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Resumen

En los sistemas biológicos, las células forman tejidos capaces de realizar tareas

complejas, tanto durante el desarrollo embrionario como en organismos multicelu-

lares adultos. Durante el desarrollo, en particular, la formación de estructuras es

el resultado de la coordinación de las actividades de muchas células. Un ejemplo

paradigmático es el caso de la formación de los segmentos embrionarios precur-

sores de las vertebras, costillas y músculos esqueléticos de la columna en los verte-

brados. Estos segmentos se originan en forma secuencial -uno a uno- y periódica,

con un ritmo muy preciso. Dicho ritmo está controlado por un reloj biológico,

el reloj de segmentación, que depende de manera crucial de la coordinación de

oscilaciones genéticas entre muchas células. Se cree que cada una de las células

involucradas actúa como un oscilador genético autónomo. La coordinación de las

oscilaciones genéticas entre las células se logra por un mecanismo de comunicación

local por la v́ıa de señalización Delta-Notch. La complejidad del mecanismo de

comunicación, que involucra la śıntesis y el transporte de macromoléculas desde y

hacia el núcleo y la membrana celular, es muchas veces capturada en los modelos

mediante la incorporación de retardos temporales expĺıcitos en los términos de

acoplamiento. Por otro lado, a pesar de que el mecanismo de comunicación es lo-

cal, existe movilidad celular en el tejido que ocasiona que las células intercambien

sus vecinos en el tiempo. Los efectos de los retardos temporales y de la mobil-

idad han sido alternativamente considerados por separado en modelos del reloj

de segmentación, mostrando que tienen importantes efectos sobre la dinámica de

la sincronización y la formación de los segmentos. Sin embargo, de qué man-

era la combinación de estos factores afecta a la organización de las células y al

funcionamiento del reloj, es una pregunta que aún espera a ser contestada.

En esta Tesis nos enfocamos en el estudio de la interrelación entre la movil-

idad celular y los retardos temporales que introduce el mecanismo de comuni-

cación, mediante un enfoque teórico basado en el estudio de sistemas de os-

ciladores acoplados que incorporan estos dos elementos del sistema biológico.

En una primera parte nos centramos en el análisis del tiempo que requiere el

sistema para alcanzar un estado de sincronización global, en el que todos los

osciladores evolucionan con la misma fase y frecuencia. Encontramos que la

movilidad es capaz de acelerar la sincronización, aún cuando el acoplamiento es

retardado. Mostramos que la movilidad junto con los retardos temporales deter-
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minan distintos reǵımenes dinámicos que gobiernan la evolución del sistema en

su camino hacia la sincronización. En una segunda parte, estudiamos patrones

espaciotemporales intrigantes que aparecen espontáneamente en el sistema estu-

diado. Dichos patrones, conocidos como Estados Chimera, consisten en uno o

más grupos de osciladores sincronizados que coexisten en el mismo estado con

otros que evolucionan asincrónicamente. Al ocurrir en sistemas de osciladores

idénticos, representan un ejemplo paradigmático de ruptura de simetŕıa. A pesar

de la diversidad de sistemas en los que aparecen, comprender los mecanismos

por los cuales se forman los estados Chimera resulta uno de los grandes desaf́ıos

actuales en el campo de los sistemas dinámicos. En este trabajo encontramos

un mecanismo novedoso de formación de estados Chimera, como consecuencia

de la interacción entre la movilidad de los osciladores y los retardos temporales

en el acoplamiento. Desarrollamos un método capaz de distinguir estos estados

frente a una variedad de otros estados dinámicos del sistema y lo utilizamos para

caracterizar los estados observados. El método desarrollado permite identificar

otros tipos de estados chimera que no hab́ıan sido reportados hasta el momento.

Nuestros hallazgos sugieren que los estados chimera podŕıan ser observados en

sistemas naturales donde la movilidad de los osciladores y los retardos tempo-

rales en la comunicación ocurren conjuntamente como por ejemplo el reloj de

segmentación.



Dynamics of mobile

delayed-coupled oscillators: a

theoretical approach to

embryonic segment formation

Abstract

In biological systems, cells form tissues that can perform complex functions

both during development and in adult multicellular organisms. During embryonic

development, in particular, pattern formation relies on the coordination of the

activities of many cells. A paradigmatic example is the formation of the repetitive

and segmented structures characteristic of vertebrates body axis. These struc-

tures form during embryonic development one by one, with a very precise rhythm.

The rhythm is controlled by a biological clock, known as the vertebrate segmenta-

tion clock, which relies on the synchronization of cellular oscillators. It is thought

that each cell in the tissue acts as an autonomous genetic oscillator. A local cell-

cell communication mechanism couples the dynamics of neighbouring cells and

gives rise to synchronization. The complexity of the local communication mech-

anism, which involves synthesis and transport of signalling macromolecules, can

be captured in theoretical models by including coupling delays in the equations.

Interestingly, although communication is local, cells move through the tissue and

thus exchange neighbours over time. Although it is known that delays in com-

munication and mobility distinctly affect oscillatory dynamics, it is not know in

which way the interplay between these two features is affecting synchronization

and pattern formation.

In this Thesis we address this question through a theoretical approach, consid-

3
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ering a description based on coupled oscillators that includes both coupling delays

and mobility of the oscillators. We present the theoretical description in Chap-

ter 3, after introducing the key elements of the biological system in Chapter 1

and its theoretical counterparts in Chapter 2. We develop numerical methods

to find solutions to the problem of mobile oscillators in the presence of coupling

delays. The development of these methods constitutes an important part of this

work and could be potentially employed to solve similar problems.

We analyse different aspects of the dynamics of the system of mobile delayed-

coupled oscillators. When possible, we combine numerical simulations with ana-

lytical calculations. We first focus on the dynamics of the system near synchro-

nized solutions, Chapter 4. We find that mobility can speed up synchronization

in the presence of coupling delays, driving the system into distinct dynamical

regimes that are modulated by the coupling delay. We next study intriguing spa-

tiotemporal patterns that spontaneously arise in the system with coupling delays

and mobility, Chapters 5 and 6. These complex patterns, known as Chimera

states, consist of domains of synchronized oscillators that coexist with other do-

mains of asynchronous oscillators within the same state. Despite the diversity

of systems where they appear, understanding the mechanisms of formation of

chimera states represents one of the current challenges in the field of dynamical

systems. Our findings provide a new mechanism for their formation as a result

of the interplay between mobility and coupling delays. We find that the system

exhibits a wide repertoire of dynamical states in addition to chimera states and

develop a method capable of distinguishing between them. The devised method

allows to identify novel kinds of chimera states previously unreported. To finish

with, we go back to synchronization dynamics and timescales in Chapter 7.
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Glossary of terms

Variables and parameters

�i phase state of oscillator i

N total number of oscillators in the system

! autonomous frequency for phase oscillators

Ω collective frequency for in-phase synchronization

Ω̃ collective frequency for anti-phase synchronization

Abbreviations

PSM Pre-somitic Mesoderm

NICD Notch Intracellular Domain

MF Mean-field

NN Nearest-neighbors

ODE Ordinary differential equation

DDE Delayed differential equation
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Chapter 1

Embryonic segment formation

The vertebrate body is endowed with a repetitive structure of segments. The

best example of such structure is the vertebral column, composed by many seg-

ments that can range from about ten vertebrae in frogs to more than three hun-

dred in snakes [1]. Vertebrate segments originate during embryonic development

in a rhythmic and sequential way, in a process termed somitogenesis [2]. The

formed segments are called somites, and are composed of packed mesodermal

cells that will later give place to vertebrae, ribs and skeletal muscle. Somites

are formed one by one, from the anterior tip of an unsegmented tissue called the

presomitic mesoderm (PSM), while the tissue elongates, Figure 1.1. Defects in

somitogenesis lead to congenital birth defects [3, 4].

Somites are formed with a very precise rhythm. This rhythm varies between

species, ranging from about 25 minutes in zebrafish [5] to five hours in humans [6].

Rhythmic somite formation naturally introduces the idea of a biological clock.

A paradigmatic conceptual scheme for translating the temporal rhythm into a

spatial pattern of structures was proposed by Cooke and Zeeman in 1976 [7]. In

this scheme, a clock of unspecified nature operates in the cells of the PSM in a

coordinated manner to generate coherent oscillations at the tissue level. While

these oscillations take place, a wavefront travels across the tissue from anterior to

posterior with a velocity v. The wavefront freezes the oscillations generated by the

clock as it passes by, leaving behind a fixed periodic pattern in space formed by

the state of the oscillations at different time points. This pattern can be thought

to precede the pattern of segments. Biochemical processes would then read the

pattern and determine the somite boundaries from it [8, 9]. The relationship

9
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Figure 1.1: (a) Lateral view of zebrafish somitogenesis. Somites form sequentially
from the anterior tip of the presomitic mesoderm (PSM, blue) with a very precise
rhythm. (b) Zoom of the embryo laying on top of the yolk of the egg (left panel),
and a drawing of it (right panel). In the drawing, one of the formed somites is
marked in green, PSM is blue and the most posterior part of the PSM (tailbud)
is marked red. (c) An adult zebrafish. The adult body has a segmented structure
(left panel) and measures about 3cm (right panel). Figure adapted from several
references of A. Oates lab.

between the characteristic timescales of the clock and the wavefront sets the size

of the segments S = vT . Thus, according to this scheme the period of the clock

T has the functional relevance of determining key morphological properties of

the forming embryo, like the number of segments and their size [1]. For example,

for a fixed wavefront velocity, a slow clock with a larger period results in larger

segments while a fast clock determines smaller segments 1. But what is this clock

and what generates its rhythm?

Whatever the properties of the clock are, it needs to attain precision, as the

morphological properties of the embryos are properly conserved among individ-

1Simulation of the Clock and Wavefront mechanism. https://youtu.be/gwtLL29bfnE

https://youtu.be/gwtLL29bfnE
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Figure 1.2: The vertebrate segmentation clock. From right to left: the three
levels of organization. Each cell in the zebrafish PSM acts as an autonomous
genetic oscillator. Genetic oscillations in neighboring cells are synchronized by
Delta-Notch coupling. Oscillations are arrested at the anterior tip of the PSM
where somites are formed. Figure adapted from [10] and [18].

uals in each species. To these days, there is huge experimental evidence that

supports the idea of a real biological clock working in the PSM. This clock,

known as the vertebrate segmentation clock, consists of a complex network of

oscillating genes that can generate and sustain a collective rhythm at the tissue

level [4, 6, 10–12].

In the remaining of this chapter, we introduce the key elements from the

biology of the vertebrate segmentation clock that motivate this Thesis. Next, in

Chapter 2, we will explain how these elements can be incorporated in theoretical

descriptions of the biological clock.

1.1 The vertebrate segmentation clock

Oscillating gene expression within the PSM has been observed during somito-

genesis in several species, first by in-situ hybridization experiments [13] and more

recently by live-imaging with fluorescent reporters [14–17]. These molecular oscil-

lations at the tissue level have the same rhythm as somite formation, suggesting

that they regulate the period of somitogenesis [17]. In the PSM, molecular oscil-

lations form waves of gene expression that travel from posterior to anterior. In

the most posterior part of the tissue, called the tailbud, uniform synchronized

oscillations are observed [17].

The vertebrate segmentation clock is thought to be a population of coupled

genetic oscillators that locally synchronize their oscillations by means of intercel-

lular communication [10]. In all species examined, oscillating genes include genes

from the Hes/Her family [19]. Proteins of the Hes/Her family regulate their own
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production by inhibiting their own transcription. This negative feedback loop at

the transcription level strongly suggest that there are autonomous oscillations at

the single cell level [20–23]. In zebrafish, autonomous oscillations in single cells

have recently been observed experimentally [24]. In this experiment, individual

cells belonging to the tailbud of a transgenic reporter line for the cyclic transcrip-

tion factor Her1 were isolated and recorded in vitro. Single cells were observed to

sustain autonomous oscillations in the protein concentration for several periods.

Nevertheless, oscillations at the single cell level are noisy and their period does

not coincide with the period of segment formation. This highlights the impor-

tance of intercellular communication for setting the precise collective period of

the clock, as uncoupled single cell oscillations are not sufficient.

The current knowledge of the vertebrate segmentation clock can be organized

in a framework of three levels of organization or tiers [10]. In a first tier, au-

tonomous oscillations are produced in each cell in the PSM. In a middle tier,

oscillations are coupled by intercellular communication. In an upper tier, arrest

of the oscillations at the anterior tip of the PSM is thought to be controlled by

long-length scale gradients of growth factors such as FGF and Wnt [25–27]. A

schematic representation of this current knowledge about the vertebrate segmen-

tation clock organization in zebrafish is shown in Figure 1.2. In this Thesis we

focus on the dynamics of the cells in the tailbud. In that region, oscillations are

homogeneous among the cells, without travelling waves, and in addition there

is high cell mobility, see Section 1.2. We are interested in the interplay between

intercellular communication, the middle tier, and cell mobility within that region.

We will not consider arrest of the oscillations at the anterior nor the details of

autonomous oscillations in individual cells in our descriptions.

Intercellular communication between PSM cells occurs through Delta-Notch

signaling [28,29]. Delta-Notch signalling is a well-studied cell-cell communication

pathway, with many functions in development and disease [30, 31]. Depending

on the context, this signalling pathway can attain very different functions [30].

For example, it plays a role in stem cells [32, 33] and in determining cell fate

via lateral inhibition [34, 35]. In vertebrate segmentation, Delta-Notch pathway

plays a different role [28, 29], as we describe below. The key elements of the

pathway are Delta and Notch transmembrane proteins, that allow signaling be-

tween neighboring cells when they bind. In brief, intercellular communication via

Delta-Notch pathway occurs as illustrated in Figure 1.3. Before the interaction,
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ligands need to be synthesized and exported to the cell membrane. Importantly,

Delta ligands are encoded by genes that are repressed by the same transcription

factors that control the autonomous oscillator feedback loop. Delta is transcribed

in the nucleus of the cell and the mRNA is exported to the cytoplasm, where it

is translated. The protein is then subjected to post-translational modifications

and exported to the cell membrane, where it shows up as an active ligand for

Notch receptors in the neighboring cell. When Delta ligands in the membrane

of this signal-sending cell contact Notch receptors in the membrane of a close

cell, a cascade of signaling events starts. Pretty amazingly, endocytosis of the

Delta ligand in the signal-sending cell mechanically pulls from the bound Notch

receptor, exposing a site in the receptor for its cleavage. The Notch intracellular

domain (NICD) is thus cleaved and translocates to the nucleus where it posi-

tively regulates the transcription of target genes from the autonomous oscillator

such as Hes/Her. Notch is not required for the basal production of Her/Hes

genes but it does influence their transcription. In this way, the oscillator in each

PSM cell drives the activation of the Notch pathway in the neighboring cells,

and this activation in turn affects the autonomous oscillator in these neighboring

cells. Thus, Notch signaling couples the dynamics of the autonomous oscillators

in neighboring cells.

It is known that coupling in systems of noisy oscillators can lead to synchro-

nization [36]. Indeed, there is very strong evidence indicating that the essential

function of Delta-Notch signaling in somitogenesis is to locally synchronize the os-

cillations [10,37–41]. For example, the mentioned experiments with live-imaging

and single-cell resolution that show local in-phase synchronization for neighbor-

ing cells in wildtype embryos, show desynchronized oscillations in mutants with

loss-of-function of Notch signalling [16]. Besides, synchronization provides a col-

lective rhythm at the tissue level that is less noisy than the oscillations in single

cells [24].

