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Garantías cuantitativas para espacios de estados no tratables

Resumen: Los lenguajes basados en máquinas de estados finitos (también lla-
mados automátas finitos) son usados de manera ubicua para la especificación de
sistemas de software. La formalidad de estos modelos permite la aplicación de téc-
nicas de validación tales como el model checking. De esta manera, pueden responder
con seguridad si un sistema cumple o no las propiedades de interés. Al mismo tiempo,
estás máquinas pueden ser utilizadas de manera composicional, especificando com-
portamientos aislados mediante varias máquinas, y estableciendo el comportamiento
global mediante su composición en paralelo. Este enfoque reduce el esfuerzo de vali-
dación, ya que la validez de las propiedades en el sistema deberían ser dependientes
de la validez de las propiedades en cada componente. Sin embargo, este enfoque es
amenazado por la complejidad del sistema especificado, dando lugar al problema de
la explosión de estados, que puede impedir la aplicación de estas técnicas.

En esta tesis presentamos un enfoque que intenta paliar este problema, prove-
yendo información cuantitativa respecto de la propiedad que se intentó validar sin
éxito. Nuestro enfoque se sostiene sobre dos contribuciones distintas, donde cada una
de ellas puede, además, ser aplicada en el contexto de problemas relacionados. Esta
tesis se inspira en el modelado y model checking probabilísticos, que pueden proveer
información cuantitativa respecto de la validez de una propiedad. Esta cuantificación
nos sirve de validación parcial en el contexto del problema que nos interesa.

Sin embargo, un enfoque composicional tiene sus propios problemas en un contex-
to probabilístico. Las anotaciones probabilísticas asociadas a eventos independientes
precisan ser contrastadas con estimaciones obtenidas de la observación del compor-
tamiento a modelar. Al agregar estas anotaciones, es preciso distinguir las fuentes de
estas probabilidades; en otras palabras, las probabilidades de eventos independientes
deberían estar asociadas al comportamiento de los componentes que generan este
comportamiento. A su vez, es preciso mantener la relación entre la validez de los
componentes de manera aislada, y la validez de los comportamientos en el sistema
compuesto. Los formalismos disponibles al momento, sin embargo, no proveen la se-
guridad de que estos resultados de validez sean preservados durante la composición.
La primera contribución de esta tesis es, entonces, una extensión probabilística al
formalismo de Interface Automata. Esta extensión asegura la preservación de com-
portamiento tal como es observado por la lógica probabilística pCTL.

La segunda parte de esta tesis apunta al análisis de estos modelos, en particular
cuando un análisis exhaustivo no es factible, teniendo en cuenta que la complejidad
del model checking probabilístico es aún mayor que en el caso clásico. Nuestra hipóte-
sis en este trabajo es que una exploración parcial, pero sistemáticamente controlada,
puede proveer cotas a los valores de interés con un costo computacional reducido.
Los experimentos realizados sugieren que un análisis mediante este enfoque puede
ser más efectivo que tanto el model checking exhaustivo como así también enfoques
estadísticos relacionados.

Palabras clave: modelado probabilístico, verificación probabilística, simulacio-
nes, verificación estadística, exploración parcial.





Quantitative Guarantees for Intractable State Spaces

Abstract: System specifications have long been expressed through automata-
based languages, which enable automated validation techniques such as model check-
ing. Automata-based validation has been extensively used in the analysis of systems,
where they have been able to provide yes/no answers to queries regarding their tem-
poral properties. Additionally, a compositional approach to construction of software
specifications reduces the specification effort, allowing the engineer to focus on spec-
ifying individual component behaviour; and then analyse the composite system be-
haviour. This also reduces the validation effort, since the validity of the composite
specification should be dependent on the validity of the components. However, even
in a compositional approach, automatic validation techniques usually cannot cope
with systems under analysis that grow complex enough. Problems such as state
space explosion seriously hamper the applicability of these approaches.

In this thesis, we present an approach that can help cope with these absence
of results by providing quantitative validation information related to the property
being validated, even when the model checking approach is unable to handle the
whole system. Our proposed technique stands on two different approaches, with
each of them being applicable on its own to related problems. The inspiration is that
probabilistic modelling and checking can provide quantitative information, which can
in turn serve as partial validation when full checking is infeasible.

