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Resumen

En esta tesis se estudian fundamentos de termodinámica en sistemas cuánticos lin-
eales. Se desarrolla una teoría general que permite estudiar procesos periódicos sobre
redes armónicas acopladas a entornos bosónicos. Se muestra cómo las leyes usuales
de la termodinámica clásica emergen a partir de la dinámica determinista del sistema.
Además, los resultados obtenidos son utilizados para estudiar procesos termodinámi-
cos en situaciones arbitrariamente alejadas del equilibrio térmico y del límite termod-
inámico.

El formalismo desarrollado aquí es exacto y no requiere de ciertas aproximaciones
que son comunmente usadas en la literatura (acoplamiento débil y dinámica Marko-
viana). Esto permite entender cuáles son las consecuencias de utilizar estas aproxima-
ciones, y establecer precisamente el rango en el que pueden ser aplicadas, lo cuál es de
utilidad en otros modelos donde una solución exacta no es posible. Este desarrollo tam-
bién aclara ciertas confusiones existentes en la literatura respecto de la versión dinámica
de la tercera ley de la termodinámica, dado que se obtiene una demostración novedosa
de la validez de esta ley para una familia general de máquinas térmicas.

Por último, se proponen experimentos en sistemas de iones atrapados para simular
procesos de transporte de energía y transiciones de fase en materiales magnéticos.

Palabras clave: Información cuántica, Termodinámica Cuántica, Simulaciones Cúanti-
cas, Sistemas Cuánticos Abiertos, Refrigeradores Cuánticos
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Thermodynamics and quantum simulations in ion traps

Abstract

This thesis studies foundations of thermodynamics in quantum linear systems. A
general theory is developed to study periodic processes in harmonic networks that are
connected to bosonic reservoirs. It is shown how the usual thermodynamical laws emerge
from the deterministic dynamics of the system. Furthermore, the obtained results are
employed to study thermodynamical processes in non-equilibrium regimes which are
far from the thermodynamical limit.

The developed formalism is exact and does not require some approximations that are
commonly used in the literature (the weak coupling and Markovian limits). This feature
allows to understand what are the consequences of using these approximations, and to
establish precisely when they can be employed, which is useful in other models where an
exact solution is not available. This development also clarifies some confusions existing
in the literature regarding the dynamical version of the third law of thermodynamics,
since it is possible to obtain a novel proof of its validity for a general family of thermal
machines.

Finally, some experiments with trapped ions are proposed to simulate energy trans-
port processes and phase transitions in magnetic materials.

Keywords: Quantum Information, Quantum Thermodynamics, Quantum Simulations,
Open Quantum Systems, Quantum Refrigerators
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In the last decades the research in Quantum Mechanics was increasingly dominated
by the fields of ‘Quantum Information’ and ‘Quantum Computation’ [1]. One of the
objectives in these areas is to understand what are the implications of the unique prop-
erties of Quantum Mechanics (like entangled states or the wave function collapse) for
the manipulation, transmission, and processing of information. The seminal ideas were
originally introduced by Richard Feynman in 1982 when he proposed to employ well
controlled quantum systems in order to simulate the physics of other target system [2].
Few years later it was shown by Bennet and Bassard that the properties of quantum me-
chanics could be employed to design fundamentally secure schemes of key distribution
for cryptography [3]. Also, it was shown that quantum computers could offer signif-
icant advantages for solving problems that were intractable for classical computers, in
particular the factorization of large integers [4].

These and later ideas stimulated the interest in building quantum systems capable
of implementing the envisioned quantum processing of information. The subsequent
interplay between theoretical and experimental progress led to the development of ex-
perimental platforms in which individual quantum systems can be controlled with an as-
tonishing level of precision. Today, it is possible to precisely control the quantum state of
individual ions confined in electromagnetic traps [5,6]. Arrays of tens of these ions were
employed as a quantum register to run elementary quantum algorithms [7–10]. Pairs
of entangled photons are routinely produced in many laboratories in the world to per-
form quantum key distribution for cryptography or quantum state teleportation [11–14].
Quantum optical technology is even commercially available [15], and being tested is
space [16]. Also, increasingly complex and powerful superconducting circuits are con-
structed in which the quantum state of Josephson junctions and microwave cavities is
employed to store and process quantum information [17–20]. Many more quantum tech-
nologies are currently under development [21].

Although a full fledged and large quantum computer is still not a reality, this impres-
sive experimental progress also open the door for new research in fundamental ques-
tions, or unexplored regimes in which quantum systems have not been yet tested or
employed. For example, although a completely programmable quantum computer is
needed to digitally simulate the physics of an arbitrary quantum system, another less de-
manding kind of simulation is possible. This alternative is known as ‘analogous quantum
simulation’ and consists on engineering the natural and continuous time evolution of a
highly controllable quantum system in order for it to mimic the evolution of a real or
hypothetical target system that is not accessible [21]. Of course, only a limited family
of systems can be simulated in this way with a given experimental platform. Exam-
ples along this line include the simulation of: Ising models of magnetic materials with
trapped ions [22, 23] or superconducting qubits [18] (the commercial platform D-Wave
might be another example of the second case [24]), controlled decoherence in open quan-
tum systems [25], the dynamics of lattice gauge theories [26], and the Bose-Hubbard
model [27].

Another area that received much attention in recent years is that of ‘Quantum Ther-
modynamics’, in which thermodynamical processes are studied from a quantum me-
chanical and dynamical viewpoint [28, 29]. There are many ways in which the men-
tioned progress in Quantum Mechanics can be related to thermodynamics. In first place,
the precise control of individual quantum systems is closely related to the common ther-
modynamical process of cooling. Atoms, optical cavities, mechanical resonators, and
electronic systems must often be cooled to ultra low temperatures in order to avoid spu-
rious thermal excitations. In ion traps, ions are cooled down close to its motional ground
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state as the first step of any quantum algorithm. Second, as the connection between
classical information theory and statistical mechanics is well known [30, 31], the devel-
opment of quantum information theory has a natural application to the study and revi-
sion of fundamental concepts in thermodynamics [32,33]. Finally, the new experimental
platforms allow to study individual, microscopic or mesoscopic quantum systems in
non-equilibrium situations where usual thermodynamical treatments break down. An
engine composed of a single ion has been recently constructed [34], the distribution or
work performed on a single quantum harmonic oscillator was measured [35, 36], and
single electrons can be transported between quantum dots [37]. Thus, new theoretical
developments are needed to extend the limits of classical thermodynamics.

The results presented in this thesis aim to contribute to the fields of quantum ther-
modynamics and quantum simulations. An exact formalism is developed to study ther-
modynamical processes on a restricted family of linear quantum thermal machines. The
fundamental limits for cooling in this setting are identified, showing that they are related
to the well known Dynamical Casimir Effect (DCE). Importantly, it is shown that com-
mon approximations fail to capture this effect. Also, new experiments with trapped ions
are proposed to simulate the transport of heat across microscopic crystalline structures,
as a function of relevant parameters such as disorder and dimensionality. The quantum
simulation of magnetic materials with trapped ions is also explored.

This thesis is organized as follows. The first three chapters are introductory material.
In chapter 1 a brief review of different topics in quantum thermodynamics is provided, in
order to put into context the work later presented. Chapter 2 is a very general description
of Floquet Theory, that contains some concepts that might be useful later on. Ending the
introductory part, Chapter 3 gives a very basic picture of how an ion trap works, and
how the motion of an ion and its internal state is manipulated. This is necessary to
understand the experimental proposals presented in the last two chapters.

In chapters 4 and 5 the main model of this thesis is introduced: a family of linear
quantum machines consisting in arbitrary networks of harmonic oscillators, connected
to several bosonic reservoirs at different temperatures, and whose parameters can be
driven in a periodic fashion. It is shown that this model can be solved without requiring
any approximation such as weak coupling or Markovian hypothesis.

The following three chapter explains how the usual thermodynamical laws emerge in
the family of thermal machines previously presented. Chapter 6 presents and discusses
the microscopic definitions of thermodynamical quantities such as heat and work. From
this definitions the first law of thermodynamics follows trivially. An exact expression for
the heat current between the system and each thermal reservoir is obtained. A physical
interpretation of this expression is put forward, from which it follows that the funda-
mental limit for cooling in this family of thermal machines is given by a pairs creation
mechanism analogous to the DCE. Then, chapter 7 analyses the validity of the second
law of thermodynamics, and chapter 8 discusses the validity of the dynamical third law,
or unattainability principle, and shows how to employ the developed formalism to cal-
culate the minimum achievable temperature in some relevant cooling schemes.

Finally, the last two chapters describe experimental proposals. In chapter 9 the heat
transport through crystals of trapped ions is studied. It is shown that the flow of heat
strongly depends on the disorder and dimensionality of the crystal, and that these sys-
tems are promising candidates to observe the transition from normal or diffusive heat
transport, to an abnormal or ’ballistic’ regime. Chapter 10 explores the possibility of ex-
tending state of the art experiments on the simulation of magnetic materials with trapped
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ions in order to simulate more complex models, with special emphasis in the ANNNI 1

model.

1ANNNI stands for Anisotropic Next-Nearest-Neighbor Interactions
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Introducción

En las últimas décadas la investigación en mecánica cuántica fue progresivamente
dominada por las áreas de ‘Información cuántica’ y ‘Mecánica Cuántica’ [1]. Uno de los
objetivos en estas áreas es entender cuáles son las implicaciones de las propiedades úni-
cas de la mecánica cuántica (como los estados entrelazados o el colapso de la función
de onda) para la manipulación, transmisión, y procesamiento de información. El inicio
de estas ideas fue originalmente introducido por Richard Feynman en 1982 cuando pro-
puso el empleo de sistemas cuánticos como elementos de cómputo para la simulación
de la física de otros sistemas cuánticos a los que no se tiene acceso [2]. Pocos años mas
tarde Bennet y Bassard mostraron que las propiedades de la mecánica cuántica pueden
ser usadas para diseñar esquemas fundamentalmente seguros de distribución de claves
para criptografía [2]. También, se demostró teóricamente que las computadoras cuánti-
cas podrían ofrecer ventajas significativas para resolver problemas que eran intratables
para computadoras clásicas, en particular la factorización de números enteros [4].

Estas ideas estimularon el interés en la construcción de sistemas cuánticos capaces
de implementar el procesamiento cuántico de la información. La interacción subsigu-
iente entre progresos experimentales y teóricos llevó al desarrollo de plataformas experi-
mentales donde sistemas cuánticos individuales pueden ser controlados con un sorpren-
dente nivel de precisión. Hoy, es posible controlar el estado cuántico de iones individ-
uales confinados en trampas electromagnéticas [5,6]. Arreglos de decenas de estos iones
fueron empleados como registro cuántico para ejecutar algoritmos cuánticos elemen-
tales [7–10]. Pares de fotones entrelazados son rutinariamente producidos en muchos
laboratorios del mundo para realizar distribución de claves criptográficas o teleportación
cuántica [11–14]. Tecnologías basadas en óptica cuántica están incluso disponibles com-
ercialmente [15], y siendo actualmente probadas en el espacio [16]. También son constru-
idos circuitos superconductores cada vez más complejos y poderosos, en donde el estado
cuántico de junturas de Josephson y cavidades de microondas es utilizado para almace-
nar y procesar información [17–20]. Muchas otras tecnologías cuánticas se encuentras
actualmente en desarrollo [21].

Aunque una computadora cuántica completamente desarrollada no es todavía una
realidad, este impresionante progreso experimental abre las puertas para nuevas inves-
tigaciones en preguntas fundamentales, o hacia nuevos regímenes en donde los sistemas
cuánticos aún no han sido utilizados o examinados. Por ejemplo, aunque una computa-
dora cuántica completamente programable es necesaria para simular digitalmente la física
de un sistema cuántico arbitrario, otro tipo menos demandante de simulación es posi-
ble. Esta alternativa se conoce como simulación cuántica analógica, y consiste en el control
y diseño de la evolución natural y continua de un sistema cuántico controlable, de forma
que esta simule la evolución de otro sistema cuántico, real o hipotético, al que no se tiene
acceso [21]. Por supuesto, solo una familia limitada de sistemas pueden ser simulados
de esta manera con una dada plataforma experimental. Ejemplos de este tipo incluyen la
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simulación de: modelos tipo Ising de materiales magnéticos con iones atrapados [22,23]
o qubits superconductores [18] (la plataforma comercial D-Wave podría ser otro ejem-
plo [24]), decoherencia controlada en sistemas cuánticos abiertos [25], la dinámica de
teorías de gauge [26], o el modelo de Bose-Hubbard [27].

Otra área que recibió mucha atención en los último años se conoce como ‘Termod-
inámica Cuántica’, en la cuaĺ se estudian procesos termodinámicos desde el punto de
vista de la dinámica cuántica subyacente [28, 29]. El progreso mencionado anterior-
mente en mecánica cuántica está relacionado de muchas maneras con la termodinámica.
En primer lugar, el control preciso de sistemas cuánticos individuales esta fuertemente
ligado al proceso termodinámico de refrigeración. Átomos, cavidades ópticas, reson-
adores mecánicos, y sistemas electrónicos deben ser enfriados a temperaturas ultra bajas
para evitar excitaciones cuánticas espurias. En experimentos con iones atrapado, estos
son enfriados hasta que su estado de movimiento alcanza casi el estado fundamental,
como primer paso de cualquier cómputo cuántico. En segundo lugar, dado que la conex-
ión entre la teoría de la información clásica y la mecánica estadística se conoce amplia-
mente [30, 31], el desarrollo de la teoría de la información cuántica tiene una aplicación
natural en el estudio y revisión de conceptos fundamentales en termodinámica [32, 33].
Finalmente, las nuevas plataformas experimentales permiten estudiar sistemas cuánticos
individuales, microscópicos, o mesoscópicos en situaciones fuera del equilibrio térmico
donde las herramientas usuales de la termodinámica no pueden ser aplicadas. Un motor
compuesto de un único ion fue construido recientemente [34], se midió la distribución de
trabajo realizado sobre un único oscilador armónico cuántico [35,36], y electrones únicos
pueden ser transportados entre puntos cuánticos2 [37]. Por lo tanto, nuevos desarrollos
teóricos son necesarios para extender los límites de la termodinámica clásica.

Los resultados presentados en esta tesis pretenden contribuir a las áreas de Ter-
modinámica Cuántica y Simulaciones Cuánticas. Un formalismo exacto es desarrollado
para estudiar procesos termodinámicos en una familia restringida de máquinas térmi-
cas cuánticas. Los límites fundamentales de estas máquinas para la refrigeración fueron
identificados, mostrando que estos están relacionados con el Efecto Casimir Dinámico
(ECD). Se muestra también que este efecto no es capturado por tratamientos comunes
que emplean ciertas aproximaciones. Además, se proponen nuevos experimentos con
iones atrapados para simular el transporte de calor a través de estructuras cristalinas
microscópicas, como función de parámetros relevantes como el desorden y la dimen-
sionalidad. También se explora la simulación cuántica de materiales magnéticos.

Esta tesis está organizada de la siguiente manera. Los primeros tres capítulos son
material introductorio. En el capítulo 1 se repasan brevemente diferentes temas de ter-
modinámica cuántica, para poner en contexto el trabajo que se presenta más adelante. El
capítulo 2 es una descripción muy general de la teoría de Floquet, que contiene algunos
conceptos que pueden ser útiles más adelante. Finalizando la introducción, en el capí-
tulo 3 se da se da una explicación básica de como funciona una trampa de iones, y como
el movimiento y estado interno de los iones es manipulado. Esto es necesario para poder
entender las propuestas experimentales que se dan en los últimos dos capítulos.

En los capítulos 4 y 5 se introduce el modelo principal de esta tesis: una familia
de maquinas térmicas lineales que consiste en redes arbitrarias de osciladores armóni-
cos conectados a varios entornos bosónicos a distinta temperatura, y cuyos parámet-
ros pueden ser variados en el tiempo de forma periódica. Se muestra que este modelo
puede ser resuelto exactamente, sin requerir ninguna aproximación (como por ejem-
plo las aproximaciones Markovianas o de acoplamiento débil que son ampliamente uti-

2Quantum dots
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lizadas).
Los siguientes tres capítulos explican como emergen las leyes usuales de la termod-

inámica en la familia de máquinas térmicas consideradas previamente. En el capítulo 6
se presentan y discuten definiciones microscópicas de cantidades termodinámicas como
calor y trabajo. A partir de estas definiciones la primera ley de la termodinámica se ob-
tiene trivialmente. Se obtiene una expresión exacta para las corrientes de calor entre el
sistema central y cada reservorio térmico. Se da una interpretación física de esta expre-
sión, de la cual se deduce que que el límite fundamental para el enfriamiento en esta
familia de máquinas esta dado por un mecanismo de creación de pares análogo al ECD.
Luego, el capítulo 7 analiza la validez de la segunda ley de la termodinámica, y el capí-
tulo 8 discute la validez de la versión dinámica de la tercera ley, y muestra como emplear
el formalismo desarrollado para calcular la mínima temperatura alcanzable en algunos
esquemas de enfriamiento relevantes.

Finalmente, los últimos dos capítulos describen propuestas experimentales. En el
capítulo 9 se estudia la corriente de calor transportada a través de cristales formados
por iones atrapados. Se muestra que el flujo de calor depende fuertemente del desor-
den y la dimensionalidad del cristal, y que estos sistemas son candidatos prometedores
para observar la transición entre los regímenes de transporte difusivo y ‘balístico’. En el
capítulo 10 se explora la posibilidad de extender algunos experimentos actuales sobre la
simulación cuántica de materiales magnéticos con iones atrapados, de forma de simular
modelos mas complejos. Se pone especial énfasis en el modelo ANNNI 3.

3ANNNI son las siglas en inglés para Interacciones anisotrópicas a segundos vecinos.
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Chapter 1

Quantum thermodynamics

The relation between thermodynamics and quantum mechanics goes back to the
birth of quantum mechanics. As is well known, the analysis of the observed energy dis-
tribution of the electromagnetic field at thermal equilibrium led Max Planck to the idea
that the energy of harmonic oscillators was quantized. This idea was later expanded
by Albert Einstein, when he proposed that light was in fact composed of discrete pack-
ets of energy, now called photons. Thus, it is possible to say that quantum mechanics
emerged from the search of consistency between microscopic models of radiation and
matter and macroscopic thermodynamics. Later on, quantum mechanics had an inde-
pendent development, although consistency with the main thermodynamical laws was
always maintained. Highly successful dynamical models of matter and radiation were
proposed and tested in non-equilibrium regimes where classical thermodynamics had
not much to say. Nowadays, quantum mechanics is a general and well developed the-
ory which gives a consistent framework to describe the ultimate components of matter
and its interactions.

In the last decades the relation between quantum mechanics and thermodynamics
was somewhat inverted with respect to its origin: now, many researchers try to under-
stand how and to what extent the usual macroscopic laws of thermodynamics emerge
from a given quantum substrate. This line of inquiry, called Quantum Thermodynam-
ics [28, 29, 33], is perhaps motivated by the following reasons:

• Reductionist understanding of macroscopic laws. The decomposition of complex and
macroscopic behaviors in terms of simpler processes operating at lower spatial and
temporal scales is a basic method of all science. When this method can be applied
to composite systems, it usually provides a detailed understanding of emergent
phenomena in terms of more elementary laws. The ubiquity of thermal states and
the dynamical approach to them [38, 39], the apparent inconsistency between the
Second Law of thermodynamics and the time-invariant character of quantum me-
chanical evolution [40–42], the relation between the notion of information and the
physical origin of entropy [30, 33, 43, 44], are all examples of problems and ques-
tions in which a microscopic understanding of thermodynamical laws seems to be
needed.

• Expansion of the limits of classical thermodynamics. Classical thermodynamics can
only make statements about the properties of systems at thermal equilibrium, and
about the possibility of reaching a particular equilibrium state from another one.
Dynamical processes can only be analyzed in the quasiestationary regime in which
at all times the system in question is in equilibrium with its environment. There is
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no notion of time in classical equilibrium thermodynamics. Later developments in
non-equilibrium thermodynamics enabled the analysis of settings in which energy,
charge or mass is transported between thermal reservoirs at different temperature
or chemical potential [45, 46]. However, general results were initially restricted to
the so called ‘linear regime’, in which the deviations from thermal equilibrium are
small. A description of thermodynamical processes from a quantum dynamical
point of view would allow to consider situations arbitrarily away from thermal
equilibrium.

• Description of new machines working at the quantum level. Technological progress in
the manipulation of individual quantum systems has enabled the fabrication of
thermal machines operating at quantum regimes: individual atoms can be trapped
and cooled close to the ground state by means of their interaction with individual
photons, a thermal engine in which the working substance is composed of a single
trapped ion has been proposed [47] and constructed [34], the electronic and spin
transport between quantum dots can be controlled at the single electron level [48,
49]. At variance with macroscopic systems at finite temperature, these devices are
dominated by quantum fluctuations. Thus, a fully quantum description of their
operation is needed.

Quantum thermodynamics is therefore a very wide subject comprising physical im-
plementations of thermal machines in different experimental platforms, as well as gen-
eral concepts, ideas, and methods involved in the description of non-equilibrium pro-
cesses that are out of the reach of previous developments. We will briefly review here
three general and modern approaches to the treatment of thermodynamical processes
from a quantum perspective. First we mention the general concepts behind fluctuation
theorems. Then we mention the treatment of thermodynamics as a ‘resource theory’,
that is inspired in the theory of entangled states. The last, more traditional, approach is
based on the theory of quantum open systems, in which the exact quantum dynamics
of a system that is interacting with an environment (in general considered to be another
quantum system) is studied.

1.1 Fluctuation theorems

Statistical mechanics, quantum or classical, gives a connection between the micro-
scopic dynamics of a system and its macroscopic state at thermal equilibrium. From this
connection it is possible to predict the expected values of macroscopic variables like en-
ergy, pressure or volume, and also their fluctuations about these expected values. For
example, we know how the average speed of molecules escaping from an oven with a
hot gas is related to the temperature of the oven, but we also know that the velocities of
individual molecules are distributed according to the Maxwell-Boltzmann distribution.
What fluctuation theorems address are the fluctuations in macroscopic variables related
to processes that drive the system out of thermal equilibrium, typically heat or work,
about which statistical mechanics gives no information (except in cases where the final
state is also at themal equillibrium).

Fluctuation relations have a long history, with the first general results appearing in
the decade of 1950 in the work of Green and Kubo, although they were valid only in the
linear regime close to thermal equilibrium. In the last decade of the past century general
relations were established that accounted for the fluctuations in completely general non-
equilibrium and quantum settings. A short review of the main historical points in the
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development of the fluctuation theorems can be found in [50], but perhaps the most
famous of the recent results is the Jarzynski equality [51].

Jarzynski considered a quantum or classical system that is at thermal equilibrium
at temperature T and is driven out of it by a time dependent process that change the
Hamiltonian of the system from Ha to Hb in a given period of time. Since the initial state
is thermal, the system can start the process in different configurations, with different
probabilities. Therefore the work performed on the system by the driving will be differ-
ent for each run. Jarzynski showed that the probability P (W ) of performing work W is
such that the following equality is satisfied:

〈

e−βW
〉

= e−β∆F (1.1)

with β = (kbT )
−1 and ∆F = Fb − Fa is the free energy difference between the final

and initial Hamiltonians, i.e, Fx is the Helmholtz free energy corresponding to a ther-
mal state of the Hamiltonian Hx at temperature T . Thus, the Jarzynski equality relates
properties of thermal equilibrium (∆F ), to properties of arbitrary non-equilibrium pro-
cesses (P (W )). Applying the Jensen’s inequality to Eq. (1.1), it can be easily deduced
that 〈W 〉 ≤ ∆F , which is a well known result for irreversible processes.

The Jarzynski equality can be derived from an independent result known as the
Tasaki-Crooks relation [52], that reads:

Pf (W )

Pb(W )
= e−β(∆F−W ) (1.2)

where Pf (W ) is the probability of performing work W during the ‘forward’ execution of
a process, while Pb(W ) correspond to the time reversed (‘backwards’) version of the same
process. Fluctuations theorems with the same form as Eq. (1.2) has been derived also for
the transport of mass, charge, and energy [53].

1.2 Thermodynamics as a resource theory

A resource theory is defined by a set of of quantum states and operations that are
considered ‘free’. A state or operation that is not free is then a ‘resource’ that can be em-
ployed to perform tasks that are not initially accessible via free states or operations. A
prominent example is the theory of entangled states, which are the resources that emerge
when the free states considered are the separable states and the free operations are the
local operations aided with classical communication. Thus, entangled states enable the
realization of tasks that are otherwise impossible, like quantum teleportation, for exam-
ple.

Thermodynamic transformations at background temperature T can also be put in the
framework of a resource theory. In this case the free states are thermal states at tempera-
ture T . The free operations are those in which the system of interest can interact with an
arbitrary auxiliary system, or ancilla, that is initially in a thermal state at temperature T ,
via an energy conserving interaction. These are called ’thermal operations’. Explicitly,
if ρ is the density matrix of the system, the allowed transformations E are parametrized
by [54, 55]:

E(ρ) = TrA[U(ρ⊗ ρA)U
†] (1.3)

where, if the Hamiltonians of the system and the ancilla are respectively H and HA,
ρA ∝ e−HA/(kbT ) is a thermal state of the ancilla at temperature T , and U is an arbitrary
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unitary operation acting on both system and ancilla with the restriction of conserving
the total energy, i.e., it must satisfy [U,H ⊗ 1 + 1 ⊗ HA] = 0. In this case, the resource
states are states out of thermal equilibrium, or at thermal equilibrium at a temperature
T ′ 6= T . A feature of thermal operations is that they cannot perform work by themselves.
However, they can be employed to extract work from resource states.

A number of important results can be obtained in this framework. We only mention
here the generalization of the Second Law of thermodynamics presented by Brandao
and others in [56]. They have found that a initial state ρ of a system with Hamiltonian
H can be transformed to a final state ρ′ via thermal operations if and only if Fα(ρ, ρβ) ≥
Fα(ρ

′, ρβ) for all α ≥ 0, where ρβ = e−βH/Z is a thermal state of the system at inverse
temperature β = (kbT )

−1, Z = Tr[e−βH ], and the functions Fα are defined as1:

Fα(ρ, ρβ) = kbT [Dα(ρ||ρβ)− log(Z)] (1.4)

where the functionDα(ρ||ρβ) is the Rényi divergence of state ρ from state ρβ . It is defined
in the following way:

Dα(ρ||ρβ) =
sgn(α)
α− 1

log
(

pαi q
1−α
i

)

(1.5)

where {pi} and {qi} are the eigenvalues of ρ and ρβ , respectively. The continuous family
of functions Fα≥0 is a generalization of the usual Helmholtz free energy F (ρ) = 〈E〉 −
kbTS, where 〈E〉 = Tr[ρH] and S is the von Neumann entropy S(ρ) = −Tr[ρ log(ρ)]. In
fact, the Helmholtz free energy is recovered in the limit α → 1, i.e, limα→1 Fα(ρ||ρβ) →
F1(ρ, ρβ) = F (ρ). Thus we see that the family of conditions Fα(ρ, ρβ) ≥ Fα(ρ

′, ρβ) (for all
α ≥ 0) includes the common version of the Second Law that states that when interacting
with a thermal reservoir the Helmholtz free energy can only decrease. However, in the
general case there are more constraints to possible state transitions. Not only the usual
Helmholtz free energy must decrease in order for a transition ρ → ρ′ to be thermody-
namically possible, all the generalized free energies Fα(ρ, ρβ) must decrease. This result
can be considered a generalization of the Second Law of thermodynamics to the quan-
tum regime. Interestingly, it is also shown in [56] that in the limit in which the system
is macroscopic all the family of free energies collapses to the Helmholtz free energy, i.e.,
Fα(ρ, ρβ) ≃ F1(ρ, ρβ) = F (ρ). Thus, we see that the additional restrictions on possible
state transitions are only relevant away from the thermodynamical limit.