The key role of Notch signaling in keeping synchronized the noisy single cell

oscillations can be tested by perturbing the coupling. Experiments that tem-

porary inhibit Notch pathway with chemicals consistently show that inhibition

at the beginning of segmentation leads to a gradual loss of coherence reflected

in defects in the segments. Coherence and correct pattern formation can be

rescued by washing out the inhibiting chemicals [38]. The timescales of syn-

chronization and desynchronization can be translated into positional information
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Figure 1.3: Delta-Notch coupling. Delta proteins are synthesized and transported
to the cell membrane, where after the post-translational modifications (PT) act
as active ligands to Notch receptors. Transcription of Delta genes is repressed
by the same transcription factors that control de autonomous oscillator feedback
loop (dimmed in figure). In the receiving cell, Notch intracellular domain (NICD)
is cleaved and transported to the nucleus, where it activates transciption of genes
involved in the autonomous oscillator. Figure adapted from [10].

along the axis of correctly ordered segments vs. disordered segments with broken

boundaries [38, 40, 42]. Blocking Notch coupling and observing how oscillations

in the PSM gradually loose synchrony gives information about the amount of

noise present in the system. Conversely, re-activating the coupling and looking

at the time that the system needs to recover synchrony provides information

about the strength of the coupling. However, to quantitatively estimate these

features, experiments have to be combined with theoretical models of coupled

oscillators [38]. Combining experiments with these theories, it is possible to re-

late the loss of synchrony and recovery with a trajectory of the system in a phase

diagram determined by the strength of the coupling between the oscillators � and

an order parameter r that measures the degree of synchronization in the system,

Figure 1.4.

Taken together, these previous studies provide evidence that the segmentation

clock behaves as a system of coupled oscillators where intercellular coupling via

Delta-Notch signaling is essential to synchronize the oscillations among neighbor-

ing cells, thus generating the collective rhythm.
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Figure 1.4: Local communication synchronizes the oscillations. Phase diagram
determined by the degree of synchrony r and the coupling strength � in a theory
of coupled oscillators. Synchronization is disturbed experimentally by inhibit-
ing coupling with added chemicals that block Delta-Notch signalling (DAPT).
When the chemicals are washed out, the system recovers synchrony, describing a
trajectory in this phase space. Figure adapted from [38].

1.2 Cell mobility in vertebrate segmentation

It has been observed that cells with the autonomous oscillators move within

the PSM tissue, Figure 1.5. There is clear evidence of a posterior-to-anterior gra-

dient of cell mobility and directionality in the PSM, with extensive cell mixing

at the tailbud. Increasing mobility of cells from anterior to posterior has been

observed in multiple experiments in zebrafish and chick embryos [42–45] and has

also been recently quantified [18, 46]. Graduation in mobility along the PSM is

thought to be controlled by molecular gradients of signaling molecules such as

FGF [43,44]. Variability in the direction of movement between cells also increases

anterior-to-posterior. In the anterior PSM, slow mobility of individual cells show

some correlation in their direction of movement [44,45]. In contrast, random-walk

diffusive cell movement is observed at the tailbud [42–45]. This leads to extensive

cell mixing in that zone. Random movement in the tailbud causes cells to change

their relative positions, exchanging neighbors over time. At first glance, this could

disturb local synchronization because the change in the relative positions between

oscillators can cause that an oscillator with a different phase to slip in between

two neighboring synchronized oscillators, Figure 1.5(b). We already mentioned
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cell mobility

PSM tailbud
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Figure 1.5: Cell mobility in the vertebrate segmentation clock. (a) A gradient
of cell mobility in the PSM tissue is observed. (b) High mobility in the tailbud
rearranges cell relative positions and could disturb local synchronization. Figure
adapted from [18].

that local synchronization is crucial for correct pattern formation by the segmen-

tation clock, and experiments that show that perturbations to synchrony in the

segmentation clock has an effect on the forming segments. Thus, mobility could

have a negative effect on patterning. In contrast to this first intuition of mobility

disturbing locally synchronized patterns, Figure 1.5(b), theoretical models have

shown that random cell mobility promotes synchronization in the segmentation

clock [47,48]. We will address theoretical models carefully in Chapter 2.

To understand whether mobility has an impact on signaling that can affect

synchronization and patterning, the timescales of signaling and mobility have

to be compared [18]. This entails the difficulty of reliably quantifying these

timescales in time-lapse experiments, related to the need of tracking cells in elon-

gating tissues, on the one hand, and to defining good observables that can reflect

the real timescale of mobility, on the other. Recently, a framework for quan-

tification of cell mixing in the segmentation clock was developed and statistical

measures were proposed [18, 46]. Using these measures, the timescale for chang-

ing relative positions was compared with that of signaling, showing that mobility

is expected to affect information flow in the tissue and pattern formation [18].

We explained that the vertebrate segmentation clock behaves as a population of

autonomous oscillators in the PSM cells, that are locally synchronized by Delta-

Notch coupling. Because Delta-Notch requires cell-cell contact for communica-

tion, the spatial organization of the cells defines which oscillators communicate

and which ones do not, determining how information is propagated through the

tissue.
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1.3 Coupling delays in Delta-Notch signaling

As already explained, Delta-Notch communication involves a cascade of com-

plex events that include synthesis and transport of signaling macromolecules.

This cascade of complex events can introduce communication delays both for

sending and processing signals. For instance, sending signals requires that Delta

molecules are synthesized, subjected to post-translational modifications and trans-

ported to the cell membrane in order to be available there as active ligands for

Notch. Delays arising from Delta synthesis and trafficking have been estimated

to be in the range of tens of minutes in cell culture [49]. Similarly, Notch re-

ceptor needs to be first cleaved and then its intracellular domain transported to

the nucleus to allow for a cell to receive a signal from its neighbor. Only when

the NICD reaches its target genes regulatory sites, the signal can affect the au-

tonomous oscillator in the receiving cell. Therefore, cleavage and translocation

of NICD to the nucleus could introduce time delays for processing signals.

Communication delays have been shown to alter collective dynamics and pat-

terning, both with theoretical models of coupled oscillators and by combining

these with experiments in zebrafish embryos [50–53]. Perturbations to the biologi-

cal system combined with theory including coupling delays allow for experimental

tests on how delays in intercelular communication affect segmentation. Theories

that include coupling delays will be addressed in detail in Chapter 2. Importantly,

as we explain there, theories based on delayed-coupled phase oscillators show that

delays change the collective period of the synchronized oscillation with respect to

individual periods. Delays in the coupling can make collective oscillations slower

than autonomous ones or even faster, Figure 2.4. Consistently, loss-of-function

mutants in several genes involved in Delta-Notch coupling have been observed to

increase the period of segmentation [51], Figure 2.7. More recently, transgenic ze-

brafish lines that overexpress Delta ligands have shown to reduce the period [53].

Disruption of the Delta-Notch pathway in zebrafish also alter the segment length

and the wave pattern of cyclic gene expression in the PSM, consistent with a

change in the period of segmentation [51]. Coupling delays can also explain the

longer period in mouse with respect to zebrafish [50, 54]. Taken together these

works show that a phase description in terms of coupled phase oscillators with

delayed coupling is sufficient to compute the overall spatiotemporal patterns of

gene expression and the collective period of the oscillations.
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Chapter 2

Theoretical description of

synchronization

In the previous chapter we introduced the biological system that motivates this

Thesis. We discussed evidence that supports the idea that the segmentation clock

can be thought as a population of locally coupled oscillators where cell mobility

occurs together with coupling delays. Descriptions of the segmentation clock in

terms of coupled phase oscillators that include either mobility of the oscillators

or delays in the coupling have been proposed, showing that they are a powerful

tool for answering relevant biological questions such as how fast synchronization

occurs or how does the collective period of the clock emerges. In this chapter we

introduce phase oscillator models in a more general way and describe the main

effects that mobility and delays have on the dynamics of coupled phase oscillators

when addressed separately.

A phase oscillator is perhaps the most simple description of an oscillatory

unit. In this description, the state of the oscillator is entirely given by a single

variable: its phase. The phase variable ranges between 0 and 2� that indicates

the fraction of the cycle undergone by the oscillatory unit. The dynamics of the

phase represents the periodic motion of the unit along the cycle. In particular, an

individual unit i with a uniform periodic motion of frequency !i evolves according

to the equation

�̇i = !i: (2.1)

19
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We call this unit i an autonomous oscillator with homogeneous autonomous fre-

quency !i, that is, the frequency with which it oscillates in the absence of inter-

actions and external forcing.

Despite of their simplicity, phase-oscillator descriptions can well represent

the relevant dynamics of more complex systems [36, 55]. In terms of dynamical

systems, phase oscillators describe the dynamics of a system along a limit cycle

in the phase space. In many situations, limit cycles constitute strong attractors

that the systems approach within a rapid timescale. After the rapid transient,

the periodic motion along the limit cycle can be parametrized by the phase.

2.1 Phase oscillators with instantaneous

coupling

Systems of interacting phase oscillators constitute a paradigm for studying

the emergence of coherent collective behaviour and synchronization [36]. In their

general form these can be written as

�̇i = !i +
NX
j=1

Kij f(�i; �j); i = 1; : : : ; N (2.2)

where the first term is the autonomous oscillation described before and the sub-

sequent terms describe pair interactions between the oscillators. Here, N is the

total number of oscillators, f is a coupling function and the coupling topology is

given by Kij. The coupling topology Kij indicates which pairs of oscillators are

coupled and with which strength. In general

Kij =
�ij
ni

aij;

where �ij is the strength in the coupling between oscillators i and j, aij = 0

if oscillators i and j are uncoupled and aij = 1 if they are coupled, and ni is

a normalization by the total number of coupling terms for oscillator i. In this

Thesis we study systems of coupled phase oscillators where the coupling function

is sinusoidal in the phase difference and the coupling strength � is the same for
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all pairs of interacting oscillators

�̇i(t) = !i +
�

ni

NX
j=1

aij sin (�j(t)� �i(t)) : (2.3)

If � = 0, each unit i with i = 1; : : : ; N oscillates with its own autonomous

frequency !i. When � 6= 0, the sinusoidal coupling in Eq. (2.3) means that each

oscillator adjusts its frequency according to the difference between its own present

phase and the phases of the other oscillators to which it is coupled. In the most

simple case of two oscillators,

�̇1(t) = !1 + � sin(�2(t)� �1(t)) (2.4)

�̇2(t) = !2 + � sin(�1(t)� �2(t)); (2.5)

the sinusoidal coupling will make each of them to speed up or slow down de-

pending on their phase difference. For � > 0, this coupling is attractive and

oscillators try to even out their phase difference. To gain intuition into what this

sinusoidal coupling does, lets imagine as an example two runners in a circular

running track. If the runners were uncoupled, each of them would make turns

to the running track at its own speed !i with i = 1; 2. Instead, at each instant

of time t, runner 1 sees where in the running track the other runner is, i.e. he

looks at runner’s 2 present phase �2(t), and compare it with his own phase �1(t).

If runner 2 is ahead, �2(t) > �1(t), then the coupling term in Eq. (2.4) is positive

and runner 1 will try to speed up. In contrast, the coupling term in Eq. (2.5)

would be negative in such case and runner 2 slows down. From this example it

is now natural to imagine that, unless their natural speeds are so different that

they cannot adjust them the sufficient amount, they will end up running together

with a common speed Ω =
!1 + !2

2
. Whether this synchronized state is reached

or not, or how much time it takes for the runners to synchronize their motion

will depend on ∆! = !1 � !2 and �. In the special case of identical oscillators,

∆! = 0, synchronization is always reached for � > 0 and the only possible situa-

tion is that the collective frequency is the same as the autonomous frequency of

the oscillators Ω = !. As we explain later, this situation is conceptually different

from synchronization when the coupling is delayed, Section 2.3.

In the more general case of N oscillators, Eq. (2.3), the synchronization sce-

narios depend on the heterogeneity in the autonomous frequencies, the coupling
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strength and the coupling topology. The dynamics of model (2.3) was first stud-

ied by Yoshiki Kuramoto for all-to-all coupling and frequencies drawn from a

unimodal and symmetric distribution g(!0). He found that a synchronization

transition takes place for a sufficiently large value of the coupling constant �. To

his nice surprise 1, the Kuramoto model for coupled phase oscillators has become

the most paradigmatic description to study collective synchronization of inter-

acting units [56,57] and has been addressed for multiple coupling topologies [58].

In the following, we describe the special cases of mean-field systems and spatially

extended systems with local coupling within a certain range.

2.1.1 Mean-�eld coupling

In his original work, Kuramoto analysed an all-to-all coupling topology [59]

�̇i(t) = !i +
�

N

NX
j=1

sin (�j(t)� �i(t)) : (2.6)

The degree of global synchronization in the system can be quantified by means

of the Kuramoto order parameter

Z(t) = r(t) ei (t) = N�1

NX
j=1

ei�j(t): (2.7)

This complex order parameter is a macroscopic quantity used to describe the

collective rhythm of the population rather than that of the individual elements.

It is a vector in the complex plane whose magnitude r measures the average

coherence between the phases of all the oscillators in the system. Its phase  is

the average phase of the system, Figure 2.1. If all oscillators are synchronized,

with the same phase evolving with a collective rhythm, then the modulus of the

order parameter is r � 1. In contrast, if phases are scattered around the circle

then r � 0 and the system behaves incoherently without an emerging collective

rhythm.

The governing Eqs. (2.6) can be rewriten in terms of the Kuramoto order

parameter, Eq. (2.7) as

�̇i = !i + �r sin( � �i); i = 1; : : : ; N: (2.8)

1Kuramoto talks about the Kuramoto model. https://www.youtube.com/watch?v=lac4TxWyBOg

https://www.youtube.com/watch?v=lac4TxWyBOg
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(a) (b) (c) (d)

Figure 2.1: Geometric interpretation of the Kuramoto order parameter. (a) Ran-
domly scattered phases over the circle, (b) Oscillators almost in antiphase, (c,d)
Other examples. Note that the order parameter has small modulus for both (a)
and (b). In (c) and (d) the complex order parameter has similar phase but the
magnitude r is closer to r � 1 for smaller dispersion of the phases (d). Examples
are shown for N = 50.

Written in this form, the mean-field (MF) character of the system becomes ev-

ident. The evolution equation for the phase of each oscillator seems to be de-

coupled from the others, being only coupled with them through a mean-field

described by r and  . Looking at Eq. (2.8), each oscillator will speed up or slow

down depending on how far its phase is from the mean phase  . Thus, the phase

of each oscillator �i is attracted to the averaged phase  instead of to any partic-

ular phase from other oscillator �j. This is an important feature characterizing

mean-field systems. It makes the transient dynamics of the MF system qualita-

tively different from the dynamics of spatially extended systems with short-range

coupling topology, where oscillators are attracted only by their local neighbors.

We will come back to this difference later in this Thesis.

In the original model studied by Kuramoto, where the frequencies !i are drawn

from a unimodal and symmetric distribution g(!0) such that g(!0) = g(�!0) 8!0,
a synchronization transition occurs for a critical coupling strength �C. For low

values of the coupling strength � < �C, oscillators act as if they were uncoupled.

However, if the coupling strength is strong enough to overcome the heterogeneity

in the frequencies � > �C, the system displays partially synchronized solutions.

In such cases, after a transient time oscillators split in two groups. In one group

oscillators are capable to follow the mean-field and synchronize, oscillating with

a collective frequency equal to the mean frequency ! of the distribution g(!0).

