
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Análisis estático de programas .NET

Tesis presentada para optar al t́ıtulo de Doctor de la

Universidad de Buenos Aires en el área de Ciencias de la Computación

Lic. Edgardo Julio Zoppi

Director de Tesis: Dr. Diego Garbervetsky

Consejero de Estudios: Dr. Vı́ctor Braberman

Lugar de Trabajo: Laboratorio de Fundamentos y Herramientas para la

Ingenieŕıa de Software (LaFHIS), FCEyN, UBA

Fecha de Defensa: 22 de mayo de 2019

Buenos Aires, 2019

Análisis estático de programas .NET

Resumen

En esta tesis presentamos el diseño e implementación de una amplia gama de

análisis estáticos para la plataforma .NET, con foco en la escalabilidad. Nos con-

centramos en .NET dada su gran popularidad en la industria y el amplio conjunto

de caracteŕısticas que provee, pertenecientes a los paradigmas orientado a objetos

y funcional, incluyendo programación concurrente y la manipulación de bajo ni-

vel de punteros. La combinación de todas estas caracteŕısticas hacen del análisis

estático un desaf́ıo.

Por un lado, presentamos un framework de análisis estático distribuido de

programa completo, diseñado para escalar con el tamaño de la entrada. Nuestro

enfoque está basado en el modelo de programación con actores para ser ejecutado

en la nube. Nuestra decisión de utilizar una red de computadoras en la nube provee

un grado de elasticidad para recursos de CPU, memoria y almacenamiento. Para

demostrar el potencial de nuestra técnica, mostramos cómo puede ser implemen-

tado un análisis de call graph t́ıpico en una configuración distribuida. Además,

extendemos nuestro análisis para soportar actualizaciones incrementales del códi-

go fuente y mostramos cómo los resultados computados previamente pueden ser

actualizados sin tener que volver a calcularlos de cero.

Por otro lado, presentamos un framework de análisis estático de programas y

herramientas espećıficamente diseñados para la plataforma .NET. Este framework

provee muchas funcionalidades, incluyendo algunas representaciones intermedias

como el código de tres direcciones, adecuado para la implementación de un análisis

estático, aśı como también provee una amplia gama de análisis y transformaciones

como son la inferencia de tipos, los análisis de control-flow y data-flow, y la cons-

trucción de call graph y points-to graph, entre otros. No sabemos de ningún otro

framework de análisis estático de código públicamente disponible para la comuni-

dad .NET que provea este tipo de funcionalidades. Para demostrar las capacidades

de nuestro framework, presentamos también algunas aplicaciones cliente que apro-

vechan sus funcionalidades, como un análisis de optimización de consultas Big

Data para detectar automáticamente columnas no utilizadas y dependencias entre

tablas de entrada y salida de operadores definidos por el usuario desarrollados en

algún lenguaje de la plataforma .NET como C#.

Palabras clave: análisis, programa, estático, distribuido, incremental, call graph,

.NET, framework, bytecode, código de tres direcciones, control-flow, data-flow,

nube, big data.

Static analysis of .NET programs

Abstract

In this thesis we present the design and implementation of a wide range of

static analyses for the .NET platform, with focus in scalability. We target .NET

given its popularity in the industry and the rich set of features it provides, ranging

from object-oriented to functional paradigms, including concurrent programming

and low-level pointer manipulation. The combination of all these features make

static analysis very challenging.

On the one hand, we present a distributed, whole-program static analysis

framework that is designed to scale with the size of the input. Our approach is

based on the actor programming model and is deployed in the cloud. Our reliance

on a cloud cluster provides a degree of elasticity for CPU, memory and storage

resources. To demonstrate the potential of our technique, we show how a typical

call graph analysis can be implemented in a distributed setting. In addition, we

extend our analysis to support incremental source code updates and show how the

previously computed results can be updated without having to recompute them

from scratch.

On the other hand, we present a static program analysis framework and tools

specifically designed for the .NET platform. It provides many features, including

a few intermediate code representations such as a three-address code suitable for

implementing a static analysis on top of it, and a rich set of analyses and trans-

formations such as type inference, control-flow and data-flow analyses, and call

graph and points-to graph construction, among others. We don’t know of any

other static analysis framework publicly available to the .NET community provid-

ing these kind of features. To demonstrate the capabilities of our framework, we

also present a few client applications that take advantage of its features, such as a

Big Data query optimization analysis to automatically detect unused columns and

dependencies between input and output tables of user-defined operators written

in a .NET-based programming language like C#.

Keywords: analysis, program, static, distributed, incremental, call graph, .NET,

framework, bytecode, three-address code, control-flow, data-flow, cloud, big data.

Contents

I Prologue 1

1 Introduction 3

1.1 Motivation . 5

1.2 Introducing .NET . 6

1.3 Comparison with Java . 8

1.4 Contributions . 10

1.5 Thesis Organization . 12

Resumen 13

II Static Analysis in the Cloud 17

2 Overview 19

2.1 Motivation: Static Analysis Backend 21

2.2 Call Graph Computation . 22

2.3 Analysis Design Principles . 24

2.4 Distributed Worklist Algorithm . 25

2.5 Termination . 27

2.6 Possible Analysis Instantiations . 28

Resumen 29

3 Distributed Call Graph Analysis 33

3.1 Program Representation . 33

3.2 Analysis Phases . 34

i

ii CONTENTS

3.2.1 Intra-procedural Analysis 34

3.2.2 Inter-procedural Analysis . 36

Resumen 43

4 Incremental Call Graph Analysis 45

4.1 Analysis Design Principles . 45

4.2 Analysis Challenges . 46

4.3 Supporting Removed Methods . 51

4.3.1 Intra-procedural Analysis 51

4.3.2 Inter-procedural Analysis . 53

4.4 Incremental Algorithm . 54

4.5 Termination . 59

Resumen 61

5 Implementation 63

5.1 Orleans and the Actor Model . 63

5.2 Distributed Analysis Details . 66

5.3 Incremental Analysis Details . 68

5.4 Deployment Details . 70

Resumen 75

6 Evaluation 77

6.1 Experimental Setup . 78

6.2 Benchmarks . 79

6.3 Results . 80

Resumen 89

7 Related Work 91

Resumen 97

CONTENTS iii

III Static Analysis Framework 99

8 Overview 101

8.1 Motivation . 102

8.2 Code Representations . 103

8.2.1 High-level . 103

8.2.2 Intermediate . 104

8.2.3 Low-level . 110

8.3 Framework Design Principles . 111

8.4 Features . 112

8.4.1 Intermediate Representations 112

8.4.2 Code Transformations . 113

8.4.3 Intra-procedural Analyses 117

8.4.4 Inter-procedural Analyses 125

8.5 Tools . 128

8.6 Extensibility . 129

8.7 Limitations . 130

Resumen 133

9 Big Data Queries Optimization Analysis 135

9.1 Overview . 135

9.2 Background . 137

9.2.1 Cosmos and SCOPE . 137

9.2.2 UDO Representation . 139

9.3 Accessed Columns Analysis . 140

9.3.1 Approach . 140

9.3.2 Escape Analysis . 141

9.3.3 Constant-set Propagation 142

9.3.4 Used Columns Analysis . 143

9.4 Computing Input/Output Dependencies 144

9.4.1 Approach . 144

iv CONTENTS

9.4.2 Analysis Sketch . 145

9.4.3 Dependency Analysis . 146

9.4.4 Computing Pass-through Columns 148

9.5 Implementation . 148

9.6 Evaluation . 149

9.7 Related Work . 151

9.8 Conclusions . 151

Resumen 153

10 Other Clients of the Framework 155

10.1 Memory Consumption Analysis . 155

10.2 Boogie Bytecode Translator . 156

10.3 Thrown Exceptions Analysis . 157

Resumen 159

11 Related Work 163

Resumen 171

IV Epilogue 173

12 Conclusions 175

12.1 Future Work . 177

Resumen 179

Appendix 181

Part I

Prologue

1

Chapter 1

Introduction

Program analysis [88, 67] is the process of automatically analyzing the behav-

ior of computer programs regarding a property such as correctness, robustness,

safety or liveness. It often focuses on two major areas: program optimization and

program correctness. The former focuses on improving the program’s performance

while reducing the resource usage. The latter focuses on ensuring that the program

does what it is supposed to do.

Program analysis is used by several software engineering tools, including com-

pilers, integrated development environments (IDEs), static checkers and verifiers

and code style analyzers, as well as many others [67]. Among its typical uses

we can mention code analysis, transformation and optimization, type inference,

correctness verification, security assurance and program understanding [67].

Program analysis can be performed without executing the program (static pro-

gram analysis), during run-time (dynamic program analysis) or in a combination

of both [88, 67].

Static analysis [88] is the exhaustive evaluation of an application by examin-

ing some static representation of the program, typically the source code, without

executing it. It infers at compile-time, properties about the run-time behavior

of programs and allows to verify, for instance, the absence of run-time errors or

security breaches.

3

4 CHAPTER 1. INTRODUCTION

Dynamic analysis [88] is the testing and evaluation of an application during run-

time. It is performed by executing the program and can use run-time knowledge to

increase the precision of the analysis. In order to be effective, the target program

must be executed with sufficient test inputs to produce interesting behaviors.

Many software defects that cause errors can be detected both dynamically and

statically. The two approaches are complementary because no single approach

can find every error. A static analysis can ensure that a property of interest

holds on every possible execution of the program. In contrast, even that dynamic

analysis can play a role in correctness assurance, its primary goal is finding and

debugging errors since it can only analyze a single execution of the program at a

time. However, it can reveal subtle defects or vulnerabilities whose cause is too

complex to be discovered by static analysis.

An analysis which depends on information only available at run-time is inher-

ently dynamic [67]. If some amount of imprecision can be tolerated, it may be

possible to perform an approximate static analysis instead. In order to be sound,

static analyses often over-aproximate their results. To avoid false positives, precise

algorithms and abstractions are required. There are various design dimensions to

fine tune the precision of a static analysis [67].

A whole-program static analysis considers the entire program and admits dif-

ferent assumptions. The closed-world assumption assumes that all relevant infor-

mation is already known and available to be used by the analysis, in contrast to

the open-world assumption that assumes new unknown information can potentially

arise in the future.

An intra-procedural static analysis restricts its scope by only considering method

bodies in isolation. An inter-procedural static analysis concerns about the inter-

action between the methods of a program.

Additionally, a static analysis can be classified regarding its sensitivity, which

affects its overall precision [67]. Context-sensitivity considers the calling context

when analyzing the target of a method call. Object-sensitivity distinguishes ob-

jects by considering, for instance, their allocation site. Field-sensitivity distin-

guishes two fields of the same object. Flow-sensitivity considers the ordering of

statements inside a method body. Ideally, a highly precise analysis combines all

them, but at the cost of compromising scalability.

1.1. MOTIVATION 5

In this thesis we present the design and implementation of a wide range of

static program analyses for the .NET platform [23]. Our goal is twofold: (i) design

techniques that can scale to larger programs and (ii) provide a toolchain that allow

researchers and developers to implement their own analyses of .NET programs.

For this reason, in the first part of this thesis we present the design and im-

plementation of a typical inter-procedural call graph static analysis from the lit-

erature, but distributed in the cloud with support for incremental source code

updates. In this context, our goal is to enable the analysis to scale for very large

real-world industrial applications in terms of both memory consumption and anal-

ysis time.

In the second part of this thesis we present a static program analysis framework

specifically designed for analyzing .NET programs, and a few clients applications

that take advantage of its features. In this case, our goal is to provide to the .NET

community the tools needed to develop a static analysis targeting .NET programs,

in a similar manner as they are available in other comparable platforms such as

Java.

1.1 Motivation

We focus on the static analysis of .NET programs for many reasons. First

of all, the .NET platform [23] comprises a very mature ecosystem of software

development resources and it is widely used in the software industry in general

since it was first released in 2002 [9, 5, 20]. While it was originally designed by

Microsoft for developing applications for the Windows operating system, during

the last couple of years its popularity increased [19, 12] by adopting an open-

source philosophy [10] and supporting many other platforms, including operating

systems such as Linux, macOS and Android, as well as multiple architectures such

as x86, x64 and ARM. This makes the .NET ecosystem competitive with other

similar cross-platform systems like Java, as well as an attractive alternative option

to be considered and eventually adopted by the educative and academic research

community.

6 CHAPTER 1. INTRODUCTION

Currently, it provides a rich set of interesting features, including multiple pro-

gramming languages belonging to a mix of object-oriented, functional and concur-

rent programming paradigms [11]. While C# is the language par excellence for

developing .NET applications, Visual Basic counts with a long trajectory in the

industry from even before the creation of .NET and is very popular because of its

simpler syntax. F# is a relatively new language that brings the benefits of the

functional programming paradigm to the industry, unlike other similar languages

such as Haskell that are well-known by the academic and research community

but rarely used to develop real-world industrial applications [5, 20]. The .NET

ecosystem also provides many modern development tools, including Visual Studio,

a full-fledged IDE, and Visual Studio Code, a sophisticated text editor. Finally,

a wealth of open-source and proprietary libraries and frameworks exist and are

publicly available for the .NET community.

The combination of all this features makes static analysis very challenging.

However, only a poor offer of program analysis related tools targeting the .NET

platform are available [84, 8, 16, 15], and the difficulty of analyzing .NET programs

with the few existing ones, puts in evidence an arising necessity of providing better

tools. The analysis of programs developed in similar platforms like Java has a long

research tradition and many papers and tools already exist for this purpose [105,

70, 18]. On the contrary, the .NET platform have not received much attention

from the static analysis community yet. For this reason, our goal is to aid in

bringing to the software engineer industry in general, and to the .NET community

in particular, the benefits of the program analysis techniques by providing the

means to develop scalable static analysis tools that target the .NET platform.

1.2 Introducing .NET

.NET [23] is a free, cross-platform, open-source developer framework for build-

ing many different types of applications. .NET was first released in 2002 and since

then it provides multiple programming languages, libraries, editors and tools to

build for web, mobile, desktop, gaming and Internet of Things (IoT) systems.

1.2. INTRODUCING .NET 7

Common language infrastructure. Often abbreviated to CLI, is an open

specification (i.e., technical standard) developed by Microsoft and standardized

by ISO and ECMA [14] that describes executable code and a runtime environment

that allows multiple high-level programming languages to be used to develop ap-

plications on and for different computer platforms and architectures (i.e., platform

agnostic). The .NET Framework, .NET Core and Mono are the most popular im-

plementations of the CLI. Among other things, it describes the following aspects.

Common type system. Often abbreviated to CTS, is a standard that specifies

how type definitions and specific values are represented in computer memory. It

is intended to allow programs written in different .NET based programming lan-

guages to easily share information. A type can be described as a definition of a

set of values (e.g., integer numbers), and the allowable operations on those values

(e.g., addition and subtraction). It also provides an object-oriented model that

supports parametric types, type inheritance, virtual methods and object lifetime.

The CTS supports two general categories of types: value types and reference types;

and a mechanism to convert one to the other and vice versa, called boxing and

unboxing respectively.

Metadata. Refers to how types are described and how these descriptions are

stored. Information about program structure is language-agnostic, so it can be

referenced between languages and tools, making it easy to work with code originally

written in different programming languages. Metadata is also used to support

reflection. .NET programs are physically stored in units called assemblies that

contains modules, namespaces, type definitions and references to other assemblies.

Each type defines its hierarchy information and members like fields, properties

and methods. Method bodies contain an array of local variables, a sequence of

bytecode instructions and a table with information about exception handlers.

Common intermediate language. Often abbreviated to CIL and previously

known as Microsoft Intermediate Language (MSIL), is an object-oriented stack-

based assembly language that is abstracted from any particular platform hardware.

8 CHAPTER 1. INTRODUCTION

All CLI-compatible programming languages compile to CIL. Its bytecode is trans-

lated into native code or directly executed by a virtual machine.

Common language specification. Often abbreviated to CLS, is a set of rules

intended to promote language interoperability. These rules shall be followed in

order to conform to the CLS. Conformance is a characteristic of types that are

generated for execution on a CLI implementation. These rules apply only to types

that are visible in assemblies other than those in which they are defined, and to

the members that are accessible outside the assembly.

Virtual execution system. Often abbreviated to VES, refers to how code is

executed and how objects are allocated, interact with each other, and automati-

cally deallocated by the garbage collector. It loads and executes CLI-compatible

programs, using the metadata to combine separately generated pieces of code at

run-time. When the code is executed, the platform-specific VES will compile the

CIL to the machine language according to the host specific hardware and operat-

ing system. This process is called just-in-time compilation (JIT). Ahead-of-time

compilation (AOT) may also be used, which eliminates this step, but at the cost

of loosing portability.

Common language runtime. Often abbreviated to CLR, is a virtual machine

that implements the VES and manages the execution of .NET programs. It pro-

vides run-time services including memory management, type safety, exception han-

dling, garbage collection, security and thread management.

1.3 Comparison with Java

All .NET programming languages and Java compile into bytecode. However,

they use different instructions and virtual machines. Nonetheless, Java bytecode

and .NET CIL share strong similarities, being both stack-based object-oriented in-

termediate languages where objects are stored and shared in the heap; both use an

evaluation stack to store temporary values and an array of local variables standing

1.3. COMPARISON WITH JAVA 9

for original source code variables; both are object-oriented, with instructions for

object creation, field access and virtual method dispatch.

Despite these undeniable similarities, both bytecodes differ in the way of per-

forming parameter passing (CIL uses a dedicated array of variables for the formal

parameters, while Java bytecode merges them into the array of local variables);

they handle object creation differently (CIL creates and initializes an object with

a single instruction, while these are distinct operations in Java bytecode); they

allocate memory slots differently (in CIL each value uses a single slot, while in

Java bytecode depends on the size of values, 32-bit values use one slot while 64-

bit values use two subsequent slots); finally, CIL uses pointers explicitly, also in

type-unsafe ways (i.e., allowing free pointer operations), while Java bytecode has

no notion of pointer at all.

Value types and reference types. Java distinguish between primitive types

and objects. Primitive types are passed by value and can be allocated in the

stack1 like int and float. Objects are always allocated in the heap and passed

by reference. Instead, CIL has the notion of value types and reference types. Value

types are like Java’s primitive types, but they also include structs and enums,

giving the possibility to developers to create their own new types that behave

like primitive types. Reference types are also objects like in Java. However, CIL

also allows passing a value type by reference instead of just by value, using a

dummy wrapper object to contain the value. This mechanism is called boxing

and is transparent to the user of high-level .NET based languages like C#. Java

overcomes the lack of this feature by explicitly defining wrapper classes for all

primitive types, like Integer for int and Float for float. In the same way, both

C# and Java support returning value types by reference.

Generic types. CIL keeps information about generic types and methods, while

Java erases it and uses Object as the type of variables, parameters and fields

that were originally typed with a generic parameter. For instance, imagine a

1Primitive types can also be allocated in the heap if they are used, for instance, as the type

of fields.

10 CHAPTER 1. INTRODUCTION

generic class List<T> with a method definition like T GetElementAt(int). At

source code level, an invocation to this method with a receiver statically typed as

List<A> returns an object of static type A, given that A is used as the argument

of the generic type parameter T. At bytecode level, this is also true in the case of

CIL, but it is not in the case of Java bytecode. All the instantiation information

of generic types is erased by the Java compiler since its bytecode format does not

support it. So instead, an invocation of the GetElementAt method returns an

object of static type Object, and has to be followed by a dynamic cast to type A

to preserve semantics.

Delegate types. Another important distinction between both platforms are del-

egates. They consist in a pointer to a method with a particular signature and, in

the case of instance methods, a reference to an object that is the receiver of that

method. They are used as a type-safe way to invoke statically unknown methods

that can only be resolved dynamically at run-time. CIL supports delegates and

they are used as the building blocks behind the scenes to implement lambdas,

anonymous methods and events in high-level .NET based languages like C#. On

the other hand, Java does not support them. To achieve the same kind of function-

ality Java provides other features like anonymous inner classes and the concept of

a functional interface, which is any interface with only one method.

Async and await. In .NET, an async method returns a Task object that allows

the caller to execute the method asynchronously. On the other hand, the await

keyword waits until the execution of the asynchronous method ends to extract the

results of the computation. This pattern is compiled into a complex state machine

behind the scenes. Java does not have built-in support for this kind of concurrent

programming mechanism.

1.4 Contributions

This thesis includes the following contributions:

1.4. CONTRIBUTIONS 11

• We present a distributed, whole-program static analysis framework that is

designed to scale with the size of the input. Our approach is based on the

actor programming model and is deployed in the cloud. Our reliance on a

cloud cluster provides a degree of elasticity for CPU, memory and storage

resources.

• We show how a typical call graph analysis can be implemented in a dis-

tributed setting for answering program understanding and code browsing

queries. We describe how the analysis is implemented on top of the Or-

leans [38] actor model [26] and is deployed on legacy hardware in the cloud

using Microsoft Azure. We experimentally demonstrate the scalability of our

distributed call graph implementation using a combination of both synthetic

and real benchmarks.

• We show how to extend our call graph analysis to support incremental up-

dates and show how the previously computed results can be updated without

having to recompute them from scratch. Only reanalyzing the modified parts

of the program is required. We experimentally demonstrate significant per-

formance improvements in comparison to the full version of the analysis.

• We present a static analysis framework and tools specifically designed for the

.NET platform [23]. It provides many features, including a few intermediate

code representations such as a three-address code suitable for implementing

a static analysis on top of it, and a rich set of analyses and transformations

such as type inference, control-flow and data-flow analyses, and call graph

and points-to graph construction, among others. We don’t know of any

other static analysis framework publicly available to the .NET community

providing these kind of features.

• We present a few client applications of the framework to demonstrate its

capabilities, such as a Big Data query optimization analysis to automatically

detect unused columns and dependencies between input and output tables of

user-defined operators written in a .NET based programming language like

12 CHAPTER 1. INTRODUCTION

C#. We experimentally demonstrate the benefits of these analyses using a

mix of related-work and real benchmarks.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Static Analysis in the Cloud

Chapter 2 presents our distributed static analysis approach.

Chapter 3 describes the specifics of the call graph construction algorithm.

Chapter 4 describes the call graph analysis extension to support incremental

updates.

Chapter 5 discusses some interesting implementation details on top of the

Orleans actor model.

Chapter 6 presents our experimental evaluation and results.

Chapter 7 discusses related work of this part of the thesis.

Static Analysis Framework

Chapter 8 presents our static analysis framework and tools for the .NET

platform.

Chapter 9 describes the details of our Big Data query optimization analysis

implemented using our framework.

Chapter 10 provides a high-level overview of a few additional clients of the

framework.

Chapter 11 discusses related work of this part of the thesis.

Epilogue

Chapter 12 discusses future work and concludes.

Appendix contains additional material for the interested reader.

Resumen

Introducción

El análisis de programas [88, 67] es el proceso de analizar automáticamente el

comportamiento de los programas de computadora con respecto a una propiedad

como la corrección, la robustez, la seguridad o la vida útil. A menudo se enfoca

en dos áreas principales: optimización de programas y corrección de programas.

El primero se centra en mejorar el rendimiento del programa mientras reduce el

uso de recursos. El segundo se enfoca en asegurar que el programa haga lo que se

supone que debe hacer.

El análisis de programas es utilizado por varias herramientas de ingenieŕıa de

software, incluidos compiladores, entornos de desarrollo integrado (IDEs), verifi-

cadores estáticos y analizadores del estilo del código, entre otros [67]. Entre sus

usos t́ıpicos podemos mencionar el análisis de código, la transformación y la op-

timización, la inferencia de tipos, la verificación de la corrección, la garant́ıa de

seguridad y la comprensión de programas [67].

El análisis de programas se puede realizar sin ejecutarlo (análisis estático de

programas), durante el tiempo de ejecución (análisis dinámico de programas) o en

una combinación de ambos [88, 67].

El análisis estático [88] es la evaluación exhaustiva de una aplicación mediante

el examen de alguna representación estática del programa, generalmente el códi-

go fuente, sin ejecutarlo. Deduce en tiempo de compilación, propiedades sobre el

comportamiento en tiempo de ejecución de los programas. Permite verificar, por

ejemplo, la ausencia de errores de ejecución o violaciones de seguridad.

13

14 RESUMEN. INTRODUCCIÓN

El análisis dinámico [88] es la prueba y evaluación de una aplicación durante

el tiempo de ejecución. Se realiza ejecutando el programa y puede utilizar el co-

nocimiento obtenido durante el tiempo de ejecución para aumentar la precisión

del análisis. Para que sea efectivo, el programa a analizar debe ejecutarse con

suficientes entradas de prueba para producir comportamientos interesantes.

Muchos defectos de software que causan errores pueden detectarse de forma

dinámica y estática. Los dos enfoques son complementarios porque ningún enfoque

individual puede encontrar todos los errores. Un análisis estático puede garantizar

que una propiedad de interés sea válida en cada ejecución posible del programa.

En contraste, incluso siendo que el análisis dinámico puede ayudar a garantizar

corrección, su objetivo principal es encontrar y depurar errores, ya que solo puede

analizar una sola ejecución del programa a la vez. Sin embargo, puede revelar

defectos sutiles o vulnerabilidades cuya causa es demasiado compleja para ser

descubierta por un análisis estático.

Un análisis que depende de información que sólo está disponible en tiempo de

ejecución es inherentemente dinámico [67]. Si un grado de imprecisión es tolera-

ble, puede ser posible realizar un análisis estático aproximado. Para ser correctos,

los análisis estáticos a menudo sobre-aproximan sus resultados. Para evitar falsos

positivos, se requiere algoritmos y abstracciones precisos. Hay varias dimensiones

de diseño para ajustar la precisión de un análisis estático [67].

Un análisis estático whole-program considera todo el programa y admite di-

ferentes suposiciones. La suposición closed-world considera todos los módulos y

bibliotecas a los que hace referencia un programa, mientras que la suposición open-

world restringe su alcance considerando sólo el código fuente de un programa, sin

analizar los módulos de referencia.

Un análisis estático intra-procedural restringe su alcance considerando sólo los

cuerpos de los métodos de forma aislada. Un análisis estático inter-procedural se

encarga de la interacción entre los métodos de un programa.

Además, los análisis estáticos se pueden clasificar según su sensibilidad, lo que

afecta a su precisión en general. La sensibilidad al contexto considera el contex-

to de llamada cuando se analiza el destino de una invocación. La sensibilidad a

RESUMEN. INTRODUCCIÓN 15

objetos distingue los objetos considerando, por ejemplo, su lugar de creación. La

sensibilidad a campos distingue dos campos de un mismo objetos. La sensibilidad

a flujo considera el orden de las instrucciones dentro del cuerpo de un método.

Idealmente, un análisis de gran precisión combina todas las opciones, pero al costo

de comprometer la escalabilidad.

En esta tesis presentamos el diseño y la implementación de una amplia gama

de análisis estáticos de programas para la plataforma .NET [23]. Nuestro objeti-

vo es doble: (i) diseñar técnicas que puedan escalar a programas más grandes y

(ii) proporcionar un conjunto de herramientas que permita a los investigadores y

desarrolladores implementar sus propios análisis de programas .NET.

Por este motivo, en la primera parte de esta tesis presentamos el diseño y la

implementación de un análisis estático de call graph inter-procedural t́ıpico de

la literatura, pero distribuido en la nube con soporte para actualizaciones incre-

mentales del código fuente. En este contexto, nuestro objetivo es permitir que el

análisis escale a aplicaciones industriales muy grandes del mundo real en términos

de consumo de memoria y tiempo de análisis.

En la segunda parte de esta tesis presentamos un framework de análisis estáti-

co de programas diseñado espećıficamente para analizar programas .NET, y algu-

nas aplicaciones cliente que aprovechan sus caracteŕısticas. En este caso, nuestro

objetivo es proporcionar a la comunidad .NET las herramientas necesarias para

desarrollar un análisis estático de programas .NET, de la misma manera que están

disponibles en otras plataformas similares, como Java.

Part II

Static Analysis in the Cloud

17

Chapter 2

Overview

In the last decade, we have seen a number of attempts to build increasingly

more scalable whole-program analysis tools. Advances in scalability have often

come from improvements in underlying solvers such as SAT and Datalog solvers

as well as sometimes improvements to the data representation in the analysis itself;

we have seen much of this progress in the space of pointer analysis [63, 62, 115,

83, 28, 82, 79].

Limits of scalability. A typical whole-program analysis is designed to run on a

single machine, primarily storing its data structures in memory. Despite the inten-

tions of the analysis designer, this approach ultimately leads to scalability issues

as the input program size increases, with even the most lightweight of analyses.

Indeed, if the analysis is stateful (i.e., it needs to store data about the program

as it progresses, typically in memory), eventually this approach ceases to scale to

very large inputs. Memory is frequently a bottleneck even if the processing time

is tolerable, despite various memory compression techniques such as BDDs. We

believe that the need to develop scalable program analyses is now greater than

ever. This is because we see a shift toward developing large projects in centralized

source repositories such as GitHub [4], which opens up opportunities for creat-

ing powerful and scalable analysis backends that go beyond what any developer’s

machine may be able to accomplish.

19

20 CHAPTER 2. OVERVIEW

Distributed analysis. We explore an alternative approach to build distributed

static analysis tools, designed to scale with the input size, with the goal of achiev-

ing full elasticity. In other words, no matter how big the input program is, given

enough computing resources (i.e., machines to execute on) the analysis will com-

plete in a reasonable time. Our analysis architecture assumes that the static anal-

ysis runs in the cloud, which gives us elasticity for CPU and memory resources, as

well as storage. More specifically, in the context of large-scale code repositories,

even code understanding and code browsing tasks are made challenging by the size

of the code base. We have seen the emergence of scalable online code browsers

such as LXR [6]. These tools often operate in batch mode, and thus have a hard

time keeping up with a rapidly changing code repository in real time, especially

for repositories with many simultaneous contributors. We aim to show how a nim-

bler system can be designed, where analysis results are largely stored in memory,

spread across multiple machines. This design leads to more responsive queries for

obtaining analysis results.

The vision that motivates this work is that every large-scale software repository

will be able to perform static analysis on a large scale. In this context, we present

the design and implementation of a distributed, whole-program static analysis

framework that is designed to scale with the size of the input. Our approach is

based on the actor programming model and is deployed in the cloud. Our reliance

on a cloud cluster provides a degree of elasticity for CPU, memory, and storage

resources. To demonstrate the potential of our technique, we show how a typical

call graph analysis can be implemented in a distributed setting.

We experimentally validate our implementation of the distributed call graph

analysis using a combination of both synthetic and real benchmarks. To show

scalability, we demonstrate how the analysis presented is able to handle very large

inputs without running out of memory. This work was done in collaboration with

researchers from Microsoft Research, and it was published [57, 58] and presented

at the international conference on Foundations of Software Engineering (FSE) in

2017.

2.1. MOTIVATION: STATIC ANALYSIS BACKEND 21

developer 3

developer 1

developer 2

Figure 2.1: Analysis architecture: the analysis is performed using a cloud back-

end of multiple machines, with developers both querying the results and sending

updates.

2.1 Motivation: Static Analysis Backend

Imagine a large project hosted within a centralized source repository such as

GitHub [4], BitBucket [2] or Visual Studio Team Services [22]. We see an emerging

opportunity to perform server-side analysis in such a setting, as illustrated in

Figure 2.1. Indeed, the backends of many such repositories consists of a large

collection of machines, not all of which are fully utilized at any given time. During

the downtime, some of the available cycles could be used to do static analysis of

the code base. This can help developers with both program understanding tasks,

such as code browsing, as well as other static analysis applications, such as finding

bugs.

The ever-changing code base. As is typical for large projects, multiple de-

velopers constantly update the code base, so it is imperative that the server-side

analysis be both responsive to read-only user queries and propagate code updates

fast. At the same time, within a large code base, many parts of the code, often

entire directories remain unchanged for days or months at a time. Often, there

22 CHAPTER 2. OVERVIEW

is no reason to access these for analysis purposes. Therefore, to ensure that we

do not run out of memory, it is important to have a system that is able to bring

analysis nodes into memory on demand and persist them to disk (put them to

sleep) when they are no longer needed.