The connection between the functionsFα and the usual notion of free energy becomes
stronger when analyzing how much work can be extracted in a transition ρ → ρ′. It is
found that the maximum amount of extractable work W is given by:

W = kbT inf
α

[Fα(ρ, ρβ)− F (ρ, ρβ)] (1.6)

which again is compatible with the usual limit to the work that can be extracted as the
difference in the Helmholtz free energy, although it is more stringent in the general case.

The results presented in the second and third parts of this thesis can also be under-
stood as an example of a resource theory. We will consider a restricted but sufficiently
general class of thermal machines where the resources are: i) access to bosonic reser-
voirs in thermal equilibrium states ii) access to arbitrary networks of harmonic oscilla-
tors, whose parameters can be driven periodically in time, and iii) the implementation
of dipolar interactions between the harmonic network and the thermal reservoirs. Then,
we will try to answer the following questions: are the usual laws of thermodynamics

1This results are actually restricted, for simplicity, to states that are block diagonal in the energy eigen-
basis
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valid in this setting? how do they emerge? how the exchange of energy between the
harmonic network and the reservoirs (heat currents) depends on the driving, the tem-
peratures, and other parameters? Under which conditions is it possible to extract energy
(to cool) a given reservoir? If it is possible, what is the minimum temperature that can be
achieved? What are the limitations imposing this minimum temperature?. We can sum-
marize these questions in the simple one: what tasks it is possible to perform with the
given resources?. An example of the kind of answers that can be obtained can be found
in [57], where the same family of linear thermal machines was considered, but without
the possibility of driving the system parameters. It was found that it was not possible
with the given resources to construct what is known as ‘quantum absorption refriger-
ators’ [58, 59]. In this kind of refrigerators, a non-equilibrium current established by a
thermal gradient between two thermal reservoirs connected to a central system gener-
ates the cooling of a third thermal reservoir, even if the temperature of this last reservoir
is lower than the other two. Thus, it was concluded that non-linear resources are crucial
to construct absorption refrigerators.

1.3 The theory of quantum open systems

The previous approaches aim at identifying general and exact thermodynamic re-
lations valid even if the system is away of thermal equilibrium or the thermodynamic
limit. There is another widely used strategy, in some sense more traditional, that is based
in solving the dynamics of a quantum system that is interacting with an environment.
Although it does not directly offer any insight into general principles, it is perhaps better
suited to deal with situations in which a steady non-equilibrium state is established. It
also allows to take into account details of the thermal reservoirs, like its spectral content.

This is the approach employed in this thesis, so it will be described in detail. We
consider a quantum system S that is interacting with a number of thermal reservoirs Eα,
that are coupled to the system via interaction terms Hint,α. Then, the total Hamiltonian
is:

H(t) = HS(t) +
∑

α

HE,α +
∑

α

Hint,α (1.7)

where HS(t) is the system’s Hamiltonian, possibly time dependent, and HE,α is the
Hamiltonian of the α-th reservoir. Thus, if ρT (s) is the total density matrix of system
and reservoirs, it evolves according to the von Neumann equation

i~
dρT
dt

= [H(t), ρT (t)] (1.8)

which describes an unitary evolution for the global state. The previous equation can be
integrated given an initial state ρT (0). This state is usually taken to be a product state of
the form ρT (0) = ρS(0)⊗ρE(0), where the system and the environment are uncorrelated
(ρS(0) and ρE(0) are the initial states of the system and environment, respectively). Also,
in the initial state of the environment each reservoir is in a thermal state and uncorrelated
with the others, i.e, ρE(0) =

⊗

α e
−βαHE,α/Tr[e−βαHE,α ], where βα = (kbTα)

−1 is the
initial inverse temperature of each reservoir.

Once the Eq. (1.8) is integrated up to time t, the reduced state of the system can
be obtained as ρS(t) = TrE ρT (t). From the reduced state of the system we can obtain
the expectation values of observables of interest as 〈A〉 (t) = Tr [ρS(t)A]. From such
observables it is possible to calculate thermodynamic variables like the energy of the
system, the energy interchanged with each reservoir (heat), the work performed by the
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driving of the Hamiltonian, etc. Thus, we can describe in this way thermodynamical
processes where the system is driven away of equilibrium by two mechanisms: (i) the
arbitrary time dependence of the system’s Hamiltonian H(t), and (ii) the fact that it can
be in simultaneous contact with several reservoirs at different temperatures.

Of course, this general program face several difficulties. In first place, in almost all
realistic situations at least one thermal reservoir is a system with many, if not infinite,
degrees of freedom. Thus, the description and analytical manipulation of the global
quantum state (which may be simple initially) can turn out to be prohibitively demand-
ing. Also, for arbitrary variations in time of the Hamiltonian HS(t) the Eq. (1.8) can
only be integrated numerically. The theory of Quantum Open Systems developed in the
last 50 years offers some tools to deal with the first of these problems [60]. A possible
solution is to derive, from the global unitary evolution of Eq. (1.8) an evolution equation
for the reduced state ρS(t), where the environmental degrees of freedom are traced out.
These are called ‘master equations’ and generally adopt the following form:

i~
dρS
dt

= [HR(t), ρS(t)] +

∫ t

0
dt′ K(t, t′) ρS(t

′). (1.9)

The first term describes the unitary part of the evolution, which is associated to a renor-
malized Hamiltonian HR(t) that in general does not coincide with the original HS(t).
The second term takes into account the non-unitary part of the evolution (dissipation
and diffusion, for example), as well as non-Markovian memory effects. It depends on
the kernel K(t, t′) that is in general a super-operator acting on the state ρS . Thus, now
we only need to track the evolution of the system, since the environmental degrees of
freedom were eliminated.

A paradigmatic example of quantum open system is the Caldeira-Legget model of
Quantum Brownian Motion (QBM) [61]. In this model the system is a single harmonic
oscillator that is interacting in a bilinear way with a bath also formed by a continuous
distribution of harmonic oscillators. Due to its linearity, an exact master equation can be
obtained for this model [62, 63]. It reads:

d

dt
ρ(x, x′) =

1

i~
〈x| [HR(t), ρ] |x′〉 − γ(t)(x− x′)

(

∂

∂x
− ∂

∂x′

)

ρ(x, x′)

−D(t)(x− x′)2ρ(x, x′)

+ if(t)(x− x′)

(

∂

∂x
+

∂

∂x′

)

ρ(x, x′)

(1.10)

where ρ(x, x′) = 〈x| ρ |x′〉. We see that, at variance with the general form of Eq. (1.9), the
exact master equation for the QBM is local in time. However, non-Markovian memory
effects are still captured by the time dependence of the coefficients γ(t), D(t), and f(t)
which respectively describe dissipation, diffusion, and anomalous diffusion effects [63],
and also of the renormalized Hamiltonian HR(t).

In some situations where the characteristic decay time of the environment correla-
tion functions is much shorter than the time scales of the system dynamics it is valid
to employ the Markovian approximation, which disregards the memory effects induced
by the environment. This correspond to using a kernel K(t, t′) in Eq. (1.9) that is local
in time, i.e, such that K(t, t′) ∝ δ(t − t′), since in that case the dρS

dt only depends on the
instantaneous state ρS(t) and not on its history. When the Markovian approximation is
applied to the Caldeira-Legget model of QBM a master equation with the same form as
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Eq. (1.10) is obtained, but with time independent coefficients2.
It can be proven that the most general Markovian evolution of a quantum state (pre-

serving the positivity of the density matrix) can always be described by a local differen-
tial equation of the form [64]:

dρ

dt
=

1

i~
[H, ρ]−

∑

n

γn(L
†
nLnρ+ ρL†

nLn − 2LnρL
†
n) (1.11)

for some positive constants γn and operators Ln. This is known as the ‘Lindblad form’
for master equations and is widely employed in the theory of quantum open systems.
Master equations in Lindblad form can be derived from a phenomenological point of
view, in which one chooses the operators Ln in order to obtain an effective description
of an observed behavior (the spontaneous decay of an atom, for example), or from a
microscopic model of the environment and its interaction with the system [60]. In the
latter case the following approximations are often employed (apart from the Markovian
assumption):

• Weak coupling. It is very common to assume that the interaction between system
and environment is weak, and in that case the derived master equations are usually
only valid to second order in the interaction Hamiltonian.

• Born approximation. It is assumed that the environment is much larger than the
system and that the interaction between them does not significantly affects the
environmental state. Also, it is considered that system and environment remain
uncorrelated. This assumption is also related to the weak coupling and Markovian
approximations.

• Secular or ‘Rotating wave’ approximation. All fast rotating terms of the total Hamil-
tonian in the Interaction Picture are disregarded. This approximation is often justi-
fied by noting that only the ‘slow’ or ‘average’ dynamic of the system is of interest.

Only few models of quantum open system can be solved without requiring any of
these approximations. The Caldeira-Legget model of QBM is one of them. However,
as is explained in the next section, further complications arise if the system is externally
driven. In chapter 4 we define a general family of linear quantum systems that are in-
teracting with different thermal environments and are also externally driven. We show
how to exactly solve the dynamics of the system, without employing any of the previ-
ously mentioned approximations. We will use this simple model of driven open system
to study thermodynamical processes in which energy is transported between thermal
environments. Based on the exact solution, we will analyze some of the consequences of
employing the weak coupling approximation. We show that some processes cannot be
captured by the second order weak coupling approximation, and that they are relevant
to analyze the fundamental limits for cooling.

2In this case the obtained equation does not preserve the positivity of the density matrix. Therefore, it
cannot be cast in Lindblad form.
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Termodinámica Cuántica

La relación entre la termodinámica y la mecánica cuántica se remonta al origen mismo
de esta última. Como es bien sabido, el análisis de la distribución de energía del campo
electromagnético en equilibrio térmico llevó a Max Planck a la idea de que la energía
de los osciladores armónicos estaba cuantizada. Esta idea fue posteriormente expandida
por Albert Einstein, al proponer que la luz estaba de hecho compuesta por paquetes dis-
cretos de energía, ahora conocidos como fotones. Por lo tanto, es posible decir que la
mecánica cuántica surgió de la búsqueda de consistencia entre la termodinámica y los
modelos microscópicos de la materia y la radiación. Luego la mecánica cuántica tuvo un
desarrollo independiente, aunque siempre se mantuvo la consistencia con las leyes de
la termodinámica. Modelos altamente exitosos de la materia y la radiación fueron prop-
uestos y contrastados en regímenes fuera del equilibrio térmico donde la termodinámica
no estuvo involucrada. Hoy en día, la mecánica cuántica es un teoría muy general y
bien desarrollada que provee un marco teórico consistente y que permite describir los
componentes fundamentales de la materia y sus interacciones.

En las últimas décadas la relación entre la mecánica cuántica y la termodinámica ha
sido de alguna forma invertida con respecto a su origen: ahora, muchos investigadores
intentan entender cómo, o bajo qué condiciones, las leyes usuales de la termodinámica
surgen a partir de un substrato cuántico.
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Chapter 2

Floquet Theory

In this chapter we review the basic concepts of Floquet Theory. As mentioned in
the previous chapter, we are interested in the study of driven quantum systems that are
also open. When the system is driven in an arbitrary way only a numerical approach to
solve its dynamics is in general possible. However, if it is assumed that the driving is
periodic significant analytical progress can be achieved. For this, Floquet theory is a well
known and developed tool. We first review the main ideas in the context of their origin:
classical systems of time-dependent linear differential equations. Then we discuss the
generalization of Floquet theory to quantum closed systems. Finally, we consider the
case of driven open system, whose exact treatment is a subject of current research.

2.1 Classical Floquet theory

Floquet theory was original developed to study general systems of linear differential
equations with coefficients that are time-dependent and periodic [65]. The basic theo-
rem underlying Floquet theory is very easy to understand. Lets consider a vector of n
complex or real variables x̄ = (x1, x2, ..., xn)

T and the following differential equation:

dx̄

dt
= A(t)x̄ (2.1)

where A(t) = A(t + τ) is a n × n τ -periodic matrix. What the Floquet theorem states is
that it is always possible to find a family of independent solutions to Eq. (2.1) such that,
although they are not periodic in general, each of them can be written as:

x̄(t) = eµtp̄(t) (2.2)

where p̄(t) is also τ -periodic. The proof of this theorem is very simple and can be found
in many books [66]. The exponent µ is called characteristic or Floquet exponent. There
are n Floquet exponents, one for each independent solution. They are not univocally
defined, since we could replace the solution x̄(t) = eµtp̄(t) by x̄′(t) = eµ

′tp̄′(t), with
µ′ = µ + i2πk/τ and p′(t) = e−i(2πk/τ)tp(t) for any integer k. However, they always
satisfy:

n
∏

j=1

eµjτ = e
∫ τ

0
Tr[A(t)]dt (2.3)

Thus, we see that the fundamental solutions of periodic systems of linear differential
equations can always be cast as the product of a periodic function (with the same peri-
odicity as the coefficients) and a exponential function.
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The calculation of the Floquet exponents is difficult even for the simplest examples,
and closed form expressions cannot be obtained in general. They can be obtained numer-
ically by integrating the differential equation up to the period τ of the driving (since, for
a fundamental solution, x̄(τ) = eµτ x̄(0)). However, this simple approach is not accurate.

From Eq. 2.2 it follows that:

x̄(t+Kτ) = (eµτ )K x̄(t) (2.4)

Therefore, we can identify three different regimes for the long time behavior of x̄(t),
depending on the value of µ:

• If Re [µ] < 0 then x̄(t) → 0 for t→ +∞.

• If Re [µ] = 0 then x̄(t) is quasi-periodic. It is exactly τ -periodic if µ = ikπ/τ for any
integer k.

• If Re [µ] > 0 then |x̄(t)| → +∞ for t→ +∞.

The last case, in which the solution is divergent, has a clear physical interpretation in the
context of parametrically driven harmonic oscillators. This is a typical example in which
Floquet theory can be applied. We consider the dissipative Mathieu equation:

d2x

dt2
+ γ

dx

dt
+ ω2(t)x2 = 0 (2.5)

where the time-dependent frequency is ω2(t) = ω2
0 + ǫ cos(Ωt). This equation can be ex-

pressed as a first order differential equation in two variables (x and dx/dt, for example),
and consequently has two Floquet exponents. However, since the equation is invariant
to complex conjugation, they are a complex conjugate pair. Thus, the only relevant pa-
rameter to determine the stability of the dynamics is the real part of any of them. Figure
2.1 shows the stability diagram as a function of ǫ and ω2

0 for Ω = 1. The stable region
for null damping is colored. We see that at certain frequencies ω0 the dynamics be-
comes unstable for any value of ǫ, the driving amplitude. This phenomenon is known as
‘parametric resonance’ and can be shown to occur at frequencies ω2

0 = (nΩ/2)2, for any
integer n ≥ 0 (for no damping). In Figure 2.1 only the first three resonances are shown
(n = 0, 1, 2). At these points, the relation between the natural frequency of the oscillator
and the frequency of the parametric driving is such that it delivers energy into the sys-
tem. When the damping is turned on (dashed lines) a minimum driving amplitude is
needed in order to enter the unstable phase. What happens in this case is that the rate at
which energy is injected into the system by the parametric driving must overcome the
rate of energy dissipation. In Chapter 4 we will show that if the analysis is restricted to
the stable regime, then the asymptotic state of the system can be found without requiring
the calculation of the Floquet exponents. Also, this asymptotic state is periodic, with the
same period as the parametric driving.

2.2 Floquet theory for quantum systems

The ideas of the previous section can be applied to the problem of evolving quantum
states. The connection is very straightforward. Lets consider a quantum system with a
time-dependent Hamiltonian H(t) which is periodic in time (with period τ ). Quantum
states in the Schrodinger’s picture will evolve according to:

i~
∂

∂t
|Ψ〉 = H(t) |Ψ〉 (2.6)
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Figure 2.1: Stability diagram for the damped Mathieu equation for Ω = 1. The stable
region for no damping is colored. Dashed lines mark the boundary between stability
and instability as the damping is increased. Figure obtained from [67]

.

This equation is completely analogous to Eq. (2.1). Therefore, the Floquet theorem en-
sures that there exists a set of independent solutions of the form:

|ψα(t)〉 = e−iǫαt/~ |Φα(t)〉 (2.7)

Where |Φα(t+ τ)〉 = |Φα(t)〉 is a τ -periodic state in Hilbert space, known as ‘Floquet
mode’, and ǫα is a real number that is called ‘Floquet quasienergy’. These quasienergies
play the role of the Floquet exponents (apart from a factor (i~)−1) but, in contrast, can
only be real. The reason is that the unitary evolution given by Eq. (2.6) always preserves
the norm of the state (and therefore the real part of the Floquet exponents must be zero,
see Eq. 2.4). For the same reasons as before, the quasienergies are only defined up to
multiples of ~2π/T = ~ωd, where ωd = 2π/τ is the fundamental angular frequency of
the driving. Thus, they can always be consider to belong to the first ‘Brillouin Zone’
−~ωd/2 < ǫα < ~ωd/2.

2.2.1 Floquet theory and quantum dissipation

The Born-Markov and weak coupling approximations described in the previous chap-
ters to obtain the master equations for the dynamics of open quantum systems can be
combined with the tools and ideas of Floquet theory. An interesting comparison of dif-
ferent approaches and methods can be found in [68]. As explained there, incompatible
results are obtained depending on whether the Markovian approximation is performed
with respect to the timescales given by the eigenenergies of the undriven system, or by
the Floquet quasienergies of the driven system. In any case, if the weak coupling ap-
proximation is performed, the regime of validity is restricted by the conditions [68]:

γ ≪ ∆α,β and γ ≪ kbT

~
(2.8)

where γ is the dissipation rate, kbT/~ is the timescale given by the thermal energy at
some characteristic environmental temperature T , and ∆α,β are the transition rates of
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the system. For undriven systems ∆α,β = (Eα − Eβ)/~, where Eα are the eigenenergies,
but for driven systems ∆α,β = (µα − µβ)/~. Therefore, it is clear that the weak coupling
approximation prevents the analysis of ultra-low temperatures. Although this fact is not
at all unknown, it is not sufficiently clear in the literature [69–71]. Also, to the best of
our knowledge there are not clear physical interpretations available of what kind of pro-
cesses are missed by performing the weak coupling approximation at low temperatures.
The results presented in Chapters 4, 5 and 6, which are exact, offer a simple answer to
this problem.
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Teoría de Floquet

En este capítulo se describen conceptos básicos de la teoría de Floquet. Como se
menciona en el capítulo anterior, estamos interesados en el estudio de sistemas cuán-
ticos dependientes del tiempo que además son abiertos. Cuando la dependencia en el
tiempo es arbitraria en general solo una solución numérica es posible. Sin embargo, si se
asume que esta dependencia es periódica es posible avanzar analíticamente. Para esto,
la teoría de Floquet es una herramienta muy conocida y desarrollada. En primer lugar
se discuten las ideas principales en el contexto de sistemas lineales de ecuaciones difer-
enciales dependientes del tiempo, donde tuvieron origen. Luego se aplican estas ideas
a sistemas cuánticos cerrados. Finalmente se consideran sistemas cuánticos forzados y
con disipación, cuyo tratamiento exacto es un tema de investigación actual.
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Chapter 3

Trapped ions

In this chapter we give a basic description of systems of trapped ions. We review
some basic concepts involved in the manipulation of these systems, which will be needed
in the last part of this thesis to understand some experimental proposals. We mainly
follow [72], [73] and [5]. Trapped ions constitute an experimental platform in which
quantum degrees of freedom can be controlled with great accuracy. In these systems,
positively charged ions are spatially confined by means of electromagnetic fields inside
a vacuum chamber. They are promising candidates for quantum information processing.
Crystals with about fifteen ions have been manipulated to create multipartite entangled
states implementing small versions of quantum algorithms [74, 75]. More recently, they
have been used to simulate frustrated magnetic materials [76], the creation of topologi-
cal defects during phase transitions, [77], and the dynamics of lattice gauge theories [10].
Their potential to simulate energy flow through complex networks has also been no-
ticed [78–81]. In the last part of this thesis we propose some experiments to study en-
ergy transport through ion crystals with emphasis in the effects of dimensionality and
disorder (Chapter 9), and to simulate magnetic materials with non-trivial interactions
(Chapter 10).

3.1 Linear Paul traps

It is easy to see that it is not possible to trap charges using an static electric field:
the Laplace equation ∇2φ = 0 cannot be satisfied by a potential φ(r̄) which is attractive
in the three spatial directions, i.e, φ(r̄) ∝ 1/2(ωxx

2 + ωyy
2 + ωzz

2), where r̄ = (x, y, z)
is the distance to the center of the trap and ωk ≥ 0. Some traps, known as Penning
traps, use a combination of static electric and magnetic fields. An static electric field
confine the particles in the longitudinal direction, while a magnetic field achieves the
radial confinement. Another alternative, which is the one employed in the so called
Paul traps, is to employ time dependent electric fields. In the following we will fo-
cus on this type of traps. Figure 3.1 shows a scheme of a linear Paul trap. The ra-
dial confinement is achieved by a time dependent quadrupolar potential of the form
Vq(t) = V0/2(1+(x2−y2)/R2) cos(ΩRF t) (near the center of the trap), which results from
the application of radio frequency signals (of frequency ΩRF ) to four parallel electrodes
with cylindrical shapes. The quadrupolar potential Vq(t) is actually repulsive along one
transverse direction, which change in time, but for sufficiently high ΩRF a charged par-
ticle in the center of the trap will feel an effective harmonic trapping potential along all
transverse directions. Two additional electrodes located along the longitudinal axis and
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Figure 3.1: A scheme of a linear Paul trap. A high voltage radio frequency signal VR(t) is
applied to two of four parallel cylindrical electrodes (while the other two are grounded).
Two additional electrodes along the longitudinal axis are maintained at a fixed potential
Vcap. The green volume is the trapping region.

maintained at the same constant potential create a confining field along the ẑ direction.
Therefore, the dynamics of the trapped ions near the axis of the trap can be described by
the following effective potential:

Veff =
m

2q
[ωr(x

2 + y2) + ωzz
2] (3.1)

where m and q are the mass and electric charge of the ions, and the trapping frequencies
ωr, ωz > 0 can be controlled by changing the voltages applied to the electrodes. Typi-
cal values of the radial frequency ωr are between 4 and 10 Mhz, while the longitudinal
frequency ωz is in general smaller, ranging from 0.5 to 5 Mhz. The dynamics induced
by the previous potential is a first approximation to the motion of the ions. The actual
motion has weak modulations at the frequency ΩRF of the time dependent trapping
fields, which are called micromotion. The micromotion can be neglected for ions near
the longitudinal axis of the trap, and will be ignored in the following.

3.2 Ion crystals

If the trap contains two or more ions, and they are cooled to sufficiently low tem-
peratures, they organize themselves in regular structures called Coulomb or Wigner
crystals [82, 83]. These structures arise as a result of the competing effects of the con-
fining potential of the trap and the mutual Coulomb repulsion of the ions. For strong
transverse confinement (ωr ≫ ωz) the equilibrium structure is a string of ions along the
longitudinal axis, as shown in Figure 3.2-(a). If the transverse confinement is relaxed
below a critical value an structural phase transition takes place: instabilities grow from
the center of the chain and a two-dimensional zigzag pattern emerges (Figure 3.2-(b)).
Another phase transition occurs if the transverse confinement is further relaxed, and the
equilibrium structure changes from the two-dimensional zigzag to a three-dimensional
helix (Figure 3.2-(c)). Finally, in the opposite limit of strong axial confinement (ωz ≫ ωr)
the equilibrium structure is again two-dimensional: the ions form a disc at z = 0 (not
shown). These structural phase transitions have been used to explore the processes of
spontaneous symmetry breaking and defect formation [77, 84]. Also, the interaction of
ion crystals with optical lattices was experimentally studied as a way of testing micro-
scopic models of friction between surfaces [85]. In appendix A we perform a detailed
numerical analysis of these phase transitions.
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Figure 3.2: Different equilibrium structures: (a) linear string of ions, (b) two-dimensional
zig-zag structure and (c) three-dimensional helix. Images like these are obtained by ir-
radiating the ions with laser light of the appropriate frequency and detecting its fluores-
cence with a CCD camera.

3.3 Electronic degrees of freedom and basic Hamiltonian

So far we have only considered the motional degrees of freedom of the trapped ions.
However, the internal electronic degrees of freedom can also be precisely controlled via
light fields. In many experimental settings only two of the many electronic states are
employed to define an effective two-level system, or qubit. Additional levels can also be
used to implement laser cooling or to measure the electronic state, as explained later. The
simplified description of the internal state of the ion as a two-level system will be valid
if the frequency of the electromagnetic field that is interacting with it is in resonance
with the transition between the two selected levels, and other possible transitions can be
ignored. Thus, if |g〉 and |e〉 are the two selected electronic states, while ~ωe = Ee −Eg is
the energy difference between them, then the Hamiltonian corresponding to the internal
and motional degrees of freedom is:

H0 = He +Hm = ~
ωe

2
σz + ~ωza

†a (3.2)

where σz = |e〉 〈e| − |g〉 〈g| and a is the destruction operator associated to the harmonic
motion in the longitudinal direction of the trap. For simplicity, we ignore motion along
the transverse directions.

We now consider that the ion is interacting by a classical electromagnetic wave of fre-
quency ωL with electric field Ē(z, t) = Ē0e

i(kz−ωLt+φ) propagating along the z direction.
If the frequency ωL is close to resonance with ωe then transitions between the levels |e〉
and |g〉 will be induced. They are described by the following interaction Hamiltonian:

HI =
~

2
Ω
(

σ+ ei(kẑ−ωLt+φ) + h.c
)

(3.3)

where σ+ = |e〉 〈g| and Ω = 2e−/~Ē0. 〈e| x̄ |g〉 is the Rabi frequency of the induced transi-
tions and measures the strength of the electron-light interaction (e− is the electron charge
and e− 〈e| x̄ |g〉 is the dipole moment of the transition). The previous Hamiltonian is also
useful to describe transitions between levels that are not allowed by dipole interactions,
for example quadruple transitions or stimulated Raman transitions. In these cases the
form of the interaction Hamiltonian is the same but the identification of the parameters
Ω, ωL and k changes [86]. In the interaction picture given by H0 the interaction Hamilto-
nian is:

HI ≃ ~

2
Ω
(

σ+e
i(kẑ−∆t+φ) + h.c

)

(3.4)
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where ∆ = ωL − ωe and the terms oscillating at frequency ωL + ωe were discarded
(this is known as the ‘rotating wave’ approximation, which is justified if one is inter-
ested in the slow dynamics of the system). This interaction Hamiltonian can be fur-
ther simplified in the so called Lambd-Dicke regime. In this regime the spatial exten-
sion of the atomic wave packet is assumed to be much smaller than the wavelength
2π/k of the incident light. Therefore, we can approximate eikẑ ≃ 1 + ikẑ, and since
ẑ =

√

~/(2mωz)
(

ae−iωzt + a†eiωzt
)

, we obtain:

HLD
I =

~

2
Ω σ+ ei(φ−∆t)

[

1 + iη
(

ae−iωzt + a†eiωzt
)]

+ h.c (3.5)

where we defined the Lambd-Dicke parameter as η = k
√

~/(2mωz). The previous ex-
pression is a valid approximation to first order in η ≪ 1.

