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Homogeneización y diseño óptimo
en difusión no local

(Resumen)

En esta tesis, estudiamos algunos problemas que involucran difusión no local. En la primera
parte, obtenemos un resultado de compacidad para la noción de H-convergencia de una familia
de problemas monótonos de tipo eĺıpticos, no locales y lineales, por medio del método de Tartar
de funciones de prueba oscilantes. En la segunda parte, probamos la existencia de solución
para algunos problemas de optimización de forma. Más aún, analizamos la transición de las
ecuaciones de estado no locales a las del caso local.

Palabras clave: difusión no local, homogeneización, optimización de forma, Γ-
convergencia, capacidad fraccionaria.
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Homogenization and optimal design
in nonlocal diffusion

(Abstract)

In this thesis, we study some problems involving nonlocal diffusion. In the first part, we
obtain a compactness result for the H-convergence of a family of nonlocal and linear monotone
elliptic-type problems by means of Tartar’s method of oscillating test functions. In the second
part, we prove existence results for some shape optimization problems. Moreover, we also
analyze the transition from nonlocal to local state equations.

Key words: nonlocal diffusion, homogenization, shape optimization, Γ-convergence,
fractional capacity.
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Introducción

Para empezar con esta tesis, nos gustaŕıa darle al lector una idea intuitiva de los tres conceptos
que aparecen en su t́ıtulo:

• homogeneización,

• diseño óptimo,

• difusión no local.

Empecemos con el primero: homogeneización.

Cubrir el piso del cuarto de los niños con alfombra es común para protegerlos cuando
juegan y ocasionalmente caen. Cuando vemos una alfombra en una macro-escala, podemos
decir que parece ser una cosa única, homogénea. PERO, si nos acercamos lo suficiente,
podemos distinguir los espacios entre las diferentes felpas. Por lo que parece heterogénea en
una micro-escala.

También, al ver una pared hecha de rocas porosas, puede parecer de textura homogénea
cuando la vemos globalmente, en una macro-escala. En contraste, en la micro-escala, parece
ser realmente heterogénea.

En ambos casos: alfombra y rocas porosas, podemos decir que las heterogeneidades son
demasiado pequeñas comparadas con la totalidad de la dimensión de cada objeto.

Una pregunta posible es: podemos recolectar información de las propiedades macroscópicas
teniendo en cuenta también las microscópicas?. Este es el objetivo de la homogeneización.

Sigamos con el segundo concepto: diseño óptimo. Pensemos en una empresa que vende
hojas de metal como conductores de electricidad. Podemos asumir que para hacer un producto
bueno la empresa debe usar al menos dos materiales:

- el mejor material conductor, pero también el más caro,

- el más barato, pero también el de peor calidad.

Podemos encontrar el diseño óptimo (la forma, la manera de combinar ambos materiales)
para fabricar un producto bueno y razonable?

Leyendo entre ĺıneas, podemos decir que un problema de diseño óptimo es esencialmente
encontrar una forma que minimice cierto funcional de costo.

vii
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Solo queda un concepto más a discurtir: difusión no local.

Los guepardos usualmente cazan sus presas a solo la mitad de su velocidad máxima.
Después de cada persecución, un guepardo necesita media hora para recuperar su respiración
antes de poder comer. Asumimos que tener una técnica efectiva para cazar es realmente
importante para sobrevivir.

Los guepardos comen animales de tamaño chico o mediano, por ejemplo, gacelas. La
excelente vista del guepardo lo ayuda a encontrar presas durante el d́ıa. PERO, una vez
visto el guepardo por las gacelas, las gacelas no esperarán ser atrapadas. Por lo tanto, será
más conveniente para el guepardo elegir al azar una dirección, moverse rápidamente en esa
dirección y golpear a su presa contra el suelo y luego morder su garganta.

Este tipo de atropello con fuga (procedimiento de caza) está relacionado con el concepto de
difusión no local. Podemos decir que es razonable que los depredadores usen una estategia
de difusión no local para cazar sus presas más eficientemente.

Una amigable mirada a la difusión no local

A lo largo de la tesis, lidiamos con una familia de operadores no locales. Decimos que L es un
operador no local si debemos saber qué pasa en toda la región cuando solo nos interesa saber
el valor en un punto fijo x ∈ Rn. No importa qué tan lejos un punto y ∈ Rn esté del punto
fijo x. No alcanza con conocer cómo una función se comporta en un entorno, sino cómo lo
hace en toda la región. Solo como para ilustrar, pensemos en la economı́a global. No importa
que tan lejos o cerca estemos de China o Estados Unidos, cualquier decisión económica que
tomen, nos afectará, nuestra economı́a sufrirá las consecuencias.

Un operador local clásico es el laplaciano −∆. Para u una función suave

−∆u(x) = −div(∇u(x)) = −
(
∂2
x2

1
u(x) + · · ·+ ∂2

x2
n
u(x)

)
.

Observemos que solo algunas de las derivadas de segundo orden de u son necesarias para
calcular el valor de −∆u(x), entonces si solo tenemos información en un entorno de un punto
fijo x, será suficiente para llegar al valor de −∆u(x).

En contraste, miremos el operador laplaciano fraccionario (−∆)s,

(−∆)su(x) =
c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy.

Más adelante, daremos más detalles. Ahora, solo entendamos al parámetro s ∈ (0, 1) como un
exponente fraccionario y a u como una función adecuada. La constante c(n, s) juega un rol
clave cuando analizamos el comportamiento asintótico s ↑ 1 de algunos problemas. PERO,
por ahora, es solo una constante de normalización. Pensemos por ejemplo, el caso s = 1

2 será
como tomar la ráız cuadrada del clásico laplaciano.

Notemos que para calcular (−∆)su(x) necesitamos saber el valor de u(z) para todo z, no
importa qué tan cerca o lejos estén z y x.

Ahora, nos gustaŕıa dar una motivación probabiĺıstica del laplaciano fraccionario. Tiene
que ver con caminos aleatorios que permiten grandes saltos. Pensamos que es la manera más
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linda y amigable de introducir este operador no local por primera vez. También el clásico
laplaciano tiene una interpretación probabiĺıstica similar, pero enfocamos nuestra atención en
el caso fraccionario, ya que es nuestro objeto de estudio clave a lo largo de la tesis.

Una motivación probabiĺıstica para el laplaciano fraccionario

Un camino aleatorio que permite saltos grandes arbitrarios. Comencemos por de-
scribir un proceso probabiĺıstico en el que una part́ıcula se mueve aleatoriamente en el espacio,
sujeto a una probabilidad que permite grandes saltos; originando el laplaciano fraccionario.

Hay dos variables a tener en cuenta: t > 0 para el tiempo y x ∈ Rn para la posición
espacial. Nos referimos a la probabilidad de encontrar la part́ıcula en el punto x a tiempo
t como u(x, t). Empezamos decribiendo el proceso con ambas variables discretas. Al final,
tomando el ĺımite cuando los pasos de tiempo y espacio sean pequeños, llegaremos a la ecuación
del calor no local. Fijemos la medida de los pasos: τ > 0 para el paso del tiempo h > 0 para
el paso del espacio.

Supongamos que la part́ıcula empieza a tiempo t en la posición x. Para comenzar a
moverse, la part́ıcula debe elegir al azar una dirección, digamos v ∈ ∂B1, y un número de
pasos, digamos k ∈ N. Ya que la medida de cada paso es h, la nueva posición a tiempo t+ τ
puede ser descripta como x+ khv.

Para hablar de u(x, t + τ), la probabilidad de encontrar la part́ıcula en la posición x a
tiempo t+τ , es suficiente decidir la probabilidad de elegir una dirección v ∈ ∂B1 y un número
k ∈ N. Consideremos la distribución uniforme en ∂B1 y para cada k ∈ N, denotemos por a(k)
la probabilidad de elegir ese k. Entonces, para cada I ⊂ N, podemos definir

P (I) :=
∑
k∈I

a(k).

Los grandes saltos están permitidos pero con menos probabilidad que los cortos. Por lo tanto,
tomamos a(k) con un decaimiento polinomial, digamos a(k) ' 1

kα , donde α > 0.

Queremos que P también sea una probabilidad en N. Luego, necesitamos P (N) = 1.
Como a(k) ' 1

kα , es suficiente elegir α > 1 para la convergencia de la serie. Esto quiere decir,
α = 1 + β, con β > 0. Puede escribirse como α = 1 + 2s con s ∈ (0, 1), por ejemplo.

Finalmente, para I ⊂ N definimos la probabilidad P como

P (I) := c
∑
k∈I

1

k1+2s
,

donde c es elegida de manera que P (N) = 1.

Ahora, la probabilidad u(x, t+ τ) de encontrar la part́ıcula en la posición x a tiempo t+ τ
es la suma de las probabilidades de encontrar la part́ıcula en cualquier otro lugar, digamos en
x + khv, para alguna dirección v ∈ ∂B1 y algún número natural k ∈ N, por la probabilidad
de haber elegido esa dirección y ese número natual. Es decir,

u(x, t+ τ) =
c

|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t)

|k|1+2s
dSv.
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Teniendo en cuenta que c
|∂B1| es una constante de normalización, por consiguiente, sub-

strayendo u(x, t), obtenemos

u(x, t+ τ)− u(x, t) =
c

|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t)

|k|1+2s
dSv − u(x, t)

=
c

|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t)− u(x, t)

|k|1+2s
dSv.

Por simetŕıa, podemos cambiar v por −v en la integral de arriba, por lo tanto, tenemos que

u(x, t+ τ)− u(x, t) =
c

|∂B1|
∑
k∈N

∫
∂B1

u(x− khv, t)− u(x, t)

|k|1+2s
dSv.

Luego, sumando estas dos expresiones, llegamos a

u(x, t+ τ)− u(x, t) =
c

2|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t) + u(x− khv, t)− 2u(x, t)

|k|1+2s
dSv.

Ahora, dividiendo por τ , reconocemos una suma de Riemann.

∂tu(x, t) ' u(x, t+ τ)− u(x, t)

τ

=
c

2|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t) + u(x− khv, t)− 2u(x, t)

τ |k|1+2s
dSv

Multiplicando y dividiendo por h1+2s, obtenemos, tomando ĺımite formal,

∂tu(x, t) ' h1+2s

τ

c

2|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t) + u(x− khv, t)− 2u(x, t)

τ |hk|1+2s
dSv

' h2s

τ

c

2|∂B1|

∫ ∞
0

∫
∂B1

u(x+ rv, t) + u(x− rv, t)− 2u(x, t)

|r|1+2s
dSvdr

Se infiere que la relación adecuada entre las medidas de los pasos h y τ es h2s

τ = ν, ν puede
ser llamada la constante de difusividad no local. Entonces, usando coordenadas polares,

∂tu(x, t) ' c

2|∂B1|

∫
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|y|n+2s
dy

= −cn,s(−∆)su(x, t),

donde cn,s es una constante positiva. Al menos formalmente, para pasos pequeños de tiempo
y espacio, el proceso probabiĺıstico de arriba aproxima la ecuación del calor no local

∂tu(x, t) + (−∆)su(x, t) = 0,
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salvo constantes.

Hemos mostrado cómo este fenómeno no local (camino aleatorio con grandes saltos arbi-
trarios) se transforma en un operador no local (involucrando el laplaciano fraccionario (−∆)s).

Podemos asumir que para tiempo suficientemente grande, el problema se transforma en
estacionario, por lo tanto ya no depende del tiempo. También, suponemos que hay una fuente
afectando la cantidad de part́ıculas, digamos una cierta función f . Aśı, llegamos a este tipo
de ecuación

(−∆)su = f.

En la teoŕıa de probabilidad, el laplaciano fraccionario es un conocido ejemplo que puede
ser visto como un generador infinitesimal de procesos de Lévy, en ámbitos más generales. Ver,
por ejemplo, [2, 6, 11, 66].

Existen gran cantidad de aplicaciones relacionadas a tipos de problemas no locales. Para
nombrar algunas referencias: en f́ısica [42, 43, 50, 64, 68, 97], finanzas [3, 65, 84], dinámica
de fluidos [30, 34], ecoloǵıa [58, 67, 77], procesamiento de imágenes [51].

A lo largo de toda la tesis, trabajamos con algunos problemas de Dirichlet:{
Lu = f in Ω,

u = 0 in Rn \ Ω,
(0.0.1)

donde Ω es un subconjunto abierto acotado de Rn y L pertenece a cierta clase de operadores
no locales en la que el laplaciano fraccionario es el ejemplo principal. Este tipo de problemas
integro-diferenciales surgen naturalmente en el estudio de procesos estocásticos con saltos,
como motivamos previamente. Aquellos problemas han sido ampliamente estudiados en las
áreas de Probabilidad y Análisis, Ecuaciones en derivadas parciales.

Probamos existencia de solución de los problemas de Dirichlet tratados en esta tesis, a
través de cálculo de variaciones, estableciendo una equivalencia entre ser solución débil del
problema (0.0.1) y ser minimizante de la enerǵıa asociada. Luego, vemos la existencia del
minimizante. Resultados de estabilidad y comparación de soluciones también son mostrados.

El lector interesado puede mirar los trabajos de Barles-Imbert [8], Felsinger-Kassmann-
Voigt [46], Hoh-Jacob [57], Xiang-Pucci-Squassina-Zhang [96], sobre existencia de soluciones
para problemas con operadores más generales. La regularidad interior de las soluciones fue
considerada por Bass-Levin [9], Caffarelli-Silvestre [25], Iannizzotto-Mosconi-Squassina [59,
60], Kassmann [61], por ejemplo. Trabajos de regularidad en la frontera de soluciones: Bogdan
[13], Grubb [53, 54], Ros-Oton–Serra [80, 79, 81]. Para otras propiedades cualitativas de las
soluciones, ver Birkner-López-Wakolbinger [12], Dipierro-Savin-Valdinoci [41], por ejemplo.

Homogeneización

La teoŕıa de homogeneización data desde los trabajos de S. Spagnolo [91], E. De Giorgi y S.
Spagnolo [35], I. Babuška [7], A. Bensoussan, J.L. Lions y G. Papanicolaou [10] y E. Sánchez-
Palencia [82] entre otros.
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En el contexto de ecuaciones lineales eĺıpticas en derivadas parciales, el modelo a estudiar
es el ĺımite de k →∞ de los siguientes problemas{

−div(Ak∇uk) = f en Ω

uk = 0 en ∂Ω,
(0.0.2)

donde Ω ⊂ Rn es un dominio acotado, f ∈ H−1(Ω) y {Ak}k∈N ⊂ [L∞(Ω)]n×n es una sucesión
de matrices simétricas y uniformemente acotadas.

Como ejemplo modelo, ha sido considerado el caso donde las matrices Ak están dadas en
términos de una única matriz A en la forma

Ak(x) = A(kx),

donde A es periódica, de peŕıodo 1, en cada variable.

En el marco periódico, el problema ĺımite cuando k →∞ puede faćılmente caracterizarse
completamente. Ver [10].

Con el objetivo de lidiar con el caso general, Spagnolo y De Giorgi introdujeron el concepto
de G-convergencia, que fue luego generalizado por Murat y Tartar a finales de los 70s y es
ahora llamada H-convergencia. Ver [29].

Cuando F. Murat en 1974 estaba estudiando el comportamiento de (0.0.2) cuando k →∞,
uno de los principales inconvenientes que encontró fue el hecho de que el producto de dos
sucesiones débilmente convergentes no convergen, en general, al producto de sus ĺımites. Mu-
rat venció esta dificultad descubriendo un argumento compensatorio de compacidad conocido
como el div-curl Lema, denominación sugerida por su tutor, J.L. Lions, debido al hecho de que
resulta de un efecto compensatotio. El Lema fue publicado en 1978 [69] y una demostración
alternativa fue probada por L. Tartar también en 1978 [93] usando el argumento de compaci-
dad de Hörmander para la inyección de H1

0 (Ω) en L2(Ω). El lema afirma que si consideramos
dos sucesiones {ψk}k∈N y {φk}k∈N en [L2(Ω)]n tales que

ψk ⇀ ψ, y φk ⇀ φ débil en [L2(Ω)]n,

con la hipótesis adicional de que

divψk → divψ en H−1(Ω), y curlφk → curlφ en [H−1(Ω)]n×n,

entonces podemos garantizar que ψk ·φk → ψ·φ en el sentido de las distribuciones. Recordemos
que el curl de un campo vectorial φ ∈ [L2(Ω)]n está definido por

curlφ =

(
∂φi

∂xj
− ∂φj

∂xi

)
1≤i,j≤n

.

El div-curl Lema juega un rol crucial en la teoŕıa de homogeneización. De hecho, basado
en este lema, Tartar introdujo en [93, 94] un método dirigido al comportamiento ĺımite de
(0.0.2) cuando k → ∞, obteniendo la existencia de una matriz coercitiva A0 ∈ [L∞(Ω)]n×n
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tal que la sucesión de soluciones {uk}k∈N de (0.0.2) converge débilmente en H1
0 (Ω), para una

subsucesión, a una función u0 que es solución del siguiente problema ĺımite homogeneizado{
−div(A0u0) = f en Ω

u0 = 0 en ∂Ω.
(0.0.3)

Más aún, Ak∇uk · ∇uk → A0∇u0 · ∇u0 en el sentido de las distribuciones, ver por ejemplo,
[4, 29]. Esto es, la sucesión Ak H-converge a A0.

En el caso cuasilineal, este tipo de resultados fueron obtenidos por varios autores en los
finales de los 80s y los comienzos de los 90s. Al lector interesado damos la referencia de
[28, 71] y del libro de G. Dal Maso [31] donde los autores usan métodos de la Γ-convergencia
con el fin de lidiar con estos problemas. Ver [17] para el caso periódico. Mencionemos que la
Γ-convergencia estudia el comportamiento de los mı́nimos en problemas variacionales, en el
caso especial de funcionales cuadráticos, esto da el comportamiento para problemas eĺıpticos
simétricos.

Observamos que en el caso lineal, la H-convergencia y la Γ-convergencia coinciden incluso
en el caso no simétrico; fue recientemente demostrado por Ansini, Dal Maso y Zeppieri [5].

Algunos problemas más generales fueron considerados recientemente. Evans, en [44],
estudió el caso de homogeneización periódica de ciertas ecuaciones en derivadas parciales
eĺıpticas totalmente no lineales y de tipo Hamilton-Jacobi. Posteriormente, Caffarelli, Soun-
ganidis y Wang [27] extendieron los resultados de Evans a medios ergódicos estacionarios. En
estos art́ıculos la existencia de las ecuaciones homogeneizadas fue demostrada, pero, debido a
la generalidad de los mismos, no se puede obtener información adicional sobre la estructura
de los problemas ĺımites.

En esta tesis, abordamos el problema de la H-convergencia de la versión no local de (0.0.2)
y damos una caracterización del problema ĺımite homogeneizado. Antes de entrar en detalles,
repasamos los antecedentes en relación con problemas no locales y su homogeneización.

La teoŕıa de regularidad para ecuaciones integro-diferenciales completamente no lineales,
que incluyen al laplaciano fraccionario como un ejemplo trivial, fue estudiada reciente y ex-
tensamente. Ver, por ejemplo, [25, 26, 80, 88].

Basados en estos resultados de regularidad para ecuaciones integro-diferenciales com-
pletamente no lineales, R. Schwab en [85, 86] extendió los resultados de Evans-Caffarelli,
Souganidis-Wang a este marco, pero nuevamente no más información sobre el problema ĺımite
fue obtenida. Recordamos que los resultados de Schwab hacen extensivo uso de la period-
icidad o de la ergodicidad del problema y el autor no obtiene ningún resultado general de
convergencia.

Un trabajo reciente de homogeneización no local en el marco periódico puede encontrarse
en [72].

Ahora, describimos brevemente nuestra contribución en Homogeneización en difusión no
local.

Sean 0 < λ ≤ Λ <∞. Consideremos la familia de núcleos simétricos y acotados

Aλ,Λ = {a ∈ L∞(Rn × Rn) : a(x, y) = a(y, x), λ ≤ a(x, y) ≤ Λ c.t.p. }



INTRODUCCIÓN xiv

Enfocamos nuestro análisis en una familia general de operadores anisotrópicos lineales de la
forma

Lau(x) := v.p.

∫
Rn
a(x, y)

u(x)− u(y)

|x− y|n+2s
dy, s ∈ (0, 1),

para a(x, y) ∈ Aλ,Λ. El problema a ser estudiado es el comportamiento cuando k →∞ de{
Lakuk = f en Ω

uk = 0 en Rn \ Ω,
(0.0.4)

donde Ω ⊂ Rn es un dominio acotado, f ∈ L2(Ω), y {ak}k∈N denota una sucesión en Aλ,Λ.

Los funcionales de enerǵıa asociados están dados por

Jak(v) :=

{
1
4

∫∫
Rn×Rn ak(x, y) |v(x)−v(y)|2

|x−y|n+2s dxdy si v ∈ Hs
0(Ω)

+∞ en otro caso.

Asumamos que ak
∗
⇀ a0 en L∞(Rn × Rn). Probamos que Jak

Γ→ Ja0 en L2(Ω). Como un
corolario inmediato, obtenemos que uk ⇀ u0 en Hs

0(Ω), donde uk es la solución de (0.0.4) y
u0 es la solución de {

La0u0 = f en Ω

u0 = 0 en Rn \ Ω.

El núcleo homogeneizado a0(x, y) hereda la positividad y el hecho de estar acotado de la
sucesión {ak(x, y)}k∈N.

Para alcanzar la H-convergencia, no es suficiente la convergencia de soluciones dada como
consecuencia de la Γ-convergencia de los funcionales de enerǵıa. Falta llegar a la convergencia
de los flujos relacionados con la ecuación. Por lo tanto, queremos aplicar el método de Tartar.
Con este objetivo, primero probamos una versión no local del div-curl Lema que nos permite
lidiar con la sucesión de problemas y encontrar la convergencia de los flujos.

Diseño óptimo

En su forma más general, un problema de optimización de forma puede expresarse como sigue:
dado un funcional de costo F , y una clase de dominios admisibles A, queremos resolver el
problema de minimización

min
A∈A

F (A). (0.0.5)

Este tipo de problemas han sido extensamente estudiados, se originan en distintos campos
y aplicaciones, como ya fue descripto anteriormente. La literatura matemática es muy amplia,
desde los casos clásicos de problemas isoperimétricos hasta las más recientes aplicaciones
incluyendo optimización espectral y elasticidad. Solo para mencionar algunas referencias,
sugerimos al lector los libros de Allaire [4], Bucur-Buttazzo [21], Henrot [55], Pironneau [73]
y Soko lowski-Zolésio [90], donde una gran cantidad de problemas de optimización de forma
son abordados.
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Usualmente, el funcional de costo F está dado en términos de una función uA que es
solución de una ecuación de estado a ser resuelta en A. T́ıpicamente, esta ecuación de estado
es una ecuación diferencial eĺıptica en derivadas parciales.

Hay solo unos pocos resultados sobre problemas de diseño óptimo de la forma (0.0.5) donde
la ecuación de estado involucra un operador no local en lugar de una ecuación diferencial
eĺıptica en derivadas parciales.

Por ejemplo, en [89], los autores extienden la conocida desigualdad de Faber-Krahn al
caso fraccionario y como un simple corolario, solucionan el problema (0.0.5) en el caso
F (A) = λs1(A) donde λs1(A) es el primer autovalor del laplaciano fraccionario con condiciones
de Dirichlet en Rn \A y A es la clase de abiertos de medida (de Lebesgue) fija.

En [18] los autores consideran otra vez la clase A de abiertos de medida (de Lebesgue) fija
y F (A) = λs2(A) el segundo autovalor del laplaciano fraccionario con condiciones de Dirichlet
en Rn \ A. Prueban que el problema (0.0.5) NO tiene solución. De hecho, una sucesión
minimizante consiste en bolas de la misma medida donde la distancia de sus centros diverge.

Finalmente, en [48], los autores toman la clase A de conjuntos medibles de medida fija
contenidos en un conjunto abierto fijo Ω y el funcional de costo F (A) = λs1(Ω \ A) donde
en este caso, λs1(Ω \ A) es el primer autovalor del laplaciano fraccionario con condiciones de
Dirichlet en A y condiciones de Neumann en Rn \ Ω.

Para otros problemas de optimización de forma donde la ecuación de estado es no local,
ver [23, 34, 62, 63, 76], y las referencias alĺı dentro.

La contribución de esta tesis es probar la existencia de solución para ciertos problemas de
diseño óptimo donde la ecuación de estado involucrada está dada en términos de un operador
no local particular, que es el laplaciano fraccionario.

Bajo ciertas hipótesis naturales sobre los funcionales de costo, que son similares a aquellas
consideradas en [24] y [22] donde se estudió el marco clásico, somos capaces de recuperar los
resultados de existencia en el contexto no local. Rigurosamente hablando, esas hipótesis son:

• monotońıa con respecto a la inclusión de conjuntos y

• semi-continuidad inferior con respecto a una noción de convergencia de dominios ade-
cuada.

Observemos que los resultados de [18] ponen una restricción sobre la clase de dominios
admisibles que hay que tener en cuenta si se quiere obtener un resultado positivo. Esto se
debe principalmente al hecho de que tomar un dominio con dos componentes conexas y hacer
que dichas componentes estén cada vez más lejos hace decrecer la enerǵıa no local. Entonces,
en el esṕıritu de [24] nos restringimos a la clase A de abiertos de medida fija contenidos en
una caja Ω ⊂ Rn.

Para funcionales de costo adecuados, probamos existencia de solución de

min{Fs(A) : A ∈ As(Ω), |A| = c}, para 0 < c < |Ω| fija,

y también,

min{Fs(A1, . . . , Am) : Ai ∈ As(Ω), Ai ∩Aj = ∅ para i 6= j}, para m ∈ N fija,
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donde As(Ω) es la clase de dominios admisibles.

Más aún, investigamos la conexión entre el marco no local y el clásico, esto es, anal-
izamos el comportamiento cuando el parámetro fraccionario 0 < s < 1 tiende a 1, probando
convergencia de mı́nimos y de las formas óptimas.

Esquema de la tesis

El Caṕıtulo 1 contiene algunas herramientas preliminares usadas a lo largo de esta tesis.
Casi siempre, los resultados no están citados de la manera más general, pero śı en la forma
apropiada para nuestros objetivos; aún aśı algunos de ellos son ligeramente más generales de
lo que estrictamente necesitamos. La mayoŕıa son bien conocidos, sin embargo los incluimos
aqúı por el bien de la completud. A veces, no entraremos en detalle refiriendo al lector a la
correspondiente literatura.

El Caṕıtulo 2 abarca los resultados de homogeneización. Obtenemos un resultado de
compacidad para la H-convergencia de una familia de operadores no locales de problemas
tipo-eĺıpticos por medio de el método de Tartar de funciones test oscilantes.

El Caṕıtulo 3 engloba los resultados de existencia de algunos problemas de optimización
de forma. Más aún, analizamos la transición desde las ecuaciones de estado no locales a la
local.

Publicaciones incluidas

Los resultados presentados en los Caṕıtulos 2 y 3 han aparecido publicados como art́ıculos
cient́ıficos. Estos resultados son entendidos como contribuciones individuales unidos como un
tema común y todos ellos están publicados o aceptados para publicación en revistas recomen-
dadas. Los caṕıtulos contienen los siguientes art́ıculos:

• H-convergence result for nonlocal elliptic-type problems via Tartar’s method, Society
for Industrial and Applied Mathematics (SIAM) Journal on Mathematical Analysis, 49
(2017), no. 4, 2387-2408. MR 3668594. Julián Fernández Bonder, A. Ritorto y Ariel
Mart́ın Salort.

• A class of shape optimization problems for some nonlocal operators, to appear in Ad-
vances in Calculus of Variations. Julián Fernández Bonder, A. Ritorto y Ariel Mart́ın
Salort, arXiv:1612.08717.

• Optimal partition problems for the fractional Laplacian, to appear in Annali di Matem-
atica Pura ed Applicata, arXiv:1703.05642.



Introduction

To begin with this thesis, we would like to give the reader an intuitive idea of the three
concepts appearing in its title:

• homogenization,

• optimal design,

• nonlocal diffusion.

Let us start with the first one: homogenization.

Covering children’s floor bedroom with carpet is common to protect them when they play
and occasionally fall down. When we see the carpet in a macro-scale, we may say that it
seems to be a unique homogeneous thing. But, if we get closer enough, we can distinguish
the spaces between different kind of plush. So that, it looks like a heterogeneous thing in a
micro-scale.

As well as seeing a wall made by porous rocks. The wall might look like a homogeneous
texture when we see it as a global impression, in a macro-scale. By contrast, it seems to be
really heterogeneous in the micro-scale.

BUT, in both cases: carpet and porous rocks, we could say that those heterogeneities are
too small compared to the entire dimension of each object.

One possible question is: Can we gather information of macroscopic properties BUT also
taking into account microscopic ones? That is homogenization goal.

Let us carry on the second concept: optimal design. Think about a company that sells
metal sheets as electricity conductors. We may assume that to make a good product the
company should use at least two materials:

- the best conductive material, but also the most expensive,

- the cheapest material, but also the worst as far as quality is concerned.

Can we find out the optimal design (shape, way to combine both materials) to make a reason-
able good product?

By reading between lines, we can say an optimal design problem is essentially finding
out a shape that minimize some cost functional.

xvii
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There is only one more concept left to discuss: nonlocal diffusion.

Cheetahs usually chase their prey at only about half their highest speed. After a chase, a
cheetah needs half an hour to catch its breath before it can eat. We may assume that having
an effective technique for hunting is really important to survive.

Cheetahs eat small to medium size animals, for instance, gazelles. The cheetah’s excellent
eyesight helps it find prey during the day. BUT, gazelles will not wait to be killed by a cheetah
once they have seen it. So that it will be more convenient for the cheetah to pick up a random
direction, move rapidly over there and knock its prey to the ground and then bite its throat.

This kind of hit-and-run hunting procedure is related to the concept of nonlocal diffu-
sion. Let us say that it is not unreasonable that predators use a nonlocal diffusion strategy
to hunt their prey more effectively.

A nice glance at nonlocal diffusion

Throughout the thesis, we deal with a family of nonlocal operators. We say that L is a nonlocal
operator if we must know what happens in the entire region when we just want to know its
value in a fixed point x ∈ Rn. It does not matter how much far a point y ∈ Rn is from the
fixed point x. So, it is not enough to know how a function behaves in a neighborhood, we have
to know how it behaves in the entire region. Just to illustrate, think about global economy. It
does not matter how far or close we are from China or United States, any economical decision
they come to, we will be affected, our economy will suffer the consequences of their decisions.

A classical local operator is the Laplacian −∆. For any u smooth function,

−∆u(x) = −div(∇u(x)) = −
(
∂2
x2

1
u(x) + · · ·+ ∂2

x2
n
u(x)

)
.

Observe that just some of the second order derivatives of u are needed to compute the value
−∆u(x), so if we only have information in a neighborhood of a fixed point x, it will be enough
to arrive at the value −∆u(x).

In contrast, look at the fractional Laplacian operator (−∆)s,

(−∆)su(x) =
c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy.

Later on, we give more details about it, but now, just only understand the parameter s ∈ (0, 1)
as a fractional exponent and let u be a suitable function. The constant c(n, s) plays a key
role when we analyze the asymptotic behavior s ↑ 1 of some problems. BUT, from now, it
is only a normalization constant. Think for instance, the case s = 1

2 will be like taking the
square root of the classical Laplacian operator.

Notice that to compute (−∆)su(x) we need to know the value of u(z) for every z, it does
not matter how much close or far z and x are.

Now, we would like to give a probabilistic motivation for the fractional Laplacian. It has
to do with random walks allowing long jumps. We think it is the nicest and most friendly
way to meet this nonlocal operator for the first time. Also the classical Laplacian operator
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has a similar probabilistic interpretation, but we focus our attention on the fractional case,
since it is our key object of study along this thesis.

A probabilistic motivation for the fractional Laplacian

A random walk that allows arbitrarily long jumps. Let us begin by describing a
probabilistic process in which a particle moves randomly in the space, subject to a probability
allowing long jumps; originating naturally the fractional Laplacian operator.

There are two variables to be taken into account: t > 0 for time and x ∈ Rn for space
position. We refer to the probability of finding the particle at point x at time t as u(x, t). We
begin by describing the process with both variables being discrete. At the end, by taking the
limit when time and space steps are small, we get to the nonlocal heat equation. Let us fix
the measure of the steps: τ > 0 for time step and h > 0 for space step.

Suppose the particle starts at time t in the position x. To start moving, the particle should
choose randomly one direction, say v ∈ ∂B1, and a number of steps, say k ∈ N. Since the
measure of each step is h, the new position at time t+ τ can be described as x+ khv.