2.2 Call Graph Computation

We advocate the use of the actor model as a building block of typical worklist-

based analysis approaches. More specifically, we use this approach to implement

a typical call graph construction algorithm. While the algorithm itself is quite

well-known and is not a contribution of this thesis, the way it is implemented in a

distributed setting is. Also note that call graph information is used for interactive

tasks such as autocomplete (or Intellisense), as shown in Figure 5.6. For tasks like

these, both accuracy and responsiveness are important. Call graph construction

is a fundamental step of most whole-program analysis techniques. However, most

of the time, call graph analysis computation is a batch process: starting with one

or more entry points such as Main, the call graph is iteratively updated until no

more methods are discovered.

Interactive analysis. Our setting in this project is a little different. Our goal

is to answer interactive user queries quickly. Our queries are the kind that are

most frequently posed in the context of code browsing and debugging, and are

already supported on a syntactic level by many IDEs. Specifically, our analysis

has been developed to provide semantic, analysis-backed answers for the following

IDE-based typical tasks:

• Go to definition. Given a symbol in the program, find its possible defini-

tions1.
1Note that this process is challenging due to the presence of polymorphism, common in object-

oriented languages. Given a call site, it is not always possible to determine which is the actual

method implementation being invoked. This problem known as call site devirtualization is well-

studied in the literature. Therefore, a static analysis can only approximate the target method

definitions for a virtual method invocation.

2.2. CALL GRAPH COMPUTATION 23

• Who calls me. Given a method definition, find all of its callers.

• Auto-complete. Auto-completion, invoked when the developer presses a

dot, is one of the most common and well-studied tasks within an IDE [72,

89, 87, 86, 40, 80]. If the variable or expressions on the left-hand side of the

dot is of a generic interface type, completion suggestions are not particularly

useful or too general. It is therefore helpful to know which concrete type

flow to a given abstract location.

We have architected our analysis backend to respond to REST calls [13] that

correspond to the queries above. These queries constitute an important part of

what is collectively known as language services and can be issued by both on-

line IDEs, sophisticated code editors such as SublimeText or Visual Studio Code,

and full-fledged IDEs such as Eclipse and Visual Studio. Figure 5.6 shows two

screenshots of an experimental IDE prototype responding to user interactions and

Table 5.1 shows some examples of REST queries.

Given the architecture shown in Figure 2.1, our goal is to have the analysis

backend respond to queries quickly, independently of the input size. Of course, we

also need to make sure that the backend does not run out of memory or timeout in

some unpredictable way. Our requirements force us to rethink some of the typical

assumptions of whole-program analysis.

Soundness. Considering the nature of such tasks that focus on program under-

standing, the goal is not to always be absolutely precise, but to be both useful to

the end user and responsive. Our analysis judiciously cuts corners in the spirit

of soundiness [77]. As the analysis results are used in an advisory role in the

context of program understanding in an interactive setting, complete soundness

is not the goal. For instance, we do not attempt to model reflective constructs.

While we focus on C# as the input language, our work should apply equally well

to analyzing large projects in Java and other similar object-oriented languages. It

is not, however, our goal to faithfully handle all the tricky language features such

as reflection, runtime code generation and pinvoke-based native calls.

24 CHAPTER 2. OVERVIEW

2.3 Analysis Design Principles

We use a distributed actor model [26] as the basis of our distributed static

analysis engine. For a program written in an object-oriented language such as

Java or C#, a natural fit is to have an actor per method within the program.

We could choose to have an actor per class in a program, or any other well-

defined program entity. These actors are responsible for receiving messages from

other actors, processing them using local state (a representation of the method

body, for instance) and sending information to other methods that depend on it.

For example, for a call graph construction analysis, actors representing individual

methods may send messages to actors for their callers and callees. Our analysis

design adheres to the following distilled principles:

• Minimal in-memory state per actor. We want to place as many actors

per machine as possible without creating undue memory pressure, leading to

swapping, etc.

• Design for lightweight serialization. We have designed our analysis so

that the updates sent from one actor to another are generally small and

easily serialized. There is minimal sharing among actors, as actor holds on

to its local state and occasionally sends small updates to others. The same

principle applies to persistent per-actor state as well. We only serialize the

bare minimum to disk, before the actor is put to sleep. This can happen when

the actor runtime decides to page an actor out due to memory pressure or

lack of recent use.

• State can be recomputed on demand. In a distributed setting, we have

to face the reality that processes may die due to hardware and/or software

faults. It is therefore imperative to be able to recover in case of state loss.

While it is possible to commit local state to persistent store, we eschew the

overhead of such an approach and instead choose to recompute per-node

state on demand.

2.4. DISTRIBUTED WORKLIST ALGORITHM 25

• Locality optimizations to minimize communication. We attempt to

place related actors together on the same machine. In the case of a call

graph analysis, this often means that entire strongly connected components

co-exist on the same physical box, which minimizes the number of messages

that we actually need to dispatch across the network.

2.4 Distributed Worklist Algorithm

We now present a high-level view of a distributed analysis problem as a pair

〈A,L〉 where:

• A is a set of actors distributed in a network.

• 〈L,v,t〉 is a complete semi-lattice of finite height2.

Each actor a ∈ A has the following associated functions:

• VALUE [a] = v ∈ L is the local state of actor a.

• TF [a] : L 7→ L is the transfer function for the local computation performed

within actor a. We assume all TF are monotone.

The following helper functions are for communicating state changes among

actors:

• DELTA(v, v′) computes a set U of (global) updates required when switching

from local state v to v′ ∈ L.

• PACK (a, u) is a function that given an update u ∈ U at actor a ∈ A produces

one or several messages to communicate to other actors.

• UNPACK (m) is a function that unpacks a message and returns a value

v ∈ L.

2The finite height requirement can be avoided with the use of a widening operator.

26 CHAPTER 2. OVERVIEW

Algorithm 1 Distributed worklist algorithm.

1: while |MQ| > 0 do

2: 〈a,m〉 := MQ.choose()

3: v := UNPACK (m) t VALUE [a]

4: if v v VALUE [a] then

5: continue

6: end if

7: v′ := TF [a](v)

8: if v v v′ then

9: U := DELTA(v, v′)

10: for each u in U do

11: MQ := MQ ∪ PACK (a, u)

12: end for

13: VALUE [a] := v′

14: end if

15: end while

Algorithm 1 shows the pseudocode for a distributed worklist algorithm. The

algorithm makes use of a global message queue, denoted as MQ3. The queue is

initialized with a set of starting messages that will depend on the actual analysis

instance.

For each message, the algorithm merges its content with the local state of the

destination actor and executes the transfer function associated with it to produce

a new local state. Then, the algorithm proceeds to compute the information

required to update the state of other affected actors and produces new messages

to communicate this information to them.

3Note that MQ is a mathematical abstraction: we do not actually use a global message queue

in our implementation. Conceptually, we can think of a (local) worklist maintained on a per-actor

basis. Termination is achieved when all the worklists are empty.

2.5. TERMINATION 27

2.5 Termination

We would like to show that the presented distributed worklist algorithm ter-

minates.

Let H denote the (finite4) height of semi-lattice L and let N = |A|. Consider

iterations through the loop on line 1. Let’s consider two sets of sequences of

iterations, I1 are iterations that lead to a value increase on line 7 and I2 are those

that do not.

We can have at most H ×N iterations in I1 given the finite size of the lattice.

For iterations in I2, the size of MQ decreases because at least one message is

consumed but it does not generate other messages. We consider two possibilities:

• Starting from some iteration i, we only have iterations in I2. This, however,

means that on every iteration the size of MQ decreases, until it eventually

becomes empty.

• The other possibility is that we will have an infinite number of iterations in

I1. This is clearly impossible because the size of I1 is bounded by H ×N .

It is important to emphasize the difference between this distributed algorithm

and a single-node worklist approach. If a message is in flight, we do not wish

the program analysis to terminate. However, detecting the emptiness of MQ is

not trivial, so in practice we must have an effective means for detecting termina-

tion. For this reason. we make use of a sophisticated mechanism for termination

detection, as described in Section 5.2.

While the Algorithm 1 reaches a fixed-point independently of the arrival order

of messages, it is natural to ask whether that is the only fixed-point that can be

reached. Given that TF [a] is monotone and L is of a finite height the uniqueness

of least fixed-point is guaranteed [47, 71].

4Note that our approach can also terminate for an infinite hight lattice with the use of a

widening operator.

28 CHAPTER 2. OVERVIEW

2.6 Possible Analysis Instantiations

In the following chapter we show in detail an instantiation of the framework

used to compute call graphs. However, we believe the distributed Algorithm 1 can

be instantiated for other program analyses that follow the same design principle.

For instance, consider an inclusion-based analysis like Andersen’s points-to [31].

A possible instantiation may be as follows:

• Each actor represents a method.

• The transfer function implements Andersen’s inclusion rules locally and, in

case there is a change in an argument of a method invocation, produces an

update message to be sent to the potential callees.

Similarly, by just replacing the inclusion rules with unification rules in the

transfer function, we can turn it into a unification based points-to analysis like

Steensgaard’s [102]. Context-sensitivity can be achieved by representing different

context×method combinations with different actors.

It is worth noticing that our analysis has similar characteristics as standard

data-flow analyses, but an ordering on how information flows between the actors

cannot be assumed.

We envision future work where our distributed back-end would be combined

with a natural front-end for this kind of analysis that uses Datalog, as previously

proposed for single-machine analysis [69]. However, as we describe in Chapter 2,

our evaluation in Chapter 6 focuses on quickly answering interactive questions

related to call graph resolution in the context of an IDE.

Resumen

Información General

En la última década, hemos visto varios intentos de crear herramientas de

análisis de programas completos cada vez más escalables. Los avances en la esca-

labilidad a menudo provienen de mejoras en los solucionadores subyacentes, como

los solucionadores para SAT y Datalog, aśı como a veces mejoras en la represen-

tación de los datos en el análisis mismo; hemos visto mucho de este progreso en el

espacio de análisis de punteros [63, 62, 115, 83, 28, 82, 79].

Ĺımites de scalabilidad. Un análisis t́ıpico de programa completo está di-

señado para ejecutarse en una sola máquina, principalmente almacenando sus es-

tructuras de datos en la memoria. A pesar de las intenciones del diseñador del

análisis, este enfoque conduce en última instancia a problemas de escalabilidad a

medida que aumenta el tamaño de la entrada del programa, incluso con el análisis

más liviano. De hecho, si el análisis guarda estado (es decir, necesita almacenar

datos sobre el programa a medida que avanza, generalmente en la memoria), even-

tualmente este enfoque deja de escalar a entradas muy grandes. La memoria es

frecuentemente un cuello de botella, incluso si el tiempo de procesamiento es tole-

rable, a pesar de las diversas técnicas de compresión de memoria, como las BDD.

Creemos que la necesidad de desarrollar análisis escalables de programas es aho-

ra mayor que nunca. Esto se debe a que vemos un cambio hacia el desarrollo de

grandes proyectos en repositorios de código fuente centralizados como GitHub [4],

29

30 RESUMEN. INFORMACIÓN GENERAL

lo que abre oportunidades para crear análisis backends potentes y escalables que

van más allá de lo que cualquier máquina de un desarrollador pueda lograr.

Análisis distribuido. Exploramos un enfoque alternativo para crear herramien-

tas de análisis estático distribuido, diseñadas para escalar con el tamaño de la

entrada, con el objetivo de lograr una elasticidad total. En otras palabras, no

importa qué tan grande sea el programa de entrada, si se cuenta con suficientes

recursos de computación (es decir, máquinas para ejecutar), el análisis terminará

en un tiempo razonable. Nuestra arquitectura de análisis supone que el análisis

estático se ejecuta en la nube, lo cual permite elasticidad para los recursos de

CPU y memoria, aśı como también para el almacenamiento. Más espećıficamente,

en el contexto de los repositorios de código de gran escala, incluso la comprensión

de código y las tareas de navegación de código son dif́ıciles debido al tamaño del

código fuente. Hemos visto la aparición de navegadores de códigos en ĺınea escala-

bles, como LXR [6]. Estas herramientas a menudo funcionan en modo batch y, por

lo tanto, tienen dificultades para mantenerse al d́ıa con un repositorio de código

que cambia rápidamente en tiempo real, especialmente para los repositorios con

muchos colaboradores simultáneos. Nuestro objetivo es mostrar cómo se puede

diseñar un sistema ágil, donde los resultados del análisis se almacenan en gran

parte en la memoria, distribuidos en múltiples máquinas. Este diseño conduce a

consultas más receptivas para obtener los resultados del análisis.

La visión que motiva este trabajo es que cada repositorio de software de gran

escala pueda realizar análisis estáticos a gran escala. En este contexto, presentamos

el diseño y la implementación de un framework de análisis estático distribuido de

programa completo que está diseñado para escalar con el tamaño de la entrada.

Nuestro enfoque se basa en el modelo de programación con actores y se despliega

en la nube. Nuestra dependencia en un cluster de la nube proporciona un grado de

elasticidad para los recursos de CPU, memoria y almacenamiento. Para demostrar

el potencial de nuestra técnica, mostramos cómo se puede implementar un análisis

de call graph t́ıpico en un entorno distribuido.

RESUMEN. INFORMACIÓN GENERAL 31

Validamos experimentalmente nuestra implementación del análisis distribuido

de call graph utilizando una combinación de benchmarks sintéticos y reales. Para

mostrar la escalabilidad, mostramos cómo el análisis presentado puede manejar

entradas muy grandes sin quedarse sin memoria. Este trabajo se realizó en colabo-

ración con investigadores de Microsoft Research y se publicó [57, 58] y presentó en

la conferencia internacional sobre Fundamentos de la Ingenieŕıa de Software (FSE)

en el año 2017.

Chapter 3

Distributed Call Graph Analysis

In this chapter we present an instantiation of the general framework described

in the previous chapter for computing call graphs. Our analysis is a distributed

inter-procedural inclusion-based static analysis inspired by the Variable Type Anal-

ysis (VTA) presented in [103]. This flow-insensitive analysis computes the set of

potential types for each object reference (i.e., variables, fields, etc.) by solving a

system of inclusion constraints. Because it propagates type constraints from ob-

ject allocation sites to their uses, this kind of analysis is sometimes referred to as

concrete type analysis.

3.1 Program Representation

Propagation graphs. At the method level, the inclusion-based analysis is im-

plemented using a data structure we call propagation graph (PG) [103]. A PG

is a directed graph used to push type information to follow the flow of data in

the program, as described by analysis rules. Our analysis naturally lands itself

to incrementality. A typical change in the program would require often minimal

recomputation within the modified code fragment as well as propagation of that

information to its neighbors. Propagation graphs support incremental updates

since the propagation of information is triggered when a new type reaches (or no

longer reaches) a node.

33

34 CHAPTER 3. DISTRIBUTED CALL GRAPH ANALYSIS

Terminology. More formally, let PG = 〈R,E〉 where R denotes a set of nodes

representing abstract locations in the method (such as variables and fields) and E

refers to a set of edges between them.

An edge e = (v1, v2) ∈ E connects nodes in the PG to model the potential flow

of type information from v1 to v2. Essentially, an edge represents a rule stating that

Types(v2) ⊇ Types(v1) (e.g., v2 = v1). To model inter-procedural interaction, the

PG also includes nodes representing method invocations and return values, denoted

by invloc and rv respectively. Finally, I ⊆ R denotes the set of invocations. Let

T be the set of all possible types, DeclaredType contains declared types (compile-

time types) for abstract locations and Types denotes concrete types inferred by

our analysis.

3.2 Analysis Phases

In the actor model, the choice of granularity is key for performance. We decided

to use one actor per method, although other design decisions such as one actor per

class are also possible. Each method-level actor contains a PG that captures type

information that propagates through the method.

The analysis starts by analyzing an initial set of root methods. We describe

both intra- and inter-procedural processing below.

3.2.1 Intra-procedural Analysis

This phase is the responsible of computing the local state of an actor repre-

senting a method.

Instantiating the problem. The lattice L for our analysis consists of a map-

ping from abstract locations to sets of possible types and is defined as shown

below.

L
def
= 〈Types : R 7→ 2T , vtype, ttype〉

3.2. ANALYSIS PHASES 35

v1 = v2 =⇒ Types(v1) ⊇ Types(v2)

v1 = v2.f =⇒ Types(v1) ⊇ Types(DeclaredType(v2).f)

v1.f = v2 =⇒ Types(DeclaredType(v1).f) ⊇ Types(v2)

v = new C() =⇒ C ∈ Types(v)

return v =⇒ Types(rv) ⊇ Types(v)

loc : v = v0.m(v1, . . . , vn) =⇒ Types(invloc) ⊇
⋃

j=0..n

Types(vj)

Figure 3.1: Variable type analysis rules.

l1 vtype l2 ⇐⇒ l1.Types(r) ⊆ l2.Types(r) ∀r ∈ R

l1 ttype l2
def
= l3 where

l3.Types(r) = l1.Types(r) ∪ l2.Types(r) ∀r ∈ R

Analysis rules to compute the transfer function TF [a] are summarized in Fig-

ure 3.1 and cover the typical statement types such as loads, stores, allocations,

etc. Object dereferences (i.e., v.f) are represented by using the name of the class

defining the field. That is, the analysis is field-sensitive but not object-sensitive.

In the case of invocations there is an inclusion relation to model the flow of all

the arguments to the invocation abstract location invloc ∈ I ⊆ R. Note that the

left-hand side v of the invocation is not updated by the rule since it depends on the

result of the invoked method. This will be handled by inter-procedural analysis.

Notice that TF [a] is monotonic because the propagation of newly added types

never removes a type and L satisfies the finite-height condition because it is a finite

lattice.

Algorithm 2 shows the pseudocode for the local propagation worklist algo-

rithm for adding types. The algorithm makes use of a queue, denoted as RQ,

to track modified PG nodes that need to be processed. The queue is initialized

with previously modified nodes corresponding to object allocations and method

36 CHAPTER 3. DISTRIBUTED CALL GRAPH ANALYSIS

Algorithm 2 Local propagation algorithm for adding types.
1: S := ∅
2: while |RQ| > 0 do

3: n := RQ.dequeue()

4: if n ∈ I ∪ {rv} then

5: S := S ∪ {n}
6: else

7: for all { m | (n,m) ∈ E } do

8: D := Types(n) \ Types(m)

9: if |D| > 0 then

10: Types(m) := Types(m) ∪D

11: RQ := RQ ∪ {m}
12: end if

13: end for

14: end if

15: end while

16: return S

parameters. Modified method invocation and return value nodes (i.e., invloc and

rv respectively) are returned by the algorithm to be further processed by the inter-

procedural phase of the analysis. Otherwise, the algorithm propagates the addition

of newly reaching concrete types from each modified node to all of its destination

nodes by following the associated PG edges.

3.2.2 Inter-procedural Analysis

Once the intra-procedural phase finishes, relevant updates must be commu-

nicated to the corresponding methods (callees and callers). As mentioned, the

analysis considers invocations using the set I ⊆ R. To handle callers’ updates,

we need to extend the lattice to include the caller’s information for the current

method. This is a tuple of the form (m, lhs), where m ∈ A denotes the caller’s

name and lhs ∈ R represents the left-hand side of the invocation made by the

3.2. ANALYSIS PHASES 37

let diff r(v, v
′) := v′.Types(r) 4 v.Types(r)

let deltaInvs(v, v′) := { inv | inv ∈ I ∧ diff inv(v, v
′) 6= ∅ }

let deltaRv(v, v′) :=

{
{rv} if diff rv(v, v

′) 6= ∅
∅ otherwise

DELTA(v, v′)
def
= deltaInvs(v, v′) ∪ deltaRv(v, v′)

Figure 3.2: Definition of DELTA function.

caller. The extended lattice is shown below.

L
def
= 〈Types : R 7→ 2T × Callers : 2A×R, v, t〉

l1 v l2 ⇐⇒ l1 vtype l2 ∧ l1.Callers ⊆ l2.Callers

l1 t l2
def
= (ts, cs) where

ts = l1 ttype l2 ∧

cs = l1.Callers ∪ l2.Callers

A message m has the form 〈kind, d, data〉, where kind ∈ {CallMsg, ReturnMsg}
is the kind of message, d ∈ A is the destination actor and data is a tuple.

Instantiating DELTA. In Figure 3.2 we show the definition of the DELTA func-

tion described in Section 2.4. It computes the set of invocations that were affected

by the propagation. An invocation is affected if the set of types flowing to any

of its parameters grew. Additionally, we also must consider changes in types that

the return value may correspond to, since they need to be communicated to the

callers.

Instantiating PACK . Figure 3.3 shows a definition of PACK . This function

is in charge of converting local updates to messages that can be serialized and

38 CHAPTER 3. DISTRIBUTED CALL GRAPH ANALYSIS

let callees(inv) := { C.m | C ∈ Types(args(inv)0) }

let callData(a, inv) := (a, lhs(inv), Types(args(inv)))

let callMsgs(a, inv) := { 〈CallMsg, d, callData(a, inv)〉

| d ∈ callees(inv) }

let returnData(a, c) := (a, lhs(c), Types(rv))

let returnMsgs(a) := { 〈ReturnMsg, method(c), returnData(a, c)〉

| c ∈ Callers }

PACK (a, u)
def
=

{
callMsgs(a, u) if u ∈ I

returnMsgs(a) if u = rv

Figure 3.3: Definition of PACK function. Types(args) is the lifting of Types

to the list of arguments; it returns a list of sets of types. Given inv = 〈v =

v0.m(v1, . . . , vn)〉, args(inv) = [v0, v1, . . . , vn], lhs(inv) = v. For a caller c =

(m, lhs) ∈ Callers , method(c) = m, the caller’s name and lhs(c) = lhs, the

left-hand side of the original invocation made by the caller.

sent to other actors. For each invocation, the analysis uses the computed type

information of the receiver argument to resolve potential callees.

Then, it builds a caller message including the potential types for each argument.

Those types will be added to the set of types of the parameters on the caller actor.

In case of an update in return value it builds a message to inform the caller about

changes to the return value’s types. This message includes the (original) caller’s

left-hand side, so that the caller can update its types.

Instantiating UNPACK . Function UNPACK in Figure 3.4 is responsible for

processing messages received by an actor. This function converts a message into

a value in the lattice of the local analysis that will be then joined into the local

3.2. ANALYSIS PHASES 39

let l1.Types(r) =

{
argumentTypes(m)i if r = pi

∅ otherwise

let l1.Callers = { (sender(m), lhs(m)) }

let l2.Types(r) =

{
returnTypes(m) if r = lhs(m)

∅ otherwise

UNPACK (m)
def
=

{
l1 if kind(m) = CallMsg

l2 if kind(m) = ReturnMsg

Figure 3.4: Definition of UNPACK function. For a message m =

〈CallMsg, d, (a, lhs, [ts0, . . . , tsn])〉, argumentTypes(m)i = tsi ∀i = 0..n, the

set of potential types for the ith argument of the method invocation (correspond-

ing to the ith parameter pi of the callee d); lhs(m) = lhs and sender(m) = a. For

a return message m′ = 〈ReturnMsg, d, (a, lhs, ts)〉, returnTypes(m′) = ts, the

set of potential types of the method’s return value.

state. A message can be either a call message (i.e., an invocation made by a

caller) or a return message (i.e., to inform a change in the callee’s return value).

For call messages we produce an element that incorporates the types for each call

argument into the method parameters. We also update the set of callers. For

return messages we need to update the left-hand side of the invocation with the

potential types of the return value.

Example 1. This example illustrates the advantage of using concrete types as

opposed to declared types to obtain more precision. Consider the small program of

Figure 3.5a. The propagation graphs for both methods are shown in Figure 3.5b.

As the analysis starts, only the left-hand sides of allocations (lines 2 and 13)

contain types. During propagation, type B flows from variable x into an invocation

of M as an argument. This triggers a message to the actor for method B.M. The flow

40 CHAPTER 3. DISTRIBUTED CALL GRAPH ANALYSIS

1 public static void Main() {

2 A x = new B();

3 A y = x.M(x);

4 A z = y;

5 }

6

7 class A {

8 public abstract A M(A p);

9 }

10

11 class B : A {

12 public override A M(A p) {

13 A w = new B();

14 return (p != null) ? p : w;

15 }

16 }

(a) Code example for inter-procedural propagation.

A actual argument
of call M(x)

{}

A y
{}

A z
{}

A x
{B}

A p
{}

A returnValue
{}

A w
{B}

A actual argument
of call M(x)

{B}

A y
{B}

A z
{B}

A x
{B}

A p
{B}

A returnValue
{B}

A w
{B}

call message

return message

(b) Propagation graphs for methods Main and B.M before (left) and after (right) the

propagation.

Figure 3.5: Code and propagation graphs for Example 1.

3.2. ANALYSIS PHASES 41

1 void Main() {

2 A x = new B();

3 x.f = new B();

4 A y = M(x);

5 }

6 A M(A p) {

7 A z = p.f;

8 return z;

9 }

10

Figure 3.6: Rapid Type Analysis scenario for Example 2.

through parameter p and w makes the return value of B.M to contain type B. This

in turn triggers a return message that adds B to the types of y. This propagates

to z. Concrete type analysis produces results that are more accurate for y, z, etc.

than what we can obtain from their declared types.

Type approximation. In the inter-procedural stage, our analysis sends infor-

mation about concrete parameter types to its callees. However, when it comes

to complex, nested objects, this information is potentially insufficient, as it only

concerns one level of the object hierarchy. Instead of sending information about

nested fields, which leads to increased message sizes, we opted to use the types

given by a distributed adaptation of the Rapid Type Analysis (RTA) [33] that runs

simultaneously on each method-actor. When RTA provides no useful information,

we fall back on declared types. We did not observe imprecision caused by this

overapproximation.

Example 2. Consider the code fragment shown in Figure 3.6. Suppose there is

a class A that defines a field f of type A and another class B that inherits from A.

Function PACK will create a message that propagates the type of x into M and

UNPACK will discover the type of p to be B. However, no information is given

for the type of p.f, potentially leading to unsoundness. In order to be sound the

analysis should conservatively assume that both types A and B are possible for

p.f. But, by using RTA, the analysis knows that the code only allocates objects

of class B, so A is not considered as possible type for p.f, only B.

Resumen

Análisis Distribuido de Call Graph

En este caṕıtulo presentamos una instanciación del framework general descrito

en el caṕıtulo anterior para construir call graphs. Nuestro análisis es un análisis

estático distribuido inter-procedural basado en inclusión, inspirado en el Variable

Type Analysis (VTA) presentado en [103]. Este análisis insensible al flujo calcula

el conjunto de tipos posibles para cada referencia de objeto (es decir, variables,

campos, etc.) resolviendo un sistema de restricciones de inclusión. Debido a que

propaga las restricciones de tipo desde los lugares de creación de objetos a sus

usos, este tipo de análisis a veces se denomina análisis de tipo concreto.

Representación del Programa

Grafos de propagación. Al nivel de método, el análisis basado en la inclusión

se implementa mediante una estructura de datos que llamamos grafo de propaga-

ción (PG) [103]. Un PG es un grafo dirigido que se utiliza para empujar informa-

ción de tipos siguiendo el flujo de datos del programa, como es descrito por las

reglas de análisis. Nuestro análisis acepta ser incremental de forma natural. Un

cambio t́ıpico en el programa requeriŕıa, a menudo, una recomputación mı́nima

del fragmento de código modificado, aśı como la propagación de esa información a

sus vecinos. Los grafos de propagación admiten actualizaciones incrementales, ya

que la propagación de la información se activa cuando un nuevo tipo alcanza (o

deja de alcanzar) un nodo.

43

Chapter 4

Incremental Call Graph Analysis

In this chapter we present an extension of the distributed call graph analysis

described in the previous chapter for supporting incremental source code updates.

The goal of our incremental analysis is to efficiently update its results when the

program source code changes. Intuitively, the key idea that motivates this exten-

sion is that computing new results based on previous results should be much less

expensive than computing them from scratch [67, 96]. In order to achieve this, the

incremental call graph analysis algorithm has to be effective in avoiding work on

parts of the program source code that have not changed since the last propagation.

An incremental algorithm promises significant performance improvements over the

exhaustive call graph analysis because analyzing code changes is often much faster

than analyzing the entire code base [96, 100, 65, 76]. This approach is particularly

useful, since only a relatively small part of the program needs to be reanalyzed,

rather than the whole program [67].

4.1 Analysis Design Principles

In contrast to many other incremental static analyses that typically focus in

program modifications made while editing code within an IDE [100, 76, 66], our ap-

proach has a different goal. As mentioned before, we care about providing a static

analysis backend to be run in a cloud-based source repository. For this reason, our

incremental analysis design adheres to the following fundamental principles:

45

46 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

• Revision-based approach. Source code modifications are taken from the

revisions submitted to source control management systems such as Git [3],

Mercurial [7] or SVN [1]. This makes our analysis ideal to be run in back-

ground, triggered by user commit events in centralized web-based hosting

repositories like GitHub [4], as part of a Continuous Integration (CI) envi-

ronment. We also restrict our incremental analysis to modifications that can

be compiled successfully.

• Method granularity. To be consistent with the decision made for the

distributed analysis, we consider methods as the minimal analysis unit. This

means that the whole method will be reanalyzed even when only one of its

statements was changed.

• Modified methods simplification. For simplicity we decided to treat

modified methods as the removal of the current version followed by the ad-

dition of the new version. This means that our analysis only deals with two

kinds of modifications: methods removed and methods added.

4.2 Analysis Challenges

Soundness. We want our incremental analysis to remain sound without loosing

precision. This is a complex task in the context of arbitrary source code modifica-

tions. The analysis has to be carefully designed to avoid removing more concrete

types than the ones that should be actually removed and to ensure that all reach-

able methods are eventually discovered.

Termination. Contrary to the full exhaustive analysis that achieves termination

based on the fact that concrete types and methods are always added and never

removed by the propagation algorithm, the incremental analysis cannot rely in

the same arguments. Supporting removed methods implies the propagation of the

removal of its effects to its neighbors (callees and callers). The interleaving of

successive additions and deletions of reachable concrete types and methods could

lead to termination issues if not carefully consider.

4.2. ANALYSIS CHALLENGES 47

Detecting modified methods. We use source control features to obtain the

list of modified documents between two (typically consecutive) revisions. To detect

modified methods we consider only source code documents within this list. Each

document have potentially two versions, one corresponding to the current (old)

revision and another corresponding to the (new) revision with the changes. For

some documents there is only one version: documents added and removed in the

new revision. Both versions of each document are parsed to get the set of methods

defined in each document version1. These are potential candidates of modified

methods.

By comparing the sets of defined methods for both versions of the same cor-

responding document we classify each method as added, removed or modified. A

method is added when it is defined in the new version of a modified document but

it is not present in the old version of the same document. Analogously, a method is

removed when it is defined in the old version of a modified document but it is not

present in the new version of the same document. Finally, a method is modified

when it is defined in both versions (old and new) of the same modified document

and its source code is different between those versions.

Removing a method. Consider a method m defined in a source control revi-

sion r1, but removed later on in some following revision r2. If the source code

corresponding to both revisions compiles successfully, the following scenarios are

possible.

• The method is unreachable (dead code) at r1.

• It is a reachable non-virtual method and all of its corresponding caller meth-

ods at r1 are modified at r2. Otherwise the source code shouldn’t compile at

r2 due to the presence of invocations to m made by its callers that cannot

be resolved anymore.

• It is a reachable virtual method overriding a base class method implementa-

tion mb at r1 and all of its corresponding callers’ invocations that resolve to

m at r1 resolve to mb at r2.

1Our implementation makes use of a cache to store this information for the old version of

each document, so only the new version needs to be parsed at this point.

48 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

Adding a method. Consider a method m added in a source control revision

r2, that was not defined before in some previous revision r1. If the source code

corresponding to both revisions compiles successfully, the following scenarios are

possible.

• The method is unreachable (dead code) at r2.

