan del tiempo de manera expĺıcita. Para eso
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lo primero que se hará será reescribir la expresión de ȧ/a habiendo reemplazado las fuerzas Fr y Fθ,

y dejando de lado (pre)factores para simplificar la notación. Es decir, se hará foco solamente en la

dependencia temporal, por simplicidad (la expresión completa se puede consultar en el Panel 1 del

Apéndice A). Reemplazando dichas expresiones, se obtiene que

ȧ

a
∝ ωb

m

(a
r

)2
[εTsχ−2θ + e εTsχ−θ − e εSsθ] cmt+Υ

+
1√

1− e2

[
εTcχ−2θ + 2e εTcχ−θ + 2e εScθ + e2εTcχ + εS(1 + e2)

]
smt+Υ (3.14)

donde se utilizaron identidades trigonometricas para simplificar la expresión. Se puede ver que los

últimos dos términos del segundo renglón son constantes (no dependen del tiempo) por lo tanto no

entrarán en juego a la hora de estudiar las variaciones seculares. En cuanto a los otros términos, la

dependencia temporal vendrá dada de la mano de r y θ, junto con el semieje mayor a; para ver cómo son

dichas dependencias, junto con distintas combinaciones de estos parámetros, se hará uso expĺıcito de

las expresiones que figuran en el Apéndice A. A continuación se esbozará cómo es el procedimiento para

obtener la expresión final de ȧ/a, cuyo resultado completo se muestra en el Panel 2 del Apéndice A.

Tomando el primer término de (3.14), el mismo puede reescribirse como

(a
r

)2
εTsχ−2θ =

(a
r

)2
εT (sχc2θ − cχs2θ)

La dependencia temporal de c2θ y s2θ vendrá dada a partir de la expansión de Fourier en términos

de funciones de Bessel de sin θ cos θ = B̃0+
∑
B̃n(ne) sin(nωbt) (ver Apéndice A). Utilizando las órbitas

de Kepler, es fácil demostrar que

∂

∂t
(sin 2θ) =

cos 2θ

r2
2ωba

2
√

1− e2 =⇒
(a
r

)2
cos 2θ =

1

ωbә
∂

∂t
(sin θ cos θ) (3.15)

es decir que entonces (a/r)2c2θ ∼
∑
B̃n(ne)nωb cos(nωbt). De forma completamente análoga se

puede obtener que (a/r)2s2θ ∼
∑
Bn(ne)nωb sin(nωbt). De esta forma se obtiene que entonces

(a
r

)2
εTsχ−2θ ∼ εT

∑
n
[
sχB̃n(ne)cnωbt′ + cχBn(ne)snωbt′

]
(3.16)

Notar que se ha diferenciado el tiempo que aparece a la hora de hacer la expansión de Fourier, t′,

de aquel que denota la dependencia temporal del campo de ULDM, t, dado en función de cmt+Υ y/o

smt+Υ. Esta diferencia se ha hecho porque, tal como se ha dicho anteriormente, los efectos seculares

aparecerán cuando el sistema entre en resonancia6(Blas et al., 2020; López Nacir and Urban, 2018).
6Tal como se explica en (Blas et al., 2020) para el caso de ULDM escalar, cuando el sistema se encuentra lejos de la

resonancia, los efectos producidos por la perturbación se verán suprimidos.
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Más expĺıcitamente, se caracterizará t′ = t− t0 con t0 el tiempo del periastrón. Por ende, siguiendo lo

obtenido en (3.16), aparecerán términos que involucran o bien snωb(t−t0)cmt+Υ o bien cnωb(t−t0)cmt+Υ.

Para caracterizar la resonancia, se definirá δωb := m − Nωb que parametriza la (pequeña) diferencia

entre las dos frecuencias involucradas en la resonancia, con δωb ≪ m; aqúı N es el número armónico.

Promediando temporalmente sobre un peŕıodo ∆t tal que Pb/N ≪ ∆t≪ 2π/δωb, los efectos seculares

vendrán dados según

〈
snωb(t−t0)smt+Υ

〉
≈ 1

2
cγ(t)δn,N ,

〈
snωb(t−t0)cmt+Υ

〉
≈ −1

2
sγ(t)δn,N ,〈

cnωb(t−t0)smt+Υ

〉
≈ 1

2
sγ(t)δn,N ,

〈
cnωb(t−t0)cmt+Υ

〉
≈ 1

2
cγ(t)δn,N , (3.17)

donde se definió

γ(t) := δωb(t− t0) +mt0 +Υ . (3.18)

De manera completamente análoga a lo obtenido en (3.16), se pueden encontrar los otros términos

presentes en ȧ/a. Todos los términos hallados, una vez hecho el promedio temporal, tendrán inelucta-

blemente alguna de las cuatro combinaciones posibles de (3.17). Usando que Ṗb/Pb = 3ȧ/2a y tomando

solamente el término secular dominante, n = N , se obtiene finalmente

〈
Ṗb

〉
= −2λPb

√
3ρDM

{
εSJN (Ne)sγ(t) + εT

[
F+(N, e)sγ(t)+χ + F−(N, e)sγ(t)−χ

]}
, (3.19)

donde JN (z) es la función de Bessel de primera especie, y donde se definieron las funciones

F+(N, e) :=

√
3

4

[
2JN (Ne) +

2eJ ′
N (Ne)

ә
+

(
B̃N (Ne)−BN (Ne)

ә2

)]
, (3.20a)

F−(N, e) :=

√
3

4

[
2JN (Ne)−

2eJ ′
N (Ne)

ә
−

(
B̃N (Ne) +BN (Ne)

ә2

)]
. (3.20b)

La nomenclatura y factorización utilizada para definir las funciones F+(N, e) y F−(N, e) hace

alusión a dos comportamientos sumamente distintos que tendrá (la parte tensorial de)
〈
Ṗb

〉
en el

ĺımite de órbitas circulares. En la siguiente sección se mostrará cómo resulta dicho comportamiento,

junto con los otros resultados hallados y presentados en (Armaleo et al., 2020a). A su vez, y en vistas

de (3.17), cabe remarcar que las cotas que se pondrán vendrán dadas por puntos y no por regiones con

cierto ancho (ver, por ejemplo, figura 3.3). Esto se debe al hecho de que se están estudiando sistemas

que están en resonancia con el campo de ULDM. Es decir, se está estudiando solamente el caso en

donde n = N . Si se considera, en cambio, sistemas que no se encuentran en resonancia, un análisis
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más dedicado es necesario y se recomienda la lectura de (Blas et al., 2020; Kůs et al., 2024) para una

discusión más detallada al respecto.

3.3. Fenomenoloǵıa y resultados

El objetivo en esta sección es analizar los efectos seculares que produce la ULDM de spin-2 sobre

los BPs. En particular se hará foco sobre lo que sucede con el peŕıodo orbital (que es, en general,

el parámetro donde más y mejor se nota dicho efecto) aunque también se comentará sobre los otros

parámetros.

3.3.1. Peŕıodo orbital

A partir de lo hallado en (3.19) se puede ver que solamente las componentes escalares y tensoriales

del campo de spin-2 contribuyen a la variación secular en el peŕıodo. Se discriminará, a la hora de

mostrar los resultados, entre ambas contribuciones. Notar que el hecho de que solamente dependa de

estas dos polarizaciones es algo propio de este parámetro orbital; en el Panel 2 (ver Apéndice A) se

muestra la dependencia de los seis parámetros en términos de las polarizaciones donde se puede ver que

dependiendo qué parámetro orbital se esté estudiando, se tendrán distintas componentes del campo de

spin-2 que contribuyan.

Para estudiar los efectos seculares sobre el peŕıodo orbital, se tomó el valor observado del mismo

y, en el caso en que estaba disponible, se le restaron todos los posibles efectos que podŕıan producir

cambios en el mismo. A saber, estos son:

Efectos cinemáticos, dentro de los cuales se encuentran:

• Efecto Shklovskii

• Rotación galáctica diferencial

• Potencial galáctico

GW damping

En un caso, B1259-63, se restó también el efecto debido a la pérdida de masa de la estrella

compañera por vientos solares

En el caso en que no se encontraban disponibles los datos sobre estos efectos, se utilizaron las

cotas superiores estimadas en las referencias correspondientes. Ver Tabla A.1 en el Apéndice A para

los valores y referencias. A este valor se lo denominó como el valor central de la variación "intŕınseca"

del peŕıodo secular; en ausencia de otros efectos, este valor debeŕıa ser cero.
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Para ser totalmente conservadores, se impone entonces que el efecto debido a las oscilaciones de

la ULDM sea menor que (el valor absoluto de) el valor central de la variación de peŕıodo orbital

"intŕınseco" más su error correspondiente (obtenido sumando todos los errores en cuadratura). De esta

manera se tiene en cuenta, entonces, la mayor desviación posible de cero según lo aceptable por las

mediciones. Este mismo criterio fue el que se utilizó para la variación (temporal) de la excentricidad.

En la Tabla A.1 se reportan todos los sistemas binarios utilizados en este trabajo.

En general, ambas componentes εT y εS del cuadrupolo εij contribuirán de forma similar a
〈
Ṗb

〉
.

Sin embargo, aqúı se las tratará de manera diferenciada, resaltando y entendiendo por separado cuáles

son sus respectivas contribuciones y entendiendo su (diferente) fenomenoloǵıa.

Contribución escalar εS

Manteniendo solamente la parte escalar del tensor εij , el mismo resulta diagonal y, por construc-

ción, los autovalores de εij (asociados al plano orbital) son idénticos. Por lo tanto, por analoǵıa con

el caso escalar estudiado en detalle en (Blas et al., 2020, 2017) y por argumentos de simetŕıa, efec-

tos seculares apreciables serán relevantes solamente para órbitas excéntricas, ya que de lo contrario

resultarán prácticamente nulos para órbitas circulares7. Esto es,

〈
Ṗb

〉
∼ εSJN (Ne)sγ(t) −−−→

e→0
0 (3.21)

En la figura 3.3 se muestran los resultados obtenidos de considerar solamente la contribución escalar

εS. Alĺı se exhiben las cotas halladas para el parámetro de acoplamiento α como función de la masa

(frecuencia) de la teoŕıa de spin-2 de ULDM. Notar que los únicos sistemas binarios que aparecen (i.e.

contribuyen) en la parte escalar son aquellos con excentricidad apreciable (ver figura 3.3 y Tabla A.1).

Cotas existentes sobre el acoplamiento α vienen dadas a partir del experimento (sonda) Cassini

(Hohmann, 2017) y a partir de las mediciones de la (extra)precesión de los planetas dentro del sistema

solar, conocido como restricciones planetarias (Sereno and Jetzer, 2006); para cierto rango de masas,

estas cotas reemplazan y mejoran aquellas halladas en (Adelberger et al., 2009; Murata and Tanaka,

2015).

Contribución tensorial εT

Habiendo estudiado el caso escalar, a continuación se verá lo que sucede considerando solamente

contribuciones tensoriales a
〈
Ṗb

〉
. Dichas componentes presentan una fenomenoloǵıa mucho más rica

que el caso anterior, y es el punto central aqúı. A partir de (3.19) se puede ver que, como primera

7Cabe notar que, a pesar de la analoǵıa pedagógica con el caso escalar, el acople entre la ULDM y las estrellas

considerado aqúı no es el mismo que el acople universal considerado en el caso escalar en (Blas et al., 2017).
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Figura 3.3: Cotas para el acoplamiento α de la ULDM versus la masa m, obtenidos a partir de la consideración

de la contribución escalar εS solamente. Los śımbolos oscuros son las cotas actuales obtenidas a partir de los

datos extráıdos de los sistemas reportados en la Tabla A.1. Los (mismos) śımbolos pero claros muestran las

cotas que se obtendŕıan sobre los mismos sistemas pero considerando una mejora en un factor 10 en la precisión

de medición sobre Ṗb. El tamaño de los śımbolos representa las distintas resonancias, siendo el más grande

la resonancia N = 1 y el más chico N = 5, decreciendo progresivamente. Al pie de la figura se observan los

śımbolos que representan a los BPs utilizados en este trabajo (Tabla A.1) donde, a pesar que hay varios que no

aparecen en esta figura, śı serán relevantes para la contribución tensorial, figuras 3.4 y 3.5. La región superior

sombreada de color violeta se encuentra exclúıda por tests del sistema solar (Hohmann, 2017), mientras que

la región sombreada por encima de la ĺınea punteada verde se encuentra exclúıda por restricciones planetarias

(Sereno and Jetzer, 2006). Se muestra también una cota relevante hallada a partir del estudio secular de la

excentricidad, ė (ver discusión en la sección 3.3.2).
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cuestión a notar, el efecto de estas componentes dependerá de la orientación del tensor de polarización.

En particular, y a diferencia del caso escalar, aqúı se pueden obtener efectos seculares apreciables

incluso cuando se traten de órbitas (cuasi)circulares. Para ver esto basta con indagar un poco más en

detalle en las expresiones para F+ y F−, las cuales se pueden resumir conjuntamente según

F±(N, e) :=

√
3

4

[
2JN (Ne)±

2eJ ′
N (Ne)

ә
±

(
B̃N (Ne)∓BN (Ne)

ә2

)]
, (3.22)

La cuestión aqúı es que para e→ 0 se obtiene un valor no nulo para F+, notando que el armónico

N = 2 efectivamente contribuye a Ṗb dado que F+(N, e) →
√
3δN,2/4. En cambio, para F− sucede que,

en el ĺımite e → 0, F−(N, e) → eJ ′
N (Ne) → JN (Ne) → 0. Estos resultados pueden obtenerse a partir

de las aproximaciones y propiedades de las funciones de Bessel para argumentos chicos, utilizando a su

vez las relaciones (A.7). De esta manera, entonces, las contribuciones de los BPs con órbitas circulares

resultan

〈
Ṗb

〉
→ −3

2
λPb

√
ρDMεTsγ(t)+χ . (3.23)

En la figura 3.4 se muestran las cotas halladas para α a partir de la consideración de la componente

tensorial con la parte F+(N, e), mientras que en la figura 3.5 se muestra lo análogo para la parte

con F−(N, e). Es importante notar que, tal como se discutió en el párrafo anterior, en la figura 3.4

aparecen todos los sistemas binarios considerados ya que tanto aquellos con excentricidades grandes

como aquellos con e pequeño contribuyen al efecto secular (Ec. (3.23)). Notar que, en cambio, para la

parte con F−(N, e), solamente los sistemas con excentricidades no nulas contribuyen al efecto, análogo

a lo que suced́ıa con el caso escalar (este es el motivo por el cual ambas figuras son similares). Ciertas

observaciones a remarcar:

⋆ Tomando, por ejemplo, el sistema J0737-3039 que posee e ≈ 0.1, se observa el siguiente efecto a

medida que e → 0: a partir de la figura 3.4, se ve que la contribución del armónico N = 2 es

considerablemente mayor que las cotas atribúıdas para los armónicos N = 1 y N = [3, 4, 5]. A

medida que e→ 0, este efecto se hace cada vez más pronunciado.

⋆ La importancia de estudiar sistemas con excentricidades pequeñas y/o grandes recae en el hecho

de que en la naturaleza se observan mayor cantidad de sistemas con órbitas (cuasi)circulares que

sistemas con excentricidades altas (Lorimer, 2008; Lorimer and Kramer, 2004).

⋆ El estudio de las contribuciones tensoriales otorga una fenomenoloǵıa sumamente rica y distinta de

aquella otorgada, por ejemplo, en el caso escalar (Blas et al., 2017) o vectorial (López Nacir and
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Urban, 2018). A partir de la contribución F+(N, e) surge la fenomenoloǵıa principal que difiere de

los otros casos estudiados en la literatura, aunque observando lo que sucede para la parte F−(N, e)

se pueden obtener resultados similares al caso escalar, pero notando una mejora de casi un factor 10

en las cotas.
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Figura 3.4: Ĺımites en el parámetro de acoplamiento de la ULDM α versus la masa m, obtenida a partir

de la contribución tensorial con F+(N, e) del tensor de polarización εT (Ec. (3.19)). Para la referencia de los

śımbolos consultar la figura 3.3.

Por último se hará un breve comentario sobre lo que sucede con la otra componente de εij que

hasta aqúı no entró en juego: εV. Tal como se puede ver a partir de (3.19), la componente vectorial

no genera ningún efecto secular en Ṗb. Esta observación, que podŕıa surgir simplemente de notar el

resultado obtenido, tiene una interpretación f́ısica que se puede preveer de antemano. Precisamente

la componente vectorial genera perturbaciones en la dirección ẑ; las variaciones en el peŕıodo orbital

suceden en el plano orbital (x̂ŷ), por lo que era de esperar que la parte vectorial no entre en juego

aqúı. Sin embargo, dicha componente śı será relevante a la hora de estudiar otros parámetros orbitales

cuyas perturbaciones śı tienen componentes no nulas Fz
8. El estudio de los otros parámetros orbitales,

donde entran en juego todas las polarizaciones de εij , es lo que compete la siguiente (sub)sección.

8Notar que esta interpretación sencilla surge a partir de la parametrización utilizada en (2.32) y posteriormente para

describir las polarizaciones del tensor Mij .
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Figura 3.5: Ĺımites en el parámetro de acoplamiento de la ULDM α versus la masa m, obtenida a partir

de la contribución tensorial con F−(N, e) del tensor de polarización εT (Ec. (3.19)). Para la referencia de los

śımbolos consultar la figura 3.3.

