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Ecuaciones diferenciales no lineales con retardo y aplicaciones a la
bioloǵıa.

En esta tesis estudiamos ecuaciones diferenciales resonantes no lineales con retardo motivadas
por diferentes aplicaciones biológicas. Más espećıficamente, los modelos que estudiamos surgen
como generalizaciones del modelo de Wheldon para la Leucemia Mieloide Crónica (CML) y de los
formulados por Mackey-Glass para el estudio de la regulación de la hematopoyesis. Los modelos
planteados en esta tesis tienen no linealidades que involucran varios retardos dependientes del
tiempo y, el operador lineal de diferenciación asociado al problema tiene núcleo no trivial. En
los casos para los cuales hallamos condiciones para la existencia y multiplicidad de soluciones
positivas periódicas, este fenómeno de resonancia nos lleva a implementar la teoŕıa de grado
topológico de Leray-Schauder. Sin embargo, estos métodos topológicos generalmente no se
extienden al espacio de las funciones casi periódicas debido a la falta de compacidad del operador
solución involucrado y, en consecuencia, es preciso utilizar otros métodos. Si lo analizamos desde
el punto de vista biológico, los problemas casi periódicos son más realistas y por eso interesantes
de estudiar, aunque desde el punto de vista matemático el análisis se torna más complicado.
Para el análisis de existencia de soluciones positivas casi periódicas, en esta tesis se desarrollaron
teoremas de punto fijo en conos adecuados.

Además de la existencia, otro problema relevante concierne a la estabilidad de las soluciones.
En particular, es especialmente importante la estabilidad exponencial, ya que, por un lado, se
cuantifica la tasa de convergencia y, por otro lado, es robusta a perturbaciones. Usando una
desigualdad de tipo Halanay planteamos un teorema para la estabilidad global explonencial en
el caso de parámetros dependientes del tiempo. Más aun, damos cotas expĺıcitas para el rango
de convergencia. Luego, empleando este resultado, obtenemos condiciones suficientes para la
estabilidad de la solución casi periódica del modelo estudiado.

Palabras clave: Ecuaciones diferenciales no lineales con retardo; Soluciones periódicas pos-
itivas; Teoremas de punto fijo; Multiplicidad; Atractor global; Teoŕıa de grado; Soluciones
casi periódicas positivas; Unicidad; Estabilidad exponencial global; Leucemia Mieloide Crónica;
Hematopoyesis.

Clasificación AMS: 34K20,34A34, 92D25, 34K45, 34K12, 34K13, 34K25
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Nonlinear delay differential equations and applications in Biology.

In this thesis we study nonlinear differential equations with delay that arise on different bio-
logical applications. More specifically, the models under consideration emerge as a generalization
motivated by the Wheldon model for chronic myeloid leukemia (CML) and by Mackey-Glass
models for studying the regulation of hematopoiesis. The models proposed in this thesis have
nonlinearities that involve several time-dependent delays, and the linear differentiation operator
associated to the problem has a non-trivial kernel. In cases for which we find conditions for
the existence and multiplicity of positive periodic solutions, this resonance effect leads us to
implement the theory of topological degree of Leray-Schauder. However, in general, the above
mentioned topological methods cannot be extended to the more general space of almost periodic
functions. This impediment is due to the lack of compactness of the involved solution opera-
tors. Thus, other methods must be employed. For the existence of almost periodic solutions we
develop fixed point theorems in appropriate cones. From the biological point of view, an im-
portant feature of the almost periodic problems consists in the fact that they are more realistic
and, consequently, more interesting to study.

Besides existence, another relevant matter is to determine whether or not the obtained solu-
tions are stable. In particular, exponential stability is especially important for two reasons: on
the one hand, the rate of convergence is quantified and, on the other hand, it is robust to pertur-
bations. We prove a global exponential stability lemma by means of a Halanay-type inequality
in the time-dependent parameters. Moreover, we give explicit bounds for the convergence rate.
Our results allow to deduce sufficient conditions to ensure global exponential stability of almost
periodic solutions of the model under consideration.

Keywords: Nonlinear delay differential equations; Positive periodic solutions; Fixed point theo-
rems; Multiplicity; Global attractor; Degree theory; Positive almost periodic solutions; Unique-
ness; Global exponential stability; Chronic Mieloid Leukemia; Hematopoiesis.
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2.1.2 A periodicity theorem: the Poincaré operator . . . . . . . . . . . . . . . 16

2.2 The degree theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Intuitive approach of degree . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 The Brouwer degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 The Leray-Schauder degree . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Continuation theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Continuation theorem for a functional equation . . . . . . . . . . . . . . 24

2.3 Almost periodic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Definitions and general properties . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Uniformly almost periodic families. The class u.a.p . . . . . . . . . . . . 29
2.3.3 Almost periodic functions in Banach spaces . . . . . . . . . . . . . . . . 30

2.4 Nonlinear analysis in abstract cones . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Basic properties and definitions . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Fixed points of monotone operators . . . . . . . . . . . . . . . . . . . . . 33

Resumen del caṕıtulo 3 35
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Introducción

Las ecuaciones diferenciales parciales y ordinarias como objeto de modelado de sistemas biológicos
data de largo tiempo, por ejemplo Malthus y Verhulst las emplearon para modelar el crecimiento
poblacional o Lotka y Volterra para el modelo predador-presa.

Mientras en muchas situaciones se asume que el sistema en consideración está gobernado por
un principio de “causalidad”, es decir, el estado futuro del sistema es independiente del pasado,
un modelo más realista debe inclúır algo de la historia pasada del sistema.

También uno podŕıa preguntarse por qué estudiar este tipo de ecuaciones cuando las ecua-
ciones sin retardo son mucho más conocidas y están vastamente estudiadas. La respuesta resulta
bastante intuitiva si pensamos en situaciones reales, en procesos poblacionales tanto biológicos,
como f́ısicos, económicos, etc. Estos procesos, en general, involucran tiempo de retardo. Los
tiempos de retardo ocurren muy a menudo, en casi toda situación, por lo tanto, ignorar esto
es ignorar la realidad. Esta es nuestra motivación para estudiar este tipo de ecuaciones en la
presente tesis.

Desde el punto de vista teórico, la complejidad observada en las ecuaciones con retardo
en muchos casos es mayor a la observada en las ecuaciones sin él. Por ejemplo, podŕıamos
mencionar el siguiente ejemplo, que aunque simple, muestra la complejidad de este tipo de
ecuaciones: si consideramos una ecuación diferencial (no lineal) como, por ejemplo, el modelo
de crecimiento poblacional sin retardo, esto es, una ecuaćıon de la forma dx

dt
= f(x) donde x

representa la cantidad de habitantes y t el tiempo transcurrido, no puede exhibir un ciclo ĺımite.
Sin embargo, una ecuación de este estilo que incluya un parámetro y un retardo puede exhibir
movimiento periódico, cuasi-periódico aśı como también caótico.

Siguiendo con el mismo ejemplo, si además para un tiempo inicial t0 se fija el punto x0 = x(t0)
en el espacio Eucĺıdeo, entonces el problema a valores inciales resulta tener una única solución.
Por otro lado, si consideramos la ecuación diferencial con retardo

dx

dt
= f(x(t− τ)),

para plantear un análogo al problema a valores iniciales surge una pregunta obvia: qué condi-
ciones iniciales son necesarias?, primero observemos que para calcular la tasa de cambio en t0 es
necesario tener el valor de x(t0−τ) y en t0 +ε, el valor de x(t0 +ε−τ). De esta manera, se deduce
que para plantear un problema a valores iniciales uno necesita dar una función inicial, el valor
de x(t) en todo [−τ, 0]. De esta manera, cada función inicial determina una única solución a la
ecuación diferencial con retardo (este resultado lo formalizaremos en el caṕıtulo siguiente). El
punto importante a resaltar es que, a diferencia de las ecuaciones ordinarias, si a la función inicial
le pedimos que sea continua, entonces el espacio de soluciones tiene la misma dimensionalidad
que C([t0 − τ, t0],R). O sea, el problema se convierte en uno de dimensión infinita.

1



2 CONTENTS

Más espećıficamente, en lo que respecta a esta tesis, los problemas biológicos que dieron
origen y la motivaron son el modelo planteado por Wheldon (1975) para la leucemia mieloide
crónica (CML):

dM

dt
=

α

1 + βMn(t− τ)
− λM(t)

1 + µBm(t)
,

dB

dt
= −ωB(t) +

λM(t)

1 + µBm(t)
,

(1)

donde M(t) es el número de células en la médula; B(t) es el número de células blancas y τ
representa el tiempo medio de maduracion de las células madre.

En 1979 Mackey y Glass llamaron a esta clase enfermedades fisiológicas periódicas, como es
el caso de la leucemia mieloide crónica, con el nombre de enfermedades dinámicas y plantearon
un estudio de varios ejemplos de este tipo de enfermedades. Unos de los más estudiados son los
planteados para modelar regulación de la hematopoyesis:

dP (t)

dt
=

λθnPm(t− τ)

θn + P n(t− τ)
− γP (t) (2)

y
dP (t)

dt
=

λθn

θn + P n(t− τ)
− γP (t), (3)

aqúı P (t) denota la densidad de las células maduras en el torrente sangúıneo y τ es el tiempo
de retardo entre la producción de células maduras en la médula ósea y su maduración hasta que
son liberadas en el torrente sangúıneo. En su trabajo original [35], Mackey y Glass consideraron
el exponente m = 1 en (2).

Tales modelos de regulación de la producción de células sangúıneas incorporan un tiempo de
retardo impuesto por el tiempo de desarrollo celular y son propensos a desarrollar oscilaciones.

Los modelos de Wheldon y Mackey-Glass serán nuestra motivación principal en el desarrollo
de esta tesis.

Esta tesis está organizada de la siguiente manera. En el Caṕıtulo que sigue damos los
conceptos y resultados teóricos necesarios para una comprensión total los caṕıtulos siguientes.
En la primera Sección damos las definiciones y propiedades básicas que refieren a las ecuaciones
diferenciales con retardo. En la Sección siguiente se presentan preliminares topológicos donde
hacemos un repaso de la teoŕıa de grado topológico para luego llegar a la teoŕıa de continuación,
la cual será empleada en los Caṕıtulos 4 y 5. En la Sección siguiente, presentamos el espacio
de las funciones casi periódicas aśı como también las definiciones y propiedades mas relevantes
que luego usaremos para deducir nuevos resultados en los dos últimmos Caṕıtulos. Finalmente,
para cerrar el Caṕıtulo hacemos un repaso por las propiedades principales de los resultados y
definiciones del análisis no lineal en conos abstractos.

En el Caṕıtulo 3 damos una introducción a los problemas biológicos planteados por Wheldon,
Mackey y Glass

En el Caṕıtulo 4, tomando como base el modelo de Wheldon (1975) lo enriquecemos in-
troduciendo un microambiente dependiente del tiempo y funciones dependientes del tiempo
para modelar la eficacia de las drogas. El modelo resultante es una clase especial de sis-
tema noautónomo, no lineal de ecuaciones diferenciales con retardo. Vı́a métodos topológicos,
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probamos la existencia de soluciones periódicas positivas. Finalmente, formulamos algunos prob-
lemas y conjeturas abiertas relevantes.
Los resultados de este caṕıtulo se encuentran publicados en: Electronic Journal of Differential
Equations. Ver [3]. http://ejde.math.tstate.edu/Volumes/2013/272/amster.pdf

En el Caṕıtulo 5 estudiamos una ecuación de primer orden noautónoma no lineal con varios
retardos dependientes del tiempo cuya motivación surge de la ecuación de Mackey-Glass para
la regulación de la hematopoyesis. Usando teoŕıa de grado topológico probamos, bajo condi-
ciones apropiadas, la existencia de múltiples soluciones periódicas. Más aun, mostramos que las
condiciones son necesarias, en el sentido que si se asumen ciertas condiciones complementarias
entonces el equilibrio trivial es un atractor global para las soluciones positivas y por lo tanto no
existen soluciones periódicas positivas.
Los resultados de este caṕıtulo se encuentran publicados en: Journal of Applied Mathematics and
Computing. Ver : [2]. http://link.springer.com/article/10.1007/s12190-016-1051-6

Nuestro resultado principal en el Caṕıtulo 6 refiere a la formulación de un teorema de punto
fijo en conos abstractos. En la segunda parte del Capíıtulo deducimos diversos teoremas que ase-
guran la existencia de soluciones casi periódicas para distintos problemas abstractos. Finalmente,
para cerrar el Caṕıtulo damos ejemplos que ilustran la aplicabilidad de nuestros resultados. Los
resultados de este Caṕıtulo cumplen múltiples roles: sirven para ampliar resultados ya conocidos
aśı como también para simplificar demostraciones ya existentes.

En el Caṕıtulo 7 retomamos el modelo generalizado formulado en el Caṕıtulo 5 y lo analizamos
en el espacio de Banach de las funciones casi periódicas. Obtenemos resultados de existencia y
unicidad de soluciones positivas casi periódicas por medio de la implementación de los resultados
obtenidos en el Caṕıtulo anterior. Más aun, damos ciertos criterios que garantizan que la solución
obtenida es globalmente exponencialmente estable. Finalmente, usando teoremas de punto fijo,
obtenemos condiciones suficientes de existencia y no existencia de soluciones de (2) para el caso
m > 1. De esta manera, damos una respuesta al problema abierto de existencia planteado por
diversos autores para el caso m > 1 [13,14,32].
Los resultados de este caṕıtulo correspondientes al modelo más general fueron enviados para su
publicación.

http://ejde.math.tstate.edu/Volumes/2013/272/amster.pdf
http://link.springer.com/article/10.1007/s12190-016-1051-6




Chapter 1

Introduction

The use of differential equations to model biological systems has a long history, for example,
Malthus and Verhulst employed them in models of population and Lotka and Volterra in the
prey-predator model.

Since several situations are assumed governed by a instantaneous effect that is, the future
state of the system in consideration is independent of the past and it is determined only by the
information bringing by the present time. A more realistic model must include some of the past
history of the system.

However, why study such equations when differential equations without delay are sufficiently
studied? The answer is quite intuitive, in many biological, physical, chemical, etc., population
processes involve a time delay. Delayed times occur very often, in almost any situation. This is
our motivation to study this type of equations in the present thesis

Delay differential equations have several features which make its analysis more complicated
than its analogous model without delay. For example, the following very simple model shows the
complexity of this type of equations: consider the differential nonlinear equation without delay
dx
dt

= f(x) where x represents the number of inhabitants and t the elapsed time, this equation has
no limit cycle. However, including a parameter and a delay, the solution x can exhibit periodic,
quasi-periodic as well as, chaotic behavior.

With the same model without delay in mind, if together with the initial time t0 the point
x0 = x(t0) in the Euclidean space is fixed, the initial value problem has a unique solution. On
the other hand, if we consider the delay differential equation:

dx

dt
= f(x(t− τ)),

an obvious question arises: what initial conditions are necessary? Clearly, to know the rate
of change at t0 one needs the values x(t0) and x(t0 − τ). Thus, initial value problem requires
more information than the initial value problem without delay. One needs to give an initial
function, that is, information of x(t) on the entire interval [−τ, 0]. Thus, each initial function
determines a unique solution to the delay differential equation (this result shall be studied in the
next chapter). It is worth noticing that, if we require that initial functions be continuous, then
the space of solutions has the same dimensionality as C([t0 − τ, t0],R). That is, the problem
becomes infinite dimensional.

In this context, one of the biological problems which give rise and motivation to this thesis

5



6 CHAPTER 1. INTRODUCTION

are the Wheldon model (1975) for the chronic mieloid leukimia (CML):

dM

dt
=

α

1 + βMn(t− τ)
− λM(t)

1 + µBm(t)
,

dB

dt
= −ωB(t) +

λM(t)

1 + µBm(t)
,

(1.1)

where M(t) is the number of cells in the marrow; B(t) is the number of white blood cells and τ
represents mean time for stem cell maturity.

Physiological periodic diseases, such as chronic mieloid leukimia, have been termed dynamical
diseases by Glass and Mackey (1979) who have made a study of several models for different
diseases. For example, for the control of hematopoiesis, they proposed the following models:

dP (t)

dt
=

λθnPm(t− τ)

θn + P n(t− τ)
− γP (t). (1.2)

and
dP (t)

dt
=

λθn

θn + P n(t− τ)
− γP (t). (1.3)

where P (t) is the density of mature circulating cells, τ is the delay between the initiation of
cellular production in the bone marrow and the release of mature cells into the blood. In their
original work [35], Mackey and Glass consider m = 1 in equation (1.2).

Such models of regulation of blood cell production incorporate a time delay imposed by the
time for cellular development and are prone to develop oscillations.

Wheldon and Mackey-Glass models are the cornerstones of this present work.

This thesis is organized as follows:
In the next Chapter, we give concepts and theoretical results needed to fully understand

the following chapters. It is divided in four sections. First, basic properties and definitions
concerning delay differential equations are given. Then, the degree theory and continuation
theory are described; in the third Section we introduce the Banach space of almost periodic
functions, the main results and concepts are exposed. In the last section, classical concepts of
nonlinear analysis in abstract cones are described and fixed point theorems and definitions are
enumerated.

Chapter 3 is a brief but thorough history of the biological problems considered by Wheldon,
Mackey and Glass.

In Chapter 4, the Wheldon model (1975) of a chronic myelogenous leukemia dynamics is mod-
ified and enriched by the introduction of a time-varying micro-environment and time-dependent
drug efficacies. The resulting model is a special class of nonautonomous nonlinear system of
differential equations with delays. Via topological methods, the existence of positive periodic
solutions is proven. Finally, we introduce our main insight and formulate some relevant open
problems and conjectures. The results from this chapter were published in: Electronic Jour-
nal of Differential Equations. See [3]. http://ejde.math.txstate.edu/Volumes/2013/272/

amster.pdf

In Chapter 5 an nonautonomous nonlinear first order delay differential equation with several
time-dependent delays is studied. The motivation arises from the Mackey-Glass model for the

http://ejde.math.txstate.edu/Volumes/2013/272/amster.pdf
http://ejde.math.txstate.edu/Volumes/2013/272/amster.pdf
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regularization of the hematopoiesis process. Using topological degree methods we prove, under
appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show
that the conditions are necessary, in the sense that if some sort of complementary conditions are
assumed then the trivial equilibrium is a global attractor for the positive solutions and hence
periodic solutions do not exist.
The results from this chapter were published in: Journal of Applied Mathematics and Computing.
See : [2]. http://link.springer.com/article/10.1007/s12190-016-1051-6

Our main result in Chapter 6 is the formulation of a fixed point theorem in abstract cones.
In addition, from this abstract Theorem, we deduce results for the existence of almost periodic
solutions for abstract models, thus unifying the analysis of a broad class of biological scalar
models in a single setting. Finally, we provide some examples which illustrate the applicability
of our results. Our technique fulfills multiple roles: it can be used to expand on well-known
results as well as to shorten existing proofs.

Finally, Chapter 7 deals with the hematopoiesis problem in the space of almost periodic
functions. We consider the model in Chapter 5 in the Banach space of the almost periodic
functions. Both existence and uniqueness of almost periodic functions are studied. Moreover,
we give criteria to ensure that the obtained solution is globally exponentially stable. The end of
this Chapter deals with the existence and nonexistece of almost periodic solution of (2) for the
case m > 1. Thus, we give answers to the open problem proposed by several authors, see for
example [13,14,32].
The results from the more general model were submitted for publication.

http://link.springer.com/article/10.1007/s12190-016-1051-6




Resumen del caṕıtulo 2

En este Caṕıtulo presentamos conceptos y resultados teóricos necesarios para la comprensión
total de los caṕıtulos siguientes.
Está dividido en cuatro secciones:

En la Sección 2.1 nos focalizamos en la teoŕıa básica de las ecuaciones diferenciales con re-
tardo. Comenzamos con un ejemplo que nos permitirá visualizar de manera simple las diferencias
que pueden presentarse entre las ecuaciones diferenciales con y sin retardo. En la Subsección
2.1.1 damos teoremas de unicidad, existencia local y global de solución. En la Subsección 2.1.2
damos una extensión del operador de Poincaré adaptada al caso de ecuaciones con retardo.
Luego de plantear distintos resultados conclúımos que este tipo de operadores no suelen ser
útiles para este tipo de ecuaciones.

En la Sección 2.2, damos una introducción a la teoŕıa de grado y teoremas de continuación.
Comenzamos con una aproximación intuitiva de la definición de grado en Rn, en particular para
el caso n = 2. Luego extendemos esta definición a funciones continuas en un espacio arbitrario
de dimensión finita. Esto nos llevará a la definición del grado de Brouwer. En la Subsección
2.2.3 extendemos el grado de Brouwer a espacios de Banach E generales, es decir, ahora E puede
tener dimensión infinita. La Subsección 2.2.4 es acerca de teoremas de continuación, planteamos
distintos resultados de existencia por medio del grado topológico para resolver problemas del
tipo Lu = Nu, donde L : D ⊂ E → F es un operador lineal y N : E → F es continuo.
Finalmente, en la Subsección 2.2.5 presentamos un teorema de continuación planteado en [4],
que asegura la existencia de soluciones T -periódicas en una ecuación funcional del tipo

x′(t) = Φ(x)(t),

donde CT es el conjunto de funciones continuas T -periódicas y Φ : CT → CT . Este teorema será
clave para la obtención de condiciones suficientes de existencia y multiplicidad en el Caṕıtulo 5.

En la Sección 2.3 introducimos el espacio de Banach de las funciones casi periódicas y damos
los conceptos y resultados más importantes de este espacio. En la Subsección 2.3.1 damos
la caracterización de funciones casi periódicas f : R → C dada por Bochner en términos de
convergencia de suceciones de familias de traslaciones y la dada por Bohr basada en cuasi-
peŕıodos. Luego planteamos propiedades básicas de estas funciones y resultados de estabilidad.
En la subsección 2.3.2 presentamos la clase de funciones uniformemente casi periódicas (u.a.p.)
y un resultado que asegura que si una función f(t, x) está en la clase u.a.p y ϕ(t) es una función
casi periódica, entonces f(t, ϕ(t)) es casi periódica. Este resultado será importante en los últimos
dos Caṕıtulos . En la última Subsección damos una introducción a las funciones casi periódicas
f : R → X donde ahora X es un espacio de Banach. El objetivo principal de esta Subsección
es dar un criterio de compacidad que permita entender por qué los métodos clásicos del análisis

9
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no lineal tales como teoŕıa de grado, teoremas de punto fijo de Leggett-Williams y Schauder
entre otros, no pueden ser extendidos de manera natural al espacio de Banach de funciones casi
periódicas.

En la Sección 2.4, está focalizada en el análisis no lineal en conos abstractos. Damos defini-
ciones y propiedades básicas y luego hacemos una breve introducción a la teoŕıa de punto fijo
de operadores monótonos.



Chapter 2

Preliminaries

2.1 Basic properties of delay differential equations

This Section concerns definitions and theorems of delay differential equations theory which we
shall employ along this thesis. We refer to the books of Driver [15], Hale [26] or Murray [39] for
a more detailed analysis of this subject.

Let us begin this section with an example, the well known logistic model which helps us to
introduce and get a best understanding of delayed models.

Example 2.1.1 Logistic equation
Let N(t) be the population of the species at time t, then the rate of change results

dN

dt
= births - deaths + migration. (2.1)

Consider birth and death terms proportional to N and without migration, then the simplest
delay differential equation modeling this situation is given by :

dN

dt
= bN(t)− dN(t) (2.2)

with b and d beingpositive constants. If we consider N(0) = N0, the initial population, then

N(t) = N0e
(b−d)t (2.3)

is the solution of equation (2.2). Thus if b < d then the population is extinguished while if b > d,
then populations that obey this type of equations are said to be undergoing exponential growth.
This constitutes the simplest minimal model of bacterial growth, moreover, this represents the
growth of any reproducing population. This approach first applied by Malthus in 1798, is fairly
unrealistic.

In the long time there must be some adjustment to such exponential growth. Verhulst (1838,
1845) proposed that a self-limiting process should operate when a population becomes too large.
Verhulst suggested a somewhat more realistic model admitting that the growth rate coefficient
will not be constant but will diminish as N(t) grows, because of overcrowding and shortage of
food. This leads to the differential equation:

11
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dN

dt
= rN(t)

(
1− N(t)

K

)
, (2.4)

where r and K are positive constants. In this model the per capita survival rate is r (1 - N /K);
that is, it is dependent on N . The constant K is the carrying capacity of the environment, which
is usually determined by the available sustaining resources.

The carrying capacity K determines the size of the stable steady state population while r is a
measure of the rate at which it is reached.

Equation (2.4) with N(0) = N0 can be solved by separation of variables and the solution
obtained is:

N(t) =
N0e

rt

1 + N0

K
(ert − 1)

. (2.5)

From (2.5), as t becomes large enough, regardless of the value of N0 > 0, the size of population
N tends to the equilibrium value, the carrying capacity K. Indeed, from (2.4), if N0 < K, N(t)
increases monotonically to K and, if N0 > K it decreases monotonically to K.

However, one of the deficiencies of model (2.4) is that the birth rate is considered to act
instantaneously whereas there may be a time delay involved ( gestation period, time to reach
maturity, etc.)

In order to overcome this deficiency, it is possible to consider the following simple general-
ization of 2.4 proposed by Hutchinson (1948) [30], namely, the differential delay equation

dN

dt
= rN(t)

(
1− N(t− τ)

K

)
. (2.6)

The inclusion of the delay τ implies that the regulatory effect depends on the population at
an earlier time, t− τ , rather than that at t.

We can get some qualitative properties of solutions of (2.4) by means of the following heuristic
reasoning.

Suppose there exists a time t1 such that

N(t− τ) < K for all t < t1 and N(t1) = K.

From (2.6), we have 1 − N(t−τ)
K

> 0 and then N(t) is increasing at t1 since dN
dt

> 0. At time
t = t1 + τ ,
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N(t− τ) = N(t1) = K which implies
dN

dt
= 0.

For times t1 + τ < t < t2, N(t − τ) > K and so dN
dt
< 0 then N(t) decreases until t = t2 + τ

since at this time

N(t2 + τ − τ) = N(t2) = K which implies
dN

dt
= 0.

Therefore, (2.6) has the possibility of oscillatory behavior.
Before leaving this example, it should be mentioned that, contrary to the delayed model, a

differential equation model for population growth without delay, namely like

dN

dt
= f(N), (2.7)

cannot have limit cycle behavior. Indeed, suppose that equation (2.7) has a periodic solution with
period T ; that is, N(t+ T ) = N(t). Multiplying the equation by dN

dt
we have(

dN

dt

)2

= f(N)
dN

dt
,

integrating from t to t+ T we obtain∫ t+T

t

(
dN

dt

)2

dt =

∫ t+T

t

f(N)
dN

dt
dt

=

∫ N(t+T )

N(t)

f(N) dN

= 0.

since N(t) = N(t + T ). However, we can observe that the left-hand integral is positive since
(dN
dt

)2 cannot be identically zero, so we have a contradiction. We conclude that, the differential
equation dN

dt
= f(N) cannot have periodic solutions.

Next theorems and properties of delay differential equations in this Section will be aimed at
showing how similar they are to ordinary differential equations. However, similar does not mean
equivalent, so one should be careful about the details in the proofs. After each theorem, we will
refer to the books where a more detailed analysis of the subject can be found.

Notation 2.1.1 The set C([−τ, 0],Rn) of all continuous functions mapping [−τ, 0] to Rn
shall be denoted by C. And for any set A in Rn we shall denote CA = C([−τ, 0], A). An interval
in R shall be denoted by J .

For a function ψ ∈ CA we define the sup-norm,

||ψ||τ = sup
−τ≤σ≤0

||ψ(σ)||, (2.8)

where || · || denotes the Euclidean norm.
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Remark 2.1.1 In the case when A = Rn, CA = C is a linear Banach space with the norm
|| · ||τ . On the other hand, if A 6= Rn, || · ||τ is not a norm in CA. However, || · ||τ may always
be considered a norm in the space C.

Definition 2.1.1 Let F : J × CA → Rn and B ⊂ J × CA. We say F is Lipschitz on B with
constant K if

||F (t, ψ)− F (t, ψ′)|| ≤ K||ψ − ψ′||τ

for some K ≥ 0 and any (t, ψ), (t, ψ′) ∈ B.

In the next existence and uniqueness theorems the following weaker condition shall be as-
sumed:

Definition 2.1.2 The functional F : J × CA → Rn is said to be locally Lipchitz if for every
(t, ψ) in J × CA there exists a neighborhood U of (t, ψ) such that f restricted to U is Lipschitz.

Here the Lipschitz constant for F depends on the set U .
Let xt ∈ C([−τ, 0],Rn) be the function defined by

xt(θ) = x(t+ θ), for θ ∈ [−τ, 0].

Observe that xt is obtained by considering x(s) for t − τ ≤ s ≤ t and then translating this
segment of x to [−τ, 0] as we can see in Figure 2.1. If x is a continuous function, then xt is a
continuous function on [−τ, 0].

Figure 2.1: Translated segment of x.

Let F : J × CA → Rn. We say that the equation

x′(t) = F (t, xt). (2.9)

is a delay functional differential equation.
Equation (2.9) is a very general type of equation and includes, for example, ordinary differ-

ential equations when τ = 0

x′(t) = F (x(t));
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the integro-differential equation

x′(t) =

∫ 0

−τ
g(t, θ, x(t+ θ))dθ,

as well as, if we consider the operator F (ψ) = f(ψ(0), ψ(−τ)) where f : Rn × Rn → Rn is a
nonlinear function, the nonlinear delay differential equation

x′(t) = f(x(t), x(t− τ)).