• It is a reachable non-virtual method and all of its corresponding caller meth-

ods at r2 that are also defined at r1 are modified at r2, to include the new

invocations to m that cannot be present in r1 because m was not defined.

• It is a reachable virtual method overriding a base class method implemen-

tation mb at r2 that is also defined at r1 and all of its corresponding callers’

invocations that resolve to m at r2 resolve to mb at r1.

Identifying root call sites. In order to be effective, the incremental algorithm

must only reanalyze the bare minimum part of the source code affected by the

changes and no much more than that. For this reason, is necessary to identify

the root call sites from which to reanalyze. They are the starting point of the

incremental analysis.

As depicted before, in most of the cases is straightforward to detect which

are the relevant call sites. When a method is removed, they are just its already

known call sites. But when a method is added, it depends on whether it is a

virtual method or not. If the method is not virtual, its callers (if any) must be

also modified and therefore, they will be reanalyzed in turn. However, if it is a

virtual method that overrides a base class method implementation, is a little bit

more difficult to detect the relevant call sites. Note that in this case, is not easy

to determine which are their corresponding call sites, since these could remain

unchanged and not be part of the modifications. Nevertheless, they can be over-

approximated instead, by considering the call sites of the overridden base method

as candidates to be reanalyzed. If the newly added method is reachable, some of

those call sites will end up resolving to it, instead of to the overridden base method

they originally resolved to.

4.2. ANALYSIS CHALLENGES 49

Therefore, two kinds of call site modifications can be differentiated:

Explicit. When the modification of a method generates in turn explicit modi-

fications in its call sites. In other words, call sites are either added, removed or

the set of possible types for the receiver of each call site invocation is modified.

Both the addition and removal of a non-virtual method produce this kind of

modification.

Implicit. When the modification of a method does not generate explicit mod-

ifications in its call sites, but implicit ones. In other words, the set of possible

types for the receiver of each call site invocation is not modified. It causes call

site invocations to resolve to different method implementations, but they are

not necessarily part of the source code changes. Both the addition and removal

of a virtual method produce this kind of modification.

As mentioned, determining the call sites of implicit modifications is more com-

plex in comparison to the explicit ones, just because they are not necessarily

included in other modified methods. In the case of removing a virtual method,

we know exactly which are its corresponding call sites because it was already ana-

lyzed. However, in the case of adding a virtual method that overrides a base class

method implementation, is not always possible to determine a priori its call sites,

but they can be safely over-approximated by taking as candidates the call sites of

the overridden base method.

Example 3. This example illustrates both explicit and implicit call site modifi-

cations.

Explicit. Consider the code fragment shown in Figure 4.1a. Suppose later on,

a new method M2 is defined in the source code. Since it is a non-virtual method,

in order to be reachable there must be at least some other modified and already

reachable method calling it. In this case it is called from the modified and already

existing reachable method M1, as shown in Figure 4.1b at line 3. Since this call

site is explicitly modified (or more precisely, directly added) it is considered an

explicit call site modification.

50 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

1 public void M1() {

2 Log("M1");

3 }

4

5

6

7

8

(a) Original version.

1 public void M1() {

2 Log("M1");

3 M2();

4 }

5

6 public void M2() {

7 Log("M2");

8 }

(b) Modified version.

(i) Explicit call site modification.

1 public void M1(B p) {

2 p.M2();

3 }

4

5 class A {

6 virtual void M2() {

7 Log("A.M2");

8 }

9 }

10

11 class B : A {

12 }

13

14

15

(c) Original version.

1 public void M1(B p) {

2 p.M2();

3 }

4

5 class A {

6 virtual void M2() {

7 Log("A.M2");

8 }

9 }

10

11 class B : A {

12 override void M2() {

13 Log("B.M2");

14 }

15 }

(d) Modified version.

(ii) Implicit call site modification.

Figure 4.1: Original and modified code versions for Example 3. The modified lines

are highlighted in yellow.

4.3. SUPPORTING REMOVED METHODS 51

Implicit. Now consider the code fragment shown in Figure 4.1c. Suppose later

on, method M2 is defined in class B as shown in Figure 4.1d, thus overriding the

implementation inherited from its base class A. Even that this is the only modifica-

tion of the source code and there is no other modified method calling it, the newly

added method B.M2 could still be reachable. This is because it is a virtual method

that overrides an already reachable base class method implementation A.M2. In

this case, its root call sites can be over-approximated by considering the call sites

of the overridden base method implementation as candidates. In particular, the

call site in method M1 at line 2 has B as the only possible concrete type for the

receiver p of the invocation to M2. Therefore, even that this call site was actually

never explicitly modified, it no longer resolves to A.M2, but to B.M2 instead. For

this reason it is considered an implicit call site modification.

4.3 Supporting Removed Methods

One important difference of the incremental analysis in comparison to the full

exhaustive analysis is the necessity of having to support removed methods. When a

method is removed, the analysis needs to update its neighbors (callees and callers)

to revert the effects produced by the removed method. This in turn leads to

having to support the removal of concrete types that might have been originally

propagated by the method, both intra- and inter-procedurally.

For this reason, we present another instantiation of the general analysis frame-

work described in Section 2.4 for removing types. It is analogous to the one pre-

sented in the previous chapter, but instead of propagating the addition of types,

it propagates the deletion of types.

4.3.1 Intra-procedural Analysis

As mentioned, this phase of the analysis is the responsible of updating the local

state of an actor representing a method.

52 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

Instantiating the problem. Like before, the lattice L for our analysis consists

of a mapping from abstract locations to sets of possible types and is defined as

shown below.

L
def
= 〈Types : R 7→ 2T , vtype, ttype〉

l1 vtype l2 ⇐⇒ l2.Types(r) ⊆ l1.Types(r) ∀r ∈ R

l1 ttype l2
def
= l3 where

l3.Types(r) = l1.Types(r) ∩ l2.Types(r) ∀r ∈ R

The analysis rules to compute the transfer function TF [a] are exactly the same

as described in Section 3.2.1. In this case, TF [a] is monotonic because the prop-

agation of removed types never adds a new type and L satisfies the finite-height

condition because it is a finite lattice.

Algorithm 3 shows the pseudocode for the local propagation worklist algorithm

for removing types. The algorithm makes use of a queue, denoted as RQ, to

track modified PG nodes that need to be processed. The queue is initialized

with previously modified nodes corresponding to object allocations and method

parameters. Modified method invocation and return value nodes (i.e., invloc and

rv respectively) are returned by the algorithm to be further processed by the

inter-procedural phase of the analysis. Otherwise, the algorithm propagates the

removal of no longer reaching concrete types from each modified node to all of its

destination nodes by following the associated PG edges. Is important to note that

the same concrete type can reach a node from more than one path in the PG. For

this reason, a concrete type can only be removed from the set of possible types of

a node if it was previously removed in all of its predecessor nodes. Contrary to the

propagation of the addition of a newly reaching concrete type, that only requires

a single modified predecessor node.

4.3. SUPPORTING REMOVED METHODS 53

Algorithm 3 Local propagation algorithm for removing types.
1: S := ∅
2: while |RQ| > 0 do

3: n := RQ.dequeue()

4: if n ∈ I ∪ {rv} then

5: S := S ∪ {n}
6: else

7: for all { m | (n,m) ∈ E } do

8: D := Types(m)

9: for all { h | (h,m) ∈ E } do

10: D := D \ Types(h)

11: end for

12: if |D| > 0 then

13: Types(m) := Types(m) \D
14: RQ := RQ ∪ {m}
15: end if

16: end for

17: end if

18: end while

19: return S

4.3.2 Inter-procedural Analysis

Once the intra-procedural phase finishes, relevant updates must be communi-

cated to the corresponding methods (callees and callers). Like before, to handle

callers’ updates, we need to extend the lattice to include the caller’s information

for the current method. The extended lattice is shown below.

L
def
= 〈Types : R 7→ 2T × Callers : 2A×R, v, t〉

54 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

l1 v l2 ⇐⇒ l1 vtype l2 ∧ l2.Callers ⊆ l1.Callers

l1 t l2
def
= (ts, cs) where

ts = l1 ttype l2 ∧

cs = l1.Callers ∩ l2.Callers

Instantiating the problem. All helper functions DELTA, PACK and UNPACK

remain defined exactly as described in Section 3.2.2, but instead they make use of

the extended lattice shown above.

4.4 Incremental Algorithm

Next we describe how our incremental analysis algorithm supports the following

two fundamental scenarios.

Removing a method. As mentioned, in this case the algorithm needs to revert

the effects produced by the removed method. There are two kind of effects: types

propagated to callees through invocations and types propagated to callers through

returns.

For each callee, the analysis removes the types propagated from the invocation

arguments to the callee parameters and the method itself from the callers collection

of the callee.

For each caller, the analysis removes the types propagated from the returned

value to the left-hand side of the invocations that originally resolved to the removed

method. Is important to note that this in turn could lead to further propagation

of the removal of those types, both intra- and inter-procedurally.

Once the effects produced by the removed method are reverted, the analysis

repropagates from each call site of each caller that had the removed method as

possible callee. This is because those invocations might resolve to a different

method now that the removed method is gone. Is important to note that some

callees and callers could not exist anymore because they were also removed, or

4.4. INCREMENTAL ALGORITHM 55

could be different because they were modified. For those cases the analysis does

not have to do anything because it will take care of them in their own turns.

Adding a method. In this case the algorithm has to check if the newly added

method is virtual and overrides an already existing base class method or not.

If the added method does not override a base class method, then the analysis

does not have to do anything because it could be an unreachable method that is

not yet used in the program. However, if the newly added method is reachable, it

has to be at least some other modified method that calls it, so it will be processed

in turn later on. Remember in this case the method does not override another

already existing one, so the only way for it to be reachable is by a newly added

invocation made by another reachable method.

If the added method overrides a base class method, then the analysis treats the

overridden method as removed. This way, the effects produced by the overridden

method are reverted and the analysis repropagates from each call site of each

of its callers as described above. Finally, some of those invocations might start

resolving to the newly added method, while some others might still resolve to the

same overridden method. Depending on this, each of those methods will become

reachable or not.

Algorithm 4 shows the pseudocode for the incremental analysis algorithm. It

makes use of two previously initialized sets: methods removed and methods added,

denoted as MR and MA respectively. Remember that we consider method updates

as a removal followed by an addition of the corresponding method. Additionally,

S, W and M are sets of messages to be processed by the distributed worklist

algorithm presented in Section 2.4.

As mentioned before, methods overridden by newly added virtual methods are

treated as removed and added to the MR set to be further processed. Then,

the algorithm obtains the effects produced by all of the removed methods (types

propagated to callees and callers, at lines 13 and 9 respectively) and reverts them

by propagating the removal of types at line 17. This is done by calling the Pro-

cessMessages function passing as arguments the initial set of messages to process

56 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

Algorithm 4 Incremental analysis algorithm.
1: S := ∅
2: W := ∅
3: for each a in MA do

4: if a overrides some method b then

5: MR := MR ∪ {b}
6: end if

7: end for

8: for each a in MR do

9: M := PACK (a, rv)

10: S := S ∪M

11: W := W ∪M

12: for each inv in I do

13: M := PACK (a, inv)

14: S := S ∪M

15: end for

16: end for

17: ProcessMessages(S, RemoveTypes)

18: UpdateSourceCode()

19: S := GenerateCallMessages(W)

20: ProcessMessages(S, AddTypes)

and a constant to indicate which instantiation of the general analysis framework

has to be invoked. In this case the RemoveTypes constant refers to the instantiation

for removing types presented in Section 4.3.

Once the effects produced by the removed methods are reverted, the incre-

mental analysis algorithm performs the source code update by calling the Update-

SourceCode function to apply the changes made by the new source control revision

under analysis. For instance, in the case of analyzing a project hosted on a Git

repository, this function performs the pull of the new commit. It also proceeds

to compile the updated source code to meet the requirements of our call graph

4.4. INCREMENTAL ALGORITHM 57

analysis. Is important to note that this step has to be done at this point and not

before. This is, right after reverting the effects produced by the removed methods

and before repropagating from the call sites of their callers. The reason for this

is to ensure that the information computed by the analysis is always in sync with

the analyzed source code version.

In the W set the algorithm keeps track of return messages only, that cor-

respond to the effects propagated to the callers of the removed methods. The

GenerateCallMessages function creates call messages (of kind CallMsg) from the

return messages (of kind ReturnMsg) stored in W . Finally, at line 20 the algo-

rithm repropagates types from the call sites of the callers that had the removed

method as possible callee. This is done by calling the ProcessMessages function

again, but this time, passing as argument the AddTypes constant that refers to

the instantiation of the general analysis framework for adding types presented in

Section 2.4.

Example 4. This example illustrates the incremental call graph analysis algo-

rithm. The code fragment shown in Figure 4.2a defines two classes A and B, where

B inherits from A. Method M1 creates an object of type B and calls its virtual

method M2.

After running the exhaustive call graph analysis, the only possible concrete

type reaching the receiver x of the invocation of M2 at line 3 is B. Since class B does

not override the definition of M2 inherited from class A (i.e., it does not provide a

more specific implementation), the analysis resolves the virtual method call as an

invocation to A.M2. As consequence, A is the only possible concrete type for the

local variable y of method M1 at line 4.

Suppose later on, method M2 is defined in class B as shown in Figure 4.2b,

thus overriding the implementation inherited from its base class A. Then, the

incremental call graph analysis detects the addition of the new method B.M2 and

since it is a virtual method that overrides an already existing reachable base class

method implementation, the analysis proceeds to revert the propagation effects

produced by A.M2 (to callees and callers). In this case, the analysis removes A.M2

58 CHAPTER 4. INCREMENTAL CALL GRAPH ANALYSIS

1 public A M1() {

2 A x = new B();

3 A y = x.M2();

4 return y;

5 }

6

7 class A {

8 virtual A M2() {

9 return new A();

10 }

11 }

12

13 class B : A {

14 }

15

16

17

(a) Original version.

1 public A M1() {

2 A x = new B();

3 A y = x.M2();

4 return y;

5 }

6

7 class A {

8 virtual A M2() {

9 return new A();

10 }

11 }

12

13 class B : A {

14 override A M2() {

15 return new B();

16 }

17 }

(b) Modified version.

Figure 4.2: Original and modified code versions for Example 4. The modified lines

are highlighted in yellow.

from the callers of the constructor of class A (the only callee it has) and propagates

the removal of the concrete type A returned by A.M2 and assigned to the local

variable y of method M1 at line 3 (the only call site it has). As consequence, type

A no longer reaches variable y.

Finally, the incremental analysis updates the source code and repropagates the

addition of concrete types from the M2 call site in method M1 at line 3. Note that

the only possible concrete type of the receiver x of the invocation to M2 was not

modified and is still B. However, this time the invocation resolves to B.M2 instead of

A.M2 as it was previously resolving to. As consequence, B is now the only possible

concrete type for the local variable y of method M1 at line 4.

4.5. TERMINATION 59

4.5 Termination

A priori, given the possibility of propagating not only the addition but also

the deletion of concrete types both intra- and inter-procedurally, it makes sense

to wonder whether the incremental algorithm actually terminates. It could be the

case that the same concrete type is repeatedly added and removed to the set of

possible types of some PG node and thus, preventing the algorithm from reaching a

fixed-point. However, we would like to show that this is not the case and therefore,

the presented incremental analysis algorithm terminates.

The reason relies on the fact that it consists of two well different and completely

separated phases that can be easily identified by taking a look to the algorithm’s

pseudocode. The first phase is in charge of reverting the effects produced by the

removed methods through the general analysis framework instantiation for remov-

ing types. The second phase is in charge of repropagating from the call sites of the

callers of the removed methods through the general analysis framework instanti-

ation for adding types. Is important to note that while the first phase removes

types, it never adds a type. And analogously, while the second phase adds types, it

never removes a type. Therefore, given that both phases are executed in sequence

and each one terminates, there is no possible interleaving of type additions and

deletions that prevents from reaching a fixed-point. Thus, the incremental analysis

algorithm always terminates.

Resumen

Análisis Incremental de Call Graph

En este caṕıtulo presentamos una extensión del análisis distribuido de call

graph descrito en el caṕıtulo anterior para admitir actualizaciones incrementales del

código fuente. El objetivo de nuestro análisis incremental es actualizar de manera

eficiente sus resultados cuando cambia el código fuente del programa. De manera

intuitiva, la idea principal que motiva esta extensión es que computar nuevos

resultados basados en resultados anteriores debeŕıa ser mucho menos costoso que

calcularlos de cero [67, 96]. Para lograr esto, el algoritmo de análisis incremental

de call graph debe ser eficaz para evitar el trabajo en partes del código fuente

del programa que no han cambiado desde la última propagación. Un algoritmo

incremental promete mejoras significativas en el rendimiento en comparación con

el análisis exhaustivo de call graph, ya que el análisis de los cambios del código

suele ser mucho más rápido que el análisis de todo el código fuente [96, 100, 65, 76].

Este enfoque es particularmente útil, ya que sólo es necesario volver a analizar una

parte relativamente pequeña del programa, en lugar del programa completo [67].

A diferencia de muchos otros análisis estáticos incrementales que normalmente

se enfocan en las modificaciones de programas realizadas al editar código dentro

de un IDE [100, 76, 66], nuestro enfoque tiene un objetivo diferente. Como se

mencionó anteriormente, nos interesa proporcionar un backend de análisis estático

que sea ejecutado en un repositorio de código fuente ubicado en la nube.

61

Chapter 5

Implementation

We implemented a prototype of our distributed approach1 to analyze large-scale

projects written in C#. This prototype relies on Roslyn [84], a compiler framework

for analyzing C# code and the Orleans framework [38], an implementation of

a distributed actor model that can be deployed in the cloud. Although other

deployment options such as AWS are possible, we used Azure as a platform for

running our experiments.

5.1 Orleans and the Actor Model

Orleans [38] is a framework designed to simplify the development of distributed

applications. It is based on the abstraction of virtual actors. In Orleans termi-

nology, these actors are called grains. Orleans solves a number of the complex

distributed systems problems, such as deciding where (i.e., on which machine) to

allocate a given actor, sending messages across machines, etc., largely liberating

developers from dealing with those concerns. At the same time, the Orleans run-

time is designed to enable applications that have high degrees of responsiveness

and scalability. Grains are the basic building blocks of Orleans applications and

are the units of isolation and distribution. Every grain has a unique global identity

1Source code and benchmarks available at: https://github.com/edgardozoppi/

call-graph-orleans.

63

https://github.com/edgardozoppi/call-graph-orleans
https://github.com/edgardozoppi/call-graph-orleans

64 CHAPTER 5. IMPLEMENTATION

that allows the underlying runtime to dispatch messages between actors. An actor

encapsulates both behavior and mutable local state. State updates across grains

can be initiated by sending messages.

The runtime decides which physical machine (silo in Orleans terminology) a

given grain should execute on, given concerns such as memory pressure, amount

of communication between individual grains, etc. This mechanism is designed

to optimize for communication locality because even within the same cluster the

amount of cross-machine messages are considerably smaller than the amount of

local messages, within the same machine.

We follow a specific strategy in organizing grains at runtime. This strategy is

driven by the input structure. The input consists of an MSBuild solution, a .sln

file that can be opened in Visual Studio. Each solution consists of a set of project

files, *.csproj, which may depend on each other. Roslyn allows us to enumerate

all project files within a solution, source files within a project, classes within a file,

methods within a class, etc. Furthermore, Roslyn can use its built-in C# compiler

to compile sources on the fly.

In Figure 5.1 we show how grains are organized to follow this logical hierarchy.

We define grains for solutions, projects and methods. We did not find it nec-

essary to provide grains for classes and other higher-level code artifacts such as

namespaces.

A solution grain is a singleton responsible for maintaining the list of projects

and providing functionality to find methods within projects; A project grain con-

tains the source code of all files for that project and provides functionality to

compute the information required by method grains (e.g., to build propagation

graphs by parsing the methods’ code) as well as type resolution (e.g., method

lookup, subtyping queries, etc). Finally, a method grain is responsible for comput-

ing the local type propagation and resolving caller/callees queries; it stores type

information for abstract locations within the method.

The solution grain reads the *.sln file from cloud storage; in our implemen-

tation we used Azure Files, but other forms of input that support file-like APIs

such as GitHub or Dropbox are also possible. Project grains read *.csproj files

5.1. ORLEANS AND THE ACTOR MODEL 65

Project
grain p1

Solution
grain

Project
grain p2

Method
grain m1

Method
grain m2

Method
grain m3

Method
grain m4

Method
grain m5

Method
grain m6

Figure 5.1: Logical organization of grains. The arrows show how grains create each

other: solution grains create project grains; project grains create method grains,

etc.

and also proceed to compile the sources contained in the project to get a Roslyn

Compilation object. This information is only contained in the project grain to

minimize duplication. To obtain information about the rest of the project, method

grains can consult the project grain. We use caching to reduce the number of mes-

sages between method and project grains.

Example 5. To illustrate persistent state for a typical method grain, consider

the example in Figure 3.5a. The state of both methods is as follows.

Method Main:

Callers = {}

Types = {(x, {B}), (y, {B}), (z, {B}), (3, {B})}

Method B.M:

Callers = {(A.Main, y)}

Types = {(p, {B}), (w, {B}), (returnValue, {B})}

66 CHAPTER 5. IMPLEMENTATION

This minimal state is easily serialized to disk if the grains are ever deactivated

by the Orleans runtime. Orleans deactivates grains when they aren’t used for a

long time, however, this never happened in our experiments.

5.2 Distributed Analysis Details

Implementing a distributed system like ours is fraught with some fundamental

challenges.

Reentrancy. Since the call graph can have cycles, a grain can start a propa-

gation which will in turn eventually propagate to the original method. However,

since Orleans uses turn-based concurrency this will create a deadlock. Even with-

out recursion it is possible for a method grain that is currently being processed to

receive another message (i.e., a return message from a callee).

Termination. In a distributed setting, detecting when we achieve termination

is not so easy. This is in part because even if all the local worklists are empty, we

may have messages in flight or those that have been delayed.

Timeouts. Similar to other turn-based concurrency systems, in order to detect

potential failures and deadlocks, Orleans monitors the duration of calls to other

grains and terminates calls that it deems to be timeouts. This has a number

of undesirable consequences such as exceptions that propagate throughout the

system. Some program analysis tasks, such as compiling a project or creating

a propagation graph for a long method, may exceed the timeout that Orleans

imposes.

Centralized orchestrator. A näıve implementation is not going to work well

because of reentrancy issues: we can block the execution waiting for a message

that waits for our response. For this reason, in our initial implementation we used

5.2. DISTRIBUTED ANALYSIS DETAILS 67

Orchestrator

Method grain
Propagate call

and return effects

Processing queue

Method grain
Propagate call

and return effects

Figure 5.2: Centralized orchestration architecture.

an orchestrator to establish some degree of centralized control over the propa-

gation process. Grains communicate with an orchestrator exclusively, instead of

communicating with each other peer-to-peer. This avoids the issue of reentrancy

by construction; only the orchestrator can send messages to grains via a single

message queue, as shown in Figure 5.2. The orchestrator keeps track of the out-

standing tasks and can therefore detect both termination and prevent reentrant

calls from taking place.

The key disadvantage of this design is that it is possible to have a great deal

of contention when accessing the centralized orchestrator. We observed this in

practice, suggesting a different variant of this idea.

Distributed queues. Instead, we use a collection of queues placed across the

distributed system to reduce contention. Each method grain is a potential pro-

ducer of effects to be processed by other method grains. To avoid reentrancy, this

information is not sent directly to the target method grain but it is enqueued in

one of the queues in a round robin fashion. The information is then consumed

by dispatchers grains that pull the data from the queues and deliver it to the

corresponding method grains, as illustrated in Figure 5.3.

Using this mechanism we avoid both reentrancy, bottlenecks and single points

of failure. The drawback is that detecting termination is more complex. For that,

we use timers to determine when a dispatcher becomes idle (i.e., inactive longer

than a predetermined threshold), at which point we notify the client. The analysis

finishes when the client is sure that all dispatchers are idle2. In practice, we set

2We have a mechanism to detect when an idle dispatcher becomes active again.

68 CHAPTER 5. IMPLEMENTATION

Orleans client

Dispatcher grain Dispatcher grain Dispatcher grain

mm

analyze

enqueue
effect

m

enqueue
effect

subscribe
notify

mm

enqueue
effect dequeue

subscribe

notify notify

subscribe

enqueue
effect

analyze analyzeanalyze

enqueue
effect

analyze

queuequeue

queuequeue

queuequeue

enqueue
effect

dequeue

dequeue

enqueue
effect

analyze
analyze

Silo 1 Silo 2 Silo 3

Figure 5.3: The multi-queue approach, illustrated. Method grains are circles shown

in light blue. Solid and dashed arrows represent standard invocations and callbacks

respectively. Each silo has each own dispatcher grain.

the number of queues to be four times higher than the number of worker VMs

(for example, 128 queues for 32 worker VMs) and set the termination threshold

to 10 seconds.

5.3 Incremental Analysis Details

In order to be sound, there is an important detail that has to be considered

when implementing our incremental analysis algorithm. If a type flows to a propa-

gation graph node from more than one source, and later on, the analysis propagates

the removal of that type from only one of those sources, then the type could be

incorrectly removed from the set of possible types of the node (depending on how

they are stored), thus affecting soundness. So to prevent this from happening, it

is mandatory to distinguish types flowing from different paths.

For this reason, the set of possible types for each propagation graph node has

to be stored separately per incoming edge. This means to have a different set for

each incoming edge of the node. Then, the set of possible types can be easily

5.3. INCREMENTAL ANALYSIS DETAILS 69

1 A M1(bool p) {

2 A x = new A();

3 if (p) x = M2();

4 return x;

5 }

6

7 A M2() {

8 return new A();

9 }

(a) Original version.

1 A M1(bool p) {

2 A x = new A();

3 if (p) x = M2();

4 return x;

5 }

6

7 A M2() {

8 return new B();

9 }

(b) Modified version.

Figure 5.4: Original and modified code versions for Example 6. The modified line

is highlighted in yellow.

computed by performing the union of all those sets. These are the types that the

incremental algorithm will propagate to other nodes. However, when a new type

is propagated to a given node through a particular incoming edge, that type will

be added only to the set associated to that edge.

Analogous but more interesting is the case when the removal of a type is prop-

agated to a given node through a particular incoming edge. In this case, that type

will be removed only from the set associated to that edge. So if the same type

does not reach the same node through some other incoming edge, then the type

will not be part of the set of possible types of the node. However, if the same

type reaches the same node through some other incoming edge, then it will not

be removed from the set associated to the other edge, and consequently, the type

will still be part of the set of possible types of the node.

Example 6. This example illustrates why it is important to store the set of

possible types separately per incoming edge for each node in the propagation

graph. Not doing so could lead to unsoundness when propagating the removal of

types. Consider the code fragment shown in Figure 5.4a.

70 CHAPTER 5. IMPLEMENTATION

After running the analysis, the possible types for x at line 4 of method M1 is

{A}. Suppose later on, method M2 is modified as shown in Figure 5.4b, returning an

object of type B instead of type A. When running the incremental analysis to update

the call graph with those changes, the first phase of the algorithm propagates the

removal of the possible types returned by the original version of M2. Let’s consider

two cases depending on how the set of possible types for each PG node is stored.

• Storing in a single set leads to the removal of type A as possible type for x

at line 4 of method M1, which is clearly incorrect.

• Storing in separate sets per incoming edge leads also to the removal of type A,

but only in the set of x corresponding to the edge coming from the invocation

of M2 at line 3 of method M1. Note that A is still a possible type for x since it

is stored in the (unchanged) set of x corresponding to the edge coming from

the allocation at line 2 of M1.

The problem comes from the fact that in the original version of the code,

type A flows to x from more than one source. Note that this is not an issue

when propagating the addition of possible types. Finally, the second phase of

the algorithm repropagates from the invocation of M2 at line 3 of method M1,

leading to the analysis of the new version of method M2, which in turn leads to the

propagation of the addition of type B from the return value of M2 to x.

5.4 Deployment Details

Our analysis is deployed in Azure as illustrated in Figure 5.5. On the left,

there is the analysis client such as an IDE or a code editor like SublimeText. The

cluster we used consists on one front-end VM and a number of worker VMs. The

client used REST requests to communicate to the front-end VM. The job of the

front-end VM is to:

• Accept and process external analysis client requests.

• Dispatch jobs to the worker VMs and process the results.

• Provide a Web UI with analysis results and statistics.

5.4. DEPLOYMENT DETAILS 71

Orleans client
Web roleAnalysis client

(IDE, visualizer, etc.)
Analysis client

(IDE, visualizer, etc.)

load and store experimental statistics

Figure 5.5: Cloud-based deployment of our analysis in Azure. Actual work happens

within worker VMs. The analysis client interacts with the cluster via a front-end

VM.

Interactive deployment within an IDE. In Figure 5.6 we show two screen-

shots of an experimental IDE prototype that uses the API exposed by our analysis

to resolve callers/callees queries3. We should point out that the precision achieved

by our analysis is enough for the autocomplete task.

REST interface. In Table 5.1, we show several typical REST requests for com-

mon IDE navigation tasks. The API is designed for use with a variety of clients;

for a task such as getting all references to a symbol, we simply package up the

name of the symbol into a string and dispatch the request.

3Another example of such an IDE can be found at: http://source.roslyn.io.

http://source.roslyn.io

72 CHAPTER 5. IMPLEMENTATION

(a) Visualizing callees: call site on line 20 invokes function DoTest defined on line 17.

(b) Visualizing callers: method Bar defined on line 12 is called on line 23.

Figure 5.6: An experimental online IDE that use our analysis for resolving refer-

ences for callees and callers.

5.4. DEPLOYMENT DETAILS 73

Client task REST URL Server-side request handler

Get all abstract

locations in a

source code docu-

ment.

http://<hostname>:

49176/api/Orleans?

filePath=program.cs

[HttpGet]

async Task <IList <FileResponse >>

GetFileEntitiesAsync(string filePath)

Get symbol refer-

ences.

http://<hostname>:

49176/api/Orleans?

id=Program.Main

[HttpGet]

async Task <IList <SymbolReference >>

GetReferencesAsync(string id)

Get symbol defini-

tions.

http://<hostname>:

49176/api/Orleans?

id=Program.Main@2

[HttpGet]

async Task <IList <SymbolReference >>

GetReferencesAsync(string id)

Table 5.1: Examples of interacting with the analysis backend via REST queries.

http://<hostname>:49176/api/Orleans?filePath=program.cs
http://<hostname>:49176/api/Orleans?filePath=program.cs
http://<hostname>:49176/api/Orleans?filePath=program.cs
http://<hostname>:49176/api/Orleans?id=Program.Main
http://<hostname>:49176/api/Orleans?id=Program.Main
http://<hostname>:49176/api/Orleans?id=Program.Main
http://<hostname>:49176/api/Orleans?id=Program.Main@2
http://<hostname>:49176/api/Orleans?id=Program.Main@2
http://<hostname>:49176/api/Orleans?id=Program.Main@2

Resumen

Implementación

Implementamos un prototipo de nuestro enfoque distribuido4 para analizar

proyectos de gran escala escritos en C#. Ese prototipo se basa en Roslyn [84],

un framework de compilación para el análisis de código C# y el framework Or-

leans [38], una implementación de un modelo de actores distribuido que se puede

desplegar en la nube. Aunque, otras opciones de despliegue como AWS son posi-

bles, utilizamos Azure como plataforma para ejecutar nuestros experimentos.

Orleans y el Modelo de Actores

Orleans [38] es un framework diseñado para simplificar el desarrollo de apli-

caciones distribuidas. Se basa en la abstracción de los actores virtuales. En la

terminoloǵıa de Orleans, estos actores se llaman granos. Orleans resuelve una serie

de problemas complejos de sistemas distribuidos, como decidir dónde (es decir, en

qué máquina) crear un actor determinado, enviar mensajes a través de máquinas,

etc., lo que libera en gran medida a los desarrolladores de tener que lidiar con

esas preocupaciones. Al mismo tiempo, Orleans está diseñado para permitir apli-

caciones que tienen un alto grado de capacidad de respuesta y escalabilidad. Los

granos son los componentes básicos de las aplicaciones de Orleans y son las uni-

dades de aislamiento y distribución. Cada grano tiene una identidad global única

4Código fuente y benchmarks disponibles en: https://github.com/edgardozoppi/

call-graph-orleans.