3.3.2. Otros parámetros orbitales: órbitas cuasi-circulares

En la (sub)sección anterior se ha estudiado el efecto secular producido sobre Ṗb, dejando de lado

todos los otros parámetros orbitales. De la misma manera, se puede estudiar lo que sucede con los

otros parámetros, de manera independiente. Es preciso notar que, si se considera que la perturbación

no afecta a los parámetros de manera independiente sino como un conjunto, es de esperar que las cotas

halladas para α tengan alguna mejora a la hora de considerar los datos de una manera más precisa y

adecuada. Para hacer eso, notar, es necesario tener una expresión que describa cuantitavimente lo que

sucede para la variación secular de todos los parámetros orbitales. Dichas ecuaciones se encuentran en el

Apéndice A; aqúı lo que se hará, por simplicidad, será considerar lo que sucede con los otros parámetros

orbitales pero para sistemas con órbitas (cuasi)circulares. A partir de las ecuaciones otorgadas en el

Panel 2, se pueden estudiar los efectos seculares sobre los parámetros orbitales en el ĺımite en que

e→ 0. A partir de (A.7), a su vez, se puede ver que solamente tres resonancias darán efectos no nulos:

N = 1, 2, 3, correspondientes a masas m ≃ ωb, m ≃ 2ωb, y m ≃ 3ωb.

Las resonancias N = 1, 3 presentan una fenomenoloǵıa distinta de aquella para N = 2, y se las

separará en la discusión. Tal como se discutió previamente, en el ĺımite en que e → 0, solamente la
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resonancia N = 2 afecta al peŕıodo orbital. En cuanto a los otros parámetros, considerando el mismo

ĺımite en que e→ 0 y solamente con la resonancia N = 2 presente, se obtiene que

〈
Ṗb

〉
= − 3λ

2
Pb

√
ρDMεTsγ(t)+χ , (3.24a)

⟨ė⟩ =0 , (3.24b)〈
Ω̇
〉
=
λ
√
ρDMεV

4sι
sγ(t)+η−ω , (3.24c)

⟨ι̇⟩ =−
λ
√
ρDMεV

4
cγ(t)+η−ω , (3.24d)

e ⟨ϖ̇⟩ =0 , (3.24e)

⟨ϵ̇1⟩ =λ
√
ρDMεTcγ(t)+χ + 2s2ι/2

〈
Ω̇
〉
. (3.24f)

donde, para el argumento del periastro ω = ϖ − Ω, la contribución a primer orden va como 1/e

y se anula en este caso9. Notar que, tal como se discutió anteriormente, la componente vectorial εV

contribuye a ciertos parámetros orbitales, que son aquellos donde se ven modificaciones en la orientación

de la órbita con respecto al sistema de referencia fundamental (debido a que la perturbación εV es

ortogonal al plano orbital). Sin embargo, obtener cotas a partir de los datos de dichos parámetros no

es tarea sencilla ya que no se tienen datos muy precisos sobre esos parámetros en cuestión (consultar

(Damour and Taylor, 1992) para una discusión más detallada). Las cotas más fuertes vienen de las

mediciones de Ṗb, que resultan sumamente precisas; este fue el motivo por el cual previamente se hizo

mayor foco en este parámetro.

En tanto para las otras resonancias, N = 1 y N = 3, el efecto en este caso es similar al efecto

Damour-Schäfer (Damour and Schaefer, 1991), el cual - a su vez - se ha discutido en (Blas et al., 2020;

López Nacir and Urban, 2018) en el contexto de modelos de ULDM para el caso escalar y vectorial,

respectivamente (dicho efecto aparece cuando se viola el principio de equivalencia fuerte, SEP por sus

siglas en inglés). Las ecuaciones, para e→ 0, pueden ser escritas según

⟨ė⟩ = 3

2

F SEP,eff
y

aωb
, ⟨ω̇⟩ = −3

2

F SEP,eff
x

eaωb
, (3.25)〈

Ṗb

〉
=
〈
Ω̇
〉
= ⟨ι̇⟩ = ⟨ϵ̇1⟩ = 0 , (3.26)

donde, para N = 1,

9La razón para trabajar a este orden es que para órbitas con excentricidades bajas, el movimiento se parametriza

de una manera más apropiada en términos de los parámetros η = e sinω - no confundir con el parámetro angular del

tensor de polarización εij , Ec. (2.32) - y κ = e cosω, que son los parámetros de Laplace-Lagrange usados usualmente en

el análisis de datos (ver (Edwards et al., 2006) para más detalles).
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F⃗ SEP,eff =
2

9
aωbλ

√
ρDM

√
3εS

[
cγ(t)x̂− sγ(t)ŷ

]
, (3.27)

mientras que el caso con N = 3 se obtiene

F⃗ SEP,eff = − 2

9
aωbλ

√
ρDMεT

[
cγ(t)+χx̂+ sγ(t)+χŷ

]
. (3.28)

Este efecto puede ser usado para acotar α para masas cercanas a ωb (N = 1) y 3ωb (N = 3),

que no afectan secularmente Ṗb para e → 0. Tomando como ejemplo el sistema J1713+0747 (Foster

et al., 1993; Zhu et al., 2015a, 2019), los resultados presentados en (Zhu et al., 2019) indican que

ė = (−3 ± 4) × 10−18s−1. Usando esto y asumiendo que N = 1 con εSsγ(t) ≃ 1, y N = 3 con

εTsγ(t)+χ ≃ 1, se obtiene que α ≲ 1.2×10−2 para m ≃ 7×10−22 eV mientras que para m ≃ 2×10−21 eV

se obtiene α ≲ 1.8 × 10−2. Estos resultados son competitivos en comparación con las cotas actuales,

para estas masas, obtenidas a partir del experimento Cassini (Hohmann, 2017). Se muestran dichas

cotas en las figuras 3.3 y 3.4.

3.4. Conclusiones

A continuación se comentan las conclusiones de esta sección, siguiendo el trabajo (Armaleo et al.,

2020a).

▷ Se lograron poner cotas al parámetro de acoplamiento α entre la ULDM de spin-2 y las estrellas de

los BPs, mediante un estudio secular de los parámetros orbitales de BPs cuando la masa del campo

m es algún múltiplo (entero) N de la frecuencia orbital del sistema binario, ωb; es decir, cuando el

sistema entra en resonancia, m ≃ Nωb.

▷ El eje central de la discusión giró en torno a las variaciones en el peŕıodo orbital, el cual es el

parámetro más y mejor medido y el que otorga las cotas más fuertes. Sin embargo, se ha discutido

también lo que sucede con los otros parámetros, en donde para ciertos casos se han hallado efectos

relevantes estudiando, por ejemplo, lo que sucede con ė.

▷ Con los datos actuales se han puesto cotas competitivas. En vistas de las mejoras futuras en la

precisión de las mediciones y el número creciente de sistemas observados que pueden ser utilizados

para el análisis de púlsares tales como SKA (Kramer and Stappers, 2015), a partir de lo obtenido

aqúı se puede concluir que una cota de hasta α ∼ 10−5 será posible para ciertos valores de la masa

del campo de ULDM.
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▷ Aprovechando la gran cantidad en aumento de sistemas observados, resulta ventajoso estudiar co-

rrelaciones entre las señales provenientes de los púlsares. La utilización de los sistemas observados

como un conjunto y no individualmente permite realizar un estudio detallado sobre la correlación

de los púlsares. El análisis de esta correlación fue precisamente el enfoque que se utilizó en (Armaleo

et al., 2020b) para poner cotas al modelo de ULDM de spin-2, y es el tema central del siguiente

caṕıtulo de esta tesis.
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Pulsar timing array

En las secciones anteriores se ha visto que el campo de ULDM de spin-2 oscila con una frecuencia

caracteŕıstica dada por su masa m, Ec. (2.27). Dichas oscilaciones podŕıan, a priori, producir efectos

apreciables y medibles en sistemas cuyas escalas caracteŕısticas sean del orden de 1/m. Uno de los

tantos efectos posibles es la resonancia producida en BPs, estudiado en detalle en el caṕıtulo anterior

donde se utilizaron individualmente los BPs para testear y poner cotas a dicho modelo. Otro efecto

posible es aquel proveniente de la oscilación de los potenciales gravitatorios a través de la ĺınea de

visión de los púlsares, que produce una impronta caracteŕıstica en el tiempo de llegada de los mismos.

Las mediciones de pulsar timing arrays (PTAs por sus siglas en inglés) son sensibles a este efecto para

un rango de frecuencias dada por 10−9 Hz ≲ ν ≲ 10−6 Hz que corresponde a masas del campo de

ULDM de spin-2 de 2 · 10−24 eV ≲ m ≲ 2 · 10−21 eV. En (Blas et al., 2017; Khmelnitsky and Rubakov,

2014; López Nacir and Urban, 2018; Nomura et al., 2020; Rozner et al., 2020) se han utilizado PTAs

para poner cotas a modelos de ULDM de spin-0 y spin-1. En este caṕıtulo, en cambio, se estudiará

lo pertinente a spin-2, donde se hará uso de la población de púlsares como un arreglo conjunto y

no individualmente como en el caṕıtulo previo. La idea principal es que la DM debeŕıa modificar

el tiempo de llegada de los pulsos emitidos por los púlsares para todo el arreglo en su conjunto. A

su vez, y mediante el estudio de las correlaciones entre púlsares, es posible distinguir entre diversos

modelos alternativos de gravedad; en particular, distintos modelos de ULDM pueden ser puestos a

prueba. Espećıficamente, el modelo de ULDM de spin-2 debido a su estructura tensorial cuadrupolar

(y anisotrópica) presenta caracteŕısticas relevantes que podŕıan ser de sumo interés para diferenciarlo,

por ejemplo, de un modelo de ULDM escalar, entre otros. Estudiando la correlación angular entre las

señales detectadas por los púlsares se puede obtener la función de correlación y, a partir de alĺı, la

curva que describe la correlación entre las señales conocida como curva de Hellings-Downs.
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El objetivo en este caṕıtulo será describir lo comentado en el párrafo anterior, presentando los

resultados relevantes para el caso de spin-2. Este caṕıtulo está basado en el trabajo "Pulsar timing

array constraints on spin-2 ULDM " (Armaleo et al., 2020b) donde se pudieron poner las cotas más

competitivas para el acople universal α para masas m ≲ 4 × 10−22 eV. A su vez, se muestra la curva

de Hellings-Downs para el caso de spin-2, discriminando entre las contribuciones escalares, vectoriales

y tensoriales del mismo.

4.1. Señal y residuo temporal

En el caṕıtulo anterior se han introducido y presentado los púlsares como objetos astrof́ısicos

sumamente interesantes los cuales - entre una de las caracteŕısticas más sobresalientes - pueden actuar

como relojes. Los mismos producen pulsos de ondas electromagnéticas las cuales llegan a la Tierra y se

detectan con radiotelescopios. Cualquier perturbación gravitacional traerá aparejado un cambio en los

tiempos de llegada de dichos pulsos, y la perturbación en los tiempos estará correlacionada entre los

diferentes púlsares de una manera espećıfica dependiendo de la naturaleza y forma de la perturbación.

Se conoce como tiempo residual o residuo del tiempo a la diferencia entre el tiempo de llegada

del pulso y el correspondiente a un primer ajuste usando un modelo que fittee dicho tiempo de llegada.

El modelo en cuestión dependerá, entre otras cosas, de si el púlsar es parte de un sistema binario o no.

Cualquier perturbación adicional (como por ejemplo los efectos producidos por un campo de ULDM)

a las que ya se consideran en dichos modelos, deberán dejar una huella caracteŕıstica en los tiempos

residuales. Usualmente y primeramente, los PTAs1 se utilizan para detectar GW de manera análoga a

los detectores terrestres tales como LIGO, Virgo, etc; es decir, estudiando lo que sucede cuando una

onda atraviesa los brazos de dichos detectores. Sin embargo, la diferencia principal entre los PTAs y

los detectores terrestres recae en el largo de sus brazos: mientras que los brazos de los detectores de la

Tierra poseen el largo de unos kilómetros, los brazos de los detectores utilizando PTAs se corresponde

a largos de millones de kilómetros. Más espećıficamente, el brazo tendŕıa un largo correspondiente a

la distancia Tierra-pulsar, que t́ıpicamente es del orden de los kpc. Esto permite, entonces, ampliar el

rango de frecuencias a explorar con "detectores" de GW. La diferencia principal, entonces, en hacer

esta analoǵıa es el hecho de que mientras detectores como LIGO/Virgo poseen brazos cuya longitud

es mucho más pequeña que la longitud de onda de la GW (t́ıpicamente ≃ 102 − 104 km), los brazos de

los PTAs resultan much́ısimo más grandes que la longitud de onda de las GW. De esta manera, pues,

el rango de frecuencias a explorar por PTAs es sumamente distinto de aquel que tratan de estudiar los

1El término pulsar timing array posee cierta ambigüedad y/o degeneración: se utiliza tanto para hablar de la técnica

de pulsar timing para el arreglo de púlsares, como aśı también se utiliza para hablar del arreglo en śı. En lo que a esta

tesis refiere, no se hará distinción alguna y se utilizará PTA para hablar de ambos asuntos.
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detectores terrestres cuyos brazos resultan extremadamente pequeños en comparación con los brazos

galácticos de PTAs2. En cuestión, PTA permite estudiar frecuencias muy bajas (del orden de los nHz)

las cuales se traducen en la posibilidad de estudiar un espectro de masas que cae dentro del rango de

ultralivianas. Por tal motivo, el uso y estudio de PTA es relevante y resulta pertinente para estudiar

modelos de ULDM.

El objetivo a continuación será entender y estudiar cómo la ULDM de spin-2 afecta el tiempo

residual de PTA. Para ello, lo primero que se hará será calcular la predicción correspondiente para el

tiempo residual : sea un fotón cuyo 4-momento sin perturbar se escribe según pµ := (ν, νni), donde ν es

la frecuencia y n := ni es el versor que indica la dirección del momento. El tiempo residual se obtiene

entonces como

tr(t) := −
t∫

0

dt′
ν − ν0
ν0

. (4.1)

donde ν0 es la frecuencia del fotón para el caso sin perturbar, que coincide con la frecuencia de

emisión en el púlsar. La idea, entonces, es calcular cómo vaŕıa la frecuencia del fotón emitido desde

el pulsar cuando se considera que una perturbación (dada en este caso por la ULDM de spin-2) se

encuentra presente. Para entender cómo es que el campo de DM perturba la propagación de los fotones,

es importante notar que hasta el momento se ha considerado que el campo de DM (es decir, Mµν)

está acoplado de manera universal a la materia ordinaria, Ec. (2.33). Este acople universal, como se

verá a continuación, permitirá hacer una redefinición de la métrica y pensar en un cambio de frame tal

que, en esta nueva métrica, no hay interacción alguna entre la ULDM y la materia ordinaria, pero en

cambio las part́ıculas se propagan en una métrica g̃ que depende expĺıcitamente de Mµν . Por ende, la

perturbación vendrá dada en términos de Mµν y, como se podrá anticipar dada la estructura de Mij ,

la misma estará oscilando con una frecuencia dada por la masa del campo, Ec. (2.27). A continuación

se detalla con más precisión dicho procedimiento como aśı también se muestra la forma expĺıcita que

se obtiene para tr(t).

4.1.1. Sistema Tierra-púlsar y efecto del campo de ULDM de spin-2

El objetivo en esta sección es obtener el tiempo residual tr(t) para la perturbación producida por el

campo de ULDM de spin-2. La idea, tal como se comentó anteriormente, es realizar un cambio de frame

para reinterpretar el efecto del campo de DM como una perturbación en la métrica. No obstante, cabe

destacar que esta redifinición es un mero artefacto para realizar los cálculos de una manera más sencilla,

2Los detectores terrestres como LIGO/Virgo analizan frecuencias del orden del Hz hasta el MHz; en cambio, PTA

explora frecuencias del ordel del nHz.
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y la idea consiste en lo siguiente: sea la acción que describe el sistema Tierra-púlsar en presencia del

campo de ULDM de spin-2 dada por

S := Sfree[g,Mµν ,Ψ] + Sint[g,Mµν ,Ψ] , (4.2)

El primer término Sfree[g,Mµν ,Ψ] representa la acción libre de materia (denotada con Ψ) que en

este caso corresponde a fotones propagándose del púlsar a la Tierra a lo largo de las geodésicas nulas

del espacio-tiempo gµν . Cabe destacar que en esta acción se está incluyendo la dinámica para el campo

de ULDM, dada por el Lagrangiano de Fierz-Pauli (2.18). El segundo término, en cambio, describe la

interacción entre el campo de ULDM Mµν y el sistema, dada por (2.33)

Sint[g,Mµν ,Ψ] := − α

2MP

∫
d4x

√
−gMµνT

µν
Ψ , (4.3)

donde Tµν
Ψ es el tensor enerǵıa-momento del sistema libre, que incluye a los fotones3. Más es-

pećıficamente, se puede pensar que el EMT Tµν
Ψ está compuesto por una contribución de los fotones y

otra contribución de los púlsares, es decir Tµν
Ψ = Tµν

γ +Tµν
pul. El planteamiento entonces es que mediante

un cambio de frame adecuado, el término de interacción puede ser absorbido e interpretar, entonces,

al sistema como uno libre pero donde ahora los fotones se propagan en una nueva métrica g̃µν . Para

tratar de dilucidar cómo es el cambio de frame de una manera un poco más didáctica, se propondrá

que la nueva métrica viene dada por

g̃µν := gµν +AMµν (4.4)

y el objetivo será hallar A de manera tal que la acción para la métrica g̃ consista solamente de la

parte libre. Notar que, en esencia, lo que se está diciendo es que el términio AMµν se puede pensar como

la perturbación de la métrica y, por ende, se está considerando que el parámetro A es muy pequeño

(esto será más evidente cuando, a continuación, se halle la expresión expĺıcita para A).