Compositional construction, however, poses additional challenges in a probabilis-
tic setting. Numerical annotations of probabilistically independent events must be
contrasted against estimations or measurements, taking care of not compounding
this quantification with exogenous factors, in particular other system components’
behaviour. The validity of compositionally constructed specifications requires that
the validated probabilistic behaviour of each component continues to be preserved in
the composite system. However, existing probabilistic automata-based formalisms
do not support behaviour preservation of non-deterministic and probabilistic com-
ponents over their composition. The first contribution of this thesis is a probabilistic
extension to Interface Automata which preserves pCTL properties. This extension
not only supports probabilistic behaviour but also allows for weaker prerequisites to
interfacing composition, allowing for specification refinement of internal behaviour.

The second part of our approach aims at analysing these probabilistically enriched
models, obtaining quantitative information that can be related to the validity of the
property under analysis, even when a complete analysis is infeasible. Computational
complexity of estimating these metrics can be prohibitive, even more so than classic
model checking. Our hypothesis is that a (carefully crafted) partial systematic ex-
ploration of a system model can provide better bounds for these quantitative model
metrics at lower computation cost than exhaustive exploration. Our technique com-
bines simulation, invariant inference and probabilistic model checking to produce a
probabilistically relevant portion of the model, which is then exhaustively analysed.
We report on experiments that suggest that metric estimation using this technique
(for both fully probabilistic models and those exhibiting non-determinism) can be
more effective than (full model) probabilistic and statistical model checking.

Keywords: probabilistic modelling, probabilistic validation, model simulation,
statistical methods, partial explorations.
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Resumen en castellano

A continuación presentamos un resumen de esta tesis en castellano, dado que
la totalidad de la misma se encuentra escrita en inglés. Aquí se resumen las ideas
centrales presentadas en cada capítulo.

Capítulo 1: Introducción

En los últimos años, los sistemas de software se han vuelto ubicuos, además
de encontrar aplicaciones donde una falla puede resultar crítica y causar pérdidas
materiales, económicas e incluso humanas. Además, los sistemas de software han evo-
lucionado más allá de ser meros procesadores de datos en bloque. Por lo contrario, el
software se diseña, cada vez con más frecuencia, con el fin de monitorear su ambien-
te y responder frente a cambios del mismo. Como resultado de estas interacciones,
el comportamiento del software es cada vez más complejo, dejando a su vez mayor
lugar para la aparición de fallas. Así, cada vez son más deseables herramientas que
permitan aseverar que un sistema de software realizará su tarea con alto grado de
confiabilidad. Más aún, estas herramientas necesitan alto grado de automatización,
ya que los conocimientos específicos para tales análisis no suelen ser parte de los
conocimientos de los usuarios o analistas en general.

El foco de esta tesis está en estos análisis, especialmente aquellos que pueden
realizar sus evaluaciones de manera temprana sobre el software, o sobre modelos lo
suficientemente detallados de dicho software. Cuando analizamos estas descripciones
detalladas del software, nos interesa además evaluar la validez de propiedades que
son, por lo general, temporales, es decir que pueden predicar acerca del orden de
los eventos de interés en el tiempo. Por ejemplo, si nos ocupáramos de estudiar
el controlador de los sistemas de un auto de última generación, algunas preguntas
válidas podrían ser ¿es cierto que al presionar el pedal de freno, los frenos en sí son
accionados en a lo sumo 800 ms.? ; o bien ¿es cierto que la inyección de combustible
se interrumpe siempre que el motor excede las 8000 revoluciones? Técnicas tales
como el model checking permiten obtener respuestas a este tipo de preguntas.

Sin embargo, un problema que amenaza estas técnicas es que rápidamente se
vuelven inaplicables a medida que la complejidad del sistema bajo análisis aumenta.
Esta complejidad aumenta de manera exponencial respecto del tamaño de los com-
ponentes del sistema que se desea analizar, ya que el comportamiento conjunto de
estos componentes excede largamente la complejidad del comportamiento aislado de
los mismos. Esto es lo que se conoce como el problema de la explosión de estados.