75

https://github.com/edgardozoppi/call-graph-orleans
https://github.com/edgardozoppi/call-graph-orleans

76 RESUMEN. IMPLEMENTACIÓN

que le permite a Orleans enviar mensajes entre actores. Un actor encapsula tanto

el comportamiento como el estado local mutable. Actualizaciones de estado de los

granos se pueden iniciar enviando mensajes.

Orleans decide en qué máquina f́ısica (silo en la terminoloǵıa de Orleans) debe

ejecutarse un grano determinado, considerando problemáticas como la presión de

memoria, la cantidad de comunicación entre granos individuales, etc. Este me-

canismo está diseñado para optimizar la localidad en las comunicaciones porque

incluso dentro del mismo cluster, la cantidad de mensajes entre máquinas es con-

siderablemente menor que la cantidad de mensajes locales, dentro de la misma

máquina.

Chapter 6

Evaluation

We aim to answer the following research questions.

RQ1: Is our analysis capable of handling arbitrary amounts of input (i.e.,

more lines of code, files, projects, etc.) by increasing the number of

worker VMs, without running out of memory?

RQ2: While the communication overhead can become significant, as more

worker VMs are added, does an increase in the number of worker VMs

significantly increase the overall analysis times?

RQ3: Is the analysis query latency small enough to allow for interactive use1?

RQ4: Does our incremental analysis show significant time savings in compar-

ison to the exhaustive version of the analysis?

The focus of our analysis is on being used in an interactive setting. Given

the low latency times we can use our analysis interactively as a replacement

of source code browsers2. This kind of browsers provide code search and basic

navigation facilities, but lack more advanced features like actual callers/callees

inspection/navigation that we can provide with our analysis. At the same time,

we are not as concerned about the completion time for the analysis as a whole as

1Generally, query latencies of 10 to 20 ms are considered to be acceptable.
2Such as http://source.roslyn.io.

77

http://source.roslyn.io

78 CHAPTER 6. EVALUATION

we are about its memory requirements on legacy VMs. Even if it takes longer to

process, our goal is to engineer an always-on system that responds to messages sent

to the cloud to service user requests, in the context of code browsing and other

tasks listed in Section 2.2. This work was performed in collaboration with the

Roslyn compiler team and while we have not performed user studies, we believe

latency numbers (most queries took under 20 ms) to be more than acceptable for

interactive use.

6.1 Experimental Setup

All the experiments presented in this chapter were executed in the cloud, on a

commercially available Azure cluster. We could also have used an AWS cluster, as

our dependency on Azure is small. The Azure cluster we used for the experiments

consists on one front-end VM and up to 64 worker role VMs. The front-end VM

is an Azure VM with 14 GB of RAM (this is an A4\ExtraLarge VM in Azure

parlance3). Each worker role is an Azure VM with 7 GB of RAM (called A3\Large
in Azure). For benchmarking purposes, we run our analysis with configurations

that include 1, 2, 4, 8, 16, 32 and 64 worker VMs. To collect numbers, we used

a custom-written experimental controller as our analysis client throughout this

section; this setup is illustrated in Figure 5.5. The controller is scripted to issue

commands to analyze the next .sln file, collect timings, etc.

We heavily instrumented our analysis to collect a set of relevant metrics. We

instrumented our analysis code to measure the analysis elapsed time. We intro-

duced wrappers around our grains (solution, project and method grains) to distin-

guish between local messages (within the same VM) and network messages. Using

Orleans-provided statistics, we measured the maximum memory consumption per

VM. Lastly, we also have added instrumentation to measure query response times.

While these measurements are collected at the level of an individual grain, we gen-

erally wanted to report aggregates. To collect these, we post grain-level statistics

to a special auxiliary grain.

3Up-to-date VM specifications are available at: https://azure.microsoft.com/en-us/

documentation/articles/virtual-workerVMs-size-specs/.

https://azure.microsoft.com/en-us/documentation/articles/virtual-worker VMs-size-specs/
https://azure.microsoft.com/en-us/documentation/articles/virtual-worker VMs-size-specs/

6.2. BENCHMARKS 79

To evaluate the incremental analysis we made use of 100 already existing and

consecutive commits taken from each of the real-world benchmark Git repositories.

We wrote a script that runs Git commands in order to checkout the commits, get

the list of modified files between the current and previous version of the source

code and execute in sequence both the exhaustive and incremental analysis for

each commit. To simplify this process and measure the benefits of the incremental

analysis in comparison to the full analysis version in a controlled way, we decided

to run both analysis on a single machine configuration.

6.2 Benchmarks

For our inputs, we have used two categories of benchmarks, synthetic bench-

marks we have generated specifically to test the scalability of our call graph analysis

and a set of 3 real applications written in C# that push our analysis implemen-

tation to be as complete as possible, in terms of handling tricky language features

such as delegate, lambdas, etc. and see the impact of dealing with polymorphic

method invocations. In all cases, we start with a solution file (.sln) which ref-

erences several project files (.csproj), each of which in turn references a number

of C# source files (.cs).

Synthetic benchmarks. We designed a set of synthetic benchmarks to test the

scalability of our analysis approach. These are solution files generated to have

the requisite number of methods (for the experiments, we ranged that number

between 1,000 and 1,000,000).

The Table 6.1 summarizes some statistics about the synthetic projects we have

used for this evaluation. Synthetic benchmarks were generated to have the requi-

site number of methods, organized in classes and projects according to a maximum

predefined number. Each method invokes between 1–11 other methods, with the

only requirement that all methods be reachable. While synthetic programs mea-

sure the input size in a controlled way (e.g., LOCs, methods, invocations), the real

benchmarks measure the overall complexity (e.g., polymorphism, complex program

constructs).

80 CHAPTER 6. EVALUATION

Benchmark LOC Projects Classes Methods

X1,000 9,196 10 10 1,000

X10,000 92,157 50 50 10,000

X100,000 904,854 100 100 100,000

X1,000,000 9,005,368 100 100 1,000,000

Table 6.1: Information about synthetic benchmarks.

Real-world benchmarks. We have selected several large open-source projects

from GitHub for our analysis. A summary of information about these programs

is shown in Table 6.2. We tried to focus on projects that are under active de-

velopment. To illustrate, one of our benchmarks, Azure Powershell is one of the

most popular projects written in C# on GitHub. According to the project statis-

tics, over a period of one month, 51 authors have pushed 280 commits to the

main branch and 369 commits to all branches. There have been 342,796 addi-

tions and 195,366 deletions. Generally, discovering good root methods to serve

as starting points for the call graph analysis is not trivial. Because there is no

natural Main method in several of these projects, we have decided to use as entry

points the included unit tests, event handlers and other public methods within the

project to increase the number of methods our analysis reaches4.

Table 6.3 shows summarized information related to the 100 consecutive com-

mits used to compare the incremental algorithm with the full analysis version, for

each real-world benchmark. The numbers correspond to per commit statistics. We

only consider source code documents modified by the commits, other kind of files

are ignored. For this reason, a couple of commits that do not modify source code

files are reported with zero modified documents, and consequently, no modified

methods.

6.3 Results

4Note that we do not analyze libraries provided as DLLs; our analysis implementation works

at the source code level only.

6.3. RESULTS 81

Benchmark

URL

https://github.com/ LOC P
r
o
je
c
ts

C
la
ss
e
s

M
e
th

o
d
s

M
a
in

T
e
st

E
v
e
n
t

h
a
n
d
le
r
s

P
u
b
li
c

T
o
ta

l

R
e
a
c
h
a
b
le

m
e
th

o
d
s

Azure-PW Azure/azure-powershell 416,833 60 2,618 23,617 0 997 1 18,747 18,759 23,663

ShareX ShareX/ShareX 110,038 11 827 10,177 2 0 1,122 6,257 7,377 10,411

ILSpy icsharpcode/ILSpy 300,426 14 2,606 25,098 1 0 119 14,343 14,498 21,944

Table 6.2: Summary of information about real-world projects from GitHub. The

number of reachable methods include also library methods invoked by the appli-

cation methods. Note that some application methods might not be reachable.

Modified documents Modified methods

Benchmark Average Minimum Maximum Average Minimum Maximum

Azure-PW 9.49 0 141 37.83 0 876

ShareX 1.74 0 9 6.17 0 158

ILSpy 9.34 0 224 82.26 0 4361

Table 6.3: Information about 100 consecutive commits for each real-world project.

[RQ1]: Scales with input size. To answer RQ1, we measured the memory

consumption of each VM and computed the average and maximum memory con-

sumption across all VMs. Figure 6.1 shows the average memory consumption for

each benchmark during the run, for each experimental configuration (i.e., number

of worker VMs used). To give an aggregate perspective of the effect that adding

more VMs to the mix has on memory pressure, an additional figure in the Ap-

pendix also shows the memory consumption averaged across all benchmarks shown

for every cloud configuration. As can be observed from the chart, the memory con-

sumption decreases steadily as the number of worker VMs increases. Recall that

worker VMs come equipped with 7 GB of memory, so these memory consumption

numbers are nowhere near that limit. Looking at Figure 6.1, we can see peaks of

about 3.2 GB for a single worker VM while analyzing X1,000,0005.

5Note also that for that benchmark, we needed to use at least 16 worker VMs to fit all the

methods into (their shared) memory. We needed at least 4 worker VMs for X100,000.

https://github.com/
https://github.com/Azure/azure-powershell
https://github.com/ShareX/ShareX
https://github.com/icsharpcode/ILSpy

82 CHAPTER 6. EVALUATION

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 2 4 8 16 32 64 1 2 4 8 16 32 64 4 8 16 32 64 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

X1000 X10000 X100000 X1000000 Azure-PW ILSpy ShareX

Figure 6.1: Average memory consumption in MB, for each benchmark as a function

of the number of worker VMs. We see a steady decrease across the board.

These experiments naturally highlight the notion of analysis elasticity. While

we run the analysis with different number of VMs set for the sake of measurement,

in reality, more machines would be added (or removed) due to memory pressure

(or lack thereof) or to respond to how full analysis processing queues get. We can

similarly choose to increase (or decrease) the number of queues and dispatchers

involved in effect propagation. It is the job of the Orleans runtime to redistribute

the grains to update the system with the new configuration.

RQ1: Is capable of handling input size?

The memory consumption per worker VMs steadily decreases as the num-

ber of worker VMs increases.

[RQ2]: Scales with the number of worker VMs. To answer RQ2, we pro-

ceeded to measure the total elapsed analysis time for each benchmark on all the

configurations. Figure 6.2 shows the elapsed analysis time normalized by the num-

6.3. RESULTS 83

 -

 10

 20

 30

 40

 50

 60

X1000 X10000 X100000 X1000000 Azure-PW ILSpy ShareX

1 2 4 8 16 32 64

Figure 6.2: Elapsed analysis time in ms, as a function of the number of worker

VMs per test, normalized by the number of reachable methods. The number of

worker VMs is indicated in color in the legend above the figure.

ber of methods in the input6. A figure in the Appendix shows the overall analysis

and compilation times; the latter can be quite substantial (i.e., about 3 minutes

to compile the larger benchmarks such as X100,000 and Azure-PW).

Note that the real-world benchmarks shown on the right-hand side of the chart,

despite containing fewer methods, require more time than the synthetic bench-

marks with 100,000 methods. This is simply because of the analysis time that

goes into analyzing more complex method bodies. Real-world benchmarks allo-

cate more objects per method, involving more type propagation time, and perform

more virtual invocations, adding to the method resolution time, while the synthetic

benchmarks only perform static invocations and allocate relatively few objects. As

the number of worker VMs increases, we see a consistent drop in the normalized

analysis times. However, this effect generally diminishes after 16 VMs. This has

to do with the tension between more parallel processing power of more machines

and the increase in the network overhead, as shown below.

6Wall clock times range between less than 1 minute (64 VMs) to about 5 minutes (1 VM) in

ShareX and 9 to 20 minutes in ILSpy. For other benchmarks elapsed time is typically less than

5 minutes for 16 VMs, except X1,000,000 that takes about 1 hour (40 minutes in 64 VMs).

84 CHAPTER 6. EVALUATION

Degradation due to
increased network overhead

Improvement due to
increase parallelism

Balance between parallelism
and network overhead

number of machines

an
al

ys
is

 t
im

e

It is instructive to focus on the average number of (unprocessed) messages in

the analysis queues. If the queues are too full, adding more machines will increase

the number of queues, reducing the size of each one. More machines will increase

the parallelism because of more dispatchers to process the messages in the new

queues. As we add more resources, however, when the queues become mostly

empty, their associated dispatchers will be mostly idle. So the cluster as a whole

will have more computing resources than needed. Additionally, if more machines

are added, the probability of sending a message to a grain on the same machine as

the sender will be reduced, leading to more network overhead. So after reaching a

certain cut-off point, adding more machines is not only not helping the analysis,

but starts to degrade its performance.

RQ2: Does adding more worker VMs increase analysis time?

Normalized analysis time generally decreases, as the number of worker

VMs increases, up to a point, where the law of diminishing returns kicks

in.

[RQ3]: Fast enough for interactive queries. One of the goals of our ap-

proach is to enable interactive queries submitted by an analysis client such as

6.3. RESULTS 85

Figure 6.3: Mean and median query time in ms for each worker VM and synthetic

test.

an IDE or a sophisticated code editor. In such a setting, responsiveness of such

queries is paramount [89]. The user is unlikely to be happy with an IDE that takes

several seconds to populate a list of auto-complete suggestions. We want to make

sure that as the query times remain tolerable (under 20 ms) even as the size of

input increases and the number of VMs goes up.

To evaluate query performance, we automatically generated sequences of 100

random queries, by repeating the following process. We would first pick a random

method name from the list of all methods. Then we would:

1. Request the solution grain for the corresponding method grain.

2. Select a random invocation from method grain and request the set of poten-

tial callees.

In Figure 6.3 we show the mean and median query times (the latency of the

two steps above) for each benchmark and worker VM configuration. Approxi-

86 CHAPTER 6. EVALUATION

mately 70% of queries took under 20 ms, 97% under 35 ms, 99.5% under 60 ms.

Proper system warm-up may reduce the outliers.

RQ3: Is response latency small enough?

The query median response time is consistently between 10 and 20 ms. In-

creasing the number of worker VMs and the input size does not negatively

affect the query response times.

[RQ4]: Efficient incremental analysis. To answer RQ4, we measured the

total elapsed analysis time for both exhaustive and incremental analysis versions

on 100 consecutive commits taken from the GitHub repository of each real-world

benchmark. In this case we decided to run the experiments on a single machine

configuration to isolate the evaluation from other unrelated factors and completely

focus in the comparison of both versions of the call graph analysis. In Figure 6.4 we

show in a single chart per benchmark, the elapsed times of running the incremental

and the full version of the analysis for each commit. Note that the elapsed times

shown in the charts do not include the compilation times.

The results show significant time savings for the incremental analysis over the

exhaustive version. This can be observed for each commit of each benchmark.

The speedup averaged across all real-world benchmarks is about 250X. In the case

of ShareX is about 147X, for ILSpy about 543X and for Azure-PW about 61X.

However, depending on the amount of methods modified by a particular commit,

the incremental analysis propagates more or less information, thus affecting the

overall analysis time. This explains the incremental analysis elapsed time outliers

present for a few particular commits in all the benchmarks, specially ShareX.

For instance, while the average amount of methods modified by ShareX analyzed

commits is only 6, there are a few exceptional cases that modify 44 or even 158

methods in the same commit, leading to increased incremental analysis times. But

even in those exceptional cases, the time savings are still remarkable.

6.3. RESULTS 87

0

10000

20000

30000

40000

38
41

ea
cd

a9
cb

5a
23

18
45

01
08

26
a3

2d
2d

0d
6a

f0
b3

b4
36

2c
09

7f
c5

c5
15

c2
73

63
89

b0
1e

7a
a0

de
66

d1
e9

6b
c7

e0
c4

3c
8f

5a
1f

7b
30

66
67

23
fe

22
71

d9
80

60
f1

52
2b

52
a8

81
5c

c3
ee

1c
84

e7
30

ee
e3

46
35

77
de

43
5a

b3
64

0f
6f

ec
03

40
76

08
d9

1a
25

46
e8

6d
91

46
8b

cc
bc

00
9e

e9
d2

6d
d0

7c
b8

48
68

1a
f9

1a
98

88
e0

a5
1c

de
fb

ca
dd

9c
7f

29
67

ef
26

6e
f2

21
a6

a1
9e

6a
fe

Full Analysis Incremental Analysis

(a) ShareX.

0

100000

200000

300000

ea
98
d8
bd

cd
8c
4e
03

92
e8
de
af

2d
26
c7
76

fc
45
d4
76

e9
21
23
9b

ae
7d
d7
c4

de
6c
39
c0

51
e4
57
7c

24
df
d8
8b

2a
6d
35
9e

90
7a
a6
2c

6a
89
08
aa

43
a2
c9
d0

42
1a
d6
17

5b
1a
54
0d

67
74
b3
c3

e9
74
00
22

ab
4b
94
92

9d
ec
6c
80

d5
36
61
40

a6
fc
52
a6

c0
e0
76
79

15
b7
76
fa

20
c4
50
c0

4e
b5
e8
26

63
66
68
13

fe
1b
9d
ce

94
d1
d7
6e

50
7f
84
55

85
ba
b7
9e

4f
a2
2d
6c

0d
31
8e
ef

28
4d
df
ad

(b) ILSpy.

0

10000

20000

30000

4a
78
8a
c8
3

15
70
95
e6
2

cb
d9
c6
de
0

bf
e9
8f
08
d

16
41
ac
1e
6

77
ee
67
43
6

57
e1
fd
c8
8

21
1b
a0
d8
2

28
4c
48
88
1

21
09
3c
aa
9

5d
c7
9a
cb
1

4f
5f
9a
5b
6

11
ea
78
7d
6

f9
1e
06
c4
5

f2
67
4a
66
4

c2
00
84
3f
0

10
8b
44
94
e

62
64
7d
c7
2

1e
67
49
49
7

1c
7b
94
10
e

1f
87
0b
f0
d

38
f0
e6
64
d

69
04
4e
aa
b

8d
44
f8
10
c

5c
74
dc
57
c

d7
ee
92
3f
8

08
73
53
4a
4

7e
29
78
0d
2

83
14
0b
d9
e

25
f5
fe
31
4

fe
b5
36
9a
2

9e
7b
ce
83
e

65
86
a2
bc
f

44
85
b9
b4
2

(c) Azure-PW.

Figure 6.4: Exhaustive and incremental analysis time in ms for 100 consecutive

commits of the real-world benchmarks.

88 CHAPTER 6. EVALUATION

RQ4: Is the incremental analysis faster than the full version?

The incremental algorithm shows significant time savings of about 250X

average speedup in comparison to the exhaustive analysis.

Resumen

Evaluación

Nos interesa responder las siguientes preguntas de investigación.

RQ1: ¿Nuestro análisis es capaz de manejar cantidades arbitrarias de entrada

(es decir, más ĺıneas de código, archivos, proyectos, etc.) al aumentar el

número de máquinas virtuales de trabajo, sin quedarse sin memoria?

RQ2: Si bien la sobrecarga de comunicación puede llegar a ser significati-

va, a medida que se agregan más máquinas virtuales de trabajo, ¿un

aumento en el número de máquinas virtuales de trabajo aumenta sig-

nificativamente los tiempos generales de análisis?

RQ3: ¿Es la latencia de las consultas del análisis lo suficientemente pequeña

como para permitir el uso interactivo 7?

RQ4: ¿Nuestro análisis incremental muestra ahorros de tiempo significativos

en comparación con la versión exhaustiva del análisis?

El enfoque de nuestro análisis está en ser utilizado en un entorno interacti-

vo. Dados los bajos tiempos de latencia, podemos usar nuestro análisis de ma-

nera interactiva como reemplazo de los navegadores de código fuente8. Este tipo

7En general, las latencias de consulta de 10 a 20 ms se consideran aceptables.
8Tales como http://source.roslyn.io.

89

http://source.roslyn.io

90 RESUMEN. EVALUACIÓN

de navegadores proporciona búsqueda de código y facilidades básicas de nave-

gación, pero carecen de funciones más avanzadas como la inspección/navegación

de métodos llamados/métodos llamadores reales que podemos proporcionar con

nuestro análisis. Al mismo tiempo, no estamos tan preocupados por el tiempo de

finalización del análisis en su conjunto, como śı lo estamos por los requisitos de

memoria en máquinas virtuales. Incluso si el proceso toma más tiempo, nuestro

objetivo es diseñar un sistema que esté siempre activo y que responda a los men-

sajes enviados a la nube para atender las solicitudes de los usuarios, en el contexto

de la búsqueda de código y otras tareas listadas en la Sección 2.2. Este trabajo se

realizó en colaboración con el equipo del compilador Roslyn y aunque no hemos

realizado estudios de usuario, creemos que los números de latencia (la mayoŕıa de

las consultas son atendidas antes de 20 ms) son más que aceptables para el uso

interactivo.

Chapter 7

Related Work

There exists a wealth of related work on traditional static analysis algorithms

such as call graph construction [60, 104, 59]. A comparison of analysis precision is

presented in Lhoták et al. [75]. As mentioned, our implementation is inspired in

VTA [103]. While we have seen dedicated attempts to scale up important analyses

such as points-to in the literature, we are unaware of projects that aim to bring

call graph analysis to the cloud.

Many projects focus on speeding up the analysis through parallel computation

(usually on one machine). Instead, we largely focus on handling memory pressure

when analyzing large programs. There are two orthogonal ways to do that:

• Develop a compositional analysis using specs/summaries [42, 108], abstrac-

tions, compact representations [111], demand-driven [101] and other tech-

niques to scale-up.

• Partition analysis memory among several machines. Our analysis focuses on

the latter by presenting an approach designed to run on a standard cluster.

The engineering challenges are quite different, including state partitioning,

decentralized control, number/size of messages sent, termination and net-

work latency.

Concrete types. Most of the work in concrete type inference for object-oriented

programs goes back to the early 1990s [92, 25, 24, 45, 90]. Many of these techniques

91

92 CHAPTER 7. RELATED WORK

are now considered standard. Concrete type inference scales better and generally

does not require the same complexity as a content-sensitive points-to analysis [74].

Call graph construction. Call graph construction for object-oriented code was

explored in the 1990s, with standard algorithms such CHA and VTA proposed

at that time [60, 104, 59]. A comparison of analysis precision is presented in

Lhoták et al. [75]. Some of the recent work focuses on call graph construction in

the presence of frameworks and libraries [80, 30]. We largely skirt that issue in

this work, focusing on input being provided to us in the form of source code.

Scaling points-to analysis. Hardekopf et al. [63] show how to scale up a points-

to analysis using a staged approach. Their flow-sensitive algorithm is based on a

sparse representation of program code created by a staged, flow-insensitive pointer

analysis. They can analyze 1.9M LOC programs in under 14 minutes. The focus

(as alleged by the authors) is in obtaining speedups, not in reducing memory

pressure. In fact, their largest benchmark required a machine with 100 GB of

memory, which is generally beyond the reach of most people. In contrast, we aim

at analyzing large programs in clusters of low-cost hardware.

Hardekopf et al. [62] introduce novel techniques for inclusion-based pointer

analysis that significantly improve scalability without negatively impacting preci-

sion. These techniques focus on the problem of online cycle detection, a critical

optimization for scaling such analyses. The combination of their techniques is on

average 3.2× faster than Heintze and Tardieu’s algorithm [64], 6.4× faster than

Pearce et al.’s algorithm [91] and 20.6× faster than Berndl [37].

Yu et al. [115] propose a method for analyzing pointers in a program level

by level in terms of their points-to levels. This strategy enhances the scalability

of a context- and flow-sensitive pointer analysis and can handle some programs

with over a million lines of C code in minutes. The approach is neither parallel

non-distributed, the focus is on speedups but some memory is saved by the use of

BDDs.

Mendez-Lojo et al. [83] propose a parallel analysis algorithm for inclusion-

based points-to and show a speedup of up to 3× on an 8-core machine on code

93

bases with size varying from 53K LOC to 0.5M LOC. Our focus is on bringing

our approach to the cloud using legacy machines and going beyond multi-core, to

ultimately support code bases of arbitrary size, not being limited by the size of

main memory.

Voung et al. [108] propose a technique that uses the notion of a relative lockset,

which allows functions to be summarized independent of the calling context. This,

in turn, allows them to perform a modular, bottom-up analysis that is easy to

parallelize. They have analyzed 4.5 million lines of C code in 5 hours, and, after

applying some filters, found several dozen races. Knowing which methods to group

together ahead of time would help our actor-machine allocation as well.

Sridharan [101] presents an interesting approach for providing query-specific

results under time/memory pressure. This idea is orthogonal to our approach and

could be interesting to see if the approach can be distributed.

Frameworks. Albarghouthi et al. [28] present a generic framework to distribute

top-down algorithms using a map-reduce strategy. Their focus is in obtaining

speed ups in analysis elapsed times; they admit that a limiting scaling factor is

memory consumption and propose distributing their algorithm as future work.

McPeak et al. [82] propose a multi-core analysis that allows them to handle

millions LOC in several hours on an 8-core machine. In contrast, our approach

focuses on a distributed analysis within a cloud cluster on often less powerful

hardware.

Xie et al. [114] propose a bottom-up analysis that benefits from parallel pro-

cessing on a multi-core cluster. They rely on a central scheduler/server, while we

use several orchestrators. They use method summaries while we flow the data

from one method to another. Finally, we do not rely on a centralized DB, we use

grains, which can be persisted or recomputed on-the-fly as needed.

Rodriguez et al. [94] use an actor model approach in Scala to solve inter-

procedural distributive subset data-flow problems and evaluate it on an 8-core

machine. Our work shares the idea of using actors for analysis but they focused

on speed-ups, not memory pressure. Their approach leverages on the use of one

94 CHAPTER 7. RELATED WORK

computer to implement a global counter to monitor the size of a (virtual) global

worklist. In contrast, we run in a cloud setting and must deal with network latency

and serialization due to distribution.

Boa [52, 54, 53] is a domain-specific language for mining large code repositories

like GitHub to answer questions such as “how many Java projects use SVN?”

or “how many projects use a specific Java language feature over the years?”. It

runs these queries on a map-reduce cluster. However, while it uses a distributed

backend, Boa is not a static analysis.

Pregel [81] is a system for large-scale graph processing that uses an asyn-

chronous message passing model similar to actors, but execution on vertices hap-

pens in lockstep; the approach is illustrated for algorithms such as PageRank and

shortest path computation.

Graspan [109] is a single-machine, disk-based parallel graph processing system

for inter-procedural static analyses. It offers two major performance and scalability

benefits: the core computation of the analysis is automatically parallelized and

out-of-core disk support is exploited if the graph is too big to fit in memory. Our

approach focuses on a cloud-based computation, in contrast.

Tricorder [97] is a cloud-based tool from Google, designed for scaling program

analysis. However, it is meant for simple, intra-procedural analyses, not distributed

whole-program analyses.

Incremental analysis. Souter et al. [100] presents an incremental call graph

analysis for object-oriented languages like Java. Their approach is based in the

Cartesian Product Algorithm (CPA) instead of the Variable Type Analysis (VTA)

in which we based our algorithm. For this reason, they avoid propagating types

by using a template call graph, that has the property that at a given node, ev-

ery incoming edge carries exactly the same type information. When needed, a

traditional call graph can be obtained from the template call graph. A template

can be viewed as an instance of a method, with exact dynamic type information

for each formal parameter, and representing a particular combination of actual

parameter types. In other words, a template is an exact dynamic type signature

95

of a method. This means that their algorithm creates as many method templates

as combinations of actual parameter types are discovered by the analysis. Addi-

tionally, in a similar manner to our approach they also distinguish between direct

and indirect edits that can affect the call graph of a program. However, they focus

in fine-grain edits at the statement level that typically occur during development

within an IDE, such as the insertion and deletion of a call site inside a method

body. Instead, we opted methods to be the minimal modification unit, leading

to a more coarse-grained analysis suitable for handling several edits at once, like

typically happens in source control revisions. Finally, their analysis is not built on

top of a distributed approach like ours.

Hirzel et al. [65] present an online pointer analysis for Java-like programming

languages based on Andersen’s pointer algorithm. They distinguish between of-

fline, online, incremental and demand-driven analyses. Traditional static analyses

like Andersen’s pointer algorithm are good offline analysis examples. An online

analysis incrementally analyzes new code when it is dynamically loaded into the

running program. An incremental analysis updates its results efficiently when the

program changes. A demand-driven analysis attempts to compute just the part of

the solution that the client is interested in, rather than the exhaustive solution.

Their approach focuses in performing pointer analysis online during program ex-

ecution and differs from our approach in that it uses incrementality to deal with

dynamically loaded code, while ours focuses on modifications to the source code

during development. Additionally, we concentrate on different problems (pointer

analysis and call graph construction).

Liu et al. [76] present a parallel incremental algorithm for computing points-to

information upon statement insertion, deletion and modification. Their analy-

sis implementation is parallel within each iteration of the fixed-point computa-

tion. However, it is not a distributed analysis. Contrary to many other existing

Andersen-style incremental pointer analyses for Java-like programming languages,

their approach does not assume a pre-built call graph. For the empirical eval-

uation, incremental updates were artificially simulated by removing and adding

statements in each method of the target program. Instead, to demonstrate our

96 CHAPTER 7. RELATED WORK

approach we used several consecutive real commits directly taken from the orig-

inal Git repository of each benchmark. Additionally, our incremental analysis is

designed with the slightly different goal of providing a static analysis backend

to be run by centralized code repositories such as GitHub. For this reason, our

approach recomputes information upon method modifications, in contrast to indi-

vidual statements.

Resumen

Trabajo Relacionado

Existe una gran cantidad de trabajos relacionados con los algoritmos de análi-

sis estáticos tradicionales, como la construcción de call graphs [60, 104, 59]. En

Lhoták et al. [75] se presenta una comparación de la precisión de los análisis.

Como se mencionó, nuestra implementación está inspirada en VTA [103]. Si bien

hemos visto en la literatura intentos dedicados a scalar análisis importantes, como

points-to, no tenemos conocimiento de proyectos que tengan como objetivo llevar

el análisis de call graphs a la nube.

Muchos proyectos se centran en acelerar el análisis a través de cómputo paralelo

(generalmente en una sola máquina). En cambio, nos centramos principalmente en

manejar la presión de memoria al analizar programas grandes. Hay dos formas

ortogonales de hacer eso:

• Dessarrollar análisis composicionales utilizando especificaciones/resúmenes [42,

108], abstracciones, representaciones compactas [111], dirigido por demanda

y otras técnicas para escalar.

• Particionar la memoria del análisis entre varias máquinas. Nuestro análisis

se centra en este último presentando un enfoque diseñado para ejecutarse en

un cluster estándar. Los desaf́ıos de ingenieŕıa son bastante diferentes, inclu-

yendo la partición de estados, el control descentralizado, el número/tamaño

de los mensajes enviados, la terminación y la latencia de la red.

97

Part III

Static Analysis Framework

99

Chapter 8

Overview

Analysis.NET1 is an open-source static program analysis framework targeting

the .NET platform [23]. It allows the analysis and transformation of CIL byte-

code directly from any .NET available programming language and is completely

written in C#. It comprises a large set of APIs and a few additional GUI tools

that are useful to explore its capabilities without having to write a single line of

code. Among other things, the framework includes many classical and well-known

static analyses built on top of different kinds of intermediate languages that pro-

vide different levels of abstraction. It is designed to be easily extended to support

many other user-defined custom analyses and code transformations. The key fea-

tures of Analysis.NET include a simplified and typed register-based intermediate

representation of CIL bytecode, a .NET type system and class hierarchy analy-

sis, a flow-sensitive pointer analysis and call graph construction algorithms and

several intra-procedural analyses based on control-flow and data-flow computed

information.