Partiendo de la acción (4.2), se escribe a la misma en términos de g̃:

S = Sfree[g̃,Mµν ,Ψ]−A

∫
d4x

√
−g̃
(

1√
−g̃

δSfree

δg̃µν

)
Mµν

− α

2MP

∫
d4x

√
−det(g̃ −AM)MµνT

µν
Ψ (4.5)

3Notar que, en comparación con la acción de interacción (2.33), la expresión (4.3) presenta un signo global de diferencia.

Esto se debe a un cambio de convención y, en lo que sigue, se utilizará de ahora en más esta última. Cabe mencionar,

sin embargo, que los resultados obtenidos no dependen de este signo sino del módulo de α.
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El primer renglón es Sfree escrito en términos de la métrica g̃, donde se ha usado que g̃µν :=

gµν −AMµν . El segundo renglón es el término de interacción; la ráız del determinante que aparece en

este se puede escribir de una manera más simplificada a partir de la siguiente propiedad:

det(1+ ϵX) ≃ 1 + ϵTr(X) +O(ϵ2) (4.6)

con ϵ≪ 1. De esta manera, entonces,

det(g̃ −AM) = det(g̃)det(1−A g̃−1M) ≃ det(g̃) (4.7)

donde se ha despreciado el término ATr(g̃−1M) ∼ Aα/MP para mantener el orden lineal en α4.

El último término en (4.5) resulta, por ende, −α/2MP
∫
d4x

√
−g̃MµνT

µν
Ψ . Por otro lado, el término

entre paréntesis en (4.5) no es otra cosa más que el tensor enerǵıa-momento, definido como

Tµν := − 2√
−g

δS

δgµν
(4.8)

Sin embargo, cabe tener en cuenta una sutileza: el término que figura entre paréntesis no seŕıa Tµν

sino más bien T̃µν , donde este último hace alusión a que se está variando la acción con respecto a δg̃;

es decir, utilizando la definición (4.8) pero con la métrica g̃. Lo que se tiene en la acción, entonces, es

un término de la forma A
∫
d4x

√
−g̃ T̃µνMµν . La sutileza viene por el hecho que, trabajando a orden

lineal en α,

T̃µν AM
µν =

(
− 2√

−g
δS

δgµν

) √
−g√
−g̃

δgµν

δg̃µν
AMµν ≃ Tµν AM

µν (4.9)

donde se ha utilizado (4.7). Juntando todo se obtiene, entonces,

S = Sfree[g̃,Mµν ,Ψ] +
A

2

∫
d4x

√
−g̃ TΨ

µν M
µν − α

2MP

∫
d4x

√
−g̃ MµνT

µν
Ψ (4.10)

Por lo tanto para reabsorber la interacción en la redefinición de la métrica, se requiere que A =

α/MP y por ende la transformación que lleva a la nueva interpretación del sistema como uno libre

donde los fotones se propagan en una métrica g̃ sin interacción, vendrá dada por

g̃µν := gµν +
α

MP
Mµν (4.11)

En este nuevo frame, entonces, los fotones se propagan libremente siguiendo las geodésicas nulas de

la métrica g̃, que depende expĺıcitamente del campo de ULDM de spin-2 Mµν . La acción que describe

esto es entonces, simplemente,
4Es decir que, en otras palabras, A ∼ O(α).
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S = Sfree[g̃,Mµν ,Ψ] (4.12)

Con esto en mente, el siguiente paso será calcular expĺıcitamente el tiempo residual (4.1), donde

ahora los fotones se propagarán en esta nueva métrica g̃, Ec. (4.11).

4.1.2. Tiempo residual

En esta sección se computará el efecto que produce la ULDM en el tiempo residual de los pulsos.

Para ello se necesitará, primero que todo, calcular la trayectoria del fotón a lo largo de la geodésica

(nula) que será, en definitiva, el integrando de (4.1). El cambio en la frecuencia que experimenta el

fotón emitido en el púlsar cuando llega a la Tierra viene dado en términos de la ecuación geodésica,

dp0

ds
= −Γ0

µνp
µpν (4.13)

Para resolver esta ecuación, primero se deben calcular los śımbolos de Christoffel de g̃µν . Pero,

previo a brindar dichos resultados, es necesario remarcar ciertas cuestiones.

Consideraciones generales

Los púlsares observados y utilizados por y para PTA se encuentran a redshifts z ≃ 0; es decir

que las escalas que se considerarán serán astrof́ısicas y no cosmológicas, y por ende se puede asumir

sin pérdida de generalidad que la métrica g̃µν vendrá dada en términos de

g̃µν = ηµν +
α

MP
Mµν (4.14)

donde ηµν = diag(1,−1,−1,−1).

Tal como se ha comentado a comienzos de la sección 4.1, la distancia Tierra-púlsar t́ıpicamente

es del orden de los kpc. En vistas de la longitud de onda de Broglie del campo de ULDM, dada

por λdB ≃ 4 kpc
(
10−3/V

) (
10−23eV/m

)
, Ec. (2.34), los gradientes del campo podŕıan llegar a

resultar importantes y debeŕıan ser tenidos en cuenta a la hora de realizar los cálculos pertinentes.

Sin embargo, tal como se verá a continuación, la contribución principal a la señal vendrá dada

por la configuración del campo cerca de la Tierra, y por lo tanto en esta situación es razonable

asumir que los efectos de los gradientes puedan ser tratados de manera perturbativa. Utilizando

la transversalidad del campo, ∂µMµν = 0, esto implica que las componentes M0i y M00 son de

primer y segundo orden en gradientes de Mij , respectivamente.
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Por otro lado, y en contraparte con lo que sucede con las escalas espaciales, el tiempo de

coherencia tcoh del campo dado a partir de (2.35), resulta much́ısimo más grande que las escalas

de tiempo de observación y por ende el campo permanece coherente. Esto implica, pues, que el

campo puede ser descripto en términos de una sola frecuencia común.

Juntando todo, entonces, la expresión para las componentes espaciales del campo Mij se podrá

seguir escribiendo tal como (2.27),

Mij =

√
2ρDM(x)

m
cos (mt+Υ(x))εij(x) , (4.15)

en donde se ha puesto de manera manifiesta la posición x del campo.

Volviendo a la ec. de las geodésicas, se proseguirá con dicho cálculo teniendo en cuenta que las

componentes de Γ0
µν para la métrica g̃µν , Ec. (4.14), vienen dados por

Γ0
00 ≃

α

2MP
∂0M00 , (4.16)

Γ0
0i ≃

α

2MP
∂iM00 , (4.17)

Γ0
ij ≃

α

2MP
(∂iM0j + ∂jM0i − ∂0Mij) , (4.18)

donde se ha trabajado a orden lineal en α. De esta manera, la ec. de las geodésicas resulta

dp0

ds
= − ν2α

2MP

{
∂0M00 + 2∂iM00 n

i + (∂jM0i + ∂iM0j − ∂0Mij)n
inj
}

(4.19)

Esta ecuación contiene tanto el término dominante, dado porMij , como los términos subdominantes

dados por (las derivadas de) M0ν . La idea en las dos siguientes partes es discriminar precisamente entre

ambas contribuciones al tiempo residual, estudiando en detalle cómo resultan ambos aportes. En la

primera de ellas se estudiará solamente lo que sucede con la configuración del campo cerca de la

Tierra, obteniendo aśı la contribución principal a tr. Posteriormente se analizarán las contribuciones

(subdominantes) de los otros términos.

Contribución dominante: término terrestre

En esta sección se considerará solamente la contribución a orden lineal en los gradientes, por lo que

se puede establecer de manera general M0ν = 0 y por ende la ec. de las geodésicas a resolver resulta

dp0

ds
=

αν2

2MP
∂0Mij n

inj (4.20)

donde, a modo de recordatorio, pµ := (ν, νni). Integrando de ambos lados la trayectoria del fotón

desde el púlsar hasta la Tierra, trabajando a orden lineal en α, se obtiene que

83



CAPÍTULO 4

ν ≃ ν0

1 +
α

2MP

⊕∫
⃝⋆

ds ν0 ∂0Mij n
inj

 (4.21)

Usando que d
ds = ν∂0 + niν∂i con ν ≃ ν0 para mantener el orden lineal en α, se obtiene que

ν = ν0

1 +
α

2MP

(
M⊕

ij −M⃝⋆
ij

)
ninj − α

2MP

⊕∫
⃝⋆

ds ν0n
l∂lMij n

inj

 (4.22)

Los śımbolos ⊕ y ⃝⋆ en las cantidades representan que las mismas deben ser evaluadas en la Tierra

y en el púlsar, respectivamente. Con este resultado ya se estaŕıa en condiciones de calcular el tiempo

residual (4.1). Sin embargo, la expresión (4.22) puede simplificarse aún más y el cálculo del tiempo

residual se verá simplificado también. Esta simplificación vendrá por la observación y el hecho de

que la configuración del campo de ULDM será diferente en la Tierra y en el púlsar, debido a que la

distancia Tierra-púlsar puede llegar a ser comparable con la longitud de onda de Broglie del campo.

Más espećıficamente, la integral que aparece en (4.22) es altamente oscilante debido a que ∂lMij ∼

cos(mt)/mλdB donde se ha usado que los gradientes son ∂i ∼ 1/λdB. Más aún, dicho término resulta

subdominante frente a los dos primeros de dicha ecuación ya que se encuentra suprimido por un factor

v/c ∼ O(10−3), proveniente del gradiente en cuestión. Por ende, en lo que sigue se despreciará a dicho

término y se hará foco en los dos primeros términos que son los dominantes. Sin embargo, en la siguiente

sección se volverá a estudiar con más detalle la contribución de dicho término en donde, ahora śı, se

tendrán en cuenta los términos subdominantes.

Los términos evaluados en la Tierra (⊕) y en el púlsar (⃝⋆) son los denominados término terrestre

y término del púlsar (Porayko et al., 2018; Porayko and Postnov, 2014), respectivamente. A la hora

de estudiar las correlaciones entre las diferentes señales provenientes de los diversos púlsares, para

un bin de frecuencia dado por la masa del campo de ULDM, el resultado se puede dividir en tres

contribuciones: los términos de los púlsares, los términos terrestres, y los términos cruzados púlsar-

Tierra. A partir de (4.15) se puede ver que no solamente las fases Υ, tal como sucede con el caso escalar

(Blas et al., 2017; De Martino et al., 2017; Khmelnitsky and Rubakov, 2014; Porayko et al., 2018),

sino que además también la geometŕıa de una dada realización del campo cuadrupolar de ULDM no

será la misma para la Tierra que para la posición de cada púlsar. Esta diferencia principal entre el

caso escalar y el tensorial recae en la estructura, precisamente cuadrupolar, de la ULDM de spin-2

dada en términos de εij(x). En otras palabras, esto quiere decir que la orientación de los dos vectores

multipolares que definen el cuadrupolo de la ULDM serán diferentes en la Tierra y en los púlsares5.

Por esta razón, la contribución principal a la correlación vendrá dada por el término terrestre ya que el

5Los vectores multipolares fueron introducidos en (Copi et al., 2004) como una manera alternativa para parametrizar

y visualizar los coeficientes de los armónicos esféricos sobre una esfera.
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efecto del campo de ULDM sobre la trayectoria del fotón se espera que se sume de manera coherente

para el final del recorrido, es decir cerca de la Tierra; los otros términos, en cambio, desaparecerán a

la hora de tomar promedio ya que las mediciones de PTA son sensibles a las variaciones temporales

una vez realizado el promedio sobre los diferentes púlsares6. Por ende, el término terrestre domina el

residuo y, en lo que sigue, solamente se hará foco en este término (en la siguiente parte de esta sección,

no obstante, se estudiarán las otras contribuciones subdominantes).

Reemplazando expĺıcitamente Mij por (4.15) en (4.22), el término terrestre resulta

ν = ν0

{
1 +

α√
2mMP

√
ρDM⊕εij,⊕ cos (mt+Υ⊕)n

inj
}

(4.23)

Con este resultado, ahora śı, se procede a calcular el tiempo residual tr dado por (4.1) mediante

una simple integración. El resultado en cuestión es

tr(t) = −
α
√
ρDM⊕√

2m2MP
εij,⊕n

inj sin (mt+Υ⊕) . (4.24)

en donde se le ha sustráıdo el promedio temporal sobre un peŕıodo de observación (recordar que

PTA es sensible solamente a las variaciones temporales del residual). Este es el resultado (anaĺıtico)

principal de este caṕıtulo de la tesis. La idea a continuación será utilizar este resultado para poner

cotas al modelo de ULDM de spin-2. Pero, por consistencia y completitud, previo a estudiar las cotas

al modelo lo que se hará en lo que sigue es un desarrollo análogo a lo realizado aqúı pero teniendo en

cuenta y estudiando más en detalle lo que sucede con los términos subdominantes.

Contribuciones subdominantes

El punto de partida para estudiar los efectos de los términos subdominantes es la ec. de las

geodésicas (4.19), que contiene ambas contribuciones. Integrando de ambos lados la trayectoria del

fotón desde el púlsar hasta la Tierra, de manera análoga a lo anterior se obtiene que

ν = ν0

{
1 +

α

2MP

(
M⊕

00 −M⃝⋆
00

)
− α

2MP

⊕∫
⃝⋆

ds ν0
[
∂0M00 + 2∂iM00n

i + (∂jM0i + ∂iM0j − ∂0Mij)n
inj
] . (4.25)

en donde, a su vez para mantener la generalidad, se ha tenido en cuenta el factor 1/
√
g̃00 del redshift

local asociado a las perturbaciones de los relojes en la Tierra y en la frecuencia del púlsar. Usando que

ν0∂0 =
d
ds − ν0n

l∂l, se pueden reescribir el primer y último término dentro de la integral y obtener, aśı,
6Esto implica, en particular, que a la hora de calcular la correlación para dos dados púlsares, debido a que las fases

Υ(x) son distintas en cada caso, dicha correlación será nula.
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ν = ν0

{
1 +

α

2MP

(
M⊕

ij −M⃝⋆
ij

)
ninj

− α

2MP

⊕∫
⃝⋆

ds ν0

[
nl∂l(M00 + ninjMij) + (∂jM0i + ∂iM0j)n

inj
] . (4.26)

Si se compara esta expresión con (4.22) es fácil ver que, bajo la suposición de M0ν = 0, se recupera

la misma expresión. Sin embargo, como la idea aqúı es ver qué suceden con los términos subdominantes,

a comparación con lo anterior no se trabajará con M0ν = 0. En lo que sigue se estudiarán los términos

subdominantes que previamente fueron dejados de lado; esto es, se estudiará tanto la contribución de

M0ν ̸= 0 como aśı también la contribución del término del púlsar el cual hab́ıa sido despreciado para

obtener (4.23).

▶ Contribución de M0ν ̸= 0

A partir de la transversalidad del campo, ∂µMµν = 0, se puede obtener fácilmente que

M0i = ∂j

∫
dt′Mij(t

′,x) +K0i(x) , (4.27)

M00 = ∂i

∫
dt′M0i(t

′,x) = ∂i∂j

∫
dt′
∫ t′

dt′′Mij(t
′′,x) + ∂iK0i(x)t+K00(x) . (4.28)

donde K0i(x) y K00(x) son constantes de integración que, a priori, podŕıan ser no nulas. Notar

que podŕıa haber, a su vez, una constante Kij(x) proveniente de Mij . Cabe remarcar que todas estas

constantes no dependen del tiempo. A partir de las expresiones recién obtenidas, es claro que la

contribución de M00 y de M0i a la señal (4.26) serán de al menos de segundo orden en las derivadas

de Mij . Sin embargo, es necesario hacer ciertas observaciones sobre estas constantes de integración

Kµν(x).

A orden cero en α, las componentes de Kµν(x) satisfacen la ecuación de Poisson masiva sin término

de fuentes. Esta observación viene por el hecho de que Mµν satistace una ecuación del tipo Poisson,

Ec. (2.21), cuya solución para un fondo de FLRW - con m ≫ H - viene dada por (2.27); es decir, se

puede pensar que Mij dado por la ecuación recién mencionada es una solución particular de la ecuación

de onda

□Mµν +m2Mµν = 0 , (4.29)

sujeta a los v́ınculos M =Mµ
µ = 0 y ∂µMµν = 0. Esto implica que, entonces, dichas componentes

quedan determinadas por las condiciones de contorno. En particular, si el sistema presenta simetŕıa
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esférica entonces K0i(x) = 0 y por lo tanto solamente la traza de Kij(x), K(x) = Ki
i (x) = −K00(x),

será no nula.

A orden lineal en α, en cambio, se agrega un término de fuente a la ec. de onda (4.29), que estará

dada a partir del acople directo (2.33). La solución será, entonces, lineal en α (trabajando a primer

order perturbativo) y por lo tanto la contribución al tiempo residual será de orden α2. En lo que sigue,

pues, se despreciará tal contribución y se trabajará a orden lineal en α.