Si bien existen muchos antecedentes al respecto, que han derivado en técnicas que

1



2 RESUMEN EN CASTELLANO

buscan paliar este problema de explosión, la realidad es que es fácil, en la práctica,
encontrar sistemas que rápidamente vuelven imposible este tipo de análisis. En este
tipo de casos, lamentablemente, no podemos esperar mucho de las técnicas de model
checking tradicionales. Estas técnicas sólo son capaces de responder si la propiedad
es válida o no: si no lo es, pueden proveer un contraejemplo, mientras que si la propie-
dad es válida, sólo puede asegurarse mediante la exploración exhaustiva del sistema.
De esta manera, si el procedimiento de exploración es interrumpido de manera tem-
prana sin haber encontrado un contraejemplo, nada puede decirse al respecto de la
propiedad.

Sin embargo, llegado este punto, ya se ha invertido mucho tiempo y trabajo.
Más detalladamente, llegado este punto necesariamente se debió haber modelado el
sistema de software de manera acorde, las propiedades fueron expresadas en lógicas
apropiadas, y el procedimiento de model checking fue desarrollado o puesto a punto
para el análisis en cuestión. No sólo esto, sino que seguramente será también el caso
de que el procedimiento de model checking fue llevado a cabo parcialmente, invir-
tiendo una cantidad sustancial de tiempo y recursos computacionales. Sin embargo,
parecería que se debe tirar todo por la borda.

Esta tesis parte de este escenario. La pregunta a responder por la tesis es analizar
si es posible, en los casos en que el model checking es incapaz de analizar ciertos
modelos y propiedades en tiempo y forma, obtener, de todas maneras, algún tipo de
información que sea realmente útil para el usuario que puso en marcha el proceso de
verificación.

Información cualitativa vs. información cuantitativa

Proveer una respuesta a la pregunta anterior requiere que nos movamos fuera
de la clase de respuestas cualitativas (es decir, sí o no), y que nos fundamentemos
en respuestas cuantitativas, es decir, que puedan proveer alguna dimensión respecto
de la validez de las propiedades. Por ejemplo, podemos preguntarnos (y responder)
cuestiones tales como ¿qué porcentaje del sistema se encuentra libre de fallas? o bien
¿qué tanta confianza podemos tener en que una ejecución arbitraria no resultará en
un error?. En este sentido, podemos resumir la primera contribución de la tesis

Esta tesis presenta un enfoque que permite obtener información cuantitativa
acerca de un modelo cuya exploración completa es imposible. Más aún, esta
información cuantitativa es relevante respecto de las propiedades de interés.

En este sentido, la información cuantitativa que sólo se limita a cuestiones topoló-
gicas del modelo tales como su cantidad de estados o transiciones, no son interesantes
ya que no son aplicables o extrapolables a las propiedades. De alguna forma está en
el medio la idea de que hay estados del sistema que son más interesantes que otros.
Por ejemplo, si deseamos verificar el controlador de un automóvil, claramente los
momentos en los que el auto se encuentra en marcha son más interesantes y críticos
que aquellos en los que está detenido. Sin embargo, se requiere alguna medida acerca
de este nivel de interés de los estados. En esta tesis, argumentamos que un estado es
más interesante que otro si el estado es observado más frecuentemente. Esto depen-
derá tanto del sistema mismo como también del ambiente con el que interactúe. En
esta tesis, para expresar estas dimensiones, utilizaremos teoría de la probabilidad,
que nos permitirá rápidamente comparar el nivel de interés entre distintos estados a
partir de comparar cuál es más probable observar durante una ejecución arbitraria
del sistema.
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Existen sin embargo varios problemas a la hora de intentar representar de ma-
nera coherente la componente probabilística del comportamiento de un sistema o su
ambiente. Un modelado probabilístico puede hacer surgir problemas tales como

semántica probabilística poco clara, donde es difícil descomponer la carga pro-
babilística correspondiente a cada componente del sistema o ambiente;

una relación poco clara entre las distribuciones probabilísticas de los compo-
nentes, y la distribución resultante en el modelo compuesto, lo cual lleva a
consecuencias tales como

una falla total en preservar comportamiento validado individualmente a través
de las sucesivas composiciones de los componentes entre sí. Esto juega directa-
mente en contra de un enfoque composicional a la hora de realizar validación
y verificación del comportamiento del sistema.