To talk about u(x, t+ τ), the probability of finding the particle at position x at time t+ τ ,
it is enough to decide the probability of choosing a direction v ∈ ∂B1 and a number k ∈ N.
Consider the uniform distribution on ∂B1 and for each k ∈ N, denote by a(k) the probability
of choosing it. Then, for any I ⊂ N, we can define

P (I) :=
∑
k∈I

a(k).

Long jumps are allowed but with less probability than short ones. Therefore, we take a(k)
with a polynomial decay, say a(k) ' 1

kα , where α > 0.

We want P to be a probability in N, too. Then, we need P (N) = 1. Since a(k) ' 1
kα , it

is enough to select α > 1 for the series convergence. That means, α = 1 + β, with β > 0. It
can be written as α = 1 + 2s with s ∈ (0, 1), for instance.

Eventually, for I ⊂ N define the probability P as

P (I) := c
∑
k∈I

1

k1+2s
,

where c is chosen in such a way that P (N) = 1.

Now, the probability u(x, t + τ) of finding the particle at position x at time t + τ is the
sum of probabilities of finding the particle somewhere else, say at x+ khv, for some direction
v ∈ ∂B1 and some natural number k ∈ N, times the probability of having selected such a
direction and such a natural number. That means,

u(x, t+ τ) =
c

|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t)

|k|1+2s
dSv.
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By noticing that c
|∂B1| is a normalizing probability constant, hence we subtract u(x, t) and

obtain

u(x, t+ τ)− u(x, t) =
c

|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t)

|k|1+2s
dSv − u(x, t)

=
c

|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t)− u(x, t)

|k|1+2s
dSv.

By symmetry, we can change v by −v in the integral above, so that we get

u(x, t+ τ)− u(x, t) =
c

|∂B1|
∑
k∈N

∫
∂B1

u(x− khv, t)− u(x, t)

|k|1+2s
dSv.

Then, we can sum up theses two expressions, arrive at

u(x, t+ τ)− u(x, t) =
c

2|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t) + u(x− khv, t)− 2u(x, t)

|k|1+2s
dSv.

Now, dividing by τ , we recognize a Riemann sum.

∂tu(x, t) ' u(x, t+ τ)− u(x, t)

τ

=
c

2|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t) + u(x− khv, t)− 2u(x, t)

τ |k|1+2s
dSv

Now, multiply and divide by h1+2s, then take a formal limit to obtain

∂tu(x, t) ' h1+2s

τ

c

2|∂B1|
∑
k∈N

∫
∂B1

u(x+ khv, t) + u(x− khv, t)− 2u(x, t)

τ |hk|1+2s
dSv

' h2s

τ

c

2|∂B1|

∫ ∞
0

∫
∂B1

u(x+ rv, t) + u(x− rv, t)− 2u(x, t)

|r|1+2s
dSvdr

It is inferred that the suitable relation between the step measures h and τ is h2s

τ = ν, ν can
be called nonlocal diffusion constant. Then, use polar coordinates

∂tu(x, t) ' c

2|∂B1|

∫
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|y|n+2s
dy

= −cn,s(−∆)su(x, t),

where cn,s is a positive constant. At least formally, for small time and space steps, the above
probabilistic process approaches a fractional heat equation

∂tu(x, t) + (−∆)su(x, t) = 0,
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up to constants.

We have shown how this nonlocal phenomenon (random walk with arbitrarily long jumps)
is transformed into a nonlocal operator (involving the fractional Laplacian (−∆)s).

We may assume that for time large enough, the problem becomes stationary, so that it
does not depend on time anymore. Also, we suppose there is a source affecting the quantity
of particles, let us say a function f . Hence, we arrive at this kind of equation

(−∆)su = f.

In the probabilistic theory, the fractional Laplacian operator is a well-known example
which can be seen as an infinitesimal generator of Lévy processes, in further generality. See
for instance, [2, 6, 11, 66].

There are a lot of applications related to this type of nonlocal problems. To mention some
references: in Physics [42, 43, 50, 64, 68, 97], Finance [3, 65, 84], Fluid dynamics [30, 34],
Ecology [58, 67, 77], Image processing [51].

Throughout all this thesis, we work with some Dirichlet problems:{
Lu = f in Ω,

u = 0 in Rn \ Ω,
(0.0.6)

where Ω is a bounded open subset of Rn and L belongs to some class of nonlocal opera-
tors where the fractional Laplacian is the main example. This kind of integral-differential
problems arise naturally in the study of stochastic processes with jumps, as we motivate pre-
viously. Those problems have been widely studied both in Probability and in Analysis, Partial
Differential Equations.

We prove existence of solutions to the Dirichlet problems treated in this thesis through
calculus of variation, by establishing a equivalence between being a weak solution to (0.0.6)
and minimizing the associated energy . Then, we see the existence of a minimizer. Stability
of solutions and comparison results are also shown.

The interested reader could take a look at Barles-Imbert [8], Felsinger-Kassmann-Voigt
[46], Hoh-Jacob [57], Xiang-Pucci-Squassina-Zhang [96], for existence of solution to problems
involving more general operators. Interior regularity of solutions was considered by Bass-
Levin [9], Caffarelli-Silvestre [25], Iannizzotto-Mosconi-Squassina [59, 60], Kassmann [61], for
instance. Works on boundary regularity of solutions: Bogdan [13], Grubb [53, 54], Ros-Oton–
Serra [80, 79, 81]. For other qualitive properties of solutions, see Birkner-López-Wakolbinger
[12], Dipierro-Savin-Valdinoci [41], for instance.

Homogeneization

Homogenization theory dates back to the works of S. Spagnolo [91], E. De Giorgi and S.
Spagnolo [35], I. Babuška [7], A. Bensoussan, J.L. Lions and G. Papanicolaou [10] and E.
Sánchez-Palencia [82] among others.
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In the context of linear elliptic partial differential equations, the model to be studied is
the limit as k →∞ of the following problems{

−div(Ak∇uk) = f in Ω

uk = 0 on ∂Ω,
(0.0.7)

where Ω ⊂ Rn is a bounded domain, f ∈ H−1(Ω) and {Ak}k∈N ⊂ [L∞(Ω)]n×n is a sequence
of symmetric and uniformly coercive matrices.

As a model example, it has been considered the case where the matrices Ak are given in
terms of a single matrix A in the form

Ak(x) = A(kx),

where A is periodic, of period 1, in each variable.

In the periodic setting, the limit problem when k → ∞ can easily be fully characterized.
See [10].

In order to deal with the general case, Spagnolo and De Giorgi introduced the concept
of G-convergence, that was later generalized by Murat and Tartar in the late 70s and is now
called H-convergence. See [29].

When F. Murat in 1974 was studying the behavior of (0.0.7) as k → ∞, one of the
main drawbacks he found was the fact that the product of two weakly convergent sequences
do not converge, in general, to the product of their limits. Murat overcame this difficulty by
developing a compensated compactness argument known as the div-curl Lemma, denomination
suggested by his advisor, J.L. Lions, due to the fact that it results from a compensation effect.
The Lemma was published in 1978 [69] and an alternative proof was provided by L. Tartar
also in 1978 [93] by using Hörmander’s compactness argument for the injection of H1

0 (Ω) into
L2(Ω). The lemma claims that if we consider two sequences {ψk}k∈N and {φk}k∈N in [L2(Ω)]n

such that
ψk ⇀ ψ, and φk ⇀ φ weakly in [L2(Ω)]n,

with the additional assumption that

divψk → divψ in H−1(Ω), and curlφk → curlφ in [H−1(Ω)]n×n,

then we can guarantee that ψk · φk → ψ · φ in the sense of distributions. Recall that the curl
of a vector field φ ∈ [L2(Ω)]n is defined as

curlφ =

(
∂φi

∂xj
− ∂φj

∂xi

)
1≤i,j≤n

.

The div-curl Lemma plays a crucial role in homogenization theory. In fact, based on this
lemma, Tartar introduced in [93, 94] a method leading to the limiting behavior of (0.0.7) as
k →∞, obtaining the existence of a coercive matrix A0 ∈ [L∞(Ω)]n×n such that the sequence
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of solutions {uk}k∈N of (0.0.7) converges weakly in H1
0 (Ω), up to some subsequence, to a

function u0 which is the solution of the following homogenized limit problem{
−div(A0u0) = f in Ω

u0 = 0 on ∂Ω.
(0.0.8)

Moreover, Ak∇uk · ∇uk → A0∇u0 · ∇u0 in the sense of distributions, see for instance [4, 29].
That is, the sequence Ak H-converges to A0.

In the quasilinear case, this type of results were obtained by several authors in the late 80s
and the beginning of the 90s. We refer the interested reader to [28, 71] and to G. Dal Maso’s
book [31] where the authors use Γ-convergence methods in order to deal with these problems.
See [17] for the periodic case. Let us mention that Γ-convergence studies the behavior of
minimums in variational problems, so when specialized in quadratic functionals, this gives
the behavior for symmetric elliptic problems.

We remark that in the linear case, H-convergence and Γ-convergence where recently shown
to coincide even in the non symmetric case by Ansini, Dal Maso and Zeppieri [5].

More general classes of problems were addressed recently. In the case of periodic homog-
enization of certain Hamilton-Jacobi and fully nonlinear elliptic partial differential equations
was studied first by Evans [44]. In the context of fully nonlinear uniformly elliptic equations
in stationary ergodic media, the problem was studied by Caffarelli, Sounganidis and Wang
[27]. In these papers the existence of homogenized equations is proved, but, due to the gener-
ality of these problems, no further information about the structure of the limit problems was
obtained.

In this thesis, we address the H-convergence problem to the nonlocal version of (0.0.7)
and give a characterization of the homogenized limit problem. Before getting into detail, we
review the background regarding nonlocal problems and its homogenization.

The regularity theory for fully nonlinear integro-differential equations, which include the
fractional laplacian as a trivial example, was recently extensively studied. See, for instance,
[25, 26, 80, 88].

Based in these regularity results for fully nonlinear integral-differential equations, R.
Schwab in [85, 86] extended the results of Evans and Caffarelli, Souganidis and Wang to
this setting, but again no information on the limit problem is obtained. We recall that the
results of Schwab make extensive use either of the periodicity or the ergodicity of the problem
and the author does not obtain any general convergence result.

A recent result on nonlocal homogenization in the periodic setting can be found in [72].

Now, we describe briefly our contribution in Homogenization related to nonlocal diffusion.

Let 0 < λ ≤ Λ <∞. Consider the family of bounded symmetric kernels

Aλ,Λ = {a ∈ L∞(Rn × Rn) : a(x, y) = a(y, x), λ ≤ a(x, y) ≤ Λ a.e. }

We focus our analysis to a general family of linear anisotropic operators of the form

Lau(x) := p.v.

∫
Rn
a(x, y)

u(x)− u(y)

|x− y|n+2s
dy, s ∈ (0, 1),
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for a given a(x, y) ∈ Aλ,Λ. The problem to be studied is the behavior as k →∞ of{
Lakuk = f in Ω

uk = 0 in Rn \ Ω,
(0.0.9)

where Ω ⊂ Rn is a bounded domain, f ∈ L2(Ω) and {ak}k∈N denotes a sequence in Aλ,Λ.

The associated energy functionals are given by

Jak(v) :=

{
1
4

∫∫
Rn×Rn ak(x, y) |v(x)−v(y)|2

|x−y|n+2s dxdy if v ∈ Hs
0(Ω)

+∞ otherwise.

Assume ak
∗
⇀ a0 in L∞(Rn × Rn). We prove that Jak

Γ→ Ja0 in L2(Ω). As an immediately
corollary, we obtain uk ⇀ u0 in Hs

0(Ω), where uk is the solution to (0.0.9) and u0 is the
solution to {

La0u0 = f in Ω

u0 = 0 in Rn \ Ω.

The homogenized kernel a0(x, y) inherits the positivity and boundedness of the sequence
ak(x, y).

To achieve the H-convergence, it is not enough the convergence of solutions given by a
consequence of the Γ-convergence of the energy functionals. It is remained to arrive at the
convergence of flows related to the equation. Therefore, we want to apply Tartar’s method.
To this aim, we first prove a nonlocal version of the div-curl Lemma that allows us to deal
with the sequence of problems and find out the convergence of flows.

Optimal design

In its most general form, a shape optimization problem can be stated as follows: Given a
cost functional F , and a class of admissible domains A, we want to solve the minimization
problem

min
A∈A

F (A). (0.0.10)

These types of problems have been extensively considered, and they arise in many fields
and in many applications, as it has been described earlier. The mathematical literature is
very wide, from the classical cases of isoperimetrical problems to the most recent applications
including elasticity and spectral optimization. Only to mention some references, we refer the
reader to the books of Allaire [4], Bucur and Buttazzo [21], Henrot [55], Pironneau [73] and
Soko lowski and Zolésio [90], where a huge amount of shape optimization problems are tackled.

Usually, the cost functional F is given in terms of a function uA which is the solution of a
state equation to be solved on A. Typically, this state equation is an elliptic partial differential
equation.
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However, there are only a handful of results of shape optimization problems of the form
(0.0.10) where the state equation involves a nonlocal operator instead of an elliptic partial
differential equation.

For instance, in [89], the authors extend the well-known Faber-Krahn inequality to the
fractional case and as a simple corollary, they solve problem (0.0.10) in the case where F (A) =
λs1(A) where λs1(A) is the first eigenvalue of the Dirichlet fractional laplacian and the class A
is the class of open sets of fixed measure.

In [18] the authors consider again the class A of open sets of fixed measure and F (A) =
λs2(A) and prove that problem (0.0.10) does not have a solution. In fact, a minimization
sequence of domains consists of a sequence of balls of the same measure where the distance
of the centers diverges.

Finally, in [48], the authors take the class A of measurable sets of fixed measure contained
in a fixed open set Ω and the cost functional F (A) = λs1(Ω \A) where in this case, λs1(Ω \A)
is the first eigenvalue of the fractional laplacian with Dirichlet condition on A and Neumann
condition in Rn \ Ω.

For other recent shape optimization problems where the state equation is nonlocal, see
[23, 34, 62, 63, 76], and references therein.

The contribution in this thesis is existence of solutions to some shape optimization prob-
lems where the involved state equation is given in terms of a particular nonlocal operator,
which is the fractional Laplacian.

Under some natural assumptions on the cost functional, which are similar to those consid-
ered in [24] and [22] where the classical setting was studied, we are able to recover existence
results in the nonlocal setting. Roughly speaking, these assumptions are:

• monotonicity with respect to the inclusion and

• lower semi-continuity with respect to a suitable defined notion of convergence of do-
mains.

Observe that the results of [18] put a restriction on the classes of admissible domains that
one needs to consider if you want to obtain a positive result. This is mainly due to the fact
that taking a domain with two connected components and making these components go far
away from each other makes the nonlocal energy decrease. So, in the spirit of [24] we restrict
ourselves to the class A of open sets of fixed measure that are contained in a fixed box Q ⊂ Rn.

For suitable cost functionals, we prove existence of solution to

min{Fs(A) : A ∈ As(Ω), |A| = c}, for fixed 0 < c < |Ω|,

and also for the partition problem

min{Fs(A1, . . . , Am) : Ai ∈ As(Ω), Ai ∩Aj = ∅ for i 6= j}, for fixed m ∈ N,

where As(Ω) is the class of admissible domains.
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Furthermore, we also investigate the connection between the nonlocal setting and the
classical one, that is, we analyze the behavior when the fractional parameter 0 < s < 1 goes
to 1, proving convergence of the minimums and of the optimal shapes.

Thesis outline

Chapter 1 contains some preliminary tools used throughout this thesis. Almost always, the
results are not quoted in the most general form, but in a way that is appropriate to our
purposes; nevertheless some of them are actually slightly more general than we strictly need.
Most of these results are well known, but we include them here for the sake of completeness.
Sometimes, we will not go into details referring the reader to the corresponding literature.

Chapter 2 encompasses the homogenization results. We obtain a compactness result for
the H-convergence of a family of nonlocal and linear monotone elliptic-type problems by
means of Tartar’s method of oscillating test functions.

Chapter 3 addresses the existence results for some shape optimization problems. Moreover,
we also analyze the transition from nonlocal to local state equations.

Included publications

The results presented in Chapters 2 and 3 have appeared published as research articles. These
results are readable as individuals contributions linked by a common theme and all of them
are either published or accepted for publication for publication in refereed journals. The
chapters contain the following papers:

• H-convergence result for nonlocal elliptic-type problems via Tartar’s method, Society
for Industrial and Applied Mathematics (SIAM) Journal on Mathematical Analysis, 49
(2017), no. 4, 2387-2408. MR 3668594. Julián Fernández Bonder, A. Ritorto y Ariel
Mart́ın Salort.

• A class of shape optimization problems for some nonlocal operators, to appear in Ad-
vances in Calculus of Variations. Julián Fernández Bonder, A. Ritorto y Ariel Mart́ın
Salort, arXiv:1612.08717.

• Optimal partition problems for the fractional Laplacian, to appear in Annali di Matem-
atica Pura ed Applicata, arXiv:1703.05642.



Chapter 1

Preliminaries

To begin with this thesis, we gather some well-known results which are needed for Chapter
2 and 3, where the original contributions are treated. We suggest those who are experts on
fractional setting to keep on going to next chapter. If any confusion appear, for instance, any
not usual notation, the reader can go back to this chapter.

We separate the content in five sections. The first one is dedicated to introduce the spaces
we work with and some useful properties. Also, to fix related notations. Some references
we have considered are [14, 40, 52, 75]. Secondly, we establish the involved operator, the
related Dirichlet problem, existence of solution, among other properties. The third section
states some outcomes of fractional capacities, which can be found in their most generally
form in [87, 95]. To deal with one of the major goals of this thesis, that means attaining the
H-convergence for a sequence of certain linear operators, we need a compactness result for
such class. It is the content of fourth section, where we recall some lemmas from [4]. We end
this chapter with basic notions about Γ-convergence, taking [31] as the principal reference.

1.1 Spaces we work with and some properties

As we have mentioned before, all the results in this part are well-known and extensively
studied. To say some references we have used, see, for instance, [14, 15, 38, 40, 52, 75].

1.1.1 Fractional Sobolev spaces and their dual spaces

Given 0 < s < 1 ≤ p <∞, the fractional Sobolev space W s,p(Rn) is defined as

W s,p(Rn) :=

{
u ∈ Lp(Rn) :

u(x)− u(y)

|x− y|
n
p

+s
∈ Lp(Rn × Rn)

}
.

The norm in this space is then naturally defined as

‖u‖s,p = (‖u‖pp + [u]ps,p)
1
p ,

1
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where ‖ · ‖p is, as usual, the Lp−norm in Rn and

[u]s,p :=

(∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

is the so-called Gagliardo seminorm.

The space W s,p(Rn) with the norm ‖ · ‖s,p is a uniformly convex Banach space. For a
uniformly convex normed vector space we understand that for every 0 < ε ≤ 2, there exists
δ > 0 such that for any u, v ∈W s,p(Rn) satisfying ‖u‖s,p = 1 = ‖v‖s,p, the condition

ε ≤ ‖u− v‖s,p implies that ‖u+ v

2
‖s,p ≤ 1− δ.

Consequently, W s,p(Rn) is a reflexive Banach space.

Moreover, W s,p(Rn) is a separable Banach space. Indeed, we can include W s,p(Rn) in a
suitable separable space through an isometric:

u ∈W s,p(Rn) 7→

(
u(x);

u(x)− u(y)

|x− y|
n
p

+s

)
∈ Lp(Rn)× Lp(Rn × Rn).

In the case p = 2, we use the following notations: W s,2(Rn) = Hs(Rn), [ · ]s,2 = [ · ]s and
‖ · ‖s,2 = ‖ · ‖s. We get that (Hs(Rn), ‖ · ‖s) is a Hilbert space.

It is also easy to see that smooth functions with compact support are contained in
W s,p(Rn). Also, smooth and rapidly decreasing functions belong to W s,p(Rn). Moreover,
C∞c (Rn) is a dense set in W s,p(Rn), see a proof in [38, Proposition 4.27].

We want to solve some equations in different subsets of Rn, so we need to introduce some
spaces such that the boundary conditions of these equations are taken into account.

Given an open set Ω ⊂ Rn, we consider

W s,p
0 (Ω) := C∞c (Ω) ⊂W s,p(Rn), (1.1.1)

where the closure is taken with respect to the ‖ · ‖s,p-norm.

In the particular case that the set Ω is Lipschitz, we can characterize W s,p
0 (Ω) as the space

of functions in W s,p(Rn), vanishing outside of Ω.

Theorem 1.1.1 (Corollary 1.4.4.5, [52]). Let Ω ⊂ Rn be a Lipschitz bounded open set. Then,
we get the identity W s,p

0 (Ω) = {u ∈W s,p(Rn) : u = 0 a.e. in Rn \ Ω}.
Moreover, if sp < 1, W s,p

0 (Ω) = {u|Ω : u ∈W s,p(Rn)}.

The dual space of W s,p(Rn) will be denoted by W−s,p
′
(Rn). Also, the dual space of

W s,p
0 (Ω) will be denoted by W−s,p

′
(Ω) as usual. Recall that in these spaces the norm is

defined as
‖f‖−s,p′ := sup{〈f, u〉 : u ∈W s,p(Rn), ‖u‖s,p = 1}

and
‖f‖−s,p′,Ω := sup{〈f, u〉 : u ∈W s,p

0 (Ω), [u]s,p = 1}.
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Observe that W−s,p
′
(Rn) ⊂W−s,p′(Ω) with continuous inclusion.

Notice that that since D(Ω) := C∞c (Ω) ⊂W s,p
0 (Ω), the dual space W−s,p

′
(Ω) is contained

in the space of distributions D′(Ω).

In the case p = 2, we use the notations W−s,2(Rn) = H−s(Rn), W−s,2(Ω) = H−s(Ω),
‖ · ‖−s,2 = ‖ · ‖−s and ‖ · ‖−s,2,Ω = ‖ · ‖−s,Ω.

1.1.2 Relation between [ · ]s,p and ‖∇ · ‖p for a fixed function

We are interested in connecting in some way the fractional semi-norms [ · ]s,p with ‖∇ · ‖p, the

usual norm in W 1,p
0 (Ω).

In this part, ideas from Bourgain-Brezis-Mironescu [14] and Ponce [75] were used.

Let us start with a preliminary lemma.

Lemma 1.1.2. Let u ∈W 1,p(Rn), 1 ≤ p <∞. Then,∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy ≤ ωn−1

p

(
1

1− s
‖∇u‖pp +

2p

s
‖u‖pp

)
,

for every 0 < s < 1, where ωn−1 is the (n − 1)-dimensional measure of the unit sphere
Sn−1 ⊂ Rn.

Proof. To begin with, observe that for h ∈ Rn and u ∈ C1
c (Rn),

u(x+ h)− u(x) =

∫ 1

0

d

dt
u(x+ th) dt =

∫ 1

0
∇u(x+ th) · h dt.

Then, we obtain

|u(x+ h)− u(x)| ≤
∫ 1

0
|∇u(x+ th)||h| dt ≤ |h|

(∫ 1

0
|∇u(x+ th)|p dt

) 1
p

,

from we get that∫
Rn
|u(x+ h)− u(x)|p dx ≤ |h|p

∫
Rn

∫ 1

0
|∇u(x+ th)|p dt dx = |h|p

∫
Rn
|∇u(x)|p dx,

where we have used Fubini’s Theorem and the integral invariance with respect to translations.

Finally, recall the density of C1
c (Rn) in W 1,p(Rn) to obtain(∫

Rn
|u(x+ h)− u(x)|p dx

) 1
p

≤ |h|‖∇u‖p, (1.1.2)

for every u ∈W 1,p(Rn).
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Now, we rewrite [u]ps,p separating in two pieces, as follows:∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy =

∫∫
Rn×Rn

|u(x+ h)− u(x)|p

|h|n+sp
dxdh

=

∫
B1

1

|h|n+sp

(∫
Rn
|u(x+ h)− u(x)|p dx

)
dh

+

∫
Rn\B1

1

|h|n+sp

(∫
Rn
|u(x+ h)− u(x)|p dx

)
dh

=I + II.

To estimate I, we use (1.1.2). Indeed,

I ≤ ‖∇u‖pp
∫
B1

1

|h|n+sp−p dh = ‖∇u‖ppωn−1

∫ 1

0

1

rn+sp−p r
n−1 dr =

ωn−1

p(1− s)
‖∇u‖pp.

To estimate II, first observe that∫
Rn
|u(x+ h)− u(x)|p dx ≤ 2p−1

∫
Rn

(|u(x+ h)|p + |u(x)|p) dx = 2p‖u‖pp,

from where follows

II ≤ 2p‖u‖pp
∫
Rn\B1

1

|h|n+sp
dh = 2p‖u‖ppωn−1

∫ ∞
1

1

rn+sp
rn−1 dr = 2p

ωn−1

sp
‖u‖pp.

By combining both estimates we obtain the desired result.

We introduce the following notation:

ρ(x) :=

{
C exp

(
− 1

1−|x|2

)
if |x| < 1

0 if |x| ≥ 1,

where C > 0 is chosen in such a way that
∫
Rn ρ(x) dx = 1. We name ρ regularizing standard

mollifier. Observe that ρ is a nonnegative radial function, ρ ∈ C∞c (Rn) and supp(ρ) = B1(0).

Let ε > 0. From ρ, we construct the identity aproximations

ρε(x) =
1

εn
ρ
(x
ε

)
.

These functions verify that ρε ∈ C∞c (Rn), supp(ρε) = Bε(0), ρε ≥ 0,
∫
Rn ρε dx = 1.

Let u ∈ Lp(Rn). We define the ε-regularizations as

uε(x) := u ∗ ρε(x) =

∫
Rn
u(y)ρε(x− y) dy =

∫
Rn
u(x− y)ρε(y) dy.

Then, we get that uε ∈ Lp(Rn) ∩ C∞(Rn), uε → u in Lp(Rn) and if u has compact support,
then uε also has compact support.
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Lemma 1.1.3. Let u ∈ Lp(Rn) and {uε}ε>0 be the ε−regularizations. Then,∫∫
Rn×Rn

|uε(x)− uε(y)|p

|x− y|n+sp
dxdy ≤

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

for every ε > 0 and 0 < s < 1.

Proof. To begin with this elementary proof, we have that∫∫
Rn×Rn

|uε(x)− uε(y)|p

|x− y|n+sp
dxdy =

∫
Rn

(∫
Rn
|uε(x+ h)− uε(x)|p dx

)
dh

|h|n+sp
. (1.1.3)

Now, use Jensen’s inequality to arrive at∫
Rn
|uε(x+ h)− uε(x)|p dx =

∫
Rn

∣∣∣∣∫
Rn

(u(x+ h− y)− u(x− y))ρε(y) dy

∣∣∣∣p dx
≤
∫
Rn

∫
Rn
|u(x+ h− y)− u(x− y)|pρε(y) dy dx

=

∫
Rn

(∫
Rn
|u(x+ h− y)− u(x− y)|p dx

)
ρε(y) dy

=

∫
Rn
|u(x+ h)− u(x)|p dx,

where we have used the norm invariance with respect to translations and the fact that ρε has
integral equal to one.

By combining this inequality with (1.1.3) the outcome is proved.

Finally, we also have to analyze what happens when we truncate a function to make its
support compact.

To this aim, we consider η ∈ C∞c (Rn) such that η(x) = 1 if x ∈ B1(0), supp(η) = B2(0),
0 ≤ η(x) ≤ 1, x ∈ Rn and we define ηk(x) = η(xk ) for each k ∈ N.

The sequence {ηk}k∈N verify that

ηk ∈ C∞c (Rn), 0 ≤ ηk ≤ 1, ηk = 1 en Bk(0), supp(ηk) = B2k(0), |∇ηk| ≤
‖∇η‖∞

k
. (1.1.4)

Then, given u ∈ Lp(Rn), we define the truncations of u as uk = ηku. We have the
following Lemma.

Lemma 1.1.4. Let u ∈ Lp(Rn) and {ηk}k∈N be given by (1.1.4). Then, by naming uk = ηku,
it holds that∫∫

Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+sp
dxdy ≤ C

(∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy +

‖u‖pp
s(1− s)

)
where C > 0 depends only of n and p.
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Proof. First, we observe that

|uk(x)− uk(y)|p ≤ 2p−1(ηk(x)p|u(x)− u(y)|p + |u(y)|p|ηk(x)− ηk(y)|p)
≤ 2p−1(|u(x)− u(y)|p + |u(y)|p|ηk(x)− ηk(y)|p).

(1.1.5)

Then, we obtain that∫∫
Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+sp
dxdy ≤2p−1

(∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

+

∫
Rn
|u(y)|p

[∫
Rn

|ηk(x)− ηk(y)|p

|x− y|n+sp
dx

]
dy

)
.

(1.1.6)

On the other hand, we notice that∫
Rn

|ηk(x)− ηk(y)|p

|x− y|n+sp
dx =

∫
B1(y)

|ηk(x)− ηk(y)|p

|x− y|n+sp
dx

+

∫
Rn\B1(y)

|ηk(x)− ηk(y)|p

|x− y|n+sp
dx

=I + II.

Now, we estimate I as follows:

I ≤
(
‖∇η‖∞

k

)p
ωn−1

∫ 1

0

1

rn+sp−p r
n−1 dr =

(
‖∇η‖∞

k

)p ωn−1

p(1− s)
and II in this way:

II ≤ 2p‖ηk‖p∞ωn−1

∫ 1

0

1

rn+sp
rn−1 dr = 2p

ωn−1

sp
.

By combining these estimates with (1.1.6) we arrive at the desired outcome.

Remark 1.1.5. The estimate given by Lemma 1.1.4 can be improved. Indeed, we need next
inequality instead of that used in (1.1.5), to obtain

(a+ b)p ≤ (1 + δ)ap + Cδb
p

where δ > 0 is arbitrary. Then, we get∫∫
Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+sp
dxdy ≤(1 + δ)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

+ CδC(n, p)

(
1

k(1− s)
+

1

s

)
‖u‖pp.

(1.1.7)

From (1.1.7), we conclude that given δ > 0, there exist k0 ∈ N and s0 ∈ (0, 1) such that for
every k ≥ k0 and s0 < s < 1, it ensues

(1− s)
∫∫

Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+sp
dxdy ≤(1 + δ)(1− s)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

+ δ‖u‖pp.
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Let us see the last ingredient, but not less important, needed to connect the fractional
semi-norms [ · ]s,p with ‖∇ · ‖p, for a fixed function u.

Lemma 1.1.6. Let u ∈ C2
c (Rn). Then, for every fixed x ∈ Rn, it holds

lim
s↑1

(1− s)
∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dy = K(n, p)|∇u(x)|p,

where

K(n, p) =
1

p

∫
Sn−1

|z1|p dSz. (1.1.8)

Proof. Let u ∈ C2
c (Rn) and name M = ‖∇u‖∞.

There exists a constant C = C(M) > 0 such that

|ap − bp| ≤ C|a− b|, for every 0 ≤ a, b < M.

On the other hand, we have these two estimates involving M :

a :=
|u(x)− u(y)|
|x− y|

≤M and b :=

∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣ ≤M,

from we deduce that∣∣∣∣ |u(x)− u(y)|p

|x− y|p
−
∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣p∣∣∣∣ ≤ C ∣∣∣∣ |u(x)− u(y)|
|x− y|

−
∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣∣∣∣∣
≤ C |u(x)− u(y)−∇u(x) · (x− y)|

|x− y|
≤ C|x− y|.

(1.1.9)

The fact that u ∈ C2
c (Rn) was used in the last inequality.

Now, we analyze [u]ps,p by splitting it in two pieces: inside and outside the unit ball.∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dy =

∫
B1(x)

|u(x)− u(y)|p

|x− y|n+sp
dy +

∫
Rn\B1(x)

|u(x)− u(y)|p

|x− y|n+sp
dy

= I + II.

To bound II, we proceed as follows

II ≤ 2p‖u‖p∞
∫
Rn\B1(x)

1

|x− y|n+sp
dy = 2p‖u‖p∞ωn−1

∫ ∞
1

rn−1

rn+sp
dr =

2p

sp
‖u‖p∞ωn−1.

Therefore, (1− s)II → 0 when s ↑ 1.
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To control I, (1.1.9) allows us to conclude that∫
B1(x)

∣∣∣∣ |u(x)− u(y)|p

|x− y|n+sp
−
∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣p 1

|x− y|n+sp−p

∣∣∣∣ dy
=

∫
B1(x)

∣∣∣∣ |u(x)− u(y)|p

|x− y|p
−
∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣p∣∣∣∣ 1

|x− y|n+sp−p dy

≤ C
∫
B1(x)

1

|x− y|n+sp−p−1
dy = Cωn−1

1

1 + p(1− s)
.

Accordingly,

lim
s↑1

(1− s)
∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dy = lim

s↑1
(1− s)

∫
B1(x)

∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣p dy

|x− y|n+sp−p .