A partir de esta observación sobre las contribuciones por parte de las componentes deKµν , pareciera

ser que solamente podrán tener un rol importante a la hora de sumar contribuciones las componentes

K(x) = −K00(x). Para el fondo homogéneo estudiado en (Marzola et al., 2018), sin embargo, se puede

establecer K00(x) = −K(x) = 0 y esperar, entonces, que a escalas más pequeñas - aquellas donde se

forman estructuras de DM tales como halos - las componentes de Kµν(x) presenten inhomogeneidades

caracterizadas por una escala que depende del halo y del entorno (por ejemplo escalas tales donde sean

apreciables las variaciones a la suposición de simetŕıa esférica). Es evidente, pues, que para estimar

dichas contribuciones se necesitarán un estudio y un modelo más detallado y adecuado que describa

correctamente dicho comportamiento. Notar, a su vez, que aunque las funciones Kµν son constantes

en el tiempo, dado que la integración se realiza a lo largo de la trayectoria del fotón, se espera que

las mismas cambien a lo largo de dicha distancia. Asimismo, es necesario tener en cuenta que una

contribución independiente del tiempo tal como es Kij , no jugará un papel relevante a la hora de medir

cambios en la frecuencia ya que PTAs solamente es sensible a variaciones temporales. Como conclusión,

se puede despreciar la contribución de los Kµν al cambio en frecuencia y, por ende, suponiendo al igual

que antes que los gradientes son de orden ∂i ∼ 1/λdB, dado que λdBm ≫ 1 entonces el integrando en

(4.26) oscila muy rápidamente y por lo tanto otorga una contribución muy pequeña en comparación

con los dos primeros términos de dicha ecuación. En conclusión, la ecuación (4.26) se puede aproximar

entonces como

ν ≃ ν0

{
1 +

α

2MP

(
M⊕

ij −M⃝⋆
ij

)
ninj

}
(4.30)

En lo que sigue se discutirá sobre el término del púlsar, M⃝⋆
ij .

▶ Contribución del término del púlsar:

A partir de (4.30) se puede reemplazar expĺıcitamente Mij evaluado en la Tierra y en el púlsar.

Esto es,

ν − ν0
ν0

≃ α√
2mMP

[√
ρDM⊕εij,⊕ cos (mt+Υ⊕)−

√
ρDM⃝⋆εij,⃝⋆ cos (mt0 +Υ⃝⋆)

]
ninj , (4.31)
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en donde se ha definido el tiempo de emisión t0 = t −D de un púlsar a distancia D. A partir de

este se puede calcular el tiempo residual, análogo a (4.24), obteniendo

tr(t) = − α√
2m2MP

[√
ρDM⊕εij,⊕ sin (mt+Υ⊕)−

√
ρDM⃝⋆εij,⃝⋆ sin (mt−mD +Υ⃝⋆)

]
ninj (4.32)

donde ya se le ha sustráıdo el promedio temporal. Se puede ver a simple vista que si se desprecia el

término del púlsar, entonces se recupera el mismo resultado (4.24), por lo tanto se obtiene un resultado

más general. Sin embargo, se verá que el primer término es el que domina y, por ende, otorga la cota

más conservativa al parámetro de la teoŕıa, α. Para ver esto expĺıcitamente, entonces, lo que se hará

a continuación será volver a la expresión (4.24) y estudiar a partir de esta cómo obtener las cotas al

modelo en cuestión.

4.2. Cotas y resultados

La idea es calcular de manera expĺıcita el efecto que tiene la ULDM de spin-2 sobre las detecciones

de PTA. Esto es, se comparará el efecto de la ULDM con el de un fondo estocástico de GW, haciendo

la analoǵıa e interpretando al efecto del campo de spin-2 como si fuese el de una GW con una dada

frecuencia y amplitud que se deberá ver cómo resulta en esta teoŕıa. Precisamente esta es la idea a seguir

a continuación: calcular cómo resultan la frecuencia y amplitud del campo de spin-2 interpretándolo

como un efecto análogo al de GW estocásticas. El tiempo residual de una GW estocástica de frecuencia

ω y amplitud hc viene dada por (Wen et al., 2011)

√
⟨t2r(t)⟩GW =

hc√
6ω

sin (ωt+Υ⊕) , (4.33)

por lo tanto para calcular el efecto del campo de spin-2 habrá que calcular
√
⟨t2r(t)⟩ proveniente

de (4.24). Es decir, habrá que calcular
〈
t2r(t)

〉
donde el promedio se hace sobre la esfera celeste.

Para ser más precisos, se deberá calcular, en definitiva,
〈
(εij,⊕n

inj)2
〉
. Para eso será útil recordar la

expresión para εij , ec. (2.32), la cual se puede escribir en la representación de armónicos esféricos

según εijn
inj :=

∑
m amY

2m donde Y 2m(n) son los armónicos esféricos reales, ec. (2.28), para el

versor n := (x, y, z) := (sinϑ cosφ, sinϑ sinφ, cosϑ); los coeficientes armónicos am se definieron en

(2.31). Promediando sobre la esfera celeste n se obtiene que

√
⟨t2r(t)⟩ =

α
√
ρDM⊕√

15m2MP
sin (mt+Υ⊕) . (4.34)

donde se utilizó que
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〈
(εij,⊕n

inj)2
〉
=

1

4π

∫ π

0
dϑ

∫ 2π

0
dφ sinϑ (εij,⊕n

inj)2 =
2

15
(4.35)

con a2S + a2V + a2T = ε2S + ε2V + ε2T = 1. Cabe remarcar que la única información que quedó del

cuadrupolo luego de promediar en la esfera celeste es su amplitud (global) dada por α. Notar que

mientras el cambio en frecuencia para cualquier pulsar, ec. (4.24), depende de los cinco parámetros que

describen el cuadrupolo, una vez que se promedia en la esfera el resultado puede dependender como

mucho de hasta 3 de estos parámetros. Esto es aśı porque se puede elegir al sistema de coordenadas de

la manera más conveniente que se quiera, tal como por ejemplo χ = 0 = η7. Aqúı reside y se exhibe la

(útil) descomposición de la matriz εij según (2.32) dada por sus 3 parámetros εS , εV y εT junto con el

parámetro angular η que define la dirección azimutal de las helicidades vectoriales, y el ángulo χ que

determina la orientación azimutal de las helicidades tensoriales.

Comparando (4.34) con el tiempo residual causado por un fondo estocástico de GW, ec. (4.33), se

puede ver que el campo de spin-2 de ULDM corresponde a un strain (amplitud) de GWs dado por

hc =
α
√
2ρDM√

5mMP
, (4.36)

donde se ha tomado que la frecuencia m = ω. Este resultado, cabe notar y comentar, presenta

diferencias sustanciales con respecto al caso de ULDM de spin-0 y spin-1 estudiado en la literatura (Blas

et al., 2017; Khmelnitsky and Rubakov, 2014; Nomura et al., 2020). Más precisamente, la frecuencia

de oscilación del tiempo residual (4.34) viene dada por m y no por 2m como es el caso escalar y/o

vectorial estudiado en la literatura mencionada. Esta diferencia surge por el hecho de que aqúı se está

considerando un acople directo entre la DM y bariones, mientras que en los casos anteriores el efecto

se da de manera indirecta. Esto es, en los casos escalares y vectoriales el efecto gravitacional de la DM

entra a través del tensor enerǵıa-momento (que es cuadrático en el campo) mientras que en el caso del

acople directo (esta tesis) la contribución ya se encuentra a orden lineal, ec. (4.14).

En la figura 4.1 se muestran las (nuevas) cotas halladas para el parámetro de acoplamiento α en

función de la masa de la (UL)DM. Las cotas (y nomenclatura) obtenidas con PPTA (Parkes Pulsar

Timing Array) fueron extráıdas del análisis bayesiano (PPTA B) y frecuentista (PPTA F) realizado

en (Porayko et al., 2018). Los ĺımites que se muestran aqúı, por lo tanto, son solamente un indicativo

y estimativo del nivel de precisión para el cual se puede utilizar PPTA para poner cotas al modelo;

no son cotas precisas ya que para obtener dichos resultados se promedió sobre toda la esfera celeste

ec. (4.34), lo cual no tiene en cuenta las especificidades de cada púlsar (lo cual los resultados de PPTA

śı las tienen). En la figura 4.1 se superponen, a su vez, las cotas halladas utilizando BPs, las cuales
7Otras elecciones son posibles, aunque no todas de ellas son lo suficientemente generales. Por ejemplo la configuración

axisimétrica con εV = εT = 0 no representa un cuadrupolo genérico, ver (Ramazanov et al., 2017; Thorsrud et al., 2014).
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fueron explicadas con detalle en el caṕıtulo anterior. Notar que, por lo tanto, los ĺımites obtenidos en

este caso sirven como una estimación del órden de magnitud alcanzado para poner cotas al modelo de

ULDM de spin-2, ya que de querer poner cotas precisas y exactas se necesitaŕıa saber y/o modelar

cómo es la configuración de la ULDM en cada sistema binario de púlsares en cuestión.
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Figura 4.1: Cotas obtenidas para el parámetro de acoplamiento α de la ULDM de spin-2 utilizando los datos de

PPTA. Se muestran los resultados obtenidos de realizar un análisis bayesiano (PPTA B) y frecuentista (PPTA

F) de los datos, reproducidos con permiso de (Porayko et al., 2018). Se superponen también las cotas halladas

en el caṕıtulo anterior a partir de la no observación de variaciones seculares en los parámetros orbitales de los

sistemas binarios de púlsares.

En la figura 4.2 se muestran nuevamente los resultados halladas a partir del análisis bayesiano (azul

punteado) y frecuentista (ocre lineado) de PPTA para la amplitud de la GW equivalente obtenida de

(Porayko et al., 2018). La amplitud equivalente producida por el campo de spin-2, ec.(4.36), se muestra

para distintos valores del parámetro α en el rango α = 10−7 − 10−3. Notar que solamente los valores

más bajos, dependiendo de la frecuencia, están permitidos (tal como se puede evidenciar a partir de la

figura 4.1).

Hasta este momento se han utilizado los datos de PTA para poner cotas al parámetro de acopla-

miento α de la teoŕıa de ULDM de spin-2, pero aún no se ha explotado del todo la potencia de PTA.

Esto es, aprovechando el gran número de púlsares medidos en el arreglo de pulsar timing, resulta de

interés analizar la correlación entre las diferentes señales provenientes de los púlsares. Esta es la idea

a explorar a continuación en la siguiente sección.
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Figura 4.2: Amplitud de la GW equivalente como función de la frecuencia obtenida a partir del análisis ba-

yesiano (azul punteado) y frecuentista (ocre lineado), reproducido con permiso de (Porayko et al., 2018). Se

muestra, a su vez, la amplitud equivalente producida por el campo de ULDM de spin-2 calculado en (4.36), para

distintos valores del acoplamiento α.

4.2.1. Correlación

Estudiando la correlación entre las diferentes señales provenientes de los púlsares, se podŕıa clarificar

algunos aspectos sobre la naturaleza de la DM8. La idea a llevar a cabo aqúı será estudiar, más

espećıficamente, las anisotroṕıas en la señal de ULDM a través del análisis de la correlación entre

las funciones de respuestas de un par de púlsares. Esta idea es análoga a lo hecho para el estudio de

correlaciones para fondos de GW, conocida como curva de Hellings y Downs (Hellings and Downs,

1983). Por lo tanto, previo a presentar los resultados en el caso de ULDM de spin-2, en lo que sigue se

esbozará y explicará brevemente sobre la curva de Hellings-Downs.

Curva de Hellings-Downs

La idea aqúı es obtener y presentar la curva de Hellings-Downs que da cuenta de las correlaciones

entre diferentes señales de GW. Justamente las mediciones de PTAs buscan correlaciones en las señales,

las cuales siguen la curva predicha por Hellings y Downs en su trabajo original de principio de los ’80

8En (Ramani et al., 2020) se puede encontrar una aplicación, por ejemplo, para la formación de estructuras de pequeña

escalas de DM.

91
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(Hellings and Downs, 1983) (ver (Romano and Allen, 2023) para una reseña más detallada). En lo que

continúa se seguirá fuertemente lo hecho en (Jenet and Romano, 2015; Mingarelli, 2014) de manera

pedagógica, donde se recomienda su lectura para profundizar con más detalle.

La idea principal de estudiar las correlaciones entre las señales viene por el hecho de aprovechar el

arreglo de púlsares para correlacionar el ruido/residuo en la señal y, entonces, sacarse de encima ruidos

espúreos. Para un fondo estocástico, isótropo y sin polarizar de radiación cuadrupolar gravitacional,

la correlación en la respuesta a un par de señales Tierra-pulsar sigue la curva de Hellings-Downs.

Anaĺıticamente, la curva se puede escribir como

χ(ζ) =
1

2
− 1

4

(
1− cos ζ

2

)
+

3

2

(
1− cos ζ

2

)
ln

(
1− cos ζ

2

)
(4.37)

donde el ángulo ζ es el ángulo que subtienden los púlsares (ver figura 4.3). La idea, entonces,

es tratar de entender cómo se obtiene esta expresión anaĺıtica. Lo primero a notar, pues, es que la

señal estará correlacionada entre pares de detectores; para cada instante de tiempo, la correlación será

el producto del output de dos detectores. Es necesario remarcar que como tanto el campo como el

detector presentan ruido, la correlación fluctuará en el tiempo y por lo tanto se deberá promediar en

dicho tiempo. El objetivo es, entonces, obtener la forma anaĺıtica de los outputs de los detectores para

luego multiplicarlos y obtener la forma de la curva promediada de Hellings-Downs.

La correlación entre dos púlsares a y b en tiempos tj y tk respectivamente viene dado por la función

⟨r∗a(tj)rb(tk)⟩ =
∫ tj

dt′
∫ tk

dt′′
〈
z∗a(t

′)zb(t
′′)
〉

(4.38)

con

r(t) =

∫ t

dt′z(t′) (4.39)

el residuo temporal (antes denotado como tr) donde

z(t) =

∫
dΩ̂ z(t, Ω̂) (4.40)

es el promedio angular del cambio en la frecuencia z(t, Ω̂) := ν(t)/ν0 − 1. Es decir, la correlación

vendrá dada por el promedio del producto entre dos tiempos residuales tr, ec. (4.1), pero generalizandolo

para direcciones arbitrarias. En lo que sigue se proseguirá a calcular expĺıcitamente la expresión (4.38).

Sea una fuente de GW cuya perturbación en la métrica viene dada por

hij(t, Ω̂) = e+ij(Ω̂)h+(t, Ω̂) + e×ij(Ω̂)h×(t, Ω̂) (4.41)
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Figura 4.3: Sistema de referencia usado para los cálculos de la curva de Helling-Downs. Se alineó al pulsar a

con el eje ẑ, a una distancia La del origen (que se toma a la Tierra o, similarmente, al baricentro del sistema

solar, SSB), el pulsar b se encuentra en el plano x− z a una distancia Lb del origen, formando un ángulo ζ con

el púlsar a. Aqúı Ω̂ es la dirección de propagación de la GW, con m̂× n̂ = Ω̂. El ángulo polar y azimutal vienen

dados por θ y ϕ respectivamente. Créditos de la imágen: (Mingarelli and Sidery, 2014).

donde h+,× representan los modos + y × de la GW en el gauge TT y e+,×
ij (Ω̂) son los tensores de

polarización dados por

e+ij(Ω̂) = m̂im̂j − n̂in̂j , e×ij(Ω̂) = m̂in̂j + n̂im̂j (4.42)

La ec. de la geodésica para un fotón propagándose de un púlsar genérico a la Tierra viene dada por

dσt

dλ
= −Γt

µνσ
µσν = −1

2
ġijσ

iσj (4.43)

donde σµ = ν(1,−α,−β,−γ) es el 4-momento del fotón sin perturbar, α, β, γ denotan (los cosenos

de) las direcciones x, y, z respectivamente, y el punto ġ denota derivada temporal ∂0g. Resolviendo

dicha ecuación se obtiene que

z(t.Ω̂) :=
ν(t)− ν0

ν0
=

1

2

α2 − β2

1 + γ
∆h+ +

αβ

1 + γ
∆h× (4.44)

93
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donde ∆hA := h⃝⋆
A − h⊕A (para un desarrollo más detallado en los cálculos consultar sección 1.7.2

de (Mingarelli, 2014)). Este resultado se puede generalizar aún más suponiendo que ahora se tienen

GW viniendo de N diferentes direcciones distintas, Ω̂n. Llamando, ahora, al 4-momento como σµ =

ν(1,−p̂) = ν(1,−α,−β,−γ), el cambio en la frecuencia se podrá escribir como

z(t, Ω̂) =

N∑
n

1

2

p̂ip̂j

1 + Ω̂n · p̂
∆hnij(t, Ω̂n). (4.45)

donde hµν =
∑N

n hnµν(t − Ω̂n · x̄). Teniendo el cambio en frecuencia (4.45), el siguiente paso es

calcular el promedio del producto entre elos. Para ello se considerará la expansión en ondas planas

para la perturbación hij producida por un fondo estocástico,

hij(t, x̄) =
∑
A

∫ ∞

−∞
df

∫
S2

dΩ̂hA(f, Ω̂)e
A
ij(Ω̂)e

i2πf(t−Ω̂·x̄) (4.46)

Para un fondo estacionario, gaussiano y sin polarizar, las amplitudes de polarización satisfacen

〈
h∗A(f, Ω̂)hA′(f ′, Ω̂′)

〉
= δ2(Ω̂, Ω̂′)δAA′δ(f − f ′)H(f)P (Ω̂) (4.47)

donde las funciones H(f) y P (Ω̂) describen el contenido espectral de la radiación y la distribución

angular, respectivamente. Considerando el caso isótropo, P (Ω̂) = 1, el cambio en la frecuencia z(t) se

calculará entonces según

z(t) =

∫
dΩ̂ z(t, Ω̂)

=
∑
A

∫ ∞

−∞
df

∫
S2

dΩ̂hA(f, Ω̂)F
A(Ω̂)ei2πft

[
1− e−i2πfL(1+Ω̂·p̂)

]
(4.48)

donde se definió la función FA(Ω̂) := 1
2

p̂ip̂j

1+Ω̂·p̂
eAij(Ω̂) para cada polarización, conocida como la

antenna beam pattern. En términos de esta, la correlación entre dos púlsares a y b (4.38) será

⟨r∗a(tj)rb(tk)⟩ =
∫ tj

dt′
∫ tk

dt′′
∫ ∞

−∞
df H(f)e−i2πf(t′−t′′)Γab(f) , (4.49)

donde se define la función

Γab(f) :=

∫
dΩ̂Kab(f, Ω̂)

∑
A

FA
a (Ω̂)FA

b (Ω̂) (4.50)

conocida como overlap reduction function (ORF por sus siglas), con

Kab(f, Ω̂) =
[
1− ei2πf

′La(1+Ω̂′·p̂a)
] [

1− e−i2πf ′Lb(1+Ω̂′·p̂b)
]

(4.51)
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Bajo la suposición de un fondo isótropo, la ORF (4.50) resulta en la curva de Hellings-Downs.