Esto nos lleva a una segunda contribución de esta tesis.

En esta tesis, presentamos un nuevo formalismo de modelado probabilístico,
que permite la construcción y validación composicional e incremental de sistemas.

Análisis y verificación parcial

La introducción de este nuevo formalismo de modelado probabilístico es, sin em-
bargo, solamente la mitad del trabajo. Si bien este nuevo formalismo permite un
modelado composicional y provee una manera de introducir probabilidades de ma-
nera natural, no reduce en nada el problema de la explosión de estados. Nuestra
propuesta al respecto es la introducción de variables aleatorias asociadas a una explo-
ración parcial del sistema. Estas variables aleatorias, que serán medibles de manera
eficiente, deberán guardar una estrecha relación con la validez de la propiedad que
se está analizando. De esta manera, resultará que medir el valor esperado de esta
variable aleatoria será equivalente a proveer cierta medida respecto de la validez de
la propiedad en general. Más en particular, esta variable aleatoria buscará medir la
relación entre los estados que sí han sido visitados durante la exploración parcial, y
aquellos que no, que a los efectos prácticos consideraremos que violan la propiedad
en su totalidad.

De esta forma arribamos a una nueva contribución de esta tesis.

Presentamos una formalización de lo que significa realizar una verificación o
validación de manera parcial, a través de formalizar qué significa, respecto del
modelo completo, una exploración parcial del mismo. Además, explicamos cuál
es la relación entre los resultados obtenidos de tales verificaciones parciales y los
resultados que podrían obtenerse (idealmente) de una verificación total.

Sin embargo, debemos encontrar una técnica que, además de proveer estos resul-
tados, sea técnicamente aplicable. En primer lugar, introducir las probabilidades de
manera directa sobre el espacio de estados parcialmente explorado es no sólo inviable
(ya que requeriría memoria adicional sobre una ya supuestamente agotada), sino que
además atenta desde el punto de vista ingenieril, ya que se pierde la idea de que las
probabilidades deben estar aisladas a cada componente y ser introducidas de manera
composicional. Por otra parte, aún si estas preguntas pudiesen ser ignoradas, es de
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suponer que los resultados obtenidos de una exploración parcial arbitraria no serán
de gran utilidad. La causa de esto es que los model checkers no están realmente
diseñados para trabajar de forma parcial, y por lo tanto no tienen gran cuidado en
cómo realizan la exploración. Dado que necesitan la exploración en su totalidad, en
general es lo mismo si realizan la exploración de manera profunda, al azar o bien con
cualquier otra estrategia.

Este análisis provoca preguntas tales como

¿Existirá una manera de obtener sistemáticamente diferentes exploraciones par-
ciales? ¿Podemos dar una medida de comparación entre estas distintas explo-
raciones parciales?

¿Podemos dar una medida de comparación, además, entre los resultados cuan-
titativos obtenidos de distintas exploraciones parciales?

¿Hay exploraciones que resulten sistemáticamente en mejores resultados? ¿Y
qué significa que un resultado sea mejor que otro, en primer lugar?

¿Habrá alguna manera de predecir si una exploración parcial producirá mejores
resultados que otra?

Y si es así, ¿existirá una manera de construir exploraciones parciales de manera
consistente, y de forma tal que los resultados obstenidos de las mismas sean
consistentemente buenos?

En esta tesis presentaremos una técnica y heurísticas qeu permiten responder a las
preguntas anteriores. Este enfoque combina los conceptos de simulación probabilística
y estadística, inferencia de invariantes de comportamiento y verificación de modelos.
Esto resume la última contribución de esta tesis.