In the other group, oscillators with frequencies in the tails of the distribution

are not capable to synchronize and their phases, scattered around the circle, keep

drifting incoherently. Importantly, the splitting of the population into two groups
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here comes from the fact that oscillators are heterogeneous: their frequencies are

drawn from a distribution g(!0). The critical value of the coupling strength �C at

which the synchronization transition occurs depends on the frequency distribution

g(!0) and is smaller for sharper frequency distributions. In the same way, in this

partially synchronized solutions, the asymptotic value of the order parameter r1

is closer to one as more oscillators belong to the synchronized group. In particular,

in the most simple case where oscillators are identical !i = ! 8i, the frequency

distribution is a delta and the system achieves complete synchronization with

r1 � 1. In this state, all the oscillators evolve with a common frequency Ω that

is the same as the natural frequency of the oscillators, �i(t) = Ωt 8i with Ω = !.

This state of complete synchronization is achieved by the system of identical

oscillators for any value of � > 0, and regardless of their initial phase differences.

We are interested in the dynamics of the system of coupled oscillators as

it goes from an incoherent state to the completely synchronized state, that is,

we are interested on how order spontaneously emerges out of disorder. In the

reminder of this Thesis, we will only consider identical oscillators. We can track

the macroscopic evolution of a system of coupled phase oscillators that starts from

a disordered state and ends up in a state of complete synchronization by looking

at the time evolution of the order parameter as it grows from r � 0 to r � 1. A

typical such behavior for the mean-field system of identical oscillators is shown

in Figure 2.2. Importantly, in the system of identical oscillators with mean field

coupling, the rate at which the system approaches synchronization is determined

only by the coupling strength �; oscillators will synchronize faster for stronger

coupling. In more complex coupling schemes, the speed of synchronization will

also depend on other parameters of the system as we show later.

2.1.2 Spatially extended systems

Motivated by local communication mechanisms in biology and in particu-

lar in the vertebrate segmentation clock, we study spatially extended systems

where coupling has a certain range �. These systems correspond to assigning in

Eqs. (2.3),

aij =

(
1 if j�Vi

0 otherwise

where Vi is the neighborhood of oscillator i within a range �. Thus, for each oscil-

lator i the summation only runs over oscillators j belonging to its neighborhood
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disorder

synchronization

Figure 2.2: Typical time evolution of the order parameter for a mean-field system
as it goes from an initially disordered state to reaching complete synchronization.
Parameters are: N = 100, ! = 1, � = 0:1.

Vi

�̇i(t) = ! +
�

ni

X
j�Vi

sin (�j(t)� �i(t)) : (2.9)

We assumed identical oscillators with autonomous frequency ! and ni the number

of neighbors of oscillator i. We will focus in particular in systems of oscillators

placed on a one dimensional lattice where each oscillator stands on a lattice site.

In such systems, the position of an oscillator i in the lattice is xi = k∆x where

k = 0; : : : ; N � 1 denotes the lattice site. The neighborhood of oscillator i within

a range � in the lattice is defined by

Vi(t) = fj such that jxj(t)� xi(t)j � �∆xg :

2.2 Mobile coupled phase oscilators

The effects of mobility on synchronization dynamics can be addressed by

considering mobile oscillators in the lattice [47,60]. Mobility of oscillators sets the

timescale for how often single oscillators exchange neighbors, which is particularly

relevant in locally coupled systems. An advantage of the lattice model is that

defining such a timescale for exchanging neighbors is straightforward. Moreover,

this simplification of the physical geometry makes the model more tractable,

while still capturing the relevant effects of mobility on the dynamics. Several
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works have shown that similar results can be obtained for mobile oscillators off-

the-lattice [61–63].

In the lattice model of mobile oscillators, the positions of the oscillators are

constrained to the lattice sites as explained in Section 2.1.2, but oscillators can

move through the lattice by stochastically exchanging positions with their nearest

neighbours. This exchange events are described as a Poisson process, in which

each pair of neighboring oscillators has a probability �=2 of exchanging positions

per unit time [47, 60, 63]. In between exchange events, phase dynamics obeys

Eqs. (2.9)

�̇i(t) = ! +
�

ni

X
j�Vi

sin (�j(t)� �i(t)) : (2.10)

with nearest-neighbors coupling

Vi(t) = fj such that jxj(t)� xi(t)j = 1g :

and boundary conditions such that oscillators in the left and right ends of the

lattice interact only with their right and left neighbors, respectively, and can

only exchange positions with them. In this situation, the timescale for mobility

is defined by ��1. The only other relevant timescales are those for the phase

dynamics due to autonomous oscillations !�1 and to coupling ��1. We could

remove the dependence of ! in Eqs. (2.10) by changing to the rotating reference

frame, but we keep it here for future comparison with the case of delayed coupling,

where equations do not remain invariant if switching to the rotating reference

frame. The relative weight of timescales, given by the mobility to coupling ratio

�=�, determines the behavior of the system.

Like in the systems without mobility described above, identical mobile os-

cillators in the lattice always achieve complete synchronization, regardless of its

initial phase differences. Thus, mobility does not change the steady state of the

system. In contrast, mobility can significantly affect the transient dynamics to-

wards synchronization and has been shown to reduce the time that the system

needs to reach this state.

Starting from disordered states, two distinct routes towards a completely syn-

chronized state are observed. For low mobility oscillators behave similarly to

non-mobile. If mobility is small compared to the coupling strength, the dynamics

of the system is dominated by coupling, which is local. The system first synchro-

nizes locally, forming spatial patterns where oscillators that are close in the lattice
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(a)

(b)
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Figure 2.3: Different routes towards synchronization are observed in transient
dynamics depending on mobility to coupling ratio. Panels show snapshots of the
system state on its evolution from disorder to synchronization. (a) �=� = 0 (non-
mobile), (b) �=� = 10 and (c) �=� = 1000. Other parameters are: N = 100,
! = 1, � = 0:1.

have similar phases while oscillators with distant positions can have large phase

differences, Figure 2.3(a). In the other extreme, for very large mobility, the system

behaves as a mean-field system where the phases are attracted to the mean phase

of the population rather than to their close neighbors. Instead of forming locally

ordered patterns, the phases are spread within an apparently disordered cloud of

the size of the system that gradually reduces its phase dispersion, Figure 2.3(c).

This is because the short interaction time with local neighbors before exchang-

ing positions is not enough to synchronize their phases locally. The crossover

between these two qualitatively different behaviors is determined by the mobility

to coupling ratio �=�. For intermediate values of this ratio, �=� = 10, oscilla-

tors still form a spatial pattern with local phase correlations, but this pattern is

characterized by longer wavelengths, Figure 2.3(b). Remarkably, synchronization

occurs much faster for high mobility, by the mean-field route.
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Local phase correlations in spatially extended systems cannot be captured

by the Kuramoto order parameter Z introduced above. While this parameter

properly describes the global state of the system, it averages equally over all

the oscillators and has no spatial information. To study the transient dynamics

towards synchronization of spatially extended systems, we introduce a spatial

phase correlation between lattice sites

�d(t) = hcos [#k+d(t)� #k(t)]ik (2.11)

where the phase #k(t) in site k is defined as the phase of the oscillator i such

that xi(t) = k, d is the dimensionless distance between lattice sites and h: : :ik
indicates the average over sites k with k = 0; :::; N�1�d [60]. If sites at distance

d have similar phases on average, then � � 1. In contrast, if they are in antiphase

on average, � � �1. If there is no correlation at this distance, � � 0.

In this Thesis we will refer to complete synchronization, global order, coherent

state or completely synchronized state alternatively as synonyms to describe a

state of the system where all the oscillators are oscillating with the same collective

frequency and the same phase. When relevant, in spatially extended systems we

call this state the in-phase synchronized state, to explicitly distinguish it from

antiphase synchronization, where oscillators are frequency locked but neighbor-

ing oscillators maintain a fixed phase difference of ∆� � �. In contrast, when

phases of the oscillators drift around with different frequencies and their phases

are spread over the circle, we will refer to an incoherent or disordered state.

The completely synchronized state is then characterized by a value of the spa-

tial correlations �d � 1 for all distances d. Conversely, for the incoherent state

�d � 0 8d.

Note that the spatial phase correlation �d can give information about local

patterns, while the order parameter Z defined prevously can not. For example,

j�1j � 1 for in-phase and also for antiphase synchronization but can still distin-

guish between them as �1 � 1 for in-phase and �1 � �1 for antiphase synchro-

nization. In contrast, the order parameter averages equally over the whole system

and its modulus is small for many local patterns, making them indistinguishable.

In particular, the order parameter cannot distinguish antiphase synchronization

from incoherence. The two routes towards synchronization described above for

the lattice model of mobile coupled phase oscillators are well reflected in the

evolution of these spatial correlations �d [60], see also Chapter 4.
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Variations of the lattice model of mobile oscillators applied to the segmen-

tation clock have shown similar results. In particular, models that describe the

tailbud as a two-dimensional lattice of coupled phase oscillators that can ex-

change positions show that random cell mobility promotes synchronization in

the segmentation clock [47,48]. In [47] it is shown that synchronized oscillations

can be sustained in the presence of random cell movement. This is consistent

with the uniform expression of cyclic genes in the tailbud, where extensive cell

mobility with a high variability in the directions of movement between cells is

observed [42–45]. Moreover, when considering an initial pertubation to the syn-

chronized state in the model, synchronization is restored much faster and for a

wider range of parameters than the case without cell movement. This is con-

sistent with the fast recovery observed in experiments that perturb synchroniza-

tion [38, 40, 42]. In [48] the model includes an additional timescale for cells to

recover the interaction with their neighbors after movement. Recovery is gradual,

implemented by including a time dependence in the coupling strength between

oscillators. They find that there is an optimal rate of mobility for which the

system synchronizes fastest. In addition, there is a critical rate of mobility above

which synchronization is not possible. This emphasizes the importance of com-

paring timescales between movement and signaling to understand how mobility

affects information transfer and synchronization.

The influence of cell mobility on synchronization in the segmentation clock

has also been addressed by a different approach [63]. Instead of considering a

discrete lattice model, the PSM tissue is described as a Voronoi diagram where

each region represents one cell. Movement is considered an active process, where

cells are thought as self-propelled particles with intrinsic velocities. Addition-

ally, repulsive forces between cells are included in the model. The dynamics of

movement is thus governed by the balance of self-propelled and repulsive forces

between cells. This description allows to consider correlations between the veloc-

ities of different cells reported for more anterior parts of the PSM tissue [45]. On

top of this description of the tissue dynamics, oscillatory dynamics is described as

a system of coupled phase oscillators with added noise. As well as in the lattice

models, this continuous description of the PSM tissue also shows enhancement

of synchronization by movement. Interestingly, short-range correlations in the

velocities can enhance synchronization more than random cell movement.

Descriptions of the individual oscillations in single cells have also been con-
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sidered in further detail [47]. In particular, the oscillatory dynamics of cyclic

genes has been explicitly modeled, considering equations for her mRNA, Her

protein in cytoplasm, Her protein in nucleus, and Delta protein. Importantly,

similar results were obtained between these models and less detailed models of

the individual oscillations like the one in [20] and models based on coupled phase

oscillators [55]. This similarity strongly suggests that the enhancement of syn-

chronization by random cell movement does not depend on the detailed modeling

of molecular events. Thus, relevant questions about the impact of mobility on

the collective oscillatory dynamics can be addressed with more tractable mod-

els based on phenomenological descriptions in terms of phase oscillators. These

models permit to define macroscopic timescales such as ��1 and !�1 and to focus

on the interplay between timescales, keeping the individual dynamics of single

oscillators in a simple way.

2.3 Phase oscillators with delays in the

coupling

Systems of coupled units are frequently subjected to delays in the coupling.

We already mentioned that Delta-Notch coupling in the biological system that

motivates this Thesis involves coupling delays that arise from the synthesis and

trafficking of signaling macromolecules, Section 1.3. In general, coupling delays

between a sending and a receiving unit could arise for three reasons. First, the

sending element could require some time for preparing and sending the signal.

Second, time could be needed for the signal to travel between units because of

finite speed of propagation of the signal. Last, the receiving element could need

time to process the signal that arrives. In particular, time delays associated to

Delta-Notch coupling are related to the first and last reasons mentioned. Thus,

later in this Thesis we will only consider delays due to sending and processing

signals and we will not consider any delay due to finite speed propagation. In

this section, however, we consider coupling delays in a general way that could in

principle refer to any of the three reasons. We consider systems of coupled phase

oscillators as introduced in Section 2.1 and consider coupling delays including

a discrete delay � in the sinusoidal function. The aim is to illustrate how the

main effects of coupling delays on the collective dynamics of systems of coupled

oscillators arise.
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Figure 2.4: Parametric plot of the collective frequency Ω, Eq. (2.14), for � =
0:1 (black), � = 0:2 (blue) and � = 0:3 (green). Solid lines indicate that the
synchronized state is stable, Eq. (2.16). Larger values of � tilt the curves, leading
to more stable in-phase synchronized solutions for the same value of � , i.e. larger
multistability in Ω. Horizontal black line indicates the autonomous frequency !
of individual oscillators.

2.3.1 Time delays in the mean-�eld system

Consider the Kuramoto model for identical oscillators with mean-field cou-

pling with a delay � [64, 65]

�̇i(t) = ! +
�

N

NX
j=1

sin (�j(t� �)� �i(t)) with i = 1; : : : ; N (2.12)

where ! is the autonomous frequency and the subsequent terms describe the

interaction between the oscillators through a sinusoidal coupling function of the

phase differences. The important thing here is that coupling is not instantaneous.

The instantaneous frequency �̇i(t), Eq. (2.12), depends on the state of the other

oscillators at an earlier time t � � . As we show below, this delayed-coupling

profoundly changes the dynamics with respect to the non-delayed case, Eq. (2.8).

Synchronized in-phase solutions of system (2.12)

�i(t) = Ωt 8i (2.13)

always exist. Replacing the ansatz (2.13) in the Eqs. (2.12), we obtain a condition
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for the collective frequency Ω of the synchronized state

Ω = ! � � sin(Ω�): (2.14)

This result has proven to be robust also for multiple other systems of delayed-

coupled oscillators [50, 64, 66–68]. Eq. (2.14) is a trascendental equation for the

collective frequency that cannot be solved in a closed-form. Thus, to understand

its solutions it is useful to plot it parametrically in the (�;Ω) plane defining the

parameter  � Ω� , Figure 2.4

Ω = ! � � sin 

� =
 

! � � sin 
: (2.15)

Remarkably, in contrast to the case with no delay, the collective frequency Ω

is in general different from the autonomous frequency of the oscillators !. This

is the first important effect of delayed coupling on synchronization: the value of

the collective frequency is shifted by the delay in a non-trivial way given by the

transcendental Eq. (2.14). There are solutions for which the collective frequency

can be smaller than the natural frequency of the oscillators Ω < ! (frequency

depression [67]) and there can also exist other solutions where Ω > !. According

to a stability criterion by Earl and Strogatz [69], in-phase synchronized solutions

given by Eq. (2.13) are stable when

� cos(Ω�) > 0: (2.16)

This defines multiple stable branches of solutions, that lie between

��=2 + 2n� < Ω� < �=2 + 2n� (2.17)

with n = 0; 1; : : : and � > 0, solid lines in Figure 2.4. Looking at Figure 2.4, with

increasing values of the coupling strength � curves given by Eq. (2.14) become

more tilted. This leads to the occurrence of multiple synchronized solutions with

different collective frequencies Ω that can be simultaneously stable for the same

value of the delay � . Therefore, the presence of coupling delays can also give rise

to multistability of in-phase synchronized solutions with different collective fre-

quencies. This is the second important effect of delayed coupling on the collective



2.3. Phase oscillators with delays in the coupling 33

dynamics of coupled oscillators. In contrast to the case of instantaneous coupling

where the coupling strength � determines how fast the system approaches syn-

chronization, Section 2.1, here � also determines how many synchronized solutions

the system could reach and modifies the value of their collective frequency.