3.3.1 Carrier and sideband resonances

The slow dynamics of the system can be changed drastically by controlling the de-
tuning ∆. There are three main possibilities which correspond to the three resonances of
the previous equation. For ∆ = 0 the only time independent term is:

Hcarrier
I =

~

2
Ω

(

σ+ eiφ + σ−e
−iφ

)

(3.6)

which does not affect the motional state and generates rotations in the Bloch sphere
defined by the two levels |e〉 and |g〉, around an axis that can be controlled by changing
the phase φ of the incident light. This is the ‘carrier’ resonance.

If ∆ = −ωz then we obtain the ‘red sideband’ resonance, which reads:

Hrsb
I =

~

2
Ωη

(

σ+a e
iφ + σ−a

† e−iφ
)

(3.7)

At variance with the carrier resonance, this interaction couples the electronic and mo-
tional degrees of freedom. It will generate transitions between the levels |g〉 |n〉 and
|e〉 |n− 1〉, where |n〉 are the eigenstates of a†a. The effective Rabi frequency of these
transitions is Ωn,n−1 = Ωη

√
n. We observe that in this case the number of excitations is

conserved: if the electronic state is excited, a vibrational quantum must be destroyed,
and viceversa.

Finally, the ‘blue sideband’ resonance is obtained for ∆ = ωz :

Hbsb
I =

~

2
Ωη

(

σ+a
† eiφ + σ−a e

−iφ
)

(3.8)

this interaction will generate transitions between the levels |g〉 |n〉 and |e〉 |n+ 1〉 with
effective Rabi frequency Ωn,n+1 = Ωη

√
n+ 1. In this case the number of excitations is

not conserved: electronic and vibrational excitations can be created or destroyed simul-
taneously.

As explained in the following, these interactions, and the spontaneous decay process
|e〉 → |g〉 (which was not taken into account yet), can be used to cool the motional degrees
of freedom to low temperatures.
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3.4 Laser cooling

The aim of any process for cooling a trapped ion is to bring the mean occupation
number n̄ to low values. This is expected to happen if somehow the transitions |g, n〉 →
|g, n− 1〉 are more probable than |g, n〉 → |g, n+ 1〉. We will briefly explain how to do
this in a simple case. We consider, as before, that the ion can only move in a single di-
rection and that it is interacting with a laser field in the Lambd-Dicke regime, in which
the carrier and sideband transitions dominate. Also, we take into account the process
of spontaneous emission where the electronic state decay from |e〉 to |g〉 via the emis-
sion of a photon. The rate of these spontaneous emissions is Γ, that also determines the
line width of the electronic transition. We first consider the case of ‘resolved-sideband’
cooling, which can be implemented when Γ ≪ ωz , i.e, when the red and blue side-
bands can be well resolved between them and the carrier. The relevant transitions for
this case are shown in Figure 3.3. In the resolved-sideband regime the optimal cooling

|n, g〉

|n, e〉

|n+1, g〉

|n+1, e〉

Γ

|n−1, g〉

|n−1, e〉

Γ

ωz

Γ

ωe

Figure 3.3: State transitions involved in resolved-sideband cooling (only the more rele-
vant transitions are shown).

condition is achieved by driving the red sideband at ∆ = −ωz . Then, coherent oscil-
lations between the levels |n, g〉 and |n− 1, e〉, interrupted by the spontaneous decay
|n− 1, e〉 → |n− 1, g〉, drive the transition |n, g〉 → |n− 1, g〉. The opposite transition
|n− 1, g〉 → |n, g〉, being off-resonant, is suppressed. However, it can take place via
coherent excitations to a virtual off-resonant level followed by spontaneous emission
processes, as depicted in Figure 3.3.

In general, the total rates R± of the transitions |g, n〉 → |g, n± 1〉 have the form R+ =
(n + 1)A+ and R− = nA−, where the coefficients A± depend on the decay rate Γ, the
laser detuning ∆, the trap frequency ωz , and are proportional to (Ωη)2 [72]:

A± =
(Ωη)2

Γ
[αW (∆) + βW (∆∓ ωz)] (3.9)

where α and β are geometrical factors, and W (∆) = (4∆2/Γ2 + 1)−1. Therefore, the
evolution of the mean occupation number is:

˙̄n = −(A− −A+)n̄+A+. (3.10)

For A− < A+ the previous equation indicate that n̄ exponentially approach the asymp-
totic value n̄ = A+/(A−−A+). Thus, lower temperatures are achieved for higher values
of A−/A+. In this way, the final occupation number, or the effective temperature, can
be controlled by varying the detuning ∆. There are two relevant regimes depending on
whether the line width Γ of the electronic transition is wide or narrow compared to the
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trap frequency ωz . In the weak confinement regime in which ωz ≪ Γ, the maximum
value of A−/A+ is obtained for ∆ = −Γ/2, and in that case we have n̄ ≃ Γ/(2ωz) > 1.
This case correspond to the ‘Doppler cooling’ limit. In the opposite regime, ωz ≫ Γ, the
blue and red sideband can be individually resolved, and the optimal occupation number
is n̄ ≃ (Γ/ωz)

2, which occurs when ∆ = −ωz (i.e., when the laser is in resonance with
the red sideband). Thus, in this resolved-sideband cooling regime occupation numbers
n̄ ≪ 1 can be achieved. In Chapter 8 we will re obtain these results by analyzing laser
cooling as a thermodynamic cycle.

3.5 Quantum simulation of magnetic systems

The simulation of quantum systems is a hard problem that is in general intractable
with classical computers. The main reason is the exponential explosion in the resources
needed to describe a quantum state of a composite system, with respect to the number
of subsystems. For example, if we consider a collection of N two-level systems, we only
need N bits of information to give a classical description of its state. However, if each
two-level subsystem is quantum, we need ≃ 2N complex numbers to completely specify
a pure state of the total system. Similarly, observables like the energy and operations
like the time evolution of the state are represented by matrices that act on a space of
dimension 2N . For moderate values ofN (for example,N ≃ 40), the treatment of general
quantum systems is intractable even for the largest computers that exists today.

A solution proposed in the early eighties by Feynman and others was to employ a
highly controllable quantum system to simulate the physics of another, target, system.
This idea, which also led to the concept of quantum computing, was experimentally re-
alized in recent years in a variety of systems like cold atoms, trapped ions, or supercon-
ducting qubits. In this section we review the main concepts involved in the simulation
of magnetic materials using arrays of trapped ions. We mainly follow [23].

3.5.1 Ising-like systems with transverse magnetic field

In the following we will explain how to employ trapped ions to simulate Hamilto-
nian’s of the form:

H =
∑

i,j

Ji,jσ
i
xσ

j
x −

∑

i

Byσ
i
y (3.11)

where σiq are the usual Pauli matrix associated with a two-level subsystem i which, as
before, is represented by the internal electronic state of each trapped ion. The properties
of the Hamiltonian HI for different choices of the interaction constants Ji,j and external
field By will be discussed in detail in Chapter 10.

3.5.2 A single ion in a bi-chromatic field

We consider again a single ion moving in only one direction and interacting with a
laser field. This time, the laser field has two spectral components with the same ampli-
tude and frequencies ω±

L such that the detuning with respect to the electronic transitions
are ∆± = ω±

L − ωe = ±µ. When µ ≃ ωz , then the red and blue sidebands are driven
simultaneously1. It is easy to see that in that case the interaction Hamiltonian is:

HI = Hbsb
I +Hrsb

I =
~

2
Ω kẑ σφ (3.12)

1The simultaneous driving of the red and blue sidebands is known as the Molmer-Sorensen scheme [87]
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where ẑ =
√

~/(2mωz)(a + a†) and σφ = σ+e
iφ + σ−e

−iφ. Thus, we see that the ion
position in the trap is coupled to the projection of the internal state along a direction
(given by the angle φ) in the equatorial plane of the Bloch sphere defined by the levels
|e〉 and |g〉.

If the detuning µ is not necessarily close to the trap frequency ωz , we can obtain the
interaction Hamiltonian by adding a term like Eq. (3.5) for each spectral component of
the laser field. Thus, we obtain:

HI(t) = ~Ωcos(µt) σφ + ~Ωcos(µt) kẑ(t) σφ (3.13)

where this time we have ẑ(t) =
√

~/(2mωz)(ae
−iωzt + a†eiωzt). Now we generalize this

interaction Hamiltonian to the case with many trapped ions forming a linear string.

3.5.3 Generalization to many ions and the Magnus expansion

We consider a situation like the one depicted in Figure 3.4. A string of N ions is
interacting with two coherent laser fields traveling at oblique directions. One of this

Figure 3.4: A string of trapped ions driven by two oblique laser beams (blue). The orange
and purple blocks are the electrodes of the trap. Figure taken from [23].

lasers has a single spectral component at frequency ωL, while the other has two spectral
components at frequencies ω±

L = ωL + ωe ± µ. In the region where the two laser beams
overlap, they form an interference wave pattern that oscillates at the beatnote frequen-
cies ωe±µ and moves with a wave vector ∆k̄ = k̄1− k̄2, if k̄1 and k̄2 are the wave vectors
of each laser. Thus, we can think that the ions interact with a bi-chromatic field with
wavector ∆k̄ and spectral components at frequencies ωe ± µ, as in the previous section.
If the system is aligned such that ∆k̄ = δk x̄, then the internal state of the ions will be
coupled to their motion along the x̂ direction. Assuming that the intensity of the field is
the same for all the ions, the interaction Hamiltonian of Eq. (3.13) is generalized to:

HI(t) = ~Ωcos(µt)

N
∑

j=1

δk x̂j(t) σ
j
φ, (3.14)

where, for simplicity, we have ignored the first term in Eq. (3.13) (this term only affects
the internal state of each ion individually and does does not contribute to their effective
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coupling). The motion of the ions near the equilibrium position can be described in
terms of global normal modes. For one dimensional ion strings, the longitudinal and
transverse motions decouple, so we are only interested in the N normal modes in which
the ions oscillate in the x̄ direction. If Q̂k(t), k = 1, · · · , N , are the amplitudes of each
of these normal modes, then we can express the displacement of each ion as x̂j(t) =
∑N

k=1Bj,k Q̂k(t), where the orthogonal matrix Bj,k indicates what is the amplitude of
the motion of the ion j in the normal mode k. Thus, we obtain:

HI(t) = ~Ωcos(µt)
N
∑

j,k=1

δk Bj,k Q̂k(t) σ
j
φ (3.15)

Obviously, the normal modes amplitudes evolve as Q̂k(t) =
√

~/(2mνk)(ake
−iνkt +

a†ke
iνkt), where νk is the normal frequency of the corresponding mode.
In general, the interaction Hamiltonian will be time-dependent, oscillating at fre-

quencies µ ± νk. When µ is close to the frequency νk of a given normal mode, the ro-
tating wave approximation can be employed, where only the slow varying terms are
conserved. In this case, only the red and blue sidebands of that mode are driven. In
general, for arbitrary µ, all the terms must be conserved.

The interaction Hamiltonian of Eq. (3.15) does not directly couple the internal states
of each ion. However, the common interaction with the normal modes will induce an
effective interaction between internal states. This can be seen by analyzing the dynamics
of the system for long times. For that purpose, we will employ the Magnus expansion,
that is explained in the following. In the interaction picture, the time evolution of the
global state of the ions is given by:

i~
d |Ψ(t)〉
dt

= HI(t) |Ψ(t)〉 (3.16)

which can be formally integrated as:

|Ψ(t)〉 = T̂ e
1

i~

∫ t

0
dt′HI(t

′) |Ψ(0)〉 , (3.17)

where T̂ is a time ordering operator. The evolution operator U(t) = T̂ e
1

i~

∫ t

0
dt′HI(t

′) can
be perturbatively expanded as follows:

U(t) = exp

{

1

i~

∫ t

0
dt1HI(t1) +

1

2(i~)2

∫ t

0
dt1

∫ t1

0
dt2[HI(t1), HI(t2)] + O(H3

I )

}

,

(3.18)
where we ignored terms of order more than two in HI(t). In fact, it can be seen that
for the Hamiltonian of Eq. (3.15) the Magnus expansion up to second order is exact,
i.e, all higher order terms vanish. Since HI(t) is oscillatory, it is clear that the integral
∫ t
0 dt1HI(t1) will have constant and oscillatory contributions. The second order integral,
∫ t
0 dt1

∫ t1
0 dt2[HI(t1), HI(t2)], in addition to constant and oscillatory contributions, will

also have contributions that grow linearly with the time t. Therefore, for long times,
these linear contributions will dominate. In this way, the following evolution operator is
obtained:

U(t) ≃ e−
i
~
Heff t with Heff =

∑

i,j

Ji,j σ
i
xσ

j
x. (3.19)

The constants Ji,j appearing in the effective Hamiltonian Heff are given by:

Ji,j = −~
2(δk)2Ω2

2m

N
∑

k=1

Bi,kBj,k

µ2 − ν2k
. (3.20)
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Two observations are in order. In first place, we see that the effective Hamiltonian Heff
that describes the evolution for long times does not depend on the motional state. Only
the Pauli operators σix appear in Heff. However, information about the motional normal
modes and frequencies is contained in the interaction constants Ji,j . Thus, we see that
the common interaction of the internal state of each ion with the global motional normal
modes of the ion chain induces a Ising-like coupling between the internal states. When
the detuning µ is not in resonance with any of the normal modes frequencies νk, then the
normal modes are only virtually excited, and that is the reason why the HamiltonianHeff
does not involve any motional operator. When the detuning µ is resonant with a partic-
ular normal mode (when µ ≃ νk) this description breaks down, as can be seen from the
fact that the expression for Ji,j diverges. Secondly, it is easy to see that the geometry of
the interactions given by the coefficients Ji,j is not completely restricted by the geom-
etry of the ion crystal. Although the ion crystal has a one dimensional structure, with
Coulomb couplings that as a first approximation can be regarded to be of short range,
Ji,j does not necessarily decay with the distance |i − j|. In particular, if the detuning µ
is such that the center of mass normal mode dominates the sum in Eq. (3.20), then the
couplings Ji,j are approximately independent of |i− j|, since in the center of mass mode
all the ions oscillate with the same amplitude. In that case, each of the spins encoded in
the internal state of each ion will interact with all the others with the same strength. This
will be discussed in detail in Chapter 10.

Thus, we have seen that by applying special laser fields to a string of trapped ions it
is possible to simulate Ising-like couplings like the ones appearing in the first term of Eq.
(3.11). The action of an external transverse magnetic field (second term in Eq. (3.11)) can
also be simulated by employing the carrier resonances that were ignored in the previous
treatment [23]. The last ingredients needed to run a complete quantum simulation are
the initialization and readout of the internal state, which we now discuss.

3.5.4 Initialization and readout of the internal state

In this section we give a very basic description of the most common techniques to
initialize and measure the internal state of the trapped ions. They involve a third level,
in addition to the two levels used to define each qubit, as shown in Figure 3.5. We as-
sume that this third level, |r〉, is such that the selection rules forbid the spontaneous
decay |r〉 → |e〉. Then, if the atom is excited with a laser in the |e〉 ↔ |r〉 transition the
initial population of the |e〉 level will be transferred to the |g〉 level via |r〉 → |g〉 sponta-
neous decays. This method is known as ‘optical pumping’. The actual implementation
of course depends on the ion and the nature of the levels defining the qubit. Experimen-
tal details for Calcium atoms and hyperfine qubits can be found in [5]. In this way, the
internal state can be prepared in the |g〉 state with high fidelity.

In order to measure the internal state a similar strategy is employed, known as the
‘electron shelving’ method. The purpose of the measurement is to determine whether
the electron is in the state |g〉 of |e〉. For this, the ion is excited with a laser in the |g〉 ↔ |r〉
transition, which generates Rabi oscillations between these two levels, if the electron is
actually in the level |g〉. These oscillations are interrupted with spontaneous decays |r〉 →
|g〉, a fluorescence photon is emitted, and the cycle is repeated. If the electron was in the
state |e〉 nothing happens. Thus, the observation of fluorescence light after the excitation
of the |g〉 → |r〉 transition indicates that the electron was in fact in the level |g〉. The
detection efficiencies of this method are near perfection.
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Figure 3.5: An additional level |r〉 is used to initialize and measure the internal electronic
state.
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Iones atrapados

En este capítulo se da un descripción básica de sistemas de iones atrapados. Se
repasan algunos conceptos básicos sobre la manipulación de estos sistemas, que serán
necesarios en la última parte de esta tesis para entender las propuestas experimentales.
Principalmente se sigue a [72], [73] y [5]. Las trampas de iones constituyen una plataforma
experimental en la cual grados de libertad cuánticos pueden ser controlados con gran
precisión. En estos sistemas, iones cargados positivamente son confinados espacial-
mente mediante campos electromagnéticos dentro de una cámara de vacío. Estos sis-
temas son buenos candidatos para el procesamiento cuántico de información. Cristales
con decenas de iones han sido manipulados para crear estados entrelazados multiparti-
tos, y para implementar versiones reducidas de algoritmos cuánticos [74,75]. Mas recien-
temente, también han sido utilizados para simular materiales magnéticos frustrados [76],
la creación de defectos topológicos en transiciones de fase [77], y la dinámica de teorías
de gauge [10]. También ha sido destacado su potencial para simular el flujo de energía a
través de redes complejas [78–81]. En la última parte de esta tesis se proponen algunos
experimentos para estudiar el transporte de energía en cristales de iones con énfasis en
los efectos de la dimensionalidad y el desorden (capítulo 9), y para simular materiales
magnéticos con interacciones no triviales (capítulo 10).
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Part II

Driven open systems with
continuous variables

32



Chapter 4

An exactly solvable model

In this chapter we define the model which is the main subject of this thesis: a open
harmonic network connected to bosonic reservoirs and subjected to parametric driving.
As is explained in the following sections this model can be solved exactly. The anal-
ysis of the exact solution will shed some light on the limitations of the weak coupling
approximation on this and similar models.

Figure 4.1 shows a scheme of the considered model. Each black circle represent a
quantum harmonic oscillator, and links between them represent bilinear interactions.
The natural frequencies of each oscillator and the interactions between them can be

Figure 4.1: A scheme of the model

changed in time. Therefore, the harmonic network is described by the following quadratic
Hamiltonian:

HS =
1

2
P TM−1P +

1

2
XTV (t)X, (4.1)

where X and P are vectors whose components are the position and momentum op-
erators of each oscillator, which satisfy the usual commutation relations, [Xi, Xj ] =
[Pi, Pj ] = 0 and [Xi, Pj ] = i~δi,j . The matrix M has the masses of each oscillator along
the diagonal and zeros elsewhere, while the matrix V (t) encodes the frequencies of each
oscillator and the interactions between them. The variation in time of the matrix V (t)
allow us to model an external control that can be performed on the system.

Some parts of the network are also connected to independent thermal reservoirs. We
will model the reservoirs as collections of harmonic modes which are initially in thermal
states. Then, the environmental Hamiltonian is

HE =
∑

α

HE,α HE,α =

Nα
∑

j=1

π2α,j
2m

+
mω2

α,j

2
q2α,j
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where the operator qα,j is the position operator of the j-th oscillator in the α-th envi-
ronment, and πα,j its associate momentum. We consider a bilinear interaction between
system and reservoirs through the position coordinates

Hint =
∑

α

∑

j,k

Cα,jk Xj qα,k, (4.2)

where Cα,jk are time-independent interaction constants. Thus, the full Hamiltonian for
system and reservoirs is:

HT = HS +HE +Hint (4.3)

We are interested in the evolution of the state of the system under the global unitary
evolution U(t) given by the above Hamiltonian. If ρT (0) = ρS(0) ⊗ ρE(0) is an initial
product state for the system and the environment, our main objective is to calculate the
subsequent reduced state for the system:

ρS(t) = TrE

(

U(t)ρT (0)U
†(t)

)

(4.4)

We begin by solving the equations of motion for the system’s operators in the Heisen-
berg picture. We will exploit the linearity of these equations (which follows from the
quadratic structure of the total Hamiltonian) to exactly integrate them in terms of the
Green’s function of the system.

4.1 Heisenberg’s equations of motion

We now derive, working in the Heisenberg’s picture, the equations of motion for all
the operators involved in the Hamiltonian of Eq. (4.3). For the system operators the
motion equations are

Ẋ =M−1P (4.5a)

Ṗ = −V (t)X −
∑

α

Cαqα, (4.5b)

where qα and πα are vectors formed with the position and momentum operators of the
α-th reservoir, respectively. Similarly, the matrix Cα has as elements the interaction con-
stants Cα,jk. If the system has N degrees of freedom and the α-th reservoir is formed by
Nα oscillators, then the matrix Cα has dimensions N ×Nα.

Turning to a description in the phase space, we define the 2N -component vectors
Z = (X,P )T and zα = (qα, πα)

T . In terms of Z, the Eqs. (4.5a) and (4.5b) can be written
as:

Ż + as(t)Z =
∑

α

Cαzα, (4.6)

where the matrices as(t) and Cα are defined as

as(t) =

(

0 −M−1

V (t) 0

)

Cα =

(

0 0
−Cα 0

)

(4.7)

For the operators corresponding to the α-th reservoir the equations of motion in
phase space are:

żα + aαzα =
∑

α

C̄αZ (4.8)
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In this case the matrices aα and C̄α are given by:

aα =

(

0 −1Nα/m
mΩ2

α 0

)

C̄α =

(

0 0
−[Cα]

T 0

)

(4.9)

where Ω2
α is a diagonal matrix containing the squared frequencies of the oscillators of the

α-th reservoir.
In summary, if we are interested in the dynamics of the system, the following set of

linear coupled differential equations must be solved for Z:






Ż + as(t)Z =
∑

α

Cαzα,

żα + aαzα = C̄αZ
(4.10)

with the initial conditions Z(t = 0) = (X(0), P (0))T and zα(t = 0) = (qα(0), πα(0))
T .

4.2 An integro-differential equation for the system’s operators

In this section we derive an integro-differential equation describing the dynamics of
the system only. We start by considering the Green’s function gα(t, t

′) for the homoge-
neous equation of motion of the α-th reservoir. Such function satisfies:

d

dt
gα(t, t

′) + aα(t)gα(t, t
′) = 1Nαδ(t− t′). (4.11)

With initial conditions gα(t′−, t′) = 0, the function gα(t, t′) encodes the response of the α-
th reservoir to a delta impulse at time t′. For this simple case it just represents a rotation
in phase space: gα(t, t′) = θ(t− t′)e−aα(t−t′) where θ is the Heaviside step function and

e−aαt =

(

cos(Ωαt) sin(Ωαt)(mΩα)
−1

− sin(Ωαt)mΩα cos(Ωαt)

)

(4.12)

The function gα(t, t′) is an homogeneous solution of Eq. (4.8) for t > t′. A particular
solution is zpα(t) =

∫ t
0 gα(t, t

′) C̄αz(t′)dt′. Therefore, the complete solution of Eq. (4.8) is

zα(t) = gα(t, 0) zα(0) +

∫ t

0
gα(t, t

′) C̄αz(t′)dt′, (4.13)

which satisfies the required initial condition. The solution for zα of Eq. (4.13) can now
be inserted in Eq. (4.6), the differential equation for the system coordinates. Doing this
we obtain:

Ż + as(t)Z −
∫ t

0

[

∑

α

Cα gα(t, t′) C̄α
]

Z(t′)dt′ =
∑

α

Cα gα(t, 0) zα(0) (4.14)

This is a non-Markovian equation of motion for the system with a source term depending
on the operators of the environment at the initial time. Since the equation is linear a
general solution can be obtained in terms of the Green’s function of the homogeneous
system, as we did before for each reservoir. Before doing that, we define the dissipation
kernel.
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4.2.1 Dissipation kernel

The quantity multiplying Z in the integrand of Eq. (4.14) is the dissipation kernel,
to which we will refer as η(t, t′) =

∑

α ηα(t, t
′), where ηα(t, t′) = Cαgα(t, t′)C̄α. It can

be written in a more convenient way in terms of the spectral densities of the reservoirs,
which are defined below. Explicitly, we have:

ηα(t, t
′) = θ(t− t′)

(

0 0
ηxxα (t− t′) 0

)

(4.15)

where the matrix ηxxα is defined as:

ηxxα (t) =

∫ ∞

0
Iα(ω) sin(ωt)dω (4.16)

The function Iα(ω) is the spectral density associated to the α-th reservoir. It is defined as
follows:

[Iα(ω)]j,k =

Nα
∑

p=1

1

mω
[Cα]jp[Cα]kpδ(ω − ωα,p) (4.17)

4.2.2 Solution of the equation of motion

Using the previously defined dissipation kernel the equation of motion for the system
is:

Ż + as(t)Z −
∫ t

0
η(t, t′)Z(t′)dt′ =

∑

α

Cαgα(t, 0)zα(0) (4.18)

We consider the Green function G(t, t′) associated with the previous equation. It is such
that:

∂

∂t
G(t, t′) + as(t)G(t, t

′)−
∫ t

0
η(t, τ)G(τ, t′)dτ = 12Nδ(t− t′) (4.19)

with initial conditions G(t
′−, t′) = 0. The function G(t, t′) is therefore the response of

the system to an impulse at time t′. It fully takes into account the non-Markovian nature
of the dynamics and the dissipation induced by the environment. In some cases the
function G(t, t′) can be computed analytically. In general only a numerical approach is
possible. In any case, if G(t, t′) is known, the complete solution to Eq. (4.18) can be
obtained. In fact, it is easy to verify that the expression

Z(t) = G(t, 0)Z(0) +

∫ t

0
G(t, t′)

[

∑

α

Cαgα(t′, 0)zα(0)
]

dt′ (4.20)

is a solution of Eq. (4.18) and satisfies the required initial condition.

4.2.3 Renormalization and damping kernel

It is useful to rewrite the integro-differential equation in Eq. (4.19) and express the
non-Markovian integral term as a functional of the velocity in phase space, ∂

∂tG(t, t
′),

instead of G(t, t′). For that purpose a partial integration must be performed, with the
following result:

∂

∂t
G(t, t′) + aR(t)G(t, t

′) +

∫ t

0
γ(t, τ)

∂

∂τ
G(τ, t′)dτ = 12Nδ(t− t′) (4.21)

36



Note that the matrix as(t), that describes the unitary dynamics of the system, has been
renormalized to aR(t) = as(t)−γ(0). The function γ(t, t′) is such that η(t, t′) = ∂

∂t′ γ(t, t
′),

and is known as the damping kernel. For t > t′ it can be calculated as follows:

γα(t, t
′) =

(

0 0
γxxα (t− t′) 0

)

(4.22)

where the matrix γxxα is defined as:

γxxα (t) =

∫ ∞

0

Iα(ω)

ω
cos(ωt)dω (4.23)

4.3 Evolution of quantum states

In this section we show that the result obtained in Eq. (4.20) enables the computation
of the time evolution of an arbitrary initial state. We begin by obtaining the evolution of
the covariance matrix, i.e, the two-point correlations in the system.