En lo que sigue se esbozará cómo se computa el cálculo expĺıcito para reducirse, en definitiva, a la

expresión presentada inicialmente, (4.37). Para eso se hará la suposición (que facilitará las cuentas)

de que fL ≫ 1, en cuyo caso la función Kab converge a cero de manera tal que la expresión (4.50)

contiene solamente al término terrestre, excepto por el término de autocorrelación cuando los púlsares

a = b. Por lo tanto, bajo esta aproximación, Kab ≃ 1+ δab (para una discusión más detallada consultar

sección 2.3 y el caṕıtulo 3 de (Mingarelli, 2014)).

Tomando el sistema de referencia tal como se indica en la figura 4.3, se pueden expresar los versores

según

p̂a = (0, 0, 1) , p̂b = (sin ζ, 0, cos ζ) , Ω̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) , (4.52)

m̂ = (sinϕ,− cosϕ, 0) , n̂ = (cos θ cosϕ, cos θ sinϕ,− sin θ) , (4.53)

con ζ = p̂a · p̂b. Bajo esta elección de frame se calculan las funciones FA(Ω̂) para cada pulsar. Notar,

por ejemplo, que F×
a = 0 ya que en este frame p̂ia p̂

j
b e

×
ij = e×zz = 0. Calculando expĺıcitamente las otras

componentes9 para FA, se puede calcular la integral (4.50) y obtener, luego de un poco de álgebra,

Γab(f) =

√
2

π

[
1 +

cos θ

3
+ 4(1− cos θ) ln

(
sin

ζ

2

)]
(1 + δab) (4.54)

Esta ecuación es la curva de Hellings y Downs a menos de un factor multiplicativo de 4
√
π/3 que se

usa para normalizar la curva de manera tal de que el máximo valor de la función vale 1 cuando ζ = 0,

es decir cuando el pulsar a=pulsar b10. La idea a continuación será obtener la curva de Hellings-Downs

análoga a (4.37) (o, análogamente, (4.54)) para el caso de ULDM de spin-2.

Curva de correlación ULDM de spin-2

Siguiendo lo hecho en la sección anterior, se proseguirá a calcular lo análogo para el caso bajo

estudio en cuestión, es decir para el caso de ULDM de spin-2. La función de respuesta para cada

pulsar viene dada por la expresión (4.24), a partir del cual se puede obtener la función de correlación

C(ϑ, φ) := tar(ta) t
b
r(tb) para dos púlsares a y b ubicados en una posición na y nb y observados en un

tiempo ta y tb respectivamente, dado por
9Ver ec.(1.169) de (Mingarelli, 2014) para la expresión expĺıcita.

10La normalización utilizada para la curva de Hellings-Downs es totalmente arbitraria, aunque por razones históricas

muchas veces se utilizan distintos factores. En lo que a esta tesis respecta, se utilizará una normalización que resulte

consistente con el trabajo en śı. Se sugiere la lectura de (Romano and Allen, 2023) para una discusión más detallada

respecto a la elección de la normalización.
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C(ϑ, φ) =
α2ρDM

2m4M2
P
sin (mta +Υ⊕) sin (mtb +Υ⊕) εij,⊕ εkl,⊕ n

i
an

j
an

k
bn

l
b . (4.55)

Eligiendo el frame de manera tal que el pulsar a quede alineado con el eje z, esto es

na = (0, 0, 1) , nb = (sinϑ cosφ, sinϑ sinφ, cosϑ) . (4.56)

se puede calcular de manera un poco más simplificada la función de correlación C(ϑ, φ). Notar,

sin embargo, que con la parametrización utilizada para describir al cuadrupolo εij , ec. (2.32), se están

separando a dichas componentes de acuerdo a sus propiedades frente a rotaciones alrededor del eje z.

Por lo tanto, con la elección del sistema de referencias (4.56), solamente la helicidad escalar contribuirá

al resultado final por parte del pulsar a. Esta elección, no obstante, resulta útil para hacer una conexión

con la literatura donde se discute la señal esperada de otros efectos, tales como el estudio del fondo

de GW en GR y sus extensiones (Chamberlin and Siemens, 2012; Gair et al., 2015; Jenet et al., 2005;

Lee et al., 2010; Lee et al., 2008). En definitiva, calculando las contracciones pertinentes, la función de

correlación resulta

C(ϑ, φ) =
α2ρDM

6m4M2
P
sin (mta +Υ⊕) sin (mtb +Υ⊕)×

× εS

{
εS
[
3 cos2 ϑ− 1

]
+
√
3
[
εV sin 2ϑ cos(φ− η) + εT sin2 ϑ cos(2φ− χ)

]}
. (4.57)

En la figura 4.4 se muestra el comportamiento polar de la función de correlación para las tres

helicidades del campo de spin-2. Cabe aclarar que, en la realidad, no se veŕıan las distintas helicidades

por separado sino que la suma de ellas tres. Para desentrañar las diferentes helicidades se necesitaŕıa,

evidentemente, estudiar con más detalle la dependencia azimutal de la señal: el término escalar es

independiente de φ, la helicidad vectorial va como cos(φ − η), y la parte tensorial es proporcional a

cos(2φ− χ).

A modo de cierre de esta sección y por consistencia, en lo que sigue se discutirá sobre cómo afectan

los términos subdominantes a los resultados hallados en este caṕıtulo.

4.2.2. Estimación de los términos subdominantes

El punto de partida para analizar qué es lo que sucede con los términos subdominantes es la

expresión para el residuo del tiempo (4.32). Como primera cuestión, para realizar el análisis se supondrá,

por simplicidad, que la densidad de enerǵıa de materia oscura ρDM viene dado por su valor medio en

todos lados, es decir que se supondrá que ρDM⃝⋆ = ρDM⊕ ≡ ρDM. De esta manera solamente se retendrá
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Figura 4.4: Dependencia angular de la función de correlación C(ϑ, 0), ec. (4.57), para las tres helicidades

εS (roja sólida), εV (verde lineada grande) y εT (violeta lineada chico), normalizado de manera tal que εS

contribuye 1 cuando ϑ = 0. Se ve que la contribución escalar εS no depende del ángulo azimutal φ. Se graficó la

contribución de la helicidad vectorial alineado según φ = η mientras que la contribución tensorial εT alineado

con 2φ = χ. Se exhibe, a su vez, la curva de Hellings-Downs (4.37) en negro sólido. La normalización relativa

entre la curva de Hellings-Downs y las tres contribuciones de las helicidades del campo de spin-2 es arbitraria

(ver nota al pie 10).

la dependencia espacial en la polarización y en la fase. Para continuar con el análisis se debe especificar

aún más cómo es la configuración espacial del campo de spin 2; para ello se pueden considerar dos

posibilidades:

O bien se asume que la configuración del cuadrupolo de ULDM de spin-2 es la misma en todos

lados, incluso para distancias mayores a su escala de coherencia dado por la longitud de onda

de Broglie (este fue el approach seguido, impĺıcitamente, en (Nomura et al., 2020) para el caso

vectorial de ULDM) en cuyo caso εij,⊕ = εij,⃝⋆ .

Si el cuadrupolo resulta distinto para cada ubicación del pulsar, entonces se puede hacer un

promedio sobre todas las posibles configuraciones del mismo, asumiendo que todos los púlsares

viven en parches descorrelacionados.

El rumbo a seguir que se tomará aqúı es el segundo de estos, en donde tomando "promedio sobre

las helicidades" se obtiene

〈
t2r(t)

〉
hel =

α2ρDM

2m4M2
P

[(
ε⊕ijn

inj
)2

sin2 (mt+Υ⊕)−
2

15
sin2 (mt−mD +Υ⃝⋆)

]
. (4.58)
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Se puede ver que el término de pulsar no depende de la dirección n, tal como era de esperar a la

hora de tomar promedio. A su vez, es posible notar que no hay término cruzado entre Tierra-púlsar

ya que promedia a cero. La fase Υ es, en un principio, no solamente distinta en la Tierra como en el

púlsar, sino también para cada púlsar en particular. Por lo tanto si la escala caracteŕıstica para los

cambios en las fases es la misma que la del cuadrupolo, entonces para tener en cuenta este efecto se

debeŕıa promediar asimismo sobre las fases. Sin embargo, por lo menos a primer orden, esto es lo mismo

que promediar sobre el tiempo y por ende la contribución resultante es independiente del tiempo y no

podrá medirse con PTA. En conclusión, al mantener las fases distintas se está haciendo la suposición

de que solamente los cambios en la configuración del cuadrupolo serán significantes para los distintos

púlsares.

Promediando sobre la esfera n se obtiene, finalmente,

√
⟨t2r(t)⟩ =

α
√
2ρDM√

15m2MP
cos

(
mt− mD

2
+

Υ⊕ +Υ⃝⋆

2

)
. (4.59)

por lo tanto el efecto de considerar también los términos subdominantes es, como mucho, mayor por

un factor
√
2 debido a que puede haber una supresión causada por la diferencia en las fases para cada

púlsar. Por ende, el término Terrestre domina al menos por un factor 1/
√
2 y, considerar la inclusión

del término de púlsar junto al de la Tierra resulta mayor que aquel considerando solamente al término

terrestre. En definitiva, los ĺımites que se han obtenido previamente son conservativos.

4.3. Conclusiones

Se prosiguen a listar las conclusiones de este caṕıtulo:

▷ El comportamiento oscilatorio del campo de ULDM de spin-2 induce un cambio en la frecuencia

de los pulsos que arriban de los púlsares, el cual deja una impronta que depende del tiempo y de

la dirección, (4.24). Esto se debe a que el campo de spin-2 está acoplado universalmente al tensor

enerǵıa-momento de la materia estándar, parametrizado por la constante α.

▷ La huella más caracteŕıstica que posee el campo de ULDM de spin-2 en comparación con los efec-

tos producidos por otras fuentes a las mediciones de pulsar timing es su estructura cuadrupolar

anisotrópica: la magnitud del residuo temporal depende de la posición de los púlsares en el cielo,

caracterizado por los armónicos esféricos (de grado 2).

▷ Para el rango de masas de ULDM m ≲ 4× 10−22 eV, los datos existentes de, por ejemplo, PPTA,

pueden otorgar cotas interesantes y relevantes para el acople del campo de spin-2 ULDM α, figuras

4.1 y 4.2. Estos resultados, cabe aclarar, son una estimación del orden que se puede alcanzar con
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los datos de PTA actuales (se ha promediado sobre la esfera) y, para tener en cuenta de manera

robusta las anisotroṕıas en las señales, un estudio más dedicado es necesario. La ĺınea a explorar

aqúı caeŕıa bajo el análisis realizado en (Porayko et al., 2018), tomando en cuenta las anisotroṕıas

para aśı optimizar las cotas y a su vez distinguir el efecto de aquel producido, por ejemplo, por un

campo de ULDM de spin-0.

▷ Si se comparan los ĺımites obtenidos para α utilizando BPs, fig. 3.4, de aquellos obtenidos utilizando

PTA, fig. 4.1, vemos que este último complementa el rango de masas a explorar para poner cotas a α,

justamente en la región en donde BPs no presentaba cota alguna. Combinando ambos resultados,

es posible acotar al modelo en un rango más amplio de masas y restringir más aún el valor del

parámetro de acoplamiento α.

▷ Se ha podido estudiar la correlación entre los tiempos residuales para cualquier par de púlsares en el

arreglo, ec. (4.57). Debido a la naturaleza cuadrupolar del campo ULDM de sṕın-2, esta correlación

depende expĺıcitamente de la separación angular entre el par de púlsares, como aśı también de su

posición (azimutal) relativa. Este resultado es remarcable ya que no solamente presenta diferencias

sustanciales con respecto a otros modelos de ULDM (escalar y vectorial por ejemplo), sino que

también tiene implicancias importantes a la hora de desarrollar estrategias para la búsqueda de

dicha señal. De hecho, se pueden separar diferentes efectos sistemáticos en los análisis de correlación

de púlsares en PTA y lidiar por separado con cada uno. Esto es gracias a que cada uno de ellos

presenta un comportamiento anisotrópico distinto (ver (Taylor et al., 2017; Tiburzi et al., 2016;

Verbiest and Shaifullah, 2018)) como por ejemplo un error sistemático en los relojes seŕıa monopolar

(es decir, isótropo), un error sistemático en las efemérides planetarias seŕıa dipolar, etc.

▷ El efecto del campo de spin-2 sobre pulsar timing es similar a aquel generado por una fuente

monocromática de GW. Existen diversos enfoques y métodos actuales para buscar dicha señal (ver

(Lee et al., 2011; Madison et al., 2016; Zhu et al., 2014) para un análisis en el tiempo, y (Zhu et al.,

2015b) para frecuencia). Seŕıa interesante, entonces, estudiar hasta qué punto se pueden extender

y aplicar estos métodos al modelo de spin-2 ULDM.
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Caṕıtulo 5

Ondas gravitacionales

Hasta el momento se ha estudiado cómo la ULDM de spin-2 afecta las órbitas de los BPs como

aśı también el tiempo de arribo de PTAs, y en base a esto se han puesto novedosas cotas al modelo.

En este último caso, se ha hecho uso del cambio de frame (4.11) para reinterpretar la propagación de

los fotones desde el púlsar a la Tierra como si se estuviesen propagando libremente en una métrica

g̃, la cual depende expĺıcitamente del campo de ULDM, Mij . Precisamente este cambio de frame

permitirá estudiar cómo debido a las oscilaciones del campo de spin-2 como aśı también debido a

su acople universal con la materia ordinaria, α, la ULDM de spin-2 podŕıa generar una señal en los

detectores de GW que se asemeje a la señal generada por GW continuas: en contraparte con las

detecciones de GW debido a la colisión de BH/NS, señales más débiles pero de mayor duración en el

tiempo se pueden detectar también. Esto será aśı siempre y cuando la onda esté oscilando de manera

(cuasi)monocromática y "continua", es decir coherente en el tiempo. La idea explorada en (Armaleo

et al., 2021) sigue este rumbo, donde se muestra cómo la ULDM de spin-2 podŕıa generar una señal

de este tipo y, más aún, podŕıa ser detectada con los interferómetros de GW (GWI por sus siglas

en inglés) actuales y futuros. La idea y los resultados de este caṕıtulo son un reflejo de lo hecho en

(Armaleo et al., 2021), mostrando que con los datos actuales - en el caso de una detección nula -

se pueden poner nuevas cotas al parámetro de acoplamiento α por debajo de α ∼ 10−7, para masas

alrededor de 10−13 eV. Asimismo, con los detectores futuros se podrá extender dicha cota para masas

más pequeñas aún, hasta alrededor de 10−18 eV. Para el rango de frecuencias acccesibles por los GWI,

estas cotas seŕıan las más estrictas para el parámetro de Yukawa (quinta fuerza), dado por α.

En este caṕıtulo se estudiará la señal que produce el campo de ULDM de spin-2 sobre los GWI, y

cómo mediante la (no)detección de dicha señal se pueden poner cotas al modelo. Para ello, lo primero

que se hará será describir cómo es la forma de la señal del campo de spin-2 para, luego, estudiar las
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cotas pertinentes al modelo.

5.1. Señal en los detectores de ondas gravitacionales

Las GW detectadas hasta el momento son producto de eventos breves y catacĺısmicos tal como lo es

la colisión de agujeros negros binarios (Abbott et al., 2019b, 2021). Las señales que se detectan a partir

de este tipo de eventos es fuerte, con amplitud gravitacional (adimensional) del orden de h ∼ 10−21,

pero resultan muy breves en el tiempo (desde alguna fracción del segundo hasta algunos segundos).

A su vez, otro tipo de señales se pueden detectar a partir de las GW emitidas, por ejemplo, por NS

que giran muy rápidamente (Riles, 2017) o también a partir de objectos galácticos ultra-compactos en

binarias (Nelemans et al., 2001). Este último tipo de GW presenta una señal mucho más débil que la

primera, pero resultan de mayor duración y coherentes en el tiempo; a este tipo de GW se las conoce

como GW continuas (o, abreviadamente, CW ). En el último tiempo se han tratado de buscar dichas

señales (Abbott et al., 2019a; Dergachev and Papa, 2020; Steltner et al., 2021) pero, no habiendo

detectado CW alguna, se ha podido poner una cota superior a la amplitud máxima h en un valor de

h ∼ 10−25 para frecuencias de alrededor f ∼ 102 Hz. A su vez, otra fuente posible de CW puede ser

debido al scattering de bosones ultralivianos alrededor de BH a través del mecanismo conocido como

superradiancia1 (Brito et al., 2015). La idea en esta sección será mostrar que la señal que genera la

ULDM de spin-2 es análoga a la señal que generan las CW. Es decir, la ULDM de spin-2 interactúa

con los GWI de forma tal que, debido a su estructura (cuasi)monocromática y coherente, la señal es

análoga a una CW. Cabe destacar que dicha señal se produce por las oscilaciones coherentes del campo

de spin-2, el cual se encuentra acoplado de manera universal a los campos del modelo estándar. Este

proceso, notar, nada tiene que ver con las CW generadas por superradiancia; más bien, este proceso

es similar a lo que sucede con la materia oscura del tipo fotón oscuro donde la ULDM presenta in-

teracciones adicionales (Miller et al., 2021; Pierce et al., 2018) 2 (notar, no obstante, que en el caso

de spin-2 la interacción no puede ser setteada a cero). Más aún, si la ULDM interactúa solamente de

manera gravitacional, la señal no podrá detectarse con GWI, independientemente del spin del campo

(Aoki and Soda, 2016). Se prosigue, entonces, a describir cómo resulta la señal producida por la ULDM

de spin-2.