2.3.2 Spatially extended systems with coupling delays

In-phase synchronized solutions given by Eqs. (2.13) and (2.14) and the sta-

bility criteria (2.16) are valid for almost any coupling topology [50,64,66–69]. For

nearest-neighbor coupling

�̇i(t) = ! +
�

ni

X
j�Vi

sin (�j(t� �)� �i(t)) ; (2.18)

in addition to in-phase synchronization the system could also exhibit antiphase

synchronized solutions where neighboring oscillators have a phase lag of �

�i(t) = Ω̃t;

�i+1(t) = Ω̃t+ �: (2.19)

Antiphase solutions satisfy

Ω̃ = ! + � sin(Ω̃�) (2.20)

and are stable when [69–71]

� cos(Ω̃�) < 0: (2.21)

Stable branches for the antiphase solution lie between

��=2 + 2n� < Ω̃� < �=2 + 2n� (2.22)

Note that Ω 6= Ω̃ and the stability boundaries for the in-phase and antiphase

solutions do not coincide. A parametric plot of in-phase and antiphase collective

frequencies together is shown in Figure 2.5. We choose a rather small value of the

coupling strength � = 0:1 that has a small tilt in the parametric plot of collective

frequency, Figure 2.4, and thus exhibits multistability of in-phase synchronized

solutions only for large time delays, outside the range of the plot. We highlight
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Figure 2.5: Parametric plots of the collective frequency Ω of the in-phase syn-
chronized solutions (black) and of the collective frquency Ω̃ of the antiphase syn-
chronized solutions (gray), Eqs. (2.14) and (2.20), for ! = 1 y � = 0:1. Shadowed
regions indicate bi-stability between in-phase and antiphase solutions. Blue dots
show example delay values to illustrate four different situations explained in the
text: (i) Ω < !, (ii) Ω̃ = !, (iii) Ω > ! and (iv) Ω = !.

that even in this case, bistability is observed between in-phase and antiphase

solutions, shadows in Figure 2.5.

To understand the frequency shift shown in Figure 2.5 more intuitively, lets

imagine two autonomous oscillators like the two runners in the circular running

track described in Section 2.1, but with a delayed coupling [66]

�̇1(t) = ! + � sin(�2(t� �)� �1(t)) (2.23)

�̇2(t) = ! + � sin(�1(t� �)� �2(t)) : (2.24)

As in the case of eqs. (2.4) and (2.5), for � > 0 each oscillator tries to adjust its

frequency according to how similar it is to the phase of the other. The important

difference is that at each instant of time t, a runner �i(t) does not see the current

state of the other, �j(t), but its state at an earlier time �j(t � �). 2 Thus, in

contrast to the case of instantaneous coupling, each oscillator is now attracted

by the ghost of the state of the other at a time point in the past. Lets imagine

that the state of the system at time t� � is the one depicted in Figure 2.6(a). In

2This situation is hard to imagine with real runners in one running track. For instance, we
can imagine that the running track is as big as the galaxy, in such a way that light needs a
time � to travel between the two runners.
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time

(a)

(b) (c) (d)

Figure 2.6: Two runners on a circular running track that are coupled with a
delay in the coupling � . (a) State of the runners at time t � � . This state is
repeated in dim colors in the subsequent panels. (b-d) At time t, each runner
is attracted to the ghost of the state of the other at time t � � . This leads to
a shift in the collective frequency Ω of the synchronized state with respect to
the individual frequency !. The different panels illustrate different situations,
for different values of the delay � : (b) delay is small � � 2�=! and leads to a
frequency depression Ω < !, (c) delay is similar to half the autonomous period
� � �=! and the oscillators end up in antiphase, (d) delay is similar to the
autonomous period but smaller � . 2�=! and leads to synchronization with
larger frequency Ω > !.

that situation, if the coupling were instantaneous, runner 1 (pink) would speed

up and runner 2 (green) would slow down. For delayed coupling, we can imagine

four different situations depending on the value of � , Figure 2.6 and blue dots in

Figure 2.5. In the first case, the delay is small � � 2�=! and when the signal

arrives at time t each runner is just a small angle � � !� ahead of its state

at t � � , Figure 2.6(b). As a consequence, runner 1 still speeds up as in the

non-delayed case but he adjust his speed in a smaller amount because his phase

difference with the ghost of runner 2 is smaller than if he receives the signal

instantaneously at time t�� . Conversely, runner 2 still slows down as in the case

of instantaneous coupling but in a bigger amount because his phase difference

with the ghost of runner 1 is bigger. This leads to frequency depression Ω < !.

With increasing delay, one can imagine a situation where the delay is half the

autonomous period � = �=!. In such situation, runners have moved forward

almost half a period when the signal arrives and the coupling to the ghost state
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turns repulsive: runner 1 will try to slow down to get closer to the ghost of runner

1, actually increasing the current phase differences, Figure 2.6(c). Oscillators can

end up frequency locked at Ω̃ = ! but in antiphase. In a third situation, when

the delay is a bit smaller than the autonomous period � . 2�=!, the runners will

adjust their speeds in the same directions as if the coupling was instantaneous,

but the one speeding up will do it by a bigger amount and the one slowing down

will decrease its speed less than in the non-delayed case, Figure 2.6(d). This

leads to an increased collective frequency of synchronization Ω > !. Finally, if

the delay is an integer multiple of the autonomous period � = 2�=!, at time t the

state of the system is almost the same as in t � � , as each oscillator performed

a complete cycle. As a result, the collective frequency of synchronization is not

shifted Ω = !.

In 2009, Morelli et al. proposed a delayed coupling theory (DCT) of verte-

brate segmentation. The theory is based in a phase representation of cellular

oscillators, where each oscillator has a fixed position in a lattice that spans the

PSM. The model includes four key ingredients: a frequency profile of oscillators,

slowing across the PSM form posterior to anterior; a moving boundary describing

embryonic axis elongation; coupling between neighboring oscillators; and delay in

the coupling. The frequency profile is included as a phenomenological description

of the arrest of the oscillations at the anterior end of the PSM, that was linked

to a spatial dependence of the autonomous frequency of the individual oscilla-

tors [1, 13, 72, 73]. The moving boundary accounts for tissue elongation and it is

incorporated in the model such that the number of oscillators is fixed: the arrest

front and the moving boundary move at the same velocity. They used a sinusoidal

coupling function between neighboring oscillators and included a discrete delay

in it, in the same way as in the models described above. The main result from the

DCT of vertebrate segmentation is that the collective period of the segmentation

clock T = 2�=Ω depends on the delay in the coupling �

Ω = !L � � sin(Ω�): (2.25)

where !L is the frequency of the oscillators at the most posterior part of the

tissue. As explained above, the dependence of the collective frequency on coupling

delays is an important feature of systems of delayed-coupled oscillators [64–66].

Eq. (2.25) shows that the collective period of the clock composed by multiple

cellular oscillators emerges as a self-organized property and depends not only on
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Figure 2.7: (a) Segmentation clock period can be tuned by changing the coupling
strength with chemicals (DAPT). (b,c) This is consistent with a theory that
includes coupling delays, Eq. (2.25). Panel (c) is a closer look at (b) where the
wild type and different Notch mutants have been placed on the curves given by the
theory from fitting the DCT to experimental data from zebrafish embryos [50,51].
Figure adapted from [51].

the intrinsic frequency of individual cells, but also on the coupling strength and

the time delay. Thus, time delays are biologically relevant as they determine the

period of somitogenesis and, with it, the length of the formed segments. The

delayed coupling theory of vertebrate segmentation can be fitted to experimental

data from zebrafish embryos to quantitatively estimate relevant parameters of

the biological system [50,51].

Besides, Eq. (2.25) indicates that the collective period does not depend on

the specific shape of the frequency profile included in this model, but only on

the uniform phase cell population at the tailbud with frequency !L. It might

be possible that the synchronized population of cells at the tailbud plays an

important role for the period of segmentation.

From a mathematical point of view, Eqs. (2.12) and (2.18) are delayed dif-

ferential equations (DDE) [74–76]. Delay makes the equations harder to solve

for several reasons. First, it turns the equations to be infinite dimensional: to

integrate one step, we need to know not only the initial condition at t0 but all

the history in the whole interval [t0 � �; t0]. To see this consider for example

ẋ(t) = f(x(t); x(t� �)): (2.26)
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To make a first infinitesimal step of integration, from t = 0 to t = dt, it is

necessary that we know x(t = 0) (initial condition) and x(t = ��). With only

this two values we can obtain x(dt). Now, if we want to do a next integration

step and go from x(dt) to x(2dt), then we need to know x(dt) that we just

calculate but also x(dt � �). Thus, to provide the initial conditions completely,

we need to provide the whole history of x(t) in the past times belonging to the

interval [��; 0]. Second, providing this history as a predefined function of time

x(t) = g(t) for t < 0 usually leads to a discontinuity in the derivative that

propagates on further derivatives and needs to be kept in mind when solving

this equations numerically [77]. Usually, to get this discontinuities localized in

numerical integration, time delays in the equations are chosen as integer multiples

of the time step of integration.

Another important feature of DDEs is that the characteristic functions are

not polynomials (as in the case of ordinary differential equations ODEs without

delays) but transcendental equations. For example, consider the simplest delayed

differential equation

ẋ(t) = x(t� �) (2.27)

If � = 0, the simplest ODE reads ẋ(t) = x(t) and the canonical way to solve

this is to propose an exponential function x(t) = e�t and solve the characteristic

polynomial equation P (�) = 1 � � = 0 with the only solution � = 1. However,

if in this simple differential equation � 6= 0, the situation changes drastically.

Proposing an exponential function x(t) = e�t and replacing it in Eq. (2.27) gives

�x(t) = x(t� �) = e�(t��) = e���x(t); (2.28)

which means that in order to get �, it is necessary to solve a trascendental

equation P (�) = �� e��� .

In conclusion, delayed differential equations entail their difficulties and consti-

tute a field of research by themselves. Despite their technical difficulties, theories

based on DDEs have the huge advantage of the economy in the description, as

they reduce a complex chain of events to only one parameter, the time delay � .

In the following, we just take from this field of research some of the known ele-

ments to be able to solve the equations that govern the dynamics of the system

of mobile delayed-coupled oscillators that we present in the next chapter. For

more extensive descriptions of delayed systems we refer the reader to the litera-



2.3. Phase oscillators with delays in the coupling 39

ture: for a mathematical treatment of delayed equations [74,78,79], for numerical

methods for solving delayed differential equations [77], for examples of works on

complex systems that include time delays [80] and for time delays in biological

systems [75,76].
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Chapter 3

Phase-oscillator description of

mobile delayed-coupled genetic

oscillators

As described in the previous chapters, the vertebrate segmentation clock is

thought to be a population of coupled genetic oscillators working in each cell in the

PSM. Oscillators are coupled through Delta-Notch intercellular communication

mechanism, which requires cell-cell contact and involves synthesis and transport

of signaling macromolecules within each cell. These characteristics of Delta-Notch

coupling can be included in theoretical descriptions by considering local coupling

with coupling delays. Besides this delayed local coupling, cells move within the

PSM, with high random mobility occurring at the tailbud. In the last chapter we

describe theories that include either mobility or coupling delays, and showed that

these have important effects on the dynamics of coupled oscillators. Although

both elements are present in the biological system, theories that incorporate both

coupling delays and mobility of the oscillators are lacking. In this chapter we

propose a general theory that brings together these two key ingredients of the

biological system. In the following chapters we consider particular cases of this

theory and study different aspects of the dynamics.

We consider a phase-oscillator description based on the Kuramoto model in

the lattice, Chapter 2. As already explained, these descriptions provide a paradig-

matic framework to study collective dynamics and in particular synchronization.

41
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In our model, each phase oscillator is thought to describe the autonomous oscil-

lator contained in each individual cell. We consider that the biochemical details

of how these individual oscillations are sustained are superfluous for the question

we ask, where the relevant components are the timescales of synchronization, mo-

bility and coupling delays. We thus describe the cyclic protein levels in one cell

only with a phase. In this scenario, cells with similar protein levels have similar

phases. Over this basis we incorporate the two features of the biological system

whose interplay we are interested in studying: mobility of the oscillators and

delayed coupling. Mobility is introduced as a stochastic exchange of positions

of nearest-neighbor oscillators in the lattice, Section 2.2. We already mentioned

that for instantaneous coupling lattice models in terms of phase oscillators can

capture the effects of mobility on collective dynamics, showing similar results

than off-lattice models and than models with more detailed descriptions of the

individual oscillations in the segmentation clock. Delayed coupling is addressed

through explicit delayed evaluation of the phases in the coupling terms, as de-

scribed in Section 2.3. Previous results show that a phase description in terms

of coupled phase oscillators with delayed coupling is sufficient to address the ef-

fects of delayed coupling on patterning and on synchronization in a more general

way, Sections 1.3 and 2.3. Taken together, these previous results suggest that a

description as the one presented in this section should capture the effects that

mobility and coupling delays have on the oscillatory dynamics when considered

together.

Description of mobility. We consider a system of N identical phase oscilla-

tors, placed on a one-dimensional lattice of N sites. Each phase oscillator with

phase �i has a position xi that is constrained to the position of a lattice site

xi = k∆x with k = 0; : : : ; N � 1. The lattice spacing ∆x can be thought to be

proportional to the cell diameter but does not play a role in the dynamics. In the

following we set ∆x = 1 without loss of generality. Positions of the oscillators are

thus constrained to integers xi = 0; : : : ; N � 1. Mobility is described by letting

the oscillators exchange positions with their nearest-neighbors, Section 2.2. The

stochastic exchange of positions is modeled as a Poisson process. Each pair of

neighboring oscillators can exchange positions with a rate �=2 per unit time, Fig-

ure 3.1. At each time point, only one exchange event can take place. Exchange

events have a waiting time te that is drawn from the corresponding exponential
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instantaneous
exchange
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before

after

Figure 3.1: Mobility of oscillators in the one-dimensional lattice. Each pair of os-
cillators has a probability �=2 of exchanging positions. Positions of the oscillators
only change at random instants of time when an exchange event occurs.

distribution. The average waiting time is proportional to the inverse of the mo-

bility rate ��1, see Appendix A. The state of oscillator i, with i = 1; : : : ; N , is

described by its phase �i(t) and its position xi(t) in the lattice. The position xi(t)

is piecewise-constant: the value of xi(t) changes only when oscillator i exchanges

its position. As a result of the stochastic exchange of positions each oscillator

performs a random walk in the lattice and after a sufficient amount of time it

could be sitting at any site.