4.3.1 Evolution of the covariance matrix

The covariance matrix of the system at time t is defined as

C(t) = Re
[

〈Z(t)Z(t)T 〉
]

− 〈Z(t)〉〈Z(t)T 〉 (4.24)

where 〈A(t)〉 = Tr(ρ0A(t)), and ρ0 is the initial state of the system and reservoirs.We
will consider initial states such that 〈Z(0)〉 = 〈zl(0)〉 = 0 and therefore, according to Eq.
(4.20), 〈Z(t)〉 = 0 for all t. Inserting Eq. (4.20) in Eq. (4.24) the following expression is
obtained:

C(t) =G(t, 0)C(0)G(t, 0)T +G(t, 0)Re
[

〈Z(0)β(t)T 〉
]

+Re
[

〈β(t)Z(0)T 〉
]

G(t, 0)T

+Re
[

〈β(t)β(t)T 〉
] (4.25)

where β(t) is the integral term of Eq. (4.20),

β(t) =
∑

α

βα(t)zα(0) (4.26a)

βα(t) =

∫ t

0
G(t, t′)Cαgα(t′, 0)dt′ (4.26b)

The first term in Eq. (4.25) is the deterministic propagation of the initial covariance ma-
trix given by the phase space flow G(t, 0). The second and third terms are the propaga-
tion of the initial correlations between system and reservoirs. The last term correspond
to the noise and diffusion induced by the environment on the system, and in a stable sys-
tem will dominate the long term behavior. If there are no system-reservoirs correlations
in the initial state, i.e, if Re

[

〈Z(0)zα(0)T 〉
]

= 0 for all α, then the second and third terms
of Eq. (4.25) vanish for all t. In that case the evolution of the covariance matrix is just:

C(t) = G(t, 0)C(0)G(t, 0)T +Re
[

〈β(t)β(t)T 〉
]

(4.27)

Using Eq. (4.26a) we find the following expression for the diffusive term of the co-
variance matrix:

Re
[

〈β(t)β(t)T 〉
]

=

∫ t

0

∫ t

0
G(t, t1)





∑

α,β

Cαgα(t1, 0)Re
[

〈zα(0)zβ(0)T 〉
]

gβ(t2, 0)
TCT

β



G(t, t2)
Tdt1dt2

(4.28)
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Now we introduce the condition that in the initial state the reservoirs are in thermal
states and uncorrelated with each other. In that case:

Re
[

〈zα(0)zβ(0)T 〉
]

= δα,β
~

2





(mΩα)
−1 coth

(

~Ωα

2kBTα

)

0

0 (mΩα) coth
(

~Ωα

2kBTα

)



 , (4.29)

Where Tα is the temperature of the α-th reservoir and kB is the Boltzmann constant.
Inserting Eq. (4.29) in Eq. (4.28) the following final expression is obtained:

Re
[

〈β(t)β(t)T 〉
]

=
~

2

∫ t

0

∫ t

0
G(t, t1)ν(t1 − t2)G(t, t2)

Tdt1dt2 (4.30)

The matrix function ν(t) =
∑

α να(t) is the noise kernel, with

να(t) =

(

0 0
0 νxxα (t)

)

(4.31)

where:

νxxα (t) =

∫ ∞

0
Iα(ω) cos(ωt) coth

(

~ω

2kBTα

)

dω (4.32)

4.3.2 Evolution of the Wigner characteristic function

We now show how to obtain the evolution of the Wigner characteristic function of
the system in terms of the Green’s function G(t, t′). The results can be used to evolve an
arbitrary initial state. We consider the characteristic function of the system at time t

χ(y, t) = Tr
[

ρs(t)D̂y

]

(4.33)

where y is a column vector and D̂y = eiZ(0)T y is the displacement operator in phase
space. The operator ρs(t) is the density matrix of the system at time t. The trace in Eq.
(4.33) can trivially be extended to the Hilbert space of system and reservoirs, i.e, χ(y, t) =
Tr

[

ρ(t)D̂y

]

, where ρ(t) is the total density matrix at time t. The characteristic function
can be written in terms of the initial total density matrix, ρ(0), and a time dependent
displacement operator

χ(y, t) = Tr
[

ρ(0)U(t)†D̂yU(t)
]

= Tr
[

ρ(0)eiZ(t)T y
]

(4.34)

where U(t) is the unitary evolution of system and reservoirs. Now, the operator Z(t)
in the previous expression can be substituted using Eq. (4.20). Therefore, we have
eiZ(t)T y = eiZ(0)TG(t,0)T yeiβ(t)

T y, where β(t) is defined in Eq.(4.26a) (note that β(t) only
depends on the environmental operators at t = 0, and therefore commutes with Z(0)).
Also, we assume that the initial state is separable ρ(0) = ρS(0)⊗ ρE(0). We obtain

χ(y, t) = Tr
[

ρS(0)e
iZ(0)TG(t,0)T y

]

Tr
[

ρE(0)e
iβ(t)T y

]

(4.35)

The first factor in the previous expression is the initial characteristic function evaluated
at G(t, 0)T y. It correspond to the deterministic evolution given by G(t, 0). The second
factor is a Gaussian function of y and describes the diffusion induced by the reservoirs.
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Assuming that the initial state of the environment is separable with respect to each reser-
voir, i.e., ρE(0) =

⊗

α ρα(0), and using Eq. (4.26a) we find

Tr
[

ρE(0)e
iβ(t)T y

]

=
∏

α

Tr
[

ρα(0)e
izα(0)T βα(t)T y

]

=
∏

α

χα(βα(t)
T y, 0) (4.36)

where χα(βα(t)
T y, 0) is the initial characteristic function of the α-th reservoir evalu-

ated at βα(t)T y [the function βα(t) is defined in Eq. (4.26b)]. If the initial state of
each reservoir is a thermal state at temperature Tα, then its characteristic function is
χα(y) = e−

1

2
yT 〈zα(0)zα(0)T 〉y, with the matrix 〈zα(0)zα(0)T 〉 given by Eq. (4.29). Therefore

the second factor in Eq. (4.35) can be written as

Tr
[

ρE(0)e
iβ(t)T y

]

= e−
1

2
yt〈β(t)β(t)T 〉y (4.37)

where 〈β(t)β(t)T 〉 is given by Eq. (4.30).
In summary, we obtain the following final expression for the characteristic function

at time t
χ(y, t) = χ(G(t, 0)T y, 0) e−

1

2
yt〈β(t)β(t)T 〉y (4.38)

4.3.3 Evolution of the Wigner quasiprobability distribution

We now consider the evolution of the Wigner quasiprobability distribution, which
can be obtained as a Fourier transform of the Wigner characteristic function in Eq. (4.33),

P (z, t) =
1

(2π)2N

∫ +∞

−∞
(dy)2Nχ(y, t)e−izT y, (4.39)

where z is a 2N -components column vector indicating a point in phase space. Introduc-
ing Eq. (4.38) into Eq. (4.39) and invoking the convolution theorem, we obtain:

P (z, t) =
1

det(G(t, 0))

∫

(dz′)2NP
(

(G−1(t, 0))T (z − z′), t = 0
)

Pd(z
′) (4.40)

where Pd(z) is a multivariate normal distribution with zero mean and covariance matrix
equal to 〈β(t)β(t)T 〉,

Pd(z) =
1

(2π)N
1

det(〈β(t)β(t)T 〉)1/2 e
1

2
zT 〈β(t)β(t)T 〉−1z (4.41)

Therefore, the Wigner distribution of the state of the system at time t is equal to the
convolution of the coherent evolution of the initial Wigner distribution given by G(t, 0)
with a Gaussian function whose covariance matrix is 〈β(t)β(t)T 〉.
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Un modelo con solución exacta

En este capítulo se define el modelo principal de esta tesis: una red armónica conec-
tada con entornos bosónicos y sujeta a un forzado paramétrico. Como se explica en
las próximas secciones este modelo puede ser resuelto exactamente. El análisis de la
solución exacta aclara las limitaciones de la aproximación de acoplamiento débil en este
modelo y otros similares.
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Chapter 5

Periodic processes

The previous chapter set the basic formalism to calculate the temporal evolution of
linear driven open systems with continuous variables. We will now simplify those gen-
eral results for the particular case in which the driving is periodic and the dynamic is
stable. For this we use some ideas of Floquet theory, although we avoid the calculation
of Floquet quasienergies and Floquet modes.

5.1 Asymptotic state for stable systems

In this section we characterize the asymptotic state for driven systems that are ex-
ponentially stable, i.e., systems with a Green’s function G(t, t′) decaying exponentially
with t − t′. The previous condition is not always fulfilled for driven systems, even in
the presence of strong dissipation, since it is possible, for example, to induce a divergent
dynamics by the phenomenon of parametric resonance.

From Eq. (4.27) it is clear that for stable systems the asymptotic covariance matrix is:

C(t) = Re
[

〈β(t)β(t)T 〉
]

=

[

σxx(t) σxp(t)
σpx(t) σpp(t)

]

(5.1)

since G(t, 0) → 0 for large t. Also, Eq. (4.30) is equivalent to the following expressions
for each block of the asymptotic covariance matrix:

σxx(t) =
~

2

∫ t

0

∫ t

0
g(t, t1) ν

xx(t1 − t2) g(t, t2)
T dt1dt2 (5.2a)

σxp(t) =
~

2

∫ t

0

∫ t

0
g(t, t1) ν

xx(t1 − t2)
∂

∂t
g(t, t2)

TM dt1dt2 (5.2b)

σpp(t) =
~

2

∫ t

0

∫ t

0
M

∂

∂t
g(t, t1) ν

xx(t1 − t2)
∂

∂t
g(t, t2)

TM dt1dt2 (5.2c)

In the previous expressions, the function g(t, t′) is the Green’s function of the system
in the configuration space, and satisfies the following second order integro-differential
equation for t > t′:

M
∂2

∂t2
g(t, t′) + VR(t)g(t, t

′) +

∫ t

0
γxx(t− τ)

∂

∂τ
g(τ, t′)dτ = 0 (5.3)

with initial conditions g(t = t′, t′) = 0 and ∂
∂tg(t = t′, t′) = M−1. Also, VR(t) = V (t) −

γxx(0) is the renormalized potential. We now introduce the spectral decomposition of
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the noise kernel (see Eq. (4.32)):

νxx(t1 − t2) = Re

[∫ ∞

0
ν̃(ω)eiωt1e−iωt2dω

]

(5.4)

where ν̃(ω) is the Fourier transform of νxx(t):

ν̃(ω) =
∑

α

Iα(ω) coth

(

~ω

2kbTα

)

(5.5)

Introducing Eq. (5.4) into Eqs. (5.2a - 5.2c) we obtain:

σxx(t) =
~

2
Re

[∫ ∞

0
q(t, ω) ν̃(ω) q(t, ω)† dω

]

(5.6a)

σxp(t)M−1 =
~

2
Re

[∫ ∞

0
q(t, ω) ν̃(ω)

∂

∂t
q(t, ω)† dω

]

(5.6b)

M−1σpp(t)M−1 =
~

2
Re

[∫ ∞

0

∂

∂t
q(t, ω) ν̃(ω)

∂

∂t
q(t, ω)† dω

]

(5.6c)

where the function q(t, ω) is defined as:

q(t, ω) =

∫ t

0
g(t, t′)eiωt

′

dt′ (5.7)

So far we have only given alternatives expressions for the asymptotic covariance ma-
trix valid when the system is stable. We now analyze the asymptotic properties of the
function q(t, ω) for the case in which the driving is periodic.

5.2 Periodic driving

The potential energy matrix V (t) is assumed to be τ -periodic: V (t+ τ) = V (t). From
the integro-differential equation defining g(t, t′) (Eq. (5.3)) it follows that:

g(t+ τ, t′ + τ) = g(t, t′), (5.8)

since g(t+ τ, t′ + τ) and g(t, t′) are both solution of Eq. (5.3) with the same initial condi-
tions. This observation implies that

q(t+τ, ω) =

∫ t+τ

0
g(t+τ, t′)eiωt

′

dt′ =

∫ t

−τ
g(t+τ, t′+τ)eiω(t

′+τ)dt′ =

[∫ t

−τ
g(t, t′)eiωt

′

dt′
]

eiωτ .

(5.9)
Now, if g(t, t′) decays exponentially with (t − t′) the following approximation holds for
large t:

∫ t

−τ
g(t, t′)eiωt

′

dt′ ≃
∫ t

0
g(t, t′)eiωt

′

dt′ = q(t, ω) (5.10)

Therefore, in the asymptotic limit, the function q(t, ω) satisfies:

q(t+ τ, ω) = q(t, ω)eiωτ (5.11)

from which it follows that the function

p(t, ω) = q(t, ω)e−iωt (5.12)
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is τ -periodic. In summary, the function q(t, ω), from which the covariance matrix at time
t can be obtained, can be expressed for sufficiently long times as q(t, ω) = p(t, ω)eiωt,
where p(t, ω) is τ -periodic. As a consequence, the asymptotic state for long times will
also be τ -periodic. To see that, as an example, we rewrite the asymptotic limit of σxx(t)
in terms of p(t, ω):

σxx(t) =
~

2
Re

[∫ ∞

0
p(t, ω) ν̃(ω) p(t, ω)† dω

]

(5.13)

similar expressions hold for σxp(t) and σpp(t), in which time only enters through p(t, ω)
or its derivative.

To finish this section we note that since the functions VR(t) and p(t, ω) are τ -periodic
they are determined by their Fourier coefficients Vk and Ak(ω, ωd):

VR(t) =

+∞
∑

k=−∞

Vk e
ikωdt (5.14)

p(t, ω) =

+∞
∑

k=−∞

Ak(ω, ωd) e
ikωdt (5.15)

where ωd = 2π/τ is the fundamental angular frequency of the driving. In the following
section we explain how to calculate the coefficients Ak given the driving coefficients Vk.
However, if they are known, then the asymptotic correlations can be easily obtained as:

σxx(t) = Re





∑

j,k

σxxj,k e
iωd(j−k)t



 (5.16)

where:
σxxj,k =

~

2

∫ ∞

0
Aj(ω, ωd)ν̃(ω)A

†
k(ω, ωd)dω (5.17)

Similar expressions can be found for the correlations σxp(t) and σpp(t).

5.3 Calculation of the function p(t, ω)

An integro-differential equation for p(t, ω) can be derived from the one defining
g(t, t′), Eq. (5.3). It reads:

M

[

∂2

∂t2
p(t, ω) + 2(iω)

∂

∂t
p(t, ω) + (iω)2p(t, ω)

]

+ VR(t)P (t, ω)+

+

∫ t

0
γxx(t− τ)

[

∂

∂t
p(τ, ω) + (iω)p(τ, ω)

]

e−iω(t−τ)dτ = 1

(5.18)

Inserting the Fourier decomposition of Eq. (5.15) into the previous equation one obtains
the following algebraic relation for the coefficients Ak(ω, ωd):

ĝ (i(ω + kωd))
−1 Ak(ω, ωd) +

∑

j 6=k

VjAk−j(ω, ωd) = 1δk,0 (5.19)

where the matrix function ĝ(s) is the Laplace transform of the Green’s function of the
system without driving, which satisfies:

ĝ(s)−1 =Ms2 + VR + sγ̂(s) (5.20)
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In turn, γ̂(s) is the Laplace transform of the damping kernel γxx(t):

γ̂(s) =

∫ ∞

0

I(ω)

ω

s

ω2 + s2
dω (5.21)

The infinite set of equations given in Eq. (5.19) can be solved for any given value of
ω by standard techniques. For example, a finite linear system can be obtained by only
considering coefficients Ak(ω, ωd) with |k| ≤ kmax, which is later solved by a regular
matrix inversion. Alternatively, a perturbative approach can be employed. Thus, if the
driving is weak (i.e., if |Vk| ≪ |V0| for all k 6= 0), then up to second order in Vk we have

A0(ω, ωd) = ĝ(iω) +
∑

k 6=0

g(iω) Vk g(i(ω − kωd)) V−k g(iω) (5.22a)

Ak(ω, ωd) = −ĝ(i(ω + kωd)) Vk ĝ(iω) for k 6= 0 (5.22b)

To finish this section, we note that the coefficientsAk(ω, ωd) satisfy certain exact sym-
metries, which can be obtained by examining the linear system given by Eq. (5.19). Thus,
if {Ak(ω, ωd)} are the solutions of Eq. (5.19) for a given process V (t), and {Ar

k(ω, ωd)} are
the solutions corresponding to the time reversed process V (−t), we have:

Ar
k(ω, ωd) = A−k(ω,−ωd) (5.23a)

Ar
k(ω, ωd) = AT

−k(ω + kωd, ωd) (5.23b)
A∗

k(ω, ωd) = A−k(−ω, ωd) (5.23c)

As will be clear in the next sections, if two reservoirs are connected to sites α and β of
the network, then the function |(Ak(ω, ωd))α,β |2 is related to the rate at which a quantum
of energy ~ω is extracted from the reservoir at β while a quantum of energy ~(ω + ωd)
is dumped into the reservoir at α (via absorption of k~ωd energy from the driving, for
k > 0). Thus, the above relations express fundamental symmetries between energy
exchange processes.
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Procesos periódicos

El capítulo anterior introdujo el formalismo básico para calcular la evolución tempo-
ral de sistemas cuánticos lineales de variable continua que son abiertos y forzados. En
este capítulo se simplifican esos resultados generales para el caso particular en que el
forzado es periódico y la dinámica es estable. Para esto se utilizan algunas ideas de la
teoría de Floquet, aunque se evita el cálculo explicito de las autoenergías y autoestados
de Floquet.
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Part III

Emergence of thermodynamical laws
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Chapter 6

Definitions of work and heat rates

In this chapter we give and justify the basic definitions for heat and work that are
later used. This definitions are then expressed in terms of readily computable quanti-
ties. Also, physical interpretations of the obtained expressions are discussed. From this
interpretations, it follows that a pairs creation mechanism completely analogous to the
Dynamical Casismir Effect (DCE) is a fundamental limitation for cooling for the family
of thermal machines considered. Finally, a extension of the model is discussed.

6.1 Total work and heat rates

In this section we give microscopic definitions for the work performed on the system
by the driving and for the energy exchange with each thermal reservoir, i.e, for the heat
rates. We begin by analyzing the variation in time of the system energy. From Eq. (4.1)
we have:

〈HS〉(t) =
1

2
Tr

[

M−1σpp(t)
]

+
1

2
Tr [V (t)σxx(t)] , (6.1)

and therefore,

d

dt
〈HS〉(t) =

1

2
Tr

[

M−1 d

dt
σpp(t)

]

+
1

2
Tr

[

V (t)
d

dt
σxx(t)

]

+
1

2
Tr

[

d

dt
V (t)σxx(t)

]

, (6.2)

The last term in the previous equation is the rate at which energy is injected into or
absorbed from the system by the driving. The remaining terms represent the variation
of the system energy due to the interaction with the thermal reservoirs. In order to see
that it is useful to rewrite d

dt〈HS〉(t) as:

d

dt
〈HS〉 (t) =

1

i~
〈[HS , H]〉+

〈

∂

∂t
HS

〉

=
1

i~
〈[HS , Hint]〉+

1

2
Tr

[

d

dt
V (t)σxx(t)

]

(6.3)

where H is the total Hamiltonian defined in Eq. (4.3). Comparing Eqs. (6.2) and (6.3) we
see that the first two terms in Eq. (6.2) can be interpreted as the energy exchange with
the reservoirs. Thus, we arrive at the following definitions for the work rate Ẇ and total
heat rate Q̇(t):

Ẇ (t) =
1

2
Tr

[

d

dt
V (t)σxx(t)

]

(6.4)

and,

Q̇(t) =
1

i~
〈[HS , Hint]〉 =

1

2
Tr

[

M−1 d

dt
σpp(t)

]

+
1

2
Tr

[

V (t)
d

dt
σxx(t)

]

(6.5)
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6.2 Local heat rates

Equation (6.5) defines the total energy interchange between the system and all the
thermal reservoirs. However, the local heat rate corresponding to a particular reservoir
is also of interest. A working definition for such local heat rates can be obtained by
expanding Eq. (6.5) using Eq. (4.2):

Q̇ =
1

i~
〈[HS , Hint]〉 =

∑

α

1

i~
〈[HS , Hint,α]〉 (6.6)

where Hint,α =
∑

j,k Cα,jk Xj qα,k = XTCαqα is the Hamiltonian term describing the
interaction between the system and the α-th reservoir. We define

Q̇α =
1

i~
〈[HS , Hint,α]〉 (6.7)

as the heat rate corresponding to the α-th reservoir. In this way we obtain a set {Q̇α} of
local heat rates such that the total heat rate is Q̇ =

∑

αQα. A direct calculation shows
that

Q̇α = −〈P TM−1Cαqα〉 (6.8)

We can use the motion equation (4.5b) in order to eliminate the reservoir coordinates
from Eq. (6.8). Thus, if Pα is a projector over the sites of the network in contact with
the α-th reservoir, then PαṖ = −PαV (t)X − Cαqα (this identity is valid in the case in
which different reservoirs are coupled to different sites of the network, i.e., we assume
that PαPβ = δα,βPα and PαCβ = δα,βCα). Therefore:

Q̇α =
1

2
Tr

[

Pα
d

dt
σpp(t)M−1

]

+Tr
[

PαV (t)σxp(t)M−1
]

(6.9)

The previous definition for the local heat rates is not the only possible. Another
natural definition for the heat rates is given by the rate of change of the energy of each
reservoir:

Q̇′
α =

1

i~
〈[HE,α, Hint,α]〉 (6.10)

If the interactions terms were energy conserving, i.e, if it were [HS + HE,α, Hint,α] =
0, then we would have Q̇′

α + Q̇α = 0 and the two definitions of heat rates would be
equivalent. Although in our model the energy conserving condition is not fulfilled and
in general Q̇′

α + Q̇α 6= 0, it is easy to see that:

Q̇′
α + Q̇α =

d

dt

〈

XtPα(Ṗ + V (t)X)
〉

(6.11)

Since the asymptotic state is τ -periodic, the right hand side of the last equation is the
derivative of a τ -periodic function. This observation implies that the average heat rates
per cycle obtained with the two possible definitions are equivalent, as if the interaction
terms were energy conserving. This is explained in the next section.

6.3 Work and heat in the asymptotic state

We have seen that if the system is periodically driven and stable the asymptotic state
is also periodic, with the same period as the driving. It follows that the function 〈HS〉(t)
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and its derivative d
dt〈HS〉(t) are also periodic. Thus, averaging Eq. (6.2) in one period

(for long times) we obtain:
0 = ˙̄Q+ ˙̄W (6.12)

where ˙̄W and ˙̄Q are the average work and total heat rates per cycle:

˙̄W =
1

τ
lim
n→∞

∫ (n+1)τ

n τ
Ẇ (t′) dt′ ˙̄Q =

1

τ
lim
n→∞

∫ (n+1)τ

nτ
Q̇(t′) dt′ (6.13)

Equation (6.12) is nothing more than the expression of the first law of thermodynamics
for cyclic processes. We note that the first term of the right hand side of Eq. (6.5) for Q̇(t′)
is the derivative of a periodic function and therefore does not contribute to the integral
over a period. In the same way we can define the local heat rates per cycle:

˙̄Qα =
1

τ
lim
k→∞

∫ (k+1)τ

kτ
Q̇α(t

′)dt′ =
1

τ
lim
k→∞

∫ (k+1)τ

kτ
Tr

[

PαV (t′)σxp(t′)M−1
]

dt′ (6.14)

This set of heat rates trivially satisfy:

˙̄Q =
∑

α

˙̄Qα (6.15)

From Eq. (6.11) and the fact that the right hand side is a derivative of τ -periodic
function for long times it follows that:

˙̄Q′
α + ˙̄Qα = 0 (6.16)

Therefore, in a complete cycle the variation of energy of a given reservoir is equal (in
absolute value) to the variation of the energy of the system due to the interaction with
that reservoir. No energy is stored in the interaction terms. We stress that this is true
only for the averaged heat rates.

6.4 Heat transfer matrix

From Eqs. (5.6b), (5.7) and (5.15) it is straightforward to derive the following ex-
pression for the correlation between position and momentum in terms of the Fourier
coefficients {Ak(ω, ωd)}:

σxp(t) = Im





∑

j,k

σxpj,k e
iωd(j−k)t



 (6.17)

where:
σxpj,k =

~

2

∫ ∞

0
(ω + kωd)Aj(ω, ωd)ν̃(ω)A

†
k(ω, ωd) dω (6.18)

Introducing Eq. (6.17) into the expression for the local heat rates of Eq. (6.14), and per-
forming the time integral, the following result is obtained:

˙̄Qα =
~

2

∫ ∞

0
Im







∑

j,k

Tr
[

PαVk−jAj(ω, ωd)ν̃(ω)A
†
k(ω, ωd)

]

(ω + kωd)







dω (6.19)
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Now, expanding the Fourier transform of the noise kernel as in Eq. (5.5), the local heat
Q̄α can be written as:

˙̄Qα =
∑

β

∫ ∞

0
Qα,β(ω) coth

(

~ω

2kbTβ

)

dω (6.20)

where the functions Qα,β(ω) are defined as

Qα,β(ω) =
~

2
Im







∑

j,k

(ω + kωd) Tr
[

PαVk−jAj(ω, ωd)Iβ(ω)A
†
k(ω, ωd)

]







(6.21)

If the number of reservoirs is L, there are L2 functions Qα,β(ω), which are considered
to be the elements of matrix called the heat transfer matrix. They specify how the heat
per cycle corresponding to the α-th reservoir is affected by the temperature of the β-th
reservoir. The previous expression for Qα,β(ω) can be simplified. In order to do that
we note that one of the sums appearing in Eq. (6.21) can be performed with the aid of
the algebraic equation that the coefficients Ak(ω, ωd) satisfy. Indeed, from Eq. (5.19) it
follows that

∑

j

Vk−jAj(ω, ωd) = 1δk,0 −
[

ĝ (i(ω + kωd))
−1 − V0

]

Ak(ω, ωd) (6.22)

Another important relation is:

Im
{

ĝ (iω)−1 − V0

}

= ωRe {γ̂(iω)} =
π

2
I(ω) (6.23)

where in the last equality the fluctuation-dissipation theorem, Re {γ̂(iω)} = π
2
I(|ω|)
|ω| , was

employed. The last equation is valid if the spectral density I(ω), originally defined only
for positive frequencies, is extended in a odd way for negative frequencies, i.e, such that
I(−ω) = −I(ω). Taking into account Eqs. (6.22) and (6.23) it is possible to arrive at the
following simplified expression for the non-diagonal terms of the heat transfer matrix:

Qα,β(ω) =
−π~
4

∑

k

(ω + kωd) Tr
[

Iα(ω + kωd)Ak(ω, ωd)Iβ(ω)A
†
k(ω, ωd)

]

(α 6= β)

(6.24)
Also, the sum over the first index can be expressed as:

Q̃β(ω) =
∑

α

Qα,β(ω) =
−π~
4

∑

k

(kωd) Tr
[

I(ω + kωd)Ak(ω, ωd)Iβ(ω)A
†
k(ω, ωd)

]

(6.25)

The last two equations completely determine all the elements of the heat transfer matrix.
These expressions can be compared to the ones obtained in [57] for the case without
driving.