Presentamos una técnica automática para la exploración parcial de modelos
que, mediante otro tipo de técnicas, no pueden ser explorados o verificados de
manera exhaustiva. A través de esta técnica automática, además, tenemos una
forma de obtener modelos parciales que, de manera consistente, apuntan a ma-
ximizar la información cuantitativa que puede extraerse de los mismos para una
propiedad de interés dada.

Además, validamos estas aseveraciones mediante el uso de un conjunto de casos de
estudio extraídos de la literatura relacionada con nuestro enfoque y con la verificación
de software en general.

Contribuciones

Las contribuciones de esta tesis pueden resumirse como sigue

Visto desde un punto de vista general, esta tesis provee un enfoque que permite
obtener información cuantitativa respecto de propiedades cualitativas de un
modelo de software. Esta información cuantitativa es de especial interés en
aquellos casos en que la propiedad no puede ser verificada por técnicas al nivel
del estado del arte, tales como model checking o verificación estadística al
estilo Monte Carlo. Más aún, la información cuantitativa obtenida por nuestro
enfoque está relacionada con, y es directamente interpretable en el contexto
de, la propiedad que se intentó analizar en primer lugar.
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Presentamos los Autómatas de Interfaz Probabilísticos (PIA, por sus siglas en
inglés: Probabilistic Interface Automata), con el fin de proveer un formalismo
que permita el modelado de información probabilística asociada al comporta-
miento de un sistema de software. Los modelos PIA permiten la especificación
incremental y composicional de modelos de software.

Realizamos además una formalización del problema de verificar parcialmente
un espacio de estados. Además, establecemos formalmente cuál es la relación
entre los resultados obtenidos por la verificación de un espacio de estados par-
cial con respecto a la verificación completa de este mismo espacio de estados.
Como resultado, mostramos que la verificación de espacios parciales resulta en
cotas a los resultados que serían obtenidos por medio de una verificación total.

Finalmente, presentamos un procedimiento automático que permite obtener
espacios de estados parciales que, de manera consistente, proveen cotas que
resultan mejores que los resultados obtenidos (dados el mismo tiempo y me-
moria disponibles) mediante técnicas establecidas como la verificación total del
espacio de estados, o enfoques del estilo Monte Carlo.

Capítulo 2: Antecedentes y preliminares

En este capítulo se presentan conceptos sobre los cuales se construyen los resulta-
dos presentados en esta tesis. Aquí se presentan en primer lugar definiciones relativas
a la teoría de la medida y de la probabilidad, y de manera seguida se introducen al-
gunos de los formalismos de modelado de sistemas de software. Estos formalismos
son aquellos en los que este trabajo se fundamenta.

Nociones de teoría de la probabilidad

Respecto de los conceptos asociados a la teoría de la medida y probabilidad, se
presentan las siguientes definiciones.

Un espacio de probabilidad (Definición 2.1) [Fel08] está dado por la tripla
< Ω, 2Ω, µ >, donde

Ω es un conjunto llamado espacio de eventos ;

2Ω es el conjunto de partes de Ω, siendo sus elementos los eventos de interés; y

µ : 2Ω → [0, 1] es una función tal que

• µ(∅) = 0;

• ii) µ(Ω) = 1; y

• dada una secuencia de elementos de 2Ω expresada por (ωi), i ∈ N y sien-
do que estos elementos son disjuntos de a pares, vale que µ(

⋃

i ωi) =
∑

i µ(ωi).

La función µ suele llamarse una función de medida de probabilidad, o más fre-
cuentemente, una distribución. Dado un subconjunto ω del espacio de eventos Ω,
µ(ω) se dice la medida de ω.

Las nociones de espacio de probabilidades y sus distribuciones dan lugar a defi-
niciones tales como el producto de espacios de probabilidades (Definición 2.3),
variables aleatorias (Definición 2.4) y el concepto de valor esperado (o esperan-
za) de una variable aleatoria (Definición 2.5) [Fel08].



6 RESUMEN EN CASTELLANO

Nociones acerca de formalismos de modelado

A continuación, se presentan los formalismos de modelado de sistemas de software
sobre los cuales se sostiene esta tesis. En primer lugar, se presentan formalismos que
permiten sólo el modelado de sistemas de software puramente no-determinísticos, es
decir, que no permiten la expresión de medidas probabilísticas en el comportamiento
del sistema de software que se intenta modelar. Estos formalismos que se presentan en
esta sección comparten la particularidad de que todos ellos son máquinas de estados
finitos.