Throughout this thesis we shall focus on this last type of equations and we shall consider
both constant and bounded time-dependent delays.

In addition, ones requires an initial function. Indeed, an appropriate initial condition for
equation (2.9) is

xt0 = ϕ, ϕ ∈ CA. (2.10)

Let β be a constant, t0 < β ≤ ∞ and let be F : [t0, β)× CA ⊂ R× Rn → Rn. We shall refer
to the system

{
x′(t) = F (t, xτ ), t ∈ [t0, β)
xt0 = ϕ, ϕ ∈ CA.

(2.11)

as the initial value problem of (2.9).

Definition 2.1.3 A function x : [τ − t0, β] → Rn is a solution of the initial value problem
(2.11) if there exists β1 ∈ (t0, β) such that the following conditions are fulfilled:

1. x ∈ C([τ − t0, β],Rn)

2. xt0 = ϕ, ϕ ∈ CA

3. (t, xt) ∈ Dom(F ) and x satisfies equation (2.9) for all t ∈ [t0, β1)

Definition 2.1.4 A functional F : [t0, β)× CA → Rn is said to be quasi-bounded if for each
D closed bounded subset of A and β1, t < β1 < β, F is bounded in [t0, β1]× CD.

Definition 2.1.5 Let x on [t0− r, β1) and on [t0− r, β2) be solutions of the problem (2.11).
Suppose that β1 < β2, we say is a continuation of x, or x can be continued to [t0 − r, β2). We
will say that a solutions is non-continuable if it has no continuation.

2.1.1 Existence and uniqueness of solutions

The following condition shall be useful to ensure uniqueness of solution. Observe that condition
(C) is weaker than continuity:

Condition (C): We say that F (t, xt) satisfies condition (C) if it is continuous with respect to
t in [t0, β) for each given continuous function x : [t0 − r, β)→ A.
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Theorem 2.1.1 (Uniqueness) Let F : [t0, β)×CA → Rn be locally Lipschitz and let it satisfy
Condition (C). Then, given any ϕ ∈ CA, (2.9)-(2.10) has at most one solution on [t0− r, β1) for
any β1 ∈ (t0 − r, β].

Proof: Page 296 [15]. �

It is interesting to mention that in the literature on delay differential equations, it is usually
assumed, instead of condition (C), that F is continuous on J × CA. The fact is that continuity
of F implies condition (C), confirming the aforementioned statement.

Theorem 2.1.2 (Local existence) Let F : [t0, β) × CA → Rn be locally Lipschitzian and
satisfying Condition (C). Then, for each ϕ ∈ CA, problem (2.11) has a unique solution x(t)
defined on [t0, t0 + δ] for some positive δ.

Proof: Page 301 [15]. �

Theorem 2.1.3 (Maximal solution) Let F : [t0, β) × CA → Rn be locally Lipschitzian and
quasi-bounded satisfying Condition (C). Then, for each ϕ ∈ CA problem (2.11) has a unique
noncontinuable solution x defined on [t0 − τ, β1); and if β1 < β, then, for every compact set
D ⊂ A

x(t) /∈ D for some t ∈ (t0, β1).

Proof: Page 306 [15] �

Corollary 2.1.1 (Global existence) Let A = Rn and F : [t0, β) × CA → Rn be locally Lips-
chitzian and satisfy condition (C). Assume further that

||F (t, ψ)|| < M(t) +N(t)||ψ||τ on [t0, β)× C,

where M and N are continuous positive functions on [t0, β). Then there exists an unique non-
continuable solution of problem (2.11) on [t0 − τ, β).

2.1.2 A periodicity theorem: the Poincaré operator

In this section we shall give an extension of the Poincaré operator adapted to delay differential
equations.

Definition 2.1.6 Suppose (X, | · |) is a Banach space, U ⊂ X, and x ∈ U . Given a map
A : U�{x} → X, the point x ∈ U is said to be an ejective point of A if there is an open
neighborhood G ⊂ X of x such that for every y ∈ G ∩ U , y 6= x, there is an integer m = m(y)
such that Amy /∈ G ∩ U .

Let M be a positive constant. Define the sets SM := {x ∈ X : |x| = M} and BM := {x ∈
X : |x| < M}. Then SM = ∂BM .
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Theorem 2.1.4 Let K ⊂ X be a closed, bounded, convex and infinite-dimensional set,
A : K�{x0} → K completely continuous, and x0 ∈ K an ejective point of A. Then, there exists
a fixed point of A in K�{x0}. If K is finite dimensional and x0 is an extreme point of K, then
the same conclusion holds.

Theorem 2.1.5 Let K ⊂ X be a closed and convex set in X, A : K�{x0} → K completely
continuous, 0 ∈ K an ejective point of A, and there is an M > 0 such that Ax = λx, x ∈ K∩SM
implies λ < 1. Then, there exists a fixed point of A in K ∩ BM�{0}, if either K is infinite
dimensional or 0 is an extreme point of K.

Proof:(Theorems 2.1.4-2.1.5). Page 249 [26]. �

Remark 2.1.2 In the application of Theorems 2.1.4-2.1.5 to delay functional differential
equations, the mapping A is usually similar to the map of Poincaré in ordinary differential
equations. Indeed, suppose that there exists a set K ⊂ C and suppose that for each ϕ ∈ K the
solution x(t, ϕ; t0 = 0) of (2.11) returns to K in some time τ := τ(ϕ) > 0; that is xτ (ϕ) ∈ K if
ϕ ∈ K. The mapping A is defined by:

A : K → K, Aϕ := xτ(ϕ)(t, ϕ; t0 = 0).

By Theorems 2.1.4-2.1.5, the operator A is compact, then there would be a φ ∈ K such that
Aϕ = φ and, thus, a τ(φ)-solution of (2.11) with initial function x0 = φ.

We wish to obtain nonconstant periodic solutions, and if there is a constant a ∈ Rn such that
the constant function a ∈ C, a(θ) = a for all θ ∈ [−r, 0], satisfies a ∈ K, f(a) = 0, then the only
fixed point of A is a. On the other hand, if K does not contain such constant functions, then
there is a nonconstant periodic solution. However, in the applications, the construction of such
K is very difficult and often other methods must be employed.

2.2 The degree theory

We begin this section with an intuitive approach to the degree. This approach shall allow us
introduce the basic aspects of the topological degree in a more general context.

2.2.1 Intuitive approach of degree

Let us start with a well known situation, let us define the degree for the case n = 2. In this case,
the degree can be regarded as an “algebraic count” of the zeros of a continuous function. Indeed,
identify C with R2 and let us start assuming that f : Ω → C is analytic and γ : [0, 1] → Ω is a
simple continuous closed curve oriented counterclockwise and such that ∂Ω can be parametrized
by the curve γ. If f does not vanish over ∂Ω then we have the so called “zeros and poles theorem”

#{z ∈ Ω : f(z) = 0} =
1

2πi

∫
γ

f ′(z)

f(z)
dz. (2.12)

This theorem provides the exact number from zeros of f in Ω counted with their multiplicities.
This number will be called the degree of f at 0 over Ω, namely:
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deg(f,Ω, 0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz. (2.13)

More generally, we can consider a point p /∈ ∂f(Ω) and, similarly to the case p = 0, we
compute the degree of f at p over Ω:

deg(f,Ω, p) =
1

2πi

∫
γ

f ′(z)

f(z)− p
dz. (2.14)

This number computes the number of zeros of the equation f(z) = p for z ∈ Ω.
Some properties can be deduced from the definition:

1. deg(Id,Ω, p) =

{
1 if p ∈ Ω
0 if p /∈ Ω

where Id is the identity operator.

2. deg(f,Ω, p) = deg(f − p,Ω, 0) (translation).

3. If Ω1,Ω2 ⊂ Ω with Ω1 ∩ Ω2 = ∅ and f 6= p over Ω− (Ω1 ∪ Ω2), then

deg(f,Ω, p) = deg(f,Ω1, p) + deg(f,Ω2, p).

The next property needs the following definition: Let f, g : Ω → C continuous such that
p /∈ f(∂Ω) and p /∈ g(∂Ω). We say that f ∼ g (f and g are homotopic) if there exists a
continuous function h : Ω× [0, 1]→ C such that

h(z, 0) = f(z) andh(z, 1) = g(z), for all z ∈ Ω

and
h(z, λ) 6= p, for all z ∈ ∂Ω and λ ∈ [0, 1].

4. If f ∼ g, then deg(f,Ω, p) = deg(g,Ω, p).

In particular, this last property implies that the degree depends only on the value of f over his
boundary. Indeed, if f = g on ∂Ω, then we can define the following homotopy between f and g:
h(z, λ) = λg(z) + (1− λ)f(z).

5. If deg(f,Ω, p) 6= 0, then f takes the value p at least once in Ω.

6. If f = g over γ, then deg(f,Ω, p) = deg(g,Ω, p).

Actually, these results become trivial if we recall the analytic continuation principle: let f, g
be analytic and f = g on ∂Ω, then f = g.

Property 3 implies the next two properties:

7. If Ω = ∅ then deg(f,Ω, p) = 0,

and the solution property is obtained:

8. If f does not vanish in Ω, then deg(f,Ω, p) = 0,

which is deduced taking Ω1 = Ω2 = ∅.
In what follows, we shall see that the preceding definition may be extended for arbitrary n

and continuous functions. Furthermore, the degree shall be defined as a mapping that satisfies
properties (1)− (4). Indeed, this extension can be done in a unique way.
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2.2.2 The Brouwer degree

Now we are in a position to provide an extended the definition of degree for arbitrary continuous
functions f in an arbitrary finite dimensional space.

Let the set of admissible functions be given by

A(y) := {f ∈ C(Ω,Rn) : f 6= y in ∂Ω}.

Lemma 2.2.1 If f ∈ A(y) and g ∈ C(Ω,Rn) satisfies the inequality ||g−f ||L∞ < d(y, f(∂Ω))
where d(·, ·) is the distance, then g ∈ A(y). That is, A(y) is an open set.

Let us define the concepts of Critical and Regular values.

Definition 2.2.1 Let U ⊂ Rn be open and f : U → Rm be of class C1. Assume that m ≤ n.
A vector p ∈ Rm is called a regular value of f if Df(x) : Rn → Rm is surjective for all x ∈ f−1(p).
The set of regular values of f is defined as follows:

RV (f) = {y ∈ Rm : ∀x ∈ f−1(y), Df(x) : Rn → Rm is onto }

and the set of critical values is defined as:

CV (f) = Rm \RV (f).

From this definition is tautologically verified that all values p /∈ f(U) are regular.
Let us firstly observe that if f : Ω → Rn is a C1 function such that f 6= p on ∂Ω and p is a

regular value of f , then the set f−1(p) is finite. This allows the following definition of Degree
on regular values.

Definition 2.2.2 Let y ∈ RV (f), then the Brouwer Degree is defined as:

deg(f,Ω, y) =
∑

x∈f−1(y)

sgn(Jf (x)),

where Jf (x) = det(Df(x)).

We now give the tools to extend the previous definition for arbitrary continuous f in such a
way that properties (1)− (4) are satisfied. The first step is to state a version of Sard’s Theorem:

Theorem 2.2.1 Let m ≤ n and f : U ⊂ Rn → Rm be a C1 function. Then the set of critical
values CV (f) has measure 0. In particular, the set of regular values RV (f) is dense in Rm.

Let C1
reg(Ω,Rm) be the set of functions in C1(Ω,Rm) for wich 0 ∈ RV (f). The following

Lemma is a consequence of Sard’s Theorem.

Lemma 2.2.2 C1
reg(Ω,Rm) is dense in C(Ω,Rm).

In next Lemma we consider the point p = 0 without loss of generality.
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Lemma 2.2.3 Let f ∈ C1(Ω,Rm) be such that 0 ∈ RV (f) and f 6= 0 in ∂Ω. Then, there
exists a neighborhood V of 0 such that if y ∈ V . Then, y ∈ RV (f) and f 6= y in ∂Ω. Moreover,

deg(f,Ω, y) = deg(f,Ω, 0).

This Lemma says that the Brouwer degree is constant in a ball small enough around 0 for a
given function f and a set Ω.

Lemma 2.2.4 Let f ∈ C1
reg(Ω,Rn). There exists ε > 0 such that if g ∈ C1(Ω,Rn) verifies

||g − f ||L∞ < ε then, 0 ∈ RV (g), g 6= 0 in ∂Ω and deg(g,Ω, 0) = deg(f,Ω, 0).

Proposition 2.2.1 Let Ω ⊂ Rn be an open and bounded set, and let y ∈ Rn. Then there
exists a unique continuous function

deg( · ,Ω, y) : A(y)→ Z

with the following properties:

1. Normalization: If y ∈ Ω, then deg(Id,Ω, y) = 1;

2. Translation invariance: deg(f,Ω, y) = deg(f − y,Ω, 0);

3. Additivity: If Ω1,Ω2 are two open disjoint subsets of Ω, then the following holds: If y /∈
f(Ω− (Ω1 ∪ Ω2)) then:

deg(f,Ω, y) = deg(f |Ω1
,Ω1, y) + deg(f |Ω2

,Ω2, y);

4. Homotopy invariance: If h : Ω× [0, 1]→ Rn is continuous and h(x, λ) 6= y for all x ∈ ∂Ω,
λ ∈ [0, 1], then deg(h(·, λ),Ω, y) does not depend on λ ∈ [0, 1]. Moreover, y can be replaced
by a continuous function y : [0, 1]→ Rn such that the previous condition is valid.

Definition 2.2.3 The function

deg( · ,Ω, y) : A(y)→ Z

is called the Brouwer’s degree.

Proposition 2.2.2 The Brouwer’s degree satisfies:

1. Solution: If deg(f,Ω, y) 6= 0, then y ∈ f(Ω), moreover, f(Ω) is a neighborhood of y;

2. Excision: If Ω1 is an open subset of Ω, y 6= f(Ω− Ω1), then

deg(f,Ω, y) = deg(f,Ω1, y).

We remark that the Brouwer degree can be generalized to finite n-dimensional Banach spaces
E. Indeed, it is possible by identifying E with Rn. Moreover, if we consider Ω ⊂ Rn and functions
f ∈ C(Ω,Rm) with m ≤ n, then the degree can also be defined:

Lemma 2.2.5 Let Ω ⊂ Rn be open and bounded, let f ∈ C(Ω,Rm) and let m < n. Identify
Rm with Rm × {0} ⊂ Rn. Let also be g : Ω → Rn given by g(x) = x − f(x). Then for every
y ∈ Rm − g(∂Ω) we have:

deg(g,Ω, y) = deg(g
∣∣
Ω∩Rm ,Ω ∩ R

m, y)

We refer to the books of Amster [1] or Lloyd [34], for a more detailed analysis of this subject.
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2.2.3 The Leray-Schauder degree

Now we will extend the Brouwer degree to general Banach spaces E. It is not possible for
arbitrary continuous functions.

For infinite dimensional spaces, Leray and Schauder showed that the theory of topological
degree can be extended for compact perturbations of the identity. We will consider operators F
of the form F = Id−K, where K : Ω→ E is a compact operator and Id is the identity operator.
This kind of operators can be approximated by finite range operators:

Lemma 2.2.6 Given ε > 0 there is an operator Fε : Ω→ E continuous such that Rg(Fε) ⊂
Vε, with dim(Vε) <∞ and such that ||F(x)− Fε(x)|| < ε, for all x ∈ Ω.

The following lemma is deduced from compactness:

Lemma 2.2.7 Let Ω ⊂ E be open and bounded, and let K : Ω→ E be compact. If Kx 6= x,
for all x ∈ ∂Ω, then

inf
x∈∂Ω
||x−Kx|| > 0.

Proof: Page 132 [1]. �
Now, we are able to define the Leray-Schauder degree:

Definition 2.2.4 Let E be a Banach space. Let Ω ⊂ E be a bounded domain and K : Ω→ E
a compact operator such that (I −K)x 6= 0, for all x ∈ ∂Ω and let

ε <
1

2
inf
x∈∂Ω
||x−Kx||.

We define the Leray-Schauder’s degree as

degLS(I −K,Ω, 0) := deg(I −Kε
∣∣
Vε
,Ω ∩ Vε, 0)

where Kε is such that Rg(Kε) ⊂ Vε and that ||K(x)−Kε(x)|| < ε, for all x ∈ Ω.

To see that the Leray-Schauder degree is well defined, let Kε and K̃ε be ε-approximations of
K with ranges in the finite dimensional subspaces Vε and Ṽε, respectively. By Lemma 2.2.5, if
V := Vε + Ṽε, then defining the isomorphisms with the corresponding Euclidean spaces yields

deg((I −Kε)
∣∣
Vε
,Ω ∩ Vε, 0) = deg((I −Kε)

∣∣
V
,Ω ∩ V, 0),

deg((I − K̃ε)
∣∣
Ṽε
,Ω ∩ Ṽε, 0) = deg((I − K̃ε)

∣∣
V
,Ω ∩ V, 0).

Moreover, the homotopy

h(x, λ) := λ(I −Kε) + (1− λ)(I − K̃ε) 6= 0, on ∂(Ω ∩ V ) ⊂ ∂Ω ∩ V.

We remark that the properties of Leray-Schauder and Brouwer degrees are analogous. Here,
the most important properties that shall be used in this thesis:
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1. Normalization: deg(Id,Ω, p) =

{
1 if p ∈ Ω
0 if p /∈ Ω

2. Solution: If degLS(F ,Ω, 0) 6= 0, then F has at least one zero in Ω;

3. Excision: If Ω1 ⊂ Ω is open and F does not vanish in Ω \ Ω1, then deg(F,Ω, p) =
deg(F,Ω1, p).

4. Homotopy invariance: If Fλ = Id−Kλ with Kλ : Ω→ E compact such that Kλu 6= u for
all u ∈ ∂Ω, λ ∈ [0, 1] and K : Ω× [0, 1]→ E given by K(u, λ) := Kλ(u) is continuous, then
degLS(Fλ,Ω, 0) does not depend on λ.

5. If K(Ω) ⊂ V , with V ⊂ E a finite dimensional subespace, then

deg(F ,Ω, 0)LS = degB(F
∣∣
Ω∩V ,Ω ∩ V, 0),

where degB denotes Brouwer’s degree.

It is interesting to note that homotopy invariance requires the additional hypothesis: h is
of the form h(·, λ) := Fλ = I −Kλ with Kλ compact.

2.2.4 Continuation theorems

Now, the objective is to obtain existence results by using topological degree for solving the
following problem:

Let E and F be Banach spaces. A wide range of problems in nonlinear analysis may be
presented in the form of an abstract equation

Lu = Nu, (2.15)

where L : D ⊂ E → F is a linear operator and N : E → F is continuous.
Let us consider the nonresonant case, in which L is invertible. Assume that L has a compact

inverse and N maps bounded sets into bounded sets; then problem (2.15) may be written as
u = Ku, where K = L−1N : E → E is compact. Let h be the homotopy h(u, λ) = u− λKu; by
the properties of the Leray-Schauder degree it is immediate the existence of at least one solution
of (2.15), provided that we are able to find a open bounded Ω ⊂ E such that 0 ∈ Ω and u 6= Ku
for u ∈ ∂Ω and λ ∈ (0, 1). Indeed, we may assume that u 6= Ku for u ∈ ∂Ω, since, otherwise K
has already a fixed point. Moreover, deg(h(u, 0)) 6= 0 since 0 ∈ Ω, and hence

deg(I −K,Ω, 0) = deg(I,Ω, 0) = 1.

More concretely,

Theorem 2.2.2 Let E and F be Banach spaces, and let L : D ⊂ E → F be linear, N : E →
F continuous. Assume that L is one-to-one and K := L−1N is compact. Furthermore, assume
there exists a bounded and open subset Ω ⊂ E with 0 ∈ Ω such that the equation Lu = λNu has
no solutions in ∂Ω ∩D for any λ ∈ (0, 1). Then the problem Lu = Nu has at least one solution
in Ω.
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However, a wide range of different results can be obtained in more general contexts. For
example, the following problem is about the existence of T -periodic solutions of the first-order
delay differential system:

x′ = f(t, x(t), x(t− τ)) (2.16)

with τ > 0 and f : R×R2n → Rn continuous and T -periodic in t, that is f(t+T, u, v) = f(t, u, v)
for all (t, u, v) ∈ R× R2n. An appropriate Banach space is:

CT := {u(t) ∈ C(R,R) : u(t+ T ) = u(t) for all t} (2.17)

equipped with the usual uniform norm. Note that L : D = CT ∩ C1(R,Rn) → CT is not
invertible since its kernel is the set of constant functions, identified with Rn. Moreover, if u ∈ D
and u′ = ϕ, then

ϕ :=
1

T

∫ T

0

ϕ(s)ds = 0. (2.18)

On the other hand, for any ϕ ∈ CT such that ϕ = 0 all its primitives c +
∫ T

0
ϕ(s)ds belong to

D, so ϕ ∈ Im(L). That is, the range of L is the set of zero-average functions. Thus, define

CT := {ϕ ∈ CT : ϕ = 0}

and K : CT → D, such that LKϕ = ϕ for all ϕ ∈ CT , that is, K is a right inverse of ϕ, for
convenience we choose K a compact operator such that:

Kϕ(t) := − 1

T

∫ T

0

∫ s

0

ϕ(r)dr ds+

∫ t

0

ϕ(s)ds.

It is readily seen that (Kϕ)′ = ϕ and Kϕ(t + T ) − Kϕ(t) =
∫ t+T
t

ϕ(s)ds = 0; moreover∫ T
0
Kϕ(t)dt = 0.
Next, we define the operator N : CT → CT , Nu(t) := f(t, u(t), u(t− τ). It is clear that our

original problem is equivalent to the system of equations:

Nu = 0 and u = u+KNu.

It is worth noticing that if Nu 6= 0 then Nu would not belong to the domain of K and then
second equality could not be well defined. Since we want to bring out the problem to a fixed
point equation we should restrict ourselves to {u ∈ CT : Nu = 0}. To overcome this problem
we consider the equivalent system:

Nu = 0 and u = u+K(Nu−Nu).

We obtain the one-parameter family of problems h(u, λ) = 0, where the homotopy h :
CT × [0, 1]→ CT is defined by:

h(u, λ) = u− (u+Nu+ λK(Nu−Nu)). (2.19)

When λ > 0, it is readily seen that h(u, λ) = 0 if and only if
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u′(t) = λf(t, u(t), u(t− τ)). (2.20)

The operator h(u, 0)− u = −(u+Nu) ∈ Rn for all u. According to properties of the Leray-
Schauder degree, if there exists an open bounded set Ω ⊂ CT such that h(·, 0) does not vanish
when u ∈ ∂Ω for some Ω ⊂ CT open and bounded, then

deg(h(·, 0),Ω, 0) = (−1)ndeg(φ,Ω ∩ Rn, 0),

where φ : Rn → Rn is given by φ(u) := −Nu = − 1
T

∫ T
0
f(t, u, u)dt.

More concretely, we have proved the following continuation theorem:

Theorem 2.2.3 Assume there exists an open bounded Ω ⊂ CT such that the following con-
ditions are fulfilled:

1. Problem (2.20) has no solutions on ∂Ω for 0 < λ < 1;

2. φ(u) 6= 0 for u ∈ ∂Ω ∩ Rn, with φ(u) := − 1
T

∫ T
0
f(t, u, u)dt;

3. deg(φ,Ω ∩ Rn, 0) 6= 0.

Then (2.16) has at least one solution u ∈ Ω.

2.2.5 Continuation theorem for a functional equation

In [4], authors establish a continuation theorem for an abstract functional differential equation,
that will be the key for our periodic existence results in chapter 5.

More concretely, they consider the functional equation:

x′(t) = Φ(x)(t), (2.21)

where the functional Φ : CT → CT is continuous and maps bounded sets in bounded sets and
CT is defined as in (2.17), denoting the space of continuous T -periodic functions.

We define, for r < s, the set

Xs
r := {u(t) ∈ CT : r < u(t) < s for all t} .

The closure of Xs
r shall be denoted by cl(Xs

r ). The maximum value and the minimum value of
an arbitrary function ϕ ∈ CT shall be denoted respectively by ϕmax and ϕmin, namely

ϕmax = max
[0,T ]

ϕ(t), ϕmin = min
[0,T ]

ϕ(t),

and ϕ defined as in (2.18).
We consider the natural inclusion R ⊂ CT and define a mapping φ : R→ R as follows,

φ(γ) = Φ(γ) =
1

T

∫ T

0

Φ(γ)(t)dt. (2.22)

Actually, for simplicity we are using the same symbol to denote both a real number γ and
the constant function x(t) ≡ γ, ignoring the isomorphism between R and the set of constant
functions in R. However, it is important to notice that if x ∈ CT is the constant function given
by x(t) = γ for all t. Thus, Φ(x) is an element of CT and φ is well defined.
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Theorem 2.2.4 Assume there exist constants r < s such that

• If x′(t) = λΦ(x)(t) for some x ∈ cl (Xr
s ) and 0 < λ < 1, then x ∈ Xr

s .

• φ(r)φ(s) < 0.

Then (2.21) has at least one solution x ∈ cl (Xr
s ).

Proof: [4] The proof follows from similar arguments to those employed in Theorem 2.2.3. �

2.3 Almost periodic functions

Here we enumerate the main results in the classical theory of almost periodic functions, we will
deal with this space in Chapter 7. For a more detailed analysis of this subject, see the books of
Fink [18] and Corduneanu [12].

2.3.1 Definitions and general properties

Almost periodic functions are intended to be generalizations of periodic functions in some sense.
We shall introduce this generalization in a natural way to understand better the importance of
this space.

Let be the Banach space

BC = {bounded and continuous functions p : R→ C}
be equipped with the norm

||p||∞ = sup
t∈R
|p(t)|.

For each T > 0
PerT = {continuous and T -periodic functions}

is a linear subspace. The class of periodic functions

Per =
⋃
T>0

PerTf,

has not linear structure and it is not closed under uniform limits. The space AP(C) is the
algebraic and topological closure of Per in BC, that is,

Per ⊂ AP (C) ⊂ BC.

AP is the smallest Banach space that satisfies this chain of inclusions. Thus AP(C) is a complete
normed space of functions that contains all periodic functions. In particular, it is closed under
sums and uniform limits.

There are several known equivalent definitions of almost periodic functions, the choice de-
pends on the property to be proven.

Together with the properties and definitions we shall give examples for periodic functions.
These examples will permit us to more easily understand the parallelism between periodic and
almost periodic functions.
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Among these different definitions we shall focus on both Bochner’s characterization in terms
of sequential convergence of families translates and Bohr’s definition based on the quasi-periods.

Definition 2.3.1 (Bochner) A f : R → C is almost periodic if from every sequence {α′n}
one can extract a subsequence {αn} such that

lim
n→∞

f(t+ αn)

exists uniformly on the real line.

This definition appeared for the first time in Bochner, Beitrage zur Theorie der fastperiodiche
Funktionen. I: Functionen einer Variablen, Math. Ann. 96 (1927), 119-147.

It is easy to prove that periodic functions satisfy Definition 2.3.1. Indeed, let f be a T -
periodic function and {α′n} an arbitrary sequence. From the given sequence {α′n} we define the
bounded sequence {α′n(mod T)}, we may select a subsequence {αn(mod T)} such that converges
to α0. Then, if {αn} is the associated subsequence, we have

lim
n→+∞

f(t+ αn) = f(t+ α0).

Now, we shall introduce the Bohr’s definition. First, some previous definitions and notation
are needed.

Definition 2.3.2 A subset S of R is called relatively dense if there exists a positive num-
ber L such that

[a, a+ L] ∩ S 6= ∅ for all a ∈ R.
The number L is called the inclusion length.

Roughly speaking, the complement of S should not contain arbitrarily long intervals.
For example, if we consider S = Z, then [a, a + 1] ∩ Z 6= ∅ for all a ∈ R. In this case, the

inclusion lenght number is L = 1 and Z is relatively dense. In the other hand, if we consider
S = N, there no exists a number L such that [a, a + 1] ∩ N 6= ∅ for all a ∈ R. Thus, N is not a
relatively dense set.

Definition 2.3.3 For any bounded complex function f and c > 0, we define

T (f, ε) = {τ : |f(t+ τ)− f(t)| < ε for all t}. (2.23)

T (f, ε) is called the ε-translation set of f .

Definition 2.3.4 (Bohr) A function f : R → C is called almost periodic if for every
ε > 0, T (f, ε) is relatively dense.

For T -periodic functions it is clear that T (f, ε) is relatively dense since the functions satisfy
f(t+nT ) = f(t) for all n ∈ N, that is, nT ∈ T (f, ε) for all ε. Thus, given ε > 0 taking L(ε) = T
such that [a, a+ T ] ∩ T (f, ε) 6= ∅.

The geometric significance of T (f, ε) for almost periodic functions is a generalization of the
idea of periodic functions, where the translated graph differs from the graph of f at least within
ε if τ ∈ T (f, ε).
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Lemma 2.3.1 Let f : R→ C. f has the property given by Definition 2.3.1 if and only if f
has the property given by Definition 2.3.4.

Proof: Page 16 [11] �

Lemma 2.3.2 Let f, g ∈ AP (C) and λ ∈ C. Then the following properties are fulfilled:

(a) f + g, f · g and λf ∈ AP (C).

(b) If inft∈R |f(t)| > 0, then 1
f(t)
∈ AP (C).

(c) f is bounded.

(d) f is uniformly continuous.

(e) If F is uniformly continuous on the range of f , then F ◦ f ∈ AP (C).

(f) Let F be a finite family of almost periodic solutions. Then, for every ε > 0⋂
f∈F

T (f, ε) is relatively dense.

(g) If f, g ∈ AP (C), then h(t) = f(t− g(t)) ∈ AP (C).