Description of delayed communication. As already explained, the com-

plexity of molecular events taking place in Delta-Notch signaling, Figure 3.2(a),

can be captured in theoretical models by including discrete delays in the coupling

function. Delta-Notch coupling involves two conceptually different processes that

could lead to delays in the interaction. On the one hand, the cell sending the

signal needs to synthesize and transport Delta molecules form the nucleus to

the membrane and make the necessary modifications for them to become active

ligands for Notch receptors, red pathway in Figure 3.2(a). On the other hand,

once the interaction takes place, the cell receiving the signal needs to process this

signal. This processing requires cleavage and transport of the NICD from the

membrane to the nucleus, where it affects transcription of the target oscillating

genes, green pathway in Figure 3.2(a). To capture this complexity of Delta-Notch

signaling in the context with mobility we split the delayed interaction into two

explicit time delays, �out and �in , Figure 3.2(b). The outgoing or signal-sending

delay �out accounts for the time it takes to the cell to prepare and export the

signal. Differently, the incoming or signal-processing delay �in accounts for the

time the cell needs to process the received signal, after the interaction takes place.

With these considerations, the total time delay in the interaction is � = �out +

�in . Considering such a description in terms of a delayed interaction has a cost,
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Figure 3.2: Schematic representation of the coupling between neighboring oscil-
lators. The complexity of the communication mechanism (a) is captured in the
model (b) by considering two different time delays �out and �in , which account
for preparing the signal to send and processing the signal received, respectively.

as we explained in Section 2.3, as it involves solving harder, infinite-dimensional

equations. However, this description has the great advantage of reducing the

complexity of the communication mechanism to only two parameters, the time

delays �out and �in , which set well defined timescales. This allows as to focus on

the question we aim to address, which is how the interplay between the different

timescales present in the system affects the collective dynamics of the coupled

oscillators.

In summary, in between the exchange events caused by mobility, the phase

dynamics is governed by

�̇i(t) = ! +
�

ni

X
j2Vi(t��in)

sin (�j(t� �in � �out)� �i(t)) (3.1)

where ! is the autonomous frequency of the oscillators, considered identical, and

Vi(t) = fj such that jxj(t)� xi(t)j = 1g

is the neighborhood of oscillator i, which only includes nearest-neighbors. Com-

munication between oscillators is described by the sinusoidal coupling term. In

the equations, � is the coupling strength and ni is the number of neighbors of

oscillator i. In the biological system, the coupling strength can be related to the

amount of ligands and receptors that are available at the cell membrane [38,51,53].

The ni neighbors of cell i would be the cells that are close enough to interact with

it via the Delta-Notch pathway. The coupling includes a summation over the

neighborhood at the time of the interaction Vi(t � �in) that is not considered in

the models introduced in previous sections. This is because mobility can provoke
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space

time

Figure 3.3: Mobile delayed-coupled oscillators. The phase evolution of an oscil-
lator at time t, black square, is affected by the signals that it receives from the
oscillators that were its neighbors at an earlier time t��in . One of these is marked
blue. In contrast, neighbors of the black oscillator at time t are painted pink. to
illustrate that it could not be a neighbor of the black oscillator at time t, due to
mobility. Note that neighborhoods change because oscillators move, exchanging
neighbors over time. In addition, the signal sent by the blue oscillator at time
t��in has information about its phase at an earlier time t��in ��out .

the neighborhood of one oscillator at time t� �in to be different from the one at

present time t. We use open boundary conditions: the oscillators at both ends of

the lattice interact only with their single left or right neighbors respectively and

can only exchange positions with them. This choice of open boundary conditions

is a better description of the conditions in the segmentation clock tissue than

periodic boundary conditions and at the same time prevents the formation of

stable twisted states that may appear for periodic boundaries [61, 81].

Altogether, the phase dynamics in the system with mobility and coupling de-

lays can be understood as schemed in Figure 3.3. Consider an arbitrary oscillator

i that at time t is in position xi in the lattice, black square in the bottom row.

This oscillator changes its phase according to the equation for �̇i(t), Eq. (3.1),

which includes coupling terms that consider the signal received from neighboring

oscillators. However, because there is a time delay due to the time �in that the

cell needs to process the received signals, the received signals at time t had been

sent at a previous time t� �in. Thus, the change in phase of oscillator i at time t

is affected by the signals sent at a previous time t� �in. The oscillators that sent

the signals were neighbors of oscillator i at that previous time, for example the

blue square in the middle row. Due to mobility, a neighbor of oscillator i sending

a signal at time t��in , blue square, can differ from the neighbors of oscillator i at

the current time t, pink squares in bottom row. Thus, in the differential equations
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for the phase evolution, neigborhoods Vi need to be evaluated at time t��in . In

addition to this, the signals sent by these neighboring cells need to be prepared

a time �out before the interaction, because cells need a time �out to export the

signal. Then, the neighbors phases �j in the coupling terms are evaluated at an

earlier time t� �in � �out in Eqs. (3.1).

In summary, the general model presented incorporates mobility together with

coupling delays, combining an stochastic exchange of positions with the evolution

of the phases given by the set of delayed coupled differential equations (3.1). The

total delay � usually considered in the delayed coupling theories here has two

contributions � = �in + �out, to consider delays in the mobile context. This

brings the necessity to include a delayed neighborhood to account for mobility

together with processing times. This delayed neighborhood is a novel feature of

this theory and is not present in previous models of non-mobile oscillators with

delayed coupling, as in those models neighbors do not change.

Our description includes five independent timescales related to phase dynam-

ics !�1 and ��1, mobility ��1, and coupling delays �out and �in . The dynamics of

the system will result from the interplay between these timescales. We are inter-

ested in studying the interplay between mobility and coupling delays. To this end

and for simplicity, in the remainder of this Thesis we fix the other parameters.

We define the units of time such that the autonomous frequency ! = 1 for all

the oscillators, which sets the autonomous period to T = 2�. The interplay of

mobility and phase dynamics due to coupling is characterized by the ratio �=�.

In the following, we fix � = 0:1 and only vary �. The chosen relatively small

value of � avoids an otherwise larger tilt in the collective frequency curves which

would provide more multistability in the synchronized solutions, see Figure 2.4.

This is consistent with previous estimations of the coupling strength [38,51]. We

set the system size N = 100, which is of the order of magnitude of the linear

dimensions of the tailbud.

Results presented in the next chapters are obtained from numerical simula-

tions and, when possible, also from analytical calculations. To perform numerical

simulations of the system of mobile delayed-coupled oscillators just described, we

developed an algorithm that combines numerical integration of the delayed cou-

pled differential equations (3.1) with the stochastic exchange of positions. Within

each simulation, numerical integration of the delayed differential equations is car-

ried out with an integration scheme with fixed time step. Time delay values are
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always fixed to integer multiples of the time step of integration. The stochastic

exchange of positions is implemented using an approximation of the Gillespie al-

gorithm for discrete time intervals [48,82]. Exchange events always occur at time

points that are integer multiples of the integration step. A detailed explanation of

the numerical methods is provided in appendix A. In brief, the algorithm iterates

the following steps:

1. Obtain the amount of time steps until the next exchange event ne as ex-

plained in apprendix A, and also randomly choose which pair of oscillators

will exchange positions at that time point.

2. Integrate ne time steps of Eq. (3.1), with fixed positions for all the oscillators

in the lattice.

3. Update positions and neighborhoods affected by the exchange event and go

back to step 1.

In the next chapters, we study different particular cases of the general theory

presented here. We explore different mobility scenarios and different values of the

delay timescales. For simplicity, we consider only one or the other contribution to

the time delay �out or �in but not both together. A characterization of the general

system with both delays should be interesting but complex if the effects of each

delay is not addressed separately first. We leave this for future work. We start

considering only the outgoing time delay �out in Chapter 4. This corresponds to

setting �in = 0 in Eqs. (3.1). There are two reasons why we start with this situ-

ation. First, this simplified model does not include a delayed neighborhood and

thus it is more accessible as a first step to compare our delayed-coupled model for

mobile oscillators with usual delayed-coupled models without mobility. Second,

it was indicated that sending-signals timescales in the vertebrate segmentation

clock are larger than those of processing signals, �out� �in [51]. With the bio-

logical system as the main motivation, in Chapter 4 we explore this time delay

in specific ranges within the first and second stable branches for synchroniza-

tion, Figure 4.1. We focus on the dynamics of the system as it approaches the

synchronized solutions, what from now on we call synchronization dynamics.

We next explore a wider range of delay values in chapters 5 and 6 both for

�in and �out alternatively. When further exploring parameter space, we encounter

that the system of mobile delayed-coupled oscillators can exhibit a wide reper-

toire of distinct dynamical states on its way to synchronization. Remarkably,
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this repertoire includes complex spatio-temporal patterns where groups of syn-

chronized oscillators coexist with other incoherent groups within the same state.

These patterns in which order and disorder coexist in systems of identical oscil-

lators are known as chimera states and represent a paradigm of dynamical sym-

metry breaking of great interest in the field of dynamical systems. Because of the

wide variety of different patterns that the system shows together with chimera

states, we find the necessity of distinguishing and classifying between these states.

Because of the mixed nature of chimera states, reliable detection and classifica-

tion of chimera states posses a challenge. In Chapter 5 we develop a classification

method for dynamical states that is capable of distinguishing chimera states from

the variety of other states that the system of mobile delayed-coupled oscillators

exhibits. With this tool at hand, in Chapter 6 we make an exhaustive analysis

of these states and their occurrence in parameter space.

In Chapter 7 we go back to the dynamics of the system as it approaches syn-

chronization addressed in Chapter 4. In Chapter 4 we address synchronization

dynamics mostly in the linear regime, where the system is already close to syn-

chronization. In Chapter 7 we ask to what extent results obtained in a linear

regime can be used to analyse also the nonlinear regimes, where the system is far

from synchronization.



Chapter 4

Synchronization dynamics of

mobile oscillators in the presence

of coupling delays

In this chapter we focus on the dynamics of the system of mobile, delayed-

coupled oscillators close to complete synchronization. The effects of mobility

and coupling delays on synchronization dynamics of coupled phase oscillators

have been addressed separately in previous sections. Here we study how mobility

affects synchronization dynamics in the presence of coupling delays. Results

presented in this chapter are summarized in a manuscript that is currently in

preparation and will be sent for publication soon.

In the previous chapter we introduced a general description of mobile delayed-

coupled oscillators. As we discussed there, due to mobility, the delay in the

coupling � has a double contribution given by an outgoing delay �out and an

incoming delay �in , � = �out + �in

�̇i(t) = ! +
�

ni

X
j2Vi(t��in)

sin (�j(t� �in � �out)� �i(t)) : (4.1)

The outgoing contribution �out accounts for the time that an oscillator needs to

prepare and export the signal to send to its neighbor. In the vertebrate segmen-

tation clock, this represents the time that a cell needs to synthesize Delta ligands

49
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and export them to the cell membrane, and is thought to be the main contribu-

tion to time delays in communication in the biological system [50,51], Figure 3.2.

In this chapter we consider the dynamics of system (4.1) in the presence of only

this outgoing contribution to the coupling delay � = �out , with �in = 0

�̇i(t) = ! +
�

ni

X
j2Vi(t)

sin (�j(t� �)� �i(t)) (4.2)

with

Vi(t) = fj such that jxj(t)� xi(t)j = 1g :

One way to examine the underpinnings of the collective organization of the

segmentation clock is to perturb coupling and observe the dynamics away from

the synchronized state [38, 39, 51], Section 1. Here we analyse the dynamics of

system (4.2) as it approaches in-phase synchronized solutions. Eqs. (4.2) include

coupling delay in the usual way, where oscillators are coupled to the state of

their neighbors at a past time t � � but the neighborhoods Vi are evaluated

at the present time t, Section 2.3. However, because there is mobility, these

neighborhoods could be different from those at past times. Thus, the presence

of mobility together with coupling delays implies that each oscillator tries to

synchronize to the ghost of its neighbors at a past time in which they may not

have been neighbors.

In-phase synchronized solutions of system (4.2)

�i(t) = Ωt 8i (4.3)

always exist, as can be confirmed by taking the time derivative of the ansatz (4.3)

and inserting it in Eq. (4.2)

Ω = ! +
�

ni

X
j2Vi(t)

sin (Ωt� Ω� � Ωt) ; (4.4)

which leads to the trascendental equation for the collective frequency of these

in-phase synchronized solutions, Eq. (2.14)

Ω = ! � � sin(Ω�): (4.5)

For non-mobile oscillators we saw in Section 2.3 that a stability criterion defines
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multiple stable branches of solutions for in-phase synchronized states. These

stable branches correspond to delay values such that � cos(Ω�) > 0, Eq. (2.16).

Because mobility is described in our model as an exchange of positions between

neighboring oscillators, it has no effect on the in-phase synchronized solutions

once they are reached. Thus, we expect similar stability conditions for these

solutions as those for non-mobile oscillators, Figure 4.1. In contrast, antiphase

solutions are not expected, as the exchange of positions between neighboring

oscillators could destabilize those patterns.

We already mentioned a delayed coupling theory of vertebrate segmentation

that was fitted to experimental data in zebrafish embryos [51]. Somitogenesis

period measurements from different mutants of Delta-Notch pathway is consistent

with the presence of coupling delays, Figure 2.7. The theory together with the

experimental data, pointed the coupling delay value in the second branch of

stability for synchronized solutions, Figure 2.7(b,c). Here we explore a range

of values of the coupling delay � in the first and the second stable branches,

Figure 4.1. For non-mobile oscillators there are regions of bistability where the

antiphase solutions are also stable. For the moment we avoid delay values that

fall inside those bistability regions, for reasons that will become clear later.

4.1 Spatial phase correlations

The effects of mobility on synchronization dynamics of phase oscillators can

be captured by the spatial phase correlations introduced in Section 2.1

�d(t) = hcos [#k+d(t)� #k(t)]ik (4.6)

where #k(t) is the phase at site k of the lattice at time t, d is the dimensionless

distance between lattice sites and h:::ik indicates the average over sites k with

k = 0; :::; N � 1 � d. Correlations �d take values near �d � 1 when sites at

distance d have similar phases on average, �d � �1 when sites at distance d

are in antiphase and �d � 0 if phases of d-distant sites are uncorrelated. The

completely synchronized state is thus characterized by a value of correlations

�d � 1 for all distances d.

In Figure 4.2 we show the evolution of spatial correlations for three differ-

ent values of the mobility to coupling ratio �=� (columns) and three different
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0

Figure 4.1: Sampled values of the coupling delay for which we explore synchro-
nization dynamics. Values are indicated with dots over the parametric plot of
the collective frequency for in-phase synchronized solutions. Solid lines indicate
expected stable solutions while dashed lines indicate unstable ones. All values of
the time delay explored lay in the first and second stable branches for the in-phase
synchronized solutions. The green dot indicates the sampled value that is closest
to the value indicated for the biological system � � 0:9 (2�=!) [51]. Shadowed re-
gions indicate the regions of bi-stability between the in-phase and the antiphase
solutions for non-mobile oscillators. For the moment we avoid sampling delay
values in those regions.

values of the delay � (rows). In all cases we start with disordered states com-

posed of randomly distributed phases. Comparing columns in Figure 4.2 we see

that synchronization occurs earlier for larger mobility. For zero and low mo-

bility, correlations between close sites increase faster than correlations between

distant sites, first two columns in Figure 4.2. This difference between short and

long range correlations indicates that the system forms local ordered patterns in

which close sites have similar phases while distant sites do not. For larger values

of mobility all correlations increase simultaneously indicating that local ordered

patterns do not occur, last column in Figure 4.2. In this latter case, the time

for which all correlations approach �d(t) � 1 8d is shorter, see reference line at

t = 300 in Figure 4.2. In addition, comparing rows in Figure 4.2 we see that

this qualitative behavior is also observed with increasing coupling delays. Taken

together, these results show that mobility can speed up synchronization even in

the presence of coupling delays. Given that both mobility and delays are present

in the vertebrate segmentation clock, it is important to know that mobility has

an effect on synchronization even when coupling delays are present.
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mobility

delay

Figure 4.2: Time evolution of the spatial phase correlations between lattice
sites, for different mobility rates (columns) and different delay values (rows). (a)
�=� = 0, � = 0, (b) �=� = 10, � = 0, (c) �=� = 100, � = 0, (d) �=� = 0,
� = 0:6, (e) �=� = 10, � = 0:6, (f) �=� = 100, � = 0:6, (g) �=� = 0, � = 0:9,
(h) �=� = 10, � = 0:9, (i) �=� = 100, � = 0:9. A dashed vertical line is drawn
at t = 300 in all panels for reference. We show the averaged evolution over 64
realizations.
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4.2 Characteristic relaxation time

We aim to quantify the effects of mobility on the time the system needs to

reach synchronization, and to compare these effects with those of the non-delayed

case previously analyzed in [60], Figure 4.2(a-c). To this end, we look at the

characteristic time Tc of the late exponential relaxation of the system [60]. This

relaxation is better observed in the behavior of 1 � �, Figure 4.3. We observe

that after a transient, all correlations enter an exponential regime characterized

by 1 � � / e�t=Tc. This behavior is observed for all values of the coupling delay

studied.