En primer lugar se introducen los Sistemas Etiquetados de Transición (LTS,
por sus iniciales en inglés, Labelled Transition Systems) como lenguaje específico
para máquinas de estados finitos. Estos LTSs (Definición 2.6) [BK08] se caracterizan
mediante una tupla < S, S0, A,R > donde

S es un conjunto finito de estados;

S0 es un estado distinguido de S que denominaremos estado inicial ;

A es un conjunto finito de etiquetas; y finalmente

R una relación de transición tal que R ⊆ S×A×S. Esta relación de transición
especifica, para un estado dado en S, los estados a los cuales puede evolucionar
mediante la aplicación de alguna etiqueta en el conjunto A.

Seguidamente, a fin de permitir que las relaciones de interfaz entre componen-
tes sean modeladas de manera explícita, se introduce la idea de segregación de las
acciones del conjunto A en tres subconjuntos. Estos subconjuntos representan, res-
pectivamente, las acciones que un componente emite (llamadas acciones de salida
o output); aquellas que espera recibir (acciones de entrada o input); y finalmente
aquellas acciones que toma de manera interna sin ningún tipo de interacción con su
entorno (acciones internas u emphocultas).

Esta segregación de acciones permite explicitar relaciones entre las acciones de
un componente y su entorno—que, a su vez, está definido en base a otros compo-
nentes modelados mediante el mismo formalismo. En particular, se pone de plano de
forma explícita que una acción de entrada de un componente sólo sincronizará con
una acción del mismo nombre, y que sea declarada como acción de salida de otro
componente. De manera recíproca, una acción de salida sincronizará con una acción
de otro componente si coinciden en nombre, y además el segundo componente declara
que esta acción es de entrada en su contexto. Finalmente, las acciones internas no
sincronizan con ninguna otra acción y pueden dispararse en cualquier momento.

Estas nociones dan lugar al concepto de los Autómatas de Interfaz (Defi-
nición 2.7) [HdA01]. Un Autómata de Interfaz es un LTS cuyas acciones han sido
segregadas de la manera explicada anteriormente. Más formalmente, se trata de una
tupla P =< SP , s

0
P , A

I
P , A

O
P , A

H
P , RP > donde:

SP es un conjunto finito de estados;

s0P ∈ SP es un estado distinguido al que denominamos inicial ;

AIP , A
O
P , A

H
P son los conjuntos de acciones de entrada, salida y acciones ocultas,

respectivamente. Asimismo, nos referimos al conjunto de todas las acciones
como AP = AIP ∪AOP ∪AHP ; y finalmente

RP ⊆ SP × AP × SP es la relación de transición, que se comporta de manera
similar a como fue definido en el caso de LTS.
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Semántica de trazas de los Autómatas de Interfaz

Existen distintas formas de definir las semánticas de estas máquinas de estado.
Cada manera de definir esta semántica tiene distintos grados de granularidad. La
manera más simple de definir la semántica es por medio de sus fragmentos de eje-
cución (Definición 2.8), más particularmente sus ejecuciones, que son aquellos frag-
mentos de ejecución que tienen su comienzo en el estado inicial. Un fragmento de eje-
cución de un autómata A es una secuencia (posiblemente infinita) α = s0a1s1a2s2 . . .,
donde se alternan estados y acciones de A. Estos fragmentos comienzan siempre con
un estado y, si son finitos, finalizan también con un estado. Finalmente, debe darse
que cada subsecuencia siai+1si+1 dentro de un fragmento de ejecución se corresponde
con una de las transiciones definidas (si, ai+1, si+1) ∈ RP .