(h) Let inft∈R g(t) > 0. Then F ∈ AP (R), where

F (t) =

∫ t

−∞
e−

∫ t
s g(u)duf(s)ds, t ∈ R.

Proof: For proofs of (a)-(e) and (f) see Chapter 1 [18] and Chapter 2 page 19 respectively.
Let us prove property (g). Let ε > 0, from the uniform continuity of f there exists δ(ε) > 0

such that
|f(x)− f(y)| < ε

2
for all x, y such that |x− y| < δ.

Moreover, δ may by chosen in such a way that δ ∈ (0, ε
2
).

Let τ ∈ T (f, δ
2
) ∩ T (g, δ

2
), in view of the uniform continuity of f and the almost periodicity

of f and g we obtain:∣∣h(t+ τ)− h(t)
∣∣ =

∣∣f(t+ τ − g(t+ τ))− f(t− g(t))
∣∣

≤
∣∣f(t+ τ − g(t+ τ))− f(t+ τ − g(t))

∣∣+
∣∣f(t+ τ − g(t))− f(t− g(t))

∣∣
≤ ε

2
+
δ

2
< ε.

Since, by property (f), T (f, δ
2
) ∩ T (g, δ

2
) is relatively dense we conclude that h(t) ∈ AP (C). �

As an example, h(t) = cos (t) + cos (
√

2t) is almost periodic by property (a). However, the
equation cos (t) + cos (

√
2t) = 0 has only one solution, thus h(t) is not a periodic function.

Another interesting difference between periodic and almost periodic function is given by the
following example:
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Example 2.3.1 Let fn : R→ R be the 2π5n-periodic functions defined by fn(x) := sin ( x
5n

),

for each n ∈ N. It is readily seen that the series
∑∞

n=1

sin ( x
5n

)

5n
converges uniformly and absolutely

on n, then the function f(x) :=
∑∞

n=1

sin ( x
5n

)

5n
is well defined and

|f(x)| <
∞∑
n=0

1

5n
:= S. (2.24)

Moreover, f(x) is a positive almost periodic function.
Consider the subsequence {xn}n∈N, where xn := 5nπ

2
. Observe that xn is the first positive

value where fn(x) = 1. Moreover, fk(xn) = 1 for all 0 < k ≤ n.
Thus,

f(xn)→ S as n→∞ and f(x) 6= S for any x ∈ R. (2.25)

Let us define the positive almost periodic function g(x) := S−f(x). In view of (2.24) and (2.25)
we have

inf
x
g(x) = 0 and g(x) > 0 for all x ∈ R.

The study of existence of almost periodic solutions plays a central role in differential equations
and their applications. In addition, other interesting property to be analyzed is the stability
of such solutions. More precisely, we shall focus on the stability of almost periodic solutions of
(2.9).

For simplicity, a solution of the initial value problem (2.11) shall be denoted by x(t; t0, ϕ).

Lema 2.3.1 Let f, g ∈ AP (C). Suppose that limt→∞ f(t) = 0, then f ≡ 0.

Proof: Consider the sequence α′n = n ∈ N, by Bochner’ s definition, there exists an increasing
subsequence {αn} such that f(t+αn) converges uniformly on the real line. Moreover, f(t+αn)
converges uniformly to 0, the limit is given by the pointwise convergence.

Thus, defining fαn(t) := f(t+ αn), we get

||f ||∞,R = ||fαn||∞,R = 0.

We conclude that f ≡ 0. �
The following corollary is a direct consequence of Lemma 2.3.1. It shall be useful in Chapter

7 to conclude uniqueness of solutions.

Corollary 2.3.1 Let f, g ∈ AP (C). Let ε > 0, if there exists t0(ε) > 0 such that |f(t) −
g(t)| < ε for all t ≥ t0, then f ≡ g for all t ∈ R.

Definition 2.3.5 Let be ε > 0. An almost periodic solution x̃(t) of (2.9) is globally
asymptotically stable if there exists tε,ϕ := t(ε, ϕ) > 0 and such that for every x(t; t0, ϕ)
solution of (2.11)

|x̃(t)− x(t; t0, ϕ)| < ε for all t > tε,ϕ.

In view of Corollary 2.1.1 we have the following result:
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Theorem 2.3.1 (Uniqueness) Let x(t) be an almost periodic solution of (2.9). Assume that
x(t) is globally asymptotically stable. Then x(t) is the unique solution of (2.9) in AP (C).

Definition 2.3.6 An almost positive periodic solution x̃(t) of (2.9) is globally exponen-
tially stable if there exist constants tϕ,x̃, Kϕ,x̃ and ρ > 0 such that every solution x(t; t0, ϕ) of
(7.1) and (7.4) satisfies,

|x(t; t0, ϕ)− x̃(t)| < Kϕ,x̃e
−ρt for all t > tϕ,x̃.

It is clear that global exponential stability implies asymptotic stability. Thus, if an almost
periodic solution is globally asymptotically stable, then it is unique.

2.3.2 Uniformly almost periodic families. The class u.a.p

Consider the differential equation

x′ = f(t, x), (2.26)

where f is an almost periodic solution as a function of t and x is considered a parameter. In order
to search almost periodic solutions ϕ(t), it is necessary to consider the composition f(t, ϕ(t)). Is
this an almost periodic function? The answer is, in general, negative. For example, the function
f(t, x) = sin (xt) with x ∈ R is periodic in t for each x. However, if we consider ϕ(t) = sin (t)
the composition f(t, ϕ(t)) = sin (t sin (t)) is not uniformly continuous, thus it is not almost
periodic.

Let Ω be a subset of En, the n-dimensional space Rn (or Cn) with the usual Euclidean norm.
We shall consider functions of the form f(t, x) defined on the set R× Ω and with values in En.
We shall assume that any function appearing in next Theorem and definition is continuous on
R× Ω.

Definition 2.3.7 A function f(t, x) is called almost periodic in t, uniformly with
respect to x ∈ Ω, if to any ε > 0 corresponds a number l(ε) such that any interval of the real
line of length l(ε) contains at least one number τ for which

|f(t+ τ, x)− f(t, x)| < ε, x ∈ Ω, t ∈ R. (2.27)

Again, the number τ is called an ε-translation number of f(t, x). The uniform dependence on x
follows from the fact that τ and l(ε) are independent of x.

This definition is just one of the possible ways to introduce the notion of uniform almost
periodicity and we refer to [18] for alternative formulations.

We shall say that f(t, x) is in the class u.a.p ( uniformly almost periodic ) if

f(t, x) ∈ {f : R× Ω→ R such that f is almost periodic in t uniformly with respect to x}.
(2.28)

The following Lemma shall be useful in Chapters 6 and 7.

Lemma 2.3.3 If f, r : R→ R are functions in AP (R), then r(t)f(x) is in the class u.a.p.
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Lemma 2.3.4 Let Ω be a closed bounded set and f(t, x) a function in the class u.a.p. Then
f(t, x) is bounded and uniformly continuous on R× Ω.

Proof: Page 52 [12]. �

Lemma 2.3.5 Let Ω be a closed bounded set f(t, x) and g(t, x) be functions in the class
u.a.p. Then the following conditions are fulfilled:

1. f(t, x) + g(t, x) and f(t, x).g(t, x) are in the class u.a.p.;

2. If |g(t, x)| ≥ m > 0, then f(t, x)/g(t, x) is in the class u.a.p.

Proof: Page 56 [12]. �
The following Theorem shall be especially useful in Chapter 6, where we shall give existence

results of almost periodic solutions of differential equations.

Theorem 2.3.2 If ϕ ∈ AP (En) and f(·, x) ∈ AP (En) uniformly for x in compact subsets
of En, then f(t, ϕ(t)) ∈ AP (En).

Proof: Page 27 [18] or page 57 [12]. �

2.3.3 Almost periodic functions in Banach spaces

In this section we shall denote by X complex Banach space with the norm topology || · || and
consider functions f : R → X with values in the Banach space X. For a more detailed analysis
we refer to the Chapter 6 of [12].

Definition 2.3.8 A continuous function f : R → X is called almost periodic, if for any
ε > 0 there exists a number l(ε) > 0 such that any interval on the real line of length l(ε) contains
at least one point τ such that

||f(t+ τ)− f(t)|| < ε, for all t ∈ R.

The main goal in this section is to establish a compactness criterion for families of almost
periodic functions in the topology of AP(X). This criterion shall be very helpful to understand
and clarify why classical methods such as degree theory, super and sub solutions method, Leggett-
Williams and Schauder fixed point theorems among others cannot be extended naturally to the
space of almost periodic functions.

Theorem 2.3.3 Let R = {f1(t), · · · , fm(t)} be a finite family of almost periodic functions,
fi : R→ X. Let ε > 0. Then, there exist common ε-translation numbers for these functions.

Proof: Consider the almost periodic function f : R → Xm, f(t) = (f1(t), · · · , fm(t)) associated
with the set R. Let the norm in Xm be defined by

||x|| =
m∑
i=1

||xi||,
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where x = (x1, · · · , xm) ∈ Xm. It is clear that every sequence {f(t + α′n)} of translations of f
has a subsequence that converges uniformly on the real line.

From the almost periodicity of f(t) it follows that for every ε > 0, there exists l(ε), such that
any interval of length l includes on R contains at least one number τ , such that

||f(t+ τ)− f(t)|| < ε, t ∈ R. (2.29)

In view of the definition of the norm in Xm and (2.29)

||fi(t+ τ)− fi(t)|| < ε, t ∈ R, i = 1, · · · ,m,

which proves the theorem. �

From Theorem 2.3.3 it is clear that a finite family of almost periodic functions is equi-almost
periodic, more concretely:

Definition 2.3.9 We say that the functions belonging to a family F are equi-almost pe-
riodic if given ε > 0, then

⋂
f∈F{τ : ||f(t− τ)− f(t)|| < ε} is relatively dense.

Theorem 2.3.4 A family F of function from AP(X) is relatively compact if and only if the
following conditions are fulfilled:

1. F is equi-continuous;

2. for any t ∈ R, the set of values of functions from F is relatively compact in X.

3. F is equi-almost periodic;

Proof: Page 143 [12]. �

It is worth noticing that, this theorem is slightly different of Arzela-Ascoli’ s Theorem, now it
is needed an additional statement to ensure the relatively compactness of the family F ⊂ AP (X).
However, this additional condition is one of the main problem for the aforementioned methods.
All these methods usually fail in the almost periodic case because of a lack of compactness of
the nonlinear operators associated with the equation in the space of almost periodic functions.

Example 2.3.2 Let F =
{

sin ( t
n
)
}
n∈N ⊂ AP (R). It is clear that family F satisfies condi-

tions (1) and (2) of Theorem 2.3.4 on R. However, F is not precompact in AP (R) since from{
sin ( t

n
)
}
n∈N it is not possible to extract a uniform convergent subsequence on R. Indeed, on

the one hand, the pointwise limit is equal to 0. On the other hand, if we consider tn = 2n
π

then
sin ( tn

n
) = 1 for all n ∈ N. Thus, there is no subsequence of

{
sin ( t

n
)
}
n∈N that converges to 0.

2.4 Nonlinear analysis in abstract cones

In this Section we shall introduce definitions and properties of cones. We shall follow the
presentation by Guo and Lakshmikanthan in [23], for the proofs of all the results stated in this
section refer to these books, where they give a more detailed analysis of this subject.
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2.4.1 Basic properties and definitions

Definition 2.4.1 Let X be a real Banach space. A nonempty closed set C ⊂ X is called a
cone if the following conditions are fulfilled:

(a) C + C ⊂ C (b) C ∩ −C = {0} (c) C is convex,

where 0 denotes the zero element of X.
Every cone C induces a partial order ≤ in X given by

x ≤ y if and only if y − x ∈ C.

If x ≤ y and x 6= y, we write x < y. A set {z ∈ X/x ≤ z ≤ y} is called an order interval and
shall be denoted as [x, y]. The interior of C shall be denoted by C◦. A cone C satisfying C◦ 6= ∅
is called a solid cone. A cone C is called normal if there exists a constant N > 0 such that

0 ≤ x ≤ y implies that ||x|| ≤ N ||y||.

The smaller constant N satisfying the inequality is called the normal constant of C.

If X is a normed space, then we shall also require compatibility with the topology, that is:

if xn → x, yn → y, and xn ≤ yn, then x ≤ y,

this property is equivalent to:

if zn ≥ 0 and zn → z, then z ≥ 0.

Thus, the order induced by C is compatible with the norm if and only if C is closed.
An elementary example of a compatible cone includes

C = {x ∈ C([0, 1]) : x(t) ≥ 0, for all t ∈ [0, 1]},

this cone induces the pointwise order in C([0, 1]). Let x(t) ≡ 2, y(t) = cos (t) + 4 be functions
in C, an example of an order interval in this cone is

[x, y] = {u ∈ C([0, 1]) : 2 ≤ u(t) ≤ cos (t) + 4, for all t ∈ [0, 1]}.

Theorem 2.4.1 Let C be a cone in X. Then the following assertion are equivalent:

1. C is normal;

2. there exists a positive constant δ such that ||x+ y|| ≥ δ, ∀x, y ∈ C, ||x|| = ||y|| = 1;

3. xn ≤ zn ≤ yn, n = 1, 2, . . . and ||xn − x|| → 0, ||yn − x|| → 0 imply ||zn − x|| → 0;

4. every order interval [x, y] = {z ∈ X : x ≤ z ≤ y} is bounded.

Geometrically, from equivalence 1. and 2. we can understand normality as a condition over the
angle between any two unitary vectors x, y ∈ C, it has to be bounded away from π. Roughly
speaking, a normal cone cannot be too large.
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Example 2.4.1 Let AP (R) be the Banach space of almost periodic real functions equipped
with the usual uniform norm, and

P := {x ∈ AP (R) : x(t) ≥ 0,∀t ∈ R}. (2.30)

It is easy to see that the cone P is normal and solid. Indeed, P induces a pointwise order in
AP (R). Let x, y ∈ P , then 0 ≤ x ≤ y is equivalent to 0 ≤ x(t) ≤ y(t) for all t ∈ R, thus
||x||∞ ≤ ||y||∞ and P is normal with constant N = 1. In addition, it is readily verified that

P ◦ = {x ∈ P : ∃ε > 0 such that x(t) ≥ ε, for all t ∈ R} (2.31)

and that x ≡ a ∈ R>0 is an element of P . Hence P is a solid cone.

2.4.2 Fixed points of monotone operators

Definition 2.4.2 Let (X,≤) be an ordered Banach space and let E ⊂ X. An operator
Φ : E ×E → X is called a mixed monotone operator if Φ(x, y) is nondecreasing in x and
nonincreasing in y. An element x̃ ∈ E is called a fixed point of Φ if Φ(x̃, x̃) = x̃.

In Section 7 we shall deal with fixed points of increasing and mixed monotone operators.
Theorems of this type are useful for nonlinear differential and integral equations.

Example 2.4.2 Let X = AP (R) and P ◦ be defined as in (2.31).
Let us consider the following nonlinear nonautonomous delay differential equation, namely,

the production destruction-model with two delays:

x′(t) = f(t, x(t− τ(t)), x(t− µ(t)))− b(t)x(t), (2.32)

where τ(t), µ(t) and b(t) are positive almost periodic functions and f : R × R × R → R is
increasing in the second variable and nonincreasing in the third variable.

Let Φ : P ◦ × P ◦ → P ◦ be the operator defined by:

Φ(x, y)(t) =

∫ t

−∞
e
∫ t
s b(u)duf(s, x(s− τ(s)), y(s− µ(s)))ds.

Due to the monotonicity of the function f(t, x, y) in the variables x and y the nonlinear operator
Φ is mixed monotone in P ◦.

Moreover, if x ∈ P ◦ is a fixed point of the mixed monotone operator Φ then x is a positive
almost periodic solution of (2.32) (see Lemma 6.2.1 in Chapter 6 ). In Section 7 we shall give
criteria to ensure the existence of such fixed points.





Resumen del caṕıtulo 3

Este Caṕıtulo contiene una breve explicación de los dos problemas biológicos que motivaron esta
tesis. Estos son:

El modelo de Wheldon para la leucemia mieloide crónica

dM

dt
=

α

1 + βMn(t− τ)
− λM(t)

1 + µBm(t)
,

dB

dt
= −ωB(t) +

λM(t)

1 + µBm(t)
,

(2.33)

y los planteados por Mackey y Glass para la regulación de la hematopoiesis

dP (t)

dt
=

λθnPm(t− τ)

θn + P n(t− τ)
− γP (t). (2.34)

donde m = 0, 1.
También damos un repaso de los resultados obtenidos por diferentes autores y las general-

izaciones consideradas por ellos. Además, proponemos los siguientes modelos más generales:
Para el modelo de Wheldon (2.33):

dM

dt
=

α(t)M(t)

1 + β(t)Mn(t− τ1)
− λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δp(t)M(t),

dB

dt
= −ω(t)B(t) +

λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t),

(2.35)

y para el modelo de Mackey-Glass (2.34):

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t) (2.36)

Estas generalizaciones serán estudiadas en los Caṕıtulos siguientes.
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Chapter 3

Introduction to the biological models

3.1 Modified Wheldon Model of CML

3.1.1 Background

Chronic myelogenous leukemia (CML) is the cancer of the blood in which too many granulocytes,
a type of white blood cell, are produced in the marrow, and it makes up about 10 to 15 percent
of all leukemias (see, for example, [20, 28, 38, 45, 46]). In 1974 T.E. Wheldon in the paper [60]
(see also [58]) introduced the following model of granulopoiesis (granulocyte production)

dM

dt
=

α

1 + βMn(t− τ)
− λM(t)

1 + µBm(t)
,

dB

dt
= −ωB(t) +

λM(t)

1 + µBm(t)
,

(3.1)

where all parameters are positive constants. In model (3.1), M(t) is the number of cells in the
marrow; B(t) is the number of white blood cells; β is the coupling constant for the cell produc-
tion loop; α is the maximum rate of cell production; λ is the maximum rate of release of mature
cells from marrow; µ is the coupling constant for the release loop; ω is the constant rate for the
loss of granulocytes from blood to tissue; τ represents the mean time for stem cell maturity; n
controls gain of cell production loop and m controls gain of release loop.

However, model (3.1) has a major drawback, i.e., it describes a wrong mechanism. At the
(unique) nontrivial equilibrium point (M∗, B∗) of system (3.1), we have:

ωB∗ =
α

1 + βMn
∗
. (3.2)

Thus, the B-population in the Wheldon model is inversely proportional to the M -population;
the latter does not have any biological explanation.

To reanimate the Wheldon model, we used Wheldon’s remarks in his later work [59] to
introduce a new mechanism:

37
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dM

dt
=

αM(t)

1 + βMn(t− τ1)
− λM(t)

1 + µBm(t− τ2)
,

dB

dt
= −ωB(t) +

λM(t)

1 + µBm(t− τ2)
.

(3.3)

This model creates a time-delay loop triggering stem cell production and a fast loop regulating
release of mature cells in the blood. Studies of the model imply that the oscillatory pattern in
leukemia may be brought forth in two principal ways, either by an increased cell production rate
or by an increased maturation time. Note also that model (3.3) assumes that there is a direct
negative feedback from mature to the precursors of those cells. Time delay τ1 (τ in model (3.1))
represents a mean time for M− cell maturity. A stimulator/inhibitor mechanism is presented
by the second term in both equations, where a time delay τ2 is a lag between when B−cells are
initiated and when an apparent tumor progressed (the latency time) since each cell cycle phase
is dependent on the completion of the previous ones.

Remark 3.1.1 Note that the first term in (3.1) is a decreasing function of M

α

1 + βMn
,

whereas in model (3.3)
αM

1 + βMn

is a one-hump function, resulting in a relationship between stem cells and white blood cells more
realistic than in (3.2):

ωB∗ =
αM∗

1 + βMn
∗
. (3.4)

Exposure to chemoradiation therapy will kill not only cancer cells, but other rapidly dividing
cells in the body as well (e.g. the cells in the bone marrow that go on to become white blood
cells), and will therefore suppress immune system [7]– [9] [20,36,45,50,57]. Note that for a new
model the complete recovery is possible for sufficiently high drug dosage (see Figure below).

It is well recognized that tumor microenvironment changes with time and in response to
treatment. These fluctuations can modulate tumor progression and acquired treatment resis-
tance. Latest clinical studies on periodic hematological diseases suggest oscillations of some
blood elements e.g., leukocytes, platelets, reticulocytes (see, for example, [17,36,38,50]). Hence-
forth, to model changes that develop in the tumor microenvironment over time, we assume model
parameters are time-varying functions.
Thus, to enrich the model we incorporate time-dependent parameters

dM

dt
=

α(t)M(t)

1 + β(t)Mn(t− τ1)
− λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δp(t)M(t),

dB

dt
= −ω(t)B(t) +

λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t),

(3.5)

where p(t) = p(c) and q(t) = q(c) are the varying effectiveness of the drug, and c = c(t) is the
drug concentration at time t. Traditionally, this pharmacokinetic is modeled by linear func-
tions, namely p(c) = αc(t) and g(c) = βc(t) where α and β are the appropriate drug sensitivity
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Figure 3.1: Dynamics before therapy and after therapy.

parameters. Clearly, α = β if the drugs are cycle-non-specific, i.e., they will be equally toxic
to all types of cells. Some types of chemotherapy can be modeled based on a non-monotone
one-humped functions- p(c) = αc(t)e−ac(t) and q(c) = βc(t)e−bc(t). It will be assumed that
α(t), β(t), ω(t), λ(t), µ(t), p(t) and q(t) are continuous, positive and T -periodic functions and
τ1,2 > 0 are fixed delays. The parameter δ is assumed to be 1 or 0 according the presence or
absence of pharmacokinetics. Different and interesting models of CML were recently examined
in [6, 16,28,49].
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3.2 Mackey-Glass model

The following nonlinear autonomous delay differential equation was proposed by Mackey and
Glass [35] to study the regulation of hematopoiesis:

dP (t)

dt
=

λθnP (t− τ)

θn + P n(t− τ)
− γP (t). (3.6)

Here λ, θ, n, γ, τ are positive constants, P (t) is the concentration of cells in the circulating blood
and the flux function f(v) = λθnv

θn+vn
of cells into the blood stream depends on the cell concentra-

tion at an earlier time. The delay τ describes the time between the start of cellular production
in the bone marrow and the release of mature cells into the blood. It is assumed that the cells
are lost at a rate proportional to their concentration, namely γP (t), where γ is the decay rate.
This equation constitutes a model of a ‘dynamic disease’. This type of equation for population
dynamics has attracted the interest of many researchers. Different aspects and properties of
(3.6) have been studied by various authors, see for example [19,22,39].

Most often, the environment varies with time; thus, it is intuitive to assume that this fact in-
fluences many biological dynamical systems and suggests the need of considering time-dependent
parameters. Moreover, as remarked in [10, 31, 47], more realistic models are those in which pe-
riodicity of the environment and time delay play a role (for more details, see e.g. [40]). In view
of this, the following model was proposed in [47]:

x′(t) =
q(t)x(t)

r + xn(t−mT )
− p(t)x(t) (3.7)

where m and n are positive integers, p and q are positive T -periodic functions and the delay
τ := mT is a multiple of the period determined by the environment.

In order to establish a more realistic model, it is convenient to introduce a more general
delay that extends the two above-referred cases. Instead of assuming that the delay is constant
or a multiple of the period of the environment, more general models are obtained by assuming
that the time delay τ is an arbitrary continuous nonnegative T -periodic function depending on
t. The more general equation

x′(t) =
a(t)x(t− τ(t))

1 + xn(t− τ(t))
− b(t)x(t) (3.8)

where a, b and τ are continuous positive T -periodic functions was studied for example in [51–
53, 61, 64]. Different aspects of equation (3.8) have been considered; in particular, existence of
positive T -periodic solutions was proven, in most cases, using appropriate fixed point theorems.
In [61], coincidence degree theory was employed to prove the existence of a positive T -periodic
solution under a condition that can be regarded as a particular application of Theorem 5.2.2,
case (2) below. Moreover, when a(t) = γb(t) for some γ > 0 and when τ, a and b are constant,
the conditions γ > 1 and a > b respectively are both necessary and sufficient for the existence
of positive T -periodic solutions.

The following more general model was studied in [8] and [33]:

x′(t) =
M∑
k=1

rk(t)x
δ(t− gk(t))

1 + xγ(t− gk(t))
− b(t)x(t). (3.9)
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Here, γ is a positive constant and rk, b are positive T -periodic continuous functions. For δ = 1,
existence and uniqueness of positive T -periodic solutions was studied in [8] for the particular case
of constant proportional delays gk ≡ lkT ; moreover, for general continuous, positive T -periodic
gk, attractiveness of some specific positive periodic solutions was studied. For the case δ = 0 and
gk continuous positive and T -periodic, existence and uniqueness of positive T -periodic solutions
of (3.9) was proven in [33] by fixed point methods, provided that one of the following conditions
is satisfied:

(1) γ ≤ 1 or (2) γ > 1 and

(
e
∫ T
0 b(u)du

e
∫ T
0 b(u)du − 1

∫ T

0

M∑
k=1

rk(t)dt

)γ

≤ 1

γ − 1
.

Motivated by the previous discussion, we shall consider the following more general nonlinear
nonautonomous model with several delays

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− µk(t))
− b(t)x(t) (3.10)

where rk(t), b(t), τk(t) and µk(t) are positive and T -periodic functions and λk,mk, nk are positive
constants.

Existence of solutions of (3.10) under appropriate conditions follows from several abstract re-
sults, although multiplicity results are more scarce. For example, in [27] and [64] a Krasnoselskii
type fixed point theorem in cones were employed in order to obtain conditions for the existence
of at least two T -periodic solutions of the general equation

x′(t) = −a(t)x(t) + f(t, x(t− τ1(t)), . . . , x(t− τn(t))). (3.11)

It is observed, however, that these results can be applied only to few particular sub-cases of
(3.10). In such cases, the conclusions are comparable to our results below. Moreover, the
existence of three nonnegative periodic solutions of (3.11) was studied by using Leggett-Williams
fixed point theorem in [5, 42–44]. However, the conditions obtained in [42], as pointed out by
the authors, are very difficult to apply to (3.10) with M = 1,m = 1, τ = µ. Thus, they
established a complementary result with more straightforward conditions that can be applied to
this model. Unfortunately, in [43], the authors observed that this latter result was incorrect. In
section [43, Applications], the hematopoiesis model (3.10) for M = 1, τ = µ was studied. The
conditions obtained by the authors are similar to the ones proposed in Theorem 4.2 (1) below,
although only two of the three T -periodic solutions are positive and the third one is positive if
f(t, 0) is not identically zero. This assumption is very restrictive and clearly not fulfilled in (5.1).
We may also mention the work [66], in which the existence of at least 2n solutions of (3.11) is
proven, although the conditions are not applicable to our model. Moreover, all the mentioned
works do not contemplate the superlinear case of (3.10) (that is, mk > nk + 1 for some k). From
the biological point of view, this makes sense since the nonlinearity is a measure of the cellular
production in the bone marrow, and therefore it should be bounded; however, the superlinear
case is also of mathematical interest in order to obtain a complete picture of the different cases
in (3.10).

A more realistic way to avoid the periodicity conditions consists in considering almost peri-
odic effects. This is interesting for several reasons: on the one hand, these more general effects
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include periodicity and allow more realistic assumptions: for example,time-dependent parame-
ters with different periods. On the other hand, since almost periodicity is more general, a central
mathematical issue relies on the fact that the involved operators are no longer compact. Due
to this fact, the aforementioned methods cannot be extended in a direct way for the almost
periodic problem (see [41], [48]) and other methods must be employed.

For the almost periodic case we shall consider the model (3.10) with a slight modification,
namely:

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t) (3.12)

where rk, b : R→ (0,+∞) and τk : R→ [0,+∞) are almost periodic functions, in addition b(t)
has positive infimum, λk, nk,mk are constants such that λk, nk ∈ (0,+∞) and mk ∈ [0, 1].

In [11,62,63,65] sufficient criteria were established for the existence of positive almost periodic
solutions of (3.12) with m = 0 (monotone decreasing nonlinearity). In [63], a fixed point theorem
was employed to prove the existence and uniqueness of almost periodic solutions under conditions
that can be regarded as particular applications of Theorem 7.1.1 and Theorem 7.1.4 case (a)
below. In [65], using the contraction mapping principle, the authors obtained sufficient criteria
for the existence in a bounded region under the assumption n > 0. However, as pointed out
in [63], Theorem 3.1 in [65] has a mistake, which invalidates the case n ≤ 1. In [55], the authors
proved a fixed point theorem that allows to deduce the existence and uniqueness of positive
almost periodic solutions of (3.12) with M,m = 1 and n > m (single-humped nonlinearity) in a
bounded region.

More recently, using similar methods to those in [11], criteria for existence and uniqueness
were established in [32] when n ≥ m for 0 ≤ m ≤ 1 (sum of single-humped functions when
n > m, or monotone increasing and bounded nonlinearity when n = m).This case was also
considered in [13] by employing a fixed point theorem in a cone. The results obtained for the
several cases treated in [14] by a fixed point theorem can be regarded as particular applications
of Theorems 7.1.1-7.1.2 and Theorem 7.1.4 below.

Besides existence, another relevant matter is to determine whether or not the obtained so-
lutions are stable. In particular, exponential stability is especially important for two reasons:
on the one hand, the rate of convergence is quantified and, on the other hand, it is robust to
perturbations.

For example, in [62] sufficient conditions for the global attractiveness of positive almost
periodic solutions of (3.12) with m = 0 were established as an answer to a question raised by
Gyori and Ladas [24, p.322], although global exponential stability was not discussed. In [63],
Gronwall’s inequality was employed to establish global exponential stability for the case M = 1
and m = 0 under restrictions on the delay. In [11, 65] the case m = 0 and in [32] without the
restriction m = 0, 1 was analysed. However, to the best of our knowledge, the global exponential
stability has not been sufficiently studied when m 6= 0, 1.