By working out in the right-hand side of the previous identity, we realize that∫
B1(x)

∣∣∣∣∇u(x) · (x− y)

|x− y|

∣∣∣∣p dy

|x− y|n+sp−p =

∫ 1

0

(∫
Sn−1

|∇u(x) · z|p dSz
)
rp−sp−1 dr

=
1

p(1− s)

∫
Sn−1

|∇u(x) · z|p dSz

Notice that the last integral is rotationally invariant. So, we consider a rotation R such
that R(∇u(x)) = |∇u(x)|e1, where e1 = (1, 0, . . . , 0) ∈ Rn. Also denote RT its transpose.
Then, we get

∇u(x) ·RT z = R(∇u(x)) · z = |∇u(x)|e1 · z.

By taking into account that, we rewrite the integral as∫
Sn−1

|∇u(x) · z|p dSz =

∫
Sn−1

|∇u(x) ·Rz|p dSz

= |∇u(x)|p
∫
Sn−1

|e1 · z|p dSz

= |∇u(x)|p
∫
Sn−1

|z1|p dSz.

Eventually, it is concluded that

lim
s↑1

(1− s)
∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dy = K(n, p)|∇u(x)|p,

where K(n, p) is given by (1.1.8).

We have paved the way to make easily the proof of the relation between [ · ]s,p and ‖∇ · ‖p
for a fixed function, which is the topic of next Theorem.
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Theorem 1.1.7 (Theorem 2, [15]). Let 0 < s < 1 < p <∞ and u ∈ Lp(Rn). Then,

lim
s↑1

(1− s)
∫∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy = K(n, p)

∫
Rn
|∇u(x)|p dx,

where K(n, p) appears in (1.1.8).

We consider the term
∫
Rn |∇u(x)|p dx equal to ∞ if u 6∈W 1,p(Rn).

Proof. Thanks to 1.1.6 and Lebesgue Dominated Convergence’s Theorem, we only have to
show the existence of a dominated integrable function.

Let u ∈ C2
c (Rn) and suppose supp(u) ⊂ BR(0). Define

Fs(x) =

∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dy.

Hence, if |x| < 2R, we separate Fs(x) to deal with the two different troubles appeared due to
the powers which change their behavior outside and inside the unit ball.

|Fs(x)| =
∫
B1(x)

|u(x)− u(y)|p

|x− y|n+sp
dy +

∫
Rn\B1(x)

|u(x)− u(y)|p

|x− y|n+sp
dy = I + II.

Repeating the same techniques we have used in previous lemmas, we arrive at

I ≤ ωn−1

p(1− s)
‖∇u‖p∞ and II ≤ 2p

sp
‖u‖p∞.

It is remained to analyze the case |x| ≥ 2R:

Fs(x) =

∫
Rn

|u(y)|p

|x− y|n+sp
dy =

∫
BR(0)

|u(y)|p

|x− y|n+sp
dy.

But |x− y| ≥ |x| −R ≥ 1
2 |x|. Hence, if in addition we know 1

2 < s < 1, it follows that

|Fs(x)| ≤
(

2

|x|

)n+sp

‖u‖pp ≤
(

2

|x|

)n+ 1
2
p

‖u‖pp.

Notice that restricting to the case 1
2 < s < 1 is not a real restriction. Since we are

interested is taking the limit 0 < s ↑ 1.

So, for 1
2 < s < 1 it ensues

|(1− s)Fs(x)| ≤ C

(
χBR(0)(x) +

1

|x|n+ 1
2
p
χRn\BR(0)(x)

)
∈ L1(Rn),

where C > 0 depends only on n, p and u, but it is independent of s.

Till this moment, we have proved the existence of a dominated integral function. Hence,
taking into account the point-wise convergence from Lemma 1.1.6, we conclude the result for
functions in C2

c (Rn).
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To extend the outcome to an arbitrary function u ∈W 1,p(Rn), first we remind that [ · ]s,p
is a semi-norm, so it is nonnegative, homogeneous of one degree and it verifies the triangle
inequality.

Let u ∈W 1,p(Rn). We have to show that lims↑1(1− s)
1
p [u]s,p = K(n, p)

1
p ‖∇u‖p.

Let {uk}k∈N ⊂ C2
c (Rn) be such that uk → u en W 1,p(Rn). Let ε > 0. Then, there exists

k0 ∈ N such that ‖u− uk0‖1,p < ε. Thus,∣∣∣(1− s) 1
p [u]s,p −K(n, p)

1
p ‖∇u‖p

∣∣∣ ≤(1− s)
1
p |[u]s,p − [uk0 ]s,p|

+
∣∣∣(1− s) 1

p [uk0 ]s,p −K(n, p)
1
p ‖∇uk0‖p

∣∣∣
+K(n, p)

1
p |‖∇uk0‖p − ‖∇u‖p|

=I + II + III.

We can control the first term I thanks to Lemma 1.1.2:

(1− s)
1
p |[u]s,p − [uk0 ]s,p| ≤ (1− s)

1
p [u− uk0 ]s,p ≤ C(n, p)‖u− uk0‖1,p < C(n, p)ε.

Also the third term is controlled.

K(n, p)
1
p |‖∇uk0‖p − ‖∇u‖p| ≤ K(n, p)

1
p ‖∇uk0 −∇u‖p ≤ K(n, p)

1
p ‖uk0 − u‖1,p < K(n, p)

1
p ε

Therefore,∣∣∣(1− s) 1
p [u]s,p −K(n, p)

1
p ‖∇u‖p

∣∣∣ ≤Mn,p ε+
∣∣∣(1− s) 1

p [uk0 ]s,p −K(n, p)
1
p ‖∇uk0‖p

∣∣∣ ,
for every s, where Mn,p := max{C(n, p),K(n, p)

1
p }. By taking the limit s ↑ 1 and then, ε ↓ 0

we conclude the result for u ∈W 1,p(Rn).

The last step is to show that if u ∈ Lp(Rn) verifies

lim inf
s↑1

(1− s)
∫∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy <∞, (1.1.10)

then u ∈W 1,p(Rn).

By truncating and regularizing as we did in Lemmas 1.1.3 and 1.1.4, we build the family
{uk,ε}k∈N,ε>0,

uk,ε = ρε ∗ (uηk)

which satisfies the following properties:

uk,ε ∈ C∞c (Rn), (1.1.11)

lim inf
s↑1

(1− s)
∫∫

Rn×Rn

|uk,ε(x)− uk,ε(y)|p

|x− y|n+sp
dxdy < C, (1.1.12)
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where C is independent of k ∈ N and ε > 0. Observe that (1.1.12) is a straightforward
consequence of Lemmas 1.1.3 and 1.1.4 and the hypothesis (1.1.10).

Thanks to (1.1.11) and the first part of this theorem, we get

K(n, p)‖∇uk,ε‖pp = lim
s↑1

(1− s)
∫∫

Rn×Rn

|uk,ε(x)− uk,ε(y)|p

|x− y|n+sp
dxdy < C.

Hence, the family {uk,ε}k∈N,ε>0 is bounded in W 1,p(Rn). Consequently, there exists a sequence
uj = ukj ,εj where kj →∞ and εj ↓ 0 and f̃ ∈W 1,p(Rn) such that uj ⇀ ũ weakly in W 1,p(Rn).

Moreover, as we already know,

‖uk,ε − u‖p → 0 when k →∞ and ε ↓ 0,

we immediately conclude ũ = u from where u ∈W 1,p(Rn).

1.1.3 Relation between [ · ]s,p and ‖∇ · ‖p for a sequence

Let us start with a couple of general lemmas, that seem to be not related with our goal at
first sight. Ideas from Bourgain-Brezis-Mironescu [14] and Ponce [75] were used here.

Lemma 1.1.8. Let (X,µ) be a finite measure space and let G,H ∈ L1(X) be such that

(G(x)−G(y))(H(x)−H(y)) ≥ 0. (1.1.13)

Then, ∫
X
GH dµ ≥ 1

µ(X)

∫
X
Gdµ

∫
X
H dµ.

Proof. It follows immediately from the monotone inequality (1.1.13). Indeed, (1.1.13) is
equivalent to

G(x)H(x) +G(y)H(y) ≥ G(x)H(y) +G(y)H(x). (1.1.14)

Now, integrate this inequality with respect to variable x and y to obtain

2µ(X)

∫
X
GH dµ ≥ 2

∫
X
Gdµ

∫
X
H dµ,

which proves the lemma.

We need to refine Lemma 1.1.8, since we want to apply a similar result to not necessary
monotone functions. So that we give now an improved lemma, which fits to our final goal.

Lemma 1.1.9. Let g, h : (0, 1) → R+ be measurable functions. Assume that g(t) ≤ g( t2) for
t ∈ (0, 1) and h is a decreasing function. Then, given r > −1,∫ 1

0
trg(t)h(t) dt ≥ r + 1

2r+1

∫ 1

0
trg(t) dt

∫ 1

0
trh(t) dt.
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Proof. The idea of the proof is to use the monotony of g in 1
2 -jumps, then we will be able to

apply Lemma 1.1.8.

Let us start by rewriting this expression,∫ 1

0
trg(t)h(t) dt =

∞∑
j=0

∫ 1

2j

1

2j+1

trg(t)h(t) dt

=
∞∑
j=0

1

2j(r+1)

∫ 1

1
2

srg( s
2j

)h( s
2j

) ds

=

∫ 1

1
2

∞∑
j=0

1

2j(r+1)
srg( s

2j
)h( s

2j
) ds,

where we have used the Monotone Convergence Theorem in the last identity.

Observe that by choosing h(t) ≡ 1 in the previous identity, we get that∫ 1

0
trg(t) dt =

∫ 1

1
2

∞∑
j=0

1

2j(r+1)
srg( s

2j
) ds.

Now, we are able to apply Lemma 1.1.8 for H(j) = h( s
2j

), G(j) = g( s
2j

) and µ({j}) =
1

2j(r+1) , to obtain

∞∑
j=0

1

2j(r+1)
g( s

2j
)h( s

2j
) ≥ 1∑∞

j=0
1

2j(r+1)

∞∑
j=0

1

2j(r+1)
g( s

2j
)
∞∑
j=0

1

2j(r+1)
h( s

2j
)

=

(
1− 1

2r+1

) ∞∑
j=0

1

2j(r+1)
g( s

2j
)
∞∑
j=0

1

2j(r+1)
h( s

2j
)

Since h is a decreasing function, we get for j ≥ 1,∫ 1

2j−1

1

2j

trh(t) dt ≤ h( 1
2j

)

∫ 1

2j−1

1

2j

tr dt =
2r+1 − 1

r + 1

1

2j(r+1)
h( 1

2j
).

Again, thanks to the decreasing function h, we know that h( 1
2j

) ≤ h( s
2j

) for 0 < s < 1, from
we obtain ∫ 1

0
trh(t) dt ≤ 2r+1 − 1

r + 1

∞∑
j=0

1

2j(r+1)
h( s

2j
).

Put together both estimates to conclude that∫ 1

0
trg(t)h(t) dt ≥ r + 1

2r+1

∫ 1

0
trg(t) dt

∫ 1

0
trh(t) dt,

as we wanted to show.
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We give this key inequality relating two fractional semi-norms.

Theorem 1.1.10. Let 1 < p <∞ and 0 < s1 < s2 < 1. Then,

(1− s1)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+s1p
dxdy ≤2(1−s1)p(1− s2)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+s2p
dxdy

+
ωn−1(1− s1)2p

s1p

∫
Rn
|u|p dx,

for every u ∈W s2,p(Rn). The quantities are thought to be infinitive otherwise.

Proof. Let u ∈ Lp(Rn) and t > 0. We define

F (t) =

∫
Sn−1

∫
Rn
|u(x+ tw)− u(x)|p dx dSw

=
1

tn−1

∫
{|h|=t}

∫
Rn
|u(x+ h)− u(x)|p dx dSh.

This function verifies that

F (2t) =

∫
Sn−1

∫
Rn
|u(x+ 2tw)− u(x)|p dx dSw

=

∫
Sn−1

∫
Rn
|u(x+ 2tw)− u(x+ tw) + u(x+ tw)− u(x)|p dx dSw

≤2p−1

(∫
Sn−1

∫
Rn
|u(x+ 2tw)− u(x+ tw)|p dx dSw

+

∫
Sn−1

∫
Rn
|u(x+ tw)− u(x)|p dx dSw

)
=2p

∫
Sn−1

∫
Rn
|u(x+ tw)− u(x)|p dx dSw

=2pF (t).

Then, by naming g(t) = F (t)
tp , we get that g(2t) ≤ g(t) for every t > 0.

Now, observe the following identity,∫
{|h|<1}

∫
Rn

|u(x+ h)− u(x)|p

|h|n+sp
dxdh =

∫ 1

0

∫
{|h|=t}

∫
Rn

|u(x+ h)− u(x)|p

tn+sp
dx dSh dt

=

∫ 1

0

1

t1+sp
F (t) dt

=

∫ 1

0

1

t1−(1−s)p g(t) dt.

(1.1.15)

Consider 0 < s1 < s2 < 1. Then,∫ 1

0

1

t1−(1−s2)p
g(t) dt =

∫ 1

0

1

t1−(1−s1)p
g(t)

1

t(s2−s1)p
dt.
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Apply Lemma 1.1.9 for r = (1− s1)p− 1 and h(t) = t−(s2−s1)p, to arrive at∫ 1

0

1

t1−(1−s2)p
g(t) dt ≥(1− s1)p

2(1−s1)p

∫ 1

0

1

t1−(1−s1)p
g(t) dt

∫ 1

0

1

t1−(1−s2)p
dt

=
1

2(1−s1)p

1− s1

1− s2

∫ 1

0

1

t1−(1−s1)p
g(t) dt.

(1.1.16)

From (1.1.15) and (1.1.16) we deduce that

(1− s1)

2(1−s1)p

∫
{|h|<1}

∫
Rn

|u(x+ h)− u(x)|p

|h|n+s1p
dxdh ≤

(1− s2)

∫
{|h|<1}

∫
Rn

|u(x+ h)− u(x)|p

|h|n+s2p
dxdh

(1.1.17)

Finally, observe that∫
{|h|≥1}

∫
Rn

|u(x+ h)− u(x)|p

|h|n+sp
dxdh ≤ 2p‖u‖ppωn−1

∫ ∞
1

1

t1+sp
dt

=
ωn−12p

sp
‖u‖pp.

By combining this last inequality with (1.1.17), we conclude the desired result.

Now, we are able to prove an analogous outcome to Theorem 1.1.7 which is for a fixed
function u, where a sequence of functions varying with s ∈ (0, 1) is involved.

Theorem 1.1.11 (Theorem 4, [15]). Let 0 < sk ↑ 1 and {uk}k∈N ⊂ Lp(Rn) be such that

sup
k∈N

(1− sk)
∫∫

Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+skp
dxdy <∞ and sup

k∈N
‖uk‖p <∞.

Then, there exist a function u ∈ Lp(Rn) and a subsequence {ukj}j∈N ⊂ {uk}k∈N such that
ukj → u in Lploc(R

n). Furthermore, u ∈W 1,p(Rn) and the following estimation holds

K(n, p)

∫
Rn
|∇u(x)|p dx ≤ lim inf

k→∞
(1− sk)

∫∫
Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+skp
dxdy,

where K(n, p) is given in (1.1.8).

Proof. Thanks to Theorem 1.1.10, the proof is concluded easily.

Let 0 < sk ↑ 1 and {uk}k∈N ⊂ Lp(Rn) be such that

sup
k∈N

(1− sk)
∫∫

Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+skp
dxdy <∞ and sup

k∈N
‖uk‖p <∞.

Fix 0 < t < 1. By Theorem 1.1.10, the sequence {uk}k∈N ⊂W t,p(Rn) is bounded, so that,
by Rellich-Kondrashov’s Theorem, there exist a subsequence (we still denote by {uk}k∈N) and
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a function u ∈ Lp(Rn) such that uk → u in Lploc(R
n). Furthermore, occasionally by passing

to a new subsequence, we can assume that uk → u almost everywhere Rn.

By Fatou’s Lemma, we get that∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+tp
dxdy ≤ lim inf

k→∞

∫∫
Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+tp
dxdy

and again by Theorem 1.1.10, we obtain

1− t
2(1−t)p

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+tp
dxdy ≤ lim inf

k→∞
(1− sk)

∫∫
Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+skp
dxdy

+
ωn−12p(1− t)

tp
sup
k∈N
‖uk‖pp.

Eventually, the result follows by taking the limit t ↑ 1 and by Theorem 1.1.7.

1.1.4 Poincaré’s inequality

Let us give a proof of Poincaré’s inequality as a consequence of Theorem 1.1.11.

Theorem 1.1.12. Let A be the sharp constant in the classical Poincaré’s inequality∫
Ω
|u|p dx ≤ A

∫
Ω
|∇u|p dx (1.1.18)

for every u ∈W 1,p
0 (Ω).

Hence, given δ > 0 there exists 0 < s0 < 1 such that∫
Ω
|u|p dx ≤

(
A

K(n, p)
+ δ

)
(1− s)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy, (1.1.19)

for every s0 ≤ s < 1 and u ∈ Lp(Ω). The constant K(n, p) was given in (1.1.8).

Proof. Let us proceed by contradiction. Suppose the statement is false, so that there exist a
constant C > A

K(n,p) , a sequence sj ↑ 1 and {uj}j∈N ⊂ Lp(Ω) such that

‖uj‖p = 1 and (1− sj)
∫∫

Rn×Rn

|uj(x)− uj(y)|p

|x− y|n+sjp
dxdy ≤ 1

C
.

By Theorem 1.1.11, by passing occasionally to a new subsequence, there exists u ∈
W 1,p(Rn) such that ‖uj−u‖p;Ω → 0 and uj → u almost everywhere in Rn. Then, u ∈W 1,p

0 (Ω),
‖u‖p = 1 and, again by Theorem 1.1.11,

K(n, p)‖∇u‖pp ≤ lim inf
j→∞

(1− sj)
∫∫

Rn×Rn

|uj(x)− uj(y)|p

|x− y|n+sjp
dxdy ≤ 1

C
.

This last inequality contradicts the sharpness of the constant A, so that the Theorem is
demonstrated.
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Remark 1.1.13. The constant A from (1.1.18) depends only on n, p and Ω. Moreover, in
fact, A = λp(Ω)−1, where λp(Ω) is the first eigenvalue of p-Laplacian operator in Ω with
homogeneous Dirichlet conditions. Consequently, also the parameter s0 depends on n, p and
Ω.

For generalizations of this inequality, we suggest the article [74].

Immediately, we get next corollary.

Corollary 1.1.14. Let Ω ⊂ Rn be an open bounded set and 1 < p <∞. Then, there exists a
constant C > 0 depending only on n, p and Ω such that

‖u‖pp ≤ C(1− s)
∫∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

for every 0 < s < 1 and u ∈ Lp(Ω).

Proof. By Theorem 1.1.12, for δ = 1, there exists 0 < s0 < 1 such that

‖u‖pp ≤
(

A

K(n, p)
+ 1

)
(1− s)[u]ps,p (1.1.20)

for every s0 ≤ s < 1 and u ∈ Lp(Ω). The constant K(n, p) was given in (1.1.8).

Now, for 0 < s < s0, we have the following estimate:

(1− s)
∫∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy ≥ (1− s0)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

≥ (1− s0)

∫
Ω

∫
Rn\Ω

|u(x)|p

|x− y|n+sp
dydx

≥ (1− s0)

∫
Ω
|u(x)|p

∫
Rn\Ω

1

|x− y|n+sp
dydx

≥ (1− s0)

∫
Ω
|u(x)|p

∫
Rn\BRΩ

(x)

1

|x− y|n+sp
dydx

= (1− s0)
ω̄n

sp diam (Ω)
‖u‖pp

where RΩ = diam(Ω), ω̄n is the Lebesgue measure of the unit ball in Rn. Thus, we obtain for
0 < s < s0

‖u‖pp ≤ sp diam(Ω)(ω̄n(1− s0))−1(1− s)[u]ps,p

≤ p diam(Ω)(ω̄n(1− s0))−1(1− s)[u]ps,p

= C(n, p,Ω)(1− s)[u]ps,p.

From the previous inequality and (1.1.20), the result follows.
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Now, we deduce fractional Sobolev spaces are ordered. We give here a proof which is a bit
more complicated than that you can find in [40, Proposition 2.1], since we are interested in
the behavior of such constant. We want to know how it depends on the fractional exponents
involved.

Proposition 1.1.15. Let 1 < p < ∞ and 0 < t < s < 1. Then, W s,p
0 (Ω) ⊂ W t,p

0 (Ω).
Moreover,

(1− t)[u]pt,p ≤ C(n, t, p,Ω)(1− s)[u]ps,p, (1.1.21)

for every u ∈W s,p
0 (Ω), where

lim
t↑1

C(n, t, p,Ω) = 1.

Proof. Let u ∈W s,p
0 (Ω) and 0 < t < s < 1. First, by Theorem 1.1.10, we know that

(1− t)
∫∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+tp
dxdy ≤2(1−t)p(1− s)

∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

+
ωn−1(1− t)2p

tp

∫
Rn
|u|p dx,

By Corollary 1.1.14,

(1− t)[u]pt,p ≤ 2(1−t)p(1− s)[u]ps,p +
ωn−1(1− t)2p

tp
C(1− s)[u]ps,p

=

(
2(1−t)p +

ωn−1(1− t)2p

tp
C

)
(1− s)[u]ps,p,

where C = C(n, p,Ω) > 0. Now, take C(n, t, p,Ω) := 2(1−t)p + ωn−1(1−t)2p
tp C and the result

follows.

The extension of the Rellich-Kondrachov compactness theorem to the fractional order
Sobolev spaces is also well-known.

Theorem 1.1.16. Let Ω ⊂ Rn be an open set with finite measure. Then the immersion
W s,p

0 (Ω) ⊂ Lp(Ω) is compact. That is, if {uk}k∈N ⊂ W s,p
0 (Ω) is bounded, then there exists

u ∈W s,p
0 (Ω) and a subsequence {ukj}j∈N ⊂ {uk}k∈N such that

‖ukj − u‖p → 0 as j →∞.

Proof. Let us see that both hypotheses of Frechet-Kolmogorov’s Theorem (the Lp(Ω)-version
of Arzelà-Ascoli’s Theorem for continuous functions) hold for a bounded sequence in W s,p

0 (Ω).

Let {uk}k∈N ⊂W s,p
0 (Ω) be a bounded sequence. So we must show that {uk}k∈N is equicon-

tinuous and uniformly bounded in Lp(Ω).

First, notice that the sequence boundedness in W s,p
0 (Ω) and Poincaré’s inequality 1.1.14,

immediately imply that the sequence is uniformly bounded in Lp(Ω).
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Secondly, we will prove for h ∈ Rn,

‖v(·+ h)− v(·)‖p ≤ C1|h|s[v]s,p, (1.1.22)

from where we deduce the equicontinuous condition for our W s,p
0 (Ω)-bounded sequence.

To start proving (1.1.22), observe that

|h|nω̄n‖τhv − v‖pp =

∫
Rn

∫
B|h|(x)

|v(x+ h)− v(x)|p dy dx, (1.1.23)

where ω̄n is the Lebesgue measure of the unit ball in Rn and τhv = v(·+ h).

Now, use the following elemental inequality

|v(x+ h)− v(x)|p ≤ 2p−1(|v(x+ h)− v(y)|p + |v(y)− v(x)|p), (1.1.24)

for every y ∈ B|h|(x).

From (1.1.24), we get∫
Rn

∫
B|h|(x)

|v(x+ h)− v(x)|p dy dx ≤

2p−1

∫
Rn

∫
B|h|(x)

|v(x+ h)− v(y)|p

|x+ h− y|n+sp
|x+ h− y|n+sp dy dx

+ 2p−1

∫
Rn

∫
B|h|(x)

|v(x)− v(y)|p

|x− y|n+sp
|x− y|N+sp dy dx

=2p−1(I + II).

The technique we apply in I and II to estimate them from above is similar. For x ∈ RN
and y ∈ B|h|(x), we know that

|x− y| ≤ |h| and |x+ h− y| ≤ |x− y|+ |h| ≤ 2|h|. (1.1.25)

From (1.1.25), we estimate

I ≤ (2|h|)n+sp

∫
Rn

∫
B|h|(x)

|v(x+ h)− v(y)|p

|x+ h− y|n+sp
dy dx ≤ (2|h|)n+sp [v]ps,p. (1.1.26)

Similarly,
II ≤ |h|n+sp [v]ps,p. (1.1.27)

By using (1.1.23), (1.1.26) and (1.1.27) we conclude that

‖τhv − v‖pp ≤
2p−1(2n+sp + 1)

ω̄n
|h|sp [v]ps,p,

which ends the proof.
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1.2 Some nonlocal operators

In this section, we introduce those nonlocal operators we work with throughout the thesis,
starting with the fractional Laplacian, which is a particular example of a class defined later.
The main reason of studying it in a separated section is that we are really interested in the
asymptotic behavior of the constant c(n, s) when s ↑ 1. One of the major reference for the
analysis of the fractional constant c(n, s) is [40].

1.2.1 Fractional Laplacian operator

To start with this section, we introduce first the fractional Laplacian operator. It will be
a particular case of next example, La which will be defined later.

Definition 1.2.1. Given s ∈ (0, 1) we consider the fractional Laplacian, that for smooth
functions u is defined as

(−∆)su(x) := c(n, s)p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

where c(n, s) is a normalization constant.

Remark 1.2.2. We can rewrite the fractional Laplacian of u as

(−∆)su(x) =
c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy. (1.2.1)

Proof. Let u be a smooth function. Then,∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy = lim

ε↓0

∫
Rn\Bε

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy

= lim
ε↓0

(∫
Rn\Bε

u(x)− u(x+ y)

|y|n+2s
dy +

∫
Rn\Bε

u(x)− u(x− y)

|y|n+2s
dy

)

= lim
ε↓0

(∫
Rn\Bε(x)

u(x)− u(w)

|x− w|n+2s
dy +

∫
Rn\Bε(x)

u(x)− u(z)

|x− z|n+2s
dy

)

= 2 lim
ε↓0

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy = 2 p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

where we use changes of variable w = x+ y and z = x− y.

The Remark above also shows why it is convenient to put the factor 1
2 multiplying the

constant c(n, s).
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Notice that the expression (1.2.1) does not need the principal value formulation. Assume
u ∈ L∞(Rn) ∩ C2(Rn). Use the Taylor expansion of u in B1 to obtain∫

Rn

|2u(x)− u(x+ y)− u(x− y)|
|y|n+2s

dy ≤

≤ ‖u‖∞
∫
Rn\B1

1

|y|n+2s
dy +

∫
B1

|D2u(x)||y|2

|y|n+2s
dy

≤ ‖u‖∞
∫
Rn\B1

1

|y|n+2s
dy + ‖D2u‖∞

∫
B1

1

|y|n+2s−2
dy,

where ∫
Rn\B1

1

|y|n+2s
dy = ωn−1

∫ ∞
1

rn−1−n−2s dr =
ωn−1

2s
<∞

and ∫
B1

1

|y|n+2s−2
dy = ωn−1

∫ 1

0
rn−1−n−2s+2 dr =

ωn−1

2(1− s)
<∞.

The constant c(n, s) is chosen in such a way that the following identity holds,

(−∆)su = F−1(|ξ|2sF(u)),

for u ∈ S(Rn) the Schwartz class of rapidly decreasing and infinitely differentiable functions,
where F denotes the Fourier transform:

F(u)(ξ) =
1

(2π)
n
2

∫
Rn
e−iξ·xu(x)dx;

which is the content of next proposition.

Proposition 1.2.3 (Proposition 3.3, [40]). The fractional Laplacian defined in 1.2.1 satisfies

(−∆)su = F−1(|ξ|2sF(u))

for every u ∈ S(Rn), where F denotes the Fourier transform.

Proof. By applying some basic properties of Fourier’s transform, we obtain these identities.

F((−∆)su(x)) =
c(n, s)

2

∫
Rn

F(2u(x)− u(x+ y)− u(x− y))

|y|n+2s
dy

=
c(n, s)

2

∫
Rn
û(ξ)

2− e−2πξ·y − e2πξ·y

|y|n+2s
dy

= û(ξ)c(n, s)

∫
Rn

1− cos(2πξ · y)

|y|n+2s
dy
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Now, we use the change of variable z = |ξ|y to get

F((−∆)su(x)) = û(ξ)c(n, s)|ξ|2s
∫
Rn

1− cos(2π ξ
|ξ| · z)

|z|n+2s
dz.

Since the right-hand side is rotationally invariant, we consider a rotation R that sends
e1 = (1, 0, . . . , 0) into ξ

|ξ| and we denote RT its transpose. Then, by using the change of

variables y = RT z we obtain that

|ξ|2s
∫
Rn

1− cos(2π ξ
|ξ| · z)

|z|n+2s
dz = |ξ|2s

∫
Rn

1− cos(2πRe1 · z)
|z|n+2s

dz

= |ξ|2s
∫
Rn

1− cos(2πRT z · e1)

|RT z|n+2s
dz

= |ξ|2s
∫
Rn

1− cos(2πy · e1)

|y|n+2s
dy

= |ξ|2s
∫
Rn

1− cos(2πy1)

|y|n+2s
dy.

We use one more change of variable z = 2πy, to arrive at

|ξ|2s
∫
Rn

1− cos(2πy1)

|y|n+2s
dy = (2π|ξ|)2s

∫
Rn

1− cos(z1)

|z|n+2s
dz.

Let us now show that this constant∫
Rn

1− cos(z1)

|z|n+2s
dz

is finite. Notice that outside the unit ball we get∫
Rn\B1

|1− cos(z1)|
|z|n+2s

dz ≤
∫
Rn\B1

2

|z|n+2s
dz = 2ωn−1

∫ ∞
1

rn−1

rn+2s
dr =

ωn−1

s
<∞.

On the other hand, inside the unit ball, we use the Taylor expansion of the cosine function to
realize that∫

B1

|1− cos(z1)|
|z|n+2s

dz ≤
∫
B1

|z|2

|z|n+2s
dz = ωn−1

∫ 1

0

rn−1

rn+2s−2
dr =

ωn−1

2(1− s)
<∞.

Hence, by taking

c(n, s) :=

(∫
Rn

1− cos(z1)

|z|n+2s
dz

)−1

. (1.2.2)

and by gathering all the information, we conclude that

F((−∆)su(x)) = (2π|ξ|)2sû(ξ),

from the outcome follows. Notice that the normalization constant introduced in the Definition
1.2.1 is now computed in (1.2.2).
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That choice of the constant is consistent in order to recover the usual Laplacian.

Theorem 1.2.4 (Proposition 4.4,[40]). Let u ∈ S(Rn). Then,

lim
s↑1

(−∆)su = −∆u. (1.2.3)

Proof. We already know that

−∆u(x) = −∆

(
1

(2π)
n
2

∫
Rn
eix·ξF(u)(ξ) dξ

)
=

1

(2π)
n
2

∫
Rn
eix·ξ|ξ|2F(u)(ξ) dξ

= F−1(|ξ|2F(u)(ξ)).

By Proposition 1.2.3, we also know that (−∆)su(x) = F−1(|ξ|2sF(u)(ξ)).

Basically, the point-wise convergence

|ξ|2sF(u)(ξ)→ |ξ|2F(u)(ξ)

and the dominating integral function (1 + |ξ|2)F(u)(ξ) ∈ L1(Rn) along with Lebesgue Con-
vergence Theorem, prove 1.2.3.

Notice that |ξ|2s ≤ 1 in the unit ball B1, and |ξ|2s ≤ |ξ|2 outside it.

Asymptotic behavior of c(n, s)

Aimed at our purposes in this thesis, it is suitable to analyze the behavior of the normalization
constant c(n, s) as s ↑ 1.

Let us begin with changing variables in R×Rn−1 as follows: w1 = z1 and (w2, . . . , wn) =
w′ = z′

|z1| . ∫
Rn

1− cos(z1)

|z|n+2s
dz =

∫
R

∫
Rn−1

1− cos(w1)

|w1|n+2s(1 + |w′|2)
n
2

+s
|w1|n−1dw′dw1

=

∫
R

∫
Rn−1

1− cos(w1)

|w1|1+2s(1 + |w′|2)
n
2

+s
dw′dw1

=

∫
R

1− cos(t)

|t|1+2s
dt

∫
Rn−1

1

(1 + |w′|2)
n
2

+s
dw′.

Now, we split the analysis of asymptotic behavior into two new integrals:

α(s) :=

∫
R

1− cos(t)

|t|1+2s
dt and β(n, s) :=

∫
Rn−1

1

(1 + |w|2)
n
2

+s
dw. (1.2.4)
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Proposition 1.2.5 (Proposition 4.1, [40]). Let α(s) and β(n, s) be the functions defined above
(1.2.4). Then,

lim
s↑1

(1− s)α(s) =
1

2
and lim

s↑1
β(n, s) = ωn−2

∫ ∞
0

ρn−2

(1 + ρ2)
n
2

+1
dρ,

where ωn−2 is the (n− 2)-dimensional measure of the unit sphere Sn−2 ⊂ Rn−1.