6.5 Heat rates in terms of elementary processes

Eq. (6.20) is a simple and compact expression for the heat rates. However, as we will
see, it condenses in a single formula terms with very different physical origins, and there-
fore it is not possible to assign a clear physical interpretation to each coefficient Qα,β(ω)
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of the heat transfer matrix. In this section we analyze Eqs. (6.20), (6.24) and (6.25) and
identify different mechanisms of heat generation and energy transport between reser-
voirs. We begin by using Eq. (6.25) to rewrite Eq. (6.20) as:

˙̄Qα =

∫ ∞

0
dω Q̃α(ω) coth

(

~ω

2kbTβ

)

+

+
∑

β 6=α

∫ ∞

0
dω

{

Qα,β(ω) coth

(

~ω

2kbTβ

)

−Qβ,α(ω) coth

(

~ω

2kbTα

)} (6.26)

Expanding Q̃α(ω) and Qα,β(ω) using Eqs. (6.24) and (6.25) it is clear that some terms
in the previous expression cancel out. Taking that into account, and using the identity
coth

(

~ω
2kbTα

)

= 2(Nα(ω) + 1/2), where Nα(ω) = (e~ω/(kbTα) − 1)−1 is the Planck distribu-

tion, we find an important exact result: ˙̄Qα is the sum of three terms

˙̄Qα = ˙̄QRP
α + ˙̄QRH

α + ˙̄QNRH
α . (6.27)

The first term, ˙̄QRP
α , is responsible for the resonant pumping (RP) of energy from (or into)

Eα. It reads:

˙̄QRP
α =

∑

β 6=α

∑

k

∫ ∞

0′
dω ω p

(k)
β,α(ω) Nα(ω)−

−
∑

β 6=α

∑

k

∫ ∞

0′
dω (ω + kωd) p

k
α,β(ω) Nβ(ω)

(6.28)

where p(k)α,β(ω) =
π
2 Tr[Iα(|ω + kωd|)Ak(ω)Iβ(ω)A

†
k(ω)] is a positive number, proportional

to the probability for the network to couple the mode with frequency ω in Eβ with the
one with frequency |ω+kωd| inEα. The first term in Eq. (6.28) is positive and accounts for
energy flowing out of Eα: a quantum of energy ω is lost in Eα and excites the mode |ω+
kωd| in Eβ after absorbing energy kωd from the driving. The second term corresponds to
the opposite effect: A quantum of energy ω is lost from Eβ and dumped into the mode
|ω + kωd| in Eα after absorbing energy kωd from the driving. See figure 6.1.

The second term in Eq. (6.27) is responsible for the resonant heating (RH) of Eα and
reads:

˙̄QRH
α = −

∑

β 6=α

∑

k

∫ ∞

0′
dω kωd p

k
α,α(ω) Nα(ω). (6.29)

Its interpretation is analogous to the previous one except for the fact that in this case
energy is transferred between modes ω and |ω+kωd| inEα (see figure 6.1) . AlthoughEα

can gain or loose energy kωd depending on the sign of k, the upwards flow of energy is
more probable than the downwards one. This is becauseNα(ω) monotonically decreases
with ω. As a consequence, this process always heat up Eα. A subtlety should be noticed:
The lower limit of the frequency integral in all the above terms is not ω = 0 but ω =
0′ = max{0,−kωd}. This is because processes with negative k, which correspond to
the emission into the driving, can only take place if ω + kωd > 0. The role of the low
frequency modes is crucial, as we now discuss.

Finally, the last term ˙̄QNRH
α corresponds to a non resonant heating (NRH) effect and,
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kh̄ωd

Figure 6.1: Resonant processes. These can take place between modes of different reser-
voirs (as described by the terms in ˙̄QRP

α ), or between modes of the same reservoir (as in
˙̄QRH
α ). The total number of excitations in the reservoirs is conserved.

for the case of a time reversal invariant driving, reads:

˙̄QNRH
α = −

∑

k>0

∫ kωd

0
dω kωd p

−k
α,α(ω)

(

Nα(ω)+
1

2

)

−

−
∑

β 6=α

∑

k>0

∫ kωd

0
dω (kωd−ω) p−k

α,β(ω)

(

Nβ(ω)+
1

2

)

−

−
∑

β 6=α

∑

k>0

∫ kωd

0
dω ω p−k

β,α(ω)

(

Nα(ω)+
1

2

)

(6.30)

The physical process that gives rise to ˙̄QNRH
α is rather different from the resonant ones

discussed above. In the non resonant case a pair of excitations is created. One of them
has energy ω while the other one has energy kωd −ω (these values add up to the driving
energy kωd, notice that only k > 0 enters in the above expression). As opposed to the res-
onant case, in NRH, excitations are not transferred between modes but created in pairs
from the driving (see Figure 6.2). The three terms in Eq, (6.30) respectively correspond
to the following cases: i) both excitations are created in Eα; ii) mode ω is excited in Eα

and mode kωd − ω in Eβ ; iii) mode kωd − ω is excited in Eα while mode ω is excited in
Eβ . In all cases Eα gains energy: in the first case the net gain is kωd while in the last two
Eα gains, respectively, ω and kωd − ω. As Q̇NRH

α < 0, Eα heats up. Noticeably, the non
resonant heating term is the only one surviving when all reservoirs are at zero temperature (in
that case both ˙̄QRP

α and ˙̄QRH
α vanish).

6.6 Dynamical Casimir effect as a fundamental limit for cooling

At zero temperature, the creation of excitation pairs is a purely quantum phenomenon.
In fact, it is analogous to the well known dynamical Casimir effect (DCE). This effect was
first predicted in the decade of 1970 [88, 89] and it describes the creation of excitations
in a quantum field with changing boundary conditions, even if the field starts in its
ground state. The creation of photon pairs via the DCE was first observed in 2011, in
experiments where the optical length of a superconducting microwave waveguide was
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Figure 6.2: Resonant processes. Again, these can take place between modes of different
reservoirs, or between modes of the same reservoir. Excitations are created in pairs.

changed in time by coupling it to a Josephson junction [90, 91]. In the context of cyclic
thermal machines, the periodic driving of the parameters of the system is seen by the
environmental modes as a periodic change in their boundary conditions, thus it is nat-
ural to expect creation of excitations in the same way as in the DCE. The same happens
in thermodynamical cycles where the interaction between the system and environment
is turned on and off in a periodic fashion (Carnot and Otto cycles, for example) [92].

Therefore, we see that at very low temperatures the creation of excitations pairs is
a fundamental quantum process that dominate the heat currents. Surprisingly, this fact
was not clear in previous discussions of heat transport and refrigeration at very low tem-
peratures [58,69]. The reason is that the pairs creation mechanism is missed in the second
order weak coupling approximation. This is because the NRH contribution scales, for
weak coupling, as the fourth power of the interaction Hamiltonian Hint (or, equivalently,
as the second power of the spectral density or the dissipation rate). This is explained
in detail in Appendix C but can be understood in the following intuitive way. In the
resonant processes excitations are transported between environmental modes through
the system and this can be described as the following sequence: (i) an excitation is de-
stroyed in a given environmental mode, (ii) it is transported through the system and (iii)
an excitation is created in a different environmental mode. The system only couples to
single environmental modes at steps (i) and (iii), with an strength proportional to the
dissipation rate. In contrast, in the pair creation mechanism of the NRH contribution
no excitation is transported through the system, but the system is coupled simultaneously
to two environmental modes. Therefore, the rate of these processes is proportional to the
square of the dissipation rate.

6.7 Time independent systems

In the absence of driving we have ˙̄QNRH
α = ˙̄QRH

α = 0 and only ˙̄QRP
α survives. In this

case, only k = 0 contributes to Eq. (6.28) and the transition probabilities are symmetric
(i.e., p(0)α,β(ω) = p

(0)
β,α(ω), since A0 = ĝ(iω) is a symmetric matrix). Therefore, we have:

˙̄Qα =
∑

β 6=α

∫ ∞

0
dω ~ω

π

2
Tr[Iα(ω)ĝ(iω)Iβ(ω)ĝ

†(iω)] (Nα(ω)−Nβ(ω)) (6.31)
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Then, Q̇α ≥ 0 when Eα is the hottest reservoir (accordingly, Q̇α ≤ 0 for the coldest
one). This is nothing but Kelvin’s version of the second law (i.e., “heat flows from hot to
cold” [57]). In the driven case, it is also possible to derive the most general form of the
second law, that reads

∑

α
˙̄Qα/Tα ≤ 0. This is explained in the next chapter.

6.8 A further extension of the model

The model presented in Chapter 4 can be extended in a simple way: we may allow for
the action of time dependent forces F (t). In this case an extra term HF (t) = −F (t) ·X is
added to the Hamiltonian of the system, and the motion equations are modified accord-
ingly. Thus, the classical function F (t) enters as a new source in the integro-differential
equation of motion for the system operators. Then, the solution to this equation can still
be expressed in terms of the same Green’s function. It is straightforward to check that
the covariance matrix is not affected by the forces F (t). This is because the application of
a time dependent force only changes the mean values of the phase space operators, but
not their variances and correlations. Therefore, we note that time dependent forces are
not an useful resource for the generation of quantum entanglement in this kind of linear
systems.

In contrast, the driving of the system by forces do affect the heat currents. This is
natural, since the forces can inject energy into the system, which is latter dissipated into
the reservoirs. However, it is not clear a priori if the opposite process is possible: can
the forces do negative work, in order to extract energy from the system and therefore
cool a given reservoir? We will show next that the answer to this question is negative for
the steady state and periodic forces. Thus, we conclude that time dependent forces are
neither a useful resource for cooling under those conditions.

It is easy to see that in this case an additional term appears in the definition of the
averaged local heat rates (Eq. (6.14)). The new expression is:

˙̄Qα = Tr
[

PαV (t)σxp(t)M−1
]

+Tr
[

Pα(V (t)〈X〉(t)− F (t)) 〈P 〉T (t)M−1
]

(6.32)

where the mean values 〈X〉(t) and 〈P 〉(t) are:

〈X〉(t) =
∫ t

0
g(t, t′)F (t′)dt′ =

∑

j,k

Aj(kωd)Fke
i(j+k)ωdt

〈P 〉(t) =M

∫ t

0

∂

∂t
g(t, t′)F (t′)dt′ =M

∑

j,k

i(j + k)ωdAj(kωd)Fke
i(j+k)ωdt

(6.33)

The last equalities in Eq. (6.33) are valid for long times and when the force F (t) is peri-
odic in time with the same period of V (t). We want to show now that the last term in
Eq. (6.32) is always negative. For this, we find it convenient to use the motion equation
Pα = V (t)X − F = −PαṖ − Cαqα (recall that Pα is the projector over the sites of the
network in contact with the α reservoir). Then, we have:

Tr
[

Pα(V (t)〈X〉(t)− F (t)) 〈P 〉T (t)M−1
]

= −Tr
[

Pα〈Ṗ 〉〈P 〉TM−1
]

−Tr
[

Cα〈qα〉〈P 〉TM−1
]

(6.34)
We see that the first term in the right hand side of the previous equation is the average
over a period of the total derivative of a periodic function, and therefore it vanishes. To
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evaluate the remaining term we need to to calculate the mean values of the environmen-
tal coordinates qα. we obtain:

〈qα(t)〉 = −(mΩα)
−1

∫ t

0
sin(Ωα(t− t′))CT

α

〈

X(t′)
〉

dt′ (6.35)

which after some algebra can be transformed into:

Cα 〈qα〉 (t) =
−1

2i

∑

j,k

Iα((j + k)ωd)Aj(kωd)Fke
i(j+k)ωdt (6.36)

Finally, using Eqs. (6.33) and (6.36) it is easy to see that:

Tr
[

Cα〈qα〉〈P 〉TM−1
]

=
1

2
Tr

[

∑

p

(pωd)Iα(pωd)rpr
†
p

]

≥ 0 (6.37)

where rp =
∑

j,k/j+k=pAj(kωd)Fk. The previous expression is manifestly positive, since
the spectral density Iα(ω) is negative for negative frequencies. Thus, the additional term
for the heat current in Eq. (6.32) is always negative, as we wanted to show. The interpre-
tation of these results is straightforward. The application of time dependent forces only
‘shakes’ the network, displacing the mean values of the phase space operators. In the
presence of dissipation, this shaking can only dissipate energy into the reservoirs, but
not absorb it.
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Definiciones de calor y trabajo

En este capítulo se dan y justifican las definiciones de calor y trabajo que son em-
pleadas en el resto de la tesis. Estas definiciones son luego expresadas en términos
de cantidades fácilmente calculables. Además, se discute una interpretación física de
las expresiones obtenidas. A partir de esta interpretación se sigue que un mecanismo
de creación de pares de excitaciones enteramente análogo al Efecto Casimir Dinámico
(ECD) es una limitación fundamental para el enfriamiento en la familia de máquinas
térmicas considerada. Por último, una extensión del modelo es discutida.
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Chapter 7

Validity of the second law

Using the definitions for the heat currents obtained in the last chapter, we analyze
if they are compatible with the Second Law of Thermodynamics. We first consider the
Planck’s version of this law. Secondly, we give a general and elegant proof of the Second
Law based on the properties of the Von Neumman’s entropy for quantum systems.

7.1 The Planck proposition

To investigate the validity of the second law in this context we first consider the
Planck proposition: “It is impossible to construct an engine which will work in a complete cycle,
and produce no effect except the raising of a weight and cooling of a heat reservoir”. Translated to
our setting, the previous proposition means that if the temperatures of all the reservoirs
are the same, i.e, if Tα = T0 for all α, then the work performed on the system must be
positive, that is, ˙̄W ≥ 0. In other words, it must be impossible to extract work from a
single thermal reservoir. Thus, considering Eqs. (6.12), (6.15) and (6.25), we should be
able to show that:

˙̄W =
π~

4

∫ ∞

0

+∞
∑

k=−∞

(kωd) Tr
[

I(ω + kωd)Ak(ω, ωd)I(ω)A
†
k(ω, ωd)

]

coth

(

~ω

2kbT0

)

dω ≥ 0

(7.1)
The main difficulty in assessing the previous inequality is that the integrand in the left
hand side has no definite sign. It is thus convenient to write:

˙̄W =
π~

4

∑

k>0

(kωd)(Ik(ωd)− I−k(ωd)) (7.2)

where the functions I±k (ωd) are defined as:

Ik(ωd) =

∫ ∞

0
Tr

[

I(ω + kωd)Ak(ω, ωd)I(ω)A
†
k(ω, ωd)

]

coth

(

~ω

2kbT0

)

dω (7.3)

Now, if Irk(ωd) is the function corresponding to the time reversed process V (−t) it is
possible to show that Irk(ωd) ≥ I−k(ωd), which we do as follows:

I−k =

∫ ∞

0
. . . dω =

∫ kωd

0
. . . dω +

∫ ∞

kωd

. . . dω (7.4)
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The first integral in the right hand side is always negative, since I(ω − kωd) is negative
in the interval (0, kωd). The second integral is:
∫ ∞

kωd

Tr
[

I(ω − kωd)A−k(ω, ωd)I(ω)A
†
−k(ω, ωd)

]

coth

(

~ω

2kbT0

)

dω =

∫ ∞

0
Tr

[

I(ω)A−k(ω + kωd, ωd)I(ω + kωd)A
†
−k(ω + kωd, ωd)

]

coth

(

~(ω + kωd)

2kbT0

)

dω ≤
∫ ∞

0
Tr

[

I(ω + kωd)A
r
k
T (ω, ωd)I(ω)A

r
k
∗(ω, ωd)

]

coth

(

~ω

2kbT0

)

dω = Irk

(7.5)

The first step was a simple change of variable and in the second step we used the identity
of Eq. (5.23b) and the fact that coth(ω) is a decreasing function of ω. Therefore, we proved
that I−k ≤ Irk , as required. Also, Ir−k ≤ Ik. It follows that ˙̄W + ˙̄W r ≥ 0. Using Eq. (5.23a)
it is easy to see that as a function of ωd we have ˙̄W r(ωd) = ˙̄W (−ωd). In summary, we
have shown that

˙̄W (ωd) +
˙̄W (−ωd) ≥ 0 (7.6)

We now note the following three facts: (i) the function ˙̄W (ωd) is continuous, (ii) the only
root of the function ˙̄W (ωd) is ωd = 0 and (iii) ˙̄W (ωd) = ˙̄W (−ωd) for ωd → ±∞ (this
last fact is physically obvious but can be verified using the approximate solutions of the
coefficients Ak(ω, ωd) for large ωd). It follows that ˙̄W (ωd) ≥ 0 for all ωd.

7.2 Irreversible entropy generation

A general derivation of the second law in our setting can be obtained without using
the specific expression for the heat rates. Thus, we would like to show that in a complete
cycle of the process the production of entropy is always positive, i.e,

∑

α

− ˙̄Qα

Tα
≥ 0 (7.7)

This statement of the second law is equivalent to the Planck principle only in the adia-
batic limit (only in that limit the heat transfer matrix in symmetric), as can be verified
by direct calculation in the high temperature regime. Although it must be possible in
principle to prove Eq. (7.7) from the general expression for the heat transfer matrix, that
is not the more economic or elegant approach. To prove Eq. (7.7) we begin by consid-
ering the variations of the Von Neumann entropy of each reservoir and the system. We
take S(t) and Sα(t) as the entropies of the system and the α-th reservoir at time t. Also,
∆S(t) = S(t)− S(0). Using that the initial global state is a product state, that the global
dynamics is unitary and the subadditivity of the Von Neumann entropy it is easy to see
that:

∆S(t) +
∑

α

∆Sα(t) ≥ 0 (7.8)

We now divide the previous equation by the total time and evaluate in t = kτ . Since the
asymptotic state of the system is τ -periodic, its entropy is also a τ -periodic, and since it is
continuous, it is also bounded. Therefore limk→∞∆S(kτ)/(kτ) = 0. On the other hand
∆Sα(kτ)/(kτ) converges to ∆Sc

α/τ for k → ∞, where ∆Sc
α is the change in entropy of

the α-th reservoir per cycle in the asymptotic state. In this way, we obtain the following

58



inequality for the variations per cycle of the entropy of the reservoirs in the asymptotic
state:

∑

α

∆Sc
α ≥ 0 (7.9)

We now take advantage of the fact that the initial state of the α-th reservoir is thermal
at temperature Tα, and therefore it is the only minimum of the free energy function
Fα(ρ) = Tr(ρHE,α)− kbTαS(ρ). As a consequence:

0 ≤ ∆Fα(t) = ∆Eα(t)− kbTα∆Sα(t) (7.10)

As before, dividing the previous equation by t, evaluating in t = kτ , and taking the limit
k → ∞, we obtain:

∆Ec
α

kbTα
≥ ∆Sc

α (7.11)

where ∆Ec
α is the variation per cycle of the energy of the α-th reservoir in the asymptotic

state. It is not immediately obvious how this variation is related to the previously de-
fined heat rates (since in our model the interaction terms are not energy conserving, i.e,
[HS + HE,α, Hint,α] 6= 0). However, in section 6.3 we show that in the asymptotic state
∆Ec

α = −τ ˙̄Qα, as expected. Inserting this last identity in Eq. (7.11), summing over all
reservoirs, and using Eq. (7.9) we obtain Eq. (7.7).
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Validez de la segunda ley

En este capítulo se analiza si las definiciones para las corrientes de calor obtenidas en
el capítulo anterior son compatibles con la segunda ley de la termodinámica. En primer
lugar se considera la versión de Planck de esta ley. Luego se da una prueba elegante y
general de la segunda ley basada en las propiedades de la entropía de Von Neumman
para sistemas cuánticos.

60



Chapter 8

Fundamental limits for cooling
processes

In this chapter we analyze the fundamental limits for cooling of the family of thermal
machines defined in Chapter 4. The motivation is to study the emergence of the the
dynamical version of the Third Law of thermodynamics, or unattainability principle.
This principle, first formulated by Nernst [93], states that it is impossible to cool down
a system to zero temperature in finite time, or in finite number of steps. This principle
has been challenged by recent results on some models of quantum refrigerators. As
explained in the following, these results are flawed since they employ the second order
weak coupling approximation in the low temperature regime, where the heat currents
are dominated by processes that are missed by that approximation. We first discuss the
general processes that limit any cooling strategy and then we show how these processes
play a role in two relevant examples: (i) the laser cooling of trapped ions, and (ii) an
adaptative cooling strategy proposed in [69] that present an apparent challenge to the
unattainability principle.

We have shown in the previous chapters that the heat rate entering or leaving reser-
voir Eα can be written as:

˙̄Qα = ˙̄QRP
α + ˙̄QRH

α + ˙̄QNRH
α (8.1)

Therefore, since both ˙̄QRH
α ≤ 0 and ˙̄QNRH

α ≤ 0, the only way to pump energy out of Eα

(and therefore cool it) is to design a process such that Q̇RP
α > 0. In fact, to pump more

heat out of Eα than the one flowing into it, requires us to impose spatial (or temporal)
asymmetries to the driving or to the coupling with the reservoirs [58, 94, 95]. However,
to prove the validity of the third law it is not necessary to go into the details of cooling
processes. For this, one should simply notice that both resonant terms vanish at zero
temperature while the non resonant heating still survives. This alone is enough to es-
tablish the validity of Nernst unattainability principle: heating dominates at sufficiently
low temperatures. Moreover, this also implies that for any cooling process there is a min-
imum achievable temperature which can be estimated as the one for which the cooling
term in ˙̄QRP

α becomes comparable to the ˙̄QNRH
α . The minimal temperature is not univer-

sal and depends on the cooling strategy. We first analyze the case of laser cooling of
trapped ions, introduced in Chapter 3, and recover well known results. The analysis of
laser cooling in terms of our family of thermal machines will also lead us to an interest-
ing prediction about the power spectrum of the radiation emitted by the ions. Then we
estimate the minimal temperature that can be achieved by the cooling strategy proposed
in [69] to violate the Nernst unattainability principle.
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8.1 Laser cooling

We can consider the laser cooling of trapped ions as a thermal cycle in which a sys-
tem or working medium (the internal electronic state) is driven in time (by the laser light)
while it is simultaneously coupled with two thermal reservoirs. One of these reservoirs
would be the motional mode of the ion in the trap, which we want cool, while the second
one is formed by the modes of the electromagnetic field, to which the energy is dumped.
In principle, the developed formalism does not offer a faithful model of the actual situ-
ation, due to two main reasons. In first place, the system under consideration is a two
level system and therefore the linearity assumption, which is crucial in our treatment, is
lost. Secondly, in the usual version of ‘resolved-sideband’ cooling the laser field actually
drives the interaction between the internal electronic state and the motional mode. Thus,
if the motional mode is going to be considered as a thermal reservoir we should in prin-
ciple take into account the periodic modulation of its interaction with the central system,
and that feature is not included in our family of thermal machines. However, none of
these characteristics (the non-linearity and the modulation of the system-reservoir in-
teraction) is essential to the cooling mechanism. Cooling could also be achieved if the
internal state corresponded to a harmonic vibrational mode, with infinite equispaced
levels. Also, instead of driving the interaction with the reservoir to be cooled (the mo-
tional mode), it is enough to drive the energy difference between the internal levels, as
we will see.

With the previous considerations in mind, we develop the following analogy to laser
cooling. The internal state of the ion is represented by a harmonic mode of frequency
ωe and mass me. The internal mode is driven by periodically modulating its frequency
around ωe, with frequency ωd. Thus, the Hamiltonian of the system is:

HS(t) =
p2

2me
+
meω

2(t)

2
x2 (8.2)

with ω2(t) = ω2
e + δω2 cos(ωdt). The internal mode is simultaneously connected to two

reservoirs. One of the reservoirs has a single mode, the motional mode of the ion at fre-
quency ωm, and therefore its spectral density is IA(ω) = C2/(mωm) δ(ω − ωm), where
C is a coupling constant. The other reservoir is the electromagnetic field with spectral
density IB(ω). The permanent coupling of the internal mode to the continuous envi-
ronment B will induce dissipation, that is characterized by the dissipation rate Γ. This
parameter enters in two places: in the spectral density, which scales as IB(ω) ∝ Γ, and
in the Laplace’s transform of the Green’s function, that reads:

ĝ(iω) =
m−1

e

ω2
e − (ω − iΓ)2

(8.3)

We will consider that the driving is weak (i.e, that δω ≪ ωe) in order to use the expres-
sions of Eqs. (5.22b) for the coefficients Ak(ω). We are interested in the heat current
extracted from the reservoir A. The form of the spectral density IA(ω) makes the evalu-
ation of the frequency integrals in Eqs. (6.28), (6.29) and (6.30) trivial. For ωd > ωm (that
is the case for laser cooling), and when the reservoir B is at zero temperature (which is
the most favorable case and an excellent approximation for optical frequencies) the only
relevant processes contributing to the heat current of reservoir A are shown in Figure
8.1. Thus, the resonant pumping of energy out of A (blue arrow in Figure 8.1) is:

˙̄QRP = ~ωm
π

2

C2

mωm
IB(ωd + ωm)|A1(ωm)|2NA(ωm) (8.4)
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Figure 8.1: Relevant processes contributing to the heat current of reservoir A when ωd >
ωm and TB ≃ 0.

while the non-resonant heating is:

˙̄QNRH = −~ωm
π

2

C2

mωm
IB(ωd − ωm)|A−1(ωm)|2(NA(ωm) + 1) (8.5)

Thus, the motional mode is cooled whenever | ˙̄QRP/ ˙̄QNRH| > 1, which is equivalent to:

n̄

n̄+ 1
>

|ĝ(i(ωm − ωd))|2
|ĝ(i(ωm + ωd))|2

IB(ωd − ωm)

IB(ωd + ωm)
(8.6)

where n̄ = NA(ωd) and it was used that Ak(ω) = −ĝ(i(ω + kωd))Vkĝ(iω) (for k 6= 0 and
weak driving). For simplicity we assume that IB(ωd + ωm) ≃ IB(ωd − ωm), which is
almost exact in optical settings since ωm ≪ ωd. Then, the minimum possible value of n̄
(such that the previous condition is saturated for fixed parameters) is given by:

n̄min =

[

ω2
e − (ωm + ωd)

2
]2

+ 2Γ2(ω2
e + (ωm + ωd)

2) + Γ4

8ωdωm(ω2
e − ω2

d − ω2
m − Γ2)

(8.7)

Of course, to optimize the cooling strategy we should choose the value of ωd, the driv-
ing frequency, in order to minimize n̄min. There are two relevant regimes of operation,
already discussed in Chapter 3. In the ‘resolved-sideband’ regime where ωm ≫ Γ the
optimal driving frequency is ωd = ωe − ωm, exactly on resonance with the red sideband.
In this case n̄min ≃ (1/4)(Γ/ωm)2. In the opposite regime where Γ ≫ ωm the optimal
driving frequency is ωd = ωe − Γ/2 and n̄min ≃ (5/8)(Γ/ωm). Apart from constant pref-
actors, these results are equivalent to the minimum occupation numbers obtained for the
usual Sideband and Doppler cooling schemes.