It is important to notice that aforementioned authors obtained sufficient conditions for the
existence and uniqueness of almost periodic solutions with positive infimum of (3.12), but only
for the case 0 ≤ mk ≤ 1. In addition, in [13, 14, 32], authors proposed the Open Problem of
extending existence results to the case mk > 1. With that end in mind, our aim is to establish
sufficient existence and nonexistence conditions for a simplified model, namely:
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x′(t) =
M∑
k=1

λkrk(t)
xm(t− τk(t))

1 + xn(t− τk(t)
− b(t)x(t), with m > 1. (3.13)





Resumen del caṕıtulo 4

Uno de nuestros objetivos en este Caṕıtulo es modificar y enriquecer el modelo formulado por
Wheldon (1975) para modelar la dinámica de la leucemia mieloide crónica (LMC). Para ello
incorporamos al modelo el microambiente dependiente del tiempo y la eficacia del fármaco
dependiente del tiempo. El modelo resultante es el siguiente sistema de ecuaciones diferenciales
no lineales no autónomas con retardo:

dM

dt
=

α(t)M(t)

1 + β(t)Mn(t− τ1)
− λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δp(t)M(t),

dB

dt
= −ω(t)B(t) +

λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t),

(3.14)

donde α(t), β(t), λ(t), µ(t) y ω(t) son continuas, positivas y T -periódicas.
Este caṕıtulo está organizado de la siguiente manera:
La primera parte del caṕıtulo, Sección 4.1, está dedicada a estudiar la existencia de solu-

ciones. Vı́a métodos topológicos mostramos bajo qué condiciones el modelo propuesto admite
soluciones positivas y T -periódicas. En la Subsección 4.1.1 damos condiciones suficientes para
la existencia de soluciones positivas y T -periódicas en el caso δ = 0 en (3.14), es decir, sin
presencia de farmacocinética y en la Subsección 4.1.2 para el caso δ = 1, es decir, en presencia
de farmacocinética.

En la segunda parte, Sección 4.2, estudiamos la unicidad o multiplicidad de puntos de equilib-
rio positivos para el caso autónomo y analizamos las posibles propiedades oscilatorias de dichas
soluciones.

Finalmente, en la Sección 4.3 formulamos ciertos problemas abiertos y conjeturas.
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Chapter 4

Wheldon model

Our goal in this chapter is to modify and enrich the Wheldon model (1975) of a chronic myel-
ogenous leukemia (CML) dynamics by introduction of a time-varying microenvironment and
time-dependent drug efficacies. The resulting model is the following nonautonomous nonlinear
system of differential equations with delays:

dM

dt
=

α(t)M(t)

1 + β(t)Mn(t− τ1)
− λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δp(t)M(t),

dB

dt
= −ω(t)B(t) +

λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t),

(4.1)

Throughout the Chapter, it will be assumed that α(t), β(t), ω(t), λ(t), µ(t), p(t) and q(t) are
continuous, positive and T -periodic functions and τ1,2 > 0 are fixed delays. The parameter δ is
assumed to be 1 or 0 according the presence or absence of pharmacokinetics.

Via topological methods, the existence of positive periodic solutions is proven. We introduce
our main insight and formulate some relevant open problems and conjectures.

It is worth noticing that, for the set of nonnegative initial conditions, the solution of problem
(4.1) is globally defined and positive over [0,+∞). Indeed,

Theorem 4.0.1 Let ϕi : [−τi, 0] → [0,+∞) be continuous functions such that ϕi > 0.
Then there exists a unique positive solution of problem (4.1) defined on (0,+∞) under initial
conditions

M(t) = ϕ1(t) − τ1 ≤ t ≤ 0,

B(t) = ϕ2(t) − τ2 ≤ t ≤ 0.

Proof: Set R(t) := lnM(t), then the system becomes

R′(t) =
α(t)

1 + β(t)enR(t−τ1)
− λ(t)

1 + µ(t)Bm(t− τ2)
− δp(t),

B′(t) = −ω(t)B(t) +
λ(t)eR(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t).

(4.2)

Suppose that M(t) and B(t) are defined and positive for t < t0, then from the inequalities
−λ(t) − δp(t) < R′(t) < α(t) it is clear that R(t) is defined up to t0. Moreover, B′(t) < λeR(t)

and hence B(t) is defined in t0. Finally, if B(t0) = 0 then B′(t0) > 0, a contradiction.
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�
In the next section we shall prove, under appropriate conditions, the existence of at least one

positive T -periodic solution: namely, a pair (M,B) of C1 functions satisfying

M(t+ T ) = M(t) > 0, B(t+ T ) = B(t) > 0

for all t ∈ R. In view of the preceding result, one might attempt to define a Poincaré-like
operator in order to apply some fixed point theorem. However, as we remark in Section 2.2 the
conditions for such a procedure seem to be very restrictive; thus we apply, instead, the Leray-
Schauder degree theory [34,37] over an appropriate open subset of CT ×CT , where CT is defined
as in (2.17).

4.1 Existence of periodic solutions

4.1.1 Case 1: No pharmacokinetic

Theorem 4.1.1 Assume that α(t), β(t), λ(t), µ(t) and ω(t) are continuous, positive and T -
periodic. Furthermore, assume that:

1. n > m
m+1

.

2. α(t) > λ(t) > ω(t) for all t.

Then system (4.1) with δ = 0 admits at least one positive T -periodic solution.

Proof: Set u(t) = lnM(t) and v(t) = lnB(t), then (4.1) with δ = 0 reads

u′(t) =
α(t)

1 + β(t)enu(t−τ1)
− λ(t)

1 + µ(t)emv(t−τ2)
:= ψ1(u, v)(t),

v′(t) = −ω(t) +
λ(t)eu(t)−v(t)

1 + µ(t)emv(t−τ2)
:= ψ2(u, v)(t).

In order to prove the existence of T -periodic solutions of this system, we shall apply the con-
tinuation method [37]. Adapted to this case, the method guarantees the existence of solutions,
provided there exists an open bounded set Ω ⊂ CT × CT such that

1. For σ ∈ (0, 1], the system
u′(t) = σψ1(u, v)(t),

v′(t) = σψ2(u, v)(t)

has no T -periodic solutions on ∂Ω.

2. deg(F,Ω ∩ R2, 0) is well defined and different from 0, where the function F : R2 → R2 is
defined by

F (u, v) :=
1

T

∫ T

0

(
α(t)

1 + β(t)enu
− λ(t)

1 + µ(t)emv
,
λ(t)eu−v

1 + µ(t)emv
− ω(t)

)
dt.
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For simplicity, we divide the proof in two steps.

First step: Let Ω0 := (−R,R) × (−R, cR) ⊂ R2, where c is a fixed constant such that 1
m+1

<
c < n

m
. We claim that deg(F,Ω0, 0) = 1 for R > 0 large enough.

Indeed, let us firstly assume that −R ≤ v ≤ cR, then

F1(R, v) =
1

TenR

∫ T

0

α(t)enR

1 + β(t)enR
− λ(t)enR

1 + µ(t)emv
dt.

As nR > mcR, it follows that F1(R, v) ≤ F1(R, cR) < 0 for R� 0. On the other hand,

F1(−R, v) =
1

T

∫ T

0

α(t)

1 + β(t)e−nR
− λ(t)

1 + µ(t)emv
dt ≥ 1

T

∫ T

0

α(t)

1 + β(t)e−nR
dt− λ.

The right-hand side term tends to α − λ as R → +∞; thus, as α(t) > λ(t) for all t, we deduce
that F1(−R, v) > 0 for R� 0.

Next, assume that |u| ≤ R and compute

F2(u, cR) = −ω +
1

T

∫ T

0

λ(t)eu−cR

1 + µ(t)emcR
dt ≤ −ω +

1

T

∫ T

0

λ(t)e(1−c)R

1 + µ(t)emcR
dt→ −ω

as R→ +∞ since c(m+ 1) > 1, and

F2(u,−R) = −ω +
1

T

∫ T

0

λ(t)eu+R

1 + µ(t)e−mR
dt ≥ −ω +

1

T

∫ T

0

λ(t)

1 + µ(t)e−mR
dt.

Here, the right-hand side term tends to λ − ω as R → +∞. This quantity is positive since
λ(t) > ω(t) for all t, so we conclude that F2(u, cR) < 0 < F2(u,−R) for R � 0. Thus, we may
define the homotopy

H(u, v, σ) := σF (u, v)− (1− σ)(u, v),

which does not vanish on ∂Ω0. It follows that deg(F,Ω0, 0) = deg(−Id,Ω0, 0) = (−1)2 = 1.

Remark 4.1.1 As a consequence, it is deduced that F vanishes in Ω0. In particular, when
α, β, λ and µ are positive constants we deduce that the system has a positive equilibrium, as it
shall be proven in section 4.2 by direct computation.

Second step: Let

Ω := {(u, v) ∈ CT × CT : ‖u‖∞ < R,−R < v(t) < cR for all t}.

We claim that if R is large enough then the T -periodic solutions of the system

u′(t) = σψ1(u, v)(t),

v′(t) = σψ2(u, v)(t)

with 0 < σ ≤ 1 do not belong to ∂Ω.
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Indeed, suppose firstly that umax = R > vmax

c
and take ξ ∈ [0, T ] is such that umax = u(ξ).

From the first equation of the system we obtain

α(ξ)

1 + β(ξ)enu(ξ−τ1)
=

λ(ξ)

1 + µ(ξ)emv(ξ−τ2)
>

λ(ξ)

1 + µ(ξ)emcR
.

Moreover, observe that u′(t) > −λ(t) for all t, so by periodicity we deduce that

u(ξ − τ1)−R ≥ −
∫ kT+ξ−τ1

ξ

λ(t) dt ≥ −
∫ T

0

λ(t) dt := −C1

where k is the first natural number such that kT > τ1. It follows that

α(ξ) > λ(ξ)
1 + β(ξ)enu(ξ−τ1)

1 + µ(ξ)emcR
> λ(ξ)

1 + β(ξ)en(R−C1)

1 + µ(ξ)emcR
.

The right-hand side of this inequality tends uniformly to +∞ as R → +∞. Now assume that
vmax = cR ≥ cumax, then take η ∈ [0, T ] such that v(η) = vmax and deduce, from the second
equation of the system:

ω(η) =
λ(η)eu(η)−v(η)

1 + µ(η)emv(η−τ2)
≤ λ(η)e(1−c)R

1 + µ(η)emv(η−τ2)
.

As before, from the inequality v′(t) ≥ −ω(t) it is seen that

v(η − τ2)− cR ≥ −
∫ lT+η−τ2

η

ω(t) dt ≥ −
∫ T

0

ω(t) dt := −C2,

where l is the first natural number such that lT > τ2. This implies

ω(η) ≤ λ(η)e(1−c)R

1 + µ(η)em(cR−C2)
→ 0

uniformly as R→ +∞. We conclude that umax and vmax cannot be arbitrarily large.
Next, suppose that umin = −R < vmin and ξ ∈ [0, T ] be such that umin = u(ξ). As before,

α(ξ)

1 + β(ξ)enu(ξ−τ1)
=

λ(ξ)

1 + µ(ξ)emv(ξ−τ2)
<

λ(ξ)

1 + µ(ξ)e−mR

and hence

α(ξ) < λ(ξ)
1 + β(ξ)enu(ξ−τ1)

1 + µ(ξ)e−mR
.

As u(ξ − τ1) ≤ −R +
∫ ξ
ξ−τ1 λ(t) dt, the right-hand side of the last inequality tends uniformly to

λ(ξ) as R→ +∞. In the same way, if v(η) = vmin = −R ≤ umin, then it is seen that

ω(η) ≥ λ(η)

1 + µ(η)emv(η−τ2)
→ λ(η)

uniformly as R→ +∞. As α(t) > λ(t) > ω(t) for all t, we deduce that R cannot be arbitrarily
large and the claim is proven.

�
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4.1.2 Case 2: With pharmacokinetic

Theorem 4.1.2 Assume that α(t), β(t), λ(t), µ(t), ω(t), p(t) and q(t) are positive and T -
periodic. Furthermore, assume that:

α(t)− p(t) > λ(t) > ω(t) + q(t)

for all t. Then system (4.1) with δ = 1 admits at least one positive T -periodic solution.

Proof: We shall follow the general outline of the previous proof. As before, set u(t) = lnM(t)
and v(t) = lnB(t), then the model with δ = 1 reads

u′(t) =
α(t)

1 + β(t)enu(t−τ1)
− λ(t)

1 + µ(t)emv(t−τ2)
− p(t) := ψp,q1 (u, v)(t),

v′(t) = −ω(t) +
λ(t)eu(t)−v(t)

1 + µ(t)emv(t−τ2)
− q(t) := ψp,q2 (u, v)(t).

For the first step, let us consider now F p,q : R2 → R2 given by

F p,q(u, v) := F (u, v)− (p, q)

with F as in the previous proof. First, assume that |v| ≤ R. Then

F p,q
1 (R, v) =

1

T

∫ T

0

α(t)

1 + β(t)enR
− λ(t)

1 + µ(t)emv
dt− p < 0

for R� 0. On the other hand,

F p,q
1 (−R, v) =

1

T

∫ T

0

α(t)

1 + β(t)e−nR
− λ(t)

1 + µ(t)emv
dt− p

≥ 1

T

∫ T

0

α(t)

1 + β(t)e−nR
dt− λ− p.

The last term tends to α − λ − p as R → +∞; thus, as α(t) > λ(t) + p(t) for all t, we deduce
that F p,q

1 (−R, v) > 0 for R� 0.
Next, assume that |u| ≤ R and compute

F p,q
2 (u,R) ≤

∫ T

0

λ(t)

1 + µ(t)emR
dt− ω − q < 0

for R� 0 and

F p,q
2 (u,−R) ≥ 1

T

∫ T

0

λ(t)

1 + µ(t)e−mR
dt− ω − q.

Here, the right-hand side term tends to λ− ω − q as R → +∞. This quantity is positive since
λ(t) > ω(t) + q(t) for all t, so we conclude that F p,q

2 (u,R) < 0 < F p,q
2 (u,−R) for R � 0. As in

the previous proof, we conclude that deg(F p,q, (−R,R)2, 0) = 1.
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For the second step, set

Ω := {(u(t), v(t)) ∈ CT × CT : ‖u‖∞ < R, ‖v‖∞ < R}.

As before, we claim that if R is large enough then the T -periodic solutions of the system

u′(t) = σψp,q1 (u, v)(t),

v′(t) = σψp,q2 (u, v)(t)

with 0 < σ ≤ 1 do not belong to ∂Ω. Indeed, suppose firstly that umax = R > vmax, then take
ξ ∈ [0, T ] is such that umax = u(ξ) and from the first equation we obtain

α(ξ)

1 + β(ξ)enu(ξ−τ1)
>

λ(ξ)

1 + µ(ξ)emR
+ p(ξ).

As before, using now the fact that u′(t) > −λ(t)− p(t) for all t we deduce that

u(ξ − τ1)−R ≥ −
∫ T

0

[λ(t) + p(t)] dt := −Cp,q
1 .

It follows that
α(ξ)

p(ξ)
> 1 + β(ξ)enu(ξ−τ1) ≥ 1 + β(ξ)en(R−Cp,q1 )

and hence R cannot be arbitrarily large. On the other hand, assume that umax ≤ vmax = R,
then take η ∈ [0, T ] such that v(η) = vmax and deduce, from the second equation of the system,
that

ω(η) + q(η) ≤ λ(η)

1 + µ(η)emv(η−τ2)

and, from the inequality v′(t) ≥ −ω(t)− q(t), that

v(η − τ2)−R ≥ −
∫ T

0

[ω(t) + q(t)] dt := −Cp,q
2 .

This implies

ω(η) + q(η) ≤ λ(η)

1 + µ(η)em(R−Cp,q2 )
→ 0

uniformly as R→ +∞. We conclude that umax and vmax cannot be arbitrarily large.
Next, suppose that umin = −R < vmin and ξ ∈ [0, T ] be such that umin = u(ξ). As before, it

follows that
α(ξ)

1 + β(ξ)enu(ξ−τ1)
<

λ(ξ)

1 + µ(ξ)e−mR
+ p(ξ)

and hence

α(ξ) <

(
λ(ξ)

1 + µ(ξ)e−mR
+ p(ξ)

)(
1 + β(ξ)enu(ξ−τ1)

)
.

Thus, the right-hand side of the last inequality tends uniformly to λ(ξ) + p(ξ) as R→ +∞. In
the same way, if v(η) = vmin = −R ≤ umin, then

ω(η) + q(η) ≥ λ(η)

1 + µ(η)emv(η−τ2)
→ λ(η)

uniformly as R → +∞. As α(t) − p(t) > λ(t) > ω(t) + q(t) for all t, we deduce that R cannot
be arbitrarily large and the proof is complete. �



4.2. SOME REMARKS ABOUT EQUILIBRIUM POINTS 53

4.2 Some remarks about equilibrium points

In this section, we briefly discuss the uniqueness or multiplicity of positive equilibrium points for
the autonomous case and make some comments on possible oscillation properties of the solutions.

With this aim, assume that all the parameters of (4.1) are constant, then the existence of at
least one positive equilibrium (M∗, B∗) is easily shown, provided that

n > (1− δ) m

m+ 1
, α > λ− δp.

Indeed, consider the system
α

1+βMn = λ
1+µBm

+ δp,

(ω + δq)B = λM
1+µBm

(4.3)

and let

c(B) :=
B(1 + µBm)(ω + δq)

λ
.

Then (4.3) has at least a positive solution if and only if the function ϕ : [0,+∞)→ R given by

ϕ(B) :=
α

1 + βc(B)n
− λ

1 + µBm
− δp

has at least a positive root. This is easily verified, since

ϕ(0) = α− λ− δp > 0

and
lim

B→+∞
ϕ(B) = −δp.

Thus, the result follows for δ = 1. When δ = 0, condition n > m
m+1

implies ϕ(B) < 0 for B � 0
and so completes the proof.

It is worth noticing that the number of equilibria depends on the parameters of the system.
Although more precise computations are possible, we shall not pursue a detailed analysis here
and restrict ourselves to some elementary comments. Consider, for instance, the case δ = 0,
then

B∗ =
αM

ω(1 + βMn)
.

Calling z = 1 + βMn, we obtain the following equation for z:

z =
α

λ
+ r

[
n
√
z − 1

z

]m
:= ψ(z),

where r = αm+1µ
ωmβm/nλ

. The function z − ψ(z) is negative for z = 1 and, as n > m
m+1

, tends to +∞
as z → +∞. Next, we compute

ψ′(z) =
rm(z − 1)

m−n
n

nzm+1
[n− (n− 1)z],
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ψ′′(z) =
rm(z − 1)

m−2n
n

nzm+2
[az2 + bz + c],

where

a =
n− 1

n
[n+m(n− 1)], b = −2[n+m(n− 1)], c = (m+ 1)n.

In particular, ψ vanishes at most twice in (1,+∞), which implies that the system cannot have
more than 3 positive equilibrium points.

When n 6= 1, the quadratic az2 + bz + c has two different real roots, namely

R± =
n

n− 1

(
1± 1√

n+m(n− 1)

)
.

Let us prove, in the first place, that the positive equilibrium is unique when m ≤ n. This is
immediate for m < n, since the function z−ψ(z) is strictly decreasing near 1, and ψ′′ vanish at
most once in (1,+∞). When m = n, there are two different cases:

• If n ≤ 1, then ψ′′ does not vanish in (1,+∞).

• If n > 1, then direct computation shows that the equation ψ′(z) = 1 has at most one
solution in (1,+∞).

In both cases, the function z − ψ(z) has at most one critical point in (1,+∞) and the claim
follows.

The situation is different when m > n: for instance, if r is large enough then there are 3
positive equilibria, provided that α

λ
is sufficiently close to 1. Indeed, we may set, for example,

R > 1 as the largest root of the quadratic function az2 + bz + c, namely

R =


m+1

2
if n = 1,

R− if n < 1,
R+ if n > 1,

with R± as before. Next, consider the function g(z) = z − ψ(z) + α
λ
− 1 and fix r such that

r > Rm

(R−1)
m−n
n

. Then g(R) < 0 and, as g(1) = 0 and g′(1) = 1, it is seen that g has exactly one

zero in (1, R) and another one in (R,+∞). Now let

ε = max
1≤z≤R

g(z),

then the function z − ψ(z) has 3 zeros when α
λ
< 1 + ε.

In view of the previous example, a natural question arises: is it possible to find a sharp set of
sufficient conditions for the uniqueness of the positive equilibrium when m > n? For example,
a sufficient condition when n ≤ 1 is

α

λ
≥ R

with R as before: indeed, in this case ψ′(z) > 0 in (1,+∞), so ψ(z) > z in [1, R] and ψ′′ does
not vanish after R, so the equation ψ′(z) = 1 has at most one solution in (R,+∞).



4.2. SOME REMARKS ABOUT EQUILIBRIUM POINTS 55

When n > 1, a sufficient condition for uniqueness of the positive equilibrium is:

α

λ
≥ n

n− 1
.

Indeed, in this case ψ strictly increases up to z = n
n−1

and strictly decreases after that point.

As ψ(z) > z on
(
1, n

n−1

)
it follows that the equation ψ(z) = z has exactly one solution. Observe

that R > n
n−1

, so the previous condition is sharper than the condition α
λ
≥ R.

Also, it is worth noticing that, in all cases, if r is small then the equilibrium is unique. More
precisely, for n ≤ 1 the function ψ′ is positive and achieves its absolute maximum at z = R;
thus, a sufficient condition for uniqueness is:

ψ′(R) < 1. (4.4)

For n > 1, the function ψ′ achieves its absolute maximum at z = R− > 1. This yields the
sufficient condition

ψ′(R−) < 1. (4.5)

Conditions (4.4) and (4.5) are obviously satisfied when a is small.

The presence of delays yields also an interesting matter about the oscillation properties of
the autonomous model. This is an interesting field of research that can be the object of a future
work; here, we shall only prove some behavior that might indicate the presence of oscillation.

In more precise terms, we set a positive equilibrium (M∗, B∗) as the center of coordinates
and denote by Qj the j-th quadrant, namely

Q1 := {(M,B) : M > M∗, B > B∗},

Q2 := {(M,B) : M < M∗, B > B∗},

Q3 := {(M,B) : M < M∗, B < B∗},

Q4 := {(M,B) : M > M∗, B < B∗}.

We shall prove that, under appropriate conditions, if a non-constant positive solution starts in
Q2 or Q4 then it cannot remain there for all t.

Proposition 4.2.1 Let τ1 >
(1+βMn

∗ )2

nαβMn
∗

and assume that there are no equilibrium points in

Q4. Then there exists a sequence tn → +∞ such that, for all n, M(tn) < M∗ or B(tn) > B∗.

Proposition 4.2.2 Let τ1 >
(1+βMn

∗ )2

nαβMn
∗

and assume that there are no equilibrium points in

Q2. Then there exists a sequence tn → +∞ such that, for all n, M(tn) > M∗ or B(tn) < B∗.

In other words, a non-constant positive solution starting at Q2 or Q4 might abandon the respec-
tive quadrant and never return, or it might eventually come back but then it leaves the quadrant
again and so on.

Lemma 4.2.1 Assume that R(t1 − τ1) ≥ R(t2 − τ1) and B(t1 − τ2) ≤ B(t2 − τ2), at least
one of the inequalities being strict. If R(t1) ≥ R(t2) and B(t1) ≤ B(t2), at least one of the
inequalities being strict, then R′(t1) < R′(t2) and B′(t1) > B′(t2).
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Proof: It suffices to observe that the right hand side of the first equation of (4.2) is strictly
decreasing in the variables R(t − τ1) and strictly increasing in the variable B(t − τ2), and the
right hand side of the second equation of (4.2) is strictly increasing in the variable R(t) and
strictly decreasing in the variables B(t) and B(t−τ2). Then R′(t1) < R′(t2) and B′(t1) > B′(t2).
�

Remark 4.2.1 As in the previous Lemma 4.2.1, it is easily seen that if R(t) > R∗ := ln(M∗)
for t ∈ [t0−τ1, t1) and B(t) < B∗ for all t ∈ [t0−τ2, t1) then R′(t) < 0 < B′(t) for all t ∈ [t0, t1]. If
R(t1) = R∗ or B(t1) = B∗, then there exists η > 0 such that (R(t), B(t)) /∈ Q4 for t ∈ (t1, t1 +η).
On the other hand, if R(t) > R∗ for all t ≥ t0 − τ1 and B(t) < B∗ for all t ≥ t0 − τ2 then
R′(t) < 0 < B′(t) for all t ≥ t0 and, if there are no equilibrium points in Q4, then R(t) → R∗
and B(t)→ B∗.

Proof of Proposition 4.2.1: Suppose that M(t) > M∗ for all t ≥ t0− τ1 and B(t) < B∗ for all
t ≥ t0 − τ2. A simple computation shows that

R′(t) = −A(R(t− τ1)−R∗)− C(B∗ −B(t− τ2)),

with

A = A(R(t), R(t− τ1)) :=
αβ(enR∗ − enR(t−τ1))

(1 + βenR(t−τ1))(1 + βenR∗)(R∗ −R(t− τ1))
> 0,

C = C(B(t), B(t− τ2)) :=
λµ(Bm

∗ −Bm(t− τ2))

(1 + µBm
∗ )(1 + µBm(t− τ2))(B∗ −B(t− τ2))

> 0,

A(R(t), R(t− τ1))→ nαβenR∗

(1 + βenR∗)2
as t→ +∞

and

C(B(t), B(t− τ2))→ λµmBm−1
∗

(1 + µBm
∗ )2

as t→ +∞.

Moreover,

R(t− τ1)−R∗ = R(t− τ1)−R(t) +R(t)−R∗ = −τ1R
′(θ) +R(t)−R∗

for some mean value θ ∈ (t − τ1, t). From Lemma 4.2.1 with t1 = θ and t2 = t, it follows that
R′(θ) < R′(t).

Thus,

R′(t) < −A(R(t)−R∗)− C(B∗ −B(t− τ2)) + τ1AR
′(t).

Observe that the hypothesis says that τ1 >
(1+βenR∗ )2

nαβenR∗
. Without loss of generality, we may assume

that t0 is large enough so that τ1A(R(t), R(t− τ1)) > 1, then

(τ1A− 1)R′(t) > A(R(t)−R∗) + C(B∗ −B(t− τ2)) > 0,

a contradiction.
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4.3 Open Problems

We outline some problems that might be of interest for scientists who plan to start future research
in this field.

1. Use Lyapunov-like functionals to find sufficient conditions for the global stability of a
non-trivial equilibrium of the autonomous model.

2. Prove or disprove that for a new model the complete recovery is possible for sufficiently
high drug dosage; examine permanence, persistence and extinction of the solutions.

3. Define the required type, frequency and intensity of the cancer treatment that switch
unfavorable oscillatory dynamics of a system to a non-oscillatory state.





Resumen del caṕıtulo 5

En este Caṕıtulo nuestro objetivo principal es establecer criterios suficientes para garantizar,
por un lado, la existencia de soluciones positivas T -periódicas de

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− µk(t))
− b(t)x(t) (4.6)

donde rk(t), b(t), τk(t) y µk(t) son funciones postivas y T -periódicas y λk,mk, nk son constantes
positivas y, por otro lado, obtener condiciones suficientes para la multiplicidad de soluciones.
Usando teoŕıa de grado, obtenemos un conjunto de condiciones naturales y simples de verificar
para la existencia de una o más soluciones. Más aun, en algunos casos también obtenemos
condiciones necesarias para la existencia de soluciones positivas y T -periódicas.

Para simplificar algunos cálculos, consideramos y(t) := ln(x(t)) y transformamos (5.1) en la
siguiente ecuación equivalente

y′(t) =
M∑
k=1

λkrk(t)
emky(t−τk(t))−y(t)

1 + enky(t−µk(t))
− b(t). (4.7)

Este cambio de variables no solo simplifica ciertos cálculos si no que también asegura que toda
solución y(t) de (4.7) es una solución positiva de (4.6).

Este Caṕıtulo está organizado de la siguiente manera:
En la Sección 5.1 introducimos resultados preliminares y notación que serán usados durante

todo el Caṕıtulo.
En la Sección 5.2 por medio del Teorema 5.1.1 probamos la existencia de soluciones T -

periódicas positivas para los diferentes casos de nolinealidades del modelo.
En la Sección 5.3, damos condiciones suficientes para la existencia de 2, 3 o 4 soluciones

T -periódicas positivas.
En la Sección 5.4 presentamos un ejemplo de (4.6) con al menos 6 soluciones T -periódicas

positivas.
En la Sección 5.5 establecemos condiciones necesarias para la existencia de soluciones T -

periódicas positivas. Más precisamente, establecemos condiciones que son incompatibles con
aquellas obtenidas en los resultados de existencia y tales que implican que todas las soluciones
positivas tienden a 0 cuando t→ +∞ y, en consecuencia, no pueden ser periódicas.

Finalmente, en la Sección 5.6 damos nuestras conclusiones y conjeturas.
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Chapter 5

Mackey-Glass model: Periodic case

Our goal in this Chapter is to establish sufficient criteria to guarantee, on the one hand, the
existence of positive T -periodic solutions of

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− µk(t))
− b(t)x(t) (5.1)

where rk(t), b(t), τk(t) and µk(t) are positive and T -periodic functions and λk,mk, nk are posi-
tive constants and, on the other hand, obtain sufficient conditions for the multiplicity of such
solutions. Using the degree theory, we shall obtain a set of natural and easy-to-verify conditions
for the existence of one or more solutions. Moreover, in some cases we shall also find necessary
conditions for the existence of positive periodic solutions. More precisely, we shall establish con-
ditions that are incompatible with the ones obtained for the existence results and which imply
that all positive solutions tend to 0 as t→ +∞.