Our work is closely inspired by the Java optimization framework Soot [105, 70],

but we focus in the .NET platform instead. However, our framework is designed in

a more general way to also allow the possibility of porting other similar platforms

in the future2. Our goal is to enable the static analysis of .NET programs by

providing to the .NET community a framework somewhat similar to Soot.

1Source code available at: https://github.com/edgardozoppi/analysis-net.
2We are currently working in a proof-of-concept port that also supports Java.

101

https://github.com/edgardozoppi/analysis-net

102 CHAPTER 8. OVERVIEW

8.1 Motivation

The creation of this framework was motivated by the poor offer of related tools,

and the difficulty of analyzing .NET programs with the few existing available ones,

such as Roslyn [84], CCI [15], Cecil [8] and ILSpy [16]. These tools have many

flaws regarding the static analysis point of view. Some of them are deprecated, not

up to date with the latest language features and currently unsupported. Others

focus in a somewhat related but different task, such as compiling source code or

decompiling bytecode. Non of them were designed with the goal of allowing client

applications to implement their own custom static analyses. As consequence, all

of them work either at the abstract syntax-tree level or at the bytecode level. Non

of them provide an intermediate code representation suitable for implementing a

static analysis [67, 27].

On the one hand, using a tree-based representation which is close to the original

source code forces static analysis developers to consider and handle high-level lan-

guage constructs with complex semantics (including syntactic sugar). Moreover,

the nested nature of trees allows many possible combinations of those features,

adding an unnecessary extra degree of complexity.

On the other hand, directly analyzing .NET CIL bytecode is a complex task.

Although it is possible to construct a control-flow graph for CIL bytecode, the

implicit stack masks the flow of data and thus makes the bytecode quite difficult

to analyze. In particular, at a given bytecode instruction x, it is not at all obvious

which previous instructions produced the stack-based inputs of x. Storing data in

named local variables, rather than on the implicit stack, makes the local flow of

data explicit and consequently, much more obvious.

For these reasons, we decided to develop a static analysis and code transfor-

mation framework for programs targeting the .NET platform. It is completely

written in C# and its source code is publicly available under a very permissive

open-source license. One of the main features provided by our framework is the

implementation of a three-address code intermediate representation that greatly

simplifies the task of developing a static program analysis [67, 27].

8.2. CODE REPRESENTATIONS 103

8.2 Code Representations

There are different ways to represent code. Each one designed for different

purposes. Some of them are easier to understand by developers because they are

written in a human-readable form, while others are specifically meant to be easily

processed by a computer automatically. According to the criteria of how easy is

for a developer to understand a particular representation, they can be classified in

three categories: high, intermediate and low-level code representations. From the

static analysis point of view, some are more suitable than others [67, 27]. Next we

list the most commonly used code representations, with a more detailed pros and

cons discussion from the static analysis perspective for the intermediate ones.

8.2.1 High-level Representations

Source code. Is the representation of software as it is originally written by a de-

veloper using a human-readable programming language, usually in plain text [27].

It can be directly interpreted, and thus immediately executed, by an interpreter or

virtual machine, or translated by a compiler into one of the following lower-level

code representations to be further processed and possibly optimized.

Concrete syntax tree. Also known as parse tree [27], is a tree representation of

the syntactic structure of source code written in a specific programming language.

Each node of the tree denotes a construct occurring in the source code. They

are typically built by a parser during the source code translation and compiling

process. They are considered high-level representations because they are still very

coupled to the specific syntax of a particular programming language. For instance,

they include all the syntactic symbols, delimiters and even white-spaces present

in the original source code, so it can be completely reconstructed without any

loss by just traversing the tree. Good examples of this code representation are

the CSharpSyntaxTree and VisualBasicSyntaxTree data structures used by the

Roslyn [84] C# and Visual Basic compiler.

104 CHAPTER 8. OVERVIEW

8.2.2 Intermediate Representations (IR)

Abstract syntax tree. Often abbreviated to AST [27], is very similar to the

concrete syntax tree but with one important difference: it is abstract, in the sense

that it does not represent every detail appearing in the real syntax, but rather

just the structural, content-relevant details. For instance, grouping parentheses

are implicit in the tree structure and a syntactic construct like an if-then-else

statement may be denoted by means of a single node with just three children

(condition expression, then block and else block), ignoring syntactic delimiters

like curly braces, semicolons, etc. Sometimes, repeating nodes (e.g., different nodes

denoting the same symbol) are reused to save memory, leading to a directed acyclic

graph (DAG) instead of a tree.

From the program analysis point of view, this kind of IR has several aspects

that makes it inadequate for this purpose. Since its structure follows very closely

the original source code, they usually have several nodes with complex high-level

semantics, that can be arbitrarily nested because of the tree nature of this IR. The

result is a very complex combination of different kinds of nodes that the devel-

oper of a static analysis algorithm will have to consider. Moreover, ASTs usually

represent language constructs of very similar semantics with different nodes (e.g.,

specific nodes for each kind of loop, like while and for loops, that are essentially

the same), adding an unnecessary extra degree of complexity. Finally, control-flow

is represented implicitly using the semantics associated to each particular kind

of node, without explicit jumps to explicitly defined targets. A good example of

this IR is the IOperation data structure used by the Roslyn [84] C# and Visual

Basic compiler to represent the statements and expressions of both programming

languages with the same data type.

Advantages Disadvantages

• Close to original source code. • Nodes with complex, high-level semantics.

• Many different nodes with similar semantics.

• Arbitrarily nested tree structure.

• Implicit control-flow.

8.2. CODE REPRESENTATIONS 105

Three-address code. Often abbreviated to TAC [27], is a register-based se-

quential representation of a program. Its name derives from the fact that each

instruction has at most three operands (or addresses) and is typically a combi-

nation of an assignment and a binary operator, like in a = b + c. It is usually

automatically generated from a higher-level code representation like AST by opti-

mizing compilers to aid in the implementation of code-improving transformations.

However, it can also be automatically constructed from lower-level code repre-

sentations like bytecode, making this IR suitable for scenarios where the original

source code is not completely available. Complex higher-level constructs are de-

composed into a sequence of simpler lower-level instructions during the translation

process. Every intermediate expression result is assigned to a temporal variable.

Control-flow is explicitly represented using jumps to target labels, and is the only

way to alter the sequential flow.

Static single assignment form. Often abbreviated to SSA [95, 49], is a more

restricted variant of TAC that is very popular because of its additional bene-

fits that greatly simplify many static analyses. It requires that each variable is

assigned exactly once, and every variable is defined before it is used. Existing

variables in the original TAC are split into versions (i.e., new variables typically

indicated by the original name with a subscript), so that every definition gets its

own version. In SSA form, use-def chains are explicit and each one contains a sin-

gle element. An special instruction called Φ (Phi) instruction is added whenever

multiple versions of a variable reach the same use. This instruction generates a

new variable definition by choosing the corresponding reaching version, depending

on the control-flow taken. The main benefit provided by this IR is that variables

become immutable: once a value is assigned to a variable, it cannot be changed

(remember only one definition for each variable is allowed in this form).

Example 7. Consider the code fragment shown in Figure 8.1a. Depending on

a condition the variable x is assigned different values and returned. Is easy to see

that both definitions of x at lines 2 and 4 reach the use at line 7.

106 CHAPTER 8. OVERVIEW

1 if (x > 10) {

2 x = y;

3 } else {

4 x = z;

5 }

6

7 return x;

(a) Original source code.

if x0 > 10 goto ...

x1 = y0 x2 = z0

x3 = Φ(x1, x2)

return x3

(b) Static single assignment form.

Figure 8.1: Original source code and corresponding static single assignment form

for Example 7.

Since SSA form requires each variable to be defined only once, different versions

of variable x are created for those assignments, x1 and x2 respectively. This has

the consequence of not having a unique version of x to use in the return at line 7.

To solve this problem a Φ instruction x3 = Φ(x1, x2) is inserted before that line,

defining a new version x3 that can be safely returned. Intuitively, the idea behind

the semantics of a Φ instruction is to automatically select the correct version

depending on the control-flow taken. In this case, if the execution follows the left

branch, x1 will be assigned to x3, but if the execution follows the right branch, x2

will be assigned instead. Figure 8.1b shows the resulting code in SSA form.

From a static analysis perspective, TAC provides a lot of benefits making it the

most adequate for this purpose [67, 27]. It usually has a few number different kinds

of instructions, each one with simple and very specific low-level semantics. Since

it has a simpler sequential structure in comparison to tree based IRs like AST,

there is no complex nested combination of different kinds of instructions. Since it

is a register-based IR there is no evaluation stack. Operands are always explicit

and can only be variables, with the exception of the load and store instructions

that are the only ones that allow other kind of values like literals, field references

and indexed arrays. This restriction on operands makes def-use and use-def chains

computation straight forward. Control-flow analysis is also quite simple due to the

8.2. CODE REPRESENTATIONS 107

sequential flow and the presence of explicit branching instructions. The additional

restrictions imposed by the SSA form simplify several static analyses even further

since there is no need to keep track of variables’ values for each program location

thanks to the immutability guarantee provided by this form.

Advantages Disadvantages

• Instructions with simple, low-level semantics • Far from original source code.

• Few instructions with different semantics.

• Sequential structure.

• Explicit control-flow.

• Explicit data-flow.

• Register-based.

• Close to generated bytecode.

Bytecode. Is a compact machine-independent cross-platform assembly language,

used as target of the compilation of high-level programming languages [27]. Its

name derives from instruction sets that have one-byte opcodes followed by optional

parameters, akin to traditional hardware instructions. It may often be either di-

rectly executed on a virtual machine, or it may be further compiled into machine

code for better performance. Bytecode is typically stack-based, but it can also be

register-based or a mix of both. In the case of CIL, it is entirely stack-based. Even

though bytecode instructions are usually typed, the evaluation stack is not, so the

same slot can store values of different types during the execution of a method.

From the program analysis point of view, bytecode presents similar character-

istics to TAC but with some distinct aspects that makes it also inadequate for this

purpose. Since it is designed to be a compact code representation, inspired in tra-

ditional hardware instruction sets, each instruction has a very specific and simple

low-level semantics. Like most assembly languages, bytecode also has a sequential

control-flow with explicit branching instructions to labeled targets. This makes

static analyzers easy to follow the program’s control-flow. However, the usage of

an evaluation stack makes following the program’s data-flow very difficult, since

instructions’ operands are often implicit (i.e., indirectly pushed into the stack by

108 CHAPTER 8. OVERVIEW

some other instructions, not necessarily located near the one that consumes the

values). Even more, given that stack slots are not typed, in order to ensure type-

safety operations it is often the case that different variants of the same instruction

exists, each one supporting a different combination of operands’ data types.

Advantages Disadvantages

• Instructions with simple, low-level semantics. • Far from original source code.

• Sequential structure. • Many instructions for different types.

• Explicit control-flow. • Stack-based.

• No need of original source code. • Non-typed stack slots.

• Implicit data-flow.

Example 8. Consider the source code fragment shown in Figure 8.2a. It com-

putes a complex algebraic condition that performs nested operations on the results

of other complex expressions.

Abstract syntax tree. As we can see in Figure 8.2b, its corresponding AST

closely follows the syntactic structure of the original source code while ignoring

the unimportant specific syntax details (e.g., parentheses, curly braces and semi-

colons), preserving only the relevant parts of the code. However, its arbitrarily

nested tree structure allows to combine different kinds of nodes in many ways,

making very difficult for the developer of a static analysis algorithm to consider all

possible combinations. For instance, the operands of operators like + can be either

literal numbers, variables or even the result of method invocations (in a more com-

plex scenario they can also be field access paths and indexed arrays). The same

happens for method invocation arguments, or more generally, in any place were

an expression is expected. Another problem is the implicit control-flow given by

the if AST node. There are no explicit jumps to defined labels, so flow has to be

simulated by a static analysis algorithm depending on the kind of node currently

processed. In this particular case, the condition node > has to be analyzed first,

followed by the two other remaining child nodes. Analyzing tree nodes in the right

order is very important because they could produce side-effects.

8.2. CODE REPRESENTATIONS 109

1

2 if (sqrt(pow(x,2)+ pow(y,2)) >10)

3 {

4 return x;

5 }

6 else

7 {

8 return y;

9 }

10

11

12

13

(a) Original source code.

if

return

y

return

x

>

10sqrt

+

pow

2y

pow

2x

(b) Abstract syntax tree.

1 t0 = 2

2 t1 = pow(x,t0)

3 t2 = pow(y,t0)

4 t0 = t1 + t2

5 t0 = sqrt(t0)

6 t1 = 10

7 if t0 <= t1 goto L1

8 return x

9 L1: return y

10

11

12

13

14

(c) Three-address code.

1 ldc.r4 2

2 ldloc .0

3 call pow(float ,float)

4 ldc.r4 2

5 ldloc .1

6 call pow(float ,float)

7 add

8 call sqrt(float)

9 ldc.r4 10

10 ble.s L1

11 ldloc .0

12 ret

13 L1: ldloc .1

14 ret

(d) CIL bytecode.

Figure 8.2: Original source code and corresponding abstract syntax tree, three-

address code and CIL bytecode for Example 8.

110 CHAPTER 8. OVERVIEW

Three-address code. Figure 8.2c shows its corresponding TAC representation.

The complex nested algebraic expression is decomposed into a sequence of very

simple instructions (lines 1 to 5), each having at most three operands. Is impor-

tant to note that each intermediate expression result is assigned to a temporal

variable to be used as operand of other instructions. So both expression results

and operands are explicit. The control-flow is also explicitly represented with a

conditional jump at line 7.

Bytecode. Its corresponding bytecode is shown in Figure 8.2d. At first sight it

seems similar to the TAC version: a sequence of simple instructions with an explicit

jump to a target label at line 10. However, after looking in more detail is easy to

see some important differences. Local variables and parameters are referenced by

their corresponding indexes in the respective dedicated tables. There are different

kinds of load instructions, depending if we are loading onto the evaluation stack a

literal value (lines 1, 4 and 9), the content of a local variable (lines 2, 5, 11 and 13)

or a method parameter. Even more, there are different instruction versions for

loading literals of different data types (the modifier r4 of the ldc instruction at

lines 1, 4 and 9 is used to load 32-bits floating point numbers). The same happens

for other kinds of instructions. Since it is a compact stack-based IR, operations like

addition (line 7), conditional branching (line 10) and method calls (lines 3, 6 and 8)

implicitly take their operands and store their results from and onto the top of the

evaluation stack, respectively. So is not easy to realize which are the operands of

a particular instruction. For instance, consider the case of the add instruction at

line 7. In order to determine the values that are being added together is necessary

to first follow the stack behavior of all the instructions that will be executed at

run-time before the addition.

8.2.3 Low-level Representations

Assembly. Consist in a set of symbolic processor instructions and meta-statements,

such as assembler directives, macros and symbolic labels of both code and memory

locations. Assembly language uses mnemonics [27] to represent low-level machine

8.3. FRAMEWORK DESIGN PRINCIPLES 111

instructions or opcodes. Many operations require one or more operands in or-

der to form a complete instruction. It may also be called symbolic machine code

since there is a very strong correspondence between the assembly language instruc-

tions and the hardware architecture’s machine code instructions. Each assembly

language is specific to a particular computer architecture and operating system.

Assembly code is converted into executable machine code by an assembler utility

program that is similar to a very simple compiler. Nowadays, it is typically used

to implement programs with very demanding performance requirements that need

to be optimized for speed or size.

Machine code. Also known as binary code [27], is a strictly numerical code

format which is designed to be executed as fast as possible by a particular family

of processors, and may be regarded as the lowest-level representation of a com-

piled or assembled hardware-dependent computer program. While it is possible to

write programs directly in machine code, it is tedious and error prone to manage

individual bits and calculate numerical addresses and constants manually. For

this reason, programs are very rarely written directly in machine code in modern

contexts.

8.3 Framework Design Principles

Our framework implementation adheres to the following design principles.

• Bytecode-based approach. To allow the analysis of programs written in

any programming language available for the .NET platform, and at the same

time, automatically support new high-level language constructs and features

(typically, newly added syntactic sugar 3). An additional advantage of using

CIL bytecode as input is to enable the analysis of programs for which their

source code is partially or completely unavailable.

3For instance, a lot of new features were added to C# since its very first version, but CIL

bytecode almost always remained unchanged. The only exception was the compatibility break

introduced when adding support for generics in version 2.0.

112 CHAPTER 8. OVERVIEW

• General extensible design. To allow extensibility in many ways. Not

only the addition of new static analyses and transformations, but also the

possibility to support other similar languages like Java in the future. For

this reason, our goal is to decouple the framework as much as possible from

any .NET specific details, so the same infrastructure can be reused. A base

layer of abstraction is required as the building block of all framework fea-

tures. This means a general and language agnostic metadata model and code

representations.

• Simplicity over performance. Usability is very important for the frame-

work to be useful and widely adopted. Code optimizations are not performed

when they compromise code legibility, maintainability or extensibility. We

only consider to optimize code when it is absolutely necessary to make it

functional.

8.4 Features

The framework provides the following features, including a few different kinds

of intermediate representations, static analyses and transformations. All of them

ready to be used out-of-the-box or extended as needed.

8.4.1 Intermediate Representations

Simplified bytecode. A general and concise stack-based bytecode representa-

tion. Useful for performing low-level optimizations and transformations. Specially

designed to be independent of any programming language. While the original CIL

bytecode has about 230 instructions, our simplified bytecode only has about 20

different kinds of instructions to represent all of them. Among other things, the

key for achieving this simplification is grouping together all the different variants

of the same CIL instruction that only differ on the operands data types. For in-

stance, there is only one conversion instruction for both casts and coercions with

a flag to differentiate them if needed. The same happens for branch instructions,

loads, stores and many other kinds of opcodes.

8.4. FEATURES 113

Three-address code. A convenient typed and register-based representation for

performing static analyses and transformations. This is the main intermediate

representation provided with the framework and used by most of the analyses. It

only consist in about 30 different kinds of instructions. To simplify their usage,

operands are restricted to variables only, except for the load and store instruc-

tions that also allow constant values and more complex constructions like fields

and array element references.

Static single assignment form. It is basically an extension of the TAC with

an extra Φ instruction. We provide different variations of this form. Minimal

SSA inserts the minimal number of Φ instructions required to ensure that each

variable is assigned a value exactly once and that each use of a variable in the

original program can still refer to a unique variable definition. Pruned SSA inserts

Φ instructions only for variables that are live after the Φ instruction. We meant

live in the sense of live variables analysis, where the variable is used along some

path that begins at the Φ instruction in question.

Aggregated expressions. Sometimes is useful to also have more complex in-

structions, for instance to represent nested algebraic expressions with a single load

instruction. For those cases we provide aggregated expressions. They are a com-

bination of TAC instructions with AST expressions. All TAC instructions that

produce a value have a corresponding analogous expression that represents it.

8.4.2 Code Transformations

Disassembler. Converts simplified bytecode to TAC intermediate representa-

tion. Since we are converting from a stack-based IR to a register-based IR, this

process involves simulating the stack behavior of the bytecode instructions ex-

plicitly with temporal variables. Each temporal variable corresponds to a slot in

the stack and they are used as the operands of the generated TAC instructions.

Since stack slots are not typed, temporal variables does not have a defined type

at this point. Webs analysis and type inference are required for this purpose. Our

implementation follows the algorithm described in [106].

114 CHAPTER 8. OVERVIEW

1 load 2

2 load 3

3 add

4 store v

(a) Simplified bytecode.

1 $s0 = 2

2 $s1 = 3

3 $s0 = $s0 + $s1

4 v = $s0

(b) Three-address code.

Figure 8.3: Simplified bytecode and equivalent three-address code for Example 9.

Example 9. To illustrate this process consider the simplified bytecode fragment

shown in Figure 8.3a. The code adds two numbers and stores the result in variable

v. This is done by (i) pushing both arguments into the stack, (ii) performing the

addition of the first two values from the top of the stack while removing them, (iii)

pushing the result back into the stack and finally, (iv) popping it from the stack

to store it at variable v.

By using temporal variables to represent stack slots, this process can be sim-

ulated as follows. Pushing values into the stack becomes assigning them to the

temporal variables associated with their corresponding destination slots. Which

variable depends on the current height of the stack. Popping values from the stack

becomes reading their corresponding temporal variables. The resulting equivalent

TAC is shown in Figure 8.3b. We use the symbol $ to prefix the names of temporal

variables to avoid clashing with already defined variables.

SSA construction. Converts TAC intermediate representation to SSA minimal

form. Pruned SSA form is also possible but requires the information provided by

live variables analysis. This process has two phases: insertion of Φ instructions

and renaming of local variables. The first phase adds the minimal number of Φ

instructions needed to ensure that each variable is assigned only once. Dominance

frontier analysis computes exactly the locations where a Φ instruction should be

added. The second phase is in charge of renaming all definitions and usages of local

variables with their corresponding version of the variable. Our implementation

follows the algorithm described in [32].

8.4. FEATURES 115

1 $s0 = 5

2 num = $s0

3 $s0 = "hello world!"

4 str = $s0

(a) Typeless three-address code.

1 $r0 = 5

2 num = $r0

3 $r1 = "hello world!"

4 str = $r1

(b) Typable three-address code.

Figure 8.4: Original and equivalent renamed three-address code for Example 10.

Webs analysis. As mentioned before, disassembler generates typeless temporal

variables to explicitly represent stack slots. Since these slots are used to store

different types of values pushed by simplified bytecode instructions, their corre-

sponding temporal variables also store values of different types. So before typing

can take place, it is required to perform webs analysis [85] first. The idea is to

split each temporal variable into multiple fresh variables that can be successfully

typed without having a type conflict. The number of fresh variables created when

splitting the original temporal variable depends on how many reuses that variable

has. A reuse of a variable means using the same variable to store values of different

types. The intuitive notion of multiple uses of the same temporal variable is cap-

tured by the notion of webs [85]. A web is the minimal set of variable’s references

(both definitions and uses in the regular sense) that contains for every definition

all its uses, and for every use all its definitions. Def-use and use-def chains are

used to build webs for each temporal variable. The splitting is performed by as-

signing a fresh variable to each web and renaming all its references. The result

of this transformation is typable TAC ready to be processed by the type inference

analysis.

Example 10. To illustrate this process consider the typeless TAC fragment

shown in Figure 8.4a. The code makes use of the same temporal variable $s0

to store two values of different types (int and string). So trying to type variable

$s0 leads to a type conflict because of the reuse of the same variable. This problem

can be avoided by splitting and renaming the variable $s0 so that two different

fresh variables $r0 and $r1 are actually used in each case.

116 CHAPTER 8. OVERVIEW

By applying the webs analysis transformation, two webs are constructed. One

for each def-use chain of the $s0 variable. The resulting equivalent code after

applying this transformation is shown in Figure 8.4b. Now types can be easily

assigned to each variable without leading to type conflicts. In this case, $r0 can

be successfully typed as int and $r1 as string.

Copy propagation. Its a typical forward data-flow analysis and transformation

to reduce the number of local variables by removing unnecessary uses [27, 67]. It

consist in replacing the occurrences of targets of direct assignments with their

values. A direct assignment (also known as copy, deriving the name of this trans-

formation) is an instruction of the form x = y, which simply assigns the value of y

to x. The idea is to replace each direct use of x with y as long as its value does not

change. It often makes use of reaching definitions and use-def and def-use chains

when computing which occurrences of the target variable may be safely replaced. If

all upwards exposed uses of the target may be safely modified, the copy assignment

instruction may be eliminated. We have also implemented a backward version of

this transformation that does exactly the opposite, replaces the targets of the def-

initions of sources of direct assignments with their targets. Copy propagation is

a useful clean up optimization frequently used after other transformations have

already been run. It is specially useful to remove unnecessary temporal variables

introduced by the disassembler and webs analysis transformations.

Example 11. To illustrate this optimization consider the code fragment shown

in Figure 8.5a. It shows a typical code resulting from running the disassembler

transformation to convert simplified bytecode into tree-address code. Variables

prefixed with $s are temporal local variables introduced during the conversion.

By applying the forward copy propagation transformation, the code is simpli-

fied by removing the first two copy instructions and replacing the corresponding

variables as shown in Figure 8.5b. The backward version of this transformation

has to be used to remove the last copy instruction. The resulting equivalent code

after applying this transformation is shown in Figure 8.5c. Is easy to see that the

code is drastically simplified by removing all unnecessary temporal variables.

8.4. FEATURES 117

1 $s0 = x

2 $s1 = y

3 $s0 = $s0 + $s1

4 num = $s0

(a) Original three-address code.

1 $s0 = x + y

2 num = $s0

3

4

(b) After forward copy

propagation.

1 num = x + y

2

3

4

(c) After backward copy

propagation.

Figure 8.5: Original and equivalent optimized code fragments for Example 11.

Inlining. This transformation replaces a method call site with the body of the

called method [27]. Inline expansion itself is an optimization, since it eliminates

method calls overhead, but it is much more important as an enabling transforma-

tion. That is, once a method body is expanded in the context of its call site, a

variety of transformations that were not possible before may become available. Op-

timizations that cross method boundaries can be done without requiring a more

complex inter-procedural analysis. For instance, in the case of inlining generic

methods, knowing the specific type argument of a generic type parameter enables

many optimization possibilities. However, complete inline expansion is not always

possible, due to recursion: recursively expanding method calls may not terminate.

Additionally, it is not always possible to determine statically the correct method

implementation that a call site will resolve at run-time. Moreover, exactly the

same call site may resolve to different implementations depending on some data.

To overcome this problem, our implementation requires the user to specify which

particular method implementation should be inlined.

8.4.3 Intra-procedural Analyses

Control-flow analysis. Determines the execution order of program instructions

by constructing a control-flow graph (CFG) [27] that explicitly specifies all possible

execution paths. Nodes in the CFG are called basic blocks. They contain the

maximal sequence of consecutive instructions with a single entry point, a single exit

point and no internal branches. Edges are created by following branch instructions

118 CHAPTER 8. OVERVIEW

and connecting their corresponding basic blocks with the ones associated with the

targets of the branch. Program loops are represented explicitly with cycles in the

graph. CFGs are commonly used by data-flow analyses to propagate information

between basic blocks along their edges. They are a fundamental building block of

any flow-sensitive static analysis.

The framework supports the construction of CFGs for all the available in-

termediate representations in two different variations: normal control-flow and

exceptional control-flow. The difference relies on if the exception handling infor-

mation is considered or simply ignored when constructing the graph. Almost every

instruction may throw an exception at run-time, resulting in the presence of many

exceptional edges in the CFG, often leading to precision loss. So to overcome this

issue whenever possible, each particular static analysis can make use of the CFG

version that suits better. Blocks belonging to protected blocks and exception han-

dlers, as well as loops, are contained within a CFG region. They group together

many related basic blocks in a hierarchical structure. So a region can be nested

inside another region and so on.

Dominance analyses. In a CFG, a node d dominates a node n if every path

from the entry node to n passes through d, noted as d dom n [27, 67]. Note that,

by definition, every node dominates itself. Additionally, d strictly dominates n if

d dom n and d 6= n. The immediate dominator m of n, noted as m idom n, is

the last strict dominator of n on any path from the entry node to n. Every node,

except the entry node, has a unique immediate dominator. The dominator tree is

a tree where each node’s parent is its immediate dominator and the entry node is

the root.

Analogously, a node p post-dominates node n if every path from n to the exit

node passes through p, noted as p pdom n. Similarly, p strictly post-dominates

n if p pdom n and p 6= n. Finally, the immediate post-dominator m of n, noted

as m pidom n, is the post-dominator of n that does not strictly post-dominate

any other strict post-dominators of n. Post-dominance can be obtained from the

dominance relationship by reversing CFG edges and exchanging the entry and exit

nodes.

8.4. FEATURES 119

entry d m n exit

×
(a) Dominance. d dom n and m idom n.

entry n m p exit

×
(b) Post-dominance. p pdom n and m pidom n.

Figure 8.6: Dominance and post-dominance relations in control-flow graphs. A

solid line means a direct edge while a dashed line means a path (sequence of

edges).

Figure 8.6 illustrates these concepts. Dominance analysis have many uses,

including dominance frontier, control dependence and loop analyses. Our imple-

mentation follows the algorithm described in [46].

Dominance frontier analyses. In a CFG, the dominance frontier of a node n

is the set of all nodes f such that n dominates an immediate predecessor of f , but

n does not strictly dominates f [67]. Analogously, the post-dominance frontier

of a node n is the set of all nodes f such that n post-dominates an immediate

successor of f , but n does not strictly post-dominates f . Intuitively, is the set of

nodes where the (post-)dominance of n stops.

Figure 8.7 illustrates these concepts. Dominance frontier is used to compute

the exact locations where a Φ instruction has to be inserted when converting

TAC to SSA form, while post-dominance frontier is used to compute the control

dependence graph, among other usages. Our implementation follows the algorithm

described in [46].

Control dependence analysis. A CFG node y is control-dependent on another

node x if x determines whether y should be executed or not [27, 67]. In other words,

if exists a path from x to y such that every node z in the path other than x and y

120 CHAPTER 8. OVERVIEW

dominance

entry n p f exit

(a) Dominance frontier. n dom p, ¬(n dom f) and f ∈ DF (n).

post-dominance

entry f s n exit

(b) Post-dominance frontier. n pdom s, ¬(n pdom f) and f ∈ PDF (n).

Figure 8.7: Dominance and post-dominance frontier relations in control-flow

graphs. A solid line means a direct edge while a dashed line means a path (sequence

of edges).

(z 6= x∧z 6= y) is post-dominated by y, but x itself is not. The control dependency

graph (CDG) is a graph where each node is control dependent on its predecessors.

Control dependencies are essentially the dominance frontier in the reverse CFG,

and can be easily computed for programs with arbitrary control-flow using the

reverse dominance frontier algorithm proposed in [49]. Basically, it computes the

post-dominance frontier and reverses it to obtain the control dependency graph.

Figure 8.8 illustrates these concepts. Control dependence analysis have many

uses, including the construction of the program dependency graph (PDG) used in

program slicing.

Loop analysis. Identifies loops in reducible (well-structured) CFGs [27]. A re-

ducible CFG is one with edges that can be partitioned into two disjoint sets:

forward-edges and back-edges. Forward-edges form an acyclic graph in which ev-

ery node can be reached from the entry node. A back-edge is one whose target,

called the loop header, dominates its source. The loop header is the only entry

8.4. FEATURES 121

control dependence

entry x z y exit

Figure 8.8: Control dependence relation in control-flow graphs, where nodes y and
z are control dependent on node x; and y pdom z but ¬(y pdom x). A dashed line
means a path (sequence of edges).

point to the loop and dominates all basic blocks in its body. Loops can be identi-

fied by their associated back-edges. The natural loop of a back-edge n→ h, where

h dominates n, is given by its header h and the set of all nodes dominated by h

that can reach n without going through h. Figure 8.9 shows the structure of loops

in CFGs. Common structured programming statements such as if, for, while,

break and continue produce reducible graphs. To produce irreducible graphs,

statements such as goto are needed. A CFG is reducible if it can be converted

into a single node using the T1 and T2 transformations shown in Figure 8.10, where

T1 simply removes self-cycles and T2 merges nodes with their unique predecessors.

General data-flow analysis. It is a theoretical framework for collecting facts

about programs [27, 67, 88]. It attempts to obtain particular information at each

point in a method’s body. The information gathered can be used to verify a

property of interest, for instance, that a program will never throw a particular kind

of exception at run-time. For this reason it is often used by optimizing compilers

and static checkers. It uses the CFG to determine how this information flows

between method instructions, so it is inherently a flow-sensitive static analysis.

A program, from a static point of view is a finite sequence of instructions, but

from a dynamic perspective it can have infinitely many possible execution paths

(when containing a loop). So data-flow analysis overcomes this problem by working

with typically finite4 abstract domains called lattices instead of directly dealing

4Infinite abstract domains are also possible as long as they are finite in height or by using a

widening or narrowing operator.