El comportamiento del campo de ULDM de spin-2 Mij para regiones lo suficientemente chicas

dentro del halo local viene descripto por la ec. (2.27). Para estudiar el efecto del campo sobre los GWI,
1Ver, por ejemplo, (Ng et al., 2021; Palomba et al., 2019) para la búsqueda de CW producidas por superradiancia en

el caso de spin-0.
2En, por ejemplo, (Arvanitaki et al., 2015; Grote and Stadnik, 2019; Michimura et al., 2020; Morisaki and Suyama,

2019) se pueden encontrar otros tipos de interacciones directas entre la ULDM y la materia.
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sin embargo, será necesario hacer una aclaración pertinente: las detecciones de GW (tales como, por

ejemplo, LIGO/Virgo, etc) se realizan en su propio frame, denominado frame del detector. Por otro

lado se encuentra la DM de spin-2, cuyo tensor εij se escribirá de distinta manera dependiendo del

frame donde se trabaje. Por ende, habrán dos frames en cuestión que serán aquel donde se realizan las

mediciones de GW llamado frame del detector, y por otro lado el frame en el cual se descompone el

tensor cuadrupolar de la DM denominado DM frame. Por este motivo, la ec. (2.27) se reescribirá para

dejar esto expĺıcitamente como

Mij(t) =

√
2ρDM

m
cos (mt+Υ)εij(r) , (5.1)

donde se deja de manera manifiesta la dependencia en el tensor cuadrupolar a través del versor

r (Maggiore, 2007). Notar que esta solución asume que el campo permanece coherente y homogéneo

sobre la región de interés (ver recuadro debajo).

Coherencia y homogeneidad del campo

La solución (5.1) asume una sola frecuencia, que viene dada por la masa del campo 2πf = m,

y una estructura de polarización coherente. La idea aqúı es brindar una justificación de por qué

esto tiene sentido.

Anteriormente se ha visto que la escala de inhomogeneidades para el campo de ULDM viene

dada por su longitud de onda de Broglie, λdB = 1/fv, ec. (2.34), donde f es la frecuencia y

v ∼ 10−3 es la velocidad efectiva de la ULDM. Por lo tanto, dado que λdB es much́ısimo más

grande que el tamaño t́ıpico de los GWI, se pueden despreciar los gradientes del campo y tratarlo

de forma homogénea.

Por otro lado, la coherencia en la frecuencia de oscilación estará garantizada hasta cierto tiempo

de coherencia, dado por tcoh := 4π/mv2 = 2/fv2 (notar que esta definición difiere en un factor 4

de la definición usual que se utiliza en la literatura de ULDM, (2.35). Aqúı se adoptará la primera

de ellas, que es la usual en la literatura de GW). T́ıpicamente, las observaciones hechas por los

GWI poseen un tiempo de observación mucho mayor que tcoh y por ende una descripción más

precisa de la ULDM seŕıa en términos de una superposición de ondas planas (ver (Miller et al.,

2021; Pierce et al., 2018)). Como el objetivo aqúı no es obtener de manera exhaustiva la forma

expĺıcita de la señal, sino tener una estimación del orden de magnitud de las cotas que se pueden

hallar con los GWI, se asumirá que el campo puede ser descripto por una sola frecuencia.

En el ULDM frame (p,q, r), el tensor de polarización del campo se podrá describir según εij(r) :=∑
m amY2m

ij (r) :=
∑

κ εκYκ
ij(r), donde la suma en κ corre sobre las cinco amplitudes {ε×, ε+, εL, εR, εS}
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que satisfacen
∑

κ ε
2
κ = 1 (la amplitud global se ha fijado de manera tal que Mij constituye toda la

DM), y donde las matrices de polarización están dadas por

Y×
ij :=

1√
2
(piqj + qipj) , Y+

ij :=
1√
2
(pipj − qiqj) ,

YL
ij :=

1√
2
(qirj + riqj) , YR

ij :=
1√
2
(pirj + ripj) ,

YS
ij :=

1√
6
(3rirj − δij) . (5.2)

Notar que la diferencia con la descomposición hecha al final del caṕıtulo 2, ec. (2.29), es simplemente

escribir al tensor εij de dos maneras distintas. La manera de expresar al tensor cuadrupolar como

εij(r) =
∑

κ εκYκ
ij(r) resultará útil para relacionar el frame del detector y el de la ULDM. La conexión

entre ambas maneras de descomponer εij viene dada por el siguiente diccionario:

Y×
ij := Y2,−2

ij , Y+
ij := Y2,2

ij , YL
ij := Y2,−1

ij , YR
ij := Y2,1

ij , YS
ij := Y2,0

ij .

y donde, a su vez, las amplitudes se relacionan mediante

ε× :=εT sinχ := a−2 := sin η cosβ sinχ , ε+ :=εT cosχ := a2 := sin η cosβ cosχ ,

εL :=εV sin τ := a−1 := sin η sinβ sin τ , εR :=εV cos τ := a1 := sin η sinβ cos τ ,

εS :=a0 := cos η . (5.3)

Es importante notar que, a diferencia de CW, en este caso no hay propagación a lo largo de la

dirección r ya que aqúı el mismo sirve simplemente como una referencia para la descomposición en

helicidades escalares, vectoriales y tensoriales, de acuerdo a su comportamiento frente a rotaciones

alrededor de r. Por este motivo es que se ha utilizado la nomenclatura {×,+, L,R, S} anteriormente.

A su vez, es necesario tener en cuenta que la descomposición hecha aqúı no es la más general posible:

el tensor de polarización simétrico más general, que sea invariante frente a difeomorfismos, puede tener

hasta seis grados de libertad independientes (Lee et al., 2008). En este caso, la descomposición más

general para el tensor εij(r) posee dos modos escalares: el modo breathing εb con Yb
ij ∝ (pipj + qiqj), y

el modo longitudinal εl con Y l
ij ∝ (rirj). Estos dos modos, sin embargo, se combinan en un solo modo

εS debido a la no-traza del tensor de polarización δijεij = 0 que se satisface en el modelo de ULDM

de spin-2 de esta tesis.

Mediante la redefinición de la métrica llevada a cabo en la sección anterior, gij → gij + αMij/MP,

ec. (4.11), el efecto del campo de spin-2 sobre los detectores puede ser descripto de manera equivalente

como el efecto gravitacional producido por una perturbación de la métrica que oscila, hij , dado por
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hij(t) =
α

MP
Mij(t) =

α
√
2ρDM

mMP
cos (mt+Υ)εij(x) . (5.4)

En términos de esta se define la señal como la combinación de la perturbación de la métrica hij y

la función de respuesta, Dij , como h(t) := Dijhij(t). La función de respuesta en el frame del detector

(x,y, z) está dado por el cambio (diferencial) en la longitud de los brazos del detector a lo largo de los

versores n y m, calculado como Dij = (ninj −mimj)/2 (Maggiore, 2007). La señal resulta, entonces,

h(t) =
α
√
ρDM√

2mMP
cos (mt+Υ)∆ε := hs sin (mt) + hc cos (mt) , (5.5)

donde se definió ∆ε := εij(n
inj − mimj) y se han introducido las amplitudes del seno hs y del

coseno hc. Este es el resultado principal de este caṕıtulo de la tesis.

Cabe remarcar que la señal teórica (5.5) resulta inversamente proporcional a la masa del campo

m. Este comportamiento inverso con la masa se halla, asimismo, para el caso de ULDM de spin-1

(fotón oscuro) donde el campo porta una carga adicional tal como el número bariónico B o número

bariónico menos leptónico B −L, los cuales generan una interacción directa entre el campo de ULDM

y los espejos del detector (Miller et al., 2021; Pierce et al., 2018). La dependencia inversa (lineal)

en la masa debe ser comparada, pues, con la dependencia cuadrática obtenida del caso de interacción

puramente gravitacional (Aoki and Soda, 2016). Es decir, en ausencia de interacciones no gravitatorias,

la amplitud de la señal decae mucho más rápido para masas más grandes, debido a su dependencia

cuadrática. Por este motivo es que seŕıa prácticamente imposible detectar alguna señal de este tipo

con los GWI.

Para calcular expĺıcitamente quién es ∆ε, primeramente habrá que definir de manera precisa los

frames de trabajo para luego calcular, aśı, la contracción pertinente. Para ello lo que se tendrá que

hacer es escribir al DM frame en términos del frame del detector. Este resulta (ver figura 5.1)

r = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

p = (cos θ cosϕ, cos θ sinϕ,− sin θ) ,

q = (− sinϕ, cosϕ, 0) , (5.6)

Con esto en mente, calcular ∆ε se reduce a calcular, en definitiva, las distintas contracciones

provenientes de Yκ
ij con ni y mi. De manera general se puede expresar, entonces,
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Figura 5.1: Sistemas de referencias utilizados para el detector y para la ULDM. El oŕıgen de ambos sistemas

se encuentra conectado a través del vector rr. Se han puesto los ejes del detector alineados con los ejes x e y

del sistema de referencia.

∆ε =
√
2ε× [(p · n) (q · n)− (p ·m) (q ·m)] +

ε+√
2

[
(p · n)2 − (q · n)2 − (p ·m)2 + (q ·m)2

]
+
√
2εL [(q · n) (r · n)− (q ·m) (r ·m)] +

√
2εR [(p · n) (r · n)− (p ·m) (r ·m)]

+

√
3

2
εS

[
(r · n)2 − (r ·m)2

]
(5.7)

donde, si ahora se establece n = x y m = y lo cual se puede hacer sin pérdida de generalidad para

un detector en forma de L, la expresión anterior se escribirá como

∆ε =
cos 2ϕ√

2

[
ε+
(
cos2 θ + 1

)
+ εR sin 2θ +

√
3 εS sin2 θ

]
−
√
2 sin 2ϕ (ε× cos θ + εL sin θ) (5.8)

A partir de este resultado cabe mencionar que, como el detector se está moviendo con respecto

a la ULDM, ciertos efectos podŕıan aparecer que podŕıan ser relevantes para el resultado. Más es-

pećıficamente, el movimiendo del detector con respecto a la ULDM es producto de tres contribuciones

a saber:

(1) La Tierra rota alrededor de su eje con velocidad v ∼ 10−6 (esto aplica, solamente, a detectores

terrestres).
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(2) La Tierra realiza su órbita alrededor del Sol con velocidad v ∼ 10−4.

(3) El Sistema Solar se está moviendo a través del halo de DM con velocidad v ∼ 10−3, causando

lo que se conoce como viento de DM.

Esto implica que, en principio, se debeŕıa hacer una transformación de Lorentz del frame de ULDM

al frame del detector. Sin embargo, dado que las velocidades involucradas en los efectos previamente

mencionados son muy pequeñas, el efecto del boost en rr equivale a una corrección menor al ∼ 1%

de la señal teórica y por lo tanto se pueden despreciar dichos efectos. A su vez, y por otro lado, la

aceleración relativa entre los dos frames inducirá un corrimiento Doppler en la frecuencia, ∆fDoppler,

que podŕıa afectar la señal de ULDM-CW de spin-2 y por lo tanto debeŕıa ser tenida en cuenta a la

hora de desarrollar los métodos para analizar los datos fehacientemente (D’Antonio et al., 2018; Frasca

et al., 2005; Miller et al., 2021). En la siguiente (sub)sección, no obstante, se discutirá sobre por qué el

efecto Doppler - en lo que a esta tesis respecta - puede ser despreciado. Esto viene justificado a partir

del método por el cual este tipo de GW (i.e., continuas) se suelen analizar.

5.1.1. Método semi-coherente

Para analizar la señal de GW producida, por ejemplo, por la colisión de dos BH, se necesita un

método computacional que sea extremadamente preciso en una ventana de tiempo muy corta, acorde

al tiempo del merger y ringdown de la colisión en cuestión. Para analizar CWs, en cambio, se necesita

recurrir a métodos distintos de análisis de datos ya que es computacionalmente imposible investigar la

señal de manera coherente para todo el tiempo de observación, tal como se suele hacer con los eventos

breves y catacĺısmicos comentados al inicio del caṕıtulo3. La búsqueda de CWs en el cielo recurre,

entonces, a los métodos conocidos como semi-coherentes (Antonucci et al., 2008; Astone et al., 2014;

Brady and Creighton, 2000; Krishnan et al., 2004). En los métodos semi-coherentes toda la data se

divide en pequeños intervalos de tiempo, denotados (por sus siglas en inglés) Tchunk, dentro del cual

cada uno se analiza de forma coherente por separado. Una de las ventajas de este método es que

si se elige Tchunk < TDoppler := 1/∆fDoppler, entonces el corrimiento Doppler en la frecuencia puede

ser despreciado; más precisamente, dentro de cada intervalo de tiempo, el corrimiento Doppler que

contribuiŕıa a ḟ puede ser despreciado, es decir que la frecuencia permanece constante. Cabe destacar

que en las búsquedas de CW, para identificar posibles candidatos como fuentes de CW para el análisis

jerárquico semi-coherente, es necesario corregir el corrimiento Doppler predicho para cada chunk y

para cada ubicación en el cielo. Pero, dado que no hay "ubicación en el cielo" en lo que las búsquedas

de ULDM respecta, este efecto puede ser despreciado y no presenta mayores consideraciones. Más
3Esto es aśı por lo menos para los GWI terrestres. En el caso de GWI espaciales tales como LISA, debido a la

escasa frecuencia de muestreo de alrededor de 1 Hz, en comparación con la frecuencia de muestreo de por ejemplo HLV

(Hanford-Livingston-Virgo) de aproximadamente 104 Hz, esto no es un problema.
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aún, para tener configuraciones estables de la ULDM dentro de cada intervalo, se debe cumplir que

Tchunk < tcoh.

La sensitividad de un análisis coherente durante todo su tiempo de observación tobs escalea según

t
−1/2
obs . En los métodos semi-coherentes, asumiendo que se divide todo el tiempo de observación en N

chunks de la misma duración, tobs = NTchunk, la sensitividad escalea, en cambio, como N−1/4T
−1/2
chunk =

t
−1/4
obs T

−1/4
chunk. Gracias a la coherencia de la señal, e incluso con las limitaciones de los métodos semi-

coherentes, la sensitividad actual alcanzada por la colaboración HLV para la búsqueda de CW es por

lo menos 10−3 menor que la sensitividad de diseño h0 para los eventos breves (Abbott et al., 2019a;

Dergachev and Papa, 2020; Steltner et al., 2021).

Las técnicas semi-coherentes fueron adaptadas y optimizadas para la búsqueda de DM del tipo

fotón oscuro, tomando en cuenta la coherencia temporal y la geometŕıa de la señal (Miller et al., 2021).

Por lo tanto, en analoǵıa, se puede adaptar lo hecho para el caso vectorial al caso de ULDM-CW de

spin-2 mediante el reemplazo del promedio sobre las diferentes polarizaciones de la onda de ULDM, que

en el caso vectorial resultaba un factor
√
2/3, (Miller et al., 2021; Pierce et al., 2018), por el promedio√

⟨∆ε2⟩ =
√
2/5. Más espećıficamente, se define la amplitud teórica efectiva (o, en inglés, effective

theoretical strain amplitude) h para el caso de ULDM-CW de spin-2 como la ráız del promedio sobre

las polarizaciones y la fase Υ de las amplitudes del seno y coseno de (5.5),

h := ⟨h2s + h2c⟩1/2 =
α
√
ρDM√

5mMP
. (5.9)

Notar que, partiendo de (5.5), se obtiene que

√
⟨h2s + h2c⟩ =

α
√
ρDM√

2mMP

√
⟨∆ε2⟩ (5.10)

donde, para el caso de spin-2 ULDM-CW tal como se indicó anteriormente, resulta

⟨∆ε2⟩ = 1

4π

1

16π3

∫
dΩ̃∆ε2 sin θ sin η =

2

5
(5.11)

donde dΩ̃ denota en ángulo sólido para la 6-esfera delimitada por los ángulos {θ, ϕ, β, χ, η, τ},

ecuaciones (5.3) y (5.6). Cabe mencionar que los ángulos son tales que

θ ∈ [0, π] , ϕ ∈ [0, 2π] ,

η ∈ [0, π] , β, χ, τ ∈ [0, 2π] , (5.12)

La idea continuación será mostrar las cotas que se obtienen mediante el uso de GWI para el caso

de ULDM-CW de spin-2, ec. (5.9).
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5.2. Resultados

El objetivo en esta sección es mostrar los valores estimados accesibles para α mediante el uso de

GWIs. Para ello la idea será comparar la señal teórica esperada h (5.9) con la sensitividad de diseño

de diferentes GWI presentes y futuros. Dichos resultados se pueden observar en detalle en la figura

5.2. En dicha figura se puede observar que los detectores de HLV actuales pueden detectar la señal

de ULDM-CW de spin-2 para cierto rango de frecuencias, para valores de α ≳ 10−4. Una búsqueda

más dedicada mediante el método semi-coherente podŕıa, a su vez, mejorar el rango de detectabilidad

de α extendiéndolo para algunos órdenes de magnitud, llegando potencialmente hasta α ∼ 10−7 para

frecuencias de algunas decenas de Hz, que se corresponden con masas de alrededor de 10−13 eV. Esto

está indicado en la figura 5.2 mediante la ĺınea punteada con el nombre "HLV opt"; los detalles sobre

cómo se obtiene esta curva junto con una breve explicación más detallada al respecto sobre el método

optimizado se puede encontrar en el Apéndice B. Para más o menos el mismo rango de frecuencias

desde f ∼ 10 Hz (m ∼ 4 × 10−14 eV) hasta f ∼ 103 Hz (m ∼ 4 × 10−12 eV) y un poco más allá,

los experimentos futuros Einstein Telescope (ET) (Hild et al., 2011) y Cosmic Explorer (CE) (Abbott

et al., 2017) permitirán mejorar las chances de detectar ULDM de spin-2 alcanzando sensitividades del

orden de h0 ∼ 10−22—10−23.