5.1 Preliminaries.

Throughout this Chapter we shall follow the notation given in Chapter 2 Section 2.2.5.
In order to simplify some computations, we set y(t) := ln(x(t)) and transform (5.1) into the

equivalent equation

y′(t) =
M∑
k=1

λkrk(t)
emky(t−τk(t))−y(t)

1 + enky(t−µk(t))
− b(t). (5.2)

Finally we define, for convenience, the function φ : R→ R by

φ(γ) :=
M∑
k=1

λkrk
e(mk−1)γ

1 + enkγ
− b. (5.3)

The proof of our results shall be based on the continuation method. Specifically, we shall
apply the following existence theorem, which can be directly deduced from Theorem 2.2.4 in
Chapter 2.

Theorem 5.1.1 Assume there exist constants γ1 < γ2 such that
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1. If y ∈ cl(Xγ2
γ1

) satisfies

y′(t) = σ

(
M∑
k=1

λkrk(t)
emky(t−τk(t))−y(t)

1 + enky(t−µk(t))
− b(t)

)
(5.4)

for some σ ∈ (0, 1), then y ∈ Xγ2
γ1

.

2. φ(γ1)φ(γ2) < 0.

Then (5.2) has at least one solution in Xγ2
γ1

.

Roughly speaking, if φ has different signs at both ends of some interval [γ1, γ2] ⊂ R then
the continuation theorem guarantees the existence of a T -periodic solution y of (5.2) such that
y(t) ∈ (γ1, γ2) for all t. However, the first condition of Theorem 5.1.1 requires, in some sense,
that the sign of φ does not change too fast.

The main part of our analysis shall be based on a study of the behavior of φ. For a proof of
the existence of at least one solution it suffices, in most cases, to consider its behavior at ±∞;
for the multiplicity results, a more careful study is needed, in order to find intervals of positivity
and negativity of φ that are sufficiently large, so the conditions of the continuation theorem can
be fulfilled. With this end in mind, we shall consider the sets

M1 := {k : 0 < mk < 1}, M2 := {k : mk = 1}, M3 := {k : 1 < mk < nk + 1}

M4 := {k : mk = nk + 1}, M5 := {k : mk > nk + 1}

and the mappings

φi(γ) :=
∑
k∈Mi

λkrk
e(mk−1)γ

1 + enkγ
, (5.5)

so we may write φ(γ) =
∑5

i=1 φi(γ) − b. For notation convenience, we also define B := Tb =∫ T
0
b(t) dt.
This setting proves to be useful, since the limits limγ→±∞ φi(γ) are easy to compute and,

moreover, φi(γ) is strictly monotone for i 6= 3 and a sum of one-hump functions for i = 3. Thus,
the behavior of φ can be understood by studying the interaction of these different terms.

5.2 Existence of positive T -periodic solutions.

In order to present our existence results in a more comprehensive way, we shall consider three
different cases: the superlinear case (mk > nk + 1 for some k ), the sublinear case (mk < nk + 1
for all k) and the asymptotically linear case (mk ≤ nk + 1 for all k and mj = nj + 1 for some j).
We give a detailed proof only of the first result, since the other two follow similarly.

Theorem 5.2.1 Assume mj > nj + 1 for some j. Furthermore, assume that one of the
following conditions is fulfilled:

1. mk > 1 for all k.



5.2. EXISTENCE OF POSITIVE T -PERIODIC SOLUTIONS. 63

2. mk ≥ 1 for all k, mi = 1 for some i and
∑

k∈M2
λkrk(t)e

B < b(t) for all t.

3. mi < 1 for some i and
∑M

k=1 λkrk(t)
e(mk−1)γ1emkB

1+enkγ1
< b(t) for all t and some constant γ1.

Then (5.1) admits at least one positive T -periodic solution.

Theorem 5.2.2 Assume mk < nk + 1 for all k. Furthermore, assume that one of the
following conditions is fulfilled:

1. mi < 1 for some i.

2. mk ≥ 1 for all k, mi = 1 for some i and
∑

k∈M2
λkrk(t) > b(t) for all t.

3. mk > 1 for all k and
M∑
k=1

λkrk(t)
e(mk−1)γ1

1 + enk(γ1+B)
> b(t)

for all t and some arbitrary constant γ1.

Then (5.1) admits at least one positive T -periodic solution.

Theorem 5.2.3 Assume mk ≤ nk + 1 for all k and mj = nj + 1 for some j. Furthermore,
assume that one of the following conditions is fulfilled:

1. mk > 1 for all k and
∑

k∈M4
λkrk(t)e

−Bmk > b(t) for all t.

2. mk ≥ 1 for all k, mi = 1 for some i,
∑

k∈M4
λkrk(t)e

−Bmk > b(t) and
∑

k∈M2
λkrk(t)e

B <
b(t) for all t.

3. 0 < mi < 1 for some i and
∑

mk∈M4
λkrk(t)e

Bnk < b(t) for all t.

Then (5.1) admits at least one positive T -periodic solution.

Proof of Theorem 5.2.1: Let y be a T -periodic solution of (5.4) with 0 < σ < 1, then y′(t) ≥
−b(t) and hence y(t1) − y(t2) ≤

∫ T
0
b(t)dt for any t1 ≤ t2 ≤ t1 + T . This implies, since y(t) is

T -periodic, that ymax− ymin ≤
∫ T

0
b(t)dt = B. Moreover, since mk > nk + 1 for some k it follows

that φ(γ) > 0 when γ is large enough. Assume that ymax is achieved at some value t∗, that is
y(t∗) = ymax , then y′(t∗) = 0. Hence from (5.4) we deduce, since σ > 0,

b(t∗)eymax =
M∑
k=1

λkrk(t
∗)

emky(t∗−τk(t∗))

1 + enky(t∗−µk(t∗))

≥
M∑
k=1

λkrk(t
∗)
emk(ymax−B)

1 + enkymax

and consequently

b(t∗) ≥
M∑
k=1

λkrk(t
∗)
e(mk−1)ymaxe−Bmk

1 + enkymax
.

Again, since mk > nk + 1 for some k we deduce that ymax cannot be too large. Thus, we may
fix γ2 � 0 such that ymax < γ2 for every y ∈ CT satisfying (5.4) and φ(γ2) > 0. In a similar
fashion, we look for γ1 < γ2 such that φ(γ1) < 0 and ymin > γ1.
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Case 1: mk > 1 for all k. Here
φ(γ)→ −b as γ → −∞.

Let y ∈ CT be a solution of (5.4) and fix t∗ such that y(t∗) = ymin, then

b(t∗) ≤
M∑
k=1

λkrk(t∗)
e(mk−1)ymineBmk

1 + enkymin

Suppose that ymin = γ1, then

b(t∗) ≤
M∑
k=1

λkrk(t)
e(mk−1)γ1+Bmk

1 + enkγ1
.

The right-hand side of the latter inequality tends to zero as γ1 → −∞. We deduce that
ymin cannot take arbitrarily large negative values; hence, it suffices to take γ1 � 0.

Case 2. mk ≥ 1 for all k and mj = 1 for some j. In this case,

φ(γ)→
∑
k∈M2

λkrk − b <
∑
k∈M2

λkrke
B − b < 0

as γ → −∞. On the other hand, if y ∈ CT satisfies (5.4) then

b(t∗) ≤
M∑
k=1

λkrk(t∗)
e(mk−1)ymin+Bmk

1 + enkymin

=
∑
k∈M3

λkrk(t∗)e
Bmk

e(mk−1)ymin

1 + enkymin
+
∑
k∈M2

λkrk(t∗)
eB

1 + enkymin

and, again, we deduce that ymin cannot take too large negative values. Thus, it suffices to
take γ1 � 0.

Case 3. mk < 1 for some k. From the hypothesis,

φ(γ1) =
M∑
k=1

λkrk
e(mk−1)γ1

1 + enkγ1
− b ≤

M∑
k=1

λkrk
e(mk−1)γ1eBmk

1 + enkγ1
− b < 0.

Moreover, if ymin is achieved at some value t∗, then

b(t∗) ≤
M∑
k=1

λkrk(t∗)
e(mk−1)ymineBmk

1 + enkymin
.

We conclude that ymin > γ1.

�

Remark 5.2.1 It is easy to verify that the second condition in Theorem 5.2.3 can be replaced
by

2′. mk ≥ 1 for all k,mi = 1 for some i,
∑

k∈M4
λkrk(t)e

Bnk < b(t) and
∑

k∈M2
λkrk(t) >

b(t) for all t.
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5.3 Multiplicity

In this section, we shall employ Theorem 5.1.1 in order to prove the existence of multiple
solutions. It is worth noticing that, when φ is monotone, it changes sign at most once and
the method cannot be applied. On the other hand, when φ is non-monotone, it is not enough to
obtain intervals of positivity and negativity: as mentioned, it is required that φ does not change
sign too fast. For a more detailed analysis, the following functions shall be helpful:

α(γ, t) :=
M∑
k=1

λkrk(t)
e(mk−1)γe−Bmk

1 + enk(γ+B)
− b(t)

β(γ, t) :=
M∑
k=1

λkrk(t)
e(mk−1)γeBmk

1 + enk(γ−B)
− b(t)

As before, our results shall be presented in three different theorems, for the superlinear,
sublinear and asymptotically linear cases.

Theorem 5.3.1 Assume that mj > nj + 1 for some j.

1. Let mk > 1 for all k and 1 < mi < ni+1 for some i. Assume there exist constants γ1 < γ2

such that
α(γ1, t) > 0 > β(γ2, t) for all t.

Then (5.1) admits at least 3 positive T -periodic solutions.

2. Let mk ≥ 1 for all k, mi = 1 for some i, mk /∈ (1, nk + 1) for all k. Assume that∑
k∈M2

λkrk(t) > b(t) for all t

and there exists γ1 such that
β(γ1, t) < 0 for all t.

Then (5.1) admits at least 2 positive T -periodic solutions.

3. Let mk ≥ 1 for all k, mi = 1 for some i and 1 < ms < ns + 1 for some s. Assume that∑
k∈M2

λkrk(t)e
B < b(t) for all t

and there exist constants γ1 < γ2 such that

α(γ1, t) > 0 > β(γ2, t) for all t.

Then (5.1) admits at least 3 positive T -periodic solutions.

4. Let mi < 1 for some i, mk /∈ (1, nk + 1) for all k. Assume

β(γ1, t) < 0 for all t and some constant γ1.

Then (5.1) admits at least 2 positive T -periodic solutions.
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5. Let mi < 1 for some i, 1 < ms < ns + 1 for some s. Assume there exist some constants
γ1 < γ2 < γ3 such that

α(γ2, t) > 0 > β(γi, t) for all t,

for i = 1, 3. Then (5.1) admits at least 4 positive T -periodic solutions.

Theorem 5.3.2 Assume that mk < nk + 1 for all k.

1. Let mk > 1 for all k and assume there exists a constant γ1 such that

α(γ1, t) > 0 for all t.

Then (5.1) admits at least 2 positive T -periodic solutions.

2. Let mk ≥ 1 for all k, mi = 1, mj > 1 for some i, j. Assume that∑
k∈M2

λkrk(t)e
B < b(t) for all t

and there exists a constant γ1 such that

α(γ1, t) > 0 for all t.

Then (5.1) admits at least 2 positive T -periodic solutions.

3. Let 0 < mi < 1, mj > 1 for some i, j. Assume there exist some constants γ1 < γ2 such
that

α(γ2, t) > 0 > β(γ1, t) for all t.

Then (5.1) admits at least 3 solutions.

Theorem 5.3.3 Assume that mk ≤ nk + 1 for all k and mj = nj + 1 for some j.

1. Let mk > 1 for all k and 1 < mi < ni + 1 for some i. Assume that∑
k∈M4

λkrk(t)e
Bnk < b(t) for all t

and there exists a constant γ1 such that

α(γ1, t) > 0 for all t.

Then (5.1) admits at least 2 positive T -periodic solutions.

2. Let 0 < mi < 1 for some i, mk /∈ (1, nk + 1) for all k. Assume that∑
k∈M4

λkrk(t)e
−Bmk > b(t) for all t

and there exists γ1 such that

β(γ1, t) < 0 for all t.

Then (5.1) admits at least 2 positive T -periodic solutions.
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3. Let 0 < mi < 1 and 1 < ms < ns + 1 for some i, s. Assume that∑
k∈M4

λkrk(t)e
Bnk < b(t)

and there exist constants γ1 < γ2 such that

α(γ2, t) > 0 > β(γ1, t) for all t.

Then (5.1) has at least 3 positive T -periodic solutions.

As before, we shall only prove the first case of Theorem 5.3.1, since all the remaining cases
follow in an analogous way.

Proof of Theorem 5.3.1, case 1: We shall apply Theorem 5.1.1 on open bounded sets Xγ1
γ0

, Xγ2
γ1

and Xγ3
γ2

, with γ0 < γ1 and γ3 > γ2 to be determined. To begin, observe that

φ(γ)→ −b as γ → −∞

and

φ(γ)→ +∞ as γ → +∞.

In the same way of Theorem 5.2.1 it is proven that, if γ0 � 0 then there exists y ∈ Xγ1
γ0

solution of (5.2).
On the other hand, for all t it is seen that

φ(γ1) > α(γ1, t) > 0.

Moreover, if y ∈ cl(Xγ2
γ1

) is a solution of (5.4) with 0 < σ < 1 and ymin = y(t∗), then

b(t∗)e
ymin =

M∑
k=1

λkrk(t∗)
emky(t∗−τk(t∗))

1 + enky(t∗−µk(t∗))

>
M∑
k=1

λkrk(t∗)
emkymin

1 + enk(ymin+B)
>

M∑
k=1

λkrk(t∗)
emkymine−Bmk

1 + enk(ymin+B)
.

It follows that ymin 6= γ1.
Furthermore,

φ(γ2) < β(γ2, t) < 0

for all t and we deduce as before that ymax 6= γ2.
Finally, the existence of γ3 � 0 such that the problem has a solution y ∈ Xγ3

γ2
follows as in

Theorem 5.2.1. �

The following lemma shows, in the context of Theorem 5.3.1 (case 1), that if rk,mk and nk
are given, then it is possible to find parameters λk such that assumptions are fulfilled. Analogous
arguments are valid for the remaining cases.
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Lemma 5.3.1 Let rk, b : R→ R>0 be continuous and T -periodic functions and mk, nk ∈ R>0

such that mk > 1 for all k, 1 < mj < nj + 1 for some j, mi > ni + 1 for some i. Then there
exist λk and γ1 < γ2 such that

α(γ1, t) > 0 > β(γ2, t) for all t.

Proof: Using the sets Mi as before, we may write α and β as

α(γ, t) =
5∑
i=1

αi(γ, t)− b(t), β(γ, t) =
5∑
i=1

βi(γ, t)− b(t),

where

αi(γ, t) :=
∑
k∈Mi

λkrk(t)
e(mk−1)γe−Bmk

1 + enk(γ+B)
, βi(γ, t) :=

∑
k∈Mi

λkrk(t)
e(mk−1)γeBmk

1 + enk(γ−B)
.

Observe that, for each t ∈ [0, T ] and i = 1, . . . , 5, the functions αi(·, t) and βi(·, t) have the same
qualitative behavior as the mappings φi given by (5.5).

We begin by setting the parameters λk ∈ M3. For arbitrary γ1, take λk ∈ M3 large enough
such that

α(γ1, t) ≥
∑
k∈M3

λkrk(t)
e(mk−1)γ1e−Bmk

1 + enk(γ1+B)
− b(t) > 0.

For ε ∈ (0, bmin), there exists R > γ1 such that

β3(γ, t) =
∑
k∈M3

λkrk(t)
e(mk−1)γeBmk

1 + enk(γ−B)
<
∑
k∈M3

λkr
max
k

e(mk−1)γeBmk

1 + enk(γ−B)
< ε

for γ > R and all t. Thus, we may fix γ2 > R and proceed with the remaining parameters.
Next, for k ∈M4 ∪M5 we set λk small enough so that∑

k∈M4∪M5

λk(rk)max
e(mk−1)γ2eBmk

1 + enk(γ2−B)
< bmin − 2ε

and hence

(β4 + β5)(γ2, t) =
∑

k∈M4∪M5

λkrk(t)
e(mk−1)γ2eBmk

1 + enk(γ2−B)
< bmin − 2ε < b(t)− 2ε.

Thus the conclusion follows since

β(γ2, t) = (β3 + β4 + β5)(γ2, t)− b(t) < ε− 2ε < 0

and
α(γ1, t) = (α3 + α4 + α5)(γ1, t)− b(t)

> α3(γ1, t)− b(t) > 0

�
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5.4 Example

As shown in Theorem 5.3.1, case 5, equation (5.1) has at least 4 positive T -periodic solutions.
The following example shows that, in fact, the problem may have more solutions. Consider:

• k = 4,

• b(t) = 1.1 + 0.02cos (2πt
T

),

• T = 0.005, m1 = 0.95, n1 = 2,

• λ1r1(t) = 0.04 + 0.002cos (2πt
T

),

• m2 = 4.73, n2 = 3.74,

• λ2r2(t) = 1.3 + 0.002cos (2πt
T

),

• m3 = 1.0001, n3 = 10.2,

• λ3r3(t) = 0.9 + 0.002cos (2πt
T

),

• m4 = 1.12, n4 = 0.11,

• λ4r4(t) = 0.06 + 0.002cos (2πt
T

).

Set γ1 = −5, γ2 = −0.3 γ3 = 0.2, γ4 = 5, γ5 = 34. It is verified (see Figure 1) that

α(γ2, t) > 0.09, α(γ4, t) > 0.1 for all t

and
β(γ1, t) < −0.08, β(γ3, t) < −0.01, β(γ5, t) < −0.01 for all t.

Moreover, since 0 < m1 = 0.95 < 1 and m4 = 1.12 > n4 + 1 = 1.11, it follows that

lim
γ→−∞

φ(γ) = lim
γ→+∞

φ(γ) = +∞.

Thus, as in the previous proofs, we may set γ0 � 0 and γ6 � 0 in such a way that the problem
has a solution in X

γk+1
γk for k = 0, . . . , 5. We conclude that (5.1) has at least six positive 0.005-

periodic solutions for arbitrary nonnegative 0.005-periodic delays τk, µk.
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Figure 5.1: α(·, t) and β(·, t) for each t ∈ [0 : 0.01 : T ].

5.5 Necessary conditions

In this section we shall prove that, under certain assumptions, the trivial equilibrium is a global
attractor for the positive solutions of (5.1). This proves, in particular, that positive T -periodic
solutions cannot exist. As we shall see at the end of the section, both in the case that mj < 1
for some j and the superlinear case, the autonomous problem admits positive equilibrium points
and hence 0 cannot be a global attractor for the positive solutions. Hence, we shall consider
only the case 1 ≤ mk ≤ nk + 1 for all k and, thus, our non-existence result can be regarded, in
some sense, as complementary to Theorem 5.2.2 (cases 2 and 3) and Theorem 5.2.3 (cases 1 and
2).

Throughout this section we shall assume that µk(t) ≤ τk(t). For convenience, we define
υ := max1≤k≤M,t∈R {τk(t)}

Remark 5.5.1 Let be y(t) a solution of (5.2). Then

y′(t) ≥ −b(t)

and hence y(t1) ≤ y(t2) +
∫ t2
t1
b(t)dt for any t1 ≤ t2. In particular, this implies that

y(t− τk(t)), y(t− µk(t)) ≤ L+ y(t), (5.6)

where L = maxt∈[0,T ]

∫ t
t−υ b(s)ds and

y(t− τk(t)) ≤ y(t− µk(t)) +Bk, (5.7)

where Bk = maxt∈[0,T ]

∫ t−µk(t)

t−τk(t)
b(s)ds.

Theorem 5.5.1 Let 1 ≤ mk ≤ nk + 1 for all k. Assume that

M∑
k=1

λkrk(t)e
mkBk ≤ b(t). (5.8)

Then every positive solution of (5.1) tends to 0 as t→ +∞. In particular (5.1) has no positive
T -periodic solutions.
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Proof: We shall prove that every solution of (5.2) tends to −∞ as t→ +∞. To this end, let y be
a solution of (5.2) and suppose firstly that there exists a sequence {tj}j∈N such that tj ↗ +∞,
y′(tj) ≥ 0, and y(t) < y(tj) for all t1 − υ ≤ t < tj. It follows from (5.7)-(5.8) that

0 ≤ y′(tj) ≤
M∑
k=1

λkrk(tj)e
mkBk

emky(tj−µk(tj))−y(tj)

1 + enky(tj−µk(tj))
− b(tj)

and hence

0 ≤
M∑
k=1

λkrk(tj)e
mkBkey(tj−µk(tj))−y(tj) − b(tj)

<

M∑
k=1

λkrk(tj)e
mkBk − b(tj) ≤ 0,

a contradiction. We conclude that, on the one hand y′ cannot be nonnegative on (t0,+∞) and,
on the other hand, for any t0 and lim supt→+∞ y(t) := ω1 6= +∞. Thus, we may consider the
two possible cases:

Case I: There exists t0 > 0 large enough such that y′(t) ≤ 0 for all t ≥ t0. It follows that
y(t) → α ∈ [−∞,+∞) as t → +∞ and we claim that α = −∞. Indeed, otherwise we may
define

V := min
t∈[0,T ]

{
M∑
k=1

λkrk(t)

(
1− e(mk−1)α

1 + enkα

)}
> 0,

and choose an arbitrary ε > 0 small enough such that
∑M

k=1 λkrk(t)ε <
V
2

for all t. Fix t1 ≥ t0

such that emky(t−τk(t))−y(t)

1+enky(t−µk(t))
< e(mk−1)α

1+enkα
+ ε for all t ≥ t1, then from (5.8) we deduce:

y′(t) =
M∑
k=1

λkrk(t)
emky(t−τk(t))−y(t)

1 + enky(t−µk(t))
− b(t)

≤
M∑
k=1

λkrk(t)

(
e(mk−1)α

1 + enkα
+ ε

)
− b(t)

<
M∑
k=1

λkrk(t)e
mkBk

(
e(mk−1)α

1 + enkα
− 1

)
+
V

2

< −V
2

a contradiction.
Case II. y(t) is oscillatory. Suppose that lim supt→+∞ y(t) > −∞, then we may set {tj}j∈N
such that tj ↗ +∞, y′(tj) = 0 , limj→+∞ y(tj) = lim supt→+∞ y(t) = ω1 ∈ R. Define
lim supj→+∞ y(tj − µk(tj)) := ω2 ≤ ω1.

If ω2 = −∞, then

0 = y′(tj) ≤
M∑
k=1

λkrk(tj)
emk(Bk+y(tj−µk(tj)))−y(tj)

1 + enky(tj−µk(tj))
− b(tj)
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thus,

b(tj)e
y(tj) ≤

M∑
k=1

λkrk(tj)e
mkBkey(tj−µk(tj)).

Next, take a large enough constant S > 0. For j � 0, we obtain:

b(tj)e
y(tj) ≤

M∑
k=1

λkrk(tj)e
mkBke−S

and hence

bmine
ω1−ε ≤

M∑
k=1

λkrk(tj)e
mkBke−S.

This contradicts the fact that ω1 ∈ R. Now suppose ω2 ∈ R, then

b(tj)e
y(tj) ≤

M∑
k=1

λkrk(tj)e
mkBkey(tj−µk(tj)).

Let ε > 0, for j large enough,

b(tj)e
y(tj) ≤

M∑
k=1

λkrk(tj)e
mkBkeω2+ε

then

b(tj)e
ω1−ε ≤

M∑
k=1

λkrk(tj)e
mkBkeω2+ε

eω1−ε ≤ eω2+ε

Since ε is arbitrary we deduce that ω1 = ω2. Finally, define V > 0 as in the previous case, with
α = ω1 = ω2 and fix ε > 0 such that

∑M
k=1 λkrk(tj)e

mkBkε < V
2

. As before, we deduce that
y′(tj) < −V

2
, a contradiction.

�
As a final remark, let us show that both in the case mj < 1 for some j and the superlinear

case, the autonomous problem admits positive equilibrium points. Indeed, assume that b and rk
are constant and

∑M
k=1 λkrk ≤ b. Let f : R→ R be given by f(u) =

∑M
k=1 λkrk

e(mk−1)y

1+enky
− b; then

it suffices to prove that f has at least one zero. For the superlinear case (namely, mj > nj + 1
for some j), it is seen that

f(0) =
M∑
k=1

λkrk
1

2
− b <

M∑
k=1

λkrk − b ≤ 0

and
lim

u→+∞
f(u) = +∞

so f vanishes in (0,+∞). If mi ≤ ni + 1 for all i and mj < 1 for some j, then we deduce as
before that f(0) < 0 and

lim
u→−∞

f(u) = +∞.

Thus, f vanishes in (−∞, 0) and the conclusion follows.



5.6. CONCLUSIONS 73

5.6 Conclusions

By applying a theorem based on the continuation method, the results given in this Chapter
provide sufficient conditions for existence and multiplicity of positive periodic solutions for a
generalized hematopoiesis model.

It is observed that, in some particular cases, our methods guarantee the existence but not
multiplicity of solutions. However, this fact does not automatically imply uniqueness; thus, it is
an interesting problem to analyze, for such cases, whether or not uniqueness of positive periodic
solutions can be proved.

We shall resume this topic in the next chapter.





Resumen del caṕıtulo 6

La primera parte de este Caṕıtulo está dedicada a la formulación de teoremas de punto fijo,
primero en conos abstractos y luego en el cono de las funciones casi periódicas no negativas.
Luego planteamos distintos modelos abstractos y de los resultados de punto fijo deducimos
teoremas de existencia en el espacio de funciones casi periódicas.

El Caṕıtulo está organizado de la siguiente manera:
En la Sección 6.1 damos un Teorema de punto fijo para operadores monótonos mixtos en

conos abstractos. Luego hacemos una modificación de este teorema considerando el cono de
funciones casi periódicas no negativas.

En la Sección 6.2 estudiamos ecuaciones abstractas del tipo

x′(t) =
M∑
k=1

Fk(t, x(t− τk(t))) +
N∑
k=1

Gk(t, x(t− µk(t)))− b(t)x(t). (5.9)

Consideramos τk, µk y b ∈ AP (R), b es una función con ı́nfimo positivo, τk y µk son no negativas,
Fk, Gk pertenecen a la clase u.a.p y Fk(t, ·), Gk(t, ·),

∣∣
R>0
⊂ R>0 para todo t ∈ R. Además

suponemos que Fk son funcions crecientes y Gk decrecientes.
Para estas ecuaciones adaptamos los teoremas obtenidos en la Sección previa y obtenemos

criterios simples de verificar para la existencia de soluciones positivas casi periódicas.
En la Sección 6.3 damos Ejemplos de modelos biológicos que ilustran la aplicabilidad de

nuestros resultados. Espećıficamente, empleamos los teoremas de la Sección previa para probar
la existencia de soluciones casi periódicas con ı́nfimo positivo para el modelo de Nicholson:

x′(t) =
M∑
k=1

pk(t)x(t− τk(t))ex(t−τk(t)) − b(t)x(t), δ = 0, 1, (5.10)

y para un modelo de tipo Lasota-Wasewska

x′(t) =
M∑
k=1

ck(t)e
−βk(t)x(t−τk(t)) − b(t)x(t). (5.11)
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Chapter 6

Fixed point theorems in abstract cones

In this Chapter we shall formulate fixed point theorems in cones. Then, we shall deduce existence
theorems in the space of almost periodic functions.

Motivated by the biological applications we shall provide some examples which, in addition,
shall illustrate the applicability of our results.

The following notation shall be used throughout this Chapter. The supremum value and the
infimum value of a bounded continuous function f : R→ R shall be denoted respectively by f ∗

and f∗, namely

f ∗ := sup
t∈R

f(t), f∗ := inf
t∈R

f(t). (6.1)

6.1 Fixed point theorems

The following fixed point theorems shall play an important role in Chapter 7.

Theorem 6.1.1 Let P be a normal cone in a real Banach space X, and Φ : P ◦×P ◦ → P ◦.
Assume that

(I) there exist u0, v0 ∈ P ◦, u0 ≤ v0, u0 ≤ Φ(u0, v0) and v0 ≥ Φ(v0, u0);

(II) Φ is a mixed monotone operator on [u0, v0];

(III) there exists a function φ : (0, 1) → (0,+∞) such that φ(γ) > γ for all γ ∈ (0, 1), and for
any x, y ∈ [u0, v0]

Φ(γx, γ−1y) ≥ φ(γ)Φ(x, y), for all γ ∈ (0, 1).

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0, y0 ∈ [u0, v0], the iterative sequences

xn = Φ(xn−1, yn−1), yn = Φ(yn−1, xn−1), n ∈ N, (6.2)

satisfy
||xn − x̃||, ||yn − x̃|| → 0 (n→ +∞).