122 CHAPTER 8. OVERVIEW

header

tail exit

back-edge

...

Figure 8.9: Structure of loops in

control-flow graphs.

a =⇒ a

(a) T1 transformation.

a

b

c d

ab

c d

=⇒

(b) T2 transformation.

Figure 8.10: T1-T2 control-flow graph

transformations.

with potentially infinite concrete values to represent the state of a program. For

each program point, it combines information of all the possible executions of that

particular location with an abstract state. In forward flow analysis, the exit state

of a basic block is a function of the block’s entry state. This function called

transfer function, is the composition of the effects of the instructions in the block.

Additionally, the entry state of a block is the result of applying a join operator

that combines the exit states of its predecessors. This yields a set of data-flow

equations. After solving this set of equations, the entry and exit states of the

blocks can be used to derive properties of the program at the block boundaries. The

transfer function of each instruction can be applied to get information at a point

inside a basic block. If the CFG does not contain cycles, solving the equations is

straightforward, otherwise they can be solved by repeatedly calculating the output

from the input locally at each CFG node until the whole system stabilizes (i.e., it

reaches a fixed-point). Each particular data-flow analysis instance defines its own

specific transfer function and join operation over an abstract domain. Some data-

8.4. FEATURES 123

flow problems require backward flow analysis. This follows the same plan, except

that the transfer function is applied to the exit state to compute the entry state,

and the join operation works on the entry states of the successors to compute the

exit state of the block.

Our implementation makes use of a worklist iterative algorithm to compute

the fixed-point and provides two general abstract classes that can be inherited

to implement specific instances of forward/backward data-flow analyses. They

require only the definition of the transfer function and join operation, as well as

the initial abstract state and a method that compares two abstract values to detect

when the fixed-point is reached.

Reaching definitions. This classic static analysis determines which definitions

may reach a given point in the code [27, 67]. Every variable assignment is a

definition of that variable. A definition d reaches a point p if exists a path from

the point immediately following d to p in the CFG, such that d is not modified

(overwritten) along that path. It is important to note that statically, more than

one definition of the same variable may reach a given program point.

Because of its simplicity, it is often used as the canonical forward data-flow

analysis and serves as a good example of how to implement this kind of analyses

in our framework. Our implementation uses bit vectors to efficiently track which

variable definitions reach each program point. Reaching definitions is typically

used to compute many analyses, including semantic checks to detect uses of unini-

tialized variables, def-use and use-def chains and loop invariant computations,

among others.

Def-use and use-def chains. A definition-use chain consists of a definition d

of a variable and all its uses ui reachable from d without any other intervening

definitions. Its counterpart is a use-definition chain, which consists of a use u of a

variable and all its definitions dj that can reach u without any other intervening

definitions. In SSA form, use-def chains are explicit because each one contains a

single element [27, 67]. They provide a direct data-flow representation useful for

code navigation.

124 CHAPTER 8. OVERVIEW

It can be easily computed using the results from reaching definitions or live

variable analyses and are typically used by many code optimizations, including

constant propagation and common subexpression elimination, among others. Our

webs analysis implementation makes use of these chains to construct webs for each

variable. Program slicing also takes advantage of the data dependency information

provided by this analysis.

Live variables. This classic static analysis determines which variables are live

at each point in the code [27, 67]. A variable v is live at point p if the value of v is

used along some path in the CFG starting at p, before v is modified (overwritten).

Otherwise, the variable is dead. It is important to note that to detect if a variable

is live, we need to look at the future uses of it by propagating facts backwards over

the CFG.

Because of its simplicity, it is often used as the canonical backward data-flow

analysis and serves as a good example of how to implement this kind of analyses

in our framework. Our implementation uses bit vectors to efficiently track which

variables are live at each program point. Live variable analysis is typically used

by many code optimizations like dead code elimination to remove statements that

assign to a variable whose value is not used afterwards. The information provided

by this analysis is also used to simplify the SSA intermediate representation form

by pruning unnecessary Φ instructions.

Type inference. The goal of this analysis it to automatically detect the data

types of temporal variables introduced after the disassembler process, which con-

verts simplified bytecode to TAC [27, 67, 88]. Remember temporal variables are

created to explicitly represent stack slots, so initially they don’t have a specific

data type assigned.

Our implementation takes the TAC intermediate representation as input and

repeatedly propagates types from the right-hand side of assignments to its desti-

nation variable. Algebraic operations and type conversions are considered when

inferring the types of its results. Note that type conflicts cannot occur after per-

forming the webs analysis transformation, since it ensures that temporal variables

are never reused (i.e., used in more than one context).

8.4. FEATURES 125

However, there are some particular cases that need to be specially handled.

Since CIL bytecode is a compact code format, boolean values are represented with

numerical values like in C (zero means false and any other value means true).

This leads to ambiguities when loading those values. A priori it is not possible to

detect by just looking the load instruction if its loading a boolean value or not.

There is a similar ambiguity with null, where the same conditional branch opcode

is used to jump when the value at the top of the stack is (or is not) zero, false

or null. Even more, since null is a polymorphic constant, it’s not possible to

immediately determine the data type of a temporal variable that has that value

assigned. For these cases, the analysis delays the type detection until the temporal

variable is used, so the right data type can be inferred from its use context instead

of its definition context.

Slicing. A program slice consists of all program instructions that may affect the

values at some point of interest [110]. It is defined for a slicing criterion (x, v)

where x is a program instruction and v is a variable appearing in x. Therefore, a

static slice includes all the instructions that can affect the value of variable v at

instruction x for any possible input. Static slices are computed by backtracking

dependencies between instructions. An instruction x depends on another instruc-

tion y if (i) y defines whether x is executed or not (control dependence) or (ii) y

defines a variable that is used by x (data dependence). For this reason, this anal-

ysis combines the control dependency graph (CDG) with the def-use and use-def

chains to construct the more general program dependency graph (PDG) used to

generate the slices.

Other forms of slicing exist, for instance dynamic slicing, which works on a

specific execution of a program (for a given execution trace and input). It is often

used in debugging to locate source of errors more easily.

8.4.4 Inter-procedural Analyses

Class hierarchy. It defines the inheritance relationship between classes [51]. In

.NET, the root class of the hierarchy is the object class and every other class di-

126 CHAPTER 8. OVERVIEW

rectly or indirectly extends (inherits from) it. Interface implementations are also

included in the class hierarchy. Multiple inheritance is not supported in .NET, but

multiple interfaces can be implemented by the same class, providing similar ben-

efits. This analysis constructs the inheritance tree, where each class (or interface)

has all of its subclasses (or implementing classes respectively) as children.

The information provided by this analysis is used by the type inference analysis

to obtain the least common ancestor of two given classes and by a very simple call

graph analysis to compute the set of possible targets of a method invocation.

Call graph analyses. The goal of these analyses is to statically construct the

call graph of a program, which describes calling relationships between meth-

ods [51, 60]. Each node represents a method and each edge f → g indicates

that method f calls method g. A cycle in the graph denotes recursive method

calls. It is a fundamental building block for any other inter-procedural analysis.

In languages that feature dynamic dispatch, such as object-oriented programming

languages like C# and Java, computing a static call graph precisely requires alias

analysis results [60]. Conversely, computing precise aliasing requires a call graph.

For this reason, many static analyses solve this interdependence by computing

both simultaneously. This is the case of the call graph produced by our points-to

analysis implementation. In addition, our framework also provides a much simpler

approach known as class hierarchy analysis (CHA) [51]. This analysis uses the

declared static type of a variable, together with the class hierarchy, to determine

which are the possible dynamic types of the receiver object at each call site. This

analysis is more imprecise, but can be computed efficiently.

Points-to analysis. Pointer analysis is a fundamental static program analysis

that determines information on the values of pointer variables [31, 102]. Such

information offers a static model of a program’s heap. Its goal is to compute an

approximation of the set of objects that a program variable may point to at run-

time. Alias analysis algorithms focus on the closely related problem of detecting

if a given set of variables can be aliases (i.e., point to the same object). Points-to

analysis typically construct a points-to graph (PTG), which is a heap abstraction

8.4. FEATURES 127

that models reference relationships between objects, including the variables and

object fields that may points to them. The conventional approach is to relate

objects with their allocation sites (i.e., to consider a single abstract object to

stand for each run-time object allocated by the same instruction).

The framework provides a flow-sensitive and context-insensitive data-flow im-

plementation with support for simulating the effects of non-analyzable methods

by providing a mock method body that mimics the behavior of the real one. Ad-

ditionally, our approach simultaneously builds a more precise call graph than the

one obtained with CHA, by querying to which objects (and thereby indirectly to

which dynamic types) the receiver of a method call could point to. It also enables

further inter-procedural analyses, such us escape and purity analyses.

Escape analysis. It is a static analysis that determines whether the lifetime of

an object exceeds its static scope [39, 112]. This often means whether an object

may escape its allocating method, in which case the object is not local to it. The

goal of this analysis is to keep track of objects created during the execution of a

method. The objects may be created directly by the method or indirectly by the

methods it calls (callees). An object escapes the scope of a method if it is still

reachable after the execution of the method. This can only happen if a reference

to the object is returned from the method, assigned to a field of an external

(previously existing) object (such as a method parameter or global static object)

or to a newly created one that also escapes. This analysis is typically built on top

of the points-to graph of a method.

Our implementation follows a compositional summary-based approach, that

uses the already computed escape information from callees to produce the summary

of each method. It distinguish between method external and internal objects, in

which case the later can be further classified as captured or escaping.

128 CHAPTER 8. OVERVIEW

Figure 8.11: Analysis Explorer: a graphical user interface for the analysis frame-

work.

8.5 Tools

In addition to the framework itself, we have implemented a few open-source

tools5 that make use of its features and are publicly available to the community.

They provide an interactive way to explore many code analyses and transforma-

tions directly without having to write a single line of code. They are particularly

useful for debugging purposes when using or extending the framework.

Analysis Explorer. A standalone application with a simple graphical user in-

terface (GUI) for inspecting programs metadata and method instructions. Fig-

ure 8.11 shows a screenshot of this tool. The left panel displays the metadata

in a tree-based layout for quick navigation between all defined types and meth-

ods. The right panel contains tabs to visualize different kinds of contents, from

5Source code available at: https://github.com/edgardozoppi/analysis-explorer.

https://github.com/edgardozoppi/analysis-explorer

8.6. EXTENSIBILITY 129

method bodies to interactive diagrams of all the data structures provided by the

framework, including control-flow, points-to, class hierarchy, dominance and con-

trol dependency graphs, among others. Different visualization layouts are possible

with an option to export them to the Directed Graph Markup Language (DGML).

Perhaps the most interesting feature is the ability to compare side-by-side all the

intermediate representations, allowing the user to select which ones are relevant

for inspection. Loading metadata from Java Archive files (JARs) is also possible.

Visual Studio extension. A plug-in that completely integrates the framework

into Visual Studio IDE. It adds a dedicated context menu when selecting specific

elements (typically methods) in the Class View tool window. It supports the same

options that the Analysis Explorer provides, but directly inside the most popular

IDE for developing .NET applications. In this case, method bodies are shown as

text documents in the editor panel and diagrams like trees and graphs are displayed

using the already integrated DGML visualization tool.

8.6 Extensibility

As mentioned before, one of the main requirements considered when designing

the framework is the ability to extend it to support new features. Next we present

the most relevant extensibility scenarios we have considered.

Supporting other languages. Even though the framework was originally cre-

ated to enable the static analysis of .NET programs, it was designed in a more

general way to also allow other similar platforms in the future. In order to ex-

tend the framework to support the analysis of programs written in a different

non-.NET-based programming language like Java, a new code provider has to be

implemented for that particular language. Basically, a code provider is a library

that contains a class implementing the public interface ILoader defined by the

framework. This is actually exactly how .NET CIL is supported, so after all, there

is nothing special about it that makes it different from other platforms regarding

130 CHAPTER 8. OVERVIEW

the framework treatment. This interface only requires the implementation of the

LoadAssembly method, that given a file path it returns an object of type Assembly

which represents a language agnostic library to be analyzed. It includes both the

metadata and methods’ instructions.

This general design allows multiple scenarios. Different code providers can be

implemented to load not only already compiled programs in the form of executable

files, but also the possibility to load them directly from their source code. Addi-

tionally, depending on the kind of language the user wants to support, the code

provider can return instructions in any of the supported intermediate represen-

tations. For stack-based languages like the .NET CIL or the JVM bytecode the

simplified bytecode is a natural choice, but for register-based languages like the

Dalvik bytecode (Android’s bytecode format) the TAC is a more straight forward

option. This way, all the already existing features become available for the new

language, since the TAC is the main code representation used by the framework

and all the provided analysis and transformations are built on top of it. For ex-

ample, we already have implemented a proof-of-concept code provider that loads

metadata from Java executable Archive files (JARs) and we plan to extend it to

provide a simplified bytecode version of the JVM bytecode instructions.

Adding new features. Of course it is also possible to extend the framework by

implementing additional analyses and transformations, either from scratch or by

combining already existing ones. A good example of this scenario is the instan-

tiation of one of the two general data-flow templates (forward or backward) pro-

vided by the framework to implement a new custom flow-sensitive intra-procedural

analysis. All the logic to compute the fixed-point is already implemented, greatly

simplifying this task.

8.7 Limitations

Perhaps the most important limitation of the framework is the current impos-

sibility to generate executable code. A typical round-trip user case like instru-

8.7. LIMITATIONS 131

menting an already existing program by performing some code transformation or

optimization is not possible without this feature. Another useful scenario that we

would like to support is to allow users to create a program from scratch. Ideally,

a code generation component that converts back the TAC to simplified bytecode

and then (or directly) to CIL is required for this purpose. Other executable forms,

like the JVM bytecode, are also possible targets, allowing programs originally

written in one platform to run in a different one6. An alternative related feature

that could also be interesting to consider is to implement a TAC (or simplified

bytecode) interpreter.

Another feature we would like to improve is the current support for implement-

ing inter-procedural data-flow analyses in a flow-sensitive, fully context-sensitive

manner. We would like to provide a more general approach based on the well-

known IFDS [93] and IDE [98] algorithms specially designed for this purpose. An

analysis able to create inter-procedural control-flow graphs (ICFG) is also currently

missing.

6Assuming that all the external references to standard and third-party libraries are also

translated or replaced by similar versions available in the new target platform.

Resumen

Información General

Analysis.NET7 es un framework de análisis estático de programas de código

abierto para a la plataforma .NET [23]. Permite el análisis y la transformación de

CIL bytecode directamente desde cualquier lenguaje de programación .NET dispo-

nible y está completamente escrito en C#. Comprende un gran conjunto de APIs y

algunas herramientas GUI adicionales que son útiles para explorar sus capacidades

sin tener que escribir una sola ĺınea de código. Entre otras cosas, el framework inclu-

ye varios análisis estáticos clásicos y bien conocidos desarrollados sobre diferentes

tipos de lenguajes intermedios que proporcionan diferentes niveles de abstracción.

Está diseñado para ser extendido fácilmente para soportar otros análisis persona-

lizados y transformaciones de código definidos por el usuario. Las caracteŕısticas

principales de Analysis.NET incluyen una representación intermedia de CIL byte-

code simplificada y tipada basada en registros, un análisis de jerarqúıa de clases

y sistema de tipos de .NET, un análisis de puntero sensible al flujo y algoritmos

de construcción de call graphs y varios análisis intra-procedurales basados en la

información computada de flujo de control y flujo de datos.

Nuestro trabajo está bastante inspirado en el framework de optimización de

Java Soot [105, 70], pero en cambio nos enfocamos en la plataforma .NET. Sin em-

bargo, nuestro framework está diseñado de una manera más general para permitir

7Código fuente disponible en: https://github.com/edgardozoppi/analysis-net.

133

https://github.com/edgardozoppi/analysis-net

134 RESUMEN. INFORMACIÓN GENERAL

también la posibilidad de portar otras plataformas similares en el futuro8. Nuestro

objetivo es permitir el análisis estático de programas .NET proporcionando a la

comunidad .NET un framework similar a Soot.

8Actualmente estamos trabajando en una prueba de concepto para también soportar Java.

Chapter 9

Big Data Queries Optimization

Analysis

In this chapter we present the details of two static analyses built on top of our

program analysis framework presented in the previous chapter.

9.1 Overview

Programming Big Data applications is often done using data processing lan-

guages that combine relational-style constructs with imperative user-defined oper-

ators. Examples of systems relying on this paradigm are, for instance, Spark [116],

SCOPE [44, 117] and U-SQL [21]. An important component of such systems are

query optimizers that work only over the relational skeleton of a program. The

user-defined operators (UDOs) are opaque and not analyzed during optimization.

Hence, query optimizers often miss opportunities to significantly improve resource

savings for Big Data applications.

The goal of this project is to automatically infer useful information about UDOs

during compile-time that can be used to optimize query processing. In particular,

we focus on Big Data programs written in SCOPE, a query processing language

developed at Microsoft. SCOPE scripts receive, analyze, and return tables of data,

similar to SQL. In practice, user-defined operators can operate on tables that can

135

136 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

have several hundreds of columns and be hundreds of GB large. According to

SCOPE team experts, most of the network and computational resources spent

during execution of a SCOPE query are in fact irrelevant for the query result. For

instance, the runtime will pass all of the table columns to a UDO although the

operator might use only a small fraction of input columns to produce the output

table. This happens since the runtime does not have detailed knowledge on UDO

inner-workings and hence must conservatively assume that all input columns are

used. The techniques we develop in this work automatically analyze UDOs and

provide the query optimizer with such valuable pieces of information.

We use static analysis techniques to detect specific column access patterns

induced by a UDO: which columns it reads from and the dependencies between

columns. This information can be used to drastically optimize query execution:

• Columns in input tables not read by a UDO can be pruned away, i.e., filtered

out earlier in the query plan. This can result in less data transferred between

nodes, often measured in hundreds of GB.

• Columns that are passed unmodified through a UDO are pass-through columns.

The runtime can directly copy values of such columns from the input table

to the output table without expensive data marshalling through the UDO.

Knowledge about pass-through columns can also help the query optimizer

understand the distributed partitioning of the output table.

Additionally, unused and pass-through input columns can be used to validate

user-provided optimization declarations. The primary constraint for the analyses

we present is total soundness: we cannot produce incorrect analysis result because

that can lead to invalid query results.

The first static analysis we introduce aims at quickly providing a conservative

approximation of the input columns accessed by a UDO. The analysis performs a

simple, yet effective escape and constant propagation alike analyses. The second

analysis is more ambitious, but also more costly. It computes precise data and

control dependencies in a UDO and relies on range and points-to analysis. We

require both of the analyses to graciously handle complex .NET constructs such

9.2. BACKGROUND 137

as loop iterators and closures. In general, we give great attention to making our

analyses sound and robust.

We evaluated our analyses on thousands of SCOPE query scripts that are ex-

ecuted internally at Microsoft on a daily basis. We corroborate that our analyses

implementation achieve the expected robustness and soundness requirement while

still being effective. This work was done in collaboration with researchers from Mi-

crosoft Research and New York University under patronage of Microsoft SCOPE

product group, and it was published [56] and presented at the international con-

ference on Foundations of Software Engineering (FSE) in 2017.

9.2 Background

Before presenting the analyses we provide more information about the SCOPE

language, UDOs and its ecosystem in general.

9.2.1 Cosmos and SCOPE

Cosmos is a distributed computing platform developed at Microsoft for storing

and analyzing massive datasets [117]. Designed to run on large clusters consisting

of thousands of commodity servers, Cosmos main platform objectives are availabil-

ity, reliability, scalability, performance and reduced cost. The main components of

Cosmos are storage, execution environment and SCOPE, a high-level programming

language for Big Data analytics.

More specifically, SCOPE is the programming language used to write scripts

to be executed in Cosmos. It is primarily a version of SQL with several extensions.

The computation model of SCOPE is defined in terms of a directed acyclic graph.

Data exchanged between nodes in the graph are in the form of strongly-typed

tables. A table comprises a set of columns, each column containing values of some

particular type. The data in a table is organized as a set of rows: each row has a

field for every column.

The code that executes within a node is either generated by the system or

is user code, typically written in C#, called a User-Defined Operator (UDO). A

138 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

UDO can be any combination of table filters, projections and joins that are either

impossible (or difficult) to express in the SQL-ish subset of the language.

SCOPE API for UDOs. A SCOPE UDO is implemented as a C# class which

subclasses one of three base classes [117].

Processor. Implements a method that takes a row from the input table as a

parameter and returns zero or more rows.

Reducer. Implements a method that takes a rowset (a set of rows from the

input table that all have the same values in a specified set of columns) and

returns zero or more rows.

Combiner. Like a Reducer, but receives two rowsets and returns zero or more

rows.

All three must override a method in their respective base classes that returns

the schema of their output table. This method is executed during query compila-

tion. Optionally, the method may also indicate that column pruning is allowed and

to also attach information to each (output) column indicating which input columns

that column depends upon. Without this information, the optimizer must make

the conservative assumption that all input columns are read and that no infor-

mation is available about which columns the output table might be partitioned

on. Not only do many UDOs fail to add this optional information, but there is no

check to make sure that any declarations are in fact correct.

Figure 9.1 shows an illustrative example of a UDO Reducer. The operator

returns an output table that is essentially a copy of the input table where value

of the output column indexed by 2 is created using the value of the input column

indexed by 0. Columns can either be accessed by integer indices, or more com-

monly, using string indices. The above example exhibits a structure common to

almost all real-world UDOs: it is written as an iterator, a C# idiom for coroutines

defining a lazy, cooperative state machine that must be polled for each element in

the sequence it returns. There is a foreach loop iterating over the collection of

input rows, code that creates an output row and a yield instruction that returns

that row.

9.2. BACKGROUND 139

1 IEnumerable <Row> Process(RowSet input_rowset ,

2 Row output_row ,

3 string[] args) {

4 foreach (Row input_row in input_rowset.Rows) {

5 input_row.CopyTo(output_row);

6 string market = input_row [0]. String;

7 output_row [2]. Set("FOO" + market);

8 yield return output_row;

9 }

10 }

Figure 9.1: SCOPE UDO Reducer example.

9.2.2 UDO Representation

While the source code in Figure 9.1 is simple, it is compiled into a much

more complicated representation in the resulting bytecode. In order to support

UDOs written in any programming language available for .NET, our analysis op-

erates on the bytecode instead of the source code. As depicted in Figure 9.2,

the foreach-yield loop is implemented using a closure class <Process> d d<>3

whose method GetEnumerator essentially populates the compiler generated fields

that (1) model the parameters of the original Process method and fields that (2)

represent the state of the loop iteration.

The MoveNext method is a state machine that, depending on the state, invokes

the actual enumerator of the input row set and performs one iteration, possibly

computing an output row. The analysis on UDOs must be aware of this internal

organization, look for these particular methods, associate the internal fields with

the original method parameters, and simulate the potentially multiple invocations

of MoveNext. Additionally, it must also understand how SCOPE operations are

represented at the CIL bytecode level.

Both of the analyses we develop in this work take as input a SCOPE job, i.e.,

a compilation of a SCOPE script. Each job has a set of processors (UDOs) that,

as mentioned earlier, implement Processor, Reducer or Combiner APIs. For each

140 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

Figure 9.2: Low-level closure representation of the UDO from Figure 9.1. Top-

left: Process method. Bottom-left: the enumerator generated for yield return.

Right: MoveNext method of the enumerator.

UDO in the job, we find the corresponding closure class and run our analyses on

the MoveNext method assuming the above closure representation.

9.3 Accessed Columns Analysis

The first analysis statically analyzes the code of a UDO to overapproximate

the input columns that are being used by the operator. Using this information, the

SCOPE distributed runtime environment can ship over the network only the values

of inferred columns instead of values of all of the table columns while executing

the UDO, without compromising the correctness of the results.

9.3.1 Approach

We decided to design the analysis to be as simple as possible. First, the analysis

is intra-procedural, analyzing method bodies in isolation. Second, the analysis

does not distinguish input from output columns, which would otherwise require

potentially detailed aliasing information. Lastly, the analysis (soundly) answers

that all input columns are read if the UDO has exceptional control-flow, which

9.3. ACCESSED COLUMNS ANALYSIS 141

Figure 9.3: Accessed columns analysis pipeline.

would otherwise also require more complicated treatment. These design decisions

helped us validate that our analysis is sound with no exceptions, in contrast to

soundy analyses [77].

Clearly, the above mentioned simplifications may make our analysis not effec-

tive. The reason these decisions make sense for computing accessed input columns

is based on an empirical observation: while UDOs can become quite complex in

terms of the functionality they embody, the way the columns are accessed is typi-

cally straightforward. That is, columns are typically accessed directly by string or

integer indices, as in Figure 9.1, or by variables that can be resolved as constants

at compile-time.

Figure 9.3 is a high-level illustration of our analysis. The analysis takes an

UDO in previously described CIL format, performs classical control-flow graph

transformations and optimizations described in Section 9.5, and then proceeds

to three core subanalyses: escape analysis, constant-set propagation and used

columns analysis.

9.3.2 Escape Analysis

A valid platform assumption is that upon entering the MoveNext method no

other method or object has an access to the input row objects. Our analysis first

checks whether this invariant also holds upon exiting the method via escape sub-

analysis. To see why this check is important, consider the following code fragment

taken from a real-world SCOPE script.

142 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

1 IEnumerable <Row> Process(RowSet input , ...) {

2 ...

3 foreach (Row current in input.Rows) {

4 outputRow [0]. Set(CreateBondEntity(current));

5 ...

6 outputRow [1]. Set(RandomCurrentBondEntity ());

7 yield return outputRow;

8 }

9 }

The method call on line 4 can potentially save a reference to the input row

current. Since our analysis is intra-procedural, there is no way of knowing whether

some other object has an access to an input row after line 4. Hence, the method

call on line 6 can potentially read (i.e., access) some column of current. Our

analysis would hence miss such accesses which would result in unsoundness.

Escape subanalysis checks if an object of type Row potentially escapes the

method body. That is, escape analysis checks if some command in the UDO

body passes an object of type related to Row as a parameter to some method

call or saves it to some field. If so, the analysis claims that a row may escape

and conservatively answers that all table input columns are read. Otherwise, no

other object or method has access to the input rows (i.e., all column accesses

are contained within MoveNext body). Our analysis then proceeds to the next

subanalysis.

9.3.3 Constant-set Propagation

The next subanalysis closely resembles widely known constant propagation. In

fact, the major point where our subanalysis and constant propagation differ is in

the way they handle join points. Consider the following code fragment.

1 if (...) { column = "Age" }

2 else { column = "age" }

9.3. ACCESSED COLUMNS ANALYSIS 143

Such code fragments are frequent in UDO programs as programmers often

consult table schemas to make sure they got column name capitalizations right.

After the if-then-else statement, at the join point, a typical constant propa-

gation implementation would not consider column variable to be constant. Since

our goal is to actually infer the columns being accessed, we can soundly save the

information that column can take values in the set {"Age", "age"} instead of say-

ing that column can take on any value. This is why we called this subanalysis

constant-set propagation, since for each non-reference variable we save the set of

constant values the variable can take. Speaking in terms of abstract interpreta-

tion, we simply perform disjunctive completion of the abstract domain for constant

propagation [48].

9.3.4 Used Columns Analysis

The last subanalysis we undertake is named used-columns analysis. In the

similar spirit as previous subanalyses, its main characteristic is simplicity. For each

method call on an object of type Row, we check whether the method being called is

known at compile time and is get Item, get Schema or Reset. Only the mentioned

methods can truly be trusted, in the sense they definitely do not access any columns

of the calling Row object. Then, we check if for each Row.get Item(var), our

constant-set propagation inferred a set of constants for var. If both checks pass,

we take the union of these sets of constants as our overapproximation of accessed

input columns. If either of the checks fail, the analysis answers that all input

columns are being accessed.

The returned set of columns overapproximates both input and output columns

being accessed by a UDO, due to the lack of aliasing information. Thus, all input

columns that are not in this set are not being used by the UDO. We note that

column information for an input table is available at compile time since SCOPE

needs table schemas for compilation.

144 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

9.4 Computing Input/Output Dependencies

The second analysis we introduce is more sophisticated. It computes column

input/output relationships induced by the UDO and pass-through columns. Pre-

cise dependency information allows for more aggressive, but still conservative,

optimization of query plans. Identifying pass-through columns enables significant

savings in network/computation bandwidth.

Example 12. Consider again the UDO presented in Figure 9.1 and the input

table schema {JobGuid(0), SubmitTime(1)} where integer index for the column

name is given in parentheses. The outcome of our second analysis looks like:

• Inputs = {JobGuid(0), SubmitTime(1)}
• Outputs = {JobGuid(0), SubmitTime(1), NewColumn(2)}
• Pass-through = {JobGuid(0), SubmitTime(1)}
• OtherDependencies = {NewColumn(2) ← literal + JobGuid(0)}

Inputs (resp. Outputs) is the set of input (resp output) columns observed by

the analysis. The indices represent the column index associated with the column

name. Pass-through is the set of output columns that were computed using one

single input column without modifications. OtherDependencies refers to other

dependencies observed by the analysis that are not pass-through. In this case,

NewColumn(2) refers to a new column that depends on a literal ("FOO") and the

input column JobGuid(0).

9.4.1 Approach

Our solution is inspired by the work of Xia et al. [113] that proposes a data

dependency analysis for SCOPE programs using an abstract interpretation engine

Clousot [78]. The analysis computes dependencies over traceables : tables, columns,

and row counters. For each output column of a UDO, the analysis reports trace-

ables upon which that column depends on.

9.4. COMPUTING INPUT/OUTPUT DEPENDENCIES 145

The hard constraint of having a sound and robust implementation prevented

us from using their work. Clousot makes the optimistic assumption that any

references that are not must aliases are distinct. As pointed out in [113], there is

no aliasing for input tables and fields in the UDO closure classes.

However, considering objects reachable in method calls forces us to be more

conservative in three ways:

• Use a conservative points-to analysis to support a may-alias and escape anal-

ysis on top of it.

• Use range analysis (intervals) and constant propagation for tracking column

indices.

• Add support for exceptional control-flow.

9.4.2 Analysis Sketch

Figure 9.4 shows the analysis sketch. Given a UDO, the analysis first makes

sure it has a proper representation of the heap effects. Therefore, we first compute

a points-to graph (PTG) to get an alias heap abstraction of the closure constructor.

Then, we compute the PTG for the GetEnumerator method (taking as input the

constructor’s PTG) and finally, the PTG of MoveNext method. This ensures we

reach this method with all closure fields properly initialized and updated. With

the proper PTG we can now run the column analysis to discover columns indices

and map column names to indices and, finally, the dependency analysis.

Points-to analysis. We based our points-to analysis on a well-known flow-

sensitive analysis by Salcianu et al. [99]. It is essentially a forward data-flow

analysis that builds points-to graphs, where each node (identified by a program

location) represents the set of all objects that might be allocated at that location

and edges stand for potential references between those objects. Given a PTG, we

can determine whether two access paths (in the form of v, v.f , v.f.g, etc.) may

alias by simply traversing the PTG and checking if they both can reach the same

node.

146 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

Figure 9.4: Columns dependency analysis pipeline.

Our points-to analysis can handle complex .NET programs constructs such as

delegates, lambdas and predicates (appearing frequently in LINQ queries). It can

run both intra- and inter-procedurally. For the sake of performance, we decided to

run it intra-procedurally with some exceptions. We analyze invocations of closure

auxiliary methods and lambda expressions appearing in parameters. To handle

collections, we use conservative summaries in the spirit of [35].

Column Analysis. The goal of this analysis is to determine the set of poten-

tial indices (columns) used to access a row. We compute an interval analysis to

determine the possible integer values that a column index may have, which is

more sophisticated than constant-set propagation. In addition, we perform a ba-

sic string analysis to discover columns accessed by name and map them to their

corresponding indices.

9.4.3 Dependency Analysis

As mentioned earlier, we based the analysis on [113]. Given a UDO, the analysis

identifies a set of traceables and computes the following mappings:

• DepV ar(v) tracks traceables flowing to variables.