Notamos execs(A) al conjunto de posibles ejecuciones de un autómata A. Es
importante notar que, como en un estado dado varias acciones pueden estar ha-
bilitadas simultáneamente, existirán multiples (posiblemente infinitas) ejecuciones,
dependiendo de qué acción sea elegida en cada uno de estos momentos. La noción
de planificador de ejecución (Definición 2.13), generalmente notado scheduler,
formaliza este mecanismo de decisión y resolución de no determinismo. Esencialmen-
te, un planificador es una función que, dada una ejecución finita (y que por tanto
tiene un estado final), decide qué acción se tomará a continuación. Distintos planifi-
cadores, es decir, distintas funciones de elección de acciones, resultarán en distintas
ejecuciones.

Mediante esta noción de planificador podemos refinar el conjunto de ejecuciones
de un autómata, y limitarlos a un planificador determinado. De esta manera, dado
un planificador σ podemos referirnos al conjunto de ejecuciones generado por σ
como el subconjunto execs(A, σ) ⊆ execs(A) tal que todas sus ejecuciones respetan
las selecciones realizadas por σ a cada paso. Es importante notar que un planificador
elimina todo el no determinismo de A, y por lo tanto elimina su comportamiento
ramificado. Dicho de otra manera, para un autómata como los estudiados hasta este
momento, cada planificador induce una sola ejecución posible. Veremos más adelante
que al introducir el comportamiento probabilístico esto varía.

Son de especial de interés aquellos planificadores que no son desbalanceados en sus
elecciones, es decir que, cuando encuentran repetidamente el mismo estado dentro de
una misma ejecución, balancean sus elecciones entre las distintas acciones disponibles,
sin hacer que predomine una de ellas fuera de lo normal. Estos planificadores son
denominados planificadores fuertemente ecuánimes (Definición 2.16) [CGP99].
Más formalmente, un planificador es fuertemente ecuánime si las ejecuciones que
genera son ecuánimes.

A su turno, una ejecución α se dice ecuánime en base a su conjunto de reco-
rridos. Para cada s ∈ SP , definimos Recorridos(α, s) = {i ∈ N0 · αsi = s}, es
decir, Recorridos(α, s) denota los índices en α en los que el estado s es recorrido.
Análogamente se pueden definir los recorridos en base a las transiciones, es decir,
Recorridos(α, (s, a, s′)) es el conjunto de índices en α donde la transición (s, a, s′)
es ejecutada. En base a estas definiciones, decimos que la ejecución α es ecuáni-
me si para cada s ∈ SP tal que Recorridos(α, s) es un conjunto infinito, es cier-
to tambien que, cada vez que (s, a, s′) está habilitada en s, entonces el conjunto
Recorridos(α, (s, a, s′)) también es infinito. Las ejecuciones finitas son entonces, tri-
vialmente, siempre ecuánimes.

Como se discutió anteriormente, una de las principales ventajas que acarrea el
uso de este tipo de formalismos basados en autómatas sincronizantes es que permi-
ten la especificación modular de sistemas de software. Es decir, estos formalismos
permiten la posibilidad de especificar el comportamiento de cada componente del
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sistema de software de manera aislada, para luego obtener la especificación del com-
portamiento global a partir de la composición en paralelo de las especificaciones de
los componentes.

En el caso de los Autómatas de Interfaz, la composición en paralelo, también
denominado el producto se define a partir de las acciones que se encuentran defi-
nidas para cada estado, y teniendo especial cuidado en la segregación de acciones
ya definida (Definición 2.10) [HdA01]. Dados P y Q dos Autómatas de Interfaz, su
producto es un nuevo Autómata de Interfaz P ⊗Q tal que

su conjunto de estados SP⊗Q viene dado por el producto cartesiano SP × SQ;

su estado inicial es el producto cartesiano de los estados iniciales de P y Q;
esto es s0P⊗Q = (s0P , s

0
Q); y finalmente

sus conjuntos de acciones de entrada, salida y ocultas vienen dados por

• AIP⊗Q = (AIP ∪AIQ) \ Shared(P,Q);

• AOP⊗Q = (AOP ∪AOQ) \ Shared(P,Q); y

• AHP⊗Q = AHP ∪AHQ ∪ Shared(P,Q)

Por otra parte, la relación de transición RP⊗Q se define mediante el conjunto de
relaciones































{((s, t), a, (s′, t)) such that (s, a, s′) ∈ RP∧
t ∈ SQ ∧ a /∈ Shared(P,Q)}∪

{((s, t), a, (s, t′)) such that (t, a, t′) ∈ RQ∧
s ∈ SP ∧ a /∈ Shared(P,Q)}∪

{((s, t), a, (s′, t′)) such that a ∈ Shared(P,Q)∧
(s, a, s′) ∈ RP ∧ (t, a, t′) ∈ RQ}































donde Shared(P,Q) es el conjunto de acciones que ambos autómatas P y Q com-
parten es decir, Shared(P,Q) = AP ∩AQ.