77



78 CHAPTER 6. FIXED POINT THEOREMS IN ABSTRACT CONES

Proof: For n ∈ N, define un := Φ(un−1, vn−1) and vn := Φ(vn−1, un−1). Since Φ is a mixed
monotone operator, by (I) we deduce

u0 ≤ u1 = Φ(u0, v0) ≤ Φ(v0, u0) = v1 ≤ v0,

and inductively we obtain

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0. (6.3)

Since P ◦ is a open set and un ∈ P ◦, there exists a constant δ > 0 such that un − λvn ∈ P ◦ for
any λ ∈ (0, δ). Thus, the constant λn := sup{λ : un ≥ λvn} is well defined and positive. It is
clear that

un ≥ λnvn (6.4)

and the inequality un ≤ vn implies λn ≤ 1. Moreover, since un+1 ≥ un ≥ λnvn ≥ λnvn+1, it
is seen that λn+1 ≥ λn. We claim that λ := limn→+∞ λn = 1. Indeed, if this is not true then
λ ∈ (0, 1) and there are two cases:

Case 1. There exists n such that λn = λ. Then λn = λ, un ≥ λvn for all n > n which, together
with (II), (III) and (6.3), yields

un+1 = Φ(un, vn) ≥ Φ(λvn, λ
−1
un) ≥ φ(λ)Φ(vn, un) = φ(λ)vn+1.

Thus λn+1 ≥ φ(λ) > λ, which contradicts the fact that λn+1 = λ.

Case 2. λn < λ, for all n. Then

un+1 = Φ(un, vn) ≥ Φ
(
λnvn, λ

−1
n un

)
= Φ

(
λn

λ
λvn,

λ

λn
λ
−1
un

)

≥ φ

(
λn

λ

)
Φ
(
λvn, λ

−1
un

)
>
λn

λ
φ
(
λ
)

Φ(vn, un) ≥ λn

λ
φ
(
λ
)
vn+1.

Thus λn+1 ≥ λn
λ
φ
(
λ
)
. Letting n→∞, we deduce that λ ≥ φ

(
λ
)
> λ, a contradiction.

Hence λ = 1 and from (6.3)-(6.4) it follows that, for any k,

0 ≤ un+k − un ≤ vn − un ≤ vn − λnvn = (1− λn)vn ≤ (1− λn)v0. (6.5)

By the normality of P and (6.5),

||un+k − un|| ≤ N(1− λn)||v0|| → 0 as n→∞.

Thus, {un}n∈N is a Cauchy sequence. This implies that there exists u ∈ [u0, v0] such that un → u.
Similarly,

0 ≤ vn − un ≤ vn − λnvn = (1− λn)vn ≤ (1− λn)v0.

Again, by the normality of P

||vn − un|| ≤ N(1− λn)||v0|| → 0 as n→∞,
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and consequently vn → u. Hence, since Φ is a mixed monotone operator on [u0, v0], it follows
that

un+1 = Φ(un, vn) ≤ Φ(u, u) ≤ Φ(vn, un) = vn+1.

We conclude that u = Φ(u, u).
Suppose now that w ∈ [u0, v0] is another fixed point of Φ. Define α := sup{α̃ ∈ (0, 1) : α̃w ≤

u ≤ 1
α̃
w}. Thus, αw ≤ u ≤ α−1w and α ∈ (0, 1]. Suppose that α ∈ (0, 1), then φ(α) > α,

u = Φ(u, u) ≤ Φ(
1

α
w, αw) ≤ φ(α)−1Φ(w,w) = φ(α)−1w,

and

u = Φ(u, u) ≥ Φ(αw,
1

α
w) ≥ φ(α)Φ(w,w) = φ(α)w.

Thus, by the definition of α we have φ(α) ≤ α, which is a contradiction. We conclude that
α = 1 and therefore w = u.

Finally, let be (x0, y0) any initial condition in [u0, v0] × [u0, v0] and (xn, yn) the iterative
sequences given by (6.2). Since Φ is a mixed monotone operator, we have

u1 = Φ(u0, v0) ≤ x1 = Φ(x0, y0) ≤ Φ(v0, u0) = v1

and
u1 = Φ(u0, v0) ≤ y1 = Φ(y0, x0) ≤ Φ(v0, u0) = v1,

and inductively we obtain xn, yn ∈ [un, vn]. Thus, it is clear that

||xn − x̃||, ||yn − x̃|| → 0 as n→ +∞.

The proof is complete. �

Corollary 6.1.1 Let P be a normal cone in a real Banach space X, and Φ : P ◦ → P ◦.
Assume that

(I) there exist u0, v0 ∈ P ◦, u0 ≤ v0, u0 ≤ Φ(u0) and v0 ≥ Φ(v0);

(II) Φ is a nondecreasing operator on [u0, v0];

(III) there exists a function φ : (0, 1) → (0,+∞) such that φ(γ) > γ for all γ ∈ (0, 1), and for
any x ∈ [u0, v0]

Φ(γx) ≥ φ(γ)Φ(x), for all γ ∈ (0, 1).

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0 ∈ [u0, v0], the iterative sequence

xn = Φ(xn−1), n ∈ N, (6.6)

satisfies
||xn − x̃|| → 0 (n→ +∞).
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Corollary 6.1.2 Let P be a normal cone in a real Banach space X, and Φ : P ◦ → P ◦.
Assume that

(I) there exist u0, v0 ∈ P ◦, u0 ≤ v0, u0 ≤ Φ(v0) and v0 ≥ Φ(u0);

(II) Φ is a nonincreasing operator on [u0, v0];

(III) there exists a function φ : (0, 1) → (0,+∞) such that φ(γ) > γ for all γ ∈ (0, 1), and for
any x ∈ [u0, v0]

Φ(γ−1x) ≥ φ(γ)Φ(x), for all γ ∈ (0, 1).

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0 ∈ [u0, v0], the iterative sequence

xn = Φ(xn−1), n ∈ N, (6.7)

satisfies

||xn − x̃|| → 0 (n→ +∞).

Remark 6.1.1 It is worth noticing that Corollaries 6.1.1 and 6.1.2 are the same result
as those fixed point theorems established by Wang et al. in [55] and [54] respectively. Hence,
Theorem 6.1.1 generalizes both results.

We establish the following abstract fixed point Lemma as a consequence of Theorem 6.1.1.
This Lemma shall be the key for the study of the simplified model of hematopoiesis in Chapter
7. We include a proof for the sake of completeness.

Let us now consider the cone

P = {x ∈ AP (R) : x(t) ≥ 0 for all t ∈ R}

and

P ◦ = {x ∈ AP (R) : x has positive infimum }

its interior.

Lemma 6.1.1 Assume that the following conditions are fulfilled

(I) there exist u0, v0 ∈ P ◦ , u0 < v0 and

Φ :

[
(u0)∗
v∗0

u0, v0

]
×
[
u0,

v∗0
(u0)∗

v0

]
⊂ P ◦ × P ◦ → P ◦;

(II) u0 ≤ Φ(u0, v0) and v0 ≥ Φ(v0, u0);

(III) Φ is a mixed monotone operator on [u0, v0];
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(IV) there exists a function φ :
[

(u0)∗
v∗0

, 1
)
→ (0,+∞) such that φ(γ) > γ, for any x, y ∈ [u0, v0]

Φ(γx, γ−1y) ≥ φ(γ)Φ(x, y), for all γ ∈
[

(u0)∗
v∗0

, 1

)
.

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0, y0 ∈ [u0, v0], the iterative sequences

xn = Φ(xn−1, yn−1), yn = Φ(yn−1, xn−1), n ∈ N,

satisfy
||xn − x̃||, ||yn − x̃|| → 0 (n→ +∞). (6.8)

Proof: For n ∈ N, define un := Φ(un−1, vn−1) and vn := Φ(vn−1, un−1). Since Φ is a mixed
monotone operator, by (I) we deduce

u0 ≤ u1 = Φ(u0, v0) ≤ Φ(v0, u0) = v1 ≤ v0,

and inductively we obtain

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0. (6.9)

Since P ◦ is a open set and un ∈ P ◦, there exists a constant δ > 0 such that un − λvn ∈ P ◦ for
any λ ∈ (0, δ). Thus, the constant λn := sup{λ : un ≥ λvn} is well defined and

un ≥ λnvn. (6.10)

Moreover, since un+1 ≥ un ≥ λnvn ≥ λnvn+1, it is seen that λn+1 ≥ λn and inductively we obtain

λ0 ≤ λ1 ≤ · · · ≤ λn ≤ · · · ≤ 1.

Thus, in view of the inequality λ0 ≥ (u0)∗
v∗0

we deduce that (u0)∗
v∗0
≤ λn ≤ 1.

Let us define λ := limn→+∞ λn. Firstly, it is important to notice that,

(u0)∗
v∗0

u0 ≤ λu0 ≤ λvn ≤ v0 ≤
v∗0

(u0)∗
v0

and
(u0)∗
v∗0

u0 ≤ u0 ≤ λ
−1
u0 ≤ λ

−1
un ≤

v∗0
(u0)∗

v0.

Now, we claim that λ = 1. Indeed, if this is not true then λ < 1 and there are two cases:

Case 1. There exists n such that λn = λ. Then λn = λ, un ≥ λvn for all n > n which, together
with (II), (III) and (6.9), yields

un+1 = Φ(un, vn) ≥ Φ(λvn, λ
−1
un) ≥ φ(λ)Φ(vn, un) = φ(λ)vn+1.

Thus λn+1 ≥ φ(λ) > λ, which contradicts the fact that λn+1 = λ.
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Case 2. λn < λ, for all n. Then

un+1 = Φ(un, vn) ≥ Φ
(
λnvn, λ

−1
n un

)
= Φ

(
λn

λ
λvn,

λ

λn
λ
−1
un

)

≥ φ

(
λn

λ

)
Φ
(
λvn, λ

−1
un

)
>
λn

λ
φ
(
λ
)

Φ(vn, un) ≥ λn

λ
φ
(
λ
)
vn+1.

Thus λn+1 ≥ λn
λ
φ
(
λ
)
. Letting n→∞, we deduce that λ ≥ φ

(
λ
)
> λ, a contradiction.

Hence λ = 1 and from (6.9)-(6.10) it follows that, for any k,

0 ≤ un+k − un ≤ vn − un ≤ vn − λnvn = (1− λn)vn ≤ (1− λn)v0. (6.11)

By the normality of P and (6.5), there exists u ∈ [u0, v0] such that un → u. In addition,

0 ≤ vn − un ≤ vn − λnvn = (1− λn)vn ≤ (1− λn)v0,

and again, by the normality of P

||vn − un|| ≤ N(1− λn)||v0||.

Thus, we have vn → u as n→∞.
Since Φ is a mixed monotone operator on [u0, v0], we conclude that u = Φ(u, u).
Suppose now that w ∈ [u0, v0] is another fixed point of Φ. Define α := sup{α̃ ∈ (0, 1) : α̃w ≤

u ≤ α̃−1w}. Since u,w have positive infimum, α is well defined. Thus, αw ≤ u ≤ α−1w and

α ∈
[

(u0)∗
v∗0

, 1
]
. Suppose that α ∈

[
(u0)∗
v∗0

, 1
)

, then φ(α) > α,

u = Φ(u, u) ≤ Φ(
1

α
w, αw) ≤ φ(α)−1Φ(w,w) = φ(α)−1w,

and

u = Φ(u, u) ≥ Φ(αw,
1

α
w) ≥ φ(α)Φ(w,w) = φ(α)w.

Thus, by the definition of α we have φ(α) ≤ α, which is a contradiction. We conclude that
α = 1 and therefore w = u.

Finally, (6.8) follows from the same arguments to those employed in Theorem 6.1.1. The
proof is complete. �

As before, we have the following Corollaries.

Corollary 6.1.3 Assume that the following conditions are fulfilled

(I) there exist u0, v0 ∈ P ◦ , u0 < v0 and Φ :
[

(u0)∗
v∗0

u0, v0

]
⊂ P ◦ → P ◦;

(II) u0 ≤ Φ(u0) and v0 ≥ Φ(v0);

(III) Φ is a nondecreasing operator on [u0, v0];
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(IV ) there exists a function φ :
[

(u0)∗
v∗0

, 1
)
→ (0,+∞) such that φ(γ) > γ, and for any x ∈ [u0, v0]

Φ(γx) ≥ φ(γ)Φ(x), for all γ ∈
[

(u0)∗
v∗0

, 1

)
.

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0 ∈ [u0, v0], the iterative sequence

xn = Φ(xn−1), n ∈ N, (6.12)

satisfies
||xn − x̃|| → 0 (n→ +∞).

Corollary 6.1.4 Assume that the following conditions are fulfilled

(I) there exist u0, v0 ∈ P ◦ , u0 < v0 and Φ :
[
u0,

v∗0
(u0)∗

v0

]
⊂ P ◦ → P ◦;

(II) u0 ≤ Φ(v0) and v0 ≥ Φ(u0);

(III) Φ is a nonincreasing operator on [u0, v0];

(IV ) there exists a function φ :
[

(u0)∗
v∗0

, 1
)
→ (0,+∞) such that φ(γ) > γ, and for any x ∈ [u0, v0]

Φ(γ−1x) ≥ φ(γ)Φ(x), for all γ ∈
[

(u0)∗
v∗0

, 1

)
.

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0 ∈ [u0, v0], the iterative sequence

xn = Φ(xn−1), n ∈ N, (6.13)

satisfies
||xn − x̃|| → 0 (n→ +∞).

Remark 6.1.2 It is worth noticing that, both in Theorem 6.1.1 and Lemma 6.1.1, function
φ need not be continuous.

6.2 Almost periodic solutions of general equations

It is important here to recall the different Definitions and properties we studied in Chapter 2
Subsection 2.3.2 as we are going to refer to them often in this Section.

Let us consider the following abstract problems:

x′(t) =
M∑
k=1

Fk(t, x(t− τk(t))) +
N∑
k=1

Gk(t, x(t− µk(t)))− b(t)x(t), (6.14)
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x′(t) =
M∑
k=1

Fk(t, x(t− τk(t)))− b(t)x(t) (6.15)

and

x′(t) =
N∑
k=1

Gk(t, x(t− µk(t)))− b(t)x(t). (6.16)

We assume that τk, µk and b ∈ AP (R), b has positive infimum, τk and µk are nonnegative,
Fk, Gk are in the class u.a.p and Fk(t, ·), Gk(t, ·)

∣∣
R>0
⊂ R>0 for all t ∈ R. In addition, Fk are

nondecreasing and Gk are nonincreasing functions.
Let us first of all prove the following Lemma, which give us a integral formula for the almost

periodic solutions of (6.14).

Lemma 6.2.1 Let x(t) be a bounded solution of

x′(t) =
R∑
k=1

pk(t, x(t− τk(t)))− b(t)x(t) (6.17)

x(t) = ϕ(t), if t ∈ [t0 − ν, t0) (6.18)

with ν = supt∈R{τk(t) : k = 1, · · · , R}. Then for t1 ≥ t0

x(t) = x(t1)e
−

∫ t
t1
b(u)du

+

∫ t

t1

e−
∫ t
s b(u)du

R∑
k=1

pk(s, x(s− τk(s)))ds.

Moreover, if x(t) is globally defined, then

x(t) =

∫ t

−∞
e−

∫ t
s b(u)du

R∑
k=1

pk(s, x(s− τk(s)))ds.

Proof: From (6.17) we have:(
x(t)e

∫ t
t0
b(u)du

)′
= x′(t)e

∫ t
t0
b(u)du

+ x(t)e
∫ t
t0
b(u)du

b(t)

= e
∫ t
t0
b(u)du

R∑
k=1

pk(t, x(t− τk(t)))

and integrating from t1 to t we obtain

x(t)e
∫ t
t0
b(u)du

= x(t1)e
∫ t1
t0
b(u)du +

∫ t

t1

e
∫ s
t0
b(u)du

R∑
k=1

pk(s, x(s− τk(s)))ds

and then,

x(t) = x(t1)e
−

∫ t
t1
b(u)du

+

∫ t

t1

e−
∫ t
s b(u)du

R∑
k=1

pk(s, x(s− τk(s)))ds.
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In addition, if x(t) is defined on the whole real line and, taking the limit on the right-hand side
of the equality we deduce that

x(t) =

∫ t

−∞
e−

∫ t
s b(u)du

R∑
k=1

pk(s, x(s− τk(s)))ds.

The proof is complete. �

Let Fk, Gk, τk, µk and b defined as before. Define the operators Φ, Φ̃ and Φ̄ given by

Φ(x, y)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

[
M∑
k=1

Fk(s, x(s− τk(s))) +
N∑
k=1

Gk(s, y(s− µk(s)))

]
ds, (6.19)

Φ(x)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

[
M∑
k=1

Fk(s, x(s− τk(s)))

]
ds (6.20)

and

Φ(y)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

[
N∑
k=1

Gk(s, y(s− µk(s)))

]
ds. (6.21)

We consider the natural inclusion R ⊂ AP (R) and define the mapping A : R × R → R as
follows. Let xa ∈ AP (R) be the constant function defined by xa(t) = a for all t. Thus we may
set the following functions which shall be useful in Section 6.3 and Chapter 7, namely

A(u, v) := Φ(xu, yv) =

∫ t

−∞
e−

∫ t
s b(u)du

[
M∑
k=1

Fk(s, u) +
N∑
k=1

Gk(s, v)

]
ds, (6.22)

B(u) := Φ(xu, yv) =

∫ t

−∞
e−

∫ t
s b(u)du

[
M∑
k=1

Fk(s, u)

]
ds. (6.23)

and

C(v) := Φ(xu, yv) =

∫ t

−∞
e−

∫ t
s b(u)du

[
N∑
k=1

Gk(s, v)

]
ds. (6.24)

We establish the following existence theorem:

Theorem 6.2.1 Assume there exists constants 0 < u0 < v0 such that

(I) A(u0, v0) ≥ u0 and A(v0, u0) ≤ v0;

(II) Fk(t, ·) is nondecreasing in
[
u20
v0
, v0

]
and strictly concave in [0, v0] for all k = 1, . . . ,M ;

(III) 1
Gk(t,·) is nondecreasing in

[
u0,

v20
u0

]
and concave in [0,

v20
u0

] for all k = 1, . . . , N ;

(IV ) inft∈R Fk(·, x) > 0 and inft∈RGk(·, x) > 0, for all x ∈
[
u20
v0
,
v20
u0

]
.

Then (6.14) has a unique almost periodic solution u0 ≤ x(t) ≤ v0.
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Proof: First observe that by continuity of Fk(t, ·) and Gk(t, ·) we may assume that Fk(t, 0) ≥ 0
for k = 1, · · · ,M and Gk(t, 0) > 0 for k = 1, · · · , N .

In the setting of Lemma 6.1.1 we have that

Φ(u0, v0) = A(u0, v0) ≥ u0 and Φ(v0, u0) = A(u0, v0) ≤ v0.

Due to the monotonicity of the functions Fk(t, ·) and Gk(t, ·), the nonlinear operator Φ is

monotone mixed in [u0, v0]. For simplicity denote I × J =
[
u20
v0
, v0

]
×
[
u0,

v20
u0

]
. Let us prove that

Φ(I × J) ⊂ P ◦. For (x, y) ∈ I × J we have

Φ(x, y)(t) ≥
∫ t

−∞
e−b

∗(t−s)

[
M∑
k=1

inf
t∈R

Fk

(
t,
u2

0

v0

)
+

N∑
k=1

inf
t∈R

Gk

(
t,
v2

0

u0

)]
ds

which, in view of assumption (IV ), shows that

Φ(x, y)(t) ≥
M∑
k=1

inft∈R Fk

(
t,
u20
v0

)
b∗

+
N∑
k=1

inft∈RGk

(
t,
v20
u0

)
b∗

= ε̃ > 0.

In addition, by Lemma 2.3.2 and Theorem 2.3.2 it follows that Φ(x, y) ∈ AP (R). Thus, the

inclusion Φ(I × J) ⊂ P ◦ is satisfied. Moreover, for all x, y ∈ [u0, v0] and γ ∈
[
u0
v0
, 1
)

, in view of

assumption (IV ) we have

Φ(γx, γ−1y)(t) =

∫ t

−∞
e−

∫ t
s b(u)du

(
M∑
k=1

Fk(s, γx(s− τk(s))) +
N∑
k=1

Gk(s, γ
−1y(s− µk(s)))

)
ds

=

∫ t

−∞
e−

∫ t
s b(u)du

(
M∑
k=1

Fk(s, x(s− τk(s)))
Fk(s, γx(s− τk(s)))
Fk(s, x(s− τk(s)))

+
N∑
k=1

Gk(s, x(s− µk(s)))
Gk(s, γ

−1x(s− µk(s)))
Gk(s, x(s− µk(s)))

)
ds

≥
∫ t

−∞
e−

∫ t
s b(u)du

 M∑
k=1

Fk(s, x(s− τk(s))) inf
u∈[u0,v0]
t∈R

Fk(t, γu)

Fk(t, u)

+
N∑
k=1

Gk(s, x(s− τk(s))) inf
u∈[u0,v0]
t∈R

Gk(t, γ
−1u)

Gk(t, u)

 ds

≥ Φ(x, y)(t) min

 inf
u∈[u0,v0]
t∈R

k=1,··· ,M

Fk(t, γu)

Fk(t, u)
, inf
u∈[u0,v0]
t∈R

k=1,··· ,N

Gk(t, γ
−1u)

Gk(t, u)

 .
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Consider the mapping φ :
[
u0
v0
, 1
)
→ (0,+∞) defined by

φ(γ) := min

 inf
u∈[u0,v0]
t∈R

k=1,··· ,M

Fk(t, γu)

Fk(t, u)
, inf
u∈[u0,v0]
t∈R

k=1,··· ,N

Gk(t, γ
−1u)

Gk(t, u)

 . (6.25)

Then the following inequality is satisfied

Φ(γx, γ−1y)(t) ≥ Φ(x, y)(t)φ(t),

for all γ ∈
[
u0
v0
, 1
)

and x, y ∈ [u0, v0].

In addition, φ(γ) needs to satisfy the condition φ(γ) > γ. In order to prove that , we fix

arbitrary γ ∈
[
u0
v0
, 1
)

and, for each k ∈ {1, · · · ,M} consider the function hk : R × [u0, v0] → R
defined by

hk(t, u) = Fk(t, γu)− γFk(t, u).

Due to the concavity of Fk(t, ·) on [0, v0] we have

hk(t, u) = Fk(t, γu)− γFk(t, u)

> γFk(t, u) + (1− γ)Fk(t, 0)− γFk(t, u) ≥ 0, for all u ∈ [u0, v0].

This implies Fk(t,γu)
Fk(t,u)

> γ for all u ∈ [u0, v0]. Moreover, since Fk(t, 0) ≥ 0 for all t ∈ R, due to the

continuity and monotonicity of Fk(t, ·), we have

inf
u∈[u0,v0]
t∈R

Fk(t, γu)

Fk(t, u)
> γ.

Thus,

inf
u∈[u0,v0]
t∈R

k=1,··· ,M

Fk(t, γu)

Fk(t, u)
> γ, for each γ ∈

[
u0

v0

, 1

)
. (6.26)

Now we fix arbitrary γ ∈
[
u0
v0
, 1
)

and k ∈ {1, · · · , N}. We need to verify that

Gk(t, γ
−1u)

Gk(t, u)
> γ, for all u ∈ [u0, v0],

this inequality is equivalent to

1

Gk(t, u)
− γ 1

Gk(t, γ−1u)
> 0, for all u ∈ [u0, v0]. (6.27)
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In order to simplify some computations, we set v := γ−1u and transform (6.27) into the
equivalent equation

1

Gk(t, γv)
− γ 1

Gk(t, v)
> 0, for all v ∈

[
u0

γ
,
v0

γ

]
.

Consider the function hk :
[
u0
γ
, v0
γ

]
× R ⊂

[
u0,

v20
u0

]
× R→ R defined by

hk(t, v) = Lk(t, γv)− γLk(t, v),

with Lk(t, v) := 1
Gk(t,v)

. In view of the concavity of Lk(t, ·) on
[
0,

v20
u0

]
we have

hk(t, v) = Lk(t, γv)− γLk(t, v)

≥ (1− γ)Lk(t, 0) + γLk(t, v)− γLk(t, v)

(1− γ)Lk(t, 0) > 0,

which implies
Lk(t, γv)

Lk(t, v)
> γ, for all v ∈

[
u0

γ
,
v0

γ

]
⊂
[
u0,

v2
0

u0

]
.

Hence, Gk(t,γ−1u)
Gk(t,u)

> γ for all u ∈ [u0, v0]. Moreover, because Gk(t, 0) > 0 for all t ∈ R and due to

the continuity and monotonicity of Gk(t, ·), we have

inf
u∈[u0,v0]
t∈R

Gk(t, γ
−1u)

Gk(t, u)
> γ.

Thus, we deduce

inf
u∈[u0,v0]
t∈R

k=1,··· ,N

Gk(t, γ
−1u)

Gk(t, u)
> γ, for each γ ∈

[
u0

v0

, 1

)
. (6.28)

Hence, (6.25), (6.26) and (6.28) yield

φ(γ) > γ for all γ ∈
[
u0

v0

, 1

)
,

and applying Lemma 6.1.1 we conclude that Φ(x, y) has a unique fixed point in [u0, v0]. Due to
Lemma 6.2.1, we are just saying that this fixed point is the unique almost periodic solution x(t)
of (6.14) which satisfies u0 ≤ x(t) ≤ v0. The proof is complete.

�
Let B(x) and C(y) the functions defined in (6.23)-(6.24). For the existence of almost periodic

solutions with positive infimum of equations 6.15 and 6.16, we have the next two Corollaries :

Corollary 6.2.1 Assume there exists constants 0 < u0 < v0 such that
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1. B(u0) ≥ u0 and B(v0) ≤ v0

2. Fk(t, ·) is nondecreasing in
[
u20
v0
, v0

]
and strictly concave in [0, v0] for all k = 1, . . . ,M ;

3. inft∈R Fk(·, x) > 0, for all x ∈
[
u20
v0
, v0

]
.

Then (6.15) has a unique almost periodic solution u0 ≤ x(t) ≤ v0.

Corollary 6.2.2 Assume there exists constants 0 < u0 < v0 such that

1. C(v0) ≥ u0 and C(u0) ≤ v0

2. 1
Gk(t,·) is nondecreasing in

[
u0,

v20
u0

]
and concave in

[
0,

v20
u0

]
for all k = 1, . . . , N ;

3. inft∈RGk(·, x) > 0, for all x ∈
[
u0,

v20
u0

]
.

Then (6.16) has a unique almost periodic solution u0 ≤ x(t) ≤ v0.

The following Remarks are consequence of above results and shall be useful in Section 6.3
and Chapter 7.

Remark 6.2.1 On the one hand, if there exist rk, fk : R → (0,+∞) and rk, gk : R →
(0,+∞) positive almost periodic functions such that

Fk(t, x) = rk(t)fk(x), ∀k = 1, · · · ,M and Gk(t, x) = rk(t)gk(x), ∀k = 1, · · · , N. (6.29)

Then conditions (IV ) in Theorem 6.2.1 and (3) Corollaries 6.2.1-6.2.2 can be replaced by:

(a) (rj)∗ > 0 or (rj)∗ > 0 for some j.

On the other hand, conditions (IV ) and (3) can be replaced by

(b) inft∈R Fj(t, x) > 0 and inft∈RGs(t, x) > 0,

for all Fj(t, x) and Gs(t, x) that cannot be written as in (6.29).

Remark 6.2.2 In Theorem 6.2.1 and Corollary 6.2.1, condition

• Fk(t, ·) is nondecreasing in
[
u20
v0
, v0

]
and strictly concave in [0, v0] for all k = 1, . . . ,M ;

can be replaced by

• For each k = 1, . . . ,M ; Fk(t, ·) satisfies one of the following conditions:

1. Fk(t, ·) is nondecreasing in
[
u20
v0
, v0

]
and strictly concave in [0, v0];

2. Fk(t, ·) is nondecreasing in
[
u20
v0
, v0

]
and, there exists a constant δ ≥ 0 such that

FK(t, ·) is strictly concave in [0, δ] and

Fk(t, x) = Fk(t, δ) for all x ∈ [δ, v0] .
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6.3 Applications to biological models

In this section we provide some examples which illustrate the applicability of our results.

6.3.1 Nicholson’s blowflies model

The first model we consider is the following generalized Nicholson model:

x′(t) =
M∑
k=1

pk(t)f(x(t− τk(t)))− b(t)x(t), (6.30)

where pk, τk and b ∈ AP (R) and f : R → R is given by f(x) = xe−x. We assume that, b∗ > 0,
(pj)∗ > 0 for some j and τk are nonnegative.

Observe that from Lemma 2.3.3, pk(t)f(x(t−τk(t))) is in the class u.a.p. for all k = 1, · · · ,M.

Theorem 6.3.1 Assume that

1 <

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

pk(s) ≤ e, for all t ∈ R (6.31)

Then (6.30) has a unique almost periodic solution with positive infimum. Moreover, this solution
satisfies x(t) ≤ 1 for all t ∈ R

Proof: Let us verify that assumptions of Corollary 6.2.1 are satisfied.
Under assumption (6.31), we may choose a positive constant ε small enough such that∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

pk(s)ds ≥ eε, (6.32)

next, we define u0 = ε and set v0 = 1. Then clearly, the function f(x) = xe−x is increasing in
(0, v0), in particular, it is in (u0, v0). In addition, f is concave in (0, v0) and f

∣∣
R>0

> 0.

Moreover, in view of inequality (6.32), it is easily verified that B(u0) ≥ u0 and, from condition
(6.31) we get

B(v0) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

pk(s)e
−1 ≤ 1 = v0.

Thus, by Corollary 6.2.1, equation (6.30) has a unique solution in [ε, 1] and, as ε was chosen
arbitrarily close to 0, there is a unique almost periodic solution with positive infimum in [0, 1].

Finally, uniqueness of the solution can be proven in a direct way using Lemma 6.2.1. Indeed,
all almost periodic solutions satisfy

x(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)x(s− τk(s))e−x(s−τk(s))ds (6.33)

≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

pk(s)e
−1ds ≤ 1, (6.34)
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Hence, equation (6.30) has a unique solution in AP (R). The proof is complete.
�

6.3.2 Lasota-Wazewska model

The following model we consider is a Lasota-Wazewska-type model with a nonincreasing non-
linearity.