Proof. Let us start by using polar coordinates in β(n, s):

β(n, s) =

∫
Rn−1

1

(1 + |w|2)
n
2

+s
dw = ωn−2

∫ ∞
0

ρn−2

(1 + ρ2)
n
2

+s
dρ.

Now, we notice that it is easy to get a dominating integral and a point-wise limit func-
tion, which allow us to apply Lebesgue Dominated Convergence’s Theorem, to conclude the
asymptotic behavior for β(n, s). Indeed, for s ∈ (0, 1) and ρ ≥ 0 it holds

ρn−2

(1 + ρ2)
n
2

+s
≤ ρn−2

(1 + ρ2)
n
2

∈ L1((0,∞)).

To analyze α(s), first, we split the integral into two pieces:∫
R

1− cos(t)

|t|1+2s
dt =

∫
{|t|<1}

1− cos(t)

|t|1+2s
dt+

∫
{|t|≥1}

1− cos(t)

|t|1+2s
dt.

Let us continue with the term that does not contribute to the limit s ↑ 1. Indeed,

0 ≤
∫
{|t|≥1}

1− cos(t)

|t|1+2s
dt = 2

∫ ∞
1

1− cos(t)

t1+2s
dt ≤ 4

∫ ∞
1

1

t1+2s
dt =

2

s
,

hence,

lim
s↑1

s(1− s)
∫
{|t|≥1}

1− cos(t)

|t|1+2s
dt = 0.

Now, we analyze the remained term by using the Taylor expansion of cosine to arrive at

0 ≤
∫
{|t|<1}

1− cos(t)

|t|1+2s
dt−

∫
{|t|<1}

t2

2|t|1+2s
dt ≤ 1

6

∫
{|t|<1}

|t|3

|t|1+2s
dt =

1

3(3− 2s)
.

By multiplying by 0 < 1 − s < 1 and taking into account the previous estimation, we find
that

lim
s↑1

(1− s)α(s) = lim
s↑1

(1− s)
∫
{|t|<1}

1− cos(t)

|t|1+2s
dt = lim

s↑1
(1− s)

∫
{|t|<1}

t2

2|t|1+2s
dt

= lim
s↑1

(1− s)
∫ 1

0
t1−2s dt = lim

s↑1

(1− s)
2(1− s)

=
1

2
.



CHAPTER 1. PRELIMINARIES 24

Theorem 1.2.6 (Cororally 4.2, [40]). Let c(n, s) be the constant defined in (1.2.2). Then,

lim
s↑1

c(n, s)

1− s
=

4n

ωn−1
, (1.2.5)

where ωn−1 denotes the (n− 1)-measure of the unit sphere Sn−1 ⊂ Rn.

Proof. By definition, we know that

c(n, s)

1− s
=

1

(1− s)α(s)β(n, s)
.

Therefore, we apply Proposition 1.2.5 to get next identity:

lim
s↑1

c(n, s)

1− s
= 2

(
ωn−2

∫ ∞
0

ρn−2

(1 + ρ2)
n
2

+1
dρ

)−1

.

Our goal is reduced to show that

ωn−2

∫ ∞
0

ρn−2

(1 + ρ2)
n
2

+1
dρ =

ωn−1

2n
. (1.2.6)

The strategy will be define a recursive sequence and use an induction argument with the help
of a the well-known behavior of the constant ωn:

ωn =
2π

n− 1
ωn−2. (1.2.7)

To begin with, let t ∈ R be such that t > n− 1 and define

En(t) :=

∫ ∞
0

ρn−2

(1 + ρ2)
t
2

dρ.

The parameter t is chosen to guarantee convergence of the integral. We can rewrite En(t) by
integrating by parts.

En(t) =

∫ ∞
0

(
ρn−1

n− 1

)′
1

(1 + ρ2)
t
2

dρ =
t

n− 1

∫ ∞
0

ρn

(1 + ρ2)
t+2

2

dρ =
t

n− 1
En+2(t+ 2).

(1.2.8)

Now, we name In the quantity:

In := En(n+ 2) =

∫ ∞
0

ρn−2

(1 + ρ2)
n+2

2

dρ.

Thanks to (1.2.8), we obtain

In =
n+ 2

n− 1
En+2(n+ 4). (1.2.9)
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That allows us to find a recursive form to In:

In+2 =
n− 1

n+ 2
In.

We claim that
In =

ωn−1

2nωn−2
. (1.2.10)

As we say before, we now turn to the induction argument. Let us start by checking the
inductive bases are satisfied.

I2 =

∫ ∞
0

1

(1 + ρ2)2
dρ =

π

4
, and I3 =

∫ ∞
0

ρ

(1 + ρ2)
5
2

dρ =
1

3
.

To prove the inductive step, since (1.2.9), it is enough to show that

ωn+1

ωn
=
n− 1

n

ωn−1

ωn−2
, (1.2.11)

which easily follows from (1.2.7).

We include the proof of (1.2.7). We just separate the last two variables and use polar
coordinates. Indeed, denote by x = (x̃, x′) ∈ Rn−2 × R2 and ω̄n the Lebesgue measure of the
n-dimensional unit ball.

Now, by integrating in Rn−2 and then using polar coordinates, we arrive at

ω̄n =

∫
{|x|2≤1}

dx =

∫
{|x′|≤1}

(∫
{|x̃|2≤1−|x′|2}

dx̃

)
dx′

=

∫
{|x′|≤1}

∫ (1−|x′|2)
1
2

0
ω̄n−2 r

n−2 dr

 dx′

= ω̄n−2

∫
{|x′|≤1}

(1− |x′|2)
n−2

2 dx′

= 2πω̄n−2

∫ 1

0
ρ(1− ρ2)

n−2
2 dρ =

2πω̄n−2

n
.

Furthermore, on the other hand, by again using polar coordinates, we get

ω̄n =

∫
{|x|≤1}

dx = ωn−1

∫ 1

0
rn−1 dr =

ωn−1

n− 1
.

By combining both previous identities, we find the relation

ωn−1 = nω̄n = n
2πω̄n−2

n
= 2πω̄n−2 =

2πωn−3

n− 2
.

Replace n instead of n− 1, to rewrite and obtain

ωn =
2πωn−2

n− 2
,
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from where we deduce (1.2.11), and then (1.2.10).

Eventually, we come to the conclusion that

lim
s↑1

c(n, s)

1− s
=

2

ωn−2In
=

4n

ωn−1
.

We can rewrite Theorem 1.1.7 in the case p = 2 as

lim
s↑1

c(n, s)

2
[u]2s = ‖∇u‖22. (1.2.12)

where c(n, s) = 1−s
K(n,2) , with K(n, 2) defined by (1.1.8).

1.2.2 The La operator

Let us continue with a class of nonlocal operators, involving positive bounded kernels. Most
properties are well-known, for instance, they can be found in [1].

We present here the case p = 2. The extended version for 1 ≤ p <∞ can be found in [49].

Given 0 < λ < Λ <∞, we denote by Aλ,Λ the class

Aλ,Λ := {a ∈ L∞(Rn × Rn) : a(x, y) = a(y, x), λ ≤ a(x, y) ≤ Λ a.e.}. (1.2.13)

Therefore, for a ∈ Aλ,Λ we define the operator La by

Lau(x) = p.v.

∫
Rn
a(x, y)

(u(x)− u(y))

|x− y|n+2s
dy. (1.2.14)

Remark 1.2.7. Notice that if we choose a(x, y) := c(n, s) defined in (1.2.2), we obtain the
fractional Laplacian, see Definition 1.2.1.

Proposition 1.2.8. Let a ∈ Aλ,Λ. Then, La is a well defined operator between Hs(Rn) and
its dual H−s(Rn) and also between Hs

0(Ω) and H−s(Ω). In fact,

〈Lau, v〉 =
1

2

∫∫
Rn×Rn

a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy. (1.2.15)

Proof. Let u ∈ Hs(Rn). We want to know how Lau acts over Hs(Rn), as an element from
the dual space H−s(Rn). For Hs

0(Ω) and H−s(Ω), it is the same argument.

Let ε > 0 and x ∈ Rn. Consider

Lεau(x) :=

∫
{|x−y|≥ε}

a(x, y)
u(x)− u(y)

|x− y|n+2s
dy.
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Now, we prove Lεau ∈ L2(Rn) for every ε > 0. So, by the boundedness of a and Hölder’s
inequality,

|Lεau(x)| ≤ Λ

∫
{|x−y|≥ε}

|u(x)− u(y)|
|x− y|

n+2s
2

1

|x− y|
n+2s

2

dy

≤ Λ

(∫
{|x−y|≥ε}

|u(x)− u(y)|2

|x− y|n+2s
dy

) 1
2
(∫
{|x−y|≥ε}

1

|x− y|
n+2s

2

dy

) 1
2

.

≤ Λ

εs

√
ω̄n
2s

(∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dy

) 1
2

,

where ω̄n is the measure of the unit ball in Rn. Then,∫
Rn
|Lεau(x)|2 dx ≤ Λ2

ε2s

ω̄n
2s

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dydx =

Λ2

ε2s

ω̄n
2s

[u]2s <∞,

for every ε > 0. Therefore, Lεau ∈ L2(Rn) ⊂ H−s(Rn). Consequently, for every v ∈ Hs(Rn),
we know that

〈Lεau, v〉 =

∫
Rn
Lεau(x)v(x) dx =

∫
Rn

∫
{|x−y|≥ε}

a(x, y)
(u(x)− u(y))

|x− y|n+2s
dy v(x) dx

=

∫
Rn

∫
{|x−y|≥ε}

a(x, y)
(u(x)− u(y))v(x)

|x− y|n+2s
dydx

=

∫
Rn

∫
{|x−y|≥ε}

a(y, x)
(u(y)− u(x))v(y)

|x− y|n+2s
dxdy

= −
∫
Rn

∫
{|x−y|≥ε}

a(x, y)
(u(x)− u(y))v(y)

|x− y|n+2s
dydx,

where we use the symmetry of the kernel a. By summing up the first and the last identities,
we obtain

〈Lεau, v〉 =
1

2

∫∫
Rn×Rn

a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
χ{|x−y|≥ε}(x, y) dydx

for every v ∈ Hs(Rn). Let us verify that

a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
χ{|x−y|≥ε}(x, y) ∈ L1(Rn × Rn).

Again, thanks to the boundedness of the kernel a and Hölder’s inequality, we get∫∫
Rn×Rn

∣∣∣∣a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
χ{|x−y|≥ε}(x, y)

∣∣∣∣ dydx ≤ Λ[u]2s[v]2s.



CHAPTER 1. PRELIMINARIES 28

Now, by Dominated Convergence Theorem, the result (1.2.15) follows. Moreover,

|〈Lau, v〉| ≤
Λ

2
[u]2s[v]2s

for every u, v ∈ Hs(Rn).

Remark 1.2.9. In the non-symmetric case, one has that

〈Lau, v〉 =
1

2

∫∫
Rn×Rn

asym(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy

+

∫∫
Rn×Rn

aanti(x, y)
(u(x)− u(y))

|x− y|n+2s
v(x) dxdy,

where

asym(x, y) =
a(x, y) + a(y, x)

2
and aanti(x, y) =

a(x, y)− a(y, x)

2
,

denote the symmetric and anti-symmetric parts of a respectively.

In order for this operator to be well defined, one needs to impose some extra condition on
the anti-symmetric part aanti. For instance,

sup
x∈Rn

∫
Rn

|aanti(x, y)|2

|x− y|n+2s
dy <∞.

See [46, 83].

In this thesis, we restrict ourselves to the symmetric case.

1.2.3 The Dirichlet problem

Let Ω ⊂ Rn be an open set with finite measure and let a ∈ Aλ,Λ. Given f ∈ H−s(Ω) we
define the associated Dirichlet problem as{

Lau = f in Ω

u = 0 in Rn \ Ω.
(1.2.16)

We say that u ∈ Hs
0(Ω) is a weak solution of (1.2.16) if

1

2

∫∫
Rn×Rn

a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy = 〈f, v〉,

for every v ∈ Hs
0(Ω).

Thanks to (1.2.15), this is equivalent to say that Lau = f in the sense of distributions.

To prove existence of weak solution to problems of the form (1.2.16), it would be enough
to observe that the left-hand-side defines a coercive continuous bilinear form, thanks to the
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symmetry of the kernel a(·, ·). Therefore, by Lax-Milgram Theorem, we obtain existence and
uniqueness. Nevertheless, we decide to apply an alternative technique, which allows dealing
with nonlinear problems, as it was shown in [49]. To this aim, first, we establish an equivalence
with a minimization problem associated. Secondly, we find a minimum by using calculus of
variations. Those are the contents of next Propositions 1.2.10 and 1.2.11.

Proposition 1.2.10. Let Ω ⊂ Rn be an open set of finite measure, 0 < λ ≤ Λ <∞, a ∈ Aλ,Λ
and 0 < s < 1 fixed. Then, for any f ∈ H−s(Ω), the following statements are equivalent:

1. u ∈ Hs
0(Ω) is a weak solution of (1.2.16), where La is defined by (1.2.14).

2. J (u) = minv∈Hs
0(Ω) J (v), where J : Hs

0(Ω)→ R is defined by

J (v) =
1

4

∫∫
Rn×Rn

a(x, y)
|v(x)− v(y)|2

|x− y|n+2s
dxdy − 〈f, v〉. (1.2.17)

Proof. The proof is standard.

First, we assume (1). Let v ∈ Hs
0(Ω), and use u − v as a test function in the weak

formulation of (1.2.16) to obtain

1

2

∫∫
Rn×Rn

a(x, y)
|u(x)− u(y)|2

|x− y|n+2s
dxdy =

1

2

∫∫
Rn×Rn

a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy + 〈f, u− v〉.

We now write a(x, y) = (a(x, y))
1
2 (a(x, y))

1
2 and apply Young’s inequality to the right-hand-

side to obtain

1

2

∫∫
Rn×Rn

a(x, y)
|u(x)− u(y)|2

|x− y|n+2s
dxdy ≤

J (v) +
1

4

∫∫
Rn×Rn

a(x, y)
|u(x)− u(y)|2

|x− y|n+2s
dxdy + 〈f, u〉,

from where it follows that J (u) ≤ J (v) for every v ∈ Hs
0(Ω), which proves (2).

Conversely, now assume (2). Let t ∈ R, v ∈ Hs
0(Ω) and consider j(t) = J (u+ tv). Then,

j attains its minimum at t = 0. Therefore, 0 = j′(0). That is,

0 =
1

2

∫∫
Rn×Rn

a(x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy − 〈f, v〉.

So, u is the weak solution of (1.2.16).

Proposition 1.2.11. Let Ω ⊂ Rn be an open set with finite measure, 0 < λ ≤ Λ < ∞,
a ∈ Aλ,Λ and 0 < s < 1 fixed. Then, for any f ∈ H−s(Ω), there exists a unique u ∈ Hs

0(Ω)
minimizer of J over Hs

0(Ω), where J is defined by (1.2.17).
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Proof. Clearly, m := infHs
0(Ω) J < +∞. We will prove J is bounded from below.

J (v) ≥ λ[v]2s − ‖f‖−s[v]s ≥ (λ− ε

2
)[v]2s −

C(ε)

2
‖f‖2−s.

Choose 0 < ε < 2λ, thus, m 6= −∞.

Let {uk}k∈N ⊂ Hs
0(Ω) be such that J(uk) → m, as k → ∞. By the previous inequality,

we deduce that {uk}k∈N ⊂ Hs
0(Ω) is bounded. Then, since Hs

0(Ω) is a reflexive space, thanks
to Alaoglu’s theorem, up to a subsequence, there exists u ∈ Hs

0(Ω) such that uk ⇀ u weakly
in Hs

0(Ω). Thus, by the weak lower semi-continuity of J (recall that J is convex), we obtain

J (u) ≤ lim inf
k→∞

J (uk) = m = inf
Hs

0(Ω)
J .

The uniqueness of the minimizer follows by the strict convexity of J . Suppose m = J (u) =

J (v), u 6= v. Then, m ≤ J (u+v
2 ) < J (u)

2 + J (v)
2 = m, which is a contradiction.

Propositions 1.2.10 and 1.2.11 trivially imply the following.

Corollary 1.2.12. Let Ω ⊂ Rn be an open set with finite measure, 0 < λ ≤ Λ <∞, a ∈ Aλ,Λ
and 0 < s < 1 fixed. Then, for any f ∈ H−s(Ω), there exists a unique weak solution u ∈ Hs

0(Ω)
to (1.2.16).

Stability of solution is proved in next Proposition.

Proposition 1.2.13. Let Ω ⊂ Rn be an open set with finite measure, 0 < λ ≤ Λ < ∞,
a ∈ Aλ,Λ and 0 < s < 1 fixed. Let f, g ∈ H−s(Ω) and u, v be the solutions to{

Lau = f in Ω

u = 0 in Rn \ Ω,
and

{
Lav = g in Ω

v = 0 in Rn \ Ω.

Then,
[u− v]s ≤ C(λ)‖f − g‖−s.

Moreover, if f ≤ g in H−s(Ω), then u ≤ v in Rn.

Proof. Consider u− v as a test function. Thus,

〈Lau, u− v〉 = 〈f, u− v〉, 〈Lav, u− v〉 = 〈g, u− v〉.

Then,
〈Lau− Lav, u− v〉 = 〈f − g, u− v〉 ≤ ‖f − g‖−s[u− v]s.

On the other hand, we can rewrite 〈Lau− Lav, u− v〉 to obtain

〈Lau− Lav, u− v〉 ≥ λ[u− v]2.

Now, suppose f ≤ g in H−s(Rn). Consider (u − v)+ ∈ Hs
0(Ω). By using it as a test

function in both problems, we obtain 〈La(u− v), (u− v)+〉 ≤ 0.
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Denote by E := {x ∈ Rn : u(x) > v(x)}. Then, we can rewrite 〈Lau − Lav, (u − v)+〉 in
four terms: E × E, E × Ec, Ec × E and Ec × Ec. The last term does not contribute, since
(u− v)+ ≡ 0 in Ec.

By using that u(x)− v(x) + v(y)− u(y) ≥ 0 for x ∈ E, y ∈ Ec, it is deduced that

0 ≥ 〈Lau− Lav, (u− v)+〉 ≥ λ
∫
E

∫
E

|(u− v)(x)− (u− v)(y)|2

|x− y|n+2s
dxdy

+ 2λ

∫
Ec

∫
E

(u(x)− u(y))(u− v)+(x)

|x− y|n+2s
dxdy

− 2λ

∫
Ec

∫
E

(v(x)− v(y))(u− v)+(x)

|x− y|n+2s
dxdy

≥ λ
∫
E

∫
E

|(u− v)(x)− (u− v)(y)|2

|x− y|n+2s
dxdy ≥ 0.

From it follows that (u− v)+ ≡ 0 in E, so that u ≤ v in Rn.

Proposition 1.2.14. Let Ω ⊂ Rn be an open bounded set and 0 ≤ f ∈ H−s(Ω). Let A ⊂
B ⊂ Ω be open sets. Consider u, v the solutions to{

Lau = f in A,

u = 0 in Rn \A,
and

{
Lav = f in B,

v = 0 in Rn \B.

Then, u ≤ v in Rn.

Proof. By Proposition 1.2.13 and f ≥ 0, we deduce u, v ≥ 0.

Since A ⊂ B, we get Hs
0(A) ⊂ Hs

0(B).

Consider (u − v)+ ∈ Hs
0(A). By using it as a test function in both problems, we obtain

〈Lau, (u − v)+〉 = 〈Lav, u − v〉. Then, 〈Lau − Lav, (u − v)+〉 = 0. Now, we proceed in the
same way of Proposition 1.2.13, to conclude that u ≤ v in Rn.

1.3 Fractional Capacities

We would like to start this section making clear, as we have said in the beginning of this
chapter, that all the presented results in Chapter 1 are well-known. In this case, we gather
some properties of the fractional capacities. The reader could find them in the most general
form in [87, 95]. On the other hand, we prove some of the results we did not find in the
literature, following straightforwardly those proofs were the case s = 1 was studied, for
instance, [45]
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Definition 1.3.1. Let Ω ⊂ Rn be an open set. Given A ⊂ Ω, for any 0 < s < 1, we define
the Gagliardo s−capacity of A relative to Ω as

caps(A,Ω) = inf
{

[u]2s : u ∈ Hs
0(Ω), u ≥ 0, u ≥ 1 in a neighborhood of A

}
.

We give here some basic properties needed in Chapter 3.

Lemma 1.3.2 (Proposition 3.6, [95]). Let A,B ⊂ Ω. Then,

caps(A ∪B,Ω) + caps(A ∩B,Ω) ≤ caps(A,Ω) + caps(B,Ω).

Proof. Let u, v ∈ Hs
0(Ω) be such that u, v ≥ 0 and u ≥ 1 in a neighbourhood of A and v ≥ 1 in

a neighbourhood ofB. Consider max{u, v},min{u, v} ∈ Hs
0(Ω). Then, max{u, v},min{u, v} ≥

0 and max{u, v} ≥ 1 in a neighbourhood of A∪B, min{u, v} ≥ 1 in a neighbourhood of A∩B.
In addition,

[max{u, v}]2s + [min{u, v}]2s ≤ [u]2s + [v]2s, (1.3.1)

where easily the result follows. Denote by w := max{u, v} and z := min{u, v}. We prove that

|w(x)− w(y)|2 + |z(x)− z(y)|2 ≤ |u(x)− u(y)|2 + |v(x)− v(y)|2,

for x, y ∈ Rn. It is clear for x, y ∈ {u ≥ v} and x, y ∈ {u < v}.
Let x ∈ {u ≥ v}, y ∈ {u < v}. Then, we get

|w(x)− w(y)|2 + |z(x)− z(y)|2 = |v(x)− u(y)|2 + |u(x)− v(y)|2

= |u(x)− u(y)|2 + |v(x)− v(y)|2 + |v(x)− u(y)|2+

+ |u(x)− v(y)|2 − |u(x)− u(y)|2 − |v(x)− v(y)|2

= |u(x)− u(y)|2 + |v(x)− v(y)|2 + 2(v(y)− u(y))(v(x)− u(x))

≤ |u(x)− u(y)|2 + |v(x)− v(y)|2.

Using the estimate above, we conclude (1.3.1).

Next lemma gives a relation between the Lebesgue measure and the s-capacity of a subset
A ⊂ Ω. The proof is easy and follows [45, Section 4.7, Theorem 2 VI], where it was shown
with the classical capacity measure (s = 1).

Lemma 1.3.3. For every A ⊂ Ω, |A| ≤ C(Ω, s) caps(A,Ω), where C(Ω, s) is the Poincaré’s
constant in Hs

0(Ω).

Proof. For every ε > 0, there exists a funciton uε ∈ Hs
0(Ω) such that uε ≥ 1 a.e. in a

neighborhood of A and
[uε]

2
s ≤ caps(A,Ω) + ε.

On the other hand, by Poincaré’s inequality,

|A| =
∫
A

1 dx ≤
∫
Rn
u2
ε dx ≤ C(Ω, s)[uε]

2
s ≤ C(Ω, s) (caps(A,Ω) + ε) .

Take the limit ε ↓ 0 to obtain the result.



CHAPTER 1. PRELIMINARIES 33

1.3.1 s-Quasi-open sets

Definition 1.3.4. We say that a subset A of Ω is a s-quasi open set if there exists a decreasing
sequence {ωk}k∈N of open subsets of Ω such that caps(ωk,Ω) → 0, as k → ∞, and A ∪ ωk is
an open set for all k ∈ N.

We denote by As(Ω) the class of all s−quasi open subsets of Ω, that is,

As(Ω) := {A ⊂ Ω: A is s-quasi open }.

In the case s = 1 the definitions are completely analogous with ‖∇u‖2 instead of [u]2s.

Now, we prove a key estimate which is a simply remark following the proof of [40, Proposi-
tion 2.2]. We are interested in finding a positive constant connecting in some sense caps(·,Ω)
and cap1(·,Ω). But, we also want that this constant does not depend on s. One of our thesis
goals is related to analyze the behavior of some problems in the limit case s ↑ 1. So we
can assume 0 < ε0 < s < 1 for some ε0 and that will be enough to obtain this desired and
independent constant.

As we said before, the proof of next lemma follows [40, Proposition 2.2] and, despite of
the similarity, it is included since we want to analyse how the constant depends on s.

Lemma 1.3.5. Let ε0 > 0 and ε0 < s < 1. Then, there exits a constant C > 0 such that for
every u ∈ H1

0 (Ω)
(1− s)[u]2s ≤ C‖∇u‖2L2(Ω).

and C = C(Ω, n, ε0) does not depend on s.

Proof. Let u ∈ H1
0 (Ω). By Lemma 1.1.2, we get

(1− s)[u]2s ≤
ωn−1

2

(
‖∇u‖2L2(Ω) + 4

1− s
s
‖u‖22

)
.

Since ε0 < s < 1, we obtain

(1− s)[u]2s ≤
(
ωn−1

2
+ 2

1− ε0

ε0
C1(Ω, n)ωn−1

)
‖∇u‖2L2(Ω) = C(Ω, n, ε0)‖∇u‖2L2(Ω),

where C1(Ω, n) is the constant of classical Poincaré’s inequality in H1
0 (Ω).

Automatically, we obtain an estimate relating the s-capacity and the 1-capacity.

Corollary 1.3.6. Let ε0 > 0 and ε0 < s < 1. Then, there exits a constant C > 0 such that
for every A ⊂ Ω

(1− s) caps(A,Ω) ≤ C cap1(A,Ω),

and C = C(Ω, n, ε0) does not depend on s.
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We deduce other useful remark from Lemma 1.3.5: every 1-quasi open set is also an s-quasi
open, for 0 < s < 1.

Remark 1.3.7. For every 0 < s < 1, A1(Ω) ⊂ As(Ω). Moreover, if 0 < s < t ≤ 1, then
At(Ω) ⊂ As(Ω).

Proof. Let A ∈ A1(Ω). There exists a decreasing sequence of open sets {Gk}k∈N such that
A ∪Gk is open and cap1(Gk,Ω)→ 0 when k →∞.

Let 0 < s < 1. By Corollary 1.3.6, caps(Gk,Ω)→ 0, when k →∞. Then, A ∈ As(Ω).

To prove At(Ω) ⊂ As(Ω), use definitions of capacity and Proposition 1.1.15 for 0 < s <
t < 1, and Lemma 1.1.2 for 0 < s < t = 1.

1.3.2 s-Quasi-continuous functions

Working with s-quasi-continuous functions will be more convenient for solving shape optimiza-
tion problems in Chapter 3. Let us now introduce the definition and some basic properties.
For further properties of the s-capacity see [87, 95].

Definition 1.3.8. Let u : Rn → R. We say u is an s-quasi continuous function if there exists
a decreasing sequence {Ek}k∈N of open sets such that u|Rn\Ek is a continuous function for
every k ∈ N and caps(Ek,Ω)→ 0, when k →∞.

The following lemmas address some basic properties of s-quasi continuous functions.

Lemma 1.3.9. Let u, v : Rn → R be s-quasi continuous functions. Then, the product u · v is
also an s-quasi continuous function.

Proof. By definition, there exist decreasing sequences {Ak}k∈N and {Bk}k∈N of open sets such
that limk→∞ caps(Ak,Ω) = limk→∞ caps(Bk,Ω) = 0 and u|Rn\Ak , v|Rn\Bk are continuous.

Consider Ck := Ak ∪ Bk. Then, {Ck}k∈N is a decreasing sequence of open sets such that
limk→∞ caps(Ck,Ω) = 0, since caps(Ck,Ω) ≤ caps(Ak,Ω) + caps(Bk,Ω) by Lemma 1.3.2.
Moreover, (u · v)|Rn\Ck is continuous.

If any s-quasi-continuous function is nonnegative almost everywhere, then it is also non-
negative s-quasi everywhere. This is the content of next proposition.

Proposition 1.3.10. Let u ∈ Hs
0(Ω) be an s-quasi-continuous function such that u ≥ 0

almost everywhere (a.e.), then u ≥ 0 s-quasi everywhere (s-q.e.).

Proof. We have to show caps({u < 0},Ω) = 0. By definition of s-quasi continuity, there exists
a decreasing sequence {Ek}k∈N of open sets such that caps(Ek,Ω) → 0 when k → ∞, the
restriction of u|Rn\Ek is continuous, and {u < 0} ∪ Ek is an open set for any k ∈ N.

Let ε > 0. By caps(Ek,Ω) definition, there exists a function vk ∈ Hs
0(Ω) such that vk ≥ 1

in a neighborhood of Ek and [vk]
2
s ≤ caps(Ek,Ω)+ε. Since caps(Ek,Ω)→ 0, when k →∞, we
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conclude vk → 0 in Hs
0(Ω). Moreover, since |{u < 0}| = 0, we get vk ≥ 1 in a neighborhood

of {u < 0} ∪ Ek. Therefore,

caps({u < 0},Ω) ≤ caps({u < 0} ∪ Ek,Ω) ≤ [vk]
2
s,

which implies caps({u < 0},Ω) = 0.

Next Theorem allows us to work with s-quasi-continuous functions instead of the frac-
tional Sobolev functions. We say that every u ∈ Hs

0(Ω) has a unique s-quasi continuous
representative ũ, up to a set of zero caps(·,Ω).

Theorem 1.3.11. Let u ∈ Hs
0(Ω). Then, there exists an s-quasi-continuous function ũ such

that u = ũ a. e.. Moreover, ũ is unique up to a set of zero s-capacity.

Proof. There exists a sequence {uk}k∈N such that uk ∈ C∞c (Ω), uk → u in Hs
0(Ω), a.e., up to

a subsequence. Occasionally, taking another subsequence, we may assume that

∞∑
k=1

22k[uk+1 − uk]2s <∞.

Consider the following open sets:

Ej := {|uj+1 − uj | > 2−j}; Ak := ∪j≥kEj .

Since 2j |uj+1− uj | ≥ 1 in Ej and this function belongs to Hs
0(Ω), we are able to estimate the

caps(Ak,Ω):

caps(Ak,Ω) ≤
∑
j≥k

caps(Ej ,Ω) ≤
∑
j≥k

22j [uj+1 − uj ]2s.

Then, limk→∞ caps(Ak,Ω) = 0.

Now, let us check that u|Rn\Ak is a continuous function.

For any x ∈ Rn \Ak, we have |uj+1(x)−uj(x)| ≤ 2−j for all j ≥ k. Therefore, for k fixed,
the restricted function uj |Rn\Ak converges uniformly when j goes to infinity. Denote ũ the
limit function of {uj}j≥k. So, we know that the restricted function ũ|Rn\Ak is continuous for
any k ∈ N.

To complete the definition of ũ in the whole Rn, we extend by zero in ∩k∈NAk. Since
uk → u a.e., we conclude that ũ is a caps-representative of u, it is s-quasi-continuous by
construction.

Uniqueness is a consequence of Proposition 1.3.10. Indeed, suppose f = u = g a.e., where
f and g are s-quasi-continuous functions. Then, f − g = 0 = g − f a.e. Thus, f = g s-q.e. It
means that the s-quasi continuous representative is unique up to a set of zero s-capacity.

Remark 1.3.12. Observe that the sequence {uk}k∈N we have built in the previous Theorem
1.3.11 also converges to u s-q.e..

Proposition 1.3.13. Let {uk}k∈N ⊂ Hs
0(Ω) and u ∈ Hs

0(Ω) be such that uk → u in Hs
0(Ω).

Then, there exists a subsequence {ukj}j∈N ⊂ {uk}k∈N such that ũkj → ũ s-q.e.
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Proof. Choose a subsequence such that

∞∑
k=1

22k[uk+1 − uk]2s <∞

and consider the following sets

Ej := {|ũj+1 − ũj | > 2−j}; Ak :=
⋃
j≥k

Ej .

Now, the proof follows by the same argument used in Theorem 1.3.11.

Remark 1.3.14. From this point, we denote by u the s-quasi continuous representative of a
function u ∈ Hs

0(Ω), instead of ũ; thanks to Theorem 1.3.11.

Lemma 1.3.15. Let u ∈ Hs
0(Ω). Then, {u > a} is s-quasi-open for every a ∈ R.

Proof. Since u is s-quasi-continuous, there exists a decreasing sequence {Ek}k∈N of open
subsets of Ω such that caps(Ek,Ω) → 0 when k → ∞, and the restricted function u|Rn\Ek is
continuous for every k ∈ N.

In particular, {u|Rn\Ek > a} is an open set contained in Rn \ Ek.
On the other hand, we know that {u > α} = {u|Rn\Ek > a} ∪ {u|Ek > a}. Then,

{u > α} ∪ Ek = {u|Rn\Ek > a} ∪ Ek, since {u|Ek > a} ⊂ Ek.