• DepHeap(o.f) tracks traceables flowing to fields.

9.4. COMPUTING INPUT/OUTPUT DEPENDENCIES 147

• Esc(m) tracks traceables escaping through non-pure methods (in the case of

inter-procedural analysis).

The analysis is essentially a forward data-flow analysis that propagates trace-

ables through variables. Here we show some of the most interesting rules (→
means propagate):

Row rules. Detect and propagate rows.

• a = Rows(b): DepV ar(b) → DepV ar(a) propagate all traceable rows from

table b to a.

• a = Current(b): DepV ar(b) → DepV ar(a) propagate current traceable

row from table b to a.

Column rules. Detect and propagate columns.

• a = Read(r,i): {ti | t ∈ DepV ar(r)} → DepV ar(a) reads the ith column

of row r.

• Write(r,i,a): DepV ar(a)→ ti, ∀t ∈ DepV ar(r) writes the value of a into

the ith column of row r.

• Copy(a,b): DepV ar(a) → DepV ar(b) propagates all traceable columns

from row a into row b, similar to multiple applications of the previous two

rules.

Heap rules. Propagate traceables from heap locations to variables, and vice

versa. We use points-to analysis to determine heap locations.

• a = b.f: DepHeap(b.f) → DepV ar(a) propagate all traceables from the

heap locations obtained by following the field access b.f to a.

• a.f = b: DepV ar(b) → DepHeap(a.f) propagate all traceables from b to

the heap locations obtained by following the field access a.f.

148 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

If the method under analysis invokes another method, we check if the traceables

of interest (i.e., input-output rows) can be reachable from the parameters. If so,

in the intra-procedural case we give up (mark them as escaping) as we cannot tell

what the non-analyzed callee is going to do. In the inter-procedural case, we apply

the analysis on the callee.

Aliasing. We use the points-to graphs for detecting aliasing pairs (variables and

fields) and to resolve method invocations. Also, every time we obtain traceables for

a variable v we make sure we also include the traceables from its aliases. Similarly,

for DepHeap(v.f) we use PTGs nodes for referring to objects. For instance, if

PT (v) = {A,B} the analysis produce two locations {A.f,B.f} for v.f .

9.4.4 Computing Pass-through Columns

Pass-through analysis is a byproduct of the dependency analysis. A pass-

through column is an output column whose value is taken directly from one input

column. In order to determine if a column is pass-through during the dependency

analysis we check that only one unchanged input column is used for its computation

and no other value.

9.5 Implementation

We have implemented our analyses1 on top of the .NET static analysis frame-

work presented in Chapter 8. Our implementation works over the SSA intermedi-

ate representation and utilize existing framework facilities to model implicit CIL

stack operations with explicit top-of-the-stack variable operations. We also make

use of many provided well-known analyses [27], like control-flow, data-flow, copy-

propagation, live-variables, points-to and escape analyses, among others. Addi-

tionally, we have extended the framework by implementing the constant-set prop-

agation, range and dependency analyses directly on top of it.

1Source code available at: https://github.com/Microsoft/rudder.

https://github.com/Microsoft/rudder

9.6. EVALUATION 149

9.6 Evaluation

We aim to answer the following research questions.

RQ1: What is the ratio between used and total number of input columns?

RQ2: How many pass-through columns are discovered?

RQ3: Are analysis running times within an acceptable bound?

We run the analyses on about 4000 real-world SCOPE projects extracted from

Cosmos’ top jobs (in terms of resource usage) executed on a single day of April,

2016. Table 9.1 shows the results for both analyses. There were 1151 UDOs

in total2. The analysis times ranged between 100 ms to a couple of seconds.

Median analysis time for the accessed columns analysis is 65 ms and 463 ms for

the dependency analysis. We note our analyses as well as the underlying framework

are not yet fully optimized for performance. We believe a mature implementation

would experience running times measured in few hundred milliseconds. The total

number of columns involved in the UDOs, according to the declared schemas, were

25014 for input and 24941 for output columns.

The first analysis is about 6-8 times faster than the second analysis but more

imprecise. In many cases it cannot conclude a precise answer and, for the sake of

soundness, abruptly returns that all columns are potentially used. This imprecision

is mainly due to exceptional control-flow, escaping rows, untrusted row methods,

and non-constant variables used for column accesses. Nevertheless, for about 25%

of the UDOs the analysis obtained results, discovering that at least 37% of the

columns were not accessed. We feel these are very good results that justify the

simplicity of the analysis.

2We ignore jobs not using UDOs or using only compiled generated UDOs.

150 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

The second analysis is slower but more precise, as expected, and handles more

UDOs. It discovers that about 50% of the columns are unused. In addition, it dis-

covers that about 74% of used columns are in fact pass-through. The imprecision

mainly comes from dealing with complex index computation for column accesses,

traceable escaping through method invocations (needs inter-procedural analysis),

and complex data structures like SCOPE maps (see future work 9.8).

We could not measure actual query times since we did not have access to the

Cosmos databases, but according to the SCOPE team experts, a reduction in the

number of columns passed to a UDO and the savings in marshaling induced by

pass-through columns can be drastic. It is important to emphasize that even a

small percentage of resource savings yields huge savings in total as the analyzed

scripts run daily at Microsoft and operate on hundreds of GB of data.

RQ1: What is the ratio between used and total number of input

columns?

The first analysis discovers that at least 37% of the columns were not

accessed while the second analysis discovers that about 50% of the columns

are unused.

RQ2: How many pass-through columns are discovered?

Only the second analysis computes them and discovers that about 74% of

used columns are in fact pass-through.

RQ3: Are analysis running times within an acceptable bound?

Median analysis time is 65 ms and 463 ms for the first and second analysis

respectively.

9.7. RELATED WORK 151

UDOs with Unused Cols Pass-through

Analysis results Inputs Outputs Outputs

Accessed Columns 25% 37% N/A

Columns Dependency 76% 54% 50% 74%

Table 9.1: Statistics for 1151 real-world UDOs from about 4000 SCOPE jobs.

9.7 Related Work

There are two previous efforts directly related to our work. PeriSCOPE is a

static analysis tool that optimizes SCOPE execution plans by analyzing UDOs [61].

The authors present three analyses that compute UDO information useful for op-

timizing the query execution. One of the analysis is in fact used columns analysis.

Unfortunately, it is not clear how general soundness of their algorithm can be

argued. For instance, the authors do not explain how they deal with the cases

where a Row object can escape a method body. In our work, on the other hand,

soundness is an imperative.

As we discussed in Section 9.4, Xia et al. present a static analysis that in-

fers column dependencies in SCOPE UDOs [113]. Their approach relies on an

optimistic must-aliasing assumption which violates our soundness principle. Such

assumption could prevent building different sound analyses on top of their infras-

tructure.

We mention few other related works. Our dependency analysis closely resem-

bles data and control dependence in compiler optimizations [27, 85]. Also, points-to

and alias analysis are a classical topic in static analysis community [39, 102, 35].

However, these efforts are orthogonal to the work presented here.

9.8 Conclusions

We implemented two static analyses aimed at obtaining unused column in-

formation and input/output dependencies in SCOPE UDOs. We put a special

152 CHAPTER 9. BIG DATA QUERIES OPTIMIZATION ANALYSIS

focus on being sound and robust while designing and implementing the analyses.

Our implementation successfully analyzed thousands of SCOPE scripts and found

many input columns that are never used and a significant amount of pass-through

columns in real-world UDOs. The inferred information can be used to drasti-

cally optimize execution of SCOPE scripts. This works shows how static analysis

techniques can be used to improve performance of industrial-strength applications.

Lessons learned. One of the most important lessons we learned is that in an

industrial setting it is much more important to be robust and sound than to be

precise. Even the most sophisticated analysis will not make its way into production

if its soundness cannot be guaranteed and clearly argued. Our recommendation

is to start with the simplest analysis possible. Then if needed, more sophisticated

analysis can be built on top, keeping the same principles in mind.

Another important lesson learned is that static analyses techniques can be

successfully applied for real-world programs at large. The trick behind our success

was to incorporate domain specific knowledge into the analysis to get sensible

results. SCOPE scripts, while potentially arbitrarily complex, typically follow a

simple structure and manipulate certain data structures in a predictable way. We

believe there are other problem domains where such tailored static analyses can

prove themselves extremely valuable.

Future work. Our next steps are the evaluation of the actual impact of the anal-

yses on execution performance of real-world SCOPE scripts and the implementa-

tion of an IDE plugin that automatically generates data-dependency annotations

for the UDOs, thus hinting the developer where optimizations can be gained and

validating her assumptions. At the same time, we plan to enhance our analyses.

For instance, the analysis for computing input columns accessed by a UDO can be

improved by making it more inter-procedural by using function inlining (since we

have observed that UDO scripts in general tend to be non-recursive). This way,

we can gain more precision during escape analysis. Likewise, we would like to sup-

port other features of SCOPE such as SCOPE maps, JSON, and other structured

column types that are used in scripts to encode sparse columns.

Resumen

Optimización de Consultas

Big Data

En este caṕıtulo presentamos los detalles de dos análisis estáticos desarrollados

utilizando nuestro framework de análisis de programas presentado en el caṕıtulo

anterior.

La programación de aplicaciones Big Data se realiza a menudo utilizando len-

guajes de procesamiento de datos que combinan construcciones de estilo relacional

con operadores imperativos definidos por el usuario. Ejemplos de sistemas basados

en este paradigma son, por ejemplo, Spark [116], SCOPE [44, 117] y U-SQL [21].

Un importante componente de dichos sistemas es el optimizador de consultas que

funciona solo en el esqueleto relacional de un programa. Los operadores definidos

por el usuario (UDO) son opacos y no analizados durante la optimización. Por

lo tanto, los optimizadores de consultas a menudo pierden oportunidades para

mejorar significativamente el ahorro de recursos para aplicaciones Big Data.

El objetivo de este proyecto es inferir automáticamente información útil sobre

UDOs durante el tiempo de compilación que se puede utilizar para optimizar el

procesamiento de consultas. En particular, nos enfocamos en los programas Big

Data escritos en SCOPE, un lenguaje de procesamiento de consultas desarrollado

por Microsoft. Los SCOPE scripts reciben, analizan y devuelven tablas de datos,

similares a SQL. En la práctica, los operadores definidos por el usuario puede

153

154 RESUMEN. OPTIMIZACIÓN DE CONSULTAS BIG DATA

operar en tablas que pueden tener varios cientos de columnas y tener cientos de

GB de tamaño. De acuerdo con los expertos del equipo SCOPE, la mayoŕıa de

los recursos computacionales y de red consumidos durante la ejecución de una

consulta SCOPE es, de hecho, irrelevante para el resultado de la consulta. Por

ejemplo, SCOPE pasará todas las columnas de la tabla a un UDO aunque el

operador podŕıa usar sólo una pequeña fracción de las columnas de entrada para

producir la tabla de salida. Esto pasa ya que el sistema no tiene un conocimiento

detallado de los trabajos internos de un UDO y por lo tanto debe suponer de

forma conservadora que se utilizan todas las columnas de entrada. Las técnicas que

desarrollamos en este trabajo. analizan automáticamente los UDO y proporcionan

al optimizador de consultas esa información tan valiosa.

Evaluamos nuestros análisis en miles de scripts de consultas SCOPE que se

ejecutan internamente en Microsoft diariamente. Corroboramos que la implemen-

tación de nuestros análisis logran la robustez esperada y la corrección requerida,

mientras que al mismo tiempo son efectivos. Este trabajo se realizó en colabo-

ración con investigadores de Microsoft Research y la Universidad de Nueva York

bajo patrocinio del grupo de producto encargado de SCOPE en Microsoft, y se

publicó [56] y se presentó en la conferencia internacional sobre Fundamentos de

Ingenieŕıa de Software (FSE) en el año 2017.

Chapter 10

Other Clients of the Framework

In this chapter we provide a high-level overview of a few additional client

applications of our static program analysis framework presented in Chapter 8 in

which we have also participated.

10.1 Memory Consumption Analysis

Consume.NET1 is an open-source tool that implements the memory consump-

tion static analysis presented in [41] for .NET programs and it is entirely built on

top of our program analysis framework.

It consists in a symbolic quantitative static and flow-insensitive analysis for

computing parametric upper bounds of the number of simultaneously live objects.

The analysis builds summaries quantifying the peak amount of live objects and

escaping objects. Since it is a summary-based compositional analysis, method

summaries are built by resorting to the summaries of their callees.

In contrast to other related work that infers consumption based on recurrence

equation solving [29] or that verifies user-provided consumption annotations [43],

our analysis infers memory consumption based on symbolic calculation over itera-

tion spaces. More specifically, the technique for building summaries is essentially

based on quantifying the number of visits to statements (such as allocations and

1Source code available at: https://github.com/edgardozoppi/consume-net.

155

https://github.com/edgardozoppi/consume-net

156 CHAPTER 10. OTHER CLIENTS OF THE FRAMEWORK

method calls) over an iteration space given as an invariant predicate that involves

the formal parameters of the method under analysis. For this reason, our imple-

mentation relies on the symbolic calculator Barvinok [107] to operate and solve

complex non-linear symbolic arithmetical expressions.

In order to obtain all the required information, the analysis makes use of the

results computed by a couple of additional static analyses, some of which are

already provided by the framework, such as the points-to analysis to construct

not only a points-to graph for each method, but also a call graph for the entire

program, as well as the escape analysis to determine which objects escape their

allocating method.

10.2 Boogie Bytecode Translator

Boogie [73] is an intermediate verification language, intended as a layer on

which to build program verifiers for other languages. Several program verifiers

have been built in this way, including VCC and HAVOC verifiers for C, as well as

the verifiers for Dafny, Chalice and Spec#.

Boogie is also the name of a tool [34], that accepts the Boogie language as

input, optionally infers some invariants in the given Boogie program, and then

generates verification conditions that are passed to a satisfiability modulo theories

(SMT) solver such as Z3 [50].

BCT [36] is a translator from .NET CIL bytecode into the Boogie verification

language. It provides a vehicle for converting any program checker for Boogie into

a checker for a language that compiles to the .NET platform. It was built using

CCI [15] to load the CIL bytecode of the .NET program to be translated.

However, given the several issues and bugs found and reported for BCT, and

the lack of support of this tool in the last couple of years, a new open-source

project named TinyBCT was recently created to overcome those issues.

While still under development, TinyBCT2 is heavily inspired by the original

BCT tool and it is entirely built on top of our static program analysis framework.

Among other features of the framework, it makes use of the TAC intermediate rep-

2Source code available at: https://github.com/m7nu3l/TinyBCT.

https://github.com/m7nu3l/TinyBCT

10.3. THROWN EXCEPTIONS ANALYSIS 157

resentation and both copy propagation code transformations. It has full support

for correctly translating lambdas and delegates, and utilizes the class hierarchy call

graph analysis (CHA) to simulate, using nested conditional checks, the dynamic

method dispatch of virtual method invocations and interface member accesses,

as described in [36]. In order to support non-analyzable external libraries refer-

enced by the program to be translated into Boogie, TinyBCT synthesizes TAC

instructions for dummy method bodies to generate a simplified version of the real

behavior of the methods defined in those libraries.

10.3 Thrown Exceptions Analysis

Contractor.NET3 [119, 118] is an automated open-source tool that takes a piece

of software and generates a finite abstract representation of it, named EPA. By

analyzing the resulting finite state machine, the user can discover potential anoma-

lies in the input contract such as invariants, preconditions or postconditions that

might be too weak, therefore allowing unwanted behavior. It also allows the user

to augment the original contract specification for the input class with the inferred

typestate information, therefore enabling the verification of client code. Contrac-

tor.NET support two different backends to solve reachability queries needed to

construct an EPA for a class: the Code Contracts static checker Clousot [78], based

on abstract interpretation, and Corral [68], a bounded software model checker.

Contractor.NET mostly works at the AST level and was primarily built using

CCI [15] to load the CIL bytecode of the .NET program under analysis. However,

it makes use of our program analysis framework to implement a simple yet useful

static analysis to collect all the exception types that might be thrown by a partic-

ular method during run-time. Note that the exceptions can be directly thrown by

a given method or indirectly thrown by some other method transitively called by

it. For this reason, we designed the analysis to build summaries for each analyzed

method. They consist in a set of exception types that the method associated with

the summary may throw at run-time during its execution. Summaries are used

3Source code available at: http://lafhis.dc.uba.ar/contractor/contractor.net-web/.

http://lafhis.dc.uba.ar/contractor/contractor.net-web/

158 CHAPTER 10. OTHER CLIENTS OF THE FRAMEWORK

to compute other summaries. At each method call site the summary correspond-

ing to the callee is applied in the context of the caller to build its own summary.

Therefore, it is a summary-based inter-procedural static analysis.

To resolve invocation targets the analysis makes use of the class hierarchy

call graph analysis (CHA) provided by our framework. In the presence of non-

analyzable external libraries referenced by the program, the analysis utilizes syn-

thetic summaries to inform the set of possible thrown exceptions of the methods

defined in those libraries. A more sophisticated analysis could filter exception

types that are known to be catched by an exception handler. In this scenario,

the provided class hierarchy (CH) analysis would be useful to determine all the

exception subtypes that can be catched by a particular exception handler.

Resumen

Otros Clientes del Framework

En este caṕıtulo proporcionamos una descripción general de alto nivel de al-

gunas aplicaciones cliente adicionales de nuestro framework de análisis estático de

programas presentado en el Caṕıtulo 8 en las cuales también hemos participado.

Análisis de Consumo de Memoria

Consume.NET4 Es una herramienta de código abierto que implementa el análi-

sis estático de consumo de memoria presentado en [41] para programas .NET y

está completamente construido sobre nuestro framework de análisis de programas.

Consiste en un análisis simbólico, cuantitativo, estático e insensible a flujo para

calcular cotas superiores paramétricas del número de objetos simultáneamente

vivos. El análisis crea resúmenes que cuantifican la cantidad máxima de objetos

vivos y los objetos que escapan. Como se trata de un análisis composicional basado

en resúmenes de métodos, los mismos se construyen utilizando los resúmenes de

sus métodos invocados.

En contraste con otros trabajos relacionados que infieren consumo basado en la

resolución de ecuaciones de recurrencia [29] o que verifican anotaciones de consumo

proporcionadas por el usuario [43], nuestro análisis infiere el consumo de memoria

basado en cálculos simbólicos sobre espacios de iteración. Por esta razón, nues-

tra implementación utiliza la calculadora simbólica Barvinok [107] para operar y

resolver complejas expresiones aritméticas simbólicas no lineales.

4Código fuente disponible en: https://github.com/edgardozoppi/consume-net.

159

https://github.com/edgardozoppi/consume-net

160 RESUMEN. OTROS CLIENTES DEL FRAMEWORK

Traductor de Bytecode a Boogie

Boogie [73] es un lenguaje de verificación intermedio, pensado como una capa

sobre la cual se pueden construir verificadores de programas para otros lenguajes.

Se han construido varios verificadores de programas de esta manera, incluidos

los verificadores VCC y HAVOC para C, aśı como también los verificadores para

Dafny, Chalice y Spec#.

Boogie también es el nombre de una herramienta [34], que acepta el lenguaje

Boogie como entrada, opcionalmente infiere algunos invariantes en el programa

Boogie dado, y luego genera condiciones de verificación que se pasan a un solucio-

nador de satisfacibilidad módulo teoŕıas (SMT) como Z3 [50].

BCT [36] es un traductor de .NET CIL bytecode al lenguaje de verificación

Boogie. Proporciona un veh́ıculo para convertir cualquier verificador de programas

para Boogie en un verificador para un lenguaje que compila para la plataforma

.NET. Fue construido utilizando CCI [15] para cargar el CIL bytecode del programa

.NET que quiere traducir.

Sin embargo, dados los diversos problemas y errores encontrados e informa-

dos en BCT, y la falta de soporte de esta herramienta en los últimos años, un

nuevo proyecto de código abierto llamado TinyBCT5 se creó recientemente para

solucionar esos problemas.

Análisis de Excepciones Lanzadas

Contractor.NET6 [119, 118] es una herramienta de código abierto que toma

una componente de software y genera una representación abstracta finita del mis-

mo, llamada EPA. Al analizar la máquina de estados finitos resultante, el usuario

puede descubrir posibles anomaĺıas en el contrato de entrada, como invariantes,

condiciones previas o condiciones posteriores que pueden ser demasiado débiles,

permitiendo comportamiento no deseado. También le permite al usuario aumentar

5Código fuente disponible en: https://github.com/m7nu3l/TinyBCT.
6Código fuente disponible en: http://lafhis.dc.uba.ar/contractor/contractor.

net-web/.

https://github.com/m7nu3l/TinyBCT
http://lafhis.dc.uba.ar/contractor/contractor.net-web/
http://lafhis.dc.uba.ar/contractor/contractor.net-web/

RESUMEN. OTROS CLIENTES DEL FRAMEWORK 161

la especificación de contratos original para la clase de entrada con la información

de typestate inferida, permitiendo la verificación de código cliente. Contractor.NET

admite dos backends diferentes para resolver las consultas de alcanzabilidad ne-

cesarias para construir una EPA para una clase: el verificador estático de Code

Contracts Clousot [78], basado en interpretación abstracta, y Corral [68], un veri-

ficador de modelos de software acotado.

Contractor.NET trabaja principalmente a nivel de AST y se creó principal-

mente utilizando CCI [15] para cargar el CIL bytecode del programa .NET bajo

análisis. Sin embargo, hace uso de nuestro framework de análisis de programas

para implementar un análisis estático simple pero a su vez útil para recopilar to-

dos los tipos de excepciones que un determinado método podŕıa lanzar durante el

tiempo de ejecución.

Chapter 11

Related Work

Many closely related program analysis resources exist, but only a few sup-

port applications targeting the .NET platform. For this reason, Ferrara et al. [55]

presents a tool that converts .NET CIL to Java bytecode for static analysis lever-

aging. A formal translation is introduced and proved sound with respect to the

language semantics. The main result of this work is to take advantage of already

existing, mature and sound analyzers for Java bytecode by applying them to the

(translated) CIL bytecode.

However, it does not support some specific features of .NET that are not avail-

able in Java, such as unsafe code and low-level pointer manipulation. Additionally,

delegates and more complex language constructs such as async and await state-

ments are translated using reflection which is often not very well supported by

many Java static analyzers, leading to precision loss due to the translation pro-

cess. Instead, we consider that both platforms are different enough to justify the

development of a specific static analysis framework for .NET programs.

Analysis of .NET Programs

Most of the following tools and libraries are related but orthogonal to our work.

Moreover, our framework can be extended by implementing a code provider for

each of them. That way, it could be easily adopted by applications that need to

perform static analyses but are already built on top of those libraries. In addition,

163

164 CHAPTER 11. RELATED WORK

non of these tools implement or provide a sequential intermediate representation

like three-address code (TAC). They all work at the abstract syntax-tree (AST)

level or directly at the bytecode level, and as discussed in Section 8.2, these are

not adequate code representations for implementing static analyses.

Roslyn. The .NET Compiler Platform (Roslyn) [84] is the official open-source

C# and Visual Basic compiler developed by Microsoft. It provides rich code

analysis features that enable building tools with the same APIs that are used by

the Visual Studio IDE. It counts with full Microsoft support and its widely used

by a large community.

The core mission of the Roslyn APIs is opening up the black boxes and al-

lowing tools and end users to share in the wealth of information compilers have

about code. Instead of being opaque source-code-in and object-code-out trans-

lators, through Roslyn, compilers become platforms: APIs that can be used for

code-related tasks in client tools and applications. It creates many opportunities

for innovation in areas such as meta-programming, code generation and interac-

tive use of programming languages, among others. Roslyn enable developers to

build analyzers and code fixes that find and correct coding mistakes. Analyzers

understand the syntax and structure of code and detect practices that should be

corrected. Code fixes provide one or more suggested fixes for addressing coding

mistakes found by analyzers. They can point out practices that often lead to

bugs (code smells), unmaintainable code or standard guideline validation (coding

styles).

It defines distinct concrete syntax-tree data structures for each language, as

well as a more general and unique AST for both of them, called IOperation.

Several compiler phases including parsing, semantic checking and code generation

are also exposed to the end user. Semantic analysis is restricted to recognizing the

role of token identifiers (similar to querying the symbol table of the compiler) and

the type inference/checking of expressions.

It is a great tool to build syntax-based code analysis or to compile on the

fly arbitrary source code. However, it does not provide a useful intermediate

165

representation, such as a TAC, suitable to implement a static analysis on top of it.

Only complex tree-based code representations are available. Also, because of being

a compiler, it takes source code as input, so is not possible to analyze third-party

libraries referenced by the program under analysis for which its source code is not

available. Neither to analyze .NET programs written in a different programming

language other than C# or Visual Basic, such as F#. Classical control-flow and

data-flow analyses are not provided either1. However, it allows users to efficiently

modify and transform source code and to generate executable .NET programs.

CCI. The Common Compiler Infrastructure (CCI) [15] is a set of open-source

libraries developed by Microsoft Research for creating, reading and manipulating

.NET metadata and CIL bytecode. It comes in two flavors: CCI Metadata API

and CCI Code & AST API. Most applications that use the latter also make use

of the former, so typically both APIs are used together.

The CCI Metadata API allows applications to efficiently read or modify .NET

assemblies, modules and debugging files (PDBs). It supports the functionality

of the .NET System.Reflection and System.Reflection.Emit APIs, but with

much better performance. It also provides additional functionality that is not

available in either .NET API.

The CCI Code & AST API is essentially an extension of CCI Metadata and

provides similar functionality. However, instead of representing method bodies as

a flat list of CIL instructions, the CCI Code & AST API represents method bodies

with a language-independent hierarchical object model that is similar to source

code. It subsumes the functionality provided by System.CodeDom API.

These libraries are complementary to our work, since they provide access to

raw CIL bytecode in the case of Metadata API, or an ad hoc decompiled AST

version of C# in the case of Code & AST API, although it does not support

many of the latest features added to the language in the last couple of years. Non

of these libraries provide a TAC representation suitable for implementing static

1Roslyn provides related but very restricted APIs to compute statement reachability and

lexical scoping of local variables.

166 CHAPTER 11. RELATED WORK

analyses, nor offer classical control-flow and data-flow analyses. However, it allows

the transformation and generation of .NET programs using the object model or

by direct bytecode manipulation.

Initially, our framework made use and built on top of the CCI Metadata API

to read .NET assemblies and CIL bytecode. Later on, we decided to decouple

our implementation from directly using CCI because of the many issues and bugs

we found during development and the lack of support given to these currently

deprecated libraries. Instead, we have opted to use the new official and cross-

platform System.Reflection.Metadata API fully supported by Microsoft (and

used by Roslyn internally), that provides the same features more efficiently and up

to date. However, it is still possible to use CCI within our framework through the

CCI code provider we have implemented, to load metadata and construct instances

of our more general object model and simplified bytecode.

Cecil. Mono.Cecil [8] is an open-source library to generate and inspect programs

and libraries in the ECMA [14] CIL format. Cecil allows reading .NET binaries

using a simple and powerful object model, without having to load assemblies to

use Reflection. It also enables the modification of .NET binaries, by adding new

metadata structures or altering CIL bytecode. Cecil has been around since 2004

and is widely used in the .NET community because of its up to date features and

active support.

This library provides almost the same functionality of CCI Metadata API, thus

it has the same benefits but also lacks the same features required to easily imple-

ment static analyses, such us an adequate intermediate code representation. Only

raw CIL bytecode is provided with no built-in static analyses included. In fact,

Cecil could be used to implement an additional code provider for our framework.

ILSpy. ILSpy [16] is an open-source .NET metadata browser and decompiler

tool. Many front-ends are available, including a standalone GUI application com-

parable to our Analysis Explorer tool and a Visual Studio extension plug-in.

This tool provides similar functionality than CCI Code & AST API, but is cur-

rently supported and up to date with the latest language features. For instance, it

167

correctly decompiles async code and generates C# source code that makes use of

most syntactic sugar language constructs. Internally, it takes advantage of Cecil to

load .NET metadata and CIL bytecode. The reverse engineer process of decompi-

lation is done by several code transformation phases that convert the original CIL

bytecode to a tree-based code representation similar to an AST. At each phase,

specific low-level code patterns are used to recognize higher-level constructions.

Even that ILSpy internally implements a few static analyses required by the

decompilation process, its goal is not to provide a general .NET program analysis

framework. Instead, it completely focus on generating human readable C# source

code from .NET assemblies.

Program Analysis Frameworks

There are several frameworks that provide the same kind of features, but to the

best of our knowledge, all of them target different platforms. We are not aware of

any other publicly available framework supporting the analysis of .NET programs.

Soot. As mentioned before, our work is inspired in the Java optimization frame-

work Soot [105, 70]. Since it was first released in 2000, it has been widely used

for educational purposes and research in general, and it is currently supported by

a large program analysis community around the world. Soot allows the manipu-

lation, analysis and transformation of Java programs. Its key features include a

simplified TAC intermediate representation of Java bytecode, pointer analysis and

call graph construction algorithms and the ability to produce executable code as

output. While Jimple is the most popular and fundamental IR provided, a SSA

form is also available.

The design of our framework was greatly influenced by Soot. For this reason,

both provide very similar features, although Soot is a much more mature project,

with many users and client applications, and has a wealth of analyses already

implemented on top of it. However, our framework design tries to be more general

to support not only .NET related programming languages, but also allows the

possibility to analyze other similar platforms in the future.

168 CHAPTER 11. RELATED WORK

WALA. The T. J. Watson Libraries for Analysis (WALA) [18] provide static

analysis capabilities for Java bytecode and related languages. It also supports the

analysis of JavaScript applications. The initial WALA infrastructure was devel-

oped as part of a IBM research project. In 2006, IBM donated the software to the

community under an open-source license and since then, many research projects

and publications made use of it.

WALA consists in a set of Java libraries for static and dynamic program analy-

sis. Their key design goals are robustness, efficiency and extensibility. Instead, our

framework design prioritizes simplicity and usability over performance. Similar to

our general language-agnostic approach, it supports multiple language front-ends,

enabling the analysis of both Java bytecode and JavaScript source code. They

also claim to have an internal port for .NET CIL, but there is no further infor-

mation available about it. WALA mainly focuses on computing analysis data,

with limited code transformation support. Its main SSA-based TAC intermediate

representation is immutable, with no provided code generator. Some of the main

features supported by WALA are context-sensitive pointer analysis and call graph

construction, inter-procedural data-flow analysis solver and other general analysis

utilities and data structures.

LLVM. The LLVM Compiler Infrastructure [17] is a collection of modular and

reusable compiler and toolchain technologies, often used to develop compiler front-

ends and back-ends. Despite its name, LLVM has little to do with traditional

virtual machines. Since it first started in 2000, it has grown to be an umbrella

project consisting of a number of subprojects, many of which are used in production

by a wide variety of commercial and open-source applications, as well as being

widely used in academic research. A major strength of LLVM is its versatility,

flexibility and reusability.

The LLVM Core libraries are written in C++ and provide a modern source

and target-independent optimizer, along with code generation support for many

popular CPUs. These libraries are built around a well specified code representation

known as the LLVM intermediate representation (LLVM IR), which is a low-level,

169

SSA-based and strongly typed assembly language. Related tools built on top of

the core libraries are also available, including compilers, debuggers and linkers.

It provides a wealth of state-of-the-art static analyses and code transformations

already implemented and ready to be used in client applications. However, so far

there is no support for translating CIL bytecode to the LLVM IR or a front-end

for any of the .NET framework programming languages.

Resumen

Trabajo Relacionado

Existen muchos recursos de análisis de programas estrechamente relacionados,

pero solamente unos pocos soportan aplicaciones basadas en la plataforma .NET.

Por este motivo, Ferrara et al. [55] presenta una herramienta que convierte .NET

CIL al bytecode de Java para beneficio de los análisis estáticos. Se introduce una

traducción formal y se prueba con respecto a la semántica del lenguaje. El principal

resultado de este trabajo es aprovechar los analizadores maduros y correctos ya

existentes para el bytecode de Java y aplicarlos al bytecode CIL traducido.