Dado que la ULDM de spin-2 se encuentra acoplada de manera universal a la materia estándar,

la ULDM aparecerá como una quinta fuerza del tipo Yukawa, cuantificada y caracterizada por el

parámetro de acoplamiento α, modificando el potencial gravitacional Φ de acuerdo a Φ → Φ
[
1 + α2e−mr

]
.

La amplitud de esta quinta fuerza para diferentes valores de la masa m se encuentra acotada por di-

versos experimentos y pruebas a gravedad (ver (Murata and Tanaka, 2015; Sereno and Jetzer, 2006));

se llamará α = αY a este valor máximo. En la figura 5.2 se muestra la región exclúıda por dichos

experimentos bajo el rótulo Fifth force, h = h(αY ).

Las colaboraciones futuras permitirán explorar masas de ULDM mucho más pequeñas de aquellas

exploradas por los experimentos actuales. En las frecuencias intermedias 0.1 Hz ≲ f ≲ 1 Hz que

corresponden a 4 × 10−16 eV ≲ m ≲ 4 × 10−15 eV, se espera que los detectores BBO y DECIGO

alcancen sensitividades del orden de h0 ∼ 10−23—10−24 (Harry et al., 2006; Seto et al., 2001). Esto

significa que con estos GWIs se podŕıan detectar señales de ULDM-CW de spin-2 para valores de

α ≲ 10−8 en ese rango de frecuencias. En el rango de frecuencias bajas, el GWI espacial LISA podrá

alcanzar sensitividades de h0 ∼ 10−21 para f ∼ 10−2 Hz (m ∼ 4 × 10−17 eV), lo cual implica que

se podŕıa detectar ULDM de spin-2 para α ∼ 10−7. Todos estos ĺımites, cabe remarcar, se podŕıan

mejorar si se hiciera un desarrollo más dedicado del método de análisis, tal como en el caso de HLV.

Las sensitividades fueron extráıdas de (Schmitz, 2021) y se graficaron, junto con la señal teórica (5.5),
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Figura 5.2: Sensitividad de diseño h = h0 para los distintos GWIs presentes y futuros, como función de la

frecuencia (ĺıneas sólidas). La ĺınea punteada con el nombre "HLV opt" es la sensitividad optimizada obtenida

a partir del método semi-coherente adaptado para el caso de ULDM-CW de spin-2, Apéndice B. Supespuesto

con rectas interlineadas se encuentra la amplitud h calculada en (5.9) para diferentes valores del parámetro

10−4 ≤ α ≤ 10−10. La ĺınea punteada/lineada negra superior es la amplitud del campo de ULDM-CW de spin-2

correspondiente al valor máximo de α permitido por las cotas de quinta fuerza, h = h(αY ) con αY obtenida a

partir de (Murata and Tanaka, 2015; Sereno and Jetzer, 2006); la región que se encuentra por arriba de esta

está exclúıda.

en la figura 5.2. Es necesario notar que, estrictamente hablando, estas sensitividades solamente son

válidas para los modos tensoriales "estándar" de las GW - las usualmente denominadas ε× y ε+ en la

notación aqúı utilizada - pero como la idea aqúı es tener una estimación de los órdenes de magnitud

que se pueden alcanzar, las diferencias resultan irrelevantes (Zhang et al., 2019).

5.3. Conclusiones

En lo que sigue se listan las conclusiones de este caṕıtulo, siguiendo lo hecho en (Armaleo et al.,

2021).

▷ Mediante el potencial uso de GWIs, se pueden poner a prueba ciertos aspectos de gravedad como
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aśı también de DM a la vez. En particular, con los detectores actuales de HLV se podŕıa detectar

ULDM de spin-2 para valores de α tan pequeños como α ∼ 10−7, para frecuencias de f ∼ 100 Hz

(que equivaldŕıa a un alcance de Yukawa de λ := 1/2πf ∼ 104 m). En el caso de una detección nula,

los GWI pueden imponer los ĺımites más estrictos a la fuerza de la quinta fuerza de Yukawa para

spin-2. Más aún, GWI futuros (en el mismo rango de frecuencias) podŕıan poner cotas aún más

fuertes incluso hasta dos órdenes de magnitud, mientras que las colaboraciones futuras planeadas

como DECIGO y BBO (f ∼ 0.1 Hz), y el interferómetro LISA, se espera que alcancen valores de

α ≲ 10−7—10−8 en sus respectivos rangos de frecuencia.

▷ Los resultados obtenidos aqúı complementan aquellos obtenidos en las dos secciones anteriores

mediante el uso de BPs y PTAs ((Armaleo et al., 2020a,b)), los cuales cubŕıan un rango de frecuencias

de aproximadamente 10−9 Hz ≲ f ≲ 10−3 Hz. En el caso en que el rango de frecuencias se superpone,

notar, las cotas halladas en ambos casos resultan comparables.

▷ Los resultados que se obtuvieron aqúı deben ser comparados con las cotas existentes a ULDM

de spin-2, provenientes de superradiancia. Midiendo el spin y la masa de los BH y otros objetos

astrof́ısicos, el rango de masas 6.4 × 10−22 eV ≲ m ≲ 7.7 × 10−21 eV, 1.8 × 10−20 eV ≲ m ≲

1.8 × 10−16 eV y 2.2 × 10−14 eV ≲ m ≲ 2.8 × 10−11 eV se encuentran exclúıdos; de otra forma,

esos BH y/u objetos no podŕıan existir (Stott, 2020). Estos ĺımites son válidos siempre y cuando

10−30 eV/m≪ α≪ 1 (Brito et al., 2020), lo cual se cumple (practicamente)siempre para el espacio

de parámetros que se está considerando aqúı. Por lo tanto, las cotas que se pueden obtener con GWI

pueden, en simultáneo y de manera independiente, exclúır cierto espacio de parámetro explorado

por superradiancia, como aśı también testear nuevas regiones no accesibles por este.

▷ Tal como se ha visto en la ec.(5.5), la señal producida por el campo de spin-2 posee una estructura

geométrica muy particular. Mediante un estudio y modelo más dedicado, se podŕıa aprovechar dicha

estructura para mejorar no solamente la sensitividad de los GWI para con la ULDM-CW de spin-2,

sino a su vez para discriminar entre posibles fuentes de CW entre ULDM y otras posibilidades, tales

como binarias ultra-compactas, NS galácticos, CW provenientes de superradiancia, etc.
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Conclusiones generales

A lo largo de la tesis se han mostrado las diferentes cotas que se han podido obtener mediante el

uso de púlsares binarios (Caṕıtulo 3), pulsar timing array (Caṕıtulo 4), e interferómetros de ondas gra-

vitacionales (Caṕıtulo 5) al modelo de materia oscura ultraliviana de spin-2 presentado en el Caṕıtulo

2. El Caṕıtulo 1 trata de detallar cómo es una de las teoŕıas posibles para estudiar un campo masivo de

spin-2 en un fondo curvo. Las conclusiones parciales de cada caṕıtulo donde se presentaron resultados

relevantes para la tesis fueron mostradas al final de los mismos. Aqúı se presentarán las conclusiones

generales, haciendo un compendio de lo mostrado en dichos caṕıtulos. Estas conclusiones están bajo el

rótulo de Conclusiones cient́ıficas y se refieren a los resultados obtenidos y mostrados en esta tesis que

resultan relevantes para la comunidad cient́ıfica. Son, en esencia, el aporte principal de este trabajo

doctoral.

A su vez, parte de una tesis doctoral y - en general - de un doctorado consiste en realizar avances

en lo académico. Esto consta de varias aristas: desde realizar cursos que enriquezcan los conocimientos

cient́ıficos, hasta comunicar los resultados obtenidos a lo largo del doctorado en congresos, conferencias,

escuelas, etc, y relacionarse, crear y/o desarrollar lazos entre pares, entre otras. Parte de la idea aqúı

también es presentar y comunicar cuáles fueron los avances académicos que se fueron desarrollando a

lo largo del doctorado. Dichas conclusiones se encuentran bajo el nombre Conclusiones académicas y

se comentarán al final de este caṕıtulo.

Conclusiones cient́ıficas

De todas las propuestas y candidatos a DM que existen, en esta tesis se estudió en detalle uno de

ellos: el modelo de DM ultraliviana de spin-2. Lo realizado a lo largo del doctorado y mostrado aqúı

permite concluir lo siguiente:

⋆ El modelo de ULDM de spin-2 es sin dudas un candidato competitivo de DM. En general, tal

como se ha explicado en el Caṕıtulo 2, los modelos de ULDM son una alternativa viable más al
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modelo ΛCDM del Modelo Standard. En particular, el modelo de ULDM de spin-2 presenta una

alternativa sumamente interesante dada su estructura tensorial (cuadrupolar) única que la distingue

y diferencia de otros tipos de candidatos de DM.

⋆ La viabilidad del modelo estará restringida de acuerdo a qué tanto se condiga o no con las observa-

ciones y datos. En particular, en esta tesis se han puesto cotas al modelo estudiando las órbitas de

sistemas de púlsares binarios, el tiempo de arribo de los pulsos emitidos por los púlsares, y la señal

detectada en los detectores de ondas gravitacionales. En el primero de ellos se han obtenido cotas

para el parámetro de acople con la materia ordinaria, α, para ciertos valores posibles de la masa de

la (UL)DM, m, en el rango de 10−23 eV≲ m ≲ 10−17 eV alcanzando un nivel de α ≃ 10−5. Utilizan-

do PTA, en cambio, se han obtenido cotas para α cercanas a 10−7 para masas m ≃ 10−23 eV. Más

espećıficamente, en el rango de 10−23 eV≲ m ≲ 6×10−22 eV se han mejorado y complementado las

cotas obtenidas mediante el uso de BPs. Por último, utilizando los detectores de GWs se ha exten-

dido el rango de masas exploradas, barriendo un rango de 10−18 eV≲ m ≲ 10−11 eV y alcanzando

cotas para α por debajo de 10−7 con los detectores actuales.

⋆ Las cotas halladas en esta tesis, pues, sitúan cotas para el modelo en un rango de masas de 10−23 eV≲

m ≲ 10−11 eV, con valores del parámetro de acoplamiento que alcanzan α ≳ 10−8. Las cotas

existentes al modelo de ULDM de spin-2 previos a esta tesis proveńıan de superradiancia, y exclúıan

el rango de masas de 6.4×10−22 eV ≲ m ≲ 7.7×10−21 eV, 1.8×10−20 eV ≲ m ≲ 1.8×10−16 eV y

2.2×10−14 eV ≲ m ≲ 2.8×10−11 eV. Por lo tanto lo mostrado y hecho en esta tesis complementa y

mejora las cotas que exist́ıan hasta el momento, y lo hace de una manera independiente a lo hecho

previamente.

⋆ El estudio del campo de spin-2 resulta sumamente enriquecedor en el aspecto fenomenológico. En

particular, el estudio del peŕıodo orbital de los BPs permite estudiar las helicidades escalares y

tensoriales del cuadrupolo εij , pero el estudio de otros parámetros orbitales permitiŕıa explorar,

por ejemplo, lo que sucede con la helicidad vectorial. Por otro lado, el estudio de las correlaciones

entre señales de PTA permite obtener la curva de correlación análoga a la de Hellings-Downs, donde

para el caso de ULDM de spin-2 (en comparación) se presentan diferencias sustanciales para ciertas

helicidades. La estructura geométrica del campo podŕıa resultar útil y relevante, a su vez, para

discernir entre posibles fuentes de GW continuas, discriminando entre una señal producida por

ULDM o una producida - por ejemplo - por superradiancia.

114



Conclusiones

Propuestas a futuro

⋆ En la tesis se han estimado las cotas que se pueden poner al modelo de ULDM de spin-2 utilizando

BPs, PTAs y GWI. Los resultados sirven como una estimación al orden de magnitud que se puede

alcanzar, aunque todav́ıa se puede explotar aún más el uso de dichos sistemas para seguir mejorando

las cotas. En general, para obtener las cotas se ha utilizado una ecuación para el campo Mij que

resultaba coherente y homogéneo sobre las escalas de interés. Esto se deb́ıa o bien porque solamente

interesaba tener una idea del órden de magnitud que se puede alcanzar con los datos, o bien porque

desviaciones de esta suposición eran despreciables. Sin embargo, las cotas podŕıan llegar a mejorar

si se realizara un estudio más dedicado y detallado sobre las helicidades y anisotroṕıas del campo,

aśı como también podŕıa llegar a resultar sumamente relevante tener una descripción fehaciente si

se llegara a detectar, por ejemplo, una señal en los GWI que no se explique con la f́ısica del Modelo

Standard.

⋆ Las cotas obtenidas aqúı resultaron de estudiar sistemas y escalas astrof́ısicas, pero un estudio

cosmológico de este modelo aún queda por realizar. Actualmente, al momento en el cual esta tesis

fue escrita, se está estudiando la viabilidad de este modelo desde un punto de vista cosmológico.

Esto es, analizando cómo seŕıa el mecanismo de producción de la DM en este caso. A su vez, se está

investigando si este modelo resulta estable o no a lo largo de toda la evolución del Universo, y si se

podŕıa explicar la abundancia total de DM con este. Sin duda alguna, un modelo cosmológico realista

que dé cuenta del comportamiento tanto en el Universo temprano como hoy en d́ıa de este campo

de spin-2 resulta de gran interés. De obtener dicha descripción para toda la historia del Universo,

seŕıa imperioso poner el modelo a prueba frente a observaciones y datos cosmológicos tales como los

otorgados por el fondo cósmico de radiación, CMB, entre otros.

Conclusiones académicas

En lo que sigue se detallan las conclusiones académicas del trabajo doctoral realizado4.

Realizar un doctorado requiere de mucho más que simplemente publicar. El t́ıtulo de doctor (y

particularmente de la Universidad de Buenos Aires) no indica que uno "sepa publicar" o que sea "buen

cient́ıfico" solamente, indica mucho más; quiere decir que a lo largo del doctorado uno fue ganando

las herramientas y conocimientos necesarios para enfrentar, el d́ıa de mañana, practicamente cualquier

problema que se le presente. Indica que a lo largo de su formación fue aprendiendo cómo comunicar lo

que hace y los resultados que obtiene. Quiere decir que tiene la sabiduŕıa necesaria para poder relacio-

4Para las conclusiones académicas, por referirse a lo personal, se cambiará el léxico a la 1ra persona del singular.
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narse con colegas de una manera cŕıtica. La evaluación cient́ıfica de esta tesis, y con esto me refiero a

evaluar la calidad de los trabajos publicados, se deja en manos de los referees de las revistas donde los

trabajos que se presentaron en la tesis fueron enviados. La evaluación académica, en cambio, suele ser

algo que se deja de lado cuando se env́ıa trabajos a las revistas. La idea de escribir una tesis doctoral

no es solamente mostrar los resultados que se obtuvieron en los trabajos pertinentes, sino que - a mi

forma de verlo - requiere también de mostrar cómo se fueron entendiendo los problemas presentados,

cuáles fueron las herramientas utilizadas para enfrentar dicho problema, y cómo se comunican estos

resultados. Requiere, en definitiva, de mostrar que uno maduró académicamente a lo largo de su doc-

torado.

La forma en la que veo a la ciencia es de manera colaborativa: no hay ciencia si no hay colaboración.

Sea para estudiar ciertos fenómenos y obtener nuevos resultados, o bien sea partiendo de resultados

conocidos, siempre se utiliza lo hecho previamente por otras personas para afrontar cada d́ıa nuevos

desaf́ıos. Esto implica que inherentemente se requiere de la colaboración de muchas personas para que

la ciencia avance. Con el fin y el gusto de fomentar las colaboraciones y discusiones, generar grupos,

crear v́ınculos, y demás, desde 2019 hasta 2023 he sido el organizador de las reuniones del grupo de

Gravitación, Cosmoloǵıa y Estructuras en Gran Escala del Departamento de F́ısica de la U.B.A.. A su

vez, y por otro lado, en 2023 he tenido la oportunidad de realizar una estad́ıa en el exterior gracias a

un Financiamiento para estad́ıas5 de la U.B.A., desarrollada en Praga, República Checa, por casi 50

d́ıas. El estar ah́ı me permitió relacionarme y charlar con colegas externos a mi ámbito diario, y hasta

me concedió la posibilidad de publicar un nuevo trabajo (Armaleo et al., 2023), en este caso externo a

mi tema de tesis.