In [21] authors studied the existence of an almost periodic solution of the model:

x′(t) = c(t)e−βx(t−τ) − b(t)x(t) (6.35)

assuming that β and τ are positive constants and, c, b : R → (0,+∞) are almost periodic
functions. This type of equation was used by Wazewska-Czyzewska and Lasota [56] as a model
for the survival of red blood cells in an animal.

The following more general model was studied in [29]:

x′(t) =
M∑
k=1

ck(t)e
−βk(t)x(t−τk(t)) − b(t)x(t). (6.36)

Here, ck, βk, τk, b : R → (0,+∞) are almost periodic functions, and b∗ > 0, (ck)∗ > 0 for all k.
The authors established sufficient criteria to guarantee the existence of a unique positive almost
periodic solution in the region

B = {x ∈ AP (R) : M2 ≤ x(t) ≤M1} (6.37)

where M1 :=
∑M
k=1(ck)∗

b∗
and M2 :=

∑M
k=1(ck)∗eM1β∗k

b∗
.

We shall employ Corollary 6.2.2 to establish sufficient uniqueness conditions for the general-
ized model (6.36).

Theorem 6.3.2 Assume that βk, b, ck, τk ∈ AP (R), b∗ > 0, (cj)∗ > 0 for some j, βk are
positive and τk are nonnegative functions. Then (6.36) has a unique almost periodic solution
x(t) with a positive infimum.

Moreover, this solution satisfies x(t) ≤
∑M
k=1(ck)∗

b∗
.

Proof: Define Gk(t, x) :=
∑M

k=1 ck(t)e
−βk(t)x. Let ϕ(t) be a positive almost periodic function. By

Lemma 2.3.2, it is seen that the composition Gk(·, ϕ(· − τk(·))) ∈ AP (R). In addition, it is clear
that

1

Gk(t, x)
=

eβk(t)x∑M
k=1 ck(t)

is nondecreasing and convex in its second variable.
We may choose positive constants u0, v0 such that

u0 <

∑M
k=1(ck)∗
b∗

ev0 ≤
∑M

k=1(ck)
∗

b∗
< v0. (6.38)

It is clear that (6.38) is satisfied when u0, v0 are positive constants small and large enough
respectively.



92 CHAPTER 6. FIXED POINT THEOREMS IN ABSTRACT CONES

C(u0) = Φ(u0) =

∫ t

−∞
e−

∫ t
s b(r)dr

M∑
k=1

ck(s)e
−βk(s)u0ds ≤

∑M
k=1(ck)

∗

b∗
< v0

and

C(v0) = Φ(v0) =

∫ t

−∞
e−

∫ t
s b(r)dr

M∑
k=1

ck(s)e
−βk(s)v0ds ≥

∑M
k=1(ck)∗
b∗

e−β
∗
kv0 > u0.

Thus, we conclude from Corollary 6.2.2 that (6.36) has a unique almost periodic solution x ∈
[u0, v0]. Moreover, since u0 > 0 can be chosen arbitrarily small, as well as v0 can be chosen
arbitrarily large, if x̃(t) ∈ P ◦ is another solution of (6.36), then u0 ≤ x̃(t). Hence, x̃ = x.

Finally, in view of Lemma 6.2.1, the solution x satisfies

x(t) ≤
∑M

k=1(ck)
∗

b∗
.

�

Remark 6.3.1 It is interesting to note that assumptions in Corollary 6.2.2 are easier to
verify than those in [29] where authors employ the contraction mapping Theorem. Moreover,
our result ensures that the solution found in the bounded set B, actually is the unique almost
periodic solutions with positive infimum of (6.36) in P ◦.



Resumen del caṕıtulo 7

En la primera parte de este Caṕıtulo consideramos el modelo generalizado de Mackey-Glass
estudiado en el Caṕıtulo 5:

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t), (6.39)

donde rk(t), b(t), τk(t) ∈ AP (R), λk y nk son constantes positivas y 0 ≤ mk ≤ 1. Asumimos que
τk(t) son no negativas para todo k, b∗ > 0 y que para algún j, (rj)∗ > 0.

Para este modelo damos condiciones suficientes que garantizan la existencia y en ciertos casos
también la unicidad de soluciones casi periódicas positivas de (6.39) y la estabilidad exponencial
global de tales soluciones. Es importante hacer hincapié en que nuestros criterios no requieren
restricciones para las funciones retardo. Para obtener los criterios para la existencia y unicidad de
soluciones positivas casi periódicas utilizamos los resultados formulados en el Caṕıtulo previo y
luego, por medio de desigualdades de tipo Halanay (ver [25]) formulamos un Lemma que asegura
la estabilidad global exponencial de dichas soluciones bajo condiciones simples de aplicar.

En la segunda parte del Caṕıtulo consideramos una versión simplificada del modelo (6.39):

x′(t) =
M∑
k=1

λkrk(t)
xm(t− τk(t))

1 + xn(t− τk(t))
− b(t)x(t). (6.40)

Consideramos el caso sublineal y asumiremos que m > 1, más espećıficamente: asumimos que
1 < m < n+1. Para este modelo simplificado damos condiciones para la existencia de soluciones
positivas casi periódicas, respondiendo de esta manera el problema abierto formulado entre otros
por los autores en [15] y [32]. Finalmente, obtenemos condiciones para la no existencia de
soluciones casi periódicas de (6.40).

Finalmente, formulamos algunos problemas abiertos
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Chapter 7

Mackey-Glass model: Almost periodic
case

In this Chapter we shall consider two models with several delays, in the first part of this Chapter
we shall consider the more general model

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t), 0 ≤ mk ≤ 1 (7.1)

where rk(t), b(t) and τk(t) ∈ AP (R), τk(t) are nonnegative and λk, nk are positive constants.
For (7.1) we shall introduce sufficient conditions to guarantee the existence and uniqueness of

positive almost periodic solutions of (7.1) and the global exponential stability of such solutions.
It is worth noticing that our criteria do not require restrictions for the delay. To this end, we shall
employ results formulated in Chapter 6 and, by means of a Halanay-type inequality [25, Chapter
4], we shall establish a simple global exponential stability lemma. Then, we shall focus on a
simplified version of (7.1), namely:

x′(t) =
M∑
k=1

λkrk(t)
xm(t− τk(t))

1 + xn(t− τk(t))
− b(t)x(t). (7.2)

Our goal in the last part of this Chapter shall be give answers to the proposed existence open
problems when m > 1. Lemma 6.1.1 shall be the key point in our criteria for the existence of
positive almost periodic solutions. Finally, we shall formulate a theorem for the nonexistence of
solutions when m > 1.

Througouth this Chapter, we shall assume that

b∗ > 0 and (rj)∗ > 0 for some j ∈ {1, · · · ,M}. (7.3)

7.1 Main results for the general model: Case 0 ≤ mk ≤ 1

In this Section, we state our results on existence, uniqueness and global exponential stability of
positive almost periodic solutions of (7.1).

Throughout this Chapter we shall follow the notation given in (6.1), Chapter 6.
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In addition, we shall denote

υ := max
1≤k≤M

{
sup
t∈R

τk(t)

}
.

Due to the biological interpretation of the model, we shall consider as an admissible initial
condition for equation (7.1) only continuous positive functions, namely

x(t0 − t) = ϕ(t), ϕ ∈ C([0, υ], (0,+∞)). (7.4)

A solution of the initial value problem (7.1)-(7.4) shall be denoted by x(t; t0, ϕ).

7.1.1 Existence and uniqueness

The main part of our existence and uniqueness analysis shall be based on the study of the
behavior of the term production. It is worthy to notice there are four possible behaviors for
Nk(x) = xmk

1+xnk
, namely: strictly increasing and unbounded (mk > nk > 0), strictly increasing

and bounded (0 < mk = nk), a single-humped function (0 < mk < nk) and strictly decreasing
(mk = 0).

In order to present our existence-uniqueness proofs in a more comprehensive way, let us firstly
introduce the cases where nk ≤ 1 when mk = 0. The analogous cases, allowing also that nk > 1
when mk = 0, shall be treated later.

For simplicity of notation, let us define the constants:

V := min
k:0<mk<nk

{(
mk

nk −mk

) 1
nk

}
, (7.5)

S := min
{nk>1:mk=0}

{(
1

nk − 1

) 1
nk

}
(7.6)

and
T := min{V, S}. (7.7)

Theorem 7.1.1 Assume that nk ≤ mk for all k such that mk > 0 and nk ≤ 1 for all k such
that mk = 0. Furthermore, assume that one of the following conditions is fulfilled:

(a) 0 ≤ mj < 1 and (rj)∗ > 0 for some j .

(b) mk = 1 for all k and (H1) :
∑M

k=1 λk(rk)∗ > b∗ .

Then (7.1) has exactly one almost periodic solution with positive infimum.

Theorem 7.1.2 Assume that nk ≥ mk for all k such that mk > 0 and nk ≤ 1 for all k such
that mk = 0. Moreover, suppose there exists i such that ni > mi > 0. Let∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ V. (7.8)

Furthermore, assume that one of the following conditions is fulfilled:
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(a) 0 ≤ mj < 1 and (rj)∗ > 0 for some j.

(b) mk = 1 for all k and
∑M

k=1 λk(rk)∗ > b∗.

Then (7.1) has exactly one almost periodic solution with positive infimum.

Theorem 7.1.3 Assume that ni > mi > 0 and ns < ms for some i, s and let nk ≤ 1 for all
k such that mk = 0. Furthermore, assume that∑

k:nk<mk

λkr
∗
k

V mk−1

1 + V nk
+

∑
{k:mk=0}∪{k:nk≥mk>0}

λkr
∗
k

1

V
≤ b∗. (7.9)

and that one of the following conditions is fulfilled:

(a) 0 ≤ mj < 1 and (rj)∗ > 0 for some j .

(b) mk = 1 for all k and (H2) :
∑
{k:mk=1} λk(rk)∗ > b∗.

Then (7.1) has at least one almost periodic solution with positive infimum.

Theorem 7.1.4 Assume that nk ≥ mk for all k such that mk > 0 and∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ T. (7.10)

Furthermore, assume that (rs)∗ > 0 and ns > 1 for some s such that ms = 0.
Then (7.1) has exactly one almost periodic solution with positive infimum.

Theorem 7.1.5 Assume there exist i such that ni < mi and∑
k:nk<mk

λkr
∗
k

Tmk−1

1 + T nk
+

∑
{k:mk=0}∪{k:nk≥mk>0}

λkr
∗
k

1

T
≤ b∗. (7.11)

Furthermore, assume that (rs)∗ > 0 and ns > 1 for some s such that ms = 0.
Then (7.1) has at least one positive almost periodic solution with positive infimum.

Remark 7.1.1 Since we clearly have∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤
M∑
k=1

λkr
∗
k

b∗
< +∞,

it follows that assumption (7.8) in Theorem 7.1.2 can be replaced by following condition, which
is easier to verify:

M∑
k=1

λkr
∗
k

b∗
≤ V.

Similarly, condition (7.10) in Theorem 7.1.4 can be replaced by
∑M

k=1

λkr
∗
k

b∗
≤ T .
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Remark 7.1.2 (Uniqueness of periodic solution) Sufficient criteria for the existence
of positive T -periodic solutions of (7.1) were established in the above chapter by using topological
degree methods. It is worth mentioning that the referred work deals only with existence and
multiplicity, and conditions for uniqueness of solutions are not given.

As remarked above, some properties of T -periodic functions do not hold for the more general
case of almost periodic functions and, consequently, the results on existence of positive T -periodic
solutions in above chapter cannot be directly applied to (7.1). Despite of that, it is still possible
to compare Theorem 5.2.2 in Chapter 5 with Theorems 7.1.1, 7.1.2 and 7.1.3 assuming that b, rk
and τk are positive T -periodic functions and mk > 0 for all k. The methods used in the present
paper provide also uniqueness of solutions, although more restrictive conditions are needed. For
example, the results for the periodic case do not impose conditions on the (positive) constants
mk, but the uniqueness result requires that mk ≤ 1 for all k. Moreover, if mk = 1 for all k, then
the existence result in Theorem 5.2.2 assumes that

∑M
k=1 λkrk(t) > b(t), while the existence and

uniqueness result provided by this paper employs the stronger condition
∑M

k=1 λk(rk)∗ > b∗.

7.1.2 Global exponential stability

Let x(t; t0, ϕ) be a solution of the initial value problem (7.1)-(7.4), and x̃(t) an almost periodic
solution with positive infimum of (7.1), and define the set

A := {k : nk > mk(3 + 2
√

2)}.

We have the following results

Theorem 7.1.6 Let η,R and tϕ,x̃ be positive constants such that η < x̃(t), x(t; t0, ϕ) <
R, for all t ≥ tϕ,x̃. Assume mk ≥ 0 and nk > 0 for all k = 1, . . . ,M .

Set

p(t) =
∑
k∈A

λkrk(t)
(nk −mk)

2

4nk
+
∑
k/∈A

λkrk(t)mk,

and assume that

inf
t≥tϕ,x̃

{b(t)− p(t)} > 0.

Then x̃(t) is globally exponentially stable. i.e., there exist positive constants ρ, Kϕ,x̃ and
tϕ,x̃ such that

|x(t; t0, ϕ)− x̃(t)| < Kϕ,x̃e
−ρt for all t ≥ tϕ,x̃.

Remark 7.1.3 As we shall see in next section, it is always possible to find constants η,R
and tϕ,x̃ such that assumptions of Theorem 7.1.6 are fulfilled.

Remark 7.1.4 (Uniqueness) Theorem 7.1.3 and Theorem 7.1.5 only ensure the existence
of at least one positive almost periodic solutions of (7.1). However, under extra assumptions,
the global exponential stability of such solutions is ensured. Thus, under this extra assumptions,
from Corollary 2.3.1 we can conclude the existence of an unique almost periodic solution of (7.1)
with positive infimum.
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With the same techniques applied in Theorem 7.1.6 we obtain the following global exponential
stability result for the more general model:

x′(t) =
M∑
k=1

λkrk(t)fk(x(t− τk(t)))− b(t)x(t) (7.12)

where the functions fk are Lipschitz with constant Lk.

Theorem 7.1.7 Suppose that x̃(t) is an almost periodic solution of (7.12). Set

p(t) =
M∑
k=1

λkrk(t)Lk

and assume that
inf
t≥tϕ,x̃

{b(t)− p(t)} > 0.

Then x̃(t) is globally exponentially stable.

7.2 Preliminaries

In this section, we provide preliminary results which will be used in the proofs of our main
results.

Our stability result, that is Theorems 7.1.6 and 7.1.7, shall be based on the following re-
sult, which is a generalization of [67, Lemma 3] for the case with time-dependent parameters.
Moreover, we shall give explicit bounds for the convergence rate.

Firstly, let us recall the definition of the upper Dini derivative of a continuous function f :

D+f(t) = lim sup
h→0+

f(t+ h)− f(t)

h
.

Lema 7.2.1 Let x(t) be a continuous nonnegative function on t ≥ t0 − υ satisfying the
following inequality

D+x(t) ≤ −k1(t)x(t) + k2(t)x(t) for t ≥ t0 (7.13)

where k1(t) and k2(t) are nonnegative, continuous and bounded functions and x(t) = supt−υ≤s≤t x(s).
Suppose

α = inf
t≥t0
{k1(t)− k2(t)} > 0.

Then there exists a positive constant ρ̃ > 0 such that

x(t) ≤ x(t0)e−ρ̃(t−t0) (7.14)

holds for all t ≥ t0. Moreover, the decay rate ρ̃ is such that

0 < inf
t∈R

{
(k1(t)− k2(t))k1(t)

k1(t)− k2(t) + k2(t)eυk1(t)

}
< ρ̃ < k∗1.
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Proof: Define the function f by

f(t, ρ) := −k1(t) + k2(t)eρυ + ρ. (7.15)

For each fixed t, f is a strictly increasing continuous function; in addition, f(t, 0) = −k1(t)+
k2(t) < 0 and f(t, k1(t)) = k2(t)ek1(t)υ > 0. Thus, for each t there exists a unique ρt ∈ (0, k∗1)
which satisfies f(t, ρt) = 0. Moreover, because f(t, ·) is a convex function we deduce that

ρt >
(k1(t)− k2(t))k1(t)

k1(t)− k2(t) + k2(t)eυk1(t)
, (7.16)

where the right side of the inequality is the intersection between the x-axis and the segment
connecting points f(t, 0) and f(t, k1(t)).

Now let
ρ̃ := inf{ρt : t ∈ R} (7.17)

and
y(t) := x(t0)e−ρ̃(t−t0), t ≥ t0 − υ. (7.18)

Let c > 1 be an arbitrary constant, then in view of (7.18)

x(t) < cy(t), t0 − υ ≤ t ≤ t0.

We claim that
x(t) < cy(t) for t > t0. (7.19)

Indeed, suppose that (7.19) does not hold, then there exist t1 > t0 and δ > 0 for which

x(t) ≤ cy(t) for t0 − υ ≤ t ≤ t1 and x(t1 + δ̃) > cy(t1) for all δ̃ ∈ (0, δ). (7.20)

According to (7.13) and (7.20), it follows that

D+x(t1) ≤ −k1(t1)x(t1) + k2(t1)x(t1)

= −k1(t1)cy(t1) + k2(t1)x(t1)

≤ −k1(t1)cy(t1) + k2(t1) sup
t1−υ≤s≤t1

{cy(s)}

= −k1(t1)cy(t1) + k2(t1) sup
t1−υ≤s≤t1

{cx(t0)e−υ̃(s−t0)}

= −k1(t1)cy(t1) + k2(t1)cx(t0)e−υ̃(t1−υ−t0)

≤ −k1(t1)cy(t1) + k2(t1)cy(t1 − υ)

and in view of (7.18) we have

= c[−k1(t1) + k2(t1)eρ̃υ]x(t0)e−ρ̃(t1−t0)

using the definition of f(t, ρ) (7.15) we have f(t1, ρt1) = 0, and by convexity we deduce that

< c
(
−ρ̃x(t0)e−ρ̃(t1−t0)

)
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= cy′(t1), (7.21)

On the other hand, (7.20) yields

D+x(t1) = lim sup
h→0+

x(t1 + h)− x(t1)

h

≥ lim sup
h→0+

x(t1 + h)− cy(t1)

h

> lim sup
h→0+

cy(t1 + h)− cy(t1)

h

= cy′(t1)

then (7.20) contradicts (7.21). Hence (7.19) holds for any t > t0. By letting c→ 1 we obtain

x(t) ≤ x(t0)e−ρ̃(t−t0).

Finally, (7.16)-(7.17) yield

0 < inf
t∈R

{
(k1(t)− k2(t))k1(t)

k1(t)− k2(t) + k2(t)eυk1(t)

}
< ρ̃ < k∗1,

and the proof is complete.
�

Observe that Theorem 7.1.6 requires the existence of constants η,R and tϕ,x̃ such that η <
x̃(t), x(t; t0, ϕ) < R. This fact shall be guaranteed by the following assumption, that will be
assumed throughout the rest of the section:

M∑
k=1

λk(rk)∗ > b∗. (7.22)

Remark 7.2.1 If (7.22) holds, then we may fix a positive constant η > 0 such that

ηmj−1

1 + ηnj
>

b∗∑M
k=1 λk(rk)∗

(7.23)

for all j = 1, . . . ,M . Furthermore, if nk > mk > 0 for some k, then we can observe that the
constant η previously defined can be chosen in such a way that 0 < η < V with V defined in
(7.5) and, consequently, we may also fix η̃ > η such that∑

k:nk>mk>0

ηmk

1 + ηnk
=

∑
k:nk>mk>0

η̃mk

1 + η̃nk
, if nj > mj for some j, (7.24)

and η̃ = +∞ otherwise.
On the other hand, a simple computation shows that

sup
u>0

{
umk

1 + unk

}
≤ 1, for nk ≥ mk ≥ 0. (7.25)
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Remark 7.2.2 Let x(t) be a positive solution of (7.1). Then

x′(t) ≥ −b(t)x(t),

and hence x(t1)
x(t2)
≤ e

∫ t2
t1
b(t)dt for any t1 ≤ t2. In particular, this implies that

x(t− τk(t)) ≤ Lx(t), (7.26)

where L := maxt∈R e
∫ t
t−υ b(s)ds.

Lema 7.2.2 If x(t) := x(t; t0, ϕ) is a solution of (7.1)-(7.4), then it is positive and bounded.

Proof: Suppose firstly there exists t̃ such that x(t̃) = 0 and x(t) > 0 for all t ∈ [t0, t̃), then

lim
t→t̃−

x′(t̃) =
M∑
k=1

xmk(t̃− τk(t̃))
1 + xnk(t̃− τk(t̃))

> 0,

a contradiction. Next, suppose that x(t) is unbounded, then there exists a sequence tj → +∞
such that limtj→+∞ x(tj − υ) = +∞. From Remark 7.2.2, it follows that x(tj − υ) ≤ Lx(tj) and
x(tj − υ) ≤ Lx(tj − τk(tj)) for k = 1, . . . , k, which implies

x(tj), x(tj − τk(tj))→ +∞ as tj → +∞. (7.27)

Due to (7.1) and (7.26) we get

x′(tj) =

[
M∑
k=1

λkrk(tj)
xmk(tj − τk(tj))

x(tj) (1 + xnk(tj − τk(tj)))
− b(tj)

]
x(tj)

≤

[
M∑
k=1

λkrk(tj)L
xmk−1(tj − τk(tj))

1 + xnk(tj − τk(tj))
− b(tj)

]
x(tj).

Thus, from (7.27) we deduce the existence of a positive constant J such that x′(tj) < −J < 0
for all j large enough. In addition,

x(tj) = x(t0) +

∫ tj

t0

x′(s)ds ≤ x(t0)− J(tj − t0), for j large enough.

This yields
x(tj)→ −∞ as j → +∞,

a contradiction.
�

Corollary 7.2.1 Let x(t) be a solution of (7.1). Then x(t) is globally defined.

Proof: Proof follows from Theorem 2.1.3. �

In next lemmas lower bounds shall require, instead, assumptions (7.23) and (7.24). Proof of
these latter bounds shall be omitted because they are analogous those given in [32,63] (see [32,
Lemma 2.2] and [63, Lemma 5]).
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Lemma 7.2.1 Assume that nk ≥ mk for all k and η < 1
b∗

supt≥t0

{∑M
k=1 λkrk(t)

}
< η̃,

where η and η̃ are defined as in Remark 7.2.1 and choose ε > 0 such that η < R < η̃ with

R := ε+
1

b∗
sup
t≥t0

{
M∑
k=1

λkrk(t)

}
.

Then there exists tϕ > t0 such that

η < x(t; t0, ϕ) < R for all t ≥ tϕ.

Proof: Integrate (7.1) to obtain

x(t) = e
−

∫ t
t0
b(u)du

x(t0) +

∫ t

t0

e−
∫ t
s b(u)du

M∑
k=1

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
ds

≤ eb∗(t0−t)x(t0) +
1− eb∗(t0−t)

b∗
sup
t≥t0

{
M∑
k=1

λkrk(t)

}
.

Thus, for t > t0 large enough

x(t) < ε+
1

b∗
sup
t≥t0

{
M∑
k=1

λkrk(t)

}
.

�

Lemma 7.2.2 Let nj < mj for some j and let η and η̃ be defined as in Remark 7.2.1.
Suppose there exists a positive constant W ∈ (η, η̃) such that

sup
t≥t0

{ ∑
k:mk≤nk

λkrk(t)

}
+ sup

t≥t0

{ ∑
k:mk>nk

λkrk(t)
(LW )mk−nk

W
− b(t)

}
W < 0. (7.28)

Then there exists tϕ > t0 such that

η < x(t; t0, ϕ) < W for all t ≥ tϕ.

Proof: In the first place, suppose that x(t1) < W for some t1 > t0. We claim that x(t) < W for

all t > t1. Indeed, otherwise there exists t ∈ (t1,+∞) such that

x(t) = W and x(t) < W for all t ∈ [t1, t),

which together with (7.25)-(7.26) and (7.28) yields
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0 < x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t)

≤
∑

k:mk≤nk

λkrk(t) +
∑

k:mk>nk

λkrk(t)x
mk−nk(t− τk(t))− b(t)x(t)

=
∑

k:mk≤nk

λkrk(t) +

( ∑
k:mk>nk

λkrk(t)L
mk−nkWmk−nk−1 − b(t)

)
W

≤ sup
t>t0

{ ∑
k:mk≤nk

λkrk(t)

}
+ sup

t>t0

{ ∑
k:mk>nk

λkrk(t)L
mk−nkWmk−nk−1 − b(t)

}
W = ζ < 0,

a contradiction.
Suppose that x(t0) ≥ W , again in view of (7.25)-(7.26) and (7.28) we have

x′(t0) ≤
∑

k:mk≤nk

λkrk(t0) +

( ∑
k:mk>nk

λkrk(t0)Lmk−nkxmk−nk−1(t0)− b(t0)

)
x(t0)

≤
∑

k:mk≤nk

λkrk(t0) +

( ∑
k:mk>nk

λkrk(t0)Lmk−nkWmk−nk−1 − b(t0)

)
x(t0)

≤ sup
t≥t0

{ ∑
k:mk≤nk

λkrk(t)

}
+ sup

t≥t0

{ ∑
k:mk>nk

λkrk(t)L
mk−nkWmk−nk−1 − b(t)

}
W

:= ζ < 0.

Furthermore, by continuity, there exists β ≥ t0 such that

x′(t) ≤ ζ < 0 for all t ∈ [t0, β]. (7.29)

Thus, β can be chosen in such a way that x(β) = W , so there exists t1 > β such that x(t1) < W
and the proof follows.

�

Remark 7.2.3 In Lemma 7.2.1, if mk = 0 for all k then the following explicit formula for

the lower bound is obtained: η =
∑M
k=0 λk(rk)∗
b∗(1+Wnk )

.

7.3 Proofs of the main results

In this section we shall give a detailed proof for some of our main results given in Section 7.1,
the other ones follow analogously and are consequently omitted.

We shall use the following notation fk(x) = xmk
1+xnk

and gk(x) = 1
1+xnk

to denote the nonlin-
earities of (7.1). In addition, the functions A(u, v) and B(u) shall be defined as in (6.22) and
(6.23) respectively.
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It is worth mentioning that by Lemma 2.3.3, the functions Fk(t, x) := λkrk(t)fk(x) and
Gk(t, x) := λkrk(t)gk(x) are in the class u.a.p.

Proof of Theorem 7.1.1: Let us verify that assumptions of Theorem 6.2.1 are satisfied. With

that end in mind, let us observe that the functions fk(x) and 1
gk(x)

are increasing and concave

on (0,+∞). In addition, it is seen that for K large enough we have

∑
k:mk>0

λkr
∗
k

b∗

Kmk−1

1 +Knk
+
∑

k:mk=0

λk
b∗
r∗k

1

K
≤ 1. (7.30)

Let us fix the constant function v0 := K > 1, where K satisfies (7.30). Under assumption
0 ≤ mj < 1 for some j, we may choose a constant ε ∈ (0, K) such that

λj(rj)∗
b∗

εmj−1

1 + εnj
≥ 1, if mj < 1 (7.31)

or such that
λj(rj)∗
b∗

1

(1 +Knj)ε
≥ 1, if mj = 0. (7.32)

Let A(u, v) be the function defined in (6.22). Set u0 := ε and, by virtue of (7.30) we obtain

A(v0, u0) =

∫ t

−∞
e−

∫ t
s b(u)du

 ∑
{k:mk>0}

λkrk(s)
vmk0

1 + vnk0

+
∑

{k:mk=0}

λkrk(s)
1

1 + unk0

 ds
≤
∑

k:mk>0

λkr
∗
k

b∗

Kmk

1 +Knk
+
∑

k:mk=0

λkr
∗
k

b∗

1

1 + εnk
≤ K := v0,

and from (7.31)-(7.32) it follows that

A(u0, v0) =

∫ t

−∞
e−

∫ t
s b(u)du

 ∑
{k:mk 6=0}

λkrk(s)
umk0

1 + unk0

+
∑

{k:mk=0}

λkrk(s)
1

1 + vnk0

 ds

≥ λj(rj)∗
b∗

u
mj
0

1 + u
nj
0

≥ u0, if mj < 1 (7.33)

or,

A(u0, v0) ≥ λj(rj)∗
b∗

1

(1 + v
nj
0 )
≥ u0, if mj = 0, (7.34)

that is, we conclude that A(u0, v0) ≥ u0.

Thus, in view of Theorem 6.2.1 and Remark 6.2.1 we conclude that (7.1) has a unique almost
periodic solution x̃ such that ε ≤ x̃(t) ≤ K.
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It remains to analyze the case mk = 1 for all k. As before, we choose v0 = K large enough
satisfying (7.30). By virtue of assumption (H1), there is a positive constant ε ∈ (0, K) small
enough such that ∑

k:mk=1

λk(rk)∗
b∗

ε

1 + εnk
≥ ε. (7.35)

Define u0 = ε, where ε satisfies (7.35). The remaining conditions, B(u0) ≥ u0 and B(v0) ≤ v0 are
proved analogously to the previous case. By Corollary 6.2.1 it is seen that there exists a unique
almost periodic solution x̃ ∈ [u0, v0]. To conclude, observe that, in both cases, the function
v0 := K can be chosen arbitrarily large, as well as u0 = ε can be chosen arbitrarily small. Thus,
if ỹ(t) is another positive almost periodic solution, then we may assume that ε ≤ ỹ(t) ≤ K.
Hence, x̃ = ỹ and the proof is complete.