Sin embargo, no soporta algunas caracteŕısticas espećıficas de .NET que no

están disponibles en Java, como el uso de código inseguro y la manipulación de

punteros a bajo nivel. Además, los delegates y otras construcciones del lenguaje

más complejas como las instrucciones async y await se traducen utilizando reflec-

tion que comúnmente no es soportado por muchos analizadores estáticos de Java,

lo que ocasiona una pérdida de precisión debido al proceso de traducción. Por lo

tanto, consideramos que ambas plataformas son lo suficientemente diferentes co-

mo para justificar el desarrollo de un framework de análisis estático espećıfico para

programas .NET.

Análisis de Programas .NET

La mayoŕıa de las herramientas y bibliotecas están relacionadas pero son or-

togonales a nuestro trabajo. Además, nuestro framework puede extenderse imple-

171

172 RESUMEN. TRABAJO RELACIONADO

mentando un proveedor de código para cada una de ellas. De esa manera, podŕıa

ser fácilmente adoptado por aplicaciones que necesitan realizar análisis estáticos

pero que ya están construidas sobre otras bibliotecas. Además, ninguna de estas

herramientas implementa o proporciona una representación intermedia secuencial

como es el código de tres direcciones (TAC). Todos ellos trabajan al nivel del árbol

de sintaxis abstracta (AST) o directamente al nivel del bytecode, y como se ex-

plica en la Sección 8.2, estas no son representaciones de código adecuadas para

implementar análisis estáticos de programas.

Herramientas para el Análisis de Programas

Existen varios frameworks que proporcionan el mismo tipo de caracteŕısticas,

pero según sabemos, todos ellos se enfocan en plataformas diferentes. No tenemos

conocimiento de ningún otro framework disponible públicamente que soporte el

análisis de programas .NET.

Part IV

Epilogue

173

Chapter 12

Conclusions

In this thesis we present the design and implementation of a wide range of static

analyses for the .NET platform. We mainly focus in scalability, since this is the

most important concern when applying static analysis techniques to real-world,

industrial-size programs. We target the .NET platform given its popularity in

the industry and the rich set of features it provides, ranging from object-oriented

to functional paradigms, including concurrent programming and low-level pointer

manipulation. The combination of all these features make static analysis very

challenging.

As modern development is increasingly moving to large online cloud-backed

repositories such as GitHub, BitBucket or Visual Studio Team Services, is natural

to wonder what kind of analysis can be performed on large bodies of code. In the

first part of this thesis, we explore an analysis architecture in which static analysis

is executed on a distributed cluster composed of legacy VMs available from a

commercial cloud provider. In this context, we present a static analysis approach

based on the actor model and designed for elasticity (i.e., to scale gracefully with

the size of the input).

To demonstrate the potential of our approach, we show how a typical call

graph analysis can be implemented and deployed in Microsoft Azure. Addition-

ally, we extend our distributed call graph analysis to support incremental source

code updates submitted to centralized source control repositories like Git, and

175

176 CHAPTER 12. CONCLUSIONS

show how the previously computed results can be updated without having to re-

compute them from scratch. Only reanalyzing the modified parts of the program

is required, giving a significant performance improvement. We experimentally val-

idate our analyses using a combination of both synthetic and real benchmarks.

Our call graph analysis implementation is able to handle inputs that are almost

10 million LOC in size. Our results show that our analysis scales well in terms

of memory pressure independent of the input size, as we add more VMs. De-

spite using stock hardware and incurring a non-trivial communication overhead,

our processing time for some of the benchmarks of close to 1 million LOC can

be about 5 minutes, excluding compilation time. As the number of analysis VMs

increases, we show that the analysis time does not suffer. We also demonstrate

that querying the results can be performed with a median latency of 15 ms. Lastly,

our incremental call graph analysis shows significant time savings of about 250X

average speedup in comparison to the full exhaustive analysis.

At the same time, the poor offer of program analysis related tools targeting

the .NET platform, and the difficulty of analyzing .NET programs with the few

existing available ones, puts in evidence an arising necessity of providing better

tools. In the second part of this thesis, we present a static program analysis

framework specifically designed for analyzing .NET programs. We also describe

all of its features in detail, including a few intermediate code representations such

as a three-address code suitable for implementing a static analysis on top of it, and

a rich set of analyses and transformations such as type inference, control-flow and

data-flow analyses, and call graph and points-to graph construction, among many

others. We don’t know of any other static analysis framework publicly available

to the .NET community providing these kind of features that developers can use

to build their own analyses for the .NET platform.

To demonstrate the capabilities of our framework, we also present a few client

applications that take advantage of its features to implement their own custom

analyses targeting the .NET platform. Including a Big Data query optimization

analysis to automatically detect unused columns and dependencies between input

and output tables of user-defined operators written in a .NET-based programming

language like C#.

12.1. FUTURE WORK 177

12.1 Future Work

As future work we plan to investigate the performance of other instances of

our distributed framework and understand the impact of changing the granularity

of actors (e.g., from basic blocks to modules). We want to combine distributed

processing with incremental analysis: we are ultimately interested in deploying an

Azure-based distributed incremental analysis that can respond quickly to frequent

updates in the code repository. We would also like to incorporate the analysis into

an IDE and perform user studies.

Additionally, we plan to further evaluate our incremental call graph analysis

by performing experiments to help us understand in which kind of scenarios the

incremental analysis version is more efficient in comparison to just running the

full exhaustive analysis. We would like to find a heuristic to determine which

analysis version is more convenient to use considering the percentage of source

code changed (i.e., by measuring modified documents or methods).

Regarding our .NET static program analysis framework, we plan to complete

the support for Java bytecode to also enable the analysis of Java related programs.

We are also very interested in supporting the generation of executable .NET as-

semblies from our simplified bytecode or even directly from our three-address code.

An alternative but related approach would be the implementation of an interpreter

for those intermediate representations. Additionally, we want to provide an imple-

mentation of the IFDS/IDE framework for performing inter-procedural data-flow

analysis efficiently.

Finally, we want to migrate the code base to target .NET Core instead of the

.NET Framework to support cross-platform development. We also would like to

integrate our framework with the Visual Studio Code text editor by developing an

extension with similar features to the one we already have for the full Visual Studio

IDE. In addition, we plan to provide new analyses and code transformations, as

well as actively support the framework by fixing bugs, implementing more tests

and writing better documentation for the community.

Resumen

Conclusiones

En esta tesis presentamos el diseño y la implementación de una amplia ga-

ma de análisis estáticos para la plataforma .NET. Nos centramos principalmente

en la escalabilidad, ya que esta es la problemática más importante a la hora de

aplicar técnicas de análisis estático a programas industriales de tamaño real. Nos

enfocamos en la plataforma .NET dada su popularidad en la industria y el am-

plio conjunto de caracteŕısticas que ofrece, que van desde paradigmas orientados

a objetos hasta funcionales, incluyendo programación concurrente y manipulación

de punteros a bajo nivel. La combinación de todas estas caracteŕısticas hace del

análisis estático un desaf́ıo.

Dado que el desarrollo moderno se está moviendo cada vez más a grandes repo-

sitorios en ĺınea respaldados en la nube, como GitHub, BitBucket o Visual Studio

Team Services, es natural preguntarse qué tipo de análisis se puede realizar en

grandes cantidades de código. En la primera parte de esta tesis, exploramos una

arquitectura de análisis en la que el análisis estático se ejecuta en un cluster dis-

tribuido compuesto por máquinas virtuales disponibles por medio de un proveedor

comercial de la nube. En este contexto, presentamos un enfoque de análisis estático

basado en el modelo de actores y diseñado con foco en elasticidad (es decir, para

escalar con gracia con el tamaño de la entrada).

Al mismo tiempo, la escasa oferta de herramientas relacionadas con el análisis

de programas para la plataforma .NET, y la dificultad de analizar los programas

179

180 RESUMEN. CONCLUSIONES

.NET con las pocas existentes, ponen en evidencia una necesidad creciente de pro-

porcionar mejores herramientas. En la segunda parte de esta tesis, presentamos

un marco de análisis estático de programas diseñado espećıficamente para ana-

lizar programas .NET. También describimos todas sus caracteŕısticas en detalle,

incluyendo algunas representaciones intermedias de código, como un código de tres

direcciones adecuado para implementar un análisis estático, y un amplio conjun-

to de análisis y transformaciones como la inferencia de tipos, análisis de flujo de

control y flujo de datos, y construcción de call graphs y points-to graphs, entre mu-

chos otros. No conocemos ningún otro framework de análisis estático disponible

públicamente para la comunidad .NET que proporcione este tipo de funcionali-

dades, que los desarrolladores pueden usar para crear sus propios análisis para la

plataforma .NET.

Appendix

The following tables and figures show some additional analysis statistics, in-

cluding analysis and compilation times, both in terms of absolute values and com-

pared to each other, as well as memory consumption as a function of the number

of worker VMs used.

X1,000 X10,000 X100,000 X1,000,000

Machines 1 2 4 8 16 32 64 1 2 4 8 16 32 64 4 8 16 32 64 16 32 64

Compilation 6 11 9 20 28 32 49 48 57 68 58 67 72 88 188 205 204 207 259 281 215 352

Analysis 25 25 26 22 22 21 28 130 115 77 52 52 47 41 609 371 298 237 284 3,704 2,666 2,514

Azure-PW ILSPY ShareX

Machines 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Compilation 305 266 269 272 276 285 308 121 115 177 216 129 189 165 85 94 88 105 108 121 162

Analysis 670 373 298 238 210 183 190 1,281 1,214 1,063 931 677 576 568 280 246 190 152 122 105 111

Table A.1: Analysis and compilation times for synthetic and real benchmarks

(in seconds).

181

182 APPENDIX

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4

1
6

6
4 2 8

3
2 4

1
6

6
4

3
2 1 4

1
6

6
4 2 8

3
2 1 4

1
6

6
4

X1000 X10000 X100000 X1000000 Azure-PW ILSpy ShareX

Compilation Analysis

Figure A.1: Compilation time compared to analysis time for the benchmarks across

a number of VM configurations, in ms. Analysis time can be relatively large when

fewer VMs are involved. For 16 or 64 VMs, the analysis time can often be half of

compilation time.

APPENDIX 183

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 2 4 8 16 32 64

Figure A.2: Average memory consumption in KB/method, as a function of the

number of worker VMs used, averaged over all the synthetic benchmarks, normal-

ized by the number of reachable methods. We similarly observe a steady decrease

as the number of worker VMs goes up. Fitting an exponential trend line to this

data gives us the following formula: M = 169.09/e0.728·m with R2 = 0.99545.

List of Algorithms

1 Distributed worklist algorithm . 26

2 Local propagation algorithm for adding types 36

3 Local propagation algorithm for removing types 53

4 Incremental analysis algorithm . 56

List of Figures

2.1 Analysis architecture . 21

3.1 Variable type analysis rules . 35

3.2 Definition of DELTA function . 37

3.3 Definition of PACK function . 38

3.4 Definition of UNPACK function . 39

3.5 Propagation graph for Example 1 40

3.6 Code fragment for Example 2 . 41

4.1 Code fragments for Example 3 . 50

4.2 Code fragments for Example 4 . 58

5.1 Logical organization of grains . 65

5.2 The orchestrator approach . 67

5.3 The multi-queue approach . 68

5.4 Code fragments for Example 6 . 69

5.5 Cloud-based deployment of our analysis 71

5.6 An experimental online IDE . 72

6.1 Average memory consumption . 82

6.2 Elapsed analysis time . 83

6.3 Mean and median query time . 85

6.4 Exhaustive and incremental analysis time 87

8.1 Code fragments for Example 7 . 106

8.2 Code fragments for Example 8 . 109

8.3 Code fragments for Example 9 . 114

LIST OF FIGURES

8.4 Code fragments for Example 10 . 115

8.5 Code fragments for Example 11 . 117

8.6 Dominance relations . 119

8.7 Dominance frontier relations . 120

8.8 Control dependence relation . 121

8.9 Structure of loops in control-flow graphs 122

8.10 T1-T2 control-flow graph transformations 122

8.11 Analysis Explorer . 128

9.1 SCOPE UDO example . 139

9.2 Closure representation of an UDO 140

9.3 Accessed columns analysis pipeline 141

9.4 Columns dependency analysis pipeline 146

A.1 Analysis and compilation times compared 182

A.2 Average memory consumption . 183

List of Tables

5.1 Examples of REST queries . 73

6.1 Information about synthetic benchmarks 80

6.2 Information about real-world projects 81

6.3 Information about real-world commits 81

9.1 Statistics for real-world UDOs . 151

A.1 Analysis and compilation times . 181

References

[1] Apache Subversion (SVN). http://subversion.apache.org. Retrieved

January, 2019.

[2] BitBucket. https://bitbucket.org. Retrieved January, 2019.

[3] Git. https://git-scm.com. Retrieved January, 2019.

[4] GitHub. https://github.com. Retrieved January, 2019.

[5] GitHut: a small place to discover languages in GitHub. https://githut.

info. Retrieved January, 2019.

[6] Linux Cross Referencer (LXR). http://lxr.linux.no/. Retrieved January,

2019.

[7] Mercurial. https://www.mercurial-scm.org. Retrieved January, 2019.

[8] Mono.Cecil. http://cecil.pe. Retrieved January, 2019.

[9] .NET customers. https://dotnet.microsoft.com/platform/customers.

Retrieved January, 2019.

[10] .NET is open-source. https://dotnet.microsoft.com/platform/

open-source. Retrieved January, 2019.

[11] .NET programming languages. https://dotnet.microsoft.com/

languages. Retrieved January, 2019.

i

http://subversion.apache.org
https://bitbucket.org
https://git-scm.com
https://github.com
https://githut.info
https://githut.info
http://lxr.linux.no/
https://www.mercurial-scm.org
http://cecil.pe
https://dotnet.microsoft.com/platform/customers
https://dotnet.microsoft.com/platform/open-source
https://dotnet.microsoft.com/platform/open-source
https://dotnet.microsoft.com/languages
https://dotnet.microsoft.com/languages

ii REFERENCES

[12] PYPL: PopularitY of Programming Language index. http://pypl.github.

io/PYPL.html. Retrieved January, 2019.

[13] Representational State Transfer (REST). https://en.wikipedia.org/

wiki/Representational_state_transfer. Retrieved January, 2019.

[14] Standard ECMA-335: Common Language Infrastructure (CLI). http://

www.ecma-international.org/publications/standards/Ecma-335.htm.

Retrieved January, 2019.

[15] The Common Compiler Infrastructure (CCI). https://github.com/

Microsoft/cci. Retrieved January, 2019.

[16] The ILSpy .NET Decompiler. http://www.ilspy.net/. Retrieved January,

2019.

[17] The LLVM Compiler Infrastructure. https://llvm.org/. Retrieved Jan-

uary, 2019.

[18] The T. J. Watson Libraries for Analysis (WALA). http://wala.

sourceforge.net/. Retrieved January, 2019.

[19] TIOBE Programming Community index. https://www.tiobe.com/

tiobe-index. Retrieved January, 2019.

[20] Top computer languages. http://statisticstimes.com/tech/

top-computer-languages.php. Retrieved January, 2019.

[21] U-SQL data processing language. http://usql.io/. Retrieved January,

2019.

[22] Visual Studio Team Services. https://www.visualstudio.com/

team-services. Retrieved January, 2019.

[23] What is .NET? https://dotnet.microsoft.com/learn/dotnet/

what-is-dotnet. Retrieved January, 2019.

http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://github.com/Microsoft/cci
https://github.com/Microsoft/cci
http://www.ilspy.net/
https://llvm.org/
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
http://statisticstimes.com/tech/top-computer-languages.php
http://statisticstimes.com/tech/top-computer-languages.php
http://usql.io/
https://www.visualstudio.com/team-services
https://www.visualstudio.com/team-services
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet

REFERENCES iii

[24] O. Agesen. Concrete type inference: delivering object-oriented applications.

PhD thesis, Stanford University, 1996.

[25] O. Agesen and U. Hölzle. Type feedback vs. concrete type inference: A

comparison of optimization techniques for object-oriented languages. ACM

SIGPLAN Notices, 1995.

[26] G. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-

tems. MIT Press, 1986.

[27] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.

[28] A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani. Paralleliz-

ing top-down interprocedural analyses. In Proceedings of the Conference on

Programming Language Design and Implementation, 2012.

[29] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap space analysis for

garbage collected languages. Science of Computer Programming, 78(9):1427–

1448, 2013.

[30] K. Ali and O. Lhoták. Application-only call graph construction. In Proceed-

ings of the European Conference on Object-Oriented Programming, 2012.

[31] L. O. Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.

[32] A. W. Appel. Modern Compiler Implementation in Java. Cambridge Uni-

versity Press, 2002.

[33] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function

calls. In Proceedings of the Conference on Object-oriented Programming,

Systems, Languages, and Applications, 1996.

[34] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.

Boogie: A modular reusable verifier for object-oriented programs. In F. S.

iv REFERENCES

de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal

Methods for Components and Objects: 4th International Symposium, FMCO

2005, volume 4111 of LNCS, pages 364–387, 2006.

[35] M. Barnett, M. Fähndrich, F. Logozzo, and D. Garbervetsky. Annotations

for (more) precise points-to analysis. In IWACO, pages 11–18, 2007.

[36] M. Barnett and S. Qadeer. BCT: A translator from MSIL to Boogie. In

Seventh Workshop on Bytecode Semantics, Verification, Analysis and Trans-

formation, 2012.

[37] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to anal-

ysis using bdds. In Proceedings of the Conference on Programming Language

Design and Implementation, 2003.

[38] P. A. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans:

Distributed virtual actors for programmability and scalability. Technical

Report MSR-TR-2014-41, Microsoft Research, 2014.

[39] B. Blanchet. Escape analysis: correctness proof, implementation and exper-

imental results. In In POPL, pages 25–37. ACM, 1998.

[40] J. Bornholt and E. Torlak. Scaling program synthesis by exploiting existing

code. Machine Learning for Programming Languages, 2015.

[41] V. Braberman, D. Garbervetsky, S. Hym, and S. Yovine. Summary-based

inference of quantitative bounds of live heap objects. Science of Computer

Programming, 92:56–84, 2014.

[42] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving

fast with software verification. In NASA Formal Methods Symposium, pages

3–11. Springer, 2015.

REFERENCES v

[43] R. Castaño, J. P. Galeotti, D. Garbervetsky, J. Tapicer, and E. Zoppi. On

Verifying Resource Contracts using Code Contracts. In Proceedings of the

First Latin American Workshop on Formal Methods, (LAFM), 2013.

[44] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and

J. Zhou. Scope: easy and efficient parallel processing of massive data sets.

Proceedings of the VLDB Endowment, 1(2):1265–1276, 2008.

[45] R. Chatterjee, B. G. Ryder, and W. A. Landi. Complexity of concrete type-

inference in the presence of exceptions. In Proceedings of the Conference on

Object-oriented Programming, Systems, Languages, and Applications, 1998.

[46] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance

algorithm. Software Practice & Experience, 4(1-10):1–8, 2001.

[47] P. Cousot. Asynchronous iterative methods for solving a fixed point system

of monotone equations in a complete lattice. Technical report, Laboratoire

IMAG, Université scientifique et médicale de Grenoble, 1977.

[48] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of

logic and computation, 2(4):511–547, 1992.

[49] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Efficiently computing static single assignment form and the control depen-

dence graph. ACM Transactions on Programming Languages and Systems

(TOPLAS), 13(4):451–490, 1991.

[50] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International

conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008.

[51] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented pro-

grams using static class hierarchy analysis. In European Conference on

Object-Oriented Programming, pages 77–101. Springer, 1995.

vi REFERENCES

[52] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language

and infrastructure for analyzing ultra-large-scale software repositories. In

Proceedings of the International Conference on Software Engineering. IEEE

Press, 2013.

[53] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining billions of

ast nodes to study actual and potential usage of Java language features. In

Proceedings of the International Conference on Software Engineering, 2014.

[54] R. Dyer, H. Rajan, and T. N. Nguyen. Declarative visitors to ease fine-

grained source code mining with full history on billions of ast nodes. In

ACM SIGPLAN Notices. ACM, 2013.

[55] P. Ferrara, A. Cortesi, and F. Spoto. CIL to Java-bytecode translation

for static analysis leveraging. In 2018 IEEE/ACM 6th International FME

Workshop on Formal Methods in Software Engineering (FormaliSE), pages

40–49. IEEE, 2018.

[56] D. Garbervetsky, Z. Pavlinovic, M. Barnett, M. Musuvathi, T. Mytkowicz,

and E. Zoppi. Static analysis for optimizing Big Data queries. In Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering,

pages 932–937. ACM, 2017.

[57] D. Garbervetsky, E. Zoppi, T. Ball, and B. Livshits. Toward full elasticity

in distributed static analysis. Microsoft Research Technical Report, 2016.

[58] D. Garbervetsky, E. Zoppi, and B. Livshits. Toward full elasticity in dis-

tributed static analysis: the case of callgraph analysis. In Proceedings of

the 2017 11th Joint Meeting on Foundations of Software Engineering, pages

442–453. ACM, 2017.

[59] D. Grove and C. Chambers. A framework for call graph construction algo-

rithms. ACM Transactions on Programming Languages and Systems, 2001.

[60] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction

in object-oriented languages. ACM SIGPLAN Notices, 1997.

REFERENCES vii

[61] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou, S. McDirmid, C. Liu, W. Lin,

J. Zhou, and L. Zhou. Spotting code optimizations in data-parallel pipelines

through periscope. In OSDI, pages 121–133, 2012.

[62] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and accurate

pointer analysis for millions of lines of code. In Proceedings of the Conference

on Programming Language Design and Implementation, 2007.

[63] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions of lines

of code. In Proceedings of the International Symposium on Code Generation

and Optimization, 2011.

[64] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A million

lines of C code in a second. In Proceedings of the Conference on Programming

Language Design and Implementation, 2001.

[65] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind. Fast online pointer

analysis. ACM Transactions on Programming Languages and Systems

(TOPLAS), 29(2):11, 2007.

[66] U. Ismail. Incremental call graph construction for the Eclipse IDE. University

of Waterloo Technical Report, 2009.

[67] U. Khedker, A. Sanyal, and B. Sathe. Data flow analysis: theory and practice.

CRC Press, 2009.

[68] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories.

In International Conference on Computer Aided Verification, pages 427–443.

Springer, 2012.

[69] M. S. Lam, J. Whaley, B. Livshits, M. C. Martin, D. Avots, M. Carbin,

and C. Unkel. Context-sensitive program analysis as database queries. In

Proceedings of the Symposium on Principles of Database Systems, June 2005.

viii REFERENCES

[70] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework for

Java program analysis: a retrospective. In Cetus Users and Compiler Infas-

tructure Workshop (CETUS 2011), volume 15, page 35, 2011.

[71] J.-L. Lassez, V. Nguyen, and E. Sonenberg. Fixed point theorems and se-

mantics: A folk tale. Information Processing Letters, 1982.

[72] Y. Y. Lee, S. Harwell, S. Khurshid, and D. Marinov. Temporal code com-

pletion and navigation. In Proceedings of the International Conference on

Software Engineering, 2013.

[73] K. R. M. Leino. This is boogie 2. manuscript KRML, 178(131), 2008.

[74] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In

Proceedings of the Conference on Compiler Construction, 2003.

[75] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: Is it worth

it? In Proceedings of the International Conference on Compiler Construc-

tion, 2006.

[76] B. Liu, J. Huang, and L. Rauchwerger. Rethinking incremental and par-

allel pointer analysis. ACM Transactions on Programming Languages and

Systems (TOPLAS), 41(1):6, 2019.

[77] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-

Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In

defense of soundiness: A manifesto. Communications of the ACM, 2015.

[78] F. Logozzo. Clousot: Static contract checking with abstract interpretation.

Formal Verification of Object-Oriented Software, page 5.

[79] N. P. Lopes and A. Rybalchenko. Distributed and predictable software model

checking. In Proceedings of the International Conference on Verification,

Model Checking, and Abstract Interpretation, 2011.

REFERENCES ix

[80] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis of

JavaScript applications in the presence of frameworks and libraries. In Pro-

ceedings of the International Symposium on the Foundations of Software En-

gineering, 2013.

[81] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: A system for large-scale graph processing. In

Proceedings of the ACM SIGMOD International Conference on Management

of Data, SIGMOD, 2010.

[82] S. McPeak, C.-H. Gros, and M. K. Ramanathan. Scalable and incremental

software bug detection. In Proceedings of the Symposium on the Foundations

of Software Engineering, 2013.

[83] M. Mendez-Lojo, A. Mathew, and K. Pingali. Parallel inclusion-based points-

to analysis. In Conference on Object Oriented Programming Systems Lan-

guages and Applications, 2010.

[84] Microsoft Corporation. The .NET Compiler Platform (Roslyn). https:

//github.com/dotnet/roslyn. Retrieved January, 2019.

[85] S. S. Muchnick. Advanced compiler design implementation. Morgan Kauf-

mann, 1997.

[86] K. Murray, J. P. Bigham, et al. Beyond autocomplete: Automatic func-

tion definition. In Proceedings of the Visual Languages and Human-Centric

Computing Symposium, 2011.

[87] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,

J. Al-Kofahi, and T. N. Nguyen. Graph-based pattern-oriented, context-

sensitive source code completion. In Proceedings of the International Con-

ference on Software Engineering.

[88] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.

Springer, 2015.

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn

x REFERENCES

[89] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers. Active code comple-

tion. In Proceedings of the International Conference on Software Engineer-

ing, 2012.

[90] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In

Proceedings of the Conference on Object-oriented Languages, Systems, and

Applications, 1991.

[91] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient field-sensitive pointer

analysis for C. In Proceedings of the Workshop on Program Analysis for

Software Tools and Engineering, 2004.

[92] J. Plevyak and A. A. Chien. Precise concrete type inference for object-

oriented languages. ACM SIGPLAN Notices, 1994.

[93] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow anal-

ysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 49–61.

ACM, 1995.

[94] J. Rodriguez and O. Lhoták. Actor-based parallel dataflow analysis. In In-

ternational Conference on Compiler Construction, pages 179–197. Springer,

2011.

[95] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers

and redundant computations. In Proceedings of the 15th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 12–27.

ACM, 1988.

[96] B. G. Ryder. Incremental data flow analysis. In Proceedings of the 10th

ACM SIGACT-SIGPLAN symposium on Principles of programming lan-

guages, pages 167–176. ACM, 1983.

[97] C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and C. Winter. Tri-

corder: Building a program analysis ecosystem. In International Conference

on Software Engineering (ICSE), 2015.

REFERENCES xi

[98] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis

with applications to constant propagation. Theoretical Computer Science,

167(1-2):131–170, 1996.

[99] A. Sălcianu and M. Rinard. Purity and side effect analysis for java programs.

In In VMCAI, pages 199–215. Springer, 2005.

[100] A. L. Souter and L. L. Pollock. Incremental call graph reanalysis for object-

oriented software maintenance. In Proceedings of the IEEE International

Conference on Software Maintenance, pages 682–691. IEEE, 2001.

[101] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-driven points-

to analysis for java. In Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA ’05, pages 59–76, New York, NY, USA, 2005. ACM.

[102] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of

the Symposium on Principles of Programming Languages. ACM, 1996.

[103] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,

E. Gagnon, and C. Godin. Practical virtual method call resolution for Java.

In Proceedings of the Conference on Object-oriented Programming, Systems,

Languages, and Applications, 2000.

[104] F. Tip and J. Palsberg. Scalable propagation-based call graph construction

algorithms. In Proceedings of the Conference on Object-oriented Program-

ming, Systems, Languages, and Applications, 2000.

[105] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.

Soot: A Java bytecode optimization framework. In CASCON First Decade

High Impact Papers, pages 214–224. IBM Corp., 2010.

[106] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java bytecode for

analyses and transformations. 1998.

xii REFERENCES

[107] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe.

Counting integer points in parametric polytopes using barvinok’s rational

functions. Algorithmica, 48(1):37–66, 2007.

[108] J. W. Voung, R. Jhala, and S. Lerner. Relay: Static race detection on

millions of lines of code. In Proceedings of the Symposium on the Foundations

of Software Engineering, 2007.

[109] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani. Graspan: A

single-machine disk-based graph system for interprocedural static analyses of

large-scale systems code. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems,

2017.

[110] M. Weiser. Program slicing. In Proceedings of the 5th international confer-

ence on Software engineering, pages 439–449. IEEE Press, 1981.

[111] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias anal-

ysis using binary decision diagrams. In ACM SIGPLAN Notices, volume 39,

2004.

[112] J. Whaley and M. Rinard. Compositional pointer and escape analysis for

java programs. In ACM Sigplan Notices, volume 34, pages 187–206. ACM,

1999.

[113] S. Xia, M. Fähndrich, and F. Logozzo. Inferring dataflow properties of user

defined table processors. In SAS, pages 19–35, 2009.

[114] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using

boolean satisfiability. ACM Trans. Program. Lang. Syst., 29(3), May 2007.

[115] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level: Making

flow- and context-sensitive pointer analysis scalable for millions of lines of

code. In Proceedings of the International Symposium on Code Generation

and Optimization, 2010.

REFERENCES xiii

[116] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:

Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[117] J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, and D. Shakib. SCOPE:

parallel databases meet mapreduce. VLDB J., 21(5):611–636, 2012.

[118] E. Zoppi. Enriqueciendo Code Contracts con Typestates. Master’s thesis,

Universidad de Buenos Aires (UBA), 2012.

[119] E. Zoppi, V. Braberman, G. de Caso, D. Garbervetsky, and S. Uchitel. Con-

tractor.NET: Inferring Typestate Properties to Enrich Code Contracts. In

Proceedings of the 1st Workshop on Developing Tools as Plug-ins (TOPI),

pages 44–47. ACM, 2011.

	Portada
	Resumen
	Abstract
	Contents
	I Prologue
	Introduction
	Motivation
	Introducing .NET
	Comparison with Java
	Contributions
	Thesis Organization

	Resumen

	II Static Analysis in the Cloud
	Overview
	Motivation: Static Analysis Backend
	Call Graph Computation
	Analysis Design Principles
	Distributed Worklist Algorithm
	Termination
	Possible Analysis Instantiations

	Resumen
	Distributed Call Graph Analysis
	Program Representation
	Analysis Phases
	Intra-procedural Analysis
	Inter-procedural Analysis

	Resumen
	Incremental Call Graph Analysis
	Analysis Design Principles
	Analysis Challenges
	Supporting Removed Methods
	Intra-procedural Analysis
	Inter-procedural Analysis

	Incremental Algorithm
	Termination

	Resumen
	Implementation
	Orleans and the Actor Model
	Distributed Analysis Details
	Incremental Analysis Details
	Deployment Details

	Resumen
	Evaluation
	Experimental Setup
	Benchmarks
	Results

	Resumen
	Related Work
	Resumen

	III Static Analysis Framework
	Overview
	Motivation
	Code Representations
	High-level
	Intermediate
	Low-level

	Framework Design Principles
	Features
	Intermediate Representations
	Code Transformations
	Intra-procedural Analyses
	Inter-procedural Analyses

	Tools
	Extensibility
	Limitations

	Resumen
	Big Data Queries Optimization Analysis
	Overview
	Background
	Cosmos and SCOPE
	UDO Representation

	Accessed Columns Analysis
	Approach
	Escape Analysis
	Constant-set Propagation
	Used Columns Analysis

	Computing Input/Output Dependencies
	Approach
	Analysis Sketch
	Dependency Analysis
	Computing Pass-through Columns

	Implementation
	Evaluation
	Related Work
	Conclusions

	Resumen
	Other Clients of the Framework
	Memory Consumption Analysis
	Boogie Bytecode Translator
	Thrown Exceptions Analysis

	Resumen
	Related Work
	Resumen

	IV Epilogue
	Conclusions
	Future Work

	Resumen
	Appendix

	Appendix
	List of Algorithms
	List of Figures
	List of Tables
	References