Looking at the first two columns in Figure 4.3, the evolution of the correla-

tions for different lengths d only differ in the early evolution. Once they enter

the exponential regime, the characteristic time Tc is the same for all correlation

lengths d. However, short correlations enter this exponential regime earlier than

long range correlations. This reflects the fact that the different spatial modes

in the local order patterns have different lifetimes. When modes with shorter

wavelengths have disappeared, the relaxation of the system is dominated by the

longest spatial mode. The characteristic time Tc reflects the relaxation time of

the longest spatial mode.

For non-mobile oscillators with open boundary conditions, the longest spatial

mode has a sinusoidal shape � cos(�x=N). The relationship between the eigen-

value � that dictates the relaxation of this mode and the characteristic time Tc has

a factor 2 due to the expansion of the cosine in the definition of the correlations,

Eq. (4.6)

T�1
c = 2�: (4.7)

This relationship can be obtained considering a small perturbation to the syn-

chronized state ’k(t), solution of the linearized equations, written as the longest

spatial mode with a decaying amplitude / e��t.

For mobile oscillators, the relationship between � and Tc is

T�1
c = 2� + �2�=N2: (4.8)

This expression for Tc can be derived considering how a single exchange event

affects relaxation of the longest spatial mode [60]. The first steps of the derivation

consist in expanding a perturbation ’k(t) of the synchronized solution in the basis
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Figure 4.3: Time evolution of 1� �, for the same mobility and delay parameters
as in Figure 4.2. The characteristic time Tc is defined as the slope at the late
exponential regime.
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of eigenvectors of the linearized system. The effects of the exchange event can be

encompassed in the time dependence of the coefficients in this expansion. These

time dependent coefficients can be then obtained writing the perturbation due

to the single exchange event in the basis of eigenvectors of spatial modes. This

derivation of Eq. (4.8) relies on the fact that the shortest spatial mode induced

by the exchange of positions between oscillators relaxes much quicker than the

longest spatial mode.

For instantaneous coupling � = 0, the relaxation rate � depends on the cou-

pling strength and system size as � � ��2=2N2. Substituting this in Eq. (4.8)

gives

Tc �
N2

�2 �

1

1 + �=�
: (4.9)

Expression (4.9) suggests that the onset of the effects of mobility on Tc occur for

�=� � 1. These effects are present up to the onset of mean-field behavior at �=� �
2N2=�2. Above this mean-field onset, each oscillator can effectively interact with

every other oscillator in the lattice before its phase changes significantly [60].

Below we derive an analytical expression for the characteristic time Tc for de-

layed nearest-neighbors coupling. We hypothesize that relaxation of the longest

spatial mode is affected by single exchange events in the same way as in the

absence of coupling delays, that is Eq. (4.8) is still valid. In contrast, the re-

laxation due to coupling is modulated by delay. To extend Eq. (4.9) for delayed

coupling, we need to compute the relaxation rate � of the slowest spatial mode

for coupled phase oscillators with delayed coupling. In the absence of mobility,

the characteristic equation is

 � � = ue�� (4.10)

where u is the eigenvalue of the slowest spatial mode [68].

The relaxation rate for the longest spatial mode � should become small for a

large system size N . Then, for sufficiently small delay �� � 1, we expand the

exponential function in Eq. (4.10) and neglect terms of order O (�2� 2)

 � � � u (1 + ��) : (4.11)

Solving this equation with respect to � we obtain the relaxation rate of the longest
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spatial mode

� �  (1� u)

1 + u�
: (4.12)

Substituting expression (4.12) in (4.8),

Tc =
N2

�2

1

2N2

�2

 (1� u)

1 + u�
+ �

: (4.13)

Here u is the eigenvalue of the longest cosine mode for 1D lattice with open

boundary. For N � 1 it can be approximated as u � 1��2=2N2. Replacing this

in Eq. (4.13) and rearranging terms,

Tc =
N2

�2�e

1

1 + �=�e
; (4.14)

with

�e �


1 + u�
: (4.15)

Eq. (4.14) looks similar to Eq. (4.9) for non-delayed coupling except that the

coupling constant � is replaced by �e. Replacing the values of u and  in (4.15)

and neglecting higher order O(N2) terms,

�e �
� cos(Ω�)

1 + �� cos(Ω�)
: (4.16)

Thus, delayed coupling alters synchronization dynamics by renormalizing the

coupling strength � to an effective coupling strength �e, which is a function of

the coupling delay, Eq. (4.16).

Finally, by inserting this expression in (4.14) and defining

f(�; �) � �

�e
=

1 + �� cos(Ω�)

cos(Ω�)
(4.17)

we arrive to an analytical expression for the characteristic relaxation time in the

presence of mobility and coupling delay

Tc(�; �) =
N2

�2�

1

1=f(�; �) + �=�
: (4.18)

Comparing this result with Eq. (4.9) explicitly shows that the effect of coupling
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Figure 4.4: The function that determines the onset of non-local behavior,
1=f(�; �) in Eq. (4.17), together with cos(Ω�).

delays can also be interpreted as a shift in the onset of the effects of mobility

determined by 1=f(�; �), Figure 4.4.

To assess the validity of this analytical result, we obtain numerical values of

Tc performing a linear fit of the long-term behavior of the evolution of 1 � �d

in log-linear scale, see Figure 4.3. This long-term behavior corresponds to times

greater than a value of t = tL for which we are sure that the system has entered

the exponential relaxation. For each combination of parameters, we choose this

time as tL = 0:85tf , where tf is such that 1�jZ(tf )j � 10�10 in most simulations

and tf = 105 in the long simulations with very low or zero mobility. For each

value of the mobility and delay explored, we fit each of the average correlations

shown and then averaged the value of Tc for the five values of d shown in the

figure. As we show in Figures 4.5 and 4.6, numerical simulations are in very good

agreement with the analytical result, Eq. (4.18).

4.3 Dynamical regimes

Considering Eq. (4.18), different dynamical regimes can be identified for dif-

ferent mobility to coupling ratios �=�. Below, we explore the �=� axis and classify

the different dynamical regimes.
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Figure 4.5: Characteristic time Tc vs. mobility to coupling ratio �=�, for six
different delay values: � = 0 bordeaux, � = 0:6 red, � = 0:9 yellow, � = 6:28
green, � = 6:88 light blue and � = 7:18 blue. Color markers are numerical
simulations and solid lines are theoretical values, Eq. (4.18). Horizontal lines
correspond to theoretical values of Tc for large mobility in the mean-field regime
Eq. (4.30). Left and right bottom panels display zoom-ins for small and large
mobility respectively, to emphasize the dependence on delay values.
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Figure 4.6: Characteristic time Tc vs. coupling delay � , for different mobility
regimes. Color markers are numerical simulations, solid lines are analytical values
from Eq. (4.18) before the onset of mean-field behavior and dashed lines are
analytical values for mean field behavior, Eq. (4.30). Symbols correspond to
different values of �=� as indicated in the plot legend.
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4.3.1 Non-mobile regime

Equation (4.18) suggests that mobility does not affect synchronization dynam-

ics in the non-mobile regime defined by �=� � 1=f(�; �). In contrast, coupling

delay strongly affects the relaxation time Tc in this regime, bottom left panel

in Figure 4.5. The relative characteristic time Tc(�; �)=Tc(�; 0) reveals the fold

change values of Tc as a function of � , Figure 4.6. In this non-mobile regime,

Tc significantly increases with increasing delay, almost duplicating its value at

� = 0 for delays near the stability boundaries, blues in Figure 4.6. Simulations

are in good agreement with the analytical result Eq. (4.18), solid coloured lines

in Figure 4.6. In this non-mobile regime we can approximate Tc as

Tco(0; �) =
N2

�2�
f(�; �): (4.19)

A rescaling of Tc in Eq. (4.18) by Eq. (4.19),

Tcjco(�; �) � Tc(�; �)

Tco(0; �)
=

1

1 + (�=�)f(�; �)
; (4.20)

collapses the curves in Fig. 4.5 within this regime, Figure 4.7(a).

The effects of mobility become appreciable when

�=� � 1=f(�; �) (4.21)

in Eq. (4.18), marking the end of the non-mobile regime. The onset of the effects

of mobility on synchronization is modulated by the coupling delay through the

function 1=f(�; �), Figure 4.4. The mobility rate that can produce a non-local

behavior depends on the value of the coupling delay, dashed vertical lines in

Figure 4.7(a). The curves for different delay values, together with the dashed

vertical lines that mark the onset of mobility, collapse if we plot Tcjco as a function

of (�=�)f(�; �), Figure 4.7(b).

4.3.2 Mobile regime

For mobile oscillators with an intermediate mobility rate �=� > 1=f(�; �),

relaxation time Tc significantly decreases with increasing mobility, Figure 4.5.

Within this intermediate range, the curves for Tc vs. �=� for the different delay

values collapse, indicating that Tc is independent of the delay value. Taking
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Figure 4.7: Onset of mobile regime. (a) Rescaled characteristic time Tcjco as
a function of mobility to coupling ratio �=� and (b) Tcjco as a function of
(�=�)f(�; �). Dashed vertical lines mark the onset of mobile regime, Eq. (4.21),
and their collapse in (b). Delay values are the same as in Figure 4.5: � = 0
bordeaux, � = 0:6 red, � = 0:9 yellow, � = 6:28 green, � = 6:88 light blue and
� = 7:18 blue.

�=�� 1=f(�; �) in Eq. (4.18),

Tc �
N2

�2

1

�
(4.22)

that is independent of the delay. Numerical results are consistent with this ex-

pectation from the theory, see light orange symbols in Figure 4.6.

4.3.3 Mean-�eld regime

The effect of mobility on the characteristic time Tc saturates for sufficiently

large mobility, bottom right panel Figure 4.5. This occurs when oscillators are

moving so fast that they are effectively behaving as a mean-field system, and Tc

is independent of mobility. However, the characteristic time Tc does depend on

coupling delays, dark orange hexagons in Figure 4.6.

An estimation of a mean-field characteristic time Tcmf can be obtained con-
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sidering the mean-field approximation

�̇i(t) = ! +
�

N

NX
j=1

sin (�j(t� �)� �i(t)) : (4.23)

We introduce a small perturbation �i(t) to the synchronized state, �i(t) = Ωt +

�i(t) with j�i(t)j � 1. Expanding the sine around �Ω� and using the expression

for the collective frequency

Ω = ! � � sin(Ω�); (4.24)

we can linearize Eq. (4.23):

�̇i(t) = � cos(Ω�)

 
1

N

NX
j=1

�j(t� �)� �i(t)

!
: (4.25)

For large N we can approximate

1

N

NX
j=1

�j(t� �)� j�ij 8i (4.26)

and neglect the average perturbation term, so

�̇i(t) � �� cos(Ω�) �i(t): (4.27)

Solutions to Eq. (4.27) have the form

�i(t) � e�� cos(
�)t: (4.28)

Therefore, relaxation of spatial correlations follows

�(t) � e�2� cos(
�)t; (4.29)

and we can define a mean-field characteristic time

Tcmf =
1

2� cos(Ω�)
: (4.30)

This expression is in very good agreement with numerical simulations, Figure 4.5
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Figure 4.8: Onset of mean-field regime. (a) Rescaled characteristic time Tcjcmf

as a function of mobility to coupling ratio �=� and (b) Tcjcmf as a function of
(�=�)= cos(Ω�). Dashed color lines indicate the onset of mean-field regime for
each delay value, Eq. (4.32). Delay values are the same as in Figure 4.5: � = 0
bordeaux, � = 0:6 red, � = 0:9 yellow, � = 6:28 green, � = 6:88 light blue and
� = 7:18 blue.

and 4.6, confirming that in this regime oscillators behave as if coupled with all

the others.

Rescaling of Tc by Tcmf

Tcjcmf(�; �) =
Tc(�; �)

Tcmf

(4.31)

collapses the data points for different delays in this regime, Figure 4.8.

The onset of mean-field dynamic regime is defined by the intersection of the

mobile regime described by Eq. (4.18) and the mean-field regime where Tc =

Tcmf, Figure (4.5). To determine this onset we evaluate Tcmf = Tc(�; �) equating

Eq. (4.30) with Eq. (4.18)

�=� � 2N2

�2
cos(Ω�): (4.32)

Similar to the onset of mobile regime, the onset of mean-field regime is modulated

by coupling delays, dashed vertical lines in Figure 4.8(a). There is a stronger de-
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pendence of the mean-field onset on delay compared with the mobile regime onset,

despite the similarity between Figures 4.7(a) and 4.8(a) because of logarithmic

scale. In the first stable branch, the increase in � reduces the onset of mean-field

behavior, Figure 4.4. In contrast, the onset becomes larger in the second stable

branch as � increases. These changes are almost in parallel with the changes in

the effective coupling strength 1=f(�; �). Rescaling the mobility to coupling ratio

according to Eq. (4.32) together with Tc rescaling Eq. (4.31), the mean-field onset

for different delay values collapse, Figure 4.8(b).

In summary, the mobility to coupling ratio determines synchronization dy-

namics of mobile oscillators in the presence of coupling delays. Delays modulate

the onset of the different dynamical regimes

1. non-mobile dynamics, �=� . 1=f(�; �),

2. mobile dynamics, 1=f(�; �)� �=� < 2N2

�2 cos(Ω�)

3. mean-field dynamics �=� > 2N2

�2 cos(Ω�).

4.4 Discussion

In this chapter we analyzed the system of phase oscillators with delayed cou-

pling in a linear regime, where oscillators are very close to complete synchro-

nization. We extended previous calculations [60] to include coupling delays and

obtained an analytical expression of the characteristic relaxation time in the lin-

ear regime, Eq. (4.18). This characteristic relaxation time reveals the onset of

non-local behavior and that of mean-field dynamics. Whether these hold in the

nonlinear regime, where oscillators are far from complete synchronization, re-

mains an interesting open question. We address this question in Chapter 7.