8.1.1 Power spectrum of the radiation emitted into the EM field

In the usual discussions and explanations of laser cooling the heating mechanisms
preventing the perfect preparation of the motional ground state are understood as in-
elastic scattering events involving transitions to virtual electronic levels followed by
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spontaneous emissions. When one of these processes take place, the overall effect is
the creation of a motional excitation and the emission of a photon with the frequency re-
duced by ωm with respect to the incident radiation. From our point of view, this process
can also be understood as a particular case of the pairs creation mechanism, or dynam-
ical Casimir effect (DCE), which is the fundamental limitation for cooling in our family
of linear quantum refrigerators. Thus, the motional excitation and the photon emitted at
frequency ωd−ωm can be considered as a Casimir pair. However, there is another aspect
of the cooling process in which the DCE plays a role, as can be seen by analyzing the heat
current entering the reservoir B, which represent the electromagnetic field. In addition
to the pair creation in Figure 8.1, which produces photons of frequency ωd − ωm, pairs
of photons can be created directly in the EM field, as shown in Figure 8.2. The power

ω

IA(ω)

ω

IB(ω)

ωd + ωm

ω

ω′

ωm

ωd

Figure 8.2: Relevant processes contributing to the heat current of reservoir B when ωd >
ωm and TB ≃ 0. Pairs of photons are created at frequencies ω and ω′ such that ω+ω′ = ωd.

spectrum of the emission of energy into the EM field can be read from the integrand of
Eqs. (6.28), (6.29) and (6.30). It has three contributions. The first one comes from the
resonant pumping (RP) of energy from reservoir A to B, which creates photons at fre-
quency ωd + ωm. Thus, if fRP(ω) is the number of photons per unit of time created at
frequency ω by this process, we have:

fRP(ω) =
π

2

C2

mωm
IB(ωd + ωm)|A1(ωm)|2NA(ωm)δ(ω − ωd − ωm) (8.8)

In the same way, the number of photons per unit of time created at frequency ω by the
pair creation of Figure 8.1 is:

fNRH(ω) =
π

2

C2

mωm
IB(ωd − ωm)|A−1(ωm)|2 [NA(ωm) + 1] δ(ωd − ω − ωm) (8.9)

Finally, for the pair creation of Figure 8.2 we have:

f ′NRH(ω) =
π

4
IB(ω)IB(ωd − ω)|A−1(ω)|2 (8.10)
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This last contribution, in contrast with the other two, is not spectrally narrow. These
created photons are symmetrically distributed with respect to ωd/2. The total power
spectrum if plotted in Figure 8.3 for the parameters ωm/ωe = .1, Γ/ωm = 10−2, and
ωd = ωe − ωm (since this is optimal for Γ/ωm ≪ 1). The temperature of the reservoir A
is the minimum temperature, for which the heights of the peaks at ωd ± ωm is the same.
This is only an illustrative example an does not correspond to a physical situation. Also,
for plotting, the Dirac delta in Eqs. (8.8) and (8.9) was replaced by a Lorentzian function
(Γ′/2)2/(ω2+(Γ′/2)2) with Γ′ = Γ. We see the two expected peaks at frequencies ωd±ωm,

ωeωdωd/2

10−13

10−11

10−9

10−7

10−5 ωmωm

ω

P
(ω

)
(a
.u
)

Total Spectrum

Two photons creation

Figure 8.3: Number of photons per unit of time emitted at a particular frequency into the
EM field. For this figure, it was considered that IB(ω) ∝ ω3.

which result from the interaction of the system with the motional mode, but also a broad
spectrum for ω < ωd, which correspond to the creation of pairs of photons. Of course,
the two peaks could not be resolved if Γ ≫ ωm.

The DCE was first experimentally observed in 2011, in experiments using supercon-
ducting microwave cavities. So far, it was never observed at optical frequencies. There-
fore, it is interesting the question of whether the photon pairs created during the laser
cooling of ions could be observed. To answer this question a careful analysis of a more
realistic model is needed. The generalization of the results obtained by Mollow in [96] to
second order in the decay rate would be a first step. However, it is possible to perform
some preliminar estimations based on the model of laser cooling presented here. For
this, we will compute the following quantity: the ratio R between the photons emitted
in a frequency band of width ∆ω centered at ωd/2 (per unit of time), and the total num-
ber of photons emitted in the peaks around ωd (the scattered photons). From Eqs. (8.9)
and (8.10), we obtain:

R =
1

2

I2B(ωd/2)

IB(ωd − ωm)

mωm

C2

|A−1(ωd/2)|2
|A−1(ωm)|

∆ω

NA(ωm) + 1
(8.11)

At this point it is necessary to have some information about the spectral density of the
reservoir B. For the electromagnetic field in open space the spectral density goes like ω3,
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and it can be seen that for a fixed dissipation rate Γ it should be IB(ω) = 6
π (

ω
ωe
)3meωeΓ.

Also, by comparison with the interaction Hamiltonian between the internal levels and
the motion in the Lamb-Dicke regime, presented in Chapter 3, it can be seen that the
coupling constant C in our model should be such that C2/(mωm) = Ω2η2meωe, where Ω
is the Rabi frequency and η the Lamb-Dicke parameter. Using this expressions, the fact
that for trapped ions ωe ≫ ωm, γ, and the approximations of A±1(ω) for weak driving, it
is possible to show that:

R ≃ 3

2

Γωe

Ω2η2

(

ωt

ωe

)2 δ

NA(ωm) + 1
(8.12)

where δ = ∆ω/(ωd/2) is the relative width of the selected band. We see that R grows
with Γ, which is natural since Γ is a measure of the coupling of the atom to the EM field.
We take the following parameters compatible with the experiments performed by the
group of Rainer Blatt at Innsbruck [97]:

• ωt/(2π) ≃ 5 Mhz

• ωe/(2π) ≃ 755 Thz and Γ/(2π) ≃ 20 Mhz (for the 397 nm S1/2 → P1/2 transition of
a calcium atom)

• Ω/(2π) ≃ 1 Mhz

• η ≃ 0.078

For these parameters we found that the value ofR for the steady state of Doppler cooling
is:

R ≃ (5× 10−5) δ, (8.13)

and, using the Eq. (3.9), we can estimate the number of scattered photons per unit time
around Ṅ ≃ 7500 hz. Thus, for δ = 1/100 we expect only RṄ ≃ 4 × 10−3 photon pairs
per second at ωd/2. This quantity is exceedingly small, which explains why this effect,
if existent, was not yet observed. A possibility to improve this rate in order to observe
the effect is to simultaneously cool many ions. If one thousand ions are simultaneously
trapped and cooled, the expected rate of created pairs is similar to the dark count rates of
the best single photon detectors available today, so the signal might be detected for long
integration times. Of course, these are only preliminary estimations, but they suggest
that the analysis of a more realistic model could yield interesting results.

8.2 An adaptative cooling strategy

In this section we will analyze a strategy proposed in [69] that was claimed to chal-
lenge the Third Law of thermodynamics. The proposed strategy involves a two-level
system that is simultaneously connected to two reservoirs with different spectral densi-
ties. We will consider a similar situation in which the two level system is replaced by a
harmonic oscillator. We will see that if the contribution of the pair creation mechanism to
the heat currents is not taken into account, our results are completely equivalent to those
obtained in [69], and under certain conditions allow for the cooling of one reservoir to
zero temperature in finite time, thus violating the dynamical version of the Third Law
of thermodynamics. Of course, if the pair creation mechanism is considered, then we
see that it is not possible to reach zero temperature even for infinite time. We conclude
then that the problem of the results presented in [69] is that they are based on a master
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equation that is only valid to the second order in the interaction between the system and
the environments, or equivalently, to first order in the dissipation rate.

We will compute the heat rates using the following simplifying assumptions: a) We
assume that the driving is weak (i.e. if |Vk|/|V0| ≪ 1). Then, using perturbation theory
we find that Ak(ω) = −ĝ(i(ω + kωd))Vkĝ(iω), for k 6= 0. b) We assume that the coupling
with the environments is also weak. Then, ĝ(s) (the Green function of the undriven net-
work) can be expressed as a sum over the normal modes of the isolated network, whose
eigenfrequencies we denote as Ωa. Using this, the frequency integrals in Eqs. (6.28) and
(6.29) can be performed since the integrand is strongly peaked around the eigenfrequen-
cies and their sidebands Ωa±kωd (the peaks in pkα,β(ω) arise because of their dependence
on Ak(ω)). In this way, as shown in SM IV the resonant heat rates can be expressed as
a sum over all normal modes and sidebands. Finally, in the low temperature limit, this
sum is dominated by the term with the lowest frequency (Ω0) because the Planck dis-
tribution enforces a natural cutoff. c) To further simplify the analysis we will consider
all reservoirs at the same temperature T0 (the most favorable condition for cooling), and
use the harmonic driving V (t) = V0 + 2V1 cos(ωdt) (for which only k = ±1 appear in the
weak driving limit). In this case we obtain

˙̄QRP
α =

e
−

Ω0−ωd
T0 |V 0

1 |2(π2/8)
Ω2
0(Ω

2
0−(Ω0−ωd)2)2

∑

β 6=α

I0β(Ω0)

Γ0
I0α(Ω0−ωd)

×
{

(Ω0 − ωd)− Ω0

I0α(Ω0)I
0
β(Ω0−ωd)

I0β(Ω0)I0α(Ω0−ωd)

}

(8.14)

where Γ0 is the decay width of the mode Ω0 (see below) and M0 denotes the matrix
element of M in the normal mode with frequency Ω0. The above equation is revealing:
when the spectral densities are identical the heat rate is negative and Eα absorbs energy.
However, if the condition I0α(Ω0) ≪ I0β(Ω0) is satisfied ˙̄QRP

α > 0 and the reservoir loses
energy. This cooling condition simply states that the cooling process (i.e., extracting
energy Ω0 − ωd from Eα and dumping it in the mode Ω0 of Eβ) has a higher rate than
the heating process (taking energy Ω0 − ωd from Eβ and dumpling it in mode Ω0 in Eα).
The reduction in the heating rate arises because the density of final states is small. As
explained in SM IV, the same condition implies that ˙̄QRP

α ≫ ˙̄QRH
α .

Even if the cooling condition is satisfied, the heat rate rapidly decreases with the
temperature. This is because the thermal factor appearing Eq. (8.14) decreases with
temperature faster than any power law. However, there is an interesting strategy that
we could use to maximize the heat rate. For this, as suggested in [69], we can slowly
adjust the driving frequency ωd in such a way that Ω0 − ωd = Tα. Using this adaptive
method, for Tα ≪ Ω0, the heat rate is

˙̄QRP
α =

π2

8e

|V 0
1 |2
Ω6
0

T0I
0
α(T0)

∑

β 6=α

I0β(Ω0)

Γ0
(8.15)

It is clear that the ratio
∑

β Iβ(Ω0)/Γ0 is of zero-th order in the coupling strength between

the system and the environment. Therefore, the above identity shows that ˙̄QRP
α is of first

order in the coupling strength. In contrast, it can be seen from Eq. (6.30) that ˙̄QNRH
α is

of second order in the coupling strength for ωd < Ω0 (since in that case the integration
domain does not include any resonance peak). We will use these results to estimate the
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minimal temperature that can be achieved by this cooling protocol. For this, we must
study cooling as a dynamical process.

Only a finite reservoir can be cooled. Thus, we assume that the Eα has a finite heat
capacity Cv. As discussed in [69], Cv depends on the dimensionality (d) of the reservoir
and scales with temperature as Cv ∝ T d

α . If the rate at which energy flows away from
Eα is sufficiently small, one can think that the environment has a time dependent tem-
perature Tα(t) that satisfies the equation Ṫα = − ˙̄Qα/Cv. To solve this equation we need
an expression for the heat rate. We could use Eq. (8.15) provided that the rate of change
of Tα is smaller than the driving frequency (since in that case we can instantaneously
satisfy the adaptive condition ωd = Ω0 − Tα). In this way, we obtain that Tα(t) satisfies

dTα
dt

= − 1

Cv
Q̇α ∝ −γ0η T 1+λα−d

α (8.16)

where we used that for low frequencies the spectral density I0α(ω) ∝ γ0ω
λα (where γ0 is a

relaxation rate scaling quadratically with the coupling constants between the system and
the environment while the exponent λα characterizes the environment, being λα = 1 the
one corresponding to a Ohmic reservoir). Above, η is a constant depending on Ω0 and
V1. The solutions of this equation approach Tα = 0 in finite time when 1 + λα − d < 1,
which leads us to the surprising conclusion that the unattainability principle could be
violated. However, this argument, presented in [69], is not correct, because the above
equation for Tα stops being valid at sufficiently low temperatures. In that case, Q̇NRH

α ,
which was not taken into account so far, becomes dominant.

The non resonant heating cannot be neglected in spite of the fact that (for ωd ≤ Ω0)
it is proportional to γ20 . This scaling with γ0 makes this term invisible to any treatment
based on the weak coupling limit (such as the master equation used in [69], which is
valid to first order in γ0). On the contrary, the weak coupling limit captures the resonant
term given in Eq. (8.15), which is first order in γ0 (in fact, such expression is equivalent
to the heat rate used in [69]).

Our analysis, which is non perturbative, shows that the non resonant term given in
Eq. (6.30) will end up stopping any cooling. Moreover, it enables us to estimate the min-
imum achievable temperature by estimating when resonant and non resonant contribu-
tions become comparable. ˙̄QNRH

α ∝ γ20 (and is roughly independent of Tα for sufficiently
low temperatures) and Eq. (8.15) shows that the cooling term scales as ˙̄QRP

α ∝ γ0T
1+λα
α .

Therefore, both terms become comparable for temperatures scaling as Tα ∝ γ
1/(1+λα)
0 .

In Figure 8.4 we see that this naive scaling argument is confirmed by a detailed numeri-
cal evaluation of both resonant and non resonant heat rates (the minimal temperature is
estimated for various reservoirs characterized by different values of λα and plotted as a
function of γ0).
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Figure 8.4: Minimum temperature Tmin as a function of the coupling strength γ0. Tmin is
numerically obtained as the lowest temperature for which ˙̄QRP

α > | ˙̄QNRH
α |. Results are

shown for the adaptative cooling strategy considered in [69]. The system consists of a
single harmonic oscillator of frequency Ω0 in contact with two reservoirs whose spectral
densities satisfy the cooling condition Iα(Ω0) ≪ Iβ(Ω0). Heat rates are obtained through
an exact numerical evaluation (see details in SM IV).
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Límites fundamentales para procesos
de enfriamiento

En este capítulo se analizan los límites fundamentales para el enfriamiento de la fa-
milia de máquinas térmicas definidas en el capítulo 4. La motivación es estudiar el ori-
gen de la versión dinámica de la tercera ley de la termodinámica. Esta ley, formulada
originalmente por Nernst [93], establece que es imposible enfriar un sistema a temper-
atura cero en un tiempo finito, o en una cantidad finita de pasos. Resultados recientes
en algunos modelos de refrigeradores cuánticos desafían esta ley. Como se explica en
este capítulo, estos resultados son incorrectos ya que están basados en la aproximación
de acoplamiento débil, la cuál no captura los procesos responsables del calentamiento
a bajas temperaturas. En primer lugar se discuten los procesos generales que limitan
cualquier esquema de enfriamiento y luego se muestra cuál es el papel que juegan es-
tos procesos en dos ejemplos relevantes: (i) el enfriamiento láser de iones atrapados, y
(ii) una estrategia adaptativa de enfriamiento que fue propuesta en [69] y presenta un
aparente desafío a la tercera ley.
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Part IV

Experimental proposals
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Chapter 9

Heat transport through ion crystals

In this chapter we study the thermodynamical properties of crystals of trapped ions
which are laser cooled to two different temperatures in two separate regions. We show
that these properties strongly depend on the structure of the ion crystal. As explained in
chapter 3, such structure can be changed by varying the trap parameters and undergoes
a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus,
we show that these systems are ideal candidates to observe and control the transition
from anomalous to normal heat transport. We find that all structures behave as ‘heat
superconductors’, with a thermal conductivity increasing linearly with system size and
a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals
turn out to be hyper sensitive to disorder having a linear temperature profile and a length
independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators.
Sensitivity to disorder is much smaller in the 1D case.

9.1 Anomalous transport and the failure of the Fourier’s Law

The Fourier’s Law for heat transport is a two centuries old phenomenological theory
describing the flux of heat through a material [98]. It relates in a linear way the flux with
the temperature gradient, adopting the following differential form:

j̄ = −κ∇T (9.1)

where j̄ the heat current per unit of time and area, and κ is the thermal conductivity
of the material, independent of the system size. The Fourier’s law is identical to the
Ohm’s Law for electric conduction. It has been highly successful in describing heat con-
duction in macroscopic systems. Two general conclusions can be derived from it: if a
system of length L is connected to two thermal reservoirs at different temperatures, the
heat current should be proportional to the temperature difference ∆T , and inversely
proportional to the system length L. Also, for homogeneous systems, the inner tem-
perature profile should be a linear interpolation between the fixed temperatures of the
reservoirs (in the steady state). However, in a seminal work by Rieder, Lebowitz and
Lieb [99], where a one-dimensional microscopic model of heat conduction was consid-
ered, the authors found that: 1) the heat current is independent of the system length1

for fixed ∆T , and 2) the thermal gradient vanish inside the system. This was called

1This behavior, in terms of the Fourier’s Law, amounts to a thermal conductivity increasing linearly with
length.
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‘anomalous’ or ‘ballistic’ (in contrast to ‘diffusive’) heat transport. Since then, many re-
searchers tried to understand under which conditions the Fourier’s Law emerge from
a given microscopic substrate. The original model of Rieder, Lebowitz and Lieb was
linear, one-dimensional and homogeneous, so initial efforts were devoted to investigate
the effects of non-linearity, dimensionality and disorder. Some modern approaches to
this problem can be found in [100–104]. In the following we investigate theoretically the
possibility of experimentally studying the emergence of Fourier’s Law and the transition
between diffusive and ballistic transport with trapped ions.

9.2 The model

We considerN ions in a Paul trap with harmonic trapping potentials both in the axial
and transverse directions. We have seen in chapter 3 that the interplay between Coulomb
repulsion and the trapping potentials forms crystals with variable geometries. For strong
transverse confinement, the crystal is linear (1D). As the transverse potential is relaxed or
the number of ions is increased the crystal undergoes a series of phase transitions. First,
there is a second order phase transition from linear (1D) to a zig-zag (2D) configuration
which is followed by a transition to a helicoid (3D) and a variety of other shapes. Fully
taking into account trapping potentials and Coulomb repulsion we use an evolutionary
algorithm to obtain the equilibrium state of the crystal (in a regular desktop computer
we can find the equilibrium state of crystals with hundreds of ions, see Appendix A). In
Figure 9.1 we show three different structures. Zig-zag and helicoidal structures develop
at the center of the crystal and are characterized by two order parameters: the mean
distance to the axis and the average azimuthal angle between ions. As shown in Figure
9.1-b, structures with similar order parameters are obtained by appropriately scaling the
trap aspect ratio (i.e., the ratio between transverse and longitudinal trapping frequencies:
α = ωt/ωz) and the number of ions N (this is explained in detail in Appendix A). Once
the equilibrium structure is obtained, we quantize the oscillations of the ions around
equilibrium, whose dynamics are described by the Hamiltonian

HS =
1

2m
P TP +

1

2
XTV X, (9.2)

where the column vector X = (x1, . . . , xK)T stores all coordinates (P stores all the mo-
menta; m is the mass of the ions; K = 3N is the number of degrees of freedom and the
superscript T denotes the transpose). The coupling matrix V arises from the second or-
der expansion of the full Hamiltonian. Thus, the coupling strengths depend non-trivially
on the structure.

We consider that each transverse coordinate is laser cooled to two different temper-
atures in the left (L) and right (R) regions of the crystal, in order to induce an energy
current through the crystal. In addition to these engineered reservoirs, other sources of
heat could be considered. Trapped ion strings are subject to heating arising from black
body radiation and RF noise, among other factors. Such mechanisms can be modeled
by adding an additional thermal reservoir in contact with the whole ion string. How-
ever, for state-of-the-art traps external heating can be reduced to less than a couple of
phonons per second [105, 106]. Moreover, most noise sources only contribute to heating
of the center-of-mass motional modes, since typical wavelengths (larger than 1 cm for
frequencies less than 30 GHz) are several orders of magnitude higher than typical ion
string lengths (not more than ≈ 100 µm). Therefore, we will neglect external heating
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Figure 9.1: (a) Typical crystals with 30, 40 and 60 ions with one, two and three dimen-
sional structures, respectively. (b) Paths in parameter space corresponding to structures
with the same order parameters (average distance to the trap axis and mean azimuthal
angle between neighboring ions).

of the ion string in this work. Additionally, off-axis ions will be subject to micromo-
tion coming from the trap RF fields. For the present treatment, we will assume that the
heating due to micromotion does not affect the transport properties of the crystals.

The evolution of the motional state of a laser cooled ion in a harmonic trap satisfies a
master equation which is analogous to that of a damped harmonic oscillator coupled to
a finite-temperature heat bath [107]. Therefore, to model the cooling process, we couple
each of the quantized transverse coordinates in the left and right regions of the crys-
tal to two bosonic thermal baths (at temperatures TL and TR). In order to describe the
viscous force experienced by the ion, which is proportional to the instantaneous veloc-
ity, we choose an Ohmic spectral density for each thermal bath. Thus, our simplified
model consists of a complex network of harmonic degrees of freedom coupled to two
bosonic thermal baths at different temperatures. We can therefore apply the formalism
developed in chapters 4, 5 and 6 to calculate the heat current established through the ion
crystal. Thus, evaluating Eq. (6.31) for the particular case in which there are only two
thermal reservoirs, we obtain:

˙̄QL = − ˙̄QR =

∫ ∞

0
dω ~ω

π

2
Tr[IL(ω)ĝ(iω)IR(ω)ĝ

†(iω)] (NL(ω)−NR(ω)) (9.3)

where, as before, ĝ(s) = (s2mI + VR + sγ(s))−1 and Nα = (e~ω/(kbTα) − 1)−1. We have
chosen Ohmic spectral densities in order to model viscous forces proportional to the
velocity of the ions:

IL/R(ω) =
2

π
γ0PL/R

ωΛ2

Λ2 + ω2
(9.4)

where Λ is a high frequency cutoff, γ0 fixes the relaxation rate and PL/R is the projector
onto the coordinates in contact with the left (L) or right (R) environment.

Also, since in this case the system is not driven, the asymptotic covariance matrix is
time independent. Thus, for t → ∞ equations (5.6a)-(5.6c) take the following simpler
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form:

σ(j,k) = Re

[∫ ∞

0
dω(i)k−j(mω)j+kĝ(iω)ν̂(ω)ĝ(−iω)

]

(9.5)

where we have denoted σ(0,0) = σxx, σ(0,1) = σxp and σ(1,1) = σpp.
The main ingredient to calculate the two-point correlations and the heat current in

the stationary state is ĝ(s), the Laplace transform of the Green’s function. To compute
the integrals in Eqs. 9.5 and 9.3 several approximations and techniques are used in the
literature [108]. For example, an infinite frequency cut-off is often assumed (which cor-
responds to a Markovian approximation, since the dissipation and noise kernels become
local in time). Also, the integrals are usually evaluated numerically, which requires the
inversion of −mω2 + VR +2iωγ̂(iω) for each evaluation point, and therefore those meth-
ods are not efficient (nor accurate) for systems with complex interactions like ion crystals,
where the matrix VR is in general hard to invert.

We have developed and implemented a drastically different approach based on an
analytic formula for ĝ(s), which can be used to analytically evaluate the frequency inte-
grals. The method is described in detail in Appendix B. However, we explain here the
main ideas of it. We consider for simplicity the high-cutoff limit (i.e, Λ → ∞), although
the method is also valid for an arbitrary cutoff. In that limit ĝ(s)−1 = ms2+VR+sγ0PT is
a quadratic polynomial in s with matrix coefficients. Therefore, to find ĝ(s) it is required
to invert a quadratic matrix polynomial. In analogy with the case of a regular matrix, the
inverse of a quadratic matrix polynomial can be related to the eigenvalues and eigenvec-
tors of the generalized eigenvalue problem defined by that polynomial. Explicitly, it is
possible to show that ĝ(s) can be written as [109]:

ĝ(s) =
2K
∑

α=1

sα
s− sα

rαr
T
α , (9.6)

where {sα} and {rα} are generalized eigenvalues and eigenvectors satisfying:

ĝ−1(sα)rα = 0, (9.7)

which implies det(ĝ−1(sα)) = 0. Since det(ĝ−1(s)) is a 2K degree polynomial in s, there
are 2K eigenvalues {sα}. Furthermore, since the matrix coefficients of ĝ−1(s) are real, the
eigenvalues and eigenvectors come in complex conjugate pairs. The Laplace transform
of the Green’s function ĝ(s) is then expressed in terms of its poles, which are {sα}. In
this way the integrals appearing in Eqs. 9.5 and 9.3 can be evaluated using the residue
theorem. The following result is obtained for the asymptotic covariance matrix:

σ(j,k) = 2γ0Re





mj+k

ik−j+1

2K
∑

α,β=1

ωj+k+1
α ωβ

rTαArβ
ωα + ωβ

rαr
T
β



 , (9.8)

where A = 2kB
∑

l TlPl, and ωα = −isα are the complex normal frequencies. For the
heat current the result is:

Q̇ = 4γ20∆

2K
∑

α,β=1

ω3
αωβ

ωα + ωβ
(rTαPlrβ)(r

T
β Pl′rα), (9.9)

with ∆ = −2ikB(TL − TR). Equations 9.8 and 9.9 are valid for high temperatures. Exact
expressions for arbitrary temperature involving the digamma function can be found in
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Figure 9.2: (Color online) Thermal conductivity (in units of kBlωz) as a function of crystal
length and disorder for 1D lineal (a), 2D zig-zag (b) and 3D helicoidal (c) structures. In
all cases we considered between 20 and 200 ions. Points and error bars correspond to
mean values and dispersions over several realizations of disorder.

Appendix B. Using Eqs. 9.8 and 9.9, the asymptotic state and heat currents can be eval-
uated by simply solving a quadratic eigenvalue problem. In turn, the quadratic eigen-
value problem can be mapped to a regular (i.e., linear) eigenvalue problem by standard
techniques [109] (at the price of doubling the dimension of the problem).

Surprisingly, this method has never been used to study transport in harmonic net-
works. In simple terms, the method provides the solution to a system of K differential
equations mẌ + ΓẊ + CX = 0 for arbitrary non-commuting coupling and damping
matrices C and Γ. In the case of spectral densities with finite frequency cutoff expres-
sions similar to Eqs. 9.8 and 9.9 can be derived, this time in terms of the eigenvalues and
eigenvectors of a cubic eigenvalue problem (see Appendix B). The method can be used
to study transport phenomena in arbitrary harmonic networks, and it is thus suitable for
non-trivial coupling matrices as the ones describing ion crystals, that include long-range
Coulomb interactions.

9.3 Results

We now present results for ion crystal with up to N = 200 ions with various struc-
tures. We use m, the mass of the ions, as the unit of mass, and 2πω−1

z as the unit of time.
The length unit we use is given by l = (Q2/(mω2

z))
1/3 where Q is the electric charge of

the ions (see Appendix A).
We analyzed the energy flow for the transverse motion and considered cases where

the environment couples with single sites or with extended regions containing up to
10 percent of the crystal (no significant differences were found, in accordance with the
results in [ [110]] for the weak coupling regime). We computed the thermal conductivity
κ, which is such that Q̇L = κ∆T/L where ∆T = TR − TL and L is the length of the
crystal. Fourier’s law for macroscopic heat flow implies that κ is L independent and
also temperature independent. We find that fixing ∆T , κ rapidly becomes independent
of the average T̄ . Also, κ becomes independent of ∆T for moderately high values of
T̄ (this behavior is observed for temperatures of the order of the frequencies in VR/m).
Thus, these aspects of Fourier’s law are valid. All the following results correspond to
a regime in which the heat current is proportional to ∆T , i.e, we consider that all the
normal modes are thermally excited.