1.3.3 A particular s-quasi-open set

For every A ∈ As(Ω), we define the associated function space

Hs
0(A) := {u ∈ Hs

0(Ω): u = 0 s-q.e. in Rn \A}. (1.3.2)

Remark 1.3.16. Let A ∈ As(Ω) and f : R → R be a Lipschitz function. Then, f(v) belongs
to Hs

0(A), for every v ∈ Hs
0(A).

Indeed, the following inequality

|f(v)(x)− f(v)(y)| ≤ ‖f‖Lip |v(x)− v(y)| (1.3.3)

implies that [f(v)]s ≤ ‖f‖Lip[v]s <∞. Moreover, by (1.3.3) and the fact that v = 0 s-q.e. in
Rn \A, we get that f(v) is equal to a constant s-q.e. in Rn \A. Since f(v) ∈ Hs(Rn), it must
be f(v) = 0 s-q.e. in Rn \A. Therefore, f(v) belongs to Hs

0(A).

Immediately from Remark 1.3.16, we obtain the following basic property of Hs
0(A).

Corollary 1.3.17. Let A ∈ As(Ω). Then, v+ = max{v, 0} and v− = min{v, 0} belong to
Hs

0(A), for every v ∈ Hs
0(A).

Given A ∈ As(Ω), we denote by usA ∈ Hs
0(A) the unique weak solution to

(−∆)susA = 1 in A, usA = 0 in Rn \A. (1.3.4)
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Remark 1.3.18. Observe also that usA is the unique minimizer of

Is(u) :=
c(n, s)

2
[u]2s −

∫
A
u dx, (1.3.5)

in Hs
0(A).

For every A ∈ As(Ω), we will show that A = {usA > 0} in the sense of caps(·,Ω). To prove
this aim, we need some previous results which are modifications from [32, Lemma 2.1] and
[33, Proposition 5.5].

We want to emphasize that the proof of next lemma is completely analogous to that of
[32, Lemma 2.1].

Lemma 1.3.19. Let A ∈ As(Ω). Then, there exists an increasing sequence {vk}k∈N ⊂ Hs
0(Ω)

of nonnegative functions, such that supk∈N vk = 1A s-q.e. on Ω.

Proof. By definition of s-quasi open set, there exists a decreasing sequence {Vj}j∈N of open
subsets of Ω such that Aj := A ∪ Vj is an open set for every j ∈ N, and caps(Vj ,Ω) < 1

j .

Since Aj is an open set, there exists an increasing sequence {ϕjk}k∈N ⊂ C
∞
c (Ω) of nonneg-

ative fuctions such that {ϕjk}k∈N converges to 1Aj a.e. Then, by Proposition 1.3.13, we obtain
this convergence holds s-q.e.

On the other hand, since caps(Vj ,Ω) < 1
j , there exists a function uj ∈ Hs

0(Ω) such that

uj ≥ 0 s-q.e., uj ≥ 1 s-q.e. on Vj , and [uj ]
2
s <

1
j . This last condition tells us that uj → 0

s-q.e. on Ω.

Moreover, ϕjk ≤ 1Aj = 1A∪Vj and uj ≥ 1 on Vj , imply that (ϕjk − uj)
+ ≤ 1A s-q.e. Define

0 ≤ vk := sup
1≤j≤k

(ϕjk − uj)
+ ∈ Hs

0(Ω), ψ := sup
k∈N

vk.

Then, vk ↑ ψ ≤ 1A s-q.e. Notice that for every k ≥ j,

ψ ≥ vk ≥ (ϕjk − uj)
+ ≥ ϕjk − uj .

Thus, taking the limit k → ∞, we obtain ψ ≥ 1Aj − uj . Since A ⊂ Aj , ψ ≥ 1 − uj s-q.e. in
A. Taking the limit j →∞, ψ ≥ 1 s-q.e. in A. That is ψ ≥ 1A s-q.e.

We prove a density result in Hs
0(A), for A ∈ As(Ω), which is similar to [33, Proposition

5.5].

Lemma 1.3.20. Let A ∈ As(Ω). Then, {ϕusA : ϕ ∈ C∞c (Ω)} is dense in Hs
0(A).

Proof. In order to prove the lemma, it is sufficient to see that we can approximate any
nonnegative function w ∈ Hs

0(A) with (−∆)sw ∈ L∞(Ω), since L∞(Ω) is dense in H−s(Ω)
and w = w+ − w−. Indeed, for an arbitrary function w ∈ Hs

0(Ω), we know that (−∆)sw =:
f ∈ H−s(Ω).



CHAPTER 1. PRELIMINARIES 38

Denote by f := (−∆)sw. Then,

(−∆)sw ≤ ‖f‖L∞(Ω) = ‖f‖L∞(Ω)(−∆)susA in A.

By comparison, we obtain 0 ≤ w ≤ cusA, where c := ‖f‖L∞(Ω).

For every ε > 0, consider (w − cε)+ ∈ Hs
0(Ω). Thus,

{(w − cε)+ > 0} ⊂ {usA > ε}. (1.3.6)

Notice that usA ∈ L∞(Ω) by [39, Theorem 4.1]. Observe that, using (1.3.6), ε < usA ≤
‖usA‖L∞(Ω) in {(w− cε)+ > 0}. Then, the function (w−cε)+

usA
belongs to Hs

0(Ω). So, there exists

a sequence {ϕεk}k∈N ⊂ C∞c (Ω) such that ϕεk →
(w−cε)+

usA
strongly in Hs

0(Ω), when k → ∞.

Therefore, ϕεku
s
A → (w − cε)+ strongly in Hs

0(Ω), when k →∞.

On the other hand, (w − cε)+ → w strongly in Hs
0(Ω), when ε ↓ 0.

Consequently, by a diagonal argument, there exist subsequences εj ↓ 0 and {ϕεjkj}j∈N ⊂
C∞c (Ω) such that ϕ

εj
kj
usA → w strongly in Hs

0(Ω).

The following proposition is an essential component to relate domains and functions, and
it also contributes to the proofs of the principal results Theorems 3.1.18 and 3.2.11. We can
say that is the main outcome of this section.

Proposition 1.3.21. Let A ∈ As(Ω). Then, A = {usA > 0} in sense of caps(·,Ω). That is,
caps(A4{usA > 0},Ω) = 0.

Proof. It is clear that usA = 0 s-q.e. on Rn \A. So, {usA > 0} ⊂ A.

To see A ⊂ {usA > 0}, we use the previous lemmas.

By Lemma 1.3.19, there exists an increasing sequence {vk}k∈N ⊂ Hs
0(Ω) of nonnegative

functions, such that supk∈N vk = 1A s-q.e. on Ω.

For every vk, by Lemma 1.3.20, there exists a sequence {ϕkj }j∈N ∈ C∞c (Ω) such that

ϕkju
s
A → vk strongly in Hs

0(Ω) and s-q.e., when j → ∞. Since ϕkju
s
A = 0 s-q.e. in {usA = 0},

then vk = 0 s-q.e. in {usA = 0}. Therefore, 1A = 0 s-q.e. in {usA = 0}, which implies
A ⊂ {usA > 0}.

1.4 Compactness for linear operators

In this section we prove a compactness result for linear operators. This results can be extended
to nonlinear monotone operators, as the reader could find in [47]. We restrict ourselves to
the linear case in this thesis, so we only need to recall [4, Lemmas 1.3.3 and 1.3.4]. They are
crucial in the construction of oscillating test functions (see Lemma 2.3.4).

We now have this compactness result for linear operators.
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Proposition 1.4.1 (Lemma 1.3.3, [4]). Let X be a separable reflexive Banach space. Let
Sk : X ′ → X be a sequence of linear continuous operators such that

‖Sk‖ = sup
‖f‖X′=1

‖Skf‖X ≤ C,

where 0 < C < ∞ is a constant independent of k ∈ N. Then there exists a subsequence, still
denoted by {Sk}k∈N, and a limit linear operator S0 such that

Skf ⇀ S0f weakly in X

for any f ∈ X ′. Moreover,
‖S0‖ ≤ lim inf

k→∞
‖Sk‖.

Proof. Let D be a dense countable subset of X ′. Since supk∈N ‖Skf‖ < ∞, by a standard
diagonal argument, there exists a subsequence, that we still denote by {Sk}k∈N such that

Skf ⇀ S0f weakly in X, (1.4.1)

for every f ∈ D.

This defines an operator S0 : D → X. Let us first see that S0 can be extended to X ′ and
that Skf ⇀ S0f for every f ∈ X ′. In fact, if f ∈ X ′, there exists {fj}j∈N ⊂ D such that
fj → f strongly in X ′ and then

〈g, S0fj − S0fl〉 = 〈g, S0fj − Skfj〉+ 〈g, Skfj − Skfl〉+ 〈g, Skfl − S0fl〉,

so

|〈g, S0fj − S0fl〉| ≤|〈g, S0fj − Skfj〉|+ |〈g, Skfl − S0fl〉|
+ sup

k∈N
(|〈g, Skfj − Skf〉|+ |〈g, Skfl − Skf〉|)

<|〈g, S0fj − Skfj〉|+ |〈g, Skfl − S0fl〉|+ ε,

if j, l ≥ j0. Taking the limit, as k →∞, on the right-hand-side of the former inequality gives
that {S0fj}j∈N ⊂ X is weakly Cauchy, since (1.4.1). Therefore, there exists a point, that we
denote by S0f ∈ X such that

S0fj ⇀ S0f weakly in X.

A completely analogous argument shows that the limit S0f is independent of the sequence
{fj}j∈N ⊂ D and that Skf ⇀ S0f weakly in X for every f ∈ X ′. The operator S0 is
clearly linear. Moreover, by the weak lower semicontinuity of the norm, we deduce ‖S0‖ ≤
lim infk→∞ ‖Sk‖.

Next proposition will be useful in Chapter 2, to prove the existence of some test functions
needed to deal with the H-convergence of certain class of nonlocal operators. The notation
used here maybe is not the simplest, but it has to do with notations used in Chapter 2.
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Proposition 1.4.2 (Lemma 1.3.4,[4]). Let X be a separable and reflexive Banach space. Let
α, β > 0 be positive constants. Let {L̂k}k∈N be a sequence of linear operators L̂k : X → X ′

such that
〈L̂kv, v〉 ≥ α‖v‖2X , for avery v ∈ X, (1.4.2)

and
〈L̂−1

k f, f〉 ≥ β‖f‖2X′ , for every f ∈ X ′. (1.4.3)

Then, there exist a subsequence, still denote by k ∈ N, and a limit linear operator L̂0 : X →
X ′ such that (1.4.2)-(1.4.3) are satisfied and

L̂−1
k f ⇀ L̂−1

0 f weakly in X.

Proof. We would like to start by remarking that (1.4.2) and Lax-Milgram Theorem imply the
existence of each L̂−1

k .

Let f ∈ X ′ and take v = L̂−1
k f in (1.4.2). Thus,

〈f, L̂−1
k f〉 ≥ α‖L̂−1

k f‖2X . (1.4.4)

By Chauchy-Schwarz inequality, we deduce

‖L̂−1
k f‖X ≤

1

α
‖f‖X′ .

Now, observe that the dual space X ′ is also a separable reflexive Banach space. Therefore,
we can apply Proposition 1.4.1 to the sequence {L̂−1

k }k∈N. So that, there exist a subsequence,

still denoted by {L̂−1
k }k∈N, and a limit linear operator L̂−1

0 such that

L̂−1
k f ⇀ L̂−1

0 f weakly in X.

Moreover,
‖L̂−1

0 ‖ ≤ lim inf
k→∞

‖L̂−1
k ‖.

Notice that we choose the notation L̂−1
0 , but it remains to prove that L̂−1

0 is invertible and its
inverse operator L̂0 satisfies (1.4.2)-(1.4.3), too. So, by taking the limit in (1.4.3), we obtain

〈L̂−1
0 f, f〉 ≥ β‖f‖2X′ , for every f ∈ X ′.

That means, jointed with Lax-Milgram Theorem, that L̂−1
0 is invertible. Again, taking the

limit in (1.4.4) and by using the lower semicontinuity of the norm, we get

〈f, L̂−1
0 f〉 ≥ α‖L̂−1

0 f‖2X .

The previous property can be rewritten as (1.4.2) for L̂0, by replacing f = L̂0v, where
v ∈ X.
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1.5 Γ-convergence

This notion of convergence was introduced by De Giorgi in the 70s (see [36] and [37]) and
has been proved to be an extremely useful tool when dealing with the convergence of vari-
ational problems. See, for instance Dal Maso’s book [31] for a thorough description of the
Γ-convergence and its properties and also Braides’ book [16] where many different applications
of this notion of convergence are shown.

Let us begin by recalling the definition of Γ-convergence.

Definition 1.5.1. Let X be a metric space and let Jk : X → R̄, k ≥ 0.

We say that Jk Γ−converges to J0 if the following two inequalities hold

(liminf inequality) For every u ∈ X and every sequence {uk}k∈N ⊂ X such that uk → u,

J0(u) ≤ lim inf
k→∞

Jk(uk).

(limsup inequality) For every u ∈ X there exists a sequence {uk}k∈N ⊂ X, uk → u such
that

J0(u) ≥ lim sup
k→∞

Jk(uk).

Throughout this section, X will be a Hilbert space.

The Γ-convergence is stable under continuous perturbations. This is the content of next
lemma.

Lemma 1.5.2. Let Jk, J,G : X → (−∞,∞] be such that Jk
Γ→ J in X and G is continuous

in X. Then, Jk +G
Γ→ J +G in X.

Proof. It is a straightforward consequence of the definition of Γ-convergence and the continuity
of G. Indeed, take u ∈ X and {uk}k∈N ⊂ X such that uk → u in X. Then, since G is
continuous, G(u) = limk→∞G(uk). So we get the liminf inequality:

J(u) +G(u) ≤ lim inf
k→∞

Jk(uk) + lim
k→∞

G(uk) = lim inf
k→∞

(Jk +G)(uk).

On the other hand, for a fixed u ∈ X such that J(u) < ∞, there exists a sequence
{uk}k∈N ⊂ X such that uk → u in X and J(u) ≥ lim supk→∞ Jk(uk). Again, by using the
continuity of G, G(u) = limk→∞G(uk). So we arrive at the limsup inequality:

J(u) +G(u) ≥ lim sup
k→∞

(Jk +G)(uk).

Both inequalities give us the desired Γ-convergence from Jk +G to J +G.

The main feature of this notion of convergence is the fact that minimizers of Jk converges
to those of J0.
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Theorem 1.5.3 (Corollary 7.20,[31]). For k ≥ 0, let Jk : X → (−∞,∞] be such that Jk
Γ→ J0

in X. Let uk be a minimizer of Jk in X. If u is a cluster point of {uk}k∈N, then u is a
minimizer of J0 in X and

J0(u) = lim sup
k→∞

Jk(uk).

If uk → u in X, then u is a minimizer of J0 in X and

J0(u) = lim
k→∞

Jk(uk).

We include here the proof of a weaker version of Theorem 1.5.3 that will be enough for
us.

Theorem 1.5.4. For k ≥ 0, let Jk : X → (−∞,∞] be such that Jk
Γ→ J0 in X. Assume that

for every α ∈ R, there exists a compact set Kα ⊂ X such that

{v ∈ X : Jk(v) ≤ α} ⊂ Kα for every k ∈ N.

Then, J0 attains its minimum value over X and

lim
k→∞

inf
X
Jk = min

X
J0.

Furthermore, if uk is a minimizer of Jk in X and J0 has a unique minimizer in X, then,

min
X

J0 = J0(u) = lim sup
k→∞

Jk(uk),

for every u cluster point of {uk}k∈N.

Proof. First, for every k ∈ N there exists vk ∈ X such that

Jk(vk) ≤ inf
X
Jk +

1

k
. (1.5.1)

Without losing generality, we can assume there exists w0 ∈ X such that J0(w0) < ∞. By
Γ-convergence definition, there exists a sequence {wk}k∈N ⊂ X such that wk → w0 in X and

∞ > J0(w0) ≥ lim sup
k→∞

Jk(wk).

Thus, supk∈N Jk(wk) <∞. As a consequence,

Jk(vk) ≤ inf
X
Jk +

1

k
≤ Jk(wk) + 1 ≤ sup

k∈N
Jk(wk) + 1 =: α ∈ R.

For this α, by hypothesis, there exists a compact set Kα in X such that

vk ∈ {v ∈ X : Jk(v) ≤ α} ⊂ Kα for every k ∈ N.
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Therefore, there exist a subsequence {vkj}j∈N ⊂ {vk}k∈N and v0 ∈ X such that vkj → v0 in
X. By Γ-convergence definition again and (1.5.1), we know that

inf
X
J0 ≤ J0(v0) ≤ lim inf

j→∞
Jkj (vkj ) ≤ lim inf

k→∞
inf
X
Jk. (1.5.2)

On the other hand, for every ε > 0 there exists vε ∈ X such that

J0(vε) ≤ inf
X
J0 + ε. (1.5.3)

By Γ-convergence definition, there exists a sequence {vεk}k∈N such that vεk → vε in X and

J0(vε) ≥ lim sup
k→infty

Jk(v
ε
k) ≥ lim sup

k→∞
inf
X
Jk.

Thanks to (1.5.3) and by taking the limit ε ↓ 0, we obtain

inf
X
J0 ≥ lim sup

k→∞
inf
X
Jk. (1.5.4)

From the previous inequality and (1.5.2), we conclude the first part of the theorem.

Now, assume uk is a minimizer of Jk in X and J has a unique minimizer u0 in X. Then,

min
X

Jk = Jk(uk), for every k ≥ 0.

By the first part of the theorem, we know that

lim
k→∞

Jk(uk) = J0(u0). (1.5.5)

We will see that every subsequence {ukj}j∈N ⊂ {uk}k∈N admits a sub-subsequence which
converges to u0. Then, the whole sequence {uk}k∈N converges to u0.

Fix a subsequence {ukj}j∈N. Thanks to (1.5.5), there exist α ∈ R and Kα a compact set
such that {ukj}j∈N ⊂ Kα. Then, there exists a sub-subsequence {ukjl}l∈N which converges to
a point z0 ∈ Kα. Then,

J0(z0) ≤ lim
l→∞

Jkjl (ukjl ) = J0(u0) = min
X

J0.

Since J0 has a unique minimizer, we conclude z0 = u0 and it ends the proof.

The next example will be a key element in the following chapters.

Example 1.5.5. Consider X = L2(Ω), Y = Hs
0(Ω) for a fixed Ω ⊂ Rn domain, 0 < s < 1, and

J(v) =

{
1
4

∫∫
Rn×Rn a(x, y) |v(x)−v(y)|2

|x−y|n+2s dxdy if u ∈ Hs
0(Ω),

∞ otherwise ,

where a ∈ Aλ,Λ defined in 1.2.13.

If we choose a ≡ 1, J(u) = 1
4 [u]2s for every u ∈ Hs

0(Ω).
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Let α ∈ R. Notice that

0 ≤ λ

4
[u]2s ≤ J(v) ≤ α.

Then, for α < 0, we get that {J ≤ α} = ∅. On the other hand, for α ≥ 0, we observe that

{v ∈ L2(Ω): J(v) ≤ α} ⊂ Kα :=

{
v ∈ L2(Ω): [v]2s ≤

4α

λ

}
,

which is a compact set in L2(Ω). Indeed, take a sequence {vk}k∈N ⊂ Kα. Automatically,
{vk}k∈N is bounded in Hs

0(Ω). Therefore, there exist a subsequence {vkj}j∈N ⊂ {vk}k∈N and
a function v ∈ Hs

0(Ω) such that vkj ⇀ v in Hs
0(Ω). Thus,

[v]2s ≤ lim inf
j→∞

[vkj ]
2
s ≤

4α

λ
,

that means v belongs to Kα. Moreover, by Theorem 1.1.16, we get that vkj → v in L2(Ω),
taking occasionally another subsequence. Finally, Kα is a compact set in L2(Ω).

Definition 1.5.6 (Quadratic Form). A functional J : X → [0,∞] is a nonnegative quadratic
form if there exist a linear subspace Y ⊂ X and a symmetric bilinear form B : Y × Y → R
such that

J(u) =

{
B(u, u) if u ∈ Y,
∞ otherwise .

Lemma 1.5.7. Let J : X → [0,∞] be an arbitrary functional.

(1) If J is a quadratic form, then

(a) J(0) = 0

(b) J(tu) ≤ t2J(u) for every u ∈ X and t > 0.

(c) J(u+ v) + J(u− v) ≤ 2(J(u) + J(v)) for every u, v ∈ X.

(2) J : X → [0,∞] satisfies (a)-(c) if and only if J is a quadratic form.

Proof. Let us start by proving (1). Assume J is a quadratic form, so there exist a linear
subspace Y ⊂ X and a bilinear form B : Y × Y → R as in Definition 1.5.6. Condition (a) is
clear. Take u ∈ X and t > 0. Then, if J(u) = ∞ there is nothing to be proved. So that,
suppose J(u) < ∞ and u ∈ Y ⊂ X. Thus, J(u) = B(u, u). Hence, J(tu) = B(tu, tu) =
t2B(u, u) = t2J(u), that is condition (b).

Finally, for u, v ∈ X such that J(u), J(v) < ∞, we know that J(u) = B(u, u) and
J(v) = B(v, v). Since Y is a subspace of X, u± v belongs to Y . Therefore,

J(u+ v) + J(u− v) = B(u, u) + 2B(u, v) +B(v, v) +B(u, u)− 2B(u, v) +B(v, v)

= 2(J(u) + J(v)).

Thanks to (1), to prove (2) it is enough to show that if J is an arbitrary function satisfying
(a)-(c), then J is a quadratic form. We claim that
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(A) J(tu) = t2J(u) for every t > 0 and u ∈ X.

(B) J(u+ v) + J(u− v) = 2J(u) + 2J(v) for every u, v ∈ X.

To these aims, first, let us prove that J is even, that means, J(u) = J(−u). Take u = 0 in (c),
so that J(v) + J(−v) ≤ 2J(−v). Hence, J(−v) ≤ J(v). By replacing v by −v, J(v) = J(−v).
Now, suppose there exist t0 > 0, u0 ∈ X such that J(t0u0) < t20J(u0). Then, by condition (a)
and the fact that J is even, we get that

J(t0u0) < t20J(u0) = t20J(−u0) ≥ J(−t0u0) = J(t0u0),

which is a contradiction. We have shown (A).

Let us prove (B). Take u, v ∈ X and define w = u+v
2 and z = u−v

2 . In this way, u = w+ z
and v = w− z. In addition, by (A), J(w) = 1

4J(u+ v) and J(z) = 1
4J(u− v). Thus, by using

(c),

J(u) + J(v) = J(w + z) + J(w − z) ≤ 2(J(w) + J(z)) =
1

2
J(u+ v) +

1

2
J(u− v),

so, use again condition (c) to conclude (B).

Define Y := {u ∈ X : J(u) <∞} and B : Y × Y → R as

B(u, v) :=
1

4
(J(u+ v)− J(u− v)).

Thanks to (a), (A) and (B), Y is a linear subspace of X. From (a) and (A), we obtain
B(u, u) = J(u) for every u ∈ Y . The symmetric property of B follows from the fact that J is
even.

Let us prove that B is a bilinear form in Y ×Y . We split the proof in several steps. First,
we will see through a chain of equivalences, the simple identity

B(u+ v, w) = B(u,w) +B(v, w), for every u, v, w ∈ Y. (1.5.6)

After that, to see that we can take out scalars, we will start proving with −1, then with any
natural number k, any integer, any rational number, till we arrive at the final step: proving
for any real number t ∈ R.

By B definition, it is equivalent to prove that

J(u+ v + w)− J(u+ v − w) = J(u+ w)− J(u− w) + J(v + w)− J(v − w),

that can be re-written as

J(u+ v + w) + J(u− w) + J(v − w) = J(u+ v − w) + J(u+ w) + J(v + w).

Since J is even, J(u− v + w) = J(−u+ v − w), hence the identity above is equivalent to

J(u+v+w)+J(u−v+w)+J(u−w)+J(v−w) = J(u+v−w)+J(−u+v−w)+J(u+w)+J(v+w).
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Now, use (B)
J(u+ v + w) + J(u− v + w) = 2J(u+ w) + 2J(v),

J(u+ v − w) + J(−u+ v − w) = 2J(u) + 2J(v − w).

By re-writing and using (B) again, we arrive at

J(u) + J(v) + J(w) = J(u) + J(v) + J(w),

which is clearly satisfied. This conclude the proof of (1.5.6).

Once again, since J is even, we get B(0, v) = 0 for every v ∈ Y . Thus, 0 = B(u− u, v) =
B(u, v) +B(−u, v). So,

B(−u, v) = −B(u, v), for every u, v ∈ Y. (1.5.7)

Now, by induction, thanks to (1.5.6) we obtain B(ku, v) = kB(u, v) for every k ∈ N.
Since (1.5.7), that also holds for k ∈ Z. Moreover, replacing u by u

k for k ∈ Z \ {0}, we get
B(uk , v) = 1

kB(u, v). Therefore,

B(tu, v) = tB(u, v), for every t ∈ Q. (1.5.8)

Since B is symmetric, from (1.5.6) and (1.5.8), we know that

B(tu+ v, tu+ v) = t2B(u, u) + 2tB(u, v) +B(v, v).

Re-writing, we obtain

0 ≤ J(tu+ v) ≤ t2J(u) + 2tB(u, v) + J(v) for every u, v ∈ Y, t ∈ Q,

hence B(u, v)2 ≤ J(u)J(v) for every u, v ∈ Y . This implies that

J(u+ v) = B(u+ v, u+ v) = B(u, u) + 2B(u, v) +B(v, v)

≤ J(u) + 2J(u)
1
2J(v)

1
2 + J(v)

= (J(u)
1
2 + J(v)

1
2 )2,

so J(u+ v)
1
2 ≤ J(u)

1
2 +J(v)

1
2 for every u, v ∈ Y . From this inequality, (a) and (A), it follows

that J
1
2 is a seminorm on Y . Thus, for every u, v ∈ Y , the functions t 7→ J(tu + v) and

t 7→ J(tu − v) are continuous on R. By construction of B, also the function t 7→ B(tu, v) is
continuous on R for every u, v ∈ Y . Therefore, (1.5.8) implies B(tu, v) = tB(u, v) for every
u, v ∈ Y and t ∈ R. This identity ends the proof of B being a symmetric bilinear form on
Y × Y .

Proposition 1.5.8. Let Jk, J : X → (−∞,∞] be such that Jk
Γ→ J in X and Jk is a non

negative quadratic form for every k ∈ N. Then, J is also a non negative quadratic form.
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Proof. Being a quadratic form is equivalent to satisfy (a)-(c) from the previous Lemma 1.5.7.

So, assume Jk verifies (a)-(c) for every k ∈ N, and let us see they are also satisfied by J .

To see (a) holds for J , observe that by Γ-convergence definition, for each u ∈ X there
exists a sequence {uk}k∈N ⊂ X such that

J(u) ≥ lim sup
k→infty

Jk(uk) ≥ 0.

For every sequence {vk}k∈N such that vk → 0 in X, we know that

J(0) ≤ lim inf
k→∞

Jk(vk).

Now, choose vk = 0 for every k ∈ N. Then, since Jk(0) = 0, we get J(0) ≤ 0. But, previously,
we observe that J(0) ≥ 0. Therefore, we have proved condition (a).

Let us continue with condition (b). Fix u ∈ X and t > 0. Take the recovery sequence for
u, that is, a sequence {uk}k∈N such that uk → x in X and J(u) ≥ lim supk→∞ Jk(uk). Then,
{tuk}k∈N is such that tuk → tu in X. We know, thanks to the liminf inequality, that

J(tu) ≤ lim inf
k→∞

Jk(tuk) = lim inf
k→∞

t2(uk) ≤ t2 lim sup
k→∞

Jk(uk) ≤ t2J(u),

where we have used property (b) of Jk in the identity above.

It is remained to prove property (c). Fix u, v ∈ X. Consider {uk}k∈N and {vk}k∈N
the recovery sequences for u and v respectively. Then, by using property (c) for Jk and
Γ-convergence Definition, we obtain

J(u+ v) + J(u− v) ≤ lim inf
k→∞

Jk(uk + vk) + lim inf
k→∞

Jk(uk − vk)

≤ lim inf
k→∞

Jk(uk + vk) + Jk(uk − vk)

≤ 2 lim sup
k→∞

Jk(uk) + Jk(vk)

≤ 2 lim sup
k→∞

Jk(uk) + 2 lim sup
k→∞

Jk(vk)

≤ 2(J(u) + J(v))

Since we have prove (a)-(c), J is a quadratic form too.

Let J : X → [0,∞] be a quadratic form.The domain of J is the linear subspace of X:

D(J) := {u ∈ X : J(u) <∞}.

The bilinear form associated to J is the unique symmetric bilinear form B : D(J)×D(J)→ R
such that J(u) = B(u, u) for every u ∈ D(J).

Denote by V := D(J), the closure of D(J) respect to the norm ‖ · ‖X . The operator L
associated to J is the linear operator L defined on

D(L) := {u ∈ D(J) : ∃ f ∈ V such that B(u, v) = 〈f, v〉X for every v ∈ D(J)},

as Lu = f , for every u ∈ D(L), where 〈·, ·〉X denotes the scalar product on X. Observe that
the uniqueness of f (so that, the well-definition of L), follows from the density of D(J) in V .
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Example 1.5.9. Let Ω ⊂ Rn be a bounded open set, X = L2(Ω) and J : L2(Ω) → [0,∞] be
the quadratic form

J(u) =

{
c(n,s)

2 [u]2s if u ∈ Hs
0(Ω),

∞ otherwise,

where c(n, s) is defined in (1.2.2). Thus, B(u, v) = 〈(−∆)su, v〉 for every u, v ∈ Hs
0(Ω).

Then, the associated linear operator L is the fractional Laplacian, and its domain

D(L) = {u ∈ Hs
0(Ω): ∃ f ∈ L2(Ω) such that 〈(−∆)su, v〉 = 〈f, v〉 for every v ∈ Hs

0(Ω)}.

Notice that, here, 〈·, ·〉 denotes the L2(Ω)-scalar product.

Let J : X → [0,∞] be a quadratic form. The scalar product (·, ·)J on D(J) is defined by

(u, v)J := B(u, v) + 〈u, v〉X

where B is the bilinear form associated to J . The corresponding norm ‖ · ‖J is given by

‖u‖J = (J(u) + ‖u‖2X)
1
2 ,

for every u ∈ D(J).

Example 1.5.10. Let J be the same quadratic form from Example 1.5.9. Then, the scalar
product (·, ·)J coincides with the scalar product of Hs(Ω), up to a constant, that is,

(u, v)J = c(n, s)

∫∫
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy +

∫
Ω
uv dx

for every u, v ∈ Hs
0(Ω).

Proposition 1.5.11. Let J : X → [0,∞] be a lower semicontinuous quadratic form and let

L be the associated operator on V = D(J)
‖·‖X

. Then, D(L) is dense in D(J) for the ‖ · ‖J
norm. That is, D(L)

‖·‖J
= D(J).

Proof. Since we are dealing with Hilbert spaces, it will be enough to prove that if v ∈ D(J)
is such that (u, v)J = 0 for every u ∈ D(L), then v = 0.

Let v ∈ D(J) be such that (u, v)J = 0 for every u ∈ D(L). We have to prove v = 0.

Observe that 〈Lu, v〉X = B(u, v) for every u ∈ D(L), thanks to Riesz Representation
Theorem. In particular, by taking u = v, we obtain 〈Lv, v〉X = B(v, v) = J(v) ≥ 0. So, L is
a positive operator. Clearly, L is also symmetric. Moreover, L is self-adjoint on V , see [31,
Theorem 12.13].

Since L is positive and self-adjoint on V , we know that Im(Id+ L) = V . So, there exists
a w ∈ D(L) such that v = w + Lw. Then,

‖v‖2X = 〈v, v〉X = 〈w + Lw, v〉X = 〈w, v〉X + 〈Lw, v〉X = 〈w, v〉X +B(w, v) = (w, v)J = 0,

since w ∈ D(J) and v ⊥ D(L). Therefore, v = 0 as we wanted to prove.
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Resumen del caṕıtulo

El caṕıtulo abarca distintos conocimientos previos, como los espacios en donde se trabaja,
algunas de sus propiedades, desigualdades involucradas, la clase operadores que es objeto de
estudio, existencia de solución para el problema de Dirichlet involucrando dichos operadores,
principios de comparación entre soluciones, estabilidad, etc. Siempre considerando aquellos
resultados que son necasarios para los objetivos de esta tesis.

Este caṕıtulo está dividido en cinco partes.