The segmentation clock features intercellular communication through Notch

signaling [16, 37–39]. Mutants of the Notch signaling pathway display changes

to segmentation period [51]. Furthermore, segmentation clock period can be

tuned by gradually changing the strength of Notch signaling with chemicals [51],

Figure 2.7(a). These experiments are consistent with a delayed coupling theory

that describes the dynamics of pattern formation in the segmentation clock [50,

51]. A fit of the theory to experimental data results in coupling delays that

are somewhere within the left part of the second stable branch of solutions, see

Figure 4.1.
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A recent study quantified cell mixing in the zebrafish PSM and tailbud to de-

termine its impact on synchronization of genetic oscillators [46]. A phase oscillator

model without coupling delays was adopted to simulate the effect of measured

cell mixing on synchronization. Cell mixing reproduced by a physical model en-

hanced synchronization of the phase oscillators in simulations. A key result of

our current study reveals that inclusion of coupling delays reduces the onset of

non-local behavior to lower mobility values. Given the presence of time delays

in Notch signaling [51], our present results further strengthen the possibility that

cell mixing influences synchronization in the zebrafish tissue.

Zebrafish segmentation clock cells can behave as autonomous genetic oscil-

lators [24]. In contrast, in the mouse it is thought that single cells behave as

excitable systems [83]. It remains an interesting open question how mobility

affects synchronization in this kind of coupled system.

In Figure 4.2 we show the time evolution of spatial correlations �d(t) as the

system goes from disorder to complete synchronization. For all the values of the

coupling delay � explored, the system reaches complete synchronization and the

entire evolution towards synchronization is faster for larger mobility. In terms

of the of the Kuramoto order parameter that measures global synchronization

Z(t) = N�1
PN

j=1 e
i�j(t), Eq. (2.7), this implies that the asymptotic value of

jZj � 1 is reached faster for larger mobility, Figure 4.9(a). So far, we have only

examined the behavior of mobile delayed-coupled oscillators for some values of

the coupling delay, corresponding to the first and second stable branches of syn-

chronization. Intriguingly, when further exploring parameter space for delays

near the stability boundaries, we find that jZj exhibits erratic behavior, Fig-

ure 4.9(b). This behaviour could eventually evolve into complete synchronization,

Figure 4.9(b) blue line, or persist in time, green line. The erratic behavior of the

order parameter suggests that for some values of the coupling delay, mobility in-

duces a state that differs from the known local patterns and from the mean-field

behavior. However, from this behavior of the order parameter we are not able

to understand what is going on at the microscopic state of the system. Looking

closer at the phase dynamics, the observed behavior of the order parameter is

indicating the presence of complex patterns with coexisting domains of order and

disorder, Figures 4.9(c). This kind of patterns were first observed in systems with

non-local coupling [84] and are known as chimera states [85].

The occurrence of chimera states in the system of mobile oscillators with
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Figure 4.9: Order parameter shows erratic behavior in the presence of mobility
and coupling delay. The modulus jZj of the order parameter as a function of
time in simulations of Eq. (4.2) with (a) �out = 0 and �=� = 0 (solid black line),
�=� = 1 (dashed red line) and �=� = 10 (dotted magenta line), and (b) �out = 1:2
and �=� = 1. Green and blue curves are two realizations for the same parameters.
In both panels ! = 1, N = 100. (c) Snapshot of the system state at time t = 5000
(dashed black line) for the simulation in blue in panel (b). The erratic behaviour
of jZj reflects the presence of chimera states.

coupling delays was unexpected, and constitutes a new route towards synchro-

nization, Figure 4.10, that differs from the know routes for the system without

coupling delays, Figure 2.3.

We find chimera states occurring in the more general system of mobile delayed-

coupled oscillators, Eq. (3.1), both for �in = 0 and �out 6= 0 and for �in 6= 0 and

�out = 0. A detailed analysis of chimera states for this system and their depen-

dence on parameters will be addressed in Chapter 6. First, in the next chapter

we address the problem of classification of dynamical states that arises from the

necessity of distinguishing between chimera states and a variety of other dynam-

ical states that the system exhibits. Because of the mixed nature of chimera

states, ensemble averaged quantities such as the order parameter or the spatial
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Figure 4.10: A new route towards synchronization. When mobility is present
together with coupling delays, the system could reach synchronization through
a different route: after forming long-lived chimera states. Mobility to coupling
ratio and delay values are �=� = 1 and � = 1:2. Other parameters are: N = 100,
! = 1, � = 0:1.

correlations fail to reflect the local attributes of these more complex dynamical

states. How to define measures that are informative of the complexity of chimera

states is not yet clear. Thus, the necessity of developing tools for characterizing

these states arises.



Chapter 5

A new method for the

classi�cation of dynamical states

As we next show, when varying mobility rate and coupling delay values, a

rich variety of dynamical states appear in the system together with the in-phase

synchronized state to which we devoted the previous chapters. In particular,

chimera states with coexisting domains of order and disorder appear. Because

of the mixed nature of chimeras and their different characteristics depending

on parameters, identifying their occurrence might be difficult. In this chapter

we introduce a computational method capable of systematically identifying the

occurrence of chimera states. The method is developed because of the necessity of

having a tool for telling apart chimera states form the variety of other dynamical

states that appear in the system. In the next chapter, we employ this method

to make a statistical analysis of the results. Some of the results reported in

this chapter have been included in the article Mobility-induced persistent chimera

states, recently published in Phys. Rev. E [86]. Here we additionally review other

classification methods previously proposed in the literature and show conditions

in which they fail to reliably distinguish between states.

5.1 Distinguishing between states

We have shown in previous chapters that mobility can drive the system of cou-

pled oscillators into complete synchronization through different routes. Roughly,

the system can either form locally ordered patterns and then relax these patterns

69
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or behave like a mean-field system where the whole population is attracted to the

mean phase, Figure 2.3. However, for some values of the coupling delay and the

mobility rate, the system can also visit more complex spatio-temporal patterns

on its way to synchronization. For non-mobile oscillators, these patterns can

include states of mixed nature, combining domains of in-phase and anti-phase or-

der, Figure 5.1(c). Remarkably, when mobility is present together with coupling

delays, the system can also form long-lived chimera states, with coexisting do-

mains of order and disorder, Figure 5.1(d). Thus, even after a long transient the

(b)(a)

0 20 40 60 80 100
space

0 20 40 60 80 100
space

(c) (d)

Figure 5.1: Examples of the variety of dynamical states that the system can visit
depending on parameters. An accurate classification method should distinguish
between them. (a) disorder, �=� = 102 and �in = 2:2; (b) local order, �=� = 1,
�in = 6:16; (c) coexistence of in-phase and antiphase domains, �=� = 0, �in = 1:36;
(d) chimera state, �=� = 1 and �in = 4:88. Other parameters: �out = 0, N = 100,
! = 1. All snapshots are taken after a sufficiently long transient t > 5000.

system can exhibit a wide diversity of dynamical states, depending on parame-

ters, Figure 5.1. To further understand the dynamics of coupled oscillators in the

presence of mobility and coupling delays it is therefore important to characterize

these variety of states. Specifically, we seek a method capable of systematically

distinguish between the different dynamical states that appear and, in particular,

between chimera states and the other non-chimera states.

Reliable detection and classification of chimera states poses a challenge. As

we discuss below in Section 6.1, dynamical properties of chimera states differ

between systems. As a result, different quantitative measures have been proposed

to characterize chimeras [87–89]. The need for a universal systematic way of

defining chimera states has motivated the development of different methods [90–

92]. Although methods proposed in these works have demonstrated to be useful
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in several systems, here we find the necessity of developing a different approach

to distinguish chimera states from all the other dynamical states occurring in

the system. The novel approach we develop in this Thesis is the consequence

of the knowledge we got from an extensive study on how other methods work

when applied to the states encountered in the system of mobile delayed-coupled

oscillators, Figure 5.1. Before presenting our method in the next section, below

we describe how the two methods that most reliably identify chimeras in a variety

of systems fail to identify chimeras in some situations that are relevant for the

mobile delayed-coupled system.

Chimera states are, by definition, states combining ordered and disordered

groups of oscillators. Therefore, a successful method for identifying chimera states

needs to be able to locally detect the presence of ordered and disordered parts

of the system at the same time. For example, the method proposed in [91] is

based on the idea of partitioning the system into several clusters of a fixed size

and comparing the local coherence between the clusters. If all the clusters are

locally coherent (incoherent), then the state as a whole is a coherent (incoherent)

state. If on the contrary some clusters show local coherence while others do not,

coexistence of coherence and incoherence is detected and the state is identified as

a chimera state. Specifically, the method can be adapted to the one-dimensional

lattice with mobile oscillators considered here as follows. First, the absolute

values of the phase differences modulo 2� between lattice sites are considered

instead of the original phase variables

∆#k(t) = min f j#k+1(t)� #k(t)j ; 2� � j#k+1(t)� #k(t)j g ; (5.1)

where #k(t) is the phase value at site k at the time t, with k = 0; :::; N �2. Next,

the lattice is partitioned into M clusters of n = N=M oscillators. Introducing the

standard deviation �m and the mean value of the phase differences within each

cluster h∆#im, Eqs. (5.2) and (5.3)

�m(t) =

vuut 1

n

nmX
j=n(m�1)+1

(∆#j � h∆#im)2 (5.2)

h∆#im =
1

n

nmX
j=n(m�1)+1

∆#j(t) m = 1; : : : ;M; (5.3)
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the local coherence of a cluster is measured by comparing �m with a predefined

noise threshold �. If �m < �, cluster m is classified as a coherent cluster and

assigned cm = 1. Otherwise, cm = 0. Then, the strength of incoherence I of the

state defined as

I = 1�
MX
m=1

cm=M , cm =

(
1 if �m < �

0 if �m � �
(5.4)

is a measure of the ratio between coherent and incoherent parts of the system:

I = 1 if all parts are incoherent (disorder), I = 0 if every part is coherent (global

order) and 0 < I < 1 if there is coexistence of coherent and incoherent parts

(chimera state).

The success of this method in identifying chimera states depends on two pa-

rameters: the size of the clusters n and the threshold for noise �. Even for suitable

parameters, the difficulty of applying this method to the system considered here

comes from the fact that there are states other than chimeras (0 < I < 1), dis-

order (I = 1) or global order (I = 0). Besides, the method involves a predefined

partitioning of the system into smaller clusters, which usually do not coincide with

coherent domains. Splitting coherent domains with the predefined partitioning

causes two problems. On the one hand, the method can miss some coherent

domains because splitting them increases �m. This becomes particularly rele-

vant when coherent domains are small, and causes a misclassification of chimera

states as disorder states. On the other hand, and more frequent, the method

fails to distinguish chimera states from states combining domains of in-phase and

antiphase order. Even if the fixed clustering does not split coherent domains,

the presence of domain walls at the interphase between in-phase and antiphase

domains contributes to increasing �m, Figure 5.2. Some coherent clusters that

include domain walls are then wrongly classified as incoherent clusters, causing

the method to identify a chimera state where it is not. It is not easy to exclude

domain walls by using this method.

More recently, a classification method was proposed for chimera states which

does not need a predefined clustering of the system [90]. Instead, the relative

amount of coherent regions in the system is measured by evaluating a probability

density function g of what is defined as the local curvature D. For phase oscillators

in the one-dimensional lattice, the local curvature at each point in space is defined
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Figure 5.2: Examples of how the strength of incoherence method works for states
mixing in-phase and antiphase domains. Dashed lines indicate the method’s
clustering for clusters of n = 10 oscillators. Bold black numbers indicate the
value of cm in each cluster for � = 0:15�. For both states 0 < I < 1.

as the discrete Laplacian

Df =
f(x+ ∆x; t)� 2f(x; t) + f(x�∆x; t)

∆x2
(5.5)

where f(x; t) � ei�(x;t) and we fix ∆x = 1. For left and right borders we use

forward and backward schemes to compute the Laplacian, respectively. jDf j is,

for each time point, a transformation of the phase variables into new variables

that account for phase differences in the circle, Figure 5.3(a-d) middle panels.

For in-phase synchronization, jDj = 0 and the phases are projected into the x-

axis through this transformation. In contrast, incoherent parts of the system

have non-zero values of the curvature with pronounced fluctuations. Therefore,

by considering the normalized probability density function g(jDj), it is possible

to measure the relative size of spatially coherent regions. For a fully in-phase

synchronized state g(0) = 1, for a fully incoherent state g(0) = 0. A value between

0 and 1 of g(0) means that some oscillators are synchronized in-phase since g(0) >

0 but not all of them since g(0) < 1. Thus, 0 < g(0) < 1 indicates coexistence

of synchrony and incoherence. To account for some degree of fluctuations for

defining coherence, the degree of spatial synchronization in the system is measured

as

g0(t) �
Z �

0

g(t; jDj) djDj (5.6)

where � is a noise threshold for defining coherence [90]. The threshold � is a
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parameter of the method and should be chosen relative to the maximum value

of the curvature Dm, as a certain percentage of it. For example, a threshold

of � = 0:15Dm means that a point in space that has absolute local curvature

less than 15% of the maximum curvature Dm = 4 is considered coherent, and

incoherent otherwise. Then, if g0 = 1 (g0 = 0) the state has only coherent

(incoherent) regions and is classified as an order (disorder) state. A value of

0 < g0 < 1 indicates coexistence between coherent and incoherent parts and the

state is classified as a chimera state.

In the system considered here, dynamical states may present ordered but

noisy regions because the exchange of positions between neighbouring oscillators

with different phases disturbs local order, Figure 5.3(a,b). Moreover, and besides

being noisy, some local order states may also present twists, Figure 5.3(b) top

panel. Twisted local order should be consistently considered local order, although

it presents higher values of the curvature, Figure 5.3(b) middle panel. Thus, the

threshold � needs to be high enough to account for these cases. However, such

a permissive threshold fails between coexistent coherent but noisy domains and

incoherent domains. This can lead to misidentifying disorder states as chimera

states, Figure 5.3(c). After an extensive tuning of the parameter �, we could

not find a suitable value with which this method could distinguish between the

variety of chimera states and other dynamical states that occur in the system for

the whole range of mobility rates and delay values that we explore. Even if we

could find accurate parameters, to successfully apply this method to the system

considered here, we would still need to redefine the local curvature to account for

antiphase order and domain walls.