�

Next we shall prove Theorem 7.1.2. Observe that the assumptions allow not only bounded
monotone nonlinear terms (nk = mk > 0 or mk = 0) but also nonlinear single-humped terms
(nk > mk > 0), which are neither monotone increasing nor decreasing. Thus, Theorem 6.2.1
cannot be applied for an arbitrary large interval as in the aforementioned case. To overcome this
difficulty, we define appropriate truncation functions. We shall consider Remark 6.2.2 in order
to define these functions.

Proof of Theorem 7.1.2: Let us define the following truncation functions pk for x > 0. If k is
such that nk = mk > 0, then let

pk(x) :=
xmk

1 + xnk
, (7.36)

and, if k is such that nk > mk > 0, then we set

pk(x) :=


xmk

1+xnk
if x ≤ V

Vmk
1+V nk

:= Ck if x > V
, (7.37)

with V defined in (7.5). Let us consider the following associated equation

x′(t) =
∑

k:mk>0

λkrk(t)pk(x(t− τk(t))) +
∑

k:mk=0

λkrk(t)
1

1 + xnk(t− µk(t))
− b(t)x(t). (7.38)

Next we turn our attention to give sufficient conditions in order to guarantee the existence of a
unique almost periodic solution of the equation (7.38).

First, we consider the case 0 ≤ mj < 1 for some j. Let u0 = ε be chosen as in (7.31)-(7.32)
and let v0 = K, with K large enough such that∑

k:mk>0

λkr
∗
k

b∗
fk(K)

1

K
+
∑

k:mk=0

λkr
∗
k

b∗

1

K
≤ 1,

by a simple computation we obtain that A(u0, v0) ≥ u0 and A(v0, u0) ≤ v0. In addition, the
functions pk(x) and 1

gk(x)
are increasing and concave on (0,+∞) and (rj)∗ > 0 for some j.

Again, in view of Theorem 6.2.1 and Remark 6.2.1 we conclude that (7.38) has a unique
almost periodic solution such that ε ≤ x̃(t) ≤ K. Moreover, the function v0 := K can be chosen
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arbitrarily large, as well as u0 = ε can be chosen arbitrarily small. Thus, if ỹ(t) is another
positive almost periodic solution of (7.38), then we may assume that ε ≤ ỹ(t) ≤ K. Hence,
x̃ = ỹ, that is, equation (7.38) has a unique almost periodic solution with positive infimum.

Finally, it only remains to show that under assumptions of Theorem 7.1.2 this solution x̃(t)
is the unique positive almost periodic solution with positive infimum of (7.1). That is, (7.38)
and (7.1) have the same almost periodic solutions. Indeed, in view of Lemma 6.2.1, the unique
almost periodic solution with positive infimum of (7.38) satisfies

x̃(t) =

∫ t

−∞
e−

∫ t
s b(u)du

( ∑
k:mk>0

λkrk(s)fk(x̃(s− τk(s))) +
∑

k:mk=0

λkrk(s)
1

1 + x̃nk(s− τk(s))

)
ds.

(7.39)
According to (7.8) and (7.25), it follows that

x̃(t) ≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ V.

Thus, we get

fk(x̃(s− τk(s))) =
x̃mk(s− τk(s))

1 + x̃nk(s− τk(s))
for all k such that nk ≥ mk. We conclude that

x̃(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
x̃mk(s− τk(s))

1 + x̃nk(s− τk(s))
ds

and hence x̃ is a solution of (7.1). Moreover, suppose that z is another positive almost periodic
solution of (7.1), then

z(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
zmk(s− τk(s))

1 + znk(s− τk(s))
ds

and from (7.8) and (7.25)

z(t) ≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ V. (7.40)

Hence, z is a solution of (7.38) and we conclude that z = x̃.
The case mk = 1 for all k follows analogously and we omit the proof.

�
In the previous proof, we chose appropriate truncation functions pk(x) that allowed us to

obtain the unique almost periodic solution with positive infimum of problem (7.1) in the presence
of nonlinear single-humped terms (nk > mk > 0). Observe that the assumptions in Theorem
7.1.3 admit also unbounded (nk < mk) terms. Thus, the preceding argument cannot be applied
because a uniform bound as in (7.40) does not hold.
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Proof of Theorem 7.1.3: First observe that as mentioned in previous proofs, functions 1
gk(y)

are

increasing and concave in (0,+∞).
In the setting of Theorem 6.2.1, let v0 = V , with V the constant defined in (7.5).
Under assumption 0 ≤ mj < 1 for some j, we define u0 = ε < V defined as in (7.31)-(7.32).

Then clearly the functions fk(x) are nondecreasing and concave on [0, v0]. In addition, the
function A(u, v) defined as in (6.22) satisfies

A(u0, v0) ≥
∑

k:mk>0

λk(rk)∗
b∗

umk0

(1 + unk0 )
+
∑

k:mk=0

λk(rk)∗
b∗

1

(1 + vnk0 )
≥ λj(rj)∗

b∗
u
mj
0

(1 + u
nj
0 )
≥ u0,

and, in view of (7.9) and (7.25) we obtain

A(v0, u0)(t) ≤
∑

k:mk>0

λkr
∗
k

b∗

vmk0

1 + vnk0

+
∑

k:mk=0

λkr
∗
k

b∗

1

1 + unk0

≤

 ∑
k:nk<mk

λkr
∗
k

b∗

vmk−1
0

1 + vnk0

+
∑

{k:nk≥mk>0}∪{k:mk=0}

λkr
∗
k

b∗

1

v0

 v0 ≤ v0.

Thus, we conclude from Theorem 6.2.1 and Remark 6.2.1 that (7.1) has a unique almost
periodic solution x̃(t) ∈ [u0, v0].

Now, it remains to analyze the case mk = 1 for all k, by virtue of (H2) there is a constant
ε ∈ (0, v0) such that ∑

k:mk=1

λk(rk)∗
b∗

ε

1 + εnk
≥ ε. (7.41)

Again, let us define u0 = ε, so it is readily seen that the functions fk(x) are nondecreasing and
concave on [0, v0]. The remaining conditions, B(u0) ≥ u0 and B(v0) ≤ v0 are proved similarly
to the first case. The conclusion follows by applying Corollary 6.2.1.

�
Next we shall prove Theorem 7.1.4. Observe that, the more restrictive condition, ns > 1

for some s such that ms = 0, yields that functions 1
gk(x)

are increasing, but, unlike the previous

cases, these functions are not concave in (0,+∞). Thus, assumptions of Theorem 6.2.1 are not
satisfied. However, the more general fixed point theorems, that is Theorem 6.1.1 or Lemma
6.1.1, may be employed.

Proof of Theorem 7.1.4: Let us define the functions hk as follows. If k is such that nk ≤ 1 and
mk = 0 then

hk(y) =
1

1 + ynk
,

and if k is such that nk > 1 and mk = 0, then we set

hk(y) =


1

1+ynk
if y ≤ S

1
1+Snk

if y > S
,
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where S is the constant defined in (7.6) and set the functions pk(x) defined as in (7.36)-(7.37).
Let us consider the following associated equation

x′(t) =
∑

k:mk>0

λkrk(t)fk(x(t− τk(t))) +
∑

k:mk=0

λkrk(t)hk(y(s− τk(s)))− b(t)x(t). (7.42)

Define the operator Φ by

Φ(x, y)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

( ∑
k:mk>0

λkrk(s)pk(x(s− τk(s))) +
∑

k:mk=0

λkrk(s)hk(y(s− τk(s)))

)
ds

(7.43)
for all t ∈ R.

Due to the monotonicity of the functions hk(y) and pk(x), the nonlinear operator Φ is mono-
tone mixed in P ◦ × P ◦. Let us firstly prove that Φ(P ◦ × P ◦) ⊂ P ◦. For (x, y) ∈ P ◦ × P ◦, there
exist κ1, κ2 > 0 such that κ1 ≤ x(t), y(t) ≤ κ2 for all t ∈ R. Then

Φ(x, y)(t) ≥
∫ t

−∞
e−b

∗(t−s)

( ∑
k:mk>0

λk(rk)∗pk(κ1) +
∑

k:mk=0

λk(rk)∗hk(κ2)

)
ds

which shows that

Φ(x, y)(t) ≥
∑

k:mk>0

λk
b∗

(rk)∗pk(κ1) +
∑

k:mk=0

λk
b∗

(rk)∗hk(κ2) = ε̃ > 0.

In addition, by Lemma 2.3.2 it follows that Φ(x, y) ∈ AP (R). Thus, the inclusion Φ(P ◦×P ◦) ⊂
P ◦ is satisfied.

It is seen that for K large enough we have∑
k:mk>0

λk(rk)
∗

b∗
fk(K)

1

K
+
∑

k:mk=0

λk(rk)
∗

b∗

1

K
≤ 1.

Let us fix v0 := K > S and let u0 = ε < T be chosen as in (7.31)-(7.32), with T the constant
defined in (7.7). Thus, Φ(u0, v0) ≥ u0 and Φ(v0, u0) ≤ v0.

Let the function φ : (0, 1)→ (0,+∞) be given by

φ(γ) = min {θ(γ), ϑ(γ), ψ(γ)} , (7.44)

where

θ(γ) = min

{
min

k:nk=mk

{
γmk(1 + εnk)

1 + γnkεnk

}
, min
{nk≤1:mk=0}

{
1 +Knk

1 + γ−nkKnk

}}
, (7.45)

ϑ(γ) := min
k:nk>mk>0

{
1, γmk

1 + V nk

1 + γnkV nk
, γmk

1 + εnk

1 + γnkεnk

}
(7.46)

and

ψ(γ) := min
{nk>1:mk=0}

{
1,

1 + (γS)nk

1 + Snk

}
. (7.47)
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It is easy to see that φ(γ) > γ for all γ ∈ (0, 1).

Since for each k such that 0 < mk < nk, γ ∈ (0, 1) and x > 0 we have

pk(γx)

pk(x)
≥


γmk 1+εnk

1+γnk εnk
if x ≤ V

γmk 1+V nk
1+γnkV nk

if V < x ≤ 1
γ
V

1 if x > 1
γ
V,

and, for each k such that nk > 1 and mk = 0, γ ∈ (0, 1) and y > 0 we have

hk(γ
−1y)

hk(y)
≥


1+(γS)nk

1+Snk
if y ≤ S

1 if y > S,

then, by a direct computation we obtain

Φ(γx, γ−1y) ≥ φ(γ)Φ(x, y) for all γ ∈ (0, 1) and x, y ∈ [u0, v0].

Thus, by Theorem 6.1.1 Φ has a unique fixed point x̃ ∈ [u0, v0]. Hence, by Lemma 6.2.1, we
conclude that x̃ is the unique solution of (7.42) such that ε ≤ x̃(t) ≤ K. Moreover, since u0 = ε
can be chosen arbitrarily small as well as v0 = K can be chosen large enough, then x̃(t) is the
unique almost periodic solution with a positive infimum of equation (7.42).

It only remains to show that under the assumptions of Theorem 7.1.4, both equations (7.1)
and (7.42) have the same almost periodic solutions. Indeed, in view of Lemma 6.2.1, the unique
almost periodic solution with positive a infimum of (7.42) satisfies

x̃(t) =

∫ t

−∞
e−

∫ t
s b(u)du

( ∑
k:mk>0

λkrk(s)pk(x̃(s− τk(s))) +
∑

k:mk=0

λkrk(s)hk(x̃(s− τk(s)))

)
ds.

(7.48)
According to (7.8) and (7.25), it follows that

x̃(t) ≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ T.

Thus, we get

pk(x̃(s− τk(s))) =
x̃mk(s− τk(s))

1 + x̃nk(s− τk(s))

for all k such that nk ≥ mk and,

hk(x̃(s− τk(s))) =
1

1 + x̃nk(s− τk(s))

for all k such that nk ≥ mk. We conclude that
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x̃(t) =

∫ t

−∞
e−

∫ t
s b(u)du

( ∑
k:mk>0

λkrk(s)
x̃mk(s− τk(s))

1 + x̃nk(s− τk(s))
+
∑

k:mk=0

λkrk(s)
1

1 + x̃nk(s− τk(s))

)
ds

=

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
x̃mk(s− τk(s))

1 + x̃nk(s− τk(s))
ds

and hence x̃ is a solution of (7.1). Moreover, suppose that z is another positive almost periodic
solution of (7.1), then

z(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
zmk(s− τk(s))

1 + znk(s− τk(s))
ds

and from (7.10) and (7.25)

z(t) ≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ V. (7.49)

Hence, z is a solution of (7.38) and we conclude that z = x̃.
The proof is complete.

�

In order to prove Theorem 7.1.6 we shall employ Lemma 7.2.1. Moreover, we shall assume
that there exist constants 0 < η < R and tϕ,x̃ such that η < x̃(t), x(t; t0, ϕ) < R for all t ≥ tϕ,x̃.
Such bounds can be obtained under conditions of Lemmas 7.2.1 and 7.2.2.

Before jumping into the proof, let us give a simple Lemma.

Lemma 7.3.1 Let m ≥ 0, n > 0 be constants. The function gm,n(u) = m+(m−n)u
(1+u)2

satisfies:

∣∣gm,n(u)
∣∣ ≤ { (n−m)2

4n
if n > m(3 +

√
2)

m otherwise,
(7.50)

for all u ≥ 0.

Proof: If m ≥ n, then gm,n is nonincreasing and gm,n(0) = m. When m < n, it is easy to verify

that gm,n is nonincreasing on
[
0, n+m

n−m

)
and increasing on

(
n+m
n−m ,+∞

)
. Moreover, gm,n(0) = m,

gm,n(n+m
n−m) = − (n−m)2

4n
and limu→+∞ g(u) = 0. Finally, is easy to see that (n−m)2

4n
> m if and only

if n > m(3 + 2
√

2). This analysis completes the proof. �

Proof of Theorem 7.1.6: Let x̃(t) be a positive almost periodic solution of (7.1) and x(t) =
x(t; t0, ϕ) the solution of the initial value problem (7.1)-(7.4). Define y(t) := x̃(t) − x(t) with
t ∈ [t0 − υ,+∞), then we have

y′(t) =
M∑
k=1

λkrk(t)

[
xmk(t− τk(t))

1 + xnk(t− τk(t))
− x̃mk(t− τk(t))

1 + x̃nk(t− τk(t))

]
− b(t)y(t). (7.51)
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Computing the upper right Dini derivative of |y(t)| and from the mean-value theorem we
have

D+|y(t)| ≤
M∑
k=1

λkrk(t)

∣∣∣∣ xmk(t− τk(t))
1 + xnk(t− τk(t))

− x̃mk(t− τk(t))
1 + x̃nk(t− τk(t))

∣∣∣∣− b(t)|y(t)|

=
M∑
k=1

λkrk(t)

∣∣∣∣∣θmk−1(t− τk(t))
[
mk + (mk − nk)θnk(t− τk(t))

]
(1 + θnk(t− τk(t)))2

∣∣∣∣∣ ∣∣x(t− τk(t))− x̃(t− τk(t))
∣∣− b(t)|y(t)|

<
M∑
k=1

λkrk(t)η
mk−1

∣∣gmk,nk (θnk(t− τk(t)))
∣∣∣∣x(t− τk(t))− x̃(t− τk(t))

∣∣− b(t)|y(t)|,

where θ(t) lies between x(t) and x̃(t). In view of Lemma 7.3.1 we obtain

≤ p(t)|y(t)| − b(t)|y(t)|, for all t ≥ tϕ,x̃

where |y(t)| := supt−υ≤s≤t{|y(s)|}.
Thus, by Lemma 7.2.1 there exists ρ > 0 such that

|x̃(t)− x(t)| = |y(t)| ≤ |y(tϕ,x̃)|e−ρ(t−tϕ,x̃) = Kϕ,x̃e
−ρt for all t ≥ tϕ,x̃

and the proof is complete. �

7.4 A simplified model: Case (m > 1).

In this Section we consider the existence and nonexistence of positive almost periodic solutions
of the following simpler Mackey-Glass equation:

x′(t) =
M∑
k=1

λkrk(t)
xm(t− τk(t))

1 + xn(t− τk(t))
− b(t)x(t), with m > 1 (7.52)

where rk(t), b(t) and τk(t) ∈ AP (R), rk(t) are positive, τk(t) is nonnegative and λk, n are positive
constants.

Observe that the condition on m yields that function f(x) = xm

1+xn
is increasing on (0,+∞)

when m ≥ n and on (0, V ) when m < n, but, unlike the cases in previous Section, this function
has a change of concavity on these intervals. Indeed, when m ≥ n, there is a constant 0 < ν < V
such that the function f(x) is convex on (0, ν) and then becomes concave on (ν, V ). A similar
condition is obtained when m ≥ n. Thus, the assumptions in Corollary 6.2.1 are not satisfied.
Moreover, the more general fixed point theorem, that is Theorem 6.1.1, also fails. In this last
case, the reason is interesting to explain. Classical fixed point theorems such as Theorem 6.1.1
usually involve functions such as φ : (0, 1)→ (0,+∞) or φ : (0, 1)×P ◦×P ◦ → (0,+∞) satisfying
φ(γ) > γ or φ(γ, x, y) > γ for all x, y ∈ P ◦ and γ ∈ (0, 1) respectively. The main problem for the
case m > 1 is that condition, φ(γ) > γ is not fulfilled when γ ≈ 0. To overcome this problem we
shall employ Lemma 6.1.1. Observe that this Lemma is a slight modification of Theorem 6.1.1,

the main change is the assumption of the existence of a function φ :
[

(u0)∗
v∗0

, 1
)
⊂ (0, 1)→ (0,+∞)

where (u0)∗
v∗0

is a positive constant.
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Remark 7.4.1 In order to simplify some notation, we define the constant

B := A

[
nAn

(m− 1)(1 + An)

] 1
n−m+1

, (7.53)

where A is a positive constant.

Observe that, A >
(

m−1
n−m+1

) 1
n if and only if

[
nAn

(m−1)(1+An)

] 1
n−m+1

> 1 or, equivalently

B > A if and only if A >

(
m− 1

n−m+ 1

) 1
n

. (7.54)

7.4.1 Existence and nonexistence of positive almost periodic solu-
tions.

Theorem 7.4.1 Assume that n > m − 1 > 0 and n ≤ m. Let A be a constant such that

A >
(

m−1
n−m+1

) 1
n and B defined in (7.53). Furthermore, assume that

1 + An

Am−1
≤

M∑
k=1

λk
(rk)∗
b∗
≤

M∑
k=1

λk
(rk)

∗

b∗
≤ 1 +Bn

Bm−1
. (7.55)

Then (7.52) has a unique almost periodic solution x ∈ [A,B] ⊂ P ◦.

Proof: Let us verify that assumptions of Corollary 6.1.3 are fulfilled. Consider the positive
constant functions u0 = A and v0 = B.

Set the operator

Φ(x)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
xm(s− τk(s))

1 + xn(s− τk(s))
ds for all t ∈ R. (7.56)

Clearly the function f(u) = um

1+un
is nondecreasing on (0,+∞), in particular on [A,B]. Thus, we

deduce that Φ is a nondecreasing operator on [u0, v0]. Moreover, Φ satisfies Φ(P ◦) ⊂ P ◦. Indeed,
let x ∈ P ◦, then there exists ε > 0 such that x(t) ≥ ε for all t ∈ R. Thus, by the monotonicity
of f we have

Φ(x)(t) ≥
∫ t

−∞
e−b

∗(t−s)
M∑
k=1

λk(rk)∗
εm

1 + εn
ds

which shows that

Φ(x)(t) ≥
M∑
k=1

λk
b∗

(rk)∗
εm

1 + εn
:= ε̃ > 0.

In addition, by Lemma 2.3.2 it follows that Φ(x) ∈ AP (R).
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Now, by virtue of (7.55) we find

Φ(u0) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
um0

1 + un0
ds ≥

M∑
k=1

λk(rk)∗
b∗

um0
(1 + un0 )

≥ u0,

and

Φ(v0)(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
vm0

1 + vn0
ds ≤

M∑
k=1

λkr
∗
k

b∗

vm0
1 + vn0

≤ v0.

Finally, it only remains to show that condition (IV ) of Corollary 6.1.3 is satisfied. Let
x ∈ [u0, v0] and γ ∈

[
A
B
, 1
)

Φ(γx)(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
xm(s− τk(s))

1 + xn(s− τk(s))
γm

1 + xn(s− τk(s))
1 + γnxn(s− τk(s))

ds

≥ Φ(x)(t)γm
1 + An

1 + γnAn
.

Let φ :
[
A
B
, 1
)
→ (0,+∞) be the mapping defined by

φ(γ) = γm
1 + An

1 + γnAn
.

Thus,

Φ(γx)(t) ≥ φ(γ)Φ(x)(t), for each γ ∈
[
A

B
, 1

)
and x ∈ [u0, v0].

In order to prove that φ(γ) > γ for convenience, we define the function

M(γ) := γm−1(1 + An)− (1 + γnAn),

by a direct computation we can see that M(γ) achieves the maximum in γmax =
(

m−1
n−m+1

) 1
n−m+1 =

A
B

, M(1) = 0 and M is strictly decreasing in
(
A
B
, 1
)
, which implies that M(γ) > 0 for all

γ ∈
[
A
B
, 1
)
. Thus,

M(γ) = γm−1(1 + An)− (1 + γnAn) > 0, for all γ ∈
[
A

B
, 1

)
⇐⇒ γm−1(1 + An)− (1 + γnAn)

1 + γnAn
> 0, for all γ ∈

[
A

B
, 1

)
⇐⇒ φ(γ)

γ
− 1 > 0, for all γ ∈

[
A

B
, 1

)
.

Therefore, φ satisfies φ(γ) > γ for γ ∈
[
A
B
, 1
)
.

We conclude that (7.52) has a unique almost periodic solution x ∈ [u0, v0]. �
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Theorem 7.4.2 Assume that n > m− 1 > 0 and n > m. Set B =
(

m
n−m

) 1
n and let A be the

constant as in (7.53). Furthermore, assume that

1 + An

Am−1
≤

M∑
k=1

λk
(rk)∗
b∗
≤

M∑
k=1

λk
r∗k
b∗
≤ 1 +Bn

Bm−1
. (7.57)

Then (7.52) has a unique almost periodic solution x ∈ [A,B] ⊂ P ◦.

Proof: We claim that A >
(

m−1
n−m+1

) 1
n ; indeed, otherwise the constant A would satisfy A ≤(

m−1
n−m+1

) 1
n , so from (7.53) we have

(
m

n−m

) 1
n

= A

(
n

m− 1

An

1 + An

) 1
n−m+1

≤
(

m− 1

n−m+ 1

) 1
n

(
n

m− 1

m−1
n−m+1

1 + m−1
n−m+1

) 1
n−m+1

.

After some simplifications we obtain

m

n−m
≤ m− 1

n−m+ 1

and so

1

n−m
≤ − 1

m
.

This is a contradiction, thus our claim is true. Moreover, this implies that A < B.

Let u0 = A, v0 = B =
(

m
n−m

) 1
n , Φ the operator defined in (7.56) and φ : [A

B
, 1) → (0,+∞)

the function defined in (7.4.1).
It is readily seen that the function f(u) = um

1+un
is nondecreasing on [0, B]. Thus, we deduce

that Φ is a nondecreasing operator on [0, v0]. Moreover, Φ satisfies Φ
([

u20
v0
, v0

])
⊂ P ◦. Let

x ∈
[
u20
v0
, v0

]
, then x(t) ≥ u20

v0
for all t ∈ R and, by the monotonicity of f we have

Φ(x)(t) ≥
∫ t

−∞
e−b

∗(t−s)
M∑
k=1

λk(rk)∗

(
u20
v0

)m
1 +

(
u20
v0

)nds
which shows that

Φ(x)(t) ≥
M∑
k=1

λk
b∗

(rk)∗

(
u20
v0

)m
1 +

(
u20
v0

)n := ε̃ > 0.

In addition, by Lemma 2.3.2 it follows that Φ(x) ∈ AP (R).
The remaining conditions of Lemma 6.1.1 can be easily proven, indeed the proof is an ana-

logue of those given above and we omit it. �
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Remark 7.4.2 Theorems 7.4.1 and 7.4.2 answer the Open Problem formulated in [13, 14],
that is, the existence of almost periodic solutions with positive infimum of (7.52).

The following Lemma shall be used in our next nonexistence theorem.

Lemma 7.4.1 Let m,n > 0 and x ≥ 0. Then the function g(x) = m+(m−n)x
1+x

satisfies

|g(x)| ≤ max{m, |m− n|} := gmax. (7.58)

Proof: The conclusion follows by checking that g(0) = m, limx→+∞ g(x) = m − n and g(x) is
nonincreasing. �

Lemma 7.4.2 Assume that n ≥ m− 1 ≥ 0 and
M∑
k=1

λk
r∗k
b∗
<

1

gmax

,

where gmax is defined as in (7.58). Then (7.52) has no positive almost periodic solutions.

Proof: Consider the operator Φ : P → P ,

Φ(x)(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
xm(s− τk(s))

1 + xn(s− τk(s))
ds.

Let x, y ∈ P , we shall show that Φ is a contraction operator

|Φ(x)(t)− Φ(y)(t)| =
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)

∣∣∣∣ xm(s− τk(s))
1 + xn(s− τk(s))

− ym(s− τk(s))
1 + yn(s− τk(s))

∣∣∣∣ ds
≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
ξm−1(s− τk(s))

1 + ξn(s− τk(s))

∣∣∣∣m+ (m− n)ξn(s− τk(s))
1 + ξn(s− τk(s))

∣∣∣∣ ds||x− y||
where ξ lies between x and y in view of (7.25) and Lemma 7.4.1 we have

≤
∫ t

−∞
e−

∫ t
s b(u)dum

M∑
k=1

λkrk(s)ds||x− y||

≤
M∑
k=1

λk
r∗k
b∗
gmax||x− y||.

Thus, Φ is a contraction which implies that Φ has a unique fixed point x ∈ P , Φ(x) = x. Thus
the conclusion follows since 0 ∈ P is a fixed point of Φ, equivalently, from Lemma 6.2.1 x(t) ≡ 0
is the unique solution of (7.52). �

Lemma 7.4.3 Let n ≥ m ≥ 0. Then (7.52) has no almost periodic solutions x(t) such that

x(t) ∈
(∑M

k=1 λk
r∗k
b∗
,+∞

)
.

Proof: It is a direct consequence of Lemma 6.2.1 and (7.25). Indeed, let x(t) be an almost
periodic solution of (7.52), then

x(t) =

∫ t

−∞
e
∫ t
s b(u)du

M∑
k=1

λkrk(s)
xm(s− τk(s))

1 + xn(s− τk(s))
ds ≤

M∑
k=1

λk
r∗k
b∗
.

The proof is complete. �
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7.5 Open problems

We outline some open problems:

1. Prove or disprove the existence of positive almost periodic solutions for the asymptotic
linear (n = m − 1) and/or superlinear (n < m − 1) cases of (7.52) and its generalization
(7.1).

2. Give conditions to ensure the stability of the positive almost periodic solutions of (7.52).





Chapter 8

Work in progress & Future work

8.1 Work in progress

We are working on the following problems:

1. To obtain results of existence related to the concavity and/or convexity of the nonlinearity
involved, in a similay way as we did in Theorem 6.2.1, for the following abstract problem:

x′(t) =
M∑
k=1

Fk(t, x(t− τk(t)))−
N∑
k=1

Hk(t, x(t− µk(t)))− b(t)x(t), (8.1)

where τk, µk and b ∈ AP (R), b has positive infimum, τk and µk are nonnegative, Fk, Hk

are in the class u.a.p and Fk(t, ·), Hk(t, ·)
∣∣
R>0
⊂ R>0 for all t ∈ R. In addition, Fk, Hk are

nondecreasing functions.

2. As we mentioned before, the classical topological methods of super and sub solutions is an
important tool for the study of periodic second order differential equations. However, these
methods fail when we try to extend them in a direct way to the almost periodic case [41,48].
One of the principal reason is the lack of compactness of the involved operators.

We are working on an extention of super and sub solutions method to the almost periodic
case. In particular, for the second order equation

u′′ + cu′ = f(t, u) (8.2)

where f : R×R→ R is almost periodic in t uniformly in x and the constant c is in [0,+∞).
By the assumption of the existence of almost periodic super and sub solutions of (8.2) we
study the existence of almost periodic solutions x(t) for (8.2).

Our work aims to extend existence results, where the existence of periodic sub and super-
solutions imply the existence of periodic solutions.

In [48] the authors analize the almost periodic equation (8.2) with c = 1. They obtain
existence results employing the method of super and subsolutions. However, we think that
their work has a mistake in the proof of one lemma. We are looking for a counterexample.
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8.2 Future work

We outline some problems in the field of periodic and almost periodic functions.
With respect to the Wheldon model we present the following open problems:

1. Use Lyapunov-like functionals to find sufficient conditions for the global stability of a
non-trivial equilibrium of the autonomous model.

2. Prove or disprove that for a new model the complete recovery is possible for sufficiently
high drug dosage; examine permanence, persistence and extinction of the solutions.

3. Define the required type, frequency and intensity of the cancer treatment that switch
unfavorable oscillatory dynamics of a system to a non-oscillatory state.

In addition, we present some open questions and future line of investigation related to the
Mackey-Glass model:

4. Prove or disprove the existence of positive almost periodic solutions for the asymptotic
linear (n = m − 1) and/or superlinear (n < m − 1) cases of (7.52) and its generalization
(7.1).

5. Give conditions to ensure the stability of the positive almost periodic solutions of (7.52).
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A mis primeras compañeras de oficina, las chicas de la 2034, con quienes compart́ı los primeros
cuatro años de mi doctorado. Gracias por estar cuando las necesité, por los consejos, por las
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