La primera parte describe los espacios de funciones que intervienen a lo largo de la tesis
y sus propiedades básicas. Dichos espacios son los Sobolev fraccionarios y sus respectivos
espacios duales. Se hace un estudio detallado de la relación existente entre las normas frac-
cionarias ‖ · ‖W s,p(Ω) y la norma de los espacios de Sobolev clásicos ‖ · ‖W 1,p(Ω). Esta relación
será clave en los resultados del Caṕıtulo 3, en donde se analiza la transición de un problema
de optimización de forma involucrando el laplaciano fraccionario (oparador no local) a un
problema en el que intervine el laplaciano clásico (operador local).

En la segunda parte de este caṕıtulo, nos dedicamos a introducir en primer lugar el lapla-
ciano fraccionario, que luego será un caso particular de una clase de oparadores más amplia,
utilizada en el Caṕıtulo 2. Probamos existencia de solución, estabilidad, principio de com-
paración de soluciones. El problema tratado a lo largo de la tesis, es el problema de Dirichlet,
que también fue estudiado en esta parte del trabajo.

Como tercera parte, tenemos la sección dedicada a las medidas s-capacitarias. Estas medi-
das nos permiten relajar ciertos problemas clásicos de diseño óptimo, para obtener resultados
positivos de existencia. Se listan las herramientas necesarias para los objetivos de la tesis,
como la relación que existe entre las medidas s- capacitarias, asociadas a las semi-normas [ · ]s,
y la medida clásica 1-capacitaria, asociada a la norma ‖∇ · ‖L2(Ω). Definimos los conjuntos
s-cuasi abiertos y las funciones s-cuasi continuas. También, se prueban algunos resultados
de convergencia que relacionan las medidas s-capacitarias con la medida de Lebesgue. Por
último, se trabaja con el problema de Dirichlet en un conjunto A s-cuasi abierto:

(−∆)suA = 1 en A, uA = 0 en Rn \A.

Dada la función solución uA se prueba que el conjunto A coincide con el conjunto de posi-
tividad de la solución uA, en el sentido de la medida s-capacitaria, es decir, difieren en un
conjunto de s-capacidad cero. Es decir, {uA > 0} = A. Éste es otro de los resultados clave
para lidiar con los problemas de diseño óptimo en el Caṕıtulo 3.

En la cuarta parte, recordamos un resultado de compacidad para una sucesión de oper-
adores lineales.

Finalmente, la quinta parte de este caṕıtulo, abarca un resumen de Γ-convergencia. Su
definición y su propiedad esencial que relaciona los mı́nimos valores y los minimizantes de una
sucesión de funcionales Γ-convergente. Esta herramienta es fundamental para las contribu-
ciones originales plasmadas en esta tesis. En el Caṕıtulo 2, la Γ-convergencia de los funcionales
de enerǵıa asociados a una sucesión de problemas, implica casi automáticamente la conver-
gencia débil de la sucesión de soluciones a la solución del problema ĺımite homogeneizado. Si
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bien éste no es el resultado principal de dicho caṕıtulo, sienta una base cómoda para lidiar
con la convergencia de la sucesión de flujos, preparando el terreno para el objetivo principal
que es la H-convergencia. Por otro lado, en el Caṕıtulo 3, la Γ-convergencia nos permite es-
tablecar una noción de convergencia de espacios de Sobolev fraccionarios, dada una sucesión
de s-cuasi abiertos {Ak}k∈N. En cierta forma, {Hs

0(Ak)}k∈N converge a Hs
0({u > 0}), donde

uAk → u en L2(Ω). Más aún, se obtiene un resultado análogo variando además el parámetro
0 < s < 1. En ambos casos, es fundamental contar con la Γ-convergencia y las propiedades
aqúı mencionadas.



Chapter 2

Homogenization for nonlocal
diffusion

In this chapter, we give our contribution to Homogenization theory in the nonlocal setting.
For the sake of simplicity we decide to present the outcomes in the linear case, since all the
difficulties appear also in this situation. We refer the reader for the general case, 1 ≤ p <∞,
to [49].

2.1 A nonlocal div-curl Lemma

In this section we prove a nonlocal version of the div-curl Lemma. This will be a fundamental
tool in order to use Tartar’s method in homogenization. In the classical setting this lemma
was proved by Tartar in [93, 94]. Here we do not need the lemma in its full generality. We
prove only a special case that will suffice for our purposes. See [4] where a similar approach
is made in the classical setting.

We need to introduce some notation and terminology. Given u ∈ Hs(Rn), we define its
s-gradient as

Dsu(x, y) :=
u(x)− u(y)

|x− y|
n
2

+s
. (2.1.1)

Observe that Dsu ∈ L2(Rn × Rn), for any u ∈ Hs(Rn).

Now, given φ ∈ L2(Rn × Rn), we define its s-divergence as

dsφ(x) := p.v.

∫
Rn

φ(x, y)− φ(y, x)

|x− y|
n
2

+s
dy. (2.1.2)

With this definitions we have (−∆)su = c(n,s)
2 ds(Dsu). Moreover, if La is given by (1.2.14),

we have Lau = 1
2ds(aDsu).

We now need to check that this s-divergence operator is a well defined operator between

51
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L2(Rn × Rn) and H−s(Rn) and that the following integration by parts formula holds∫∫
Rn×Rn

φDsu dxdy = 〈dsφ, u〉, (2.1.3)

for every u ∈ Hs(Rn) and φ ∈ L2(Rn × Rn).

In order to keep the computations as simple as possible, the following notations will be
used: for φ ∈ L2(Rn × Rn) we denote

φ = φ(x, y); (2.1.4)

φ′ = φ(y, x); (2.1.5)

φ̄ = φ(x, x). (2.1.6)

Theorem 2.1.1. Given φ ∈ L2(Rn×Rn), it follows that dsφ ∈ H−s(Rn), where dsφ is defined
in (2.1.2). Moreover, for any u ∈ Hs(Rn) the integration by parts formula (2.1.3) holds true.

Proof. Let us define

dεsφ(x) :=

∫
|x−y|≥ε

φ(x, y)− φ(y, x)

|x− y|
n
2

+s
dy.

Then, it is easy to see that dεsφ ∈ L2(Rn). In fact,

|dεsφ(x)| ≤
∫
|x−y|≥ε

|φ|+ |φ′|
|x− y|

n
2

+s
dy

≤

(∫
|x−y|≥ε

1

|x− y|n+2s
dy

) 1
2 (∫

Rn
(|φ|+ |φ′|)2 dy

) 1
2

=
( ωn

2sε2s

) 1
2

(∫
Rn

(|φ|+ |φ′|)2 dy

) 1
2

,

where ωn is the measure of the unit sphere Sn−1 ⊂ Rn. From this estimate, one immediately
obtains

‖dεsφ‖2 ≤ 2
1
2

( ωn
2sε2s

) 1
2 ‖φ‖2.

So dεsφ ∈ L2(Rn) ⊂ H−s(Rn), therefore

〈dεsφ, u〉 =

∫
Rn
dεsφu dx

=

∫
Rn

∫
|x−y|≥ε

φ− φ′

|x− y|
n
2

+s
u(x) dy dx

=

∫
Rn

∫
|x−y|≥ε

φ
u(x)

|x− y|
n
2

+s
dy dx−

∫
Rn

∫
|x−y|≥ε

φ′
u(x)

|x− y|
n
2

+s
dy dx

=

∫
Rn

∫
|x−y|≥ε

φ
u(x)

|x− y|
n
2

+s
dy dx−

∫
Rn

∫
|x−y|≥ε

φ
u(y)

|x− y|
n
2

+s
dy dx

=

∫
Rn

∫
|x−y|≥ε

φ(x, y)Dsu(x, y) dy dx.
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Now we take the limit ε ↓ 0 and obtain the desired result.

The next lemma is a crucial step, but first, we need to introduce a definition.

Definition 2.1.2. Given {fk}k∈N ⊂ H−s(Rn) and f ∈ H−s(Rn), we say that fk → f in
H−sloc (Rn) if ‖fk − f‖−s,Ω → 0 for every Ω ⊂ Rn bounded and open.

Lemma 2.1.3. Let φk, φ0 ∈ L2(Rn×Rn) be such that φk ⇀ φ0 weakly in L2(Rn×Rn). Assume
moreover that dsφk → dsφ0 strongly in H−sloc (Rn). Then, for every ϕ ∈ H1,∞(Rn × Rn), it
follows that ds(ϕφk)→ ds(ϕφ0) strongly in H−sloc (Rn).

Proof. In the proof the notations (2.1.4)–(2.1.6) will be used.

Observe, to begin with, that

ds(ϕφk) = p.v.

∫
Rn

ϕφk − ϕ′φ′k
|x− y|

n
2

+s
dy

= ϕ̄ dsφk + p.v.

∫
Rn

(
ϕ− ϕ̄
|x− y|

n
2

+s
φk +

ϕ̄− ϕ′

|x− y|
n
2

+s
φ′k

)
dy,

for any k ≥ 0. Clearly, one has

ϕ̄ dsφk → ϕ̄ dsφ0 strongly in H−sloc (Rn).

We now denote, for k ≥ 0,

J1
k := p.v.

∫
Rn

ϕ− ϕ̄
|x− y|

n
2

+s
φk dy,

J2
k := p.v.

∫
Rn

ϕ̄− ϕ′

|x− y|
n
2

+s
φ′k dy.

From Theorem 1.1.16, the lemma will be proved if we show that

J ik ⇀ J i0 weakly in L2
loc(Rn), i = 1, 2.

We prove this fact for i = 1, the other case is analogous.

Let v ∈ L2
loc(Rn) and K ⊂ Rn compact, so∫

K
J1
kv dx =

∫
Rn
J1
kvK dx =

∫∫
Rn×Rn

φk
ϕ− ϕ̄
|x− y|

n
2

+s
vK(x) dxdy,

where vK = vχK . Therefore, it suffices to show that ϕ−ϕ̄
|x−y|

n
2 +s vK(x) ∈ L2(Rn × Rn). But,

∫∫
Rn×Rn

|vK(x)|2 |ϕ− ϕ̄|
2

|x− y|n+2s
dxdy =

∫
K
|v(x)|2

(∫
Rn

|ϕ(x, y)− ϕ(x, x)|2

|x− y|n+2s
dy

)
dx
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and ∫
Rn

|ϕ(x, y)− ϕ(x, x)|2

|x− y|n+2s
dy =

(∫
|x−y|<1

+

∫
|x−y|≥1

)
|ϕ(x, y)− ϕ(x, x)|2

|x− y|n+2s
dy

= I + II.

For I observe that |ϕ(x, y)− ϕ(x, x)| ≤ ‖∇ϕ‖∞|x− y| and so

I ≤ ‖∇ϕ‖2∞
∫
|x−y|<1

1

|x− y|n+2s−2
dy =

ωn
2(1− s)

‖∇ϕ‖2∞,

where ωn is the measure of the unit sphere Sn−1 ⊂ Rn. Finally, for II,

II ≤ 4‖ϕ‖2∞
∫
|x−y|≥1

1

|x− y|n+2s
dy =

4ωn
2s
‖ϕ‖2∞.

This completes the proof of the lemma.

Now we are in position to prove the main result of the section.

Lemma 2.1.4 (Nonlocal Div-Curl Lemma). Let φk, φ0 ∈ L2(Rn×Rn) and let vk, v0 ∈ Hs(Rn)
be such that 

vk ⇀ v0 weakly in Hs(Rn),

φk ⇀ φ0 weakly in L2(Rn × Rn),

dsφk → dsφ0 strongly in H−sloc (Rn).

Then, φkDsvk → φ0Dsv0 in the sense of distributions.

Remark 2.1.5. In this special version of the div-curl Lemma, we are considering ψk = Dsvk.
In this case, since ψk are s-gradients of scalar functions, there is no need for the introduction
of the s-curl operator.

Proof. The proof is an easy consequence of the previous lemma. In fact, if ϕ ∈ C∞c (Rn×Rn),
from Lemma 2.1.3 and the integration by parts formula (2.1.3) we get

lim
k→∞

∫∫
Rn×Rn

φkDsvkϕdxdy = lim
k→∞
〈ds(ϕφk), vk〉

= 〈ds(ϕφ0), v0〉

=

∫∫
Rn×Rn

φ0Dsv0ϕdxdy.

The proof is complete.
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2.2 Pave the way for the H-convergence with a Γ-convergence
result

Let 0 < λ ≤ Λ < ∞ and {ak}k∈N ⊂ Aλ,Λ (defined by (1.2.13)) be a sequence of positive and
bounded symmetric kernels.

Since 0 < λ ≤ ak ≤ Λ for every k ∈ N, up to a subsequence, we can assume that ak
∗
⇀ a0

in L∞(Rn × Rn), that is,

lim
k→∞

∫∫
Rn×Rn

ak(x, y)g(x, y) dxdy =

∫∫
Rn×Rn

a0(x, y)g(x, y) dxdy,

for every g ∈ L1(Rn × Rn).

We denote the associated nonlocal operators Lk := Lak , given by (1.2.14). Then, the
sequence {Lk}k∈N define a sequence of energy functionals {Jk}k∈N, given by

Jk(v) =
1

4

∫∫
Rn×Rn

ak(x, y)
|v(x)− v(y)|2

|x− y|n+2s
dxdy (2.2.1)

for k ∈ N, defined in Hs
0(Ω). Thanks to the definition of s-gradient (2.1.1), we can rewrite

the functional Jk as follows

Jk(v) =
1

4

∫∫
Rn×Rn

ak(x, y)(Dsv(x, y))2 dxdy.

We then define, for k ∈ N, Jk : L2(Ω)→ (−∞,∞] as

Jk(v) :=

{
Jk(v) if v ∈ Hs

0(Ω)

+∞ otherwise.
(2.2.2)

Theorem 2.2.1. Let 0 < λ ≤ Λ < ∞ and {ak}k∈N ⊂ Aλ,Λ. Let Lk := Lak be the operators
defined in (1.2.14).

Then, the associated functionals Jk given by (2.2.2) Γ−converge to J0 in L2(Ω).

Proof. Liminf inequality. Let {uk}k∈N ⊂ L2(Ω) be such that uk → u in L2(Ω). We want
to prove that

J(u) ≤ lim inf
k→∞

Jk(uk).

Assume lim infk→∞ Jk(uk) < ∞. Otherwise, the inequality is trivial. Up to a subsequence,
we can also assume uk ∈ Hs

0(Ω) for every k ∈ N. In addition, by the uniform boundedness of
the sequence of kernels, there exists a weak limit function in Hs

0(Ω). Since uk → u in L2(Ω),
this weak limit function should be u.

Let 0 < δ < R <∞. Consider

QR,δ := BR(0)×BR(0) \ {(x, y) ∈ Rn × Rn : |x− y| < δ}.
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Observe that (Dsuk)
2 → (Dsu)2 in L1(QR,δ). See the definition of s-gradient in (2.1.1).

Using the strong convergence in L1(QR,δ) and the weak* convergence of the kernels, we
obtain

lim inf
k→∞

∫∫
Rn×Rn

ak(Dsuk)
2 dxdy ≥ lim inf

k→∞

∫∫
QR,δ

ak(Dsuk)
2 dxdy

≥
∫∫

QR,δ

a0(Dsu)2 dxdy

To finish the liminf inequality, take the limit R ↑ ∞ and δ ↓ 0. Consequently,

lim inf
k→∞

Jk(uk) = lim inf
k→∞

∫∫
Rn×Rn

ak(Dsuk)
2 dxdy ≥

∫∫
Rn×Rn

a0(Dsu)2 dxdy = J0(u).

Limsup inequality. Let u ∈ L2(Ω) be such that J(u) <∞. We want to find a recovery
sequence {uk}k∈N ⊂ L2(Ω). That means, uk → u in L2(Ω) and

lim sup
k→∞

Jk(uk) ≤ J(u).

Notice that taking the constant sequence u will be enough. Since J(u) < ∞, the function u

belongs to Hs
0(Ω). Then, we get (Dsu)2 ∈ L1(Rn × Rn). Using the convergence ak

∗
⇀ a0, we

conclude

lim sup
k→∞

Jk(u) = lim sup
k→∞

∫∫
Rn×Rn

ak(Dsu)2 dxdy =

∫∫
Rn×Rn

a0(Dsu)2 dxdy = J(u).

As an easy consequence of this Γ-convergence in L2(Ω), we prove the Hs
0(Ω)-weak conver-

gence of {uk}k∈N the sequence of solutions to{
Lkuk = f in Ω

uk = 0 in Rn \ Ω,
(2.2.3)

to a function which is a solution to the limit problem, where Lk = Lak defined by (1.2.14).
But, first, we need this lemma which guarantees the existence of a weak limit function, so
that it is still remained to show that it solves the limit problem.

Lemma 2.2.2. Let {uk}k∈N ⊂ Hs
0(Ω) be the sequence of weak solutions to (2.2.3). Then

{uk}k∈N is bounded in Hs
0(Ω) and therefore, up to some subsequence, there exists u0 ∈ Hs

0(Ω)
such that uk ⇀ u0 weakly in Hs

0(Ω).
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Proof. The proof is straightforward. In fact, from the properties of the kernel ak, we have

λ[uk]
2
s = λ‖Dsuk‖22 ≤

∫∫
Rn×Rn

ak(x, y)|Dsuk(x, y)|2 dxdy

= 2〈Lkuk, uk〉
= 2〈f, uk〉
≤ 2‖f‖−s‖Dsuk‖2 = 2‖f‖−s[uk]s.

Therefore
[uk]s ≤ (2λ−1‖f‖−s).

From this uniform bound, the rest of the lemma follows.

Now, it is time to see the weak convergence of the solution sequence to a function which
is also a solution to the same class of problem.

Corollary 2.2.3. Let 0 < λ ≤ Λ, {ak}k∈N ⊂ Aλ,Λ and f ∈ H−s(Ω). Assume ak
∗
⇀ a0 in

L∞(Rn ×Rn). For every k ≥ 0, denote by uk the solution to (2.2.3), where Lk = Lak defined
by (1.2.14). Then, uk ⇀ u0 in Hs

0(Ω).

Proof. For every k ≥ 0, by Proposition 1.2.10, uk ∈ L2(Ω) is also the weak solution to

Jk(uk)− 〈f, uk〉 = inf
v∈L2(Ω)

Jk(v)− 〈f, v〉.

By Theorem 2.2.1, we know that Jk
Γ→ J0 in L2(Ω). On the other hand, observe that

v 7→ 〈f, v〉 is a continuous function in L2(Ω). Then, since Γ-convergence is stable under

continuous perturbations, we obtain Jk(·)− 〈f, ·〉
Γ→ J0(·)− 〈f, ·〉 in L2(Ω).

By Theorem 1.5.3, the sequence of minimizers {uk}k∈N converges to u0 in L2(Ω). Moreover,
by Lemma 2.2.2, the sequence {uk}k∈N is bounded in Hs

0(Ω), so there exist a subsequence
and a weak limit function in Hs

0(Ω), it should be u0. Therefore, uk ⇀ u0 in Hs
0(Ω).

2.3 The highly anticipated H-convergence

Now, let {ak}k∈N ⊂ Aλ,Λ be a sequence of positive and bounded kernels and let Ω ⊂ Rn be an
open set with finite measure. We denote the associated nonlocal operators Lk := Lak , given
by (1.2.14).

Now, given f ∈ H−s(Ω) we denote by uk ∈ Hs
0(Ω) the unique weak solution to (2.2.3).

Until now, we know the existence of a subsequence (that we still denote by {uk}k∈N), a
function u0 ∈ Hs

0(Ω) and a positive bounded kernel a0 ∈ Aλ0,Λ0 such that

uk ⇀ u0 weakly in Hs
0(Ω)



CHAPTER 2. HOMOGENIZATION FOR NONLOCAL DIFFUSION 58

and u0 is a weak solution to (2.2.3) with L0 = La0 . BUT, we are more ambitious. We want
to arrive at the flow convergence, that is,

akDsuk ⇀ a0Dsu0 weakly in L2(Ω).

Both of the previous convergences come to the H-convergence definition.

Definition 2.3.1. For any k ≥ 0 let 0 < λk ≤ Λk <∞ and let ak ∈ Aλk,Λk be a sequence of
kernels. Let us denote by Lk, k ≥ 0, the associated nonlocal operators given by (1.2.14) with
a = ak respectively.

We say that the sequence {Lk}k∈N H-converges to L0, if for any f ∈ H−s(Ω), the sequence
of solutions {uk}k∈N of {

Lkuk = f in Ω

uk = 0 in Rn \ Ω
(2.3.1)

satisfies

uk ⇀ u0 weakly in Hs
0(Ω)

akDsuk ⇀ a0Dsu0 weakly in L2(Ω)

where u0 is the solution to {
L0u0 = f in Ω

u0 = 0 in Rn \ Ω.
(2.3.2)

As we have said in the Introduction, this notion of convergence was introduced by Murat
and Tartar in [70] generalizing the notion of G-convergences for symmetric operators given by
Spagnolo in [91, 92] and De Giorgi and Spagnolo in [35]. All of the above mentioned papers
work in the context of linear elliptic PDEs.

As far as we know, this is the first time that this notion is applied to the nonlocal context.

We start with a simple lemmas which ensures us the existence of a L2(Rn×Rn)-weak limit
function for the sequence of associated fluxes {akDsuk}k∈N.

Lemma 2.3.2. Let {uk}k∈N ⊂ Hs
0(Ω) be the sequence of weak solutions to (2.2.3). Then the

sequence of fluxes {ξk := akDsuk}k∈N ⊂ L2(Rn × Rn) is bounded and therefore, up to some
subsequence, there exists ξ0 ∈ L2(Rn × Rn) such that ξk ⇀ ξ0 weakly in L2(Rn × Rn).

Proof. The proof is also straightforward. In fact, from the boundedness of the kernels {ak}k∈N
and from Lemma 2.2.2, we have∫∫

Rn×Rn
|ξk|2 dxdy =

∫∫
Rn×Rn

|akDsuk|2 dxdy

≤ Λ2

∫∫
Rn×Rn

|Dsuk|2 dxdy

≤ (2Λλ−1)2‖f‖2−s.

The proof is complete.
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The following observation is trivial.

Proposition 2.3.3. The sequence of operators {Lk}k∈N is uniformly strictly monotone.

Proof. The proof follows immediately from the operator definition (1.2.14) and the uniform
estimate λ ≤ ak(x, y) ≤ Λ a.e. (x, y) ∈ Rn × Rn:

〈Lku− Lkv, u− v〉 ≥ λ[u− v]2s,

for every u, v ∈ Hs
0(Ω).

The oscillating test function method of Tartar needs the existence of such test functions.
This is the content of next lemma.

Lemma 2.3.4. Given a sequence {ak}k∈N ⊂ Aλ,Λ and a function w0 ∈ Hs(Rn), there exist a
sequence {wk}k∈N ⊂ Hs(Rn) and g0 ∈ H−s(Rn) such that

wk ⇀ w0 weakly in Hs(Rn) (2.3.3)

gk := Lkwk → g0 strongly in H−sloc (Rn). (2.3.4)

Proof. First, observe that the operators Lk : Hs(Rn) → H−s(Rn) verify the following esti-
mates:

‖Lku‖−s ≤
Λ

2
[u]s, (2.3.5)

〈Lku, u〉 ≥
λ

2
[u]2s. (2.3.6)

These estimates follow easily from the definitions and Hölder’s inequality.

Now, we define the operator L̂k : Hs(Rn) → H−s(Rn) by L̂ku = Lku + u. From (2.3.5)
and (2.3.6), it follows that L̂k verifies the estimates

‖L̂ku‖−s ≤ max

{
Λ

2
; 1

}
‖u‖s, (2.3.7)

〈L̂ku, u〉 ≥ min

{
λ

2
; 1

}
‖u‖2s. (2.3.8)

Proposition 2.3.3 implies the monotonicity of L̂k. Observe that L̂k is continuous on finite-
dimensional subspaces of Hs(Rn), therefore, by (2.3.8) and Lax-Milgram Theorem , L̂k admits
an inverse, L̂−1

k .

Let us check that the family of operators {L̂−1
k }k∈N fulfills the hypotheses of Proposition

1.4.1. The operators L̂−1
k are uniformly strictly monotone since are the inverse of the sequence

of uniformly strictly monotone operators {L̂k}k∈N.

Observe that from (2.3.7) and (2.3.8) one immediately obtains

〈L̂ku, u〉 ≥ c‖L̂ku‖2−s, (2.3.9)
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where c :=
min{λ2 ;1}

(min{Λ
2

;1})2 = c(λ,Λ), which can be written as

〈f, L̂−1
k f〉 ≥ c‖f‖2−s

for every f ∈ H−s(Rn). Consequently, {L̂−1
k }k∈N is uniformly coercive.

From (2.3.8) it follows that
c‖u‖2s ≤ ‖L̂ku‖−s‖u‖s

where c = min
{
λ
2 ; 1
}

, that is,

‖L̂−1
k f‖s ≤ c−1‖f‖−s.

Since c is independent on k, it follows that supk∈N ‖L̂−1
k f‖s <∞.

Then, by Proposition 1.4.1, there exist a subsequence of operators, that we still denote
by {L̂−1

k }k∈N, and a limit linear uniformly coercive operator L̂−1
0 : H−s(Rn)→ Hs(Rn), such

that
L̂−1
k f ⇀ L̂−1

0 f weakly in Hs(Rn) for every f ∈ H−s(Rn). (2.3.10)

Since L̂−1
0 is continuous on finite subspaces of H−s(Rn), again, by Lax-Milgram Theorem,

L̂−1
0 is invertible, that is, there exists a linear continuous operator L̂0 : Hs(Rn) → H−s(Rn).

Observe that L̂0 satisfies (2.3.7) and (2.3.8).

Consider ĝ0 := L̂0w0 ∈ H−s(Rn) and define wk := L̂−1
k ĝ0 ∈ Hs(Rn). Thus, by (2.3.10) we

obtain that wk ⇀ w0 in Hs(Rn).

Finally, if we denote gk := Lkwk, we obtain that

gk = Lkwk = L̂kwk − wk = ĝ0 − wk.

Since wk ⇀ w0 weakly in Hs(Rn) it follows that wk → w0 strongly in L2
loc(Rn), therefore

gk → ĝ0 − w0 =: g0 strongly in H−sloc (Rn).

The proof is complete.

With all of these preliminaries, we are ready to prove the main result of this section.

Theorem 2.3.5. Let Ω ⊂ Rn be an open set with finite measure and let 0 < λ ≤ Λ < ∞.
Then, for any sequence {ak}k∈N ⊂ Aλ,Λ, there exists subsequence {akj}j∈N ⊂ {ak}k∈N and a
kernel a0 ∈ Aλ,Λ2

λ

such that the sequence of operators {Lkj}j∈N, H-converges to L0.

Proof. Consider w0(x) = e−|x|
2 ∈ Hs(Rn) and let {wk}k∈N ⊂ Hs(Rn) be the sequence given

by Lemma 2.3.4.

Let us denote by ηk = akDswk and observe that from (2.3.3) and the boundedness of the
kernels ak it follows that

‖ηk‖2 ≤ Λ‖Dswk‖2 = Λ[wk]s ≤ C.
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Then, there exists a function η0 ∈ L2(Rn × Rn) such that, up to a subsequence,

ηk ⇀ η0 weakly in L2(Rn × Rn).

Given θ ∈ R, we apply Lemma 2.1.4 to the following nonnegative quantity

(ξk − θηk)(Dsuk − θDswk) ≥ 0,

where, as in Lemma 2.3.2, we note ξk(x, y) = ak(x, y)Dsuk(x, y).

Therefore,

(ξk − θηk)(Dsuk − θDswk)→ (ξ0 − θη0)(Dsu0 − θDsw0) ≥ 0, (2.3.11)

in the sense of distributions.

Take now θ = θt = (u0(x)−u0(y))−tθ0
w0(x)−w0(y) , where θ0 ∈ R and t > 0. Observe that θt is well

defined a.e. in Rn × Rn. Therefore, by (2.3.11) we obtain

(ξ0 − θtη0)θ0 ≥ 0.

Since θ0 ∈ R is arbitrary, we conclude that

ξ0 − θtη0 = 0,

for every t > 0. Passing to the limit t ↓ 0, we get

ξ0 = θuη0, (2.3.12)

where θu = u0(x)−u0(y)
w0(x)−w0(y) .

Now, we obtain
ξ0(x, y) = a0(x, y)Dsu0(x, y), (2.3.13)

where a0(x, y) := η0(x,y)
Dsw0(x,y) .

Finally, observe that from (2.2.3) and Lemma 2.3.2, it follows that

1

2

∫∫
Rn×Rn

ξ0Dsv dxdy = 〈f, v〉,

for every v ∈ Hs
0(Ω). But, by (2.3.13)

ξ0Dsv = a0Dsu0Dsv,

then, u0 is the weak solution of (2.3.2).

To conclude the proof of the theorem, it remains to show that a0 ∈ Aλ,Λ2

λ

, but this is the

content of Proposition 2.3.6 that we prove next.

The next proposition shows the coercivity and boundedness of the homogenized kernel a0.
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Proposition 2.3.6. Under the same assumptions and notations of Theorem 2.3.5, the ho-
mogenized kernel a0 belongs to the class A

λ,Λ
2

λ

.

Proof. First, we prove the boundedness from below a0(x, y) ≥ λ, a.e. x, y ∈ Rn. Fix v0 ∈
Hs(Rn) (for instance v0(x) = e−|x|

2
) and denote by vk the solution of{
Lkvk = L0v0 in Ω

vk = 0 in Rn \ Ω.
(2.3.14)

By Lemma 2.2.2, {vk}k∈N is bounded in Hs
0(Ω). Then, it has a weak limit in Hs

0(Ω). But,
by Theorem 2.3.5, that limit is v0. Applying the nonlocal div-curl Lemma, Lemma 2.1.4, to
the sequences {akDsvk}k∈N and {vk}k∈N, we obtain

ak|Dsvk|2 → a0|Dsv0|2, (2.3.15)

in the sense of distributions.

Since ak ∈ Aλ,Λ,

λ

∫∫
Rn×Rn

|Dsvk|2ϕdxdy ≤
∫∫

Rn×Rn
ak|Dsvk|2ϕdxdy,

for every ϕ ∈ C∞c (Rn × Rn), ϕ ≥ 0.

Therefore, from (2.3.15) and since the left hand side is weak lower semi-continuous in
L2(Rn × Rn), we obtain

λ

∫∫
Rn×Rn

|Dsv0|2ϕdxdy ≤
∫∫

Rn×Rn
a0|Dsv0|2ϕdxdy.

Since 0 ≤ ϕ ∈ C∞c (Rn × Rn) is arbitrary, we conclude that

λ|Dsv0|2 ≤ a0|Dsv0|2, a.e. in Rn × Rn. (2.3.16)

Now, observe that (2.3.16) holds for any v0 ∈ Hs(Rn) and so

λ ≤ a0 a.e. in Rn × Rn,

as we wanted to prove.

It remains to prove the boundedness from above a0 ≤ Λ2

λ a.e. in Rn × Rn.

Take ϕ ∈ C∞c (Rn × Rn) be nonnegative and by our hypotheses on the kernel ak we have∫∫
Rn×Rn

|akDsvk|2ϕdxdy ≤ Λ2

∫∫
Rn×Rn

|Dsvk|2ϕdxdy

≤ Λ2

λ

∫∫
Rn×Rn

ak|Dsvk|2ϕdxdy.

From this point the proof follows as in the previous case, using the convergence of the
fluxes akDsvk ⇀ a0Dsv0 weakly in L2(Rn × Rn).

The proof is now complete.

Remark 2.3.7. All the outcomes of this section can be extended for 1 ≤ p < ∞, as it was
shown in [49].
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Resumen del caṕıtulo

En este caṕıtulo contamos nuestro aporte en el tema Homogeneización en difusión no local,
puede ser encontrado en su versión más general en [49]. Comenzamos con una versión no
local del conocido div-curl Lema, en un caso particular que encaja con las necesidades que
origina el problema a estudiar. Previamente, se definen el s-gradiente y la s-divergencia. Para
u ∈ Hs(Rn), se define el s-gradiente como

Dsu(x, y) :=
u(x)− u(y)

|x− y|
n
2

+s
.

Se observa que Dsu ∈ L2(Rn ×Rn), para toda u ∈ Hs(Rn). Para φ ∈ L2(Rn ×Rn), se define
la s-divergencia como

dsφ(x) := v.p.

∫
Rn

φ(x, y)− φ(y, x)

|x− y|
n
2

+s
dy.

Con estas definiciones, se tiene que (−∆)su = c(n,s)
2 ds(Dsu).

Se prueba la siguiente versión del div-curl Lema: Dadas φk, φ0 ∈ L2(Rn × Rn) y vk, v0 ∈
Hs(Rn) tales que 

vk ⇀ v0 débil en Hs(Rn),

φk ⇀ φ0 débil en L2(Rn × Rn),

dsφk → dsφ0 fuerte en H−sloc (Rn).