Es importante notar en este punto que los Autómatas de Interfaz introducen
además la noción de componibilidad (Definición 2.9) [HdA01], que establece con-
diciones para que el producto de dos Autómatas de Interfaz P y Q tenga sentido.
Esencialmente, esta definición establece que la componibilidad viene dada por la
compatibilidad de sus conjuntos de acciones segregadas, es decir

AHP ∩AQ = ∅;

AP ∩AHQ = ∅;

AIP ∩AIQ = ∅; y

AOP ∩AOQ = ∅

La contribución particular que define a los Autómatas de Interfaz frente a for-
malismos similares basados en máquinas de estados finitos es la noción de estados
ilegales (Definición 2.11) [HdA01] que pueden surgir al momento de la composi-
ción o producto. Informalmente, un estado es ilegal si viola la noción de interfaz
entre los autómatas que están siendo compuestos. La interfaz es violada cada vez
que una de las máquinas tiene la intención de ejecutar una de sus acciones de sali-
da, pero sin embargo la máquina receptora no está lista a aceptar esa acción como
entrada. Más formalmente, el estado (s, q) de la composición entre P y Q es ile-
gal si ∃a ∈ Shared(P,Q) tal que a ∈ AOP (s) ∧ a /∈ AIQ(q) o, de manera simétrica
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∃a ∈ Shared(P,Q) tal que a /∈ AIP (s) ∧ a ∈ AOQ(q). Notamos al conjunto completo
de estados ilegales de la composición como Illegal(P,Q).

Esta noción de estados ilegales da lugar, finalmente, a la noción de ambiente
legal (Definición 2.12) [HdA01] para un Autómata de Interfaz P . Formalmente, un
Autómata de Interfaz Q es un ambiente legal para otro Autómata de Interfaz P cada
vez que simultáneamente se cumplen

P and Q son componibles;

AIQ = AOP ; y

ninguno de los estados en Illegal(P,Q) es alcanzable en P ⊗Q.

Semántica de ramificación de los Autómatas de Interfaz

Es sabido que la semántica de trazas es demasiado gruesa para el modelado de
sistemas de software [CGP99], siendo preferida una semántica que permita distinguir
el comportamiento ramificado que se deriva de las decisiones no determinísticas de
los planificadores.

Existen diversas lógicas modales que permiten evaluar este comportamiento ra-
mificado. En esta tesis trabajamos con variaciones de la lógica CTL (Computational
Tree Logic) [EC82]. En particular, nos resulta útil la lógica ACTL [DV90], la cual es
equivalente a la lógica CTL. La principal diferencia entre ambas es que la lógica CTL
se expresa a través de predicados sobre los estados del objeto de estudio, mientras
que ACTL tiene su foco en las acciones. Esta particularidad es útil en nuestro con-
texto, ya que nos permite expresar de manera directa las restricciones relacionadas
con la disponibilidad de acciones para ser sincronizadas.

Formalismos de modelado probabilístico

Este trabajo tiene un fuerte foco en la introducción de un formalismo de mo-
delado que permite la expresión de comportamiento probabilístico dentro de un
componente de software. En su manera más básica, los modelos probabilísticos que
introducimos son LTSs donde la relación de transición tiene una componente que
puede gobernar la decisión entre distintas elecciones posibles por medio de una dis-
tribución probabilística. Con este objetivo, nos fundamentamos en un formalismo
ampliamente conocido, el de Autómatas Probabilísticos Simples de Segala
(Definición 2.19) [SL95, Seg95] (SPAs por sus