However, for all structures κ depends linearly on the length, as shown in Figure 2.
This anomalous behavior is a well known property of harmonic chains [108, 111, 112]
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that has not yet been experimentally tested. If that behavior is extrapolated to the ther-
modynamic limit an infinite thermal conductivity would be obtained. Therefore, heat
could be transported with the application of a vanishingly small temperature gradient.
This fact, and the absence of an internal temperature gradient, which is discussed later,
are reminiscent of the behavior of the electric current in superconducting materials. In
Appendix B it is shown that in the weak coupling limit any system which is symmetric
with respect to the interchange of the reservoirs (condition that is fulfilled in our model)
will display a thermal conductivity increasing linearly with the size of the system. That
general scaling law is not longer valid if the coupling between system and reservoirs
is not small with respect to the internal couplings in the system (even if the symmetry
condition still holds). Since our main interest is to study the effect of disorder on struc-
tures of different dimensionality, we restrict ourselves to the weak coupling regime (we
set γ0 = 10−6 for the numerical computations), although the method we use is valid for
arbitrary coupling strength.

We show that ion crystals are ideal candidates to measure and control anomalous
transport by changing the crystal structure or by adding disorder. Experimentally, dis-
order can be implemented in different ways. One possible approach would be to locally
modify the confining potentials. However, if the potentials are to be tuned using vari-
ations in the RF confinement voltages, the electrodes have to be small enough to allow
control of individual ions. The electrode size is limited by the ion-electrode spacing, and
the actual state-of-the-art allows for ion-electrode spacings of ∼30-40 µm [ [113, 114]]
which is larger than typical ion-ion distances of ∼10 µm. Improvements in trap minia-
turization might render this approach feasible in the near future. However, disorder can
be implemented with the present technology using site-specific optical dipole forces. In-
dividual ions in the ion string can be addressed with lasers to create an optical lattice
with a confinement that can be tuned from site to site [80, 115].

In order to study the effects of disorder in a simple way, we numerically introduced
disorder by modifying the coupling matrix V corresponding to a particular equilibrium
structure. Specifically, we changed the pinning potential of N/2 randomly selected ions
according to the rule Vii → (1± d)Vii, where d is a measure of disorder. This is expected
to be a qualitatively good model of particular physical realizations of disorder only for
small values of d. However, values of d as small as 0.005 are enough to control the tran-
sition from anomalous to diffusive heat transport. As shown in Figure 2, linear, zig-zag
and helicoidal crystals display drastically different behavior as a function of disorder.
Thus, zig-zag and helicoidal crystals are highly sensitive to disorder. In fact, a small d
turns the zig-zag crystal into a heat insulator with κ rapidly approaching a vanishingly
small value. The thermal conductivity of helicoidal crystals approaches a nonzero value
for long crystals. Hypersensitivity to disorder is evident in the dependence of κ on d for
a fixed length L. This is shown in Figure 3-(a) where we see that κ rapidly decays with d
for 2D and 3D crystals. Decay for 1D crystals is clearly much slower.

We also studied the local temperature of the transverse motion. As seen in Figure
9.4-a the temperature profile strongly deviates from the linear behavior predicted by
the classical Fourier’s law (we only show the profile for a 3D crystal but no substantial
differences are seen in 1D or 2D). Without disorder the profile is almost planar except for
the ions in contact with the reservoirs. As disorder is introduced, a central temperature
gradient develops. Thus, deviation from Fourier’s law can be measured by the central
slope of the temperature profile, which is shown in Figure 9.4-b. The central derivative
strongly depends on the dimensionality: again, the zig-zag and helicoidal crystals are
hyper sensitive to disorder. For small values of d the central derivative saturates to a
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Figure 9.3: (Color online) (a) Thermal conductivity versus disorder for crystals of 120
ions with different structures. (b) Contribution of each normal mode to the thermal
conductivity in a 1D crystal of 100 ions.
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Figure 9.4: (Color online) (a) Temperature profiles for a helicoidal chain of 40 ions with
increasing disorder. (b) Central gradient of the temperature profile (in units of ∆T/L) as
a function of the disorder fraction.

value which is a significant fraction of the one that correspond to a linear interpolation
between the temperatures of both reservoirs.

Equations 9.8 and 9.9 enable us to estimate the contribution of each mode to thermal
conductivity and temperatures. For example, the contribution of the normal mode at
frequency ω = Re(ωα) to the heat current is:

Q̇α = 4γ20 ∆ ω3
α

2K
∑

β=1

ωβ

ωα + ωβ
(rTαPlrβ)(r

T
β Pl′rα). (9.10)

The behavior of Q̇α as a function of the mode frequency is shown in Figure 3-(b) for
different levels of disorder. The figure shows that the largest contributions come from the
modes with higher frequencies. This is expected since those are the normal modes with
greater amplitude in the ends of the crystals, and therefore are the ones most coupled to
the reservoirs.

In summary, we showed that ion crystals are excellent candidates to observe and
control the transition from anomalous to normal transport. Thus, by changing the trap
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parameters we induce structural phase transitions which may drive the crystal to a heat
insulating phase (with a zig-zag shape), which is a rather remarkable effect (evidence
of the insulating properties of some idealized 2D models was presented in [108]). The
toolbox presented in [80] can be used not only to measure the heat flow and local tem-
perature but also to artificially simulate disorder. In this way, the strong dependence
of thermodynamical quantities on the structure of the crystal could be observed with
current technologies. To study this, we implemented a new method providing exact
formulas for heat currents and temperature profiles. All these analytic (exact) results
depend on generalized eigenvalues and eigenvectors of a quadratic problem (which can
be easily linearized).
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Transporte de calor a través de
cristales de iones

En este capítulo se estudian las propiedades termodinámicas de cristales de iones
atrapados que son enfriados por medio de láseres en dos regiones distintas a diferentes
temperatura. Se muestra que estas propiedades dependen fuertemente de la estructura
del cristal. Como se explica en el capítulo 3, esta estructura puede ser modificada var-
iando los parámetros de la trampa y sufre una serie de transiciones desde configura-
ciones lineales a configuraciones planas (zig-zag) y helicoidales. Los resultados indican
que estos sistemas son candidatos ideales para observar y controlar la transición en-
tre el transporte de calor difusivo y balístico. Se observa que todas las estructuras se
comportan como superconductoras de calor, con una conductividad térmica que crece
linealmente con el tamaño del sistema y sin presentar un gradiente térmico en su inte-
rior. Sin embargo, las estructuras zig-zag y helicoidales son muy sensitivas al desorden,
mostrando una perfil de temperatura lineal y una conductividad térmica independiente
del tamaño. Notablemente, las estructuras zig-zag desordenadas son aislantes de calor.
La sensitividad al desorden es mucho menor para las estructuras unidimensionales.
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Chapter 10

Simulation of the ANNNI model
with trapped ions

In this chapter we discuss the simulation of a non-trivial model of magnetic materi-
als known as the ANNNI model (for Anisotropic Next to Nearest Neighbor Interaction).
We will consider the one-dimensional version, in which ferromagnetic nearest neigh-
bor (NN) interactions compete with anti-ferromagnetic next to nearest neighbor (NNN)
ones. First, we review recent experiments involving the quantum simulation of simpler
models of magnetic materials, and then we show how they could be extended in order
to simulate the ANNNI model.

10.1 Adiabatic quantum simulations with trapped ions

In the Chapter 3 we have seen that an effective two-level or spin-1/2 system can be
encoded in the internal electronic state of trapped ions, and that it is possible to induce
Ising-like couplings among these effective spins by employing suitable laser fields. Thus,
it is possible to impose on the spins a time evolution corresponding to the following
Hamiltonian (for long times):

H =
∑

i,j

Ji,jσ
i
xσ

j
x −

∑

i

Byσ
i
y, (10.1)

where the constants Ji,j and By can be controlled by modifying experimental parame-
ters like the intensity and phases of the laser fields, or the trapping frequencies of the
trap. For example, when the laser fields (or their interference signal) have two spectral
components with the same amplitude and symmetrically detuned with respect to the
electronic transition, the interaction constants Ji,j are given by:

Ji,j = −~
2(δk)2Ω2

2m

N
∑

k=1

Bi,kBj,k

µ2 − ν2k
. (10.2)

In the following we will denote the eigenstates of σx for each ion as |↑〉 = (|e〉+ |g〉)/
√
2

and |↓〉 = (|e〉 − |g〉)/
√
2, to further advance the analogy with spin systems.

We are interested in the physical preparation of the ground state of the Ising Hamil-
tonian H =

∑

i,j Ji,jσ
i
xσ

j
x, given the interaction constants Ji,j . This problem is impor-

tant from a computational point of view since the determination of the ground state
for general Ising models is a NP-hard problem. This means that the answer to other
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problems with no known efficient solution can be encoded in the ground state of an
Ising-like system by appropriately choosing the interaction constants Ji,j (this is explic-
itly done in [116] for many well known problems like the Traveling Salesman and Exact
Cover problems). In fact, the only claimed ‘quantum processor’ commercially available
so far, the D-Wave computer [24], supposedly implements an quantum annealing al-
gorithm [117] in order to find the ground state of an Ising system with programmable
interactions.

The determination of the ground state of the Ising part of the Hamiltonian is also in-
teresting from a physical point of view, since its features can change abruptly when one
of the parameters in the Hamiltonian is varied, resulting in what is known as Quantum
Phase Transitions [118], that share many properties with the usual thermal phase tran-
sitions. Also, the simulation of systems that display frustration as a result of non-trivial
interactions is relevant in the study of magnetic materials and condensed mater models
like spin glasses.

One approach to prepare the ground state of a Hamiltonian like H =
∑

i,j Ji,jσ
i
xσ

j
x is

to employ what is known as an adiabatic evolution. In this approach the Hamiltonian
H(t) of a controllable system is varied in time, and is such that the ground state of the
initial Hamiltonian H(0) is known and can be easily prepared. Then, the Hamiltonian
is slowly changed from the ’easy’ one, H(0), to a difficult, target, Hamiltonian H(T ),
where T is the total time of evolution. During the evolution the state |Ψ(t)〉 of the sys-
tem evolves according to the Schrodinger’s equation i~d |Ψ(t)〉 /dt = H(t) |Ψ(t)〉. The
adiabatic theorem states that if the initial state |Ψ(0)〉 is the ground state of H(0) and the
evolution is slow enough, then the state evolution will follow the instantaneous ground
state of H(t). In this way, it is possible to prepare the ground state of H(T ). Actually, the
adiabatic theorem is valid if there is a finite energy gap at all times between the ground
state and excited states. Otherwise, it is impossible to avoid creating low energy excita-
tions, or defects, as the Hamiltonian is varied. This is in fact a limitation for the adiabatic
algorithm, since for models displaying quantum phase transitions, in the vicinity of the
critical point, the energy gap becomes exponentially small with the system size. Hence,
for this kind of systems, in order to remain close to the ground state when crossing a
critical point, the total evolution time T must increase exponentially with the system
size [119].

Leaving these details aside for the moment, we can describe the implementation of
the adiabatic evolution algorithm with trapped ions as the application of the following
steps:

• Initially, parameters By and Ji,j in the Hamiltonian of Eq. (10.1) are selected in
such a way thatBy ≫ |Ji,j |. Each spin is prepared in the state |↑y〉 = (|↑〉+ |↓〉)/

√
2,

and therefore the global state is a good approximation of the ground state of the
Hamiltonian for the chosen parameters.

• The parameter By is decreased from its initial value to By = 0.

• The final state of the system is probed by measuring each spin in the {|↑〉 , |↓〉}
basis.

10.1.1 Controlling the range and sign of the Ising interactions

We now analyze what kind of interactions Ji,j we can simulate employing a single
pair of spectral components symmetrically detuned with respect to the electronic transi-
tion. In this case the interaction constants are given by Eq. (10.2), so the relevant control
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Figure 10.1: Examples of induced Ising couplings Ji,j for two different choices of detun-
ing µ in a linear chain of 12 ions.

parameters are the detuning µ and the Rabi frequency Ω (for a given equilibrium struc-
ture the transverse normal modes contained in the matrix Bi,j and the normal frequen-
cies Ωk are fixed). The spatial structure of the interactions Ji,j will of course be ultimately
determined by the spatial structure of the transverse normal modes. We consider a 1D
ion crystal along the longitudinal axis of the trap, which is the equilibrium structure
when the trap frequencies along the longitudinal (ωz) and transverse directions (ωx and
ωy) are such that ωz ≫ ωx, ωy. In such situation the center of mass mode, in which all
the ions oscillate in the transverse direction with the same amplitude, has the highest
frequency, and this is obviously ΩCM = ωx. Therefore, it is clear from Eq. (10.2) that
when the detuning µ is close to ΩCM the dominant contribution is given by the center
of mass mode, and since in this mode all the ions oscillate with the same amplitude,
the induced interactions Ji,j are almost the same for any pair of spins. In this case the
range of the interactions is large. An example of this situation for a chain of 12 spins is
shown in Figure 10.1a. When the detuning µ is increased away from ΩCM , all the normal
modes contribute with approximately the same strength in Eq. 10.2. In this case, contri-
butions of different modes interfere destructively and the long range couplings vanish,
as is shown in Figure 10.1a. Hence, it is clear that by interpolating between these two
situations it is possible to control the range of the induced spin interactions.

The sign of the interactions constants Ji,j can also be controlled, although not in-
dividually1. For example, if a detuning µ close to ΩCM is selected, in order to induce

1As we will see, some form of single ion addressing is needed for complete controllability of the Ising
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long range interactions like in Figure 10.1, it still possible to choose whether µ ≫ ΩCM
or µ ≪ ΩCM. The difference between these two choices is a global sign change of Ji,j .
More generally, another possibility is to adiabatically follow the higher energy state of the
system instead of the ground state. This is equivalent to a global sign change in the
simulated Hamiltonian. Of course, by choosing a detuning µ between different normal
modes (i.e., such that Ωj < µ < Ωk), more complicated interactions can be induced,
where not all the constants Ji,j have the same sign. This will be discussed in the next
section.

10.2 Many spectral pairs and approximation of target interac-

tions

We now consider the more general case in which the laser light that drives the ions
have many, instead of only one, pairs of symmetrically detuned spectral components.
In this case the induced interactions are simply given by the sum of an expression like
Eq. (10.2) for each spectral pair. Thus, if we note in addition that the sum Ĝ(µ)i,j =
∑N

k=1
Bi,kBj,k

ν2
k
−µ2 is nothing more that the Laplace transform of the Green’s function for the

transverse harmonic motion, we have:

J = ~R
M
∑

m=1

Ω2
mĜ(µm) (10.3)

where µm and Ωm are the detuning and Rabi frequency of the m-th spectral pair, respec-
tively, and the ’recoil frequency’R = ~(δk)2/(2m) was defined. In this way, the spin-spin
interaction matrix is only a weighted sum of the vibrational Green’s function evaluated
at the detunings µm, and the weights are the squared Rabi frequencies.

We now analyze what kind of interactions is possible to generate by adjusting the
control parameters given by theM detunings {µm} and their associated intensities {Ωm}.
As a first observation, we note that the set of eigenvectors of the coupling matrix Ji,j is the
set of motional normal modes. For any choice of detunings and Rabi frequencies, the eigen-
vectors are always the same, and the only properties of the matrix Ji,j that are sensitive
to control are the eigenvalues associated to each eigenvector, which are:

ak = R

M
∑

m=1

Ω2
m

ν2k − µ2
(10.4)

Since the matrix Ji,j has only N eigenvalues, it turns out that it is only necessary to have
N independent control parameters. There is no advantage in increasing the number
of control parameters beyond N . To achieve maximum control over the matrix J, one
possible scheme in to consider M = N spectral components at some fixed detunings
{µm}, and only control the Rabi frequencies {Ωm}. This is a convenient approach, since
the squared Rabi frequencies enter linearly in the expression for Ji,j . Consequently, it is
very simple to find the optimal Rabi frequencies given a target matrix, as is explained
next. As a last observation, we note that the eigenvectors of Ĝ(µ) are nothing more that
the normal modes of a linear chain of ions with dipolar (∝ 1/r3) interactions. Therefore,
they form a one-dimensional backbone for any matrix Ji,j that is possible to simulate
without single ion addressing. The fact that it is not possible to change the eigenvectors

interactions
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of Ji,j means that it won’t be possible to simulate coupling matrices corresponding to
two- or three-dimensional systems, because their eigenvectors won’t be compatible with
the normal modes of the underlying one-dimensional ion crystal. Only with some form
of single ion addressing it is possible to overcome this limitation.

Although it is clear from the previous considerations that it is not possible to simulate
a general coupling matrix, one can ask, given a target matrix JT , which are the parame-
ters {Ω2

m} that minimize the distance δ = |J(Ω2
m)− JT |. If the distance considered is the

element-wise euclidean distance, then the minimization of δ2 over the parameters {Ω2
m}

can be done analytically, since J is a linear function of them. Fixed the detunings, the
matrices {Ĝ(µm)} can be calculated in advance (see Eq. 9). Then J(Ω2

m) is simply a linear
combination of known matrices. A simple calculation shows that the minimum value of
δ2 (which is a quadratic form on {Ω2

m}) correspond to the values of Ω2
m that satisfy the

following linear system:

Tr(JTGn) =
∑

m

Tr(GnGm)Ω2
m (10.5)

Where Gm = G(µm). We set R = 1 for convenience. Therefore, the optimal values
for the squared Rabi frequencies {Ω2

n} are given by the solution x of the linear system
Ax = b with An,m = Tr(GnGm) and bn = Tr(JTGn). We have considered that there are
N different spectral components, but the results are the same for any number of them.
It is never necessary to use more than N , but the desired result might be attained at
reasonable accuracy with less spectral components. One issue with this approach is that
the optimal squared Rabi frequencies {Ω2

n} given by the solution of the previous linear
system might be negative, which is a non-physical situation. However, it can be seen that
it is always possible, in principle, to choose the detunings {µn} so that all the optimal
squared Rabi frequencies are positive.

10.3 The ANNNI model

This model is an Ising model with ferromagnetic nearest-neighbor and anti-ferromagnetic
next-nearest- neighbor interactions. It was studied in one, two and three dimensions. I
will consider only the one-dimensional model, for simplicity, and also because is the
only one that is possible to simulate without single ion addressing. For an infinite one-
dimensional chain, the Hamiltonian is:

H = −J1
∑

i

σixσ
i+1
x + J2

∑

i

σixσ
i+2
x +B

∑

i

σiz (10.6)

with J1, J2 > 0. A transverse magnetic field was added in order to drive quantum phase
transitions at zero temperature. Obviously, the properties of the system only depend on
the ratios κ = J2/J1 and h = B/J1. The ANNNI model received much attention in the
past. It was mainly used to explain the observation of periodic magnetic structures, and
the dependence of the period of these structures on the temperature and other parame-
ters. A good introduction to the model can be found in [120–122]. A modern review of
the main results and recent work can be found in [123].

The zero temperature one-dimensional ANNNI model in a transverse field, which
is the one that can be simulated in current ion trap experiments, has many interesting
features. There is no exact solution and the most reliable source of information about
the model are numerical simulations of finite chains. It can be mapped to other inter-
esting models like the two-dimensional ANNNI model at finite temperature and the
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zero-temperature XY model with a in-plane external field. It can also be mapped to
a chain of fermions with two and three-body interactions (through the Wigner-Jordan
transformation).

It is very simple to understand the behavior of the ground state for different values
of κ (and B = 0). If the ferromagnetic interaction dominates (κ ≪ 1) then in the ground
state all the spins will point in the same direction (· · · ↑↑↑ · · · ). This is the ferromagnetic
phase. In the opposite limit (κ ≫ 1), the anti-ferromagnetic next-nearest-neighbor in-
teraction will force the spins that are two sites apart to point in opposite directions and
the ground state will be · · · ↑↑↓↓↑↑↓↓↑↑ · · · . This ground state is called ‘anti-phase’. The
transition between these two ground states is a quantum phase transition that occurs at
κ = 1/2, a point where the system is highly degenerated.

Figure 10.2 shows the different phases observed in the ANNNI model (figure ob-
tained from [124], where the model was investigated using the DMRG algorithm). For

Figure 10.2: Phase diagram of the 1D ANNNI model in the h-κ plane.

κ = 0 the typical ferro to paramagnetic transition of the regular Ising model is present.
The critical value of h at which this transition occurs decreases with increasing κ (in-
creasing frustration). Beyond the critical point κ = 1/2 (high frustration) and for low
values of h the ‘anti-phase’ phase is observed, while for moderate values of h a ‘floating’
phase emerges, before entering the paramagnetic phase. One interesting aspect of this
quantum phase transition is that it is of the Kosterlitz-Thouless type. This is a phase
transition of infinite order typically observed in the two-dimensional XY model. It is
also related to the 2D superconductor-insulator transition [125, 126]. It was experimen-
tally investigated using a trapped gas of rubidium atoms [127] and also in a simulation
of a XXZ chain with four spins in a NMR setup [128].

10.4 Approximating the ideal ANNNI model

In this section we consider the simulations of the ANNNI model at the critical point
κ = 1/2 with a chain of 16 ions. One possible approach to the problem is to use the
method described in section 10.2 to approximate the ideal coupling matrix JT , which is
shown in Figure 10.3. The first step is to choose and fix the detunings µn. To have maxi-
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Figure 10.3: Couplings of the ideal 1D ANNNI model with 16 sites

mum control over the spin-spin interaction matrix we will user N spectral components,
one per normal mode. These spectral components will be located between successive
normal mode frequencies, i.e, µn = νn + d(νn+1 − νn), with −1 < d < 1, d 6= 0. For
example, when d = 1/2 the spectral components are right in the middle of the successive
normal mode frequencies. The value of d is adjusted in order for the optimal squared
Rabi frequencies to be all positive. For this example I considered a ion crystal which is
the equilibrium configuration of 16 ions in a linear Paul trap whit an aspect ratio of 100.
Figure 10.4a show the 16 optimal Rabi frequencies for d = .6. The corresponding interac-
tion matrix J is shown in Figure 10.4b. The matrix J captures some of the features of the
target matrix JT , while it fails to represent other aspects. For example, the n.n couplings
are ferromagnetic and the n.n.n are anti-ferromagnetic (at least in the center of the chain,
see Figure 10.5). On the other hand the following differences with the target matrix are
evident: i) The n.n and n.n.n couplings are not uniform along the chain, as shown in
Figure 5 more detail, and ii) the long range couplings are not zero. In the following I
show that the points i) and ii) can be corrected by an iterative procedure. In contrast,
the non-uniformity of the couplings is a direct consequence of the non-uniformity of
the motional normal modes, and can only be corrected by changing the structure of the
ion-crystal.

10.4.1 An iterative procedure

The following iterative procedure is proposed to correct the relative strength of the
ferromagnetic and anti-ferromagnetic couplings in the optimal solution, and the non-
vanishing long range interactions. Each iteration is as follows:

1. Build a target ANNNI matrix JT with some parameter κT , as the one in Figure
10.3.

2. Apply the approximation method of section 10.2, and find the optimal Rabi fre-
quencies Ω2

1,Ω
2
2, · · ·Ω2

N and the corresponding coupling matrix J .
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(a) (b)

Figure 10.4: Results obtained from a first approximation of the ideal ANNNI couplings
using Eq. 10.5: (a) Optimal Rabi frequencies for the target matrix of Figure 10.3 and
d = .6, (b) Approximated couplings

Figure 10.5: Detail of the n.n and n.n.n couplings shown in Figure 10.4b

3. Build the interaction matrix J ′ as follows:

• Set J ′ = J

• Eliminate long range interactions: set Ji,i+k = 0 for all i and for k > 2

• Appropriately scale n.n and n.n.n interactions, in such a way that |Ji,i+2|
|Ji,i+1|

= κT .

4. Repeat the iteration with J ′ as a target matrix

The iteration continues until some convergence criteria is fulfilled. The result of this
algorithm for the same initial target matrix as the previous section is shown in Figure
10.6b. It is evident from Figure 10.6b that the iterative procedure was able to eliminate
the long range couplings. Also, the ratio between the n.n and n.n.n interactions is similar
to the one of the initial target matrix. The dependence of the couplings on the position
along the chain is shown in Figure 10.7. The non-uniformity of the couplings can only
be improved by changing the trap fields in order for the ions in the equilibrium configu-
ration to be more equidistant. Figure 10.6a shows the Rabi frequencies corresponding to
the solution of Figure 10.6b. In this case the detuning parameter is d = −.1.
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(a) (b)

Figure 10.6: Results obtained from the iterative approximation: (a) Optimal Rabi fre-
quencies, (b) Approximated couplings

Figure 10.7: n.n and n.n.n of the iterative result

10.4.2 Phase transitions at zero temperature

We know that for the ideal ANNNI model there is a phase transition at κ = 1/2, in
which the ground state of the system changes between · · · ↑↑↑ · · · and · · · ↑↑↓↓↑↑↓↓↑↑
· · · . In the following the zero temperature phase transitions occurring for the approx-
imated couplings of the previous section are investigated. For the moment, we take
the number of clusters as a simple characterization of the ground state. This number,
denoted as C, is calculated as the number of contiguous blocks of the chain with the
same spin value. Figure 10.8a shows the clustering of the ground state as a function of
κ for the ideal ANNNI model. We see the expected sharp transition at κ = 1/2 between
the single cluster of the ferromagnetic ground state and the 8 clusters of size 2 of the
anti-phase ground state. On the other hand, for the approximated model there is no
a single transition between the anti-phase and ferromagnetic ground states, but many.
The clustering for large values of κ is larger than in the ideal case. Table 10.8b shows
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(a) (b)

Figure 10.8: (a) Clustering vs κ for the ideal and approximated models. (b) Ground states
for the approximated model

the exact sequence of ground states as the value of κ increases. The first column of the
table indicates the value of κ at which the transition to the next ground state happens.
Because of the non-uniformity of the crystal magnetic domains begin to form in the ends
of the chain and propagates to the center. The high clustering in the ground state for
high values of κ comes from the ends of the chain, because there the n.n interactions are
anti-ferromagnetic and therefore successive spins have opposite values.
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Simulación del modelo ANNNI con
iones atrapados

En este capítulo se discute la simulación cuántica de un modelo no trivial de materi-
ales magnéticos conocido como modelo ANNNI (ANNNI son las siglas en inglés para In-
teracciones Anisotrópicas a Segundos Vecinos). Se considera la versión unidimensional
del modelo, en la cual interacciones ferromagnéticas a primeros vecinos compiten con
interacciones anti-ferromagnéticas a segundos vecinos. En primer lugar se describen
experimentos recientes sobre la simulación cuántica de modelos mas sencillos de ma-
teriales magnéticos, y luego se muestra como estos podrían extenderse para simular el
modelo ANNNI.
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Part V

Conclusions
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The central subject of the work presented in this thesis is the analysis of a family
of linear and driven quantum thermal machines. This family is composed of arbitrary
networks of harmonic oscillators that are connected to bosonic thermal environments at
arbitrary temperatures. The parameters of the network can be modulated periodically
in time. It was shown how this model can be solved exactly and how the usual laws
of macroscopic thermodynamics emerge for long times. Regarding the validity of the
dynamical third law of thermodynamics, or unattainability principle, the fundamental
limits for cooling for this family of machines were identified and related to the Dynam-
ical Casimir Effect (DCE). Thus, it was shown that at ultra low temperatures the energy
interchange between the system and the reservoirs (heat currents) is dominated by a
pairs creation process that always heat up the reservoirs. Importantly, this effect cannot
be captured by treatments based on the weak coupling approximation. Since our treat-
ment is exact, it offers a clean physical interpretation of the processes contributing to the
heat currents, and that is informative for other models where an exact solution is not
yet available. In particular, these results indicate that to analyze the ultimate limits for
cooling in non-linear models (like quantum absorption refrigerators or driven two-level
systems) it is necessary to rely in treatments valid (at least) up to fourth order in the
interaction between the central system and the reservoirs, and not only to second order
like is usual. Also, these findings could enable the proposal of new experiments to ob-
serve the creation of optical photons by the DCE, which so far was only measured with
superconducting cavities at microwave frequencies.