Se tiene que φkDsvk → φ0Dsv0 en el sentido de las distribuciones.

Dada una sucesión de operadores {Lk}k∈N, donde Lk = Lak para ak ∈ Aλ,Λ, definido en
(1.2.13), se estudia el paso al ĺımite del problema{

Lkuk = f in Ω

uk = 0 in Rn \ Ω

para f ∈ H−s(Ω). Como primer paso, se obtiene, a través de la Γ-convergencia de los
funcionales de enerǵıa asociados, la convergencia débil de las soluciones. Posteriormente, a
través de una sucesión de funciones oscilantes, se concluye finalmente la H-convergencia:

uk ⇀ u0 débil en Hs
0(Ω)

akDsuk ⇀ a0Dsu0 débil en L2(Ω)

donde u0 es solución de {
L0u0 = f in Ω

u0 = 0 in Rn \ Ω.

y L0 = La0 , donde a0 hereda de {ak}k∈N la positividad y el hecho de ser acotado.



Chapter 3

Optimal design for nonlocal
diffusion

In this chapter we present our contribution in shape optimization problems involving the
fractional Laplacian. The reader could find this results in [47, 78].

3.1 Some existence results

The goal of this section is to prove existence of a minimal shape, that is, a solution to a
problem of the form

min
A∈A

F (A), (3.1.1)

where F is a cost functional and A is the class of admissible domains.

Assume there exists a notion of set convergence inA, let say ν, that makesA be a compact
set. In addition, suppose F : A → R is continuous. Then, solving a problem like (3.1.1) is
really easy. Indeed, we consider a minimizer sequence {Ak}k∈N ⊂ A. Since A is ν-compact,
there exist a subsequence {Akj}j∈N ⊂ {Ak}k∈N and a set A1 ∈ A such that Akj

ν→ A1.
Finally, by using the continuity of F , we conclude A1 is a solution to (3.1.1). Moreover, we
can relax the hypothesis over F . Since we are interesting in solving a minimization problem,
it is enough to consider F be ν-lower semicontinuous, and the same argument works.

Inspired in the previous argument, we start this section introducing the class of admissible
domains and some notions of set convergence.

Results presented in this section of the Thesis form part of works [47] and [78].

3.1.1 Strong and weak γs-convergence

Let Ω ⊂ Rn be a Lipschitz bounded open set . Let 0 < s < 1 and consider As(Ω) the class of
s-quasi open subset of Ω, see Definition 1.3.4.

64
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Definition 3.1.1 (Strong γs-convergence). Let {Ak}k∈N ⊂ As(Ω) and A ∈ As(Ω). We say

that Ak
γs→ A if usAk → usA strongly in L2(Ω), where usA is defined in (1.3.4).

Let m ∈ N, {(Ak1, . . . , Akm)}k∈N ⊂ As(Ω)m and (A1, . . . , Am) ∈ As(Ω)m.

We say (Ak1, . . . , A
k
m)

γs→ (A1, . . . , Am) if Aki
γs→ Ai for every i = 1, . . . ,m.

Remark 3.1.2. This is the fractional version of the γ−convergence of sets defined in [24].

Definition 3.1.3 (Weak γs-convergence). Let {Ak}k∈N ⊂ As(Ω). We say that Ak
γs
⇀ A if

usAk → u strongly in L2(Ω), where A := {u > 0}.

Let m ∈ N and {(Ak1, . . . , Akm)}k∈N ⊂ As(Ω)m. We say (Ak1, . . . , A
k
m)

γs
⇀ (A1, . . . , Am) if

Aki
γs
⇀ Ai for every i = 1, . . . ,m.

We follow the same approach and ideas of [24], where the laplacian operator (the case
s = 1) was involved, in order to obtain a compactness result in As(Ω) with respect to γs-
convergence.

Remark 3.1.4. In this chapter, we always consider the s-quasi representative given by Theorem
1.3.11. As well as, equalities and inequalities are thought s-quasi everywhere.

We introduce Ks defined by

Ks = {w ∈ Hs
0(Ω): w ≥ 0 , (−∆)sw ≤ 1 in Ω}. (3.1.2)

We begin giving an idea of the steps we follow to conclude certain set compactness.

Step 1 Given {Ak}k∈N ⊂ As(Ω), we consider usAk the solution to (1.3.4). We prove that
{usAk}k∈N ⊂ Ks and that Ks is a ‖ · ‖L2(Ω)-compact set. Then, there exist a subsequence

(still denoted with the same index) and a function u ∈ Ks such that usAk → u in L2(Ω).
Denote A := {u > 0}. Notice that we are not able to conclude u = usA.

Step 2 Since usA is also the solution of

max{w ∈ Hs
0(Ω): w ≤ 0 in Rn \A, (−∆)sw ≤ 1 in Ω}, (3.1.3)

we obtain the inequality u ≤ usA in Rn.

Step 3 Let ε > 0. Consider Aε := {usA > ε}. By the same argument from Step 1, the
sequence {usAk∪Aε}k∈N ⊂ Ks and usAk∪Aε → uε ∈ Ks in L2(Ω). Next, we prove uε ≤ usA
in Rn.

Step 4 We obtain the convergence uε → usA in L2(Ω), when ε ↓ 0.

Step 5 Finally, by a standard diagonal argument, we conclude usAk∪Aεk → usA in L2(Ω).

In other words, we obtain an enlarged sequence such that Ak ∪Aεk =: Ãkj
γs→ A.

We start by proving usA is also the solution to (3.1.3), which is the main part of Step 2.
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Proposition 3.1.5. For every A ∈ As(Ω), it follows that usA ≥ 0 in Rn and (−∆)susA ≤ 1 in
Ω, where usA is defined in (1.3.4).

Moreover, usA is the solution to (3.1.3).

Proof. Let us define
KA = {w ∈ Hs

0(Ω): w ≤ 0 in Rn \A},

and wA ∈ KA the (unique) minimizer of

Is : KA → R, Is(w) =
c(n, s)

2
[w]2s −

∫
Ω
w dx.

Observe that, by Stampacchia’s Theorem, wA is characterized by the variational inequality

E(wA, v − wA) ≥
∫

Ω
(v − wA) dx ∀v ∈ KA, (3.1.4)

where we denote

E(u, v) := c(n, s)

∫∫
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy. (3.1.5)

Next, we prove that both functions usA and wA agree.

The proof is standard. We will use the standard notations of w+ = max{w, 0} and
w− = max{−w, 0}.

Take w+
A as test function in the variational inequality (3.1.4) and obtain

0 ≤
∫

Ω
w−A dx ≤ E(wA, w

−
A)

≤ −c(n, s)
∫∫
{wA≤0}×{wA≤0}

(w−A(x)− w−A(y))2

|x− y|n+2s
dxdy.

From this inequality one easily conclude that w−A = 0 in Ω and so, since wA ∈ KA, wA ∈
Hs

0(A).

Therefore, since, by Remark 1.3.18, usA is the unique minimum of Is over Hs
0(A) and, since

also usA ∈ KA, Is(wA) ≤ Is(usA) the identity wA = usA in Rn follows.

Observe that from the maximum principle, Proposition 1.2.13, it follows that usA ≥ 0 in
Rn.

Given v ∈ Hs
0(Ω) such that v ≥ 0, then we get v ≥ 0. Therefore, −v belongs to KA. By

using it as a test function in (3.1.4) we obtain that

E(usA,−v − usA) = −c(n, s)[usA]2s − E(usA, v) ≥ −
∫

Ω
v dx−

∫
Ω
usA dx.

Using that (−∆)susA = 1 in A, the last inequality reads as

E(usA, v) ≤
∫

Ω
v dx.
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Since v ∈ Hs
0(Ω) is nonnegative but otherwise arbitrary, we get that (−∆)susA ≤ 1 in Ω.

Finally, if w ≤ 0 in Rn \A and (−∆)sw ≤ 1 in Ω, then

(−∆)sw ≤ (−∆)susA in A and w ≤ usA in Rn \A.

Hence, by comparison, w ≤ usA in Rn.

According to Step 1, given a sequence {Ak}k∈N ⊂ As(Ω), we want to conclude that the
sequence {usAk}k∈N of solutions to (1.3.4) is contained in Ks. That is a clear consequence of
Proposition 3.1.5 and it is the content of next Corollary.

Corollary 3.1.6. The function usA belongs to Ks for every A ∈ As(Ω), where usA is the
solution to (1.3.4) and Ks is defined by (3.1.2).

The set Ks defined by (3.1.2) is a compact set in L2(Ω).

Proposition 3.1.7. Ks is a convex, closed and bounded subset of Hs
0(Ω). Consequently, Ks

is pre-compact in L2(Ω).

Proof. Clearly, Ks is a convex set. Ks is also bounded. Indeed, given u ∈ Ks, by Hölder and
Poincaré’s inequalities we get

c(n, s)[u]2s ≤
∫

Ω
u dx ≤ |Ω|

1
2 ‖u‖L2(Ω) ≤ C|Ω|

1
2 [u]s.

In order to see that Ks is closed, let {uk}k∈N be a sequence in Ks such that uk → u in
Hs

0(Ω). For any k ∈ N and any v ∈ Hs
0(Ω), v ≥ 0, it holds that

E(uk, v) ≤
∫

Ω
v dx,

where E is defined by (3.1.5). Since E(·, v) is continuous in Hs
0(Ω) (in fact is weakly contin-

uous), taking the limit as k → ∞ we obtain that E(u, v) ≤
∫

Ω v dx, but, since v ∈ Hs
0(Ω) is

nonnegative but otherwise arbitrary we obtain that (−∆)su ≤ 1 in Ω and then u ∈ Ks.

Remark 3.1.8. Observe that optimal constant in Poincaré’s inequality

‖u‖2L2(Ω) ≤ C(Ω, s)[u]2s,

has a dependence on s of the form

C(Ω, s) ≤ (1− s)C(Ω).

See Corollary 1.1.14.

Therefore, the proof of Proposition 3.1.7 gives that if u ∈ Ks, then

(1− s)[u]2s ≤ C, (3.1.6)

where C depends on Ω but is independent on 0 < s < 1.
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Remark 3.1.9. Notice that As(Ω) endowed whit the weak γs-convergence is compact. Indeed,
given a sequence {Ak}k∈N ⊂ As(Ω), by Corollary 3.1.6, we know that {usAk}k∈N ⊂ Ks. By
Proposition 3.1.7, there exist a subsequence {usAkj }j∈N ⊂ {u

s
Ak
}k∈N and a function u ∈ Ks

such that usAkj
→ u strongly in L2(Ω). Denote by A := {u > 0}. Then, Akj

γs
⇀ A.

Thanks to the previous Remark 3.1.9, given a sequence {Ak}k∈N ∈ As(Ω) , we can assume

Ak
γs→ A := {u > 0}, where u is the L2(Ω)-limit of the associated sequence of solutions

{usAk}k∈N.

We would like to relate the function spaces Hs
0(Ak) and Hs

0(A) = Hs
0({u > 0}). This

expected relation between those spaces will be useful to prove Step 3. This is the content of
next lemma. We decide to omit its proof due to the similarity with Lemma 3.2.7.

Lemma 3.1.10. Let {Ak}k∈N ⊂ As(Ω) be such that usAk → u in L2(Ω), and let {wk}k∈N be

a bounded sequence in Hs
0(Ω) such that wk ∈ Hs

0(Ak) and wk → w in L2(Ω).

Then, w ∈ Hs
0({u > 0}).

Given a sequence {Ak}k∈N ⊂ As(Ω) such that Ak
γs
⇀ A, that is, usAk → u in L2(Ω) and

A := {u > 0}, we obtain as an easy consequence of Proposition 3.1.5 the inequality u ≤ usA in
Rn. We want to enlarge the set sequence in such a way that its function L2(Ω)-limit associated
is still less than usA. To be precise, we refer to Step 3.

Lemma 3.1.11. Let {Ak}k∈N ⊂ As(Ω) be such that usAk → u in L2(Ω), u ≤ usA in Rn and

usAk∪Aε → uε in L2(Ω), where Aε := {usA > ε} and ε > 0.

Then, uε ≤ usA in Rn.

The proof of Lemma 3.1.11 is omitted due to the similarity with Lemma 3.2.8.

We have paved the way for proving the compactness result in As(Ω).

Theorem 3.1.12. Let {Ak}k∈N ⊂ As(Ω). Then, there exist a subsequence {Akj}j∈N ⊂
{Ak}k∈N, an enlarged sequence {Ãkj}j∈N and A ∈ As(Ω) such that

Akj ⊂ Ãkj , and Ãkj
γs→ A.

Moreover, |A| ≤ lim infk→∞ |Ak|.

Proof. Let usAk be the solution to (1.3.4) for Ak. Then, by Proposition 3.1.7, there exist a
subsequence (still denoted with the same index) and a function u ∈ Ks such that usAk → u

in L2(Ω). Denote A := {u > 0} and consider usA the solution to (1.3.4) for A. Thanks to
Remark 1.3.14 and Lemma 1.3.15, we know that A ∈ As(Ω).

Since u ∈ Ks and usA is also the solution to (3.1.3), we obtain u ≤ usA in Rn.

Let ε > 0. Consider Aε := {usA > ε} and usAk∪Aε the solution to (1.3.4) for Ak∪Aε. Then,
by Corollary 3.1.6 and Proposition 3.1.7, there exist a subsequence (still denoted by the same
index) and a function uε ∈ Ks such that usAk∪Aε → uε in L2(Ω).
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By Lemma 3.1.11, we conclude uε ≤ usA in Rn.

We claim that (usA − ε)+ ≤ usAε in Rn. Indeed,

(usA − ε)+(x)− (usA − ε)+(y) =


usA(x)− usA(y) if x, y ∈ Aε

usA(x)− ε if x ∈ Aε and y 6∈ Aε

−usA(y) + ε if x 6∈ Aε and y ∈ Aε

0 otherwise.

Then, for any v ∈ Hs
0(Aε) such that v ≥ 0, we get∫∫

Rn×Rn

((usA(x)− ε)+ − ((usA(y)− ε)+)(v(x)− v(y))

|x− y|n+2s
dxdy =∫∫

Aε×Aε

(usA(x)− usA(y))(v(x)− v(y))

|x− y|n+2s
dxdy + 2

∫∫
Aε×(Aε)c

(usA(x)− ε)v(x)

|x− y|n+2s
dydx =∫∫

Rn×Rn

(usA(x)− usA(y))(v(x)− v(y))

|x− y|n+2s
dxdy + 2

∫∫
Aε×(Aε)c

(usA(y)− ε)v(x)

|x− y|n+2s
dydx ≤∫∫

Rn×Rn

(usA(x)− usA(y))(v(x)− v(y))

|x− y|n+2s
dxdy

That is, (−∆)s(usA − ε)+ ≤ (−∆)susA = 1 = (−∆)susAε in Aε. Moreover, since 0 =
(usA− ε)+ = usAε in Rn \Aε, from the comparison principle it follows that (usA− ε)+ ≤ usAε in
Rn.

We have obtained the following chain of inequalities

(usA − ε)+ ≤ usAε ≤ usAk∪Aε .

Taking limit as k →∞ we conclude that

(usA − ε)+ ≤ uε ≤ usA,

since uε ≤ usA in Rn and usAk∪Aε → uε.

Since uε ∈ Ks, by (3.1.6), {uε}ε>0 is uniformly bounded in Hs
0(Ω). Consequently, up to a

subsequence, uε → usA in L2(Ω).

By a standard diagonal argument, there exists a sequence εk ↓ 0 such that usAk∪Aεk → usA
in L2(Ω).

In conclusion, we have proved that the enlarged sequence Ak ∪Aεk =: Ãk γs-converges to
A.

To finish the proof, we have to show that |A| is bounded from above by lim infk→∞ |Ak|.
For every ε > 0, we have the following inclusion

{u ≥ ε} ⊂
{
|u− usAk | ≥

ε

2

}
∪
{
usAk ≥

ε

2

}
.
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Indeed, let x ∈ Rn be such that |u(x)− usAk(x)| < ε
2 and usAk(x) < ε

2 . Then,

u(x) = u(x)− usAk(x) + usAk(x) ≤ |u(x)− usAk(x)|+ usAk(x) <
ε

2
+
ε

2
= ε.

Thus, x ∈ {u < ε}.
By Chebyshev’s inequality, Proposition 1.3.21, we obtain

|{u ≥ ε}| ≤
∣∣∣{|u− usAk | ≥ ε

2

}∣∣∣+
∣∣∣{usAk ≥ ε

2

}∣∣∣
≤ 4

ε2

∫
Ω
|u− usAk |

2 dx+
∣∣{usAk > 0

}∣∣
=

4

ε2

∫
Ω
|u− usAk |

2 dx+ |Ak|

≤ 4

ε2

∫
Ω
|u− usAk |

2 dx+ lim inf
k→∞

|Ak|.

Use the convergence usAk → u in L2(Ω), to conclude

|{u ≥ ε}| ≤ lim inf
k→∞

|Ak|

for every ε > 0. Finally, observe that⋃
ε>0

{u > ε} = {u > 0}, and {u > ε} ⊂ {u > t} for 0 < t < ε,

then |A| = |{u > 0}| = limε↓0 |{u > ε}| ≤ lim infk→∞ |Ak|.

Remark 3.1.13. It will be useful to emphasize that once we apply Theorem 3.1.12, we obtain
a γs-limit for an enlarged sequence of domains and we also deduce its characterization: A =
{u > 0}, where u is the L2(Ω)-limit of {usAk}k∈N.

Thanks to the previous Theorem 3.1.12, we can also obtain a compactness result in
As(Ω)m, for fixed m ∈ N. That is the content of next Corallary.

Corollary 3.1.14. Let {(Ak1, . . . , Akm)}k∈N ⊂ As(Ω)m.

Then, there exist a subsequence {(Akj1 , . . . , A
kj
m )}j∈N ⊂ {(Ak1, . . . , Akm)}k∈N, an enlarged

sequence {(Ãkj1 , . . . , Ã
kj
m )}j∈N and (A1, . . . , Am) ∈ As(Ω)m such that

A
kj
i ⊂ Ã

kj
i for every i = 1, . . . ,m, and (Ã

kj
1 , . . . , Ã

kj
m )

γs→ (A1, . . . , Am).

Moreover, |Ai| ≤ lim infk→∞ |Aki |, for i = 1, . . . ,m.

Proof. By Theorem 3.1.12, there exist A1 ∈ As(Ω), a subsequence {Akj1 }j∈N ⊂ {Ak1}k∈N and

an enlarged sequence {Ãkj1 }j∈N such that

A
kj
1 ⊂ Ã

kj
1 , and Ã

kj
1

γs→ A1.
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Now, consider {Akj2 }j∈N and apply again Theorem 3.1.12. Thus, there exist A2 ∈ As(Ω), a

subsequence {Akjl2 }l∈N ⊂ {A
kj
2 }j∈N and an enlarged sequence {Ãkjl2 }l∈N such that

A
kjl
i ⊂ Ã

kjl
i , and A

kjl
i

γs→ Ai for i = 1, 2.

Repeating this argument and renaming the final subsequence extracted, we obtain the enlarged

sequence {(Ãkj1 , . . . , Ã
kj
m )}k∈N ⊂ As(Ω)m and (A1, . . . , Am) ∈ As(Ω)m such that

A
kj
i ⊂ Ã

kj
i for every i = 1, . . . ,m; and (Ã

kj
1 , . . . , Ã

kj
m )

γs→ (A1, . . . , Am).

By Theorem 3.1.12, we know |Ai| ≤ lim infk→∞ |Ai|k, for i = 1, . . . ,m.

Remark 3.1.15. We want to emphasize that the γs-limit obtained in Theorem 3.1.14 is char-
acterized by Ai = {ui > 0}, where ui is the L2(Ω)-limit of {us

Aki
}k∈N, for each i = 1, . . . ,m.

3.1.2 Existence of minimal shapes

Once we have proved a sort of compactness in, at least, two possible classes of admissible sets,
we can stablish two existence results related to different shape optimization problems.

To solve a problem like (3.1.1), we need to introduce the class of admissible sets and a
suitable cost functional.

Let 0 < s < 1, m ∈ N and Fs : As(Ω)m → [0,∞] be such that

• Fs is γs-lower semicontinuous, that is,

Fs(A1, . . . , Am) ≤ lim inf
k→∞

Fs(A
k
1, . . . , A

k
m),

for every sequence {(Ak1, . . . , Akm)}k∈N such that (Ak1, . . . , A
k
m)

γs
⇀ (A1, . . . , Am).

• Fs is decreasing, that is, for every (A1, . . . , Am), (B1, . . . , Bm) ∈ As(Ω)m such that
Ai ⊂ Bi for i = 1, . . . ,m, we have

Fs(A1, . . . , Am) ≥ Fs(B1, . . . , Bm).

Before we start proving the existence of minimal shapes, we observe that the decreasing
property of a functional Fs makes equivalent its weak and strong γs-lower semicontinuity,
which is the content of next theorem.

Theorem 3.1.16. Let 0 < s < 1, m ∈ N and Fs : As(Ω)m → [0,∞] be a decreasing functional.
Then, the following assertions are equivalent

1. Fs is weakly γs-lower semicontinuous.

2. Fs is γs-lower semicontinuous.
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Proof. It is enough to prove that the γs-lower semicontinuity implies the weak one. Indeed,
consider {Ak}k∈N ⊂ As(Ω) such that Ak

γs→ A ∈ As(Ω). By Proposition 1.3.21, A = {usA > 0}.
Then, Ak

γs
⇀ A ∈ As(Ω). That proves (1)⇒ (2).

Assume Fs is γs-lower semicontinuous.

Let {Aki }k∈N ⊂ As(Ω) such that Aki
γs
⇀ Ai ∈ As(Ω), for i = 1, . . . ,m. That is, us

Aki
→ ui

strongly in L2(Ω) and Ai = {ui > 0}.
There exist enlarged sequences {Ãk1}k∈N, . . . , {Ãkm}k∈N such that

Aki ⊂ Ãki , and Ãki
γs→ Ai,

for every i = 1, . . . ,m, by Corollary 3.1.14 and Remark 3.1.15 .

Then, since Fs is γs-lower semicontinuous and decreasing, we obtain

Fs(A1, . . . , Am) ≤ lim inf
k→∞

Fs(Ã
k
1, . . . , Ã

k
m) ≤ lim inf

k→∞
Fs(A

k
1, . . . , A

k
m).

That means Fs is weak γs-lower semicontinuous, as we desired.

A class of optimal shape problems: fixed measure

The first problem that we address in this second part of the thesis is the following:

min{Fs(A) : A ∈ As(Ω), |A| ≤ c}, (3.1.7)

where Fs is a γs-lower semicontinuous and decreasing functional.

Remark 3.1.17. Observe that from the monotonicity assumption on Fs, this problem is equiv-
alent to minimize in the class of s-quasi open sets A of fixed measure |A| = c. In fact,
assume that a minimizer A0 ∈ As for (3.1.7) verifies that |A0| < c. Then, for any Ã0 ⊃ A0

such that |Ã0| = c, since Fs is decreasing with respect of the set inclusion, we have

Fs(Ã0) ≤ Fs(A0) = inf
A∈As

Fs(A)

and so Ã0 is a minimizer of Fs.

Following the same approach and ideas of [24], problem (3.1.7) can be analyzed and that
is the content of next Theorem.

Theorem 3.1.18. Let 0 < s < 1 be fixed and Ω ⊂ Rn be open and bounded. Let Fs : As(Ω)→
R be a decreasing γs-lower semicontinuous functional.

Then, for every 0 < c < |Ω|, problem (3.1.7) has a solution.

Proof. Take a minimizer sequence {Ak}k∈N ⊂ As(Ω), that is, |Ak| ≤ c and

lim
k→∞

Fs(Ak) = inf{Fs(A) : A ∈ As(Ω), |A| ≤ c} =: α.
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By Theorem 3.1.12, up to a subsequence, there exist an enlarged sequence {Ãk}k∈N ⊂
As(Ω) and a set A ∈ As(Ω) such that

Ak ⊂ Ãk, and Ãk
γs→ A.

Then, since Fs is γs-lower semicontinuous and decreasing, we obtain

Fs(A) ≤ lim inf
k→∞

Fs(Ãk) ≤ lim inf
k→∞

Fs(Ak) = α.

To finish the proof, observe that that |A| ≤ lim infk→∞ |Ak| ≤ c, also by Theorem 3.1.12.
That means, A is an admissible domain for the minimization problem and so that A is a
solution to (3.1.7).

Thanks to Theorems 3.1.16 and 3.1.18, we easily obtain next Corollay.

Corollary 3.1.19. Let 0 < s < 1 be fixed and Ω ⊂ Rn be open and bounded. Let Fs :
As(Ω)→ R be a decreasing weak γs-lower semicontinuous functional.

Then, for every 0 < c < |Ω|, problem (3.1.7) has a solution.

A class of optimal partition problems

Let m ∈ N be fixed and 0 < s < 1. In the context of next problem, we understand by a
partition of Ω to any collection of s-quasi open subset A1, . . . , Am such that Ω = ∪mi=1Ai and
caps(Ai ∩Aj ,Ω) = 0 for i 6= j.

We are interested in considering the class of partitions of Ω as A in a type of problem
(3.1.1).

We adapted the ideas from [22], where the authors consider the Laplacian operator, to
recover their results for the fractional case. Rigorously speaking, under these assumptions,
we have the following theorem.

Theorem 3.1.20. Let 0 < s < 1 be fixed and Ω ⊂ Rn be open and bounded. Let Fs : As(Ω)m →
[0,∞] be a decreasing γs-lower semicontinuous functional. Then, there exists a solution to

min {Fs(A1, . . . , Am) : Ai ∈ As(Ω), caps(Ai ∩Aj ,Ω) = 0 for i 6= j} . (3.1.8)

Proof. Denote by

α := inf {Fs(A1, . . . , Am) : Ai ∈ As(Ω), caps(Ai ∩Aj ,Ω) = 0 for i 6= j} .

Let {(Ak1, . . . , Akm)}k∈N ⊂ As(Ω)m be such that

caps(A
k
i ∩Akj ,Ω) = 0 for i 6= j, and lim

k→∞
Fs(A

k
1, . . . , A

k
m) = α.

By Corollary 3.1.14, there exist a subsequence {(Ak1, . . . , Akm)}k∈N (still denoted by the
same index), an enlarged sequence {(Ãk1, . . . , Ãkm)}k∈N and (A1, . . . , Am) ∈ As(Ω)m such that

Aki ⊂ Ãki for every i = 1, . . . ,m, and (Ãk1, . . . , Ã
k
m)

γs→ (A1, . . . , Am).
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Since Fs is γs-lower semicontinuous and decreasing in each coordinate, we obtain

Fs(A1, . . . , Am) ≤ lim inf
k→∞

Fs(Ã
k
1, . . . , Ã

k
m) ≤ lim inf

k→∞
Fs(A

k
1, . . . , A

k
m) = α. (3.1.9)

To finish the proof, we should prove that caps(Ai ∩Aj ,Ω) = 0 for i 6= j.

Let i, j ∈ {1, . . . ,m} be such that i 6= j. Consider us
Aki

and us
Akj

defined in (1.3.4).

It becomes deduced by the proof of Theorem 3.1.12 that Al = {ul > 0} for every l =
1, . . . ,m, where ul is the L2(Ω)-limit of {us

Akl
}k∈N. In addition, by Proposition 1.3.21, we

know that Akl = {us
Akl

> 0} for every l = 1, . . . ,m.

Notice that this product us
Aki
· us

Akj
is an s-continuous function too, by Lemma 1.3.9, and

us
Aki
· us

Akj
= 0 s-q.e. in Rn \ (Aki ∩ Akj ). Moreover, since caps(A

k
i ∩ Akj ,Ω) = 0, we have

us
Aki
· us

Akj
= 0 s-q.e. in Rn.

By Proposition 1.3.13, there exist subsequences {us
Aki
}k∈N and {us

Akj
}k∈N, denoted with

the same index, which converge s-q.e. to ui and uj respectively. Then, passing to the limit,
we obtain ui · uj = 0 s-q.e. in Rn. That is caps({ui · uj 6= 0},Ω) = 0. But, since ul ≥ 0 for
every l = 1, . . . ,m, that means

{ui · uj 6= 0} = {ui 6= 0} ∩ {uj 6= 0} = {ui > 0} ∩ {uj > 0} = Ai ∩Aj .

We have shown that (A1, . . . , Am) is admissible for the minimization problem (3.1.8) and
recalling (3.1.9) the result is proved.

Remark 3.1.21. Notice that it seems that we forgot to talk about partition in the class of
domains where (3.1.8) was solved. The reason is the decreasing property of Fs. Indeed, take
(A1, . . . , Am) a solution to (3.1.8) and suppose Ω 6= ∪mi=1Ai. Denote by B := Ω \ ∪mi=1Ai
and Ã1 := A1 ∪ B. Then, A1 ⊂ Ã1, Ω = Ã1 ∪ ∪mi=2Ai and caps(Ã1 ∩ Ai,Ω) = 0 for every
i = 2, . . . ,m.

By the decreasing property ef Fs, we obtain

Fs(Ã1, A2, . . . , Am) ≤ Fs(A1, A2, . . . , Am).

We conclude (Ã1, A2, . . . , Am) is also a solution to (3.1.8) and it is a partition of Ω.

Thanks to Theorems 3.1.16 and 3.1.20, we immediately obtain next Corollay.

Corollary 3.1.22. Let 0 < s < 1 be fixed and Ω ⊂ Rn be open and bounded. Let Fs : As(Ω)m →
[0,∞] be a decreasing weak γs-lower semicontinuous functional. Then, there exists a solution
to (3.1.8).

3.2 Asymptotic behaviour of minimizers

We have proved the existence of solution to (3.1.7) and (3.1.8) for every 0 < s < 1, inspired
by works from Buttazzo-Dal Maso [24] and Bucur-Buttazzo-Henrot [22], where the authors
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considered shape optimization problems involving the Laplacian operator, which is the case
s = 1 according to the notation used in this thesis. So, we want to answer the natural question
about how probably the convergence from s-minimizers to the 1-minimizer is.

To this aim, we want to relate all the key elements involved. Given 0 < sk ↑ 1, there
exist a kind of convergence results between the ‖ ·‖L2(Ω)-compact sets and, on the other hand,
between the Sobolev spaces:

• Ksk → K1, where Ksk is defined by (3.1.2) and K1 is the analogous involving the
Laplacian operator −∆ instead of the fractional operator.

• Hsk
0 (Ak)→ H1

0 ({u > 0}), where Ak ∈ Ask(Ω) (see (1.3.4)), and u is the L2(Ω)-limit of
the sequence of solutions {uskAk}k∈N defined by (1.3.4).

Such sense of convergence between those sets will be explained in the following.

3.2.1 Strong and weak γ-convergence

The goal in this subsection is to define certain notion of convergence from s-quasi open sets
to 1-quasi open sets and obtain a compactness result. To this aim, first consider

K1 := {w ∈ H1
0 (Ω): w ≥ 0 , −∆w ≤ 1 in Ω} (3.2.1)

and
A1(Ω) := {A ⊂ Ω: A is 1-quasi open}. (3.2.2)

For A ∈ A1(Ω), we introduce the analogous notation u1
A ∈ H1

0 (A) for the unique weak
solution to

−∆u1
A = 1 in A, u1

A = 0 in Rn \A. (3.2.3)

With notations above, we are able to define a notion of set convergence.

Definition 3.2.1 (Strong γ-convergence). Let 0 < sk ↑ 1 and let Ak ∈ Ask(Ω) and A ∈
A1(Ω). We say that Ak

γ→ A if uskAk → u1
A strongly in L2(Ω).

Let m ∈ N, (Ak1, . . . , A
k
m) ∈ Ask(Ω)m and (A1, . . . , Am) ∈ A1(Ω)m.

We say that (Ak1, . . . , A
k
m)

γ→ (A1, . . . , Am) if Aki
γ→ Ai strongly in L2(Ω), for every i =

1, . . . ,m.

Remark 3.2.2. Observe that the notion of γ−convergence of sets given in [24] is denoted in
this thesis by γ1−convergence. This should not cause any confusion.

Definition 3.2.3 (Weak γ-convergence). Let 0 < sk ↑ 1 and let Ak ∈ Ask(Ω). We say that

Ak
γ
⇀ A if uskAk → u strongly in L2(Ω) and A := {u > 0}.

Let m ∈ N, (Ak1, . . . , A
k
m) ∈ Ask(Ω)m. We say that (Ak1, . . . , A

k
m)

γ
⇀ (A1, . . . , Am) if

Aki
γ
⇀ Ai strongly in L2(Ω), for every i = 1, . . . ,m.
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We begin listing some important steps.

• Observe that A1(Ω) ⊂ As(Ω) for every 0 < s < 1, by Remark 1.3.7.

• Let 0 < sk ↑ 1 and Ksk defined by (3.1.2) and K1 defined by (3.2.1). We prove a sort of
convergence from Ksk to K1.

• Let 0 < sk ↑ 1 and Ak ∈ Ask(Ω). Assume uskAk → u in L2(Ω), where uskAk is defined
by (1.3.4). Then, we show a kind of convergence between the spaces Hsk

0 (Ak) and
H1

0 ({u > 0}).

• Given Ak ∈ Ask(Ω), we apply a similar strategy to that used for the γs-convergence, to
obtain an enlarged γ-convergent sequence. The techniques are more difficult since the
domains are varying with s.

Our first goal is to show that a sequence {uk}k∈N ⊂ L2(Ω) such that uk ∈ Ksk is precom-
pact and that every accumulation point belongs to K1.

Lemma 3.2.4. Let 0 < sk ↑ 1 and let uk ∈ Ksk . Then, there exists u ∈ H1
0 (Ω) and a

subsequence {ukj}j∈N ⊂ {uk}k∈N such that ukj → u strongly in L2(Ω).

Moreover, if uk ∈ Ksk is such that uk → u strongly in L2(Ω), then u ∈ K1.

Proof. From Remark 3.1.8, there exists a constant C > 0 such that

sup
k∈N

(1− sk)[uk]2sk ≤ C.

Now the first claim follows from Theorem 1.1.11.

Now, assume that uk → u in L2(Ω). It is clear that u ≥ 0. Since (−∆)skuk ≤ 1 in Ω, for
every nonnegative ϕ ∈ C∞c (Ω) we have that∫

Ω
(−∆)skϕuk dx = 〈(−∆)skuk, ϕ〉 ≤

∫
Ω
ϕdx.

By the convergence assumption on uk and the fact that the convergence (1.2.3) is also
strong in L2(Ω), we can take limit as k →∞ in the previous inequality to obtain that∫

Ω
−∆ϕudx = 〈−∆u, ϕ〉 ≤

∫
Ω
ϕdx,

and conclude that −∆u ≤ 1 in Ω. Consequently, u ∈ K1 as required.

Remark 3.2.5. Let 0 < sk ↑ 1 and Ak ∈ Ask(Ω). Then, by Corollary 3.1.6, uskAk ∈ Ksk . Apply
the previous Lemma 3.2.4 to conclude that there exist a subsequence (still denoted by the

same index) and a function u ∈ K1 such that uskAk → u in L2(Ω). That means Ak
γ
⇀ A.

Moreover, u ≤ u1
A in Rn, where A := {u > 0}, since u1

A is also a solution to

max
{
w ∈ H1

0 (Ω): w ≤ 0 in Rn \A, −∆w ≤ 1 in Ω
}
, (3.2.4)
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see [24, Section 3].

So, without loss of generality, given 0 < sk ↑ 1 and Ak ∈ Ask(Ω), we can assume that

Ak
γ
⇀ A, that is, uskAk → u in L2(Ω) and u is such that u ∈ K1 and, in addition, u ≤ u1

A in
Rn, where A = {u > 0}.

Next lemma gives the continuity of usA when s ↑ 1, it means, when we fix de domain, the
sequence of solutions to the fractional Laplacian converges to the solution to the Laplacian
operetor.

Lemma 3.2.6. For every A ∈ A1(Ω), usA → u1
A strongly in L2(Ω), when s ↑ 1.

Proof. Let us remind that, from Proposition 3.1.5, usA is also the solution to the minimization
problem

Is(u
s
A) = min{Is(w) : w ∈ L2(Ω)},

where

Is(w) =

{
c(n,s)

2 [w]2s −
∫

Ωw dx if w ∈ Hs
0(A),

∞ otherwise.

Notice that, as a consequence of Theorem 1.1.11, we have that c(n,s)
2 [w]2s

Γ→ 1
2‖∇w‖

2
2. Since

the Γ-convergence is stable under continuous perturbations, we have that Is
Γ→ I1 in L2(Ω),

where

I1(w) =

{
1
2‖∇w‖

2
2 −

∫
Ωw dx if w ∈ H1

0 (A),

∞ otherwise.

Thus, the minimizer of Is converges to the minimizer of I1. That is usA → u1
A strongly in

L2(Ω).

Now we address the more difficult problem of understanding the limit behaviour of usA
when the domains also are varying with s.

Next lemma is key in understanding this limit behavior and the ideas are taken from [24].

Lemma 3.2.7. Let 0 < sk ↑ 1 and for every k ∈ N let Ak ∈ Ask(Ω) be such that uskAk → u

strongly in L2(Ω). Let {wk}k∈N ⊂ L2(Ω) be such that wk ∈ Hsk
0 (Ak) for every k ∈ N

and supk∈N(1 − sk)[wk]2sk < ∞. Assume, moreover that wk → w strongly in L2(Ω). Then,
w ∈ H1

0 ({u > 0}).

Proof. We need to show that w = 0 in Rn \ {u > 0}, i.e., w = 0 in {u = 0}.
Let us define the functional

Φk(v) =

{
c(n,sk)

2 [v]2sk if v ∈ Hsk
0 (Ak),

+∞ otherwise.
(3.2.5)

defined in L2(Ω). By the compactness of Γ-convergence, [31, Theorem 8.5], there exists a
subsequence still denote by Φk such that

Φk
Γ→ Φ in L2(Ω).
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From Proposition 1.5.8, Φ is a quadratic form in L2(Ω) with domain D(Φ) ⊂ L2(Ω).

Observe that w ∈ D(Φ), since

Φ(w) ≤ lim inf
k→+∞

Φk(wk) ≤ sup
k∈N

c(n, sk)

2
[wk]

2
sk
≤ C sup

k∈N
(1− sk)[wk]2sk <∞.

Let B : D(Φ)×D(Φ)→ R be the bilinear form associeted to Φ, which is defined by

B(v, η) =
1

4
(Φ(v + η)− Φ(v − η)).

Let us denote by V the closure of D(Φ) in L2(Ω) and consider the linear operator T : D(T ) ⊂
L2(Ω)→ L2(Ω) defined as Tv = f where

D(T ) =

{
v ∈ D(Φ): ∃ f ∈ V such that B(v, η) =

∫
Ω
fη dx, ∀η ∈ D(Φ)

}
.

By Proposition 1.5.11, D(T ) is dense in D(Φ) with respect to the norm

‖v‖Φ = (‖v‖L2(Ω) + Φ(v))
1
2 .

Moreover, the following relation holds
√

2‖ · ‖Φ ≥ ‖ · ‖H1
0 (Ω). (3.2.6)

Indeed, if z ∈ D(Φ), as Φk
Γ→ Φ in L2(Ω), there exists {zk}k∈N such that zk → z in L2(Ω) and

∞ > Φ(z) = lim
k→∞

Φk(zk) =

{
limk→∞

c(n,sk)
2 [zk]

2
sk

if zk ∈ Hsk
0 (Ak),

∞ otherwise.

Thus, zk ∈ Hsk
0 (Ak) and then

‖z‖2H1
0 (Ω) ≤ lim inf

k→∞
c(n, sk)[zk]

2
sk

= 2 lim
k→∞

Φk(zk) = 2Φ(z) ≤ 2‖z‖2Φ.

Since (3.2.6) holds, D(T ) is dense in D(Φ) with respect to the strong topology of H1
0 (Ω).

Now to achieve the proof it is enough to prove that v = 0 in {u = 0} for all v ∈ D(T ).

Let v ∈ D(T ) and let f ∈ Tv; then by [31, Proposition 12.12] v is a minimum point of the
functional

Ψ(η) =
1

2
Φ(η)−

∫
Ω
fη dx.

Let vk be the minimum point of functional

Ψk(η) :=
1

2
Φk(η)−

∫
Ω
fη dx;

then vk is the solution of the problem

(−∆)skvk = f, v ∈ Hsk
0 (Ak).
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Since Φk
Γ→ Φ, then Ψk

Γ→ Ψ and so we have that vk → v strongly in L2(Ω).

For ε > 0 we consider f ε to be a bounded function with compact support such that
‖f ε − f‖2 < ε and vεk is solution of

(−∆)skvεk = f ε in Ak, vεk ∈ H
sk
0 (Ak).

By using the linearity of the operator together with Hölder’s and Poincaré’s inequalities
we get

c(n, sk)

2
[vεk − vk]2sk =

∫
Ω

(f ε − f)(vεk − vk) dx

≤ ‖fε − f‖2‖vεk − vk‖2.

From Poincaré’s inequality we obtain that

(1− sk)[vεk − vk]2sk ≤ Cε
2,

where C is independent on k.

Then, from Theorem 1.1.11, up to a subsequence, vεk → vε strongly in L2(Ω) and ‖vε −
v‖H1

0 (Ω) ≤ Cε. At this point is enough to prove that vε = 0 in {u = 0} for all ε > 0.

Since f ε ≤ cε := ‖f ε‖∞ and

(−∆)skvεk = f ε ≤ cε = (−∆)sk(cεuskAk) in Ak, vεk = cεuskAk = 0 in Rn \Ak,

the comparison principle, Proposition 1.2.13, gives that vεk ≤ cεuskAk in Rn. Analogously,
−vεk ≤ cεu

sk
Ak

in Rn.

As k → ∞, we obtain that |vε| ≤ cεu in Rn, which implies that vε = 0 in Rn in {u = 0}
for any ε > 0 and that completes the proof.

Let 0 < sk ↑ 1 and a sequence {Ak}k∈N ⊂ Ask(Ω), by Remark 3.2.5, we can assume that

Ak
γ
⇀ A, that is, uskAk → u in L2(Ω) and A := {u > 0}. Moreover, u ≤ u1

A in Rn. We want to

enlarge the set sequence in such a way that its function L2(Ω)-limit associated to the γ-limit
(set) is still less than u1

A. That is the content of next lemma, which is the counterpart of
Lemma 3.1.11.

Lemma 3.2.8. Let 0 < sk ↑ 1 and for every k ∈ N, let Ak ∈ Ask(Ω), A ∈ A1(Ω). Assume
that uskAk → u in L2(Ω) and that u ≤ u1

A in Rn.

Then, if uskAk∪Aε → uε strongly in L2(Ω), where Aε := {u1
A > ε}, it holds that uε ≤ u1

A in
Rn.

Proof. By Proposition 3.1.5 with s = 1, the inequality uε ≤ u1
A in Rn will follow if we prove

that uε ∈ H1
0 (Ω), uε ≤ 0 in Rn in Rn \A and −∆uε ≤ 1 in Ω.

Observe that by Lemma 3.2.4 we have that u, uε ∈ K1. Let us define

vε := 1− 1
ε min{u1

A, ε} = 1
ε (ε− u1

A)+.
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and observe that 0 ≤ vε ≤ 1 and vε = 0 in Aε since 0 ≤ min{u1
A, ε} ≤ ε and 1

ε min{u1
A, ε} = 1

in Aε. If we define
uk,ε := uskAk∪Aε , wk,ε := min{vε, uk,ε},

it holds that wk,ε ≥ 0 since the comparison principle gives uk,ε ≥ 0, and also vε ≥ 0.

Since vε = 0 in Aε, it follows that wk,ε = 0 in Aε. Moreover, since uk,ε = 0 in Rn\(Ak∪Aε),
it holds that wk,ε = 0 in Rn \ (Ak ∪Aε), and consequently, wk,ε ∈ Hsk

0 (Ak).

Notice that wk,ε → wε := min{vε, uε} strongly in L2(Ω), and then, applying Lemma 3.2.7,
we get wε ∈ H1

0 ({u > 0}), from where wε = 0 in {u = 0}. The relation 0 ≤ u ≤ u1
A in Rn

implies the inclusion {u1
A = 0} ⊂ {u = 0} from where wε ∈ H1

0 ({u1
A > 0}). Moreover, since

{u1
A > 0} ⊂ A, we have that wε = 0 in Rn \ A. Now, being vε = 1 in Rn \ A, we get uε = 0

in Rn \A, and in particular, uε ≤ 0 in Rn \A.

Finally, it remains to see that −∆uε ≤ 1 in Ω. Observe that uk,ε ∈ Ksk and uk,ε → uε

strongly in L2(Ω). Then uε ∈ K1 by Lemma 3.2.4. Thus −∆uε ≤ 1 in Ω and the proof is
complete.

With the help of these lemmas, we are now in position to prove the compactness result
for the γ-convergence of sets.

Theorem 3.2.9. Let 0 < sk ↑ 1 and {Ak}k∈N ∈ Ask(Ω), there exist a subsequence {Akj}j∈N ⊂
{Ak}k∈N, an enlarged sequence {Ãkj}j∈N and A ∈ A1(Ω) such that

Akj ⊂ Ãkj , and Ãkj
γ→ A.

Moreover, |A| ≤ lim infk→∞ |Ak|.

Proof. By Remark 3.2.5, we can suppose Ak
γ
⇀ A, that is, uskAk → u in L2(Ω). In addition,

u ≤ u1
A holds, where A := {u > 0} and u1

A is defined by (3.2.3).

Let ε > 0. Consider Aε := {u1
A > ε} and uk,ε := uskAk∪Aε ∈ Ksk . Then, by Lemma 3.2.4,

there exist a subsequence (still denoted by the same index) and a function uε ∈ K1 such that
uk,ε → uε in L2(Ω), when k →∞.

By Lemma 3.2.8, it holds that uε ≤ u1
A in Rn.

Since Aε ⊂ Ak ∪Aε, we obtain
uskAε ≤ u

sk
Ak∪Aε .

On the other hand, by Lemma 3.2.6, uskAε → u1
Aε strongly in L2(Ω). Then, we can pass to

the limit as k →∞ in the previous inequality to conclude that

u1
Aε ≤ uε.

It can be easily checked that u1
Aε = (u1

A − ε)+. Moreover, from Lemma 3.2.8,

(u1
A − ε)+ ≤ uε ≤ u1

A.
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Observe that {uε}ε>0 ⊂ K1. By [24], K1 is a compact set in L2(Ω), so that there exists an
L2(Ω)-convergent subsequence. So, the previous inequality tells that this L2(Ω)-limit function
should be u1

A.

Thus, there exists a sequence 0 < εk ↓ 0 such that

uskAk∪Aεk → u1
A strongly in L2(Ω).

That is, the enlarged sequence Ak ∪Aεk =: Ãk γ-converges to A.

It is remained to prove that |A| is bounded from above by lim infk→∞ |Ak|. We omit its
proof since it can be demonstrated with the same strategy from Theorem 3.1.12, using the
convergence uskAk → u in L2(Ω) and Chebyshev’s inequality.

We extend the γ-compactness result for fixed m ∈ N coordinates.

Corollary 3.2.10. Let 0 < sk ↑ 1 and (Ak1, . . . , A
k
m) ∈ Ask(Ω)m.

Then, there exist a subsequence {(Akj1 , . . . , A
kj
m )}j∈N ⊂ {(Ak1, . . . , Akm)}k∈N, an enlarged

sequence {(Ãkj1 , . . . , Ã
kj
m )}j∈N and (A1, . . . , Am) ∈ A1(Ω)m such that

A
kj
i ⊂ Ã

kj
i for every i = 1, . . . ,m, and (Ã

kj
1 , . . . , Ã

kj
m )

γ→ (A1, . . . , Am).

Proof. By Theorem 3.2.9, there exist A1 ∈ A1(Ω), a subsequence {Akj1 }j∈N ⊂ {Ak1}k∈N and

an enlarged sequence {Ãkj1 }j∈N such that

A
kj
1 ⊂ Ã

kj
1 , and Ã

kj
1

γ→ A1.

Now, consider A
kj
2 ∈ Askj (Ω) and apply again Theorem 3.2.9. Thus, there exist A2 ∈ A1(Ω),

a subsequence {Akjl2 }l∈N ⊂ {A
kj
2 }j∈N and an enlarged sequence {Ãkjl2 }l∈N such that

A
kjl
i ⊂ Ã

kjl
i , and A

kjl
i

γ→ Ai for i = 1, 2.

Repeating this argument and renaming the final subsequence extracted, we obtain the enlarged

sequence (Ã
kj
1 , . . . , Ã

kj
m ) ∈ Askj (Ω)m and (A1, . . . , Am) ∈ A1(Ω)m such that

A
kj
i ⊂ Ã

kj
i for every i = 1, . . . ,m; and (Ã

kj
1 , . . . , Ã

kj
m )

γ→ (A1, . . . , Am).

3.2.2 Transition from nonlocal to local minimizers

Once we know the existence of an optimal shape for each 0 < s < 1, we want to analyze the
limit of these minimizers and its minimum values when s ↑ 1.

Recall that the existence of solution to the first problem (3.1.7) in the case s = 1 was solved
by Buttazzo-Dal Maso in [24] and the second problem (3.1.8) in the case s = 1 was proved
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by Bucur-Buttazzo-Henrot in [22]. Both works are related to shape optimization problems
involving the Laplacian operator. We prove in this thesis the fractional version of both, and
that is the motivation for the name transition from nonlocal to local minimizers.

In order to perform such analysis we need to assume some asymptotic behaviour on the
cost functionals.

Let 0 < s ≤ 1, m ∈ N and Fs : As(Ω)m → [0,∞). Now, we give the assumptions:

(H1) Continuity. For every (A1, . . . , Am) ∈ A1(Ω)m,

F1(A1, . . . , Am) = lim
s↑1

Fs(A1, . . . , Am).

(H2) Liminf inequality. For every 0 < sk ↑ 1, (Ak1, . . . , A
k
m) ∈ Ask(Ω)m and (A1, . . . , Am) ∈

A1(Ω)m such that (Ak1, . . . , A
k
m)

γ→ (A1, . . . , Am),

F1(A1, . . . , Am) ≤ lim inf
k→∞

Fsk(Ak1, . . . , A
k
m).

For a class of shape optimization problems: fixed measure

First, we introduce the notation

ms := min {Fs(A) : A ∈ As(Ω), |A| ≤ c} , (3.2.7)

for every 0 < s ≤ 1. The case s = 1 is due to Buttazzo-Dal Maso [24] and 0 < s < 1 to
Theorem 3.1.18.

Theorem 3.2.11. For any 0 < s ≤ 1, let Fs : As(Ω)→ R be a decreasing γs-lower semicon-
tinuous functional. Assume that (H1) and (H2) are satisfied, for m = 1.

Then
m1 = lim

s↑1
ms.

Moreover, if As ∈ As(Ω) is a minimizer for (3.1.7), then there exists a sequence 0 < sk ↑ 1,

sets Ãsk ⊃ Ask and a set A1 ∈ A1(Ω) such that Ãsk
γ→ A1 and A1 is a minimizer for (3.1.7)

with s = 1.

Proof. By Theorem 3.1.18, there exists Ak ∈ Ask(Ω) such that

Fsk(Ak) = min{Fsk(A) : A ∈ Ask(Ω), |A| ≤ c}.

Let A ∈ A1(Ω) be such that |A| ≤ c. Observe that A1(Ω) ⊂ Ask(Ω) for every k ∈ N, see
Remark 1.3.7. Since Ak is the minimizer, we know that

lim sup
k→∞

Fsk(Ak) ≤ lim
k→∞

Fsk(A) = F1(A),
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where we use condition (H1) to obtain the last identity. It follows that

lim sup
k→∞

msk ≤ m1. (3.2.8)

Now, we use the compactness result for the γ-convergence. By Theorem 3.2.9, there
exist a subsequence (still denoted by the same index) Ak ∈ Ask(Ω), an enlarged sequence
Ãk ∈ Ask(Ω) and a set A1 ∈ A1(Ω) such that

Ak ⊂ Ãk, Ãk
γ→ A1 and |A| ≤ lim inf

k→∞
|Ak| ≤ c.

Finally, from condition (H2) (Liminf) and the fact that each functional is decreasing with
respect to the set inclusion, we conclude that

F1(A) ≤ lim inf
k→∞

Fsk(Ãk) ≤ lim inf
k→∞

Fsk(Ak),

from where it follows that
m1 ≤ lim inf

k→∞
ms. (3.2.9)

Putting together (3.2.8) and (3.2.9) the result follows.

For a class of optimal partition problems

Let m ∈ N and 0 < s ≤ 1. Let Fs : As(Ω)m → [0,∞] be a decreasing weak γs-lower semi-
continuous functional. Then, by Theorem 3.1.20( 0 < s < 1) and [22, Theorem 3.2](the case
s = 1) there exists a solution (As1, . . . , A

s
m) to

ms := min {Fs(B1, . . . , Bm) : Bi ∈ As(Ω), caps(Bi ∩Bj ,Ω) = 0 for i 6= j} . (3.2.10)

Theorem 3.2.12. Let m ∈ N be fixed and 0 < s ≤ 1. Let Fs : As(Ω)m → [0,∞] be a
decreasing weak γs-lower semicontinuous functional. Assume that (H1)-(H2) are verified.
Then,

m1 = lim
s↑1

ms, (3.2.11)

where ms is defined in (3.2.10).

Moreover, if (As1, . . . , A
s
m) is a minimizer of (3.2.10), then, there exist a subsequence

0 < sk ↑ 1, (Ãsk1 , . . . , Ã
sk
m ) ∈ Ask(Ω)m and (A1

1, . . . , A
1
m) ∈ A1(Ω)m such that

Aski ⊂ Ã
sk
i and (Ãsk1 , . . . , Ã

sk
m )

γ→ (A1
1, . . . , A

1
m),

where (A1
1, . . . , A

1
m) is a minimizer of (3.2.10) with s = 1.

Proof. First, notifce that m1 is achieved by [22, Theorem 3.2].

Let 0 < sk ↑ 1. By Theorem 3.1.20, there exists (Ak1, . . . , A
k
m) ∈ Ask(Ω)m such that

capsk(Aki ∩Akj ,Ω) = 0 for i 6= j and Fsk(Ak1, . . . , A
k
m) = mk, (3.2.12)
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where mk = msk defined in (3.1.8).

Let (A1, . . . , Am) ∈ A1(Ω)m be such that cap1(Ai ∩Aj ,Ω) = 0 for i 6= j. Since 0 < sk ↑ 1,
we can assume 0 < ε0 < sk ↑ 1, for some fixed ε0.

Now, recalling Corollary 1.3.6 and Remark 1.3.7, we know that (A1, . . . , Am) belongs to

{(B1, . . . , Bm) : Bi ∈ Ask(Ω), capsk(Bi ∩Bj ,Ω) = 0 for i 6= j},

for every k ∈ N. This fact and condition (H1) imply that

lim sup
k→∞

Fsk(Ak1, . . . , A
k
m) ≤ lim

k→∞
Fsk(A1, . . . , Am) = F1(A1, . . . , Am).

It follows that
lim sup
k→∞

mk ≤ m1. (3.2.13)

To see the remaining inequality, let us denote uki := usk
Aki
∈ Ksk . By Lemma 3.2.4, there is

ui ∈ K1 such that, up to a subsequence, uki → ui strongly in L2(Ω) and a.e. in Ω.

Denote by Ai := {ui > 0} ∈ A1(Ω) for every i = 1, . . . ,m. We claim that cap1(Ai ∩
Aj ,Ω) = 0 for i 6= j.

Indeed, let i 6= j be fixed. For each k ∈ N, due to Lemma 1.3.3 and (3.2.12), we know that

|{uki · ukj 6= 0}| = |Aki ∩Akj | ≤ C(n, sk) capsk(Aki ∩Akj ,Ω) = 0.

Then, uki · ukj = 0 a.e. in Rn. Since ukl → ul a.e. in Ω for l = 1, 2, we conclude ui · uj = 0 a.e
in Ω, it is still true in Rn \ Ω considering that they belong to Hs

0(Ω). So, ui · uj = 0 a.e. in
Rn.

Reminding that we are working with 1-quasi continuous representative functions in H1
0 (Ω),

the previous identity ui · uj = 0 a.e. in Rn and [56, Lemma 3.3.30] tells that ui · uj = 0 1-q.e.
in Rn. That means, cap1(Ai ∩Aj ,Ω) = 0.

Consequently, (A1, . . . , Am) is admissible to the problem (3.1.8) with s = 1 and we obtain
m1 ≤ F1(A1, . . . , Am).

Moreover, by Theorem 3.2.9, there exists an enlarged sequence Ãki ∈ Ask(Ω) such that
Aki ⊂ Ãki and (Ãk1, . . . , Ã

k
m) γ−converges to (A1, . . . , Am), occasionally taking a subsequence.

Finally, from condition (H2) and the decreasing property of Fsk , we conclude that

m1 ≤ F1(A1, . . . , Am) ≤ lim inf
k→∞

Fsk(Ãk1, . . . , Ã
k
m)

≤ lim inf
k→∞

Fsk(Ak1, . . . , A
k
m) = lim inf

k→∞
mk.

Therefore, from the previous conclusion and (3.2.13) we have the identity (3.2.11) and the
results follow.
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3.3 Examples

Let first establish some notations. Given a bounded domain A ∈ As(Ω), consider the problem

(−∆)su = λsu in A, u ∈ Hs
0(A) (3.3.1)

where λs ∈ R is the eigenvalue parameter. It is well-known that there exists a discrete
sequence {λsk(A)}k∈N of positive eigenvalues of (3.3.1) approaching +∞ whose corresponding
eigenfunctions {usk}k∈N form an orthogonal basis in L2(A). These facts follows directly from
the spectral theorem for compact and self adjoints operators, see [20]. Moreover, the following
variational characterization holds for the eigenvalues

λsk(A) = min
u⊥Wk−1

c(n, s)

2

[u]2s
‖u‖22

, (3.3.2)

where Wk is the space spanned by the first k eigenfunctions us1, . . . , u
s
k.

Functions Fs being decreasing γs-lower semicontonuous include a large family of examples.

Consider the application A 7→ λsk(A). As in the local case, one can prove its γs-lower
semicontinuity.

Fixed measure examples

For instance, if we consider the application A 7→ λsk(A), Theorem 3.1.18 and Remark
3.1.17 claim that for every k ∈ N and 0 < c < |Ω|, the minimum

min{λsk(A) : A ∈ As(Ω), |A| = c}

is achieved. More generally, the minimum

min{Φs(λ
s
k1

(A), . . . , λskN (A)) : A ∈ As(Ω), |A| = c}

is achieved, where Φs : RN → R̄ is lower semicontinuous and increasing in each coordinate.

Moreover, if Φs(t1, . . . , tN )→ Φ1(t1, . . . , tN ) for every (t1, . . . , tN ) ∈ RN and

Φ1(t1, . . . , tN ) ≤ lim inf
k→∞

Φsk(tk1, . . . , t
k
N ),

for every (tk1, . . . , t
k
N ) → (t1, . . . , tN ), then Theorem 3.2.11, Remark 3.1.17 together with the

result of [19] imply that

min{Φ1(λk1(A), . . . , λkN (A)) : A ∈ A1(Ω), |A| = c}
= lim

s↑1
min{Φs(λ

s
k1

(A), . . . , λskN (A)) : A ∈ As(Ω), |A| = c}.

Optimal partition examples

Consider functionals Fs(A1, . . . , Am) = Φs(λ
s
k1

(A1), . . . , λskm(Am)). Theorem 3.1.20 and
Remark 3.1.21 claim that for every (k1, . . . , km) ∈ Nm, the minimum

min{Φs(λ
s
k1

(A1), . . . , λskm(Am)) : Ai ∈ As(Ω), caps(Ai ∩Aj ,Ω) = 0 for i 6= j}
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is achieved, where Φs : Rm → R̄, is increasing in each coordinate and lower semicontinuous.

Moreover, if Φs(t1, . . . , tm)→ Φ1(t1, . . . , tm) for every (t1, . . . , tm) ∈ Rm and

Φ1(t1, . . . , tm) ≤ lim inf
k→∞

Φsk(tk1, . . . , t
k
m),

for every (tk1, . . . , t
k
m) → (t1, . . . , tm), then Theorem 3.2.12, Remark 3.1.21 together with the

existence result of [22] imply that

min{Φ1(λk1(A1), . . . , λkm(Am)) : Ai ∈ A1(Ω), cap1(Ai ∩Aj ,Ω) = 0 for i 6= j}
= lim

s↑1
min{Φs(λ

s
k1

(A1), . . . , λskm(Am)) : Ai ∈ As(Ω), caps(Ai ∩Aj ,Ω) = 0 for i 6= j}.

Resumen del caṕıtulo

En este caṕıtulo, contamos el aporte de esta tesis en problemas de diseño óptimo donde se ve
involucrado el laplaciano fraccionario. Además, se estudia el comportamiento asintótico de
dichos problemas, obteniendo un resultado de convergencia a los valores mı́nimos y las formas
óptimas para el caso s = 1, estudiado en [22, 24]. Nuestro resultados pueden ser encontrados
en [47, 78].

Se introduce una noción de convergencia para s-quasi abiertos, γs-convergencia, que resulta
precompacta. Gracias a este resultado de compacidad, se logra probar existencia de solución
para los siguientes problemas:

min{Fs(A) : A ∈ As(Ω), |A| = c}, para 0 < c < |Ω| fija,

y en segundo lugar,

min{Fs(A1, . . . , Am) : Ai ∈ As(Ω), Ai ∩Aj = ∅ para i 6= j}, para m ∈ N fija,

donde As(Ω) es la clase de dominios admisibles, y los funcionales de costo son decrecientes y
semi continuos inferiores respecto a la γs-convergencia.

Para lidiar con el comportamiento asintótico de los problemas anteriores, se introduce una
segunda noción de convergencia de conjuntos: la γ-convergencia.

Además, se asume que para cada 0 < s ≤ 1, tenemos la siguiente relación entre los
funcionales de costo,

Continuidad. Para todo (A1, . . . , Am) ∈ A1(Ω)m, se tiene que

F1(A1, . . . , Am) = lim
s↑1

Fs(A1, . . . , Am).

Desigualdad de liminf. Para toda 0 < sk ↑ 1, (Ak1, . . . , A
k
m) ∈ Ask(Ω)m y (A1, . . . , Am) ∈

A1(Ω)m tales que (Ak1, . . . , A
k
m)

γ→ (A1, . . . , Am), se tiene que

F1(A1, . . . , Am) ≤ lim inf
k→∞

Fsk(Ak1, . . . , A
k
m).
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Obteniendo, en primer lugar,

m1 = lim
s↑1

ms, donde ms := min {Fs(A) : A ∈ As(Ω), |A| ≤ c} ,

para 0 < s ≤ 1. Más aún, si As ∈ As(Ω) es un minimizante del s-problema, entonces existe

una sucesión 0 < sk ↑ 1, conjuntos Ãsk ⊃ Ask y un A1 ∈ A1(Ω) tales que Ãsk
γ→ A1 y A1 es

un minimizante para el 1-problema.

En segundo lugar, con la notación

ms := min {Fs(B1, . . . , Bm) : Bi ∈ As(Ω), caps(Bi ∩Bj ,Ω) = 0 for i 6= j} ,

se prueba quem1 = lims↑1ms. Más aún, si (As1, . . . , A
s
m) es un minimizante para el s-problema,

entonces existe una sucesión 0 < sk ↑ 1, (Ãsk1 , . . . , Ã
sk
m ) ∈ Ask(Ω)m y (A1

1, . . . , A
1
m) ∈ A1(Ω)m

tales que
Aski ⊂ Ã

sk
i and (Ãsk1 , . . . , Ã

sk
m )

γ→ (A1
1, . . . , A

1
m),

donde (A1
1, . . . , A

1
m) es un minimizante del 1-problema.
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[15] Jean Bourgain, Häım Brezis, and Petru Mironescu, Limiting embedding theorems for
W s,p when s ↑ 1 and applications, J. Anal. Math. 87 (2002), 77–101, Dedicated to the
memory of Thomas H. Wolff. MR 1945278 (2003k:46035)

[16] Andrea Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and
its Applications, vol. 22, Oxford University Press, Oxford, 2002. MR 1968440
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[88] Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the
fractional Laplace, Indiana Univ. Math. J. 55 (2006), no. 3, 1155–1174. MR 2244602
(2007b:45022)

[89] Yannick Sire, Juan Luis Vázquez, and Bruno Volzone, Symmetrization for fractional
elliptic and parabolic equations and an isoperimetric application, Chin. Ann. Math. Ser.
B 38 (2017), no. 2, 661–686. MR 3615510

[90] Jan Soko lowski and Jean-Paul Zolésio, Introduction to shape optimization, Springer Series
in Computational Mathematics, vol. 16, Springer-Verlag, Berlin, 1992, Shape sensitivity
analysis. MR 1215733

[91] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche., Ann.
Scuola Norm. Sup. Pisa (3) 22 (1968), 571-597; errata, ibid. (3) 22 (1968), 673. MR
0240443 (39 #1791)

[92] Sergio Spagnolo, Convergence in energy for elliptic operators, Numerical solution of par-
tial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, Col-
lege Park, Md., 1975), Academic Press, New York, 1976, pp. 469–498. MR 0477444

[93] L. Tartar, Compensated compactness and applications to partial differential equations,
Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes
in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
(81m:35014)



BIBLIOGRAPHY 95
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