So far, we reviewed how two of the methods proposed in the literature, which

succeed in identifying chimeras in other systems, work for the repertoire of states

that appear in the system of mobile delayed-coupled oscillators. There are other

methods that we do not review here, that fail when applied to this system for

different reasons. For example, measures based on looking at the microscopic

state of the system are successful for small systems [89, 93] and local order pa-

rameters [88] and entropic measures [87] are reliable for community structured

populations. In summary, while the proposed methods have proved to be suc-

cessful in a variety of contexts, it is not clear how to adapt them to the context

of mobile, delayed-coupled oscillators. We could not find a way to redefine the

quantities such that these methods could reliably distinguish between the diver-
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Figure 5.3: Examples of how the local curvature method works for different
states. (a) Local order with fluctuations, (b) twisted local order, (c) disorder and
(d) chimera state. Local order with fluctuations needs a high noise � tolerance.
Twisted local order needs even higher �. In the examples �0 = 0:15Dm, (light
green) gives g0 = 1 in (a) but g0 < 1 in (b). A higher value of � = 0:23Dm (dark
green) gives g0 = 1 for (a) and (b) but g0 > 0 for (c).

sity of dynamical states that appear for the entire range of mobility rate and

delay values. However, from analyzing how the described methods work for each
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disorder
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Figure 5.4: Order and disorder are characterized by very different phase-difference
motifs.

of the dynamical states, we unveiled some aspects that an accurate classifica-

tion method should consider. For example, we learnt that the successful measure

should be able to identify order and disorder locally, should include a threshold

parameter that accounts for fluctuations, should consider antiphase as another

kind of local order and should tackle the difficulty posed by domain walls. In

addition, it becomes evident that the method should be based on a transfor-

mation of variables that accounts for phase differences in the circle instead of

on the original phase variables. From this basis, we develop a different approach

that employs phase-difference motifs to locally distinguish order and disorder and

succeeds in identifying between the variety of dynamical states mentioned. The

main idea of our approach comes from the fact that order and disorder are com-

posed of very different phase-difference motifs. While order is characterized by

small phase differences, i.e. flat motifs, disorder in contrast shows peaked motifs

with large amplitude in the phase differences, Figure 5.4. Thus, identifying these

motifs within the dynamical states allows for locally distinguishing order from

disorder.
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5.2 Phase-di�erence motifs for classifying

dynamical states

To distinguish between the variety of dynamical states that appear in the

system of mobile delayed-coupled oscillators, Figure 5.1, we devise a classification

method that introduces phase-difference motifs to identify ordered and disordered

domains in the lattice. Given a snapshot at time t of the system state, our aim

is to locally identify between parts of the system which are disordered and parts

which are locally synchronized, either in-phase or in antiphase, Figure 5.5 top

panels. With this purpose we first consider the absolute value of phase differences

between first neighbours, modulo 2�

∆#k(t) = min f j#k+1(t)� #k(t)j ; 2� � j#k+1(t)� #k(t)j g (5.7)

where #k(t) is the phase value at site k at the time t, with k = 0; :::; N � 2, Fig-

ure 5.5 bottom panels. While disordered parts of the snapshots display variable

space space space200 200 200

0

0

Figure 5.5: Typical disorder and order parts of the phase snapshots (top panel)
and corresponding phase differences (bottom panel). Red error bars indicate the
noise tolerance window defined by ��, here � = 0:15�. For ordered patterns all
subsequent phase differences lay inside the noise tolerance window while most
subsequent phase differences in the disordered pattern lay outside.

phase differences with large changes from one site to the next, phase differences

for ordered parts remain almost constant, Figure 5.5. Therefore, we seek a way

to identify whether consecutive phase differences change abruptly going up or

down, or stay almost constant.
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We introduce phase-difference motifs consisting of three nodes, corresponding

to three consecutive phase differences, Figure 5.6(a). Motifs are labeled with
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Figure 5.6: (a) Possible phase-difference motifs arranged to show the signatures of
order (top) and disorder (middle). Other occurring motifs (bottom) are not used
by our classification scheme. (b) Histogram of three-node motifs for disordered
states. Green and red bars are flat and peaked motifs, respectively, black bars
are all other motifs. Snapshots were prepared by taking N = 100 phases from a
uniform distribution between [0; 2�]. Total sample snapshots considered: 5�105.
(c, d) Probability of finding at least one domain of m consecutive zeros in a
disordered state. Probability was computed over 106 sample disordered snapshots,
with noise threshold � = 0:15�. Black line in right panel shows the exponential
fit used to estimate the decay rate and to choose m0.

two numbers, one for each of its two links. These numbers reflect how similar a

phase difference ∆#k is from the following ∆#k+1. We assign the labels to a link

according to the following criteria, Figure 5.6(a):

� if �� < ∆#k+1 �∆#k < �, link value is 0
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� if ∆#k+1 �∆#k > �, link value is 1

� if ∆#k+1 �∆#k < ��, link value is �1 .

The quantity � determines the threshold of noise that we admit for defining order

and is a parameter of our method. In the following we choose � = 0:15�, which

is a 15% of the maximum possible value of the phase differences. This value of �

has proven to successfully reflect coherence while accounting for fluctuations to

local order for almost every value of the mobility rate.

Figure 5.6(b) shows the distribution of motifs for a snapshot consisting of

randomly chosen phases for all the oscillators in the one dimensional lattice. It

becomes evident that such disordered snapshots are characterized by a larger

fraction of peaked motifs f(1;�1); (�1; 1)g than other motifs. Thus, peaked

motifs are a hallmark of disorder and we consider the presence of at least one

peaked motif in a snapshot as an indicator that some amount of disorder is present

in the system.

Similarly, we can identify the presence of order by looking for flat motifs

f(0; 0)g. Flat motifs can also happen by chance in disordered states, Figure 5.6(b).

Therefore we consider that there is order present in the system only if there is

at least one domain with a minimum amount m0 of consecutive zeros. To cali-

brate this parameter, we study the distribution of consecutive zeros in disordered

states, Figure 5.6(c,d). The number of consecutive zeros that could appear in a

disordered state decays exponentially. We consider as a reference the value of m

for which the exponential falls to a value of 1% of its maximum for m = 2. A

linear fit shows this happens roughly for m > 5, Figure 5.6(d). Then, we consider

that if at least m0 = 6 consecutive zeros (i.e. three consecutive flat motifs) are

present in a snapshot of the system state, the snapshot presents an ordered do-

main. This domain could have the size of the system or could coexist with other

motifs.

With the described procedure, we are able to locally distinguish the presence

of order and disorder in a snapshot of the system state by looking at flat and

peaked motifs, Figure 5.7(a-f) bottom panels. When domains with at least m0

consecutive zeros coexist with at least one peaked motif, our approach identifies

a chimera state. Other motifs, black in Figure 5.6, are not used by our clas-

sification scheme. Domain walls, characterized by f(1; 1); (�1;�1)g motifs are

thus naturally excluded in our scheme and we are able to distinguish states with

coexisting in-phase and antiphase domains from chimera states. In-phase and
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anti-phase ordered domains can be distinguished by evaluating the mean value

of the phase differences within the domains. In conclusion, our approach is capa-

ble of distinguishing between the totality of the dynamical states mentioned in

previous sections, Figure 5.7.

5.3 Discussion

In this chapter we addressed the problem of classification of dynamical states

that arises from the necessity of distinguishing between a variety of very different

patterns that appear in the system of mobile delayed-coupled oscillators. The

main issue comes from the fact that these patterns include chimera states, with

coexisting domains of order and disorder. Chimera states are complex patterns

that have been widely studied in several systems, showing different characteristics

depending on the system. In the next chapter we give some context about these

intriguing states, Figure 6.1. Identifying and classifying chimera states posses

a challenge, and has led to the development of several methods [87–93]. The

problem of having a universal way of defining chimera states was highlighted in

recent works [90–92]. While these recent works propose classification schemes

that are useful in several systems, they fail to distinguish chimeras in the context

of mobile delayed-coupled oscillators where noisy local order states and states

that include domain walls are also present. The many methods proposed in

the literature have their pros and cons depending on the characteristics of the

dynamical states that the systems to which they are applied show. Developing

tools for systematically and reliably detecting and classifying chimera states is

still an opened problem in the field.

Here we devised a computational method based on phase-difference motifs

that reliably distinguishes chimera states from a wide repertoire of other dynam-

ical states, Figure 5.7. Furthermore, as we show in the next chapter, the method

allows to identify new kinds of chimera states that, to the best of our knowl-

edge, have not been reported so far. Our method improves the performance of

other methods for noisy states and could be applied to other systems such as

experimental designs where noise is unavoidable.
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Figure 5.7: Examples of how the devised classification method works for the
repertoire of dynamical states. For each of the states, top and bottom panels show
a snapshot of phases and the spatial profile for phase differences, respectively.
Parameters of the classification method: � = 0:15� and m0 = 6 : peaked motifs
are marked in red and ordered domains are green. Other motifs in black are not
used by the classification method.
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Chapter 6

Mobility-induced persistent

chimera states

In Chapter 4 we studied the dynamics of the system of mobile delayed-coupled

oscillators exploring parameter space for values of the delay that lay outside the

multistability regions of in-phase and antiphase order for non-mobile oscillators.

We now explore these other regions of parameter space, where chimera states

spontaneously emerge. Additionally to the well known chimera states with co-

existing domains of in-phase order and disorder, we find novel kinds of chimera

states that blend coherent in-phase and antiphase domains with incoherent do-

mains in different combinations. These chimera states are dynamic and can per-

sist for long times for intermediate mobility values. We employ the method

devised in the previous chapter to study where the different kinds of chimera

states occur in parameter space. We discuss the mechanisms leading to the for-

mation of these chimera states in different mobility regimes. Some of the results

presented in this chapter have been included in the publication Mobility-induced

persistent chimera states [86]. We first make a brief intermission on chimera

states to contextualize our results.

6.1 Brief intermission on chimera states

As explained in previous sections, systems of coupled identical oscillators are

usually expected to display stable homogeneous solutions such as completely syn-

chronized states. For more than twenty five years, it was thought that either

83
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these completely synchronized solutions or completely incoherent solutions were

the only possible behaviour that these systems could show. There was no reason

to expect that identical oscillators coupled in identical ways to their neighbours

could display other kind of solutions. However it is now known that, intrigu-

ingly, under certain conditions systems of identical oscillators can also exhibit

states of broken symmetry. In such states the population spontaneously splits

into two distinct groups of oscillators, some oscillating in synchrony with a unique

collective frequency and the others drifting around with distributed phases and

frequencies. These states of broken symmetry where first noticed by Kuramoto

and Battogtokh in 2002 [84] and subsequently named chimera states [85]. It is

important to notice that partial synchronization was not new, but until 2002 it

was thought to occur only when non-identical units where considered, emerging

from some heterogeneity in the frequencies that made some oscillators impossible

to follow the mean-field forcing, Section 2.1. Chimera states are conceptually

different from this as they occur in systems of identical oscillators. In Greek

mythology, a chimera was a monstrous fire-breathing hybrid creature, composed

of parts of different animals, typically a lion, a goat and a snake, Figure 6.1(a).

In non-linear dynamics, chimeras are monstrous spatio-temporal patterns com-

posed of synchronous and asynchronous domains that coexist within the same

state in networks of identical coupled oscillators, Figure 6.1(b-g). Below, we pro-

vide some important examples of chimera states reported both in theoretical and

experimental systems.

In 2002 Kuramoto and Battogtokh noticed for the first time that the system

of identical units can develop peculiar patterns where one group of oscillators

oscillate together with the same phase and a collective frequency Ω, whereas other

group of oscillators drift incoherently with their phases spread, Figure 6.1(b).

This finding demonstrated that identical oscillators could show a much richer

behavior than what it was expected and opened a whole new avenue of research

for non-linear dynamics [94]. In their original work, they considered the dynamics

of a ring of non-locally coupled identical oscillators with the phase equations in

the continuum limit

@

@t
�(x; t) = ! �

Z
G(x� x0) sin (�(x; t)� �(x0; t) + �) dx0 (6.1)

where ! is the natural frequency of the oscillators, � is a phase shift in the coupling

function and x is the one-dimensional spatial dimension. The non-locality of the
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Figure 6.1: (a) Chimera creature in greek mythology, (b-f) chimera states in
theoretical systems of coupled oscillators, (g) chimera state in two populations of
coupled mechanical oscillators. In (g), swing and metronome displacements are
measured by digital tracking of UV fluorescent spots placed on the pendula and
swings. Figure adapted from [94] and [95].

coupling is provided by an exponentially decaying kernel

G(x� x0) = A�e��dx;x0 ; (6.2)

with dx;x0 the shortest distance between x and x0 in the ring and A a normaliza-

tion constant. In subsequent years, results in this first work were generalized for

a more tractable non-local kernel [85] and also for a simpler system consisting

of two populations of oscillators with all-to-all coupling, provided that the cou-

pling strength is weaker between populations than within each population [96],

Figure 6.1(c).

A few years later, chimeras where also reported for the delayed version of the













































Chapter 7

Measures for synchronization

timescales

In Chapter 4, we studied a system of mobile delayed-coupled oscillators as

it approaches the completely synchronized state. We analysed a characteristic

time Tc in the linear regime, where the system is close to the synchronized state.

In biological systems, however, noise hampers synchronization. Noise present in

biological systems can push them away from synchronization, into states that are

far from the completely synchronized state. Furthermore, some assays designed

to determine the effects of noise and measure coupling strength consist of driving

the system away from the synchronized state, sometimes almost to complete

desynchronization. Thus, it is biologically relevant to quantify the time that the

system needs to recover synchronization when it is still far from this state. In

this chapter, we ask to what extent the characteristic time Tc is representative of

the dynamics far from the synchronized state. We define measures to quantify

these other timescales and look at the correlations between these measures and

the characteristic time Tc previously analyzed. For simplicity in this chapter we

consider the system of mobile oscillators without coupling delays �in = �out = 0.

7.1 Synchronization dynamics far away from

synchrony

In Chapter 4 we characterized the synchronization dynamics of mobile delayed

coupled oscillators in the exponential regime, where the system is close to the syn-
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Chapter 8

Summary and outlook

In this Thesis we proposed a theoretical framework to study the dynamics

of mobile delayed-coupled oscillators. The theory is motivated by the biological

process of embryonic segment formation. The vertebrate body is provided with

a repetitive structure of segments that originate sequentially -one by one- during

embryonic development, with a precise rhythm. This rhythm is controlled by a

biological clock, known as the vertebrate segmentation clock. Proper segment

formation relies on the coherence of the rhythm produced by the many cells that

form the clock tissue. An intriguing question is how these cells self-organize and

maintain this collective rhythm. In zebrafish it is thought that each cell in the

tissue behaves as a noisy autonomous oscillator. Synchronization of noisy single

cell oscillators is achieved through intercellular communication via Delta-Notch

signaling. Intercellular communication via Delta-Notch signaling is local, as cells

need to be close enough to allow for mechanical contact between transmembrane

ligands and receptors. This local signaling involves a cascade of complex events

that include synthesis and transport of macromolecules. This cascade introduces

communication delays which may alter collective dynamics and patterning. Be-

sides this delayed local communication mechanism, cells move within the posterior

zone of the tissue exchanging neighbors over time. This mobility is expected to

affect information flow in the tissue and pattern formation.

Both communication delays and cell mobility had been separately described in

theories of the segmentation clock. Theories consisting of coupled oscillators that

include explicit delays in the coupling have demonstrated to capture the com-

plexity of Delta-Notch communication. Theories that describe cell movement
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Appendix A

Numerical methods

As described in Chapter 3 we consider a system of N phase oscillators with

phases �i, with i = 1; : : : ; N , placed at discrete positions xi = 0; : : : ; N � 1 in a

one dimensional lattice of N sites. The phases of the oscillators evolve according

to Eqs. (3.1), which we integrate numerically using an integration scheme with a

time step �t that is fixed within each simulation. Additionally, oscillators are able

to move through the lattice by exchanging positions with their nearest-neighbors.

This stochastic exchange of oscillators positions is described as a Poisson process.

We introduce a mobility rate � so that each pair of neighboring oscillators has

a probability �=2 of exchanging positions per unit time. Together with the two

contributions to the coupling delay �in and �out , the mobility rate � is a rele-

vant parameter of our description. In this Thesis we explore different values of

the mobility rate and coupling delays. Importantly, the values of these relevant

parameters can be set independently from each other. To obtain numerical so-

lutions for the dynamics of the system, we developed a computational algorithm

that solves the delayed differential equations (3.1) in the context with mobility.

We next describe the algorithm, which is written in C programming language

and receives the relevant parameter values for each simulation via the command

line.

To simulate the Poisson process we use an approximation of the Gillespie

algorithm for discrete time intervals. The distribution of waiting times te for the

next exchange event in the lattice of N oscillators is

P (te) = a0 exp (�a0 te) (A.1)
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