5https://cyt.rec.uba.ar/investigacion/subsidios/financiamiento-de-estadia-en-el-exterior/

financiamiento-de-estadia-en-el-exterior-2023/.
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Apéndice del caṕıtulo 3

A.1. Descomposición de Fourier

Cuando e ̸= 0, el movimiento orbital no puede ser expresado de una forma cerrada como una función

del tiempo. Sin embargo, śı puede escribirse como una serie de Fourier en términos de funciones de

Bessel. Se reportan a continuación cómo resultan dichas expansiones para las distintas combinaciones

de parámetros:

x/a = − 3e

2
+ 2

∑ J ′
n(ne)

n
cos(nωbt) , (A.1a)

y/a =
2
√
1− e2

e

∑ Jn(ne)

n
sin(nωbt) , (A.1b)

r/a =1 +
e2

2
− 2e

∑ J ′
n(ne)

n
cos(nωbt) , (A.1c)

(x/a)2 =
1

2
+ 2e2 +

∑
qxx(ne) cos(nωbt) , (A.1d)

(y/a)2 =
1− e2

2
+
∑

qyy(ne) cos(nωbt) , (A.1e)

xy/a2 = − 8e
√
1− e2

3
+
∑

qxy(ne) sin(nωbt) , (A.1f)

(r/a)2 =1 +
3e2

2
− 4

∑ Jn(ne)

n2
cos(nωbt) , (A.1g)

cos θ = − e+
2(1− e2)

e

∑
Jn(ne) cos(nωbt) , (A.1h)

sin θ =2
√
1− e2

∑
J ′
n(ne) sin(nωbt) , (A.1i)

(a/r)2 cos θ =2
∑

nJ ′
n(ne) cos(nωbt) , (A.1j)

(a/r)2 sin θ =
2
√
1− e2

e

∑
nJn(ne) sin(nωbt) , (A.1k)

sin2 θ =B0 +
∑

Bn(ne) cos(nωbt) , (A.1l)

sin θ cos θ = B̃0 +
∑

B̃n(ne) sin(nωbt) , (A.1m)

117
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donde la suma corre desde n ∈ [1,∞). Los coeficientes que aparecen en la expansión se definen de

la siguiente manera:

nqxx(ne) := Jn−2(ne)− Jn+2(ne)− 2e [Jn−1(ne)− Jn+1(ne)] (A.2a)

=4J ′
n(ne)

(1− e2)

e
− 4Jn(ne)

ne2
,

nqyy(ne) := (1− e2) [Jn+2(ne)− Jn−2(ne)] (A.2b)

= − nqxx(ne)− 4Jn(ne)/n ,

nqxy(ne) :=
√

1− e2 [−2Jn(ne) + Jn+2(ne) + Jn−2(ne)] (A.2c)

=4
√

1− e2
[
Jn(ne)

(1− e2)

e2
− J ′

n(ne)

ne

]
,

donde Jn(z) son las funciones de Bessel de primera especie. A su vez, los coeficientes Bn(ne) y

B̃n(ne) se definen, en términos de series de funciones de Bessel, a partir de las siguientes expansiones

(Watson, 1995):

Expansión del sin2 θ

sin2 θ =
ә2 sin2E

(1− e cosE)2
:= B0 +

∑
n

Bn cos (nωbt) , (A.3)

donde E es la anomaĺıa excéntrica definida según ωbt := E − e sinE.

B0 =
ә2

1 + ә
,

Bn =
ә
2

[
2Jn − Jn+2 − Jn−2

+
∑
q

Eq (2Jn+q − Jn+q+2 − Jn+q−2 + 2Jn−q − Jn−q+2 − Jn−q−2)

]
. (A.4)

donde la sumatoria se realiza sobre q ∈ [1,+∞). Se definió, a su vez, E := e/(1+ә) por simplicidad.

Expansión del sin θ cos θ

sin θ cos θ =
ә sinE(cosE − e)

(1− e cosE)2
:= B̃0 +

∑
n

B̃n sin (nωbt) , (A.5)

donde

B̃0 =
ә
πe2

[
ә2 log

(
1 + e

1− e

)
− 2e

]
,

B̃n = J ′
n+1 + J ′

n−1 − 2eJ ′
n

+
∑
q

Eq
(
J ′
n+q+1 + J ′

n+q−1 − 2eJ ′
n+q + J ′

n−q+1 + J ′
n−q−1 − 2eJ ′

n−q

)
. (A.6)
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Estudiando numéricamente la convergencia de las ecuaciones (A.4) y (A.6) se halló que se puede

truncar la serie en el término q = 3(n+2) (donde n es el armónico de interés, que para lo que respecta

a esta tesis será relevante hasta el armónico N = 5) y la serie converge rápidamente, con un resultado

truncado que aproxima a la serie completa con un error menor al 1%. En la figura A.1 se muestra la

convergencia de la serie para los primeros q = 3(n+ 2) términos, para los dos primero armónicos.
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Figura A.1: Convergencia de las series (A.4) (superior) y (A.6) (inferior) para los primeros q = 3(n + 2)

términos. Se muestran los resultados de los dos primero armónicos.

Por otro lado, utilizando la expansión de las funciones de Bessel y sus derivadas para valores

pequeños de e, JN (x) ≃ (x/2)N/N !, se llega a dos relaciones útiles que serán de interés,

eJ ′
N (Ne) ≃ JN (Ne) → e

2
δN,1 , (A.7a)

B̃N (Ne) ≃ −BN (Ne) → 1

2
δN,2 + e(δN,3 − δN,1) . (A.7b)

válidas a orden lineal en e. Estas aproximaciones, notar, serán útiles a la hora de estudiar lo que

sucede para órbitas (cuasi)circulares.

En el Panel 1 se reportan los seis parámetros orbitales escritos en términos de las componentes de

εij . Luego, en el Panel 2, se muestran expĺıcitamente las expresiones para los efectos seculares en los

mismos seis parámetros, escritos en términos de funciones de Bessel.
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Panel 1: Expresiones de los seis parámetros orbitales en términos de las polarizaciones. Se utiliza la notación

abreviada sx := sinx, cx := cosx.

ȧ

a
=

4λ
√
ρDM

ә

{
ωb

m

(a
r

)2 [
εT(sχ−2θ + esχ−θ)− e

εS√
3
sθ

]
cmt+Υ

−1

ә

[
εT(cχ−2θ + 2ecχ−θ + e2cχ) +

εS√
3
(1 + e2 + 2ecθ)

]
smt+Υ

}
(A.8a)

ė =
2λә√ρDM

e

{
ωb

m

(a
r

)2 [(
1− r

a

)
εTsχ−2θ + eεTsχ−θ − e

εS√
3
sθ

]
c(mt+Υ)

− 1

ә

[(
1− r

a

)
εTcχ−2θ +

(
2− r

a

)
eεTcχ−θ + 2

εS√
3
e(e+ cθ) +e

2εTcχ
]
smt+Υ

}
(A.8b)

Ω̇ =
2λ

√
ρDMεV

ә sin ι

{
ωb

m

(a
r

)
cη−θsθ+ωcmt+Υ +

1

ә

(r
a

)
(sη−θ + esη) sω+θsmt+Υ

}
(A.8c)

ι̇ =
2λ

√
ρDMεV

ә

{
ωb

m

(a
r

)
cη−θcθ+ωcmt+Υ +

1

ә

(r
a

)
cθ−ω (sη−θ + esη) smt+Υ

}
(A.8d)

ϖ̇ =
2λә√ρDM

e2

{
ωb

m

(a
r

)2 [
εTcχ−2θ − eεTcχ−θ + e

εS√
3
cθ

]
cmt+Υ

− 1

ә2
ωb

m

(a
r

)
εT (cχ−2θ + ecχ−θ) cmt+Υ − 1

ә

[
εT(s2θ−χ + e2sχ) + 2e

εS√
3
sθ

]
smt+Υ

− 1

ә3
(r
a

)
εT
(
sχ−2θ + 2esχ−θ + e2sχ

)
smt+Υ

}
+ 2s2ι/2Ω̇ (A.8e)

ϵ̇1 = − 4λ
√
ρDM

{
ωb

m

(a
r

)[
εTcχ−2θ −

εS√
3

]
cmt+Υ

+
1

ә

(r
a

)[
εTsχ−2θ + eεTsχ−θ − e

εS√
3
sθ

]
smt+Υ

}
+ (1− ә) ϖ̇ + 2әs2ι/2Ω̇ (A.8f)
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Panel 2: Efectos seculares de los seis parámetros orbitales.

〈
ȧ

a

〉
= − 4

3
λ
√

3ρDM

{
εSJN (Ne)sγ(t) + εT

[
F+(N, e)sγ(t)+χ + F−(N, e)sγ(t)−χ

]}
(A.9a)

⟨ė⟩ = − 2

3
λ
√

3ρDM
ә2

eN

{
εT

[
F+(N, e)

(
N − 2

ә

)
sγ(t)+χ + F−(N, e)

(
N +

2

ә

)
sγ(t)−χ

]
+ εSNJN (Ne)sγ(t)

}
(A.9b)

〈
Ω̇
〉
= −

λ
√
ρDM

Nsι
εV

{
cγ(t)

[(
BN (Ne)

ә3
− 2JN (Ne)

ә

)
sη−ω − 2JN (Ne)

ә
sη+ω

]
− sγ(t)

[
B̃N (Ne)

ә3
+

2eJ ′
N (Ne)

ә2

]
cη−ω

}
(A.9c)

⟨ι̇⟩ =
λ
√
ρDM

N
εV

{
cγ(t)

[(
BN (Ne)

ә3
− 2JN (Ne)

ә

)
cη−ω +

2JN (Ne)

ә
cη+ω

]
+ sγ(t)

[
B̃N (Ne)

ә3
+

2eJ ′
N (Ne)

ә2

]
sη−ω

}
(A.9d)

⟨ϖ̇⟩ = 2

3
λ
√

3ρDM
ә2

e2N

{
εT

[
cγ(t)−χ

(
F−(N, e)

(
N +

2− e2

ә3

)
+

√
3e2JN (Ne)

2ә3

)
− cγ(t)+χ

(
F+(N, e)

(
N − 2− e2

ә3

)
−

√
3e2JN (Ne)

2ә3

)]
− εS

ә
NeJ ′

N (Ne)cγ(t)

}
+ 2s2ι/2

〈
Ω̇
〉

(A.9e)

⟨ϵ̇1⟩ =
8

3

λ
√
3ρDM

N

{
εT

[
cγ(t)+χF+(N, e) + cγ(t)−χF−(N, e)

]
+ εSJN (Ne)cγ(t)

}
+ (1− ә) ⟨ϖ̇⟩+ 2әs2ι/2

〈
Ω̇
〉

(A.9f)
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A.2. Datos de púlsares binarios

En la Tabla A.1 se listan todos los BP’s que se usaron en el trabajo, junto con las propiedades

relevantes para el estudio.

Nombre M1 [M⊙] M2 [M⊙] e Pb[d́ıas] Ṗ int
b [s s−1] δṖ int

b [s s−1] Referencias

J1903+0327 1.0 1.7 0.44 95 -6.4e-11 3.1e-11 (A)

J1740-3052 20 1.4 ¶ 0.58 231 NA 3.0e-9 † (B)

J0737-3039 1.2 1.3 0.088 0.10 -4.0e-15 1.7e-14 (C)(D)

B1913+16 1.4 1.4 0.62 0.32 5.0e-15 4.0e-15 (E)

B1259-63 24 1.4 ¶ 0.87 1237 1.0e-9 7.0e-9 (F)

J1012+5307 0.16 1.6 1.3e-6 0.60 -1.8e-14 2.1e-14 (G)(H)(I)

J1614-2230 0.49 1.9 1.3e-6 8.7 3.4e-13 2.0e-13 (I)(J)

J1909-3744 0.21 1.5 1.2e-7 1.5 -4.0e-15 1.4e-14 (H)(I)

J0751+1807 0.16 1.6 3.3e-6 0.26 -4.6e-14 3.5e-15 (H)

J1910+1256 0.19 § 1.6 2.3e-4 58 -2.0e-11 4.0e-11 (K)

J2016+1948 0.29 § 1.0 1.5e-3 635 -1.0e-9 2.0e-9 (K)

J0348+0432 0.17 2.0 2.4e-6 0.10 -1.1e-14 4.5e-14 (L)

J1713+0747 0.29 1.3 7.5e-5 68 3.0e-14 1.5e-13 (M)

J0613-0200 0.12 § 1.2 ¶ 5.4e-6 1.2 2.7e-14 1.0e-14 (H)(I)

J1738+0333 0.19 1.5 3.4e-7 0.35 2.0e-15 4.0e-15 (N)

J1751-2857 0.18 § 1.2 ¶ 1.3e-4 111 NA 1.8e-11 † (H)(O)

J1857+0943 0.24 1.4 2.2e-4 12 NA 1.2e-13 † (H)(I)(O)

Tabla A.1: Lista de los BP’s usados en el trabajo. Las columnas son: (1) Nombre del BP; (2) masa de la

compañera en unidades de M⊙ – si solamente está disponible el mı́nimo valor, se lo denominará a este con un

§; (3) la masa del pulsar en unidades de M⊙ – ¶ indica valores asumidos; (4) excentricidad; (5) peŕıodo del BP

medido en d́ıas; (6) variación temporal del peŕıodo "intŕınseco" medido en s s−1 (ver en el texto la definición

utilizada aqúı para lo que se denomina "intŕınseco") – "NA” significa que solamente se dio un ĺımite superior en

el valor de Ṗ obs
b medido, el cual figura como un error en la próxima columna; (7) error en la variación temporal

del peŕıodo "intŕınseco", medido en s s−1 – aqúı † indica un ĺımite superior; (8) las referencias, las cuales se

citan en el texto en este Apéndice.

Referencias de la Tabla A.1: (A) (Freire et al., 2011); (B) (Madsen et al., 2012); (C) (Kramer

et al., 2006); (D) (Wex, 2014); (E) (Weisberg and Huang, 2016); (F) (Shannon et al., 2014); (G)

(Callanan et al., 1998); (H) (Desvignes et al., 2016); (I) (Arzoumanian et al., 2018); (J) (Fonseca et al.,
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2016); (K) (Gonzalez et al., 2011); (L) (Antoniadis et al., 2013); (M) (Zhu et al., 2019); (N) (Freire

et al., 2012); (O) (Caputo et al., 2018).
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Apéndice del caṕıtulo 5

B.1. Sensitividad optimizada

En este apéndice se detalla la idea y cálculo de la sensitividad optimizada para HLV mostrada en la

figura 5.2. El punto de partida para adaptar la sensitividad teórica del método semi-coherente Hough

llevado a cabo en (Astone et al., 2014), originalmente introducido para búsqueda de CW en detectores

terrestres, es necesario tener en cuenta dos factores (Miller et al., 2021):

Dado que la señal asociada a la ULDM está más bien presente siempre en el detector en vez de

venir de alguna dirección en particular, hay un factor 5/2 que debe removerse de la ecuación (67)

de (Astone et al., 2014). Este factor viene de realizar un promedio en el cielo.

Es necesario computar el promedio sobre diferentes polarizaciones de la ULDM. En el caso

vectorial (fotón oscuro) este factor resulta
√
2/3 (Miller et al., 2021; Pierce et al., 2018) mientras

que para el caso de spin-2 se halla que
√
⟨∆ε2⟩ =

√
2/5.

La sensitividad optimizada a cierto nivel de confianza Γ indica la amplitud mı́nima que podŕıa

producir un candidato en una fracción ≥ Γ de un gran número de repeticiones del experimento. Este

se puede escribir como (Miller et al., 2021)
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h0,opt ≈
1.02

N1/4θ
1/2
thr

√
Sn(f)

TFFT,max

(
p0(1− p0)

p21

)1/4√
CRthr −

√
2erfc−1(2Γ) ,

N =
tobs

TFFT,max
,

p0 = e−θthr − e−2θthr +
1

3
e−3θthr ,

p1 = e−θthr − 2e−2θthr + e−3θthr .

Acá N es la mitad del número de Fast Fourier Transforms (FFT) durante un tiempo de observación

tobs (asumiendo que las FFTs están entrelazadas por la mitad), θthr es el umbral para la selección de

picos para crear el denominado peakmap, CRthr es el umbral para la selección de candidatos, Sn(f)

es el noise power spectral density del detector, y TFFT,max es el máximo Tchunk dado por el tiempo

de coherencia de la señal. Siguiendo lo hecho en (Miller et al., 2021), para obtener la sensitividad

optimizada se usa

TFFT,max ⪅
2

f

1

v2esc
≈ 6× 105

f
s , (B.1)

con vesc la velocidad de escape de la DM en el halo local, y donde se ha establecido θthr = 2.5,

CRthr = 5 y Γ = 0.95. A su vez, se ha usado que tobs = 1yr y que fSn(f) = h0(f)
2 donde h0(f) para

la colaboración HLV se puede hallar en (Schmitz, 2021).
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Kůs, P., López Nacir, D., and Urban, F. R. (2024). Bayesian sensitivity of binary pulsars to ultra-light

dark matter.

Lagos, M. and Ferreira, P. G. (2014). Cosmological perturbations in massive bigravity. JCAP, 12:026.

Lee, J.-W. (2018). Brief History of Ultra-light Scalar Dark Matter Models. EPJ Web Conf., 168:06005.

Lee, K., Jenet, F. A., Price, R. H., Wex, N., and Kramer, M. (2010). Detecting massive gravitons using

pulsar timing arrays. Astrophys. J., 722:1589–1597.

Lee, K., Wex, N., Kramer, M., Stappers, B., Bassa, C., Janssen, G., Karuppusamy, R., and Smits, R.

(2011). Gravitational wave astronomy of single sources with a pulsar timing array. Mon. Not. Roy.

Astron. Soc., 414:3251.

Lee, K. J., Jenet, F. A., and Price, R. H. (2008). Pulsar Timing as a Probe of Non-Einsteinian

Polarizations of Gravitational Waves. Astrophys. J., 685(2):1304–1319.
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