Two experimental proposals were also presented. The first one propose the utiliza-
tion of crystals of trapped ions to study heat transport across structures with different
dimensionality, with emphasis in the study of the emergence of the Fourier law in this
setting. It was shown that systems of trapped ions are a promising platform to control
and observe the transition from ballistic to diffusive heat transport, as the interplay be-
tween the dimensionality and the disorder of the crystal is varied. New semi-analytical
techniques were developed for the efficient calculation of the heat currents across non-
periodic structures with complex interactions. Finally, the last proposal studies how cur-
rent state of the art experiments on the quantum simulation of magnetic materials could
be extended to simulate more complex models. In particular we consider the ANNNI
model, that is a Ising-like model with no analytical solution and displaying a number
of interesting phase transitions. A numerical algorithm was developed to select the best
experimental parameters corresponding to a particular instance of the one-dimensional
ANNNI model.
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Conclusiones

El tema central del trabajo presentado en esta tesis es el análisis de una familia
de máquinas térmicas lineales. Esta familia esta compuesta por redes arbitrarias de
osciladores armónicos conectadas a entornos térmicos bosónicos a temperaturas arbi-
trarias. Los parámetros de la red pueden ser modulados externamente de forma per-
iódica. Se mostró como este modelo puede ser resuelto de forma exacta, y como las
leyes usuales de la termodinámica emergen a tiempos largos. Con respecto a la validez
de la versión dinámica de la tercera ley de la termodinámica, los límites fundamentales
para el enfriamiento fueron identificados y relacionados con el Efecto Casimir Dinámico
(ECD). Así, se demostró que a temperaturas ultra bajas el intercambio de energía en-
tre el sistema central y los entornos térmicos (corrientes de calor), está dominado por un
proceso de creación de pares de excitaciones que siempre genera calentamiento de los en-
tornos. Este efecto no puede ser capturado por tratamientos basados en la aproximación
de acoplamiento débil. Debido a que nuestro tratamiento es exacto, este ofrece una clara
interpretación física de los procesos que contribuyen a las corrientes de calor, lo que es
de utilidad en otros modelos que no disponen de una solución exacta. En particular,
esta solución indica que para analizar los límites fundamentales para el enfriamiento en
modelos no lineales (como los refrigeradores de absorción cuánticos, o sistemas de dos
niveles dependientes del tiempo), es necesario recurrir a tratamientos válidos, al menos,
hasta cuarto orden en la interacción entre el sistema central y los entornos. Además,
estos resultados podrían permitir el diseño de nuevos experimentos para observar la
creación de fotones a frecuencias ópticas mediante el ECD, que hasta el momento solo
ha sido observado con cavidades superconductoras de microondas.

Dos propuestas experimentales fueron presentadas. La primera propone la utilización
de cristales de iones atrapados para estudiar el transporte de calor a través de estructuras
con distinta dimensionalidad, con énfasis en el estudio del origen de la ley de Fourier. Se
demostró que los iones atrapados son una plataforma promisoria para controlar y obser-
var la transición entre transporte de calor difusivo y transporte anómalo, a medida que
se modifica tanto la dimensionalidad como el desorden en el cristal. Nuevos técnicas
semi-analíticos tuvieron que ser desarrolladas para el cálculo eficiente de las corrientes
de calor a través de estructuras sin periodicidad y con interacciones complejas. Final-
mente, la última propuesta estudia cómo pueden ser modificados experimentos mod-
ernos donde se simulan materiales magnéticos utilizado iones atrapados de forma de
poder simular modelos más complejos. En particular, se considera el modelo ANNNI,
que es un modelo tipo Ising sin una solución analítica conocida y que muestra varias
transiciones de fase interesantes. Un algoritmo numérico fue desarrollado para selec-
cionar los mejores parámetros experimentales correspondientes a una instancia particu-
lar del modelo ANNNI.
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Appendix A

Structural phases in ion crystals

In this appendix we explain how the structural phases corresponding to 1D, 2D and
3D structures employed in Chapter 9 were defined. First we present details about the
method used to find the equilibrium configuration of the ion crystals. We show how
structural phase transitions can be determined and use them to define which are the
trap parameters and number of ions needed to obtain the different structures.

We consider a linear Paul trap with an effective potential that is harmonic in all direc-
tions. The potential energy including Coulomb repulsion and the effective trap potential
for a system of N ions with mass m and charge Q is:

V =
m

2

N
∑

i=1

ω2
xx

2
i + ω2

yy
2
i + ω2

zz
2
i +

1

2

N
∑

i=1

∑

j 6=i

Q2

|r̄i − r̄j |
, (A.1)

where r̄i = (xi, yi, zi) is the position of the ion i measured from the minimum of the
trap potential. The angular frequencies of the harmonic potential are ωx, ωy and ωz .
We rewrite the energy in terms of the parameters αx = ωx/ωz , αy = ωy/ωz and q2 =
Q2/(mω2

z):

V =
mω2

z

2

N
∑

i=1



α2
xx

2
i + α2

yy
2
i + z2i +

N
∑

j 6=i

q2

|r̄i − r̄j |



 . (A.2)

It is clear from this expression that the equilibrium configuration of the N ions will only
depend on the parameters N , αx, αy and q. We will only consider the case of a trap with
cylindrical symmetry, i.e, αx = αy = α. A length scale is fixed by setting q2 = 1. Thus,
the equilibrium structure is completely determined by N and α, apart from a scaling in
the position of all the ions (this scaling can be performed by varying ωz while keeping α
to a constant value).

The determination of 3N coordinates {(xi, yi, zi)} that correspond to a global min-
imum of the energy is a hard problem that even for small values of N can only be
treated numerically. A typical approach to find a global minimum would be to use some
gradient-descent algorithm combined with some strategy to avoid local minima. We de-
cided to use a simpler solution based on the differential evolution algorithm [129]. This
algorithm does not use gradient information, although it can be taken into account in
a very simple way to improve both convergence and the quality of the solution. This
method enable us to determine equilibrium configurations of crystals with more than
200 ions (600 degrees of freedom) in a modest personal computer.

As is well known, the ion crystals studied here present structural phase transitions
as the trap parameters or the number of ions are changed [82]. We will use these phase
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Figure A.1: (a)Radius of a chain of 30 ions as the trap aspect ratio is decreased. Transition
from 1D to 2D structures. (b)Minimum longitudinal separations of the ions (∆) as the
aspect ratio is decreased.
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Figure A.2: Transition points for several numbers of ions.

transitions to define ‘structural phases’ in the parameter space spawned by α and N . As
an example, Figure A.1-a shows the transition from a 1D linear configuration to a 2D
zig-zag configuration in a chain of 30 ions as the transverse trapping potential is relaxed
(α is decreased). In this case the order parameter is the chain radius defined as R =

max1≤i≤N{
√

x2i + y2i }. In a similar way it is possible to measure the transition from 2D
configurations to 3D helical configurations [82]. Another phase transition occurs if the
trap aspect ratio continues to decrease: beyond some point, the ions in the equilibrium
configuration can no longer be ordered according to their z coordinate, i.e, zi ≃ zj for
one or more pairs of ions. It is possible to detect this phase transition by measuring the
order parameter ∆ = min1≤i,j≤N(i 6=j){|zi − zj |}, as shown in Figure A.1-b.

The transition points for chains with different numbers of ions are shown in Figure
A.2. As noted in [82], the relation of the critical values of αwith the number of ions is well
approximated (forN > 20) by a simple power law: αc ∝ Nβ . We estimated the exponent
β for each transition. Therefore, we can define power laws α = cNβ with the same
exponent β but choosing c so that the power laws are sub-critical. The resulting power
laws are shown with dashed lines in Figure A.2. These paths in parameter space define
‘structural phases’, in the sense that they determine a family of crystals with similar
structural properties. In table A.1 we give the values of c and β we used to generate 1D,
2D and 3D structures with different number of ions.
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c β

1D 0.67 0.873
2D 0.44 0.861
3D 0.28 0.811

Table A.1: Coefficients of the power laws used to generate crystal structures of different
dimensionality.
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Appendix B

Integration techniques for undriven
systems

B.1 Green’s function and the cubic eigenvalue problem

In this appendix we present a semi-analytical technique to perform the frequency
integrals that give the covariance matrix and the heat currents in the asymptotic state for
the case of undriven systems connected to ohmic thermal reservoirs.

We consider the particular case in which all the environments are Ohmic and have
the same cutoff, i.e, when all the spectral densities are Il(ω) = 2

πγ0PlωΛ
2/(Λ2 + ω2). In

this case, the Laplace transform of the dissipation kernel is γ̂(s) = γ0
Λ

s+Λ

∑

l Pl. Then,
it is straightforawrd to see that the Laplace transform of the Green’s function can be
expressed as

ĝ(s) = (s+ Λ) h(s)−1, (B.1)

where h(s) is an K × K matrix (K is the number of oscillators in the system) which
depends polynomically on s and satisfies

h(s) = s3M + s2ΛM + s(V +∆V ) + Λ(V −∆V ). (B.2)

where ∆V = γ0Λ
∑

l Pl. Therefore, to compute Ĝ(s) one needs to obtain h(s)−1 and for
this purpose we need to invert the cubic matrix polynomial that defines h(s). The inver-
sion of such matrix is related to the solution of the cubic eigenvalue problem defined by
h(s). The cubic eigenvalue problem consists in finding the generalized eigenvalues {sα}
and eigenvectors {rα} that satisfy the equations:

det(h(sα)) = 0 and h(sα)rα = 0. (B.3)

As det(h(s)) is a 3K degree polynomial in s, it has 3K complex roots {sα}. Moreover, as
the matrix coefficients appearing in h(s) are real, the eigenvalues {sα} come in complex
conjugate pairs. We now show that h(s)−1 can be expressed in a simple way in terms of
the eigenvalues and eigenvectors {sα} and {rα}.

The first step in our derivation is to show that the previous cubic eigenvalue problem
can be cast as a linear one. For this we generalize the technique used in [109] to linearize
the quadratic eigenvalue problem. First, we note that Eq. (B.3) can be rewritten as:

(sαB −A)





rα
sαrα
s2αrα



 = 0 (B.4)
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where the 3K × 3K matrices A and B are :

A =





0 C1 0
0 0 C2

−ΛV− −V+ −ΛM



 B =





C1 0 0
0 C2 0
0 0 M



 (B.5)

Here, V± = V ± ∆V while C1 and C2 are arbitrary invertible matrices. Below, we will
choose C1 = C2 = 1, a choice that ensures that B is positive definite.

The equivalence between Eq. (B.3) and Eq. (B.4) can be verified by a direct calcu-
lation. Other choices for A and B are possible. In summary, so far we proved that the
generalized eigenvalues sα are simply the eigenvalues of the linear problem defined by
A andB while the generalized eigenvectors rα can be obtained as the firstK components
of the eigenvectors of the same linear problem.

The relation between the cubic and linear problems becomes more transparent by
noticing the following identity:





h(s)
1

1



 = E(s)(sB −A)F (s) (B.6)

where E(s) and F (s) are:

E(s) =





V+ + s(Λ + s)M (Λ + s)M 1

−1 0 0
0 −1 0





F (s) =





1 0 0
s1 1 0
s21 s1 1





(B.7)

Note that E(s) and F (s) are polynomial matrices on s but nevertheless their determi-
nant is constant and equal to 1. Therefore det(h(s)) = det(sB −A), i.e, the characteristic
polynomials of the cubic and linear problems are the same and consequently their eigen-
values match.

The inversion of Eq. (B.6) leads to the following expression for h(s)−1:

h(s)−1 =
[

1 0 0
]

F (s)−1(sB −A)−1E(s)−1





1

0
0



 (B.8)

Since E(s)−1 and F (s)−1 can be readily calculated from Eq. (B.7) it is easy to see that Eq.
(B.8) can be transformed into:

h(s)−1 =
[

1 0 0
]

(sB −A)−1





0
0
1



 (B.9)

We assume that the matrixM = sB−A is indeed invertible and that we can find matrices
L and R such that L†BR = 1 and L†AR = S, where Sα,β = sαδα,β . As A is not symmet-
ric, this assumption is not trivial (when A is not diagonalizable, S has a Jordan normal
form, a case that will not be treated here as all physically relevant situations can be stud-
ied under the above assumption). For simplicity, we also assume that all eigenvalues are
non-degenerate (this can be easily relaxed). Then, we can write

(sB −A)−1 = R(s1− S)L† (B.10)
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and consequently:

h(s)−1 =
[

1 0 0
]

R(s1− S)−1L†





0
0
1



 =
3K
∑

α=1

rαl
†
α

s− sα
(B.11)

The last identity contains the important result. In such equation, the K component vec-
tor rα is obtained by the first K components of the α-th column of R. Similarly, the K
component vector lα is formed with the last K components of the α–th column of L. The
columns of R and L are just the right and left eigenvectors of A. In this way we have ex-
pressed the Laplace transform of the non-equilibrium Green’s function of a system with
K degrees of freedom in terms of the eigenvalues and eigenvectors of a linear problem
of size 3K × 3K.

B.2 Frequency integrals for the covariance matrix and heat cur-

rents

The result we obtained above is useful to compute the covariance matrix and, in
this way, fully determine the stationary state of the network. However, for this pur-
pose we still need to perform the frequency integrals appearing in Eq. 9.5. First, it
is useful to notice that for Ohmic environments with the same cutoff Λ, we can write
ĝ(iω)ν̂(w)ĝ(−iω) = 2

πγ0Λ
2h(iω)−1A(ω)h(−iω)−1 with A(ω) = ω

∑

l Pl coth(
ω
2Tl

). There-
fore Eq. (9.5) can be rewritten as :

σ(n,m) =
2

π
γ0Λ

2

∫ ∞

0
Re

[

ωn+min−mh(iω)−1A(ω)h(−iω)−1
]

dω (B.12)

Let us now analyze the properties of the function fn,m(ω) = Re
[

ωn+min−mh(iω)−1A(ω)h(−iω)−1
]

(where m,n = 0, 1). This function is such that:

• fn,m(ω) is an even function of ω.

• ωfn,m(ω) → 0 for |ω| → ∞

• fn,m(ω) is analytic in all the complex plane with the exception of the poles of
ĥ−1(iω), ĥ−1(−iω), and A(ω).

Since the integrand is an even function of ω we can extend the integral appearing in Eq.
(B.12) to negative values of ω:

σ(n,m) =
γ0Λ

2

π

∫ ∞

−∞
fn,m(ω)dω (B.13)

The integrand has simple poles at the points ωα = −isα and ωα = isα (poles of h(iω) and
h(−iω), respectively). The poles of h(iω) are always in the upper half-plane. Also, the
integrand has infinite simple poles at the points {±iωn,l, n ∈ N}, where ωn,l = nπ2Tl
are the Matsubara frequencies corresponding to the temperature Tl. As explained in
[130], the proper way to deal with the poles at the points {iωn,l} is to use the following
indentity:

coth
( ω

2T

)

=
2T

ω
− 1

iπ
ψ

(

1− iω

2πT

)

+
1

iπ
ψ

(

1 +
iω

2πT

)

, (B.14)
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where ψ is the digamma function. Using Eq. B.14 the function A(ω) can be written as:

A(ω) = AH(ω)−AL(ω)−AL(−ω), (B.15)

where:

AH(ω) =
∑

l

2TlPl

AL(ω) =
ω

iπ

∑

l

Plψ

(

1− iω

2πTl

)

.
(B.16)

The decomposition of Eq. (B.15) is useful because AH(ω) (which correspond to the high
temperature approximation) is only a constant and AL(ω) is analytic in the upper half-
plane. Inserting Eq. (B.15) into the integral of Eq. (B.13) the following expression is
obtained:

σ(n,m) = σ
(n,m)
H −

(

σ
(n,m)
L + (−1)n+m

[

σ
(n,m)
L

]T
)

, (B.17)

where

σ
(n,m)
H/L =

γ0Λ
2

π
Re

[∫ ∞

−∞
(iω)n(−iω)mh(iω)−1AH/L(ω)h(−iω)−1

]

(B.18)

Now, the integrand of the previous expression is analytic in the complex plane with the
only exception of the poles of h−1(iω). Since h−1(ω) ∝ ω−3 for |ω| → ∞ it is possible
to choose a closed integration path in the complex plane such that the contribution at
inifinity vanishes, and that only encloses the poles of h(iω)−1. This is depicted in Fig.
B.1. It is thus possible to evaluate the integral of Eq. B.18 using the residue theorem. The
residue of h(iω)−1 at the pole ωα = −isα is −irαl†α, therefore:

π

γ0Λ2
σ
(n,m)
H/L = Re

[

3K
∑

α=1

(iωα)
n(−iωα)

m(−irαl†α)AH/L(ωα)h
−1(−iωα)

]

(B.19)

At this point the spectral decomposition of Eq. B.11 can be used to expand h−1(−iω). In
this way we arrive at our final result:

σ
(n,m)
H,L = 2γ0Λ

2Re



in−m+1
3K
∑

α,β=1

ωn+m
α

l†αAH,L(ωα)rβ
ωα + ωβ

rαl
†
β



 . (B.20)

Therefore, we have expressed the asymptotic covariance matrix of the system (which
fully characterize the asymptotic state) in terms of the complex eigenvalues and eigen-
vectors of a linear problem.

One possible way to obtain the heat currents is to use the position-momentum co-
variance matrix σ(0,1) and then evaluate the heat current of the l-th reservoir as Q̇l =
Tr(PlVRσ

(0,1)). Another possibility is to solve the integral in Eq. (9.3) using the same
ideas as before. We find that Q̇l =

∑

l′ 6=l q̇l,l′ , with:

q̇l,l′ =
[

2γ0Λ
2
]2

3K
∑

α,β=1
ωα 6=iΛ

ω3
α∆l,l′(ωα)

ω2
α + Λ2

(l†βPlrα)(l
†
αPl′rβ)

ωα + ωβ
, . (B.21)

where:

∆l,l′(ω) = i
2(Tl − Tl′)

ω
−− 2

π

[

ψ

(

1− iω

2πTl

)

− ψ

(

1− iω

2πTl′

)]

(B.22)
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Figure B.1: Integration path and poles of h(iω).

Note that in Eq. (B.21) the index α does not run over the poles equal to iΛ. The con-
tribution of these poles vanishes if there are no environments in contact with the same
sites of the network, i.e, if PlP

′
l = 0 for l 6= l′. This was assumed in the derivation of Eq.

B.21. Another assumption of the previous results is that there are no poles ωα = −isα
with null imaginary part. This is equivalent to assume that all the normal modes of the
system suffer dissipation. If some normal models are not in effective contact with the en-
vironments and do not suffer dissipation then they can be treated independently as free
oscillators. In that case the asymptotic state will be time dependent, and will conserve
information about the initial state of the system.

To finish this section we discuss the typical distribution of poles. It is easy to see that
if rank(

∑

l Pl) < K then iΛ will be a pole of h(iω). This is because h(−Λ) = −2γ0Λ
2
∑

l Pl

and if
∑

l Pl is not full-rank then det(h(−Λ)) = 0. Furthermore, the multiplicity of this
root will be K − rank(

∑

l PL). For moderate coupling γ0 there are another rank(
∑

l Pl)
poles close to iΛ but with nonzero real part. A typical distribution of poles is depicted in
Fig. B.1.
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Appendix C

Weak coupling approximation,
minimum cooling temperature, and
numerical evaluation of the heat
rates

C.1 Weak coupling approximation

In the weak coupling regime the frequency integrals in Eq. (6.26) involving the heat
transfer matrix can be approximated by sums over the normal modes of the closed sys-
tem. To see that we need an analytic expression for the coefficients Ak(ω, ωd). Thus,
we employ the weak driving approximation of Eq. (5.22b), which gives the solution for
those coefficients in terms of the Laplace’s transform of the Green’s function ĝ(iω). As
explained in [131], in the weak coupling limit ĝ(iω) can be approximated as

ĝ(iω) =
∑

a

qaq
T
a

Ω2
a − (w − iΓa)2

(C.1)

where {Ωa} and {qa} are the normal frequencies and modes of the closed system and Γa

is the dissipation rate of each normal mode. We assume for simplicity that the system is
not degenerated. As an example, we write the expression for p(k)α,β(ω) using the previous
approximations (for k 6= 0):

p
(k)
α,β(ω) =

π

2

∑

a,b,c,d

(qTa Vkqb)(q
T
d V

†
k qc)(q

T
c Iα(|ω + kωd|)qa)(qTb Iβ(ω)qc)

(Ω2
a − (ω + kωd − iΓa)2)(Ω2

b − (ω − iΓb)2)(Ω2
c − (ω + kωd + iΓc)2)(Ω2

d − (ω + iΓd)2)

(C.2)
In the weak coupling limit where Γa ≪ Ωa, ωd and under the condition ωd < minΩa 6=Ωb

{|Ωa−
Ωb|/2} the typical shape of the functions p(k)α,β(ω) is like the one depicted in figure C.1. We
see the expected resonances at frequencies {Ωa} and {Ωa−kωd}, which for the mentioned
conditions are well defined and do not overlay. Therefore, an approximate solution for
integrals of the form

∫∞
0 p

(k)
α,β(ω)N(ω) can be obtained by dealing separately with each

resonance peak, evaluating the remaining factors at the center of the peak. It is clear that
the dominant terms are those with Ωc = Ωa and Ωd = Ωb. Also, for low temperatures
the Planck distributionN(ω) exponentially supresses high frequencies, and therefore the
dominant contribution to the integral is given by the peak at ω = Ω0 − kωd, where Ω0 is
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Figure C.1: Typical shape of the function p(1)α,β(ω) in the weak coupling limit

the smallest normal frequency of the system. Using this method the following expression
is found:
∫ ∞

0
dω p

(k)
α,β(ω)N(ω) ≃ π2

8

N(Ω0 − kωd)

Ω2
0Γ0

∑

b,c

(qt0Vkqb)(q
t
bV

†
k qc)(q

t
bIβ(Ωa − kωd)qc)(q

t
0Iα(Ωa)q0)

(Ω2
b − (Ω0 − kωd)2)(Ω2

c − (Ω0 − kωd)2)

(C.3)
Note that this expression is invariant upon time inversion of the process (i.e, invariant
under complex conjugation of the Fourier coefficients Vk). We now use the previous
result to calculate the resonant contributions to the heat rates for the simple driving pro-
tocol V (t) = V0 + 2V1 cos(ωdt) in a system connected to only two reservoirs, Eα and Eβ ,
which are at the same temperature T0. Considering, for simplicity, only the contribution
of the Ω0 normal mode, we have:

˙̄QR
α = ˙̄QRP

α + ˙̄QRH
α =

π2

8

N(Ω0 − ωd)

Ω2
0Γ0

|V 0
1 |2

(Ω2
0 − (Ω0 − ωd)2)2

×
{

(Ω0 − ωd)I
0
β(Ω0)I

0
α(Ω0 − ωd)− Ω0I

0
α(Ω0)I

0
β(Ω0 − ωd)− kωdI

0
α(Ω0)I

0
α(Ω0 − ωd)

}

,

(C.4)

where we have defined M0 = qt0Mq0 for any matrix M . It is easy to see that if the two
reservoirs are spectrally equivalent (if Iα(ω) = Iβ(ω)), then the previous expression is
always negative and therefore both reservoirs are heated. However, if the spectral den-
sities satisfy Iα(Ω0) ≪ Iβ(Ω0) then the last two terms between brackets in the previous
expression can be neglected with respect to the first, and ˙̄QR becomes positive. There-
fore, the condition Iα(Ω0) ≪ Iβ(Ω0) allows cooling of the reservoir Eα.

C.2 Minimum temperature

For low temperatures the Planck distribution in Eq. (C.4) can be approximated by
N(Ω0 − ωd) ≃ e−(Ω0−ωd)/T0 , which vanishes faster than any power law as T0 → 0. This
strong dependence for low temperatures makes it imposible to reach zero temperature
in finite time. However, as explained in the main text, this effect can be avoided by

105



instantaneously adjusting the driving frequency ωd as T0 decreases, in such a way that
Ω0 − ωd ≃ T0. If we assume that Iα(ω) ∝ γ0ω

λα for low frequencies, then it is clear that
the resonant heat rate in Eq. (C.4) scales as ˙̄QR

α ∝ γ0(Ω0 − ωd)
1+λα (the factor Iβ(Ω0)/Γ0

is independent of the coupling constant between the system and reservoir Eβ). Thus, for
the mentioned adaptative strategy, we have ˙̄QR

α ∝ γ0T
1+λα

0 . On the other hand, it can
be seen from Eq. (6.30) that for ωd < Ω0 the non resonant heating ˙̄QNRH

α is proportional
to γ20 (since the integration domain does not include any resonance peak of the function
p−1
α,β(ω)). Also, for low driving frequency ωd it scales as ω2+2λα

d . Thus, for the adaptative

strategy, we obtain ˙̄QNRH
α ∝ γ20(Ω0 − T0)

2+2λα .
Therefore, we see that there always exists a temperature Tmin below which | ˙̄QNRH

α | >
˙̄QR
α and the net effect is to heat up the reservoir Eα. Also, this minimum temperature

scales as Tmin ∝ γ
1/(1+λα)
0 (for Tmin ≪ Ω0).

C.3 Numerical evaluation of the heat rates for a simple case

In order to test the last result we evaluated numerically the heat rates in a particular
case. We consider a system composed of a single harmonic oscillator of bare frequency
Ω0 coupled to two reservoirs, Eα and Eβ , with spectral densities given by:

Iα(ω) = γα ω
λα (Ω0 − ω) θ((ω − Λα)/rα) (ω < Ω0)

Iβ(ω) = γβ ω
λβ θ((ω − Λβ)/rβ) (C.5)

where θ(x) = e−x/(1+ e−x) is an exponential cutoff. Note that Iα(ω) vanishes at ω = Ω0.
In this way, the cooling condition Iα(Ω0) ≪ Iβ(Ω0) is exact. In particular, we choose the
parameters γβ = γ0, γα = 0.7γ0 (where γ0 is a coupling constant that will be varied),
Λα = 0.9, Λβ = 1.2,rα = 0.04, rβ = 0.1 (all this parameters are in units of Ω0). In figure
C.2 we show the spectral densities for the case in which both are ohmic (λα = λβ = 1).

For these spectral densities, the contributions ˙̄QNRH
α and ˙̄QR

α = ˙̄QRP
α + ˙̄QRH

α to the heat
rates are calculated by numerical integration of the expressions given in Eqs. (4), (5), and
(6) in the main text (under the weak driving approximation). As an example, we plot
in Figure C.3 these resonant and non-resonant contributions (in absolute value) versus
the common temperature T0, for two different values of the coupling constant γ0. These
results corresponds to the adaptative strategy for which the driving frequency is selected
as ωd = Ω0 − T0. We see that ˙̄QNRH

α scales as γ20 while ˙̄QR
α scales as γ0. The temperature

for which ˙̄QNRH
α and ˙̄QR

α become equal is the minimum temperature Tmin for which the
adaptative strategy supports cooling of reservoir Eα. The dependence of Tmin with the
coupling constant γ0 is shown in Figure 1 in the main text for λα = 1 and λα = 2 and is
found to be well described by the power law discussed above.
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Figure C.2: Spectral densities used
for the numerical evalution of the
heat rates (λα = λβ = 1). They ex-
actly satisfy the cooling condition
Iα(Ω0)≪Iβ(Ω0).
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Figure C.3: Resonant and non-
resonant contributions to the to-
tal heat rate ˙̄Qα. The driving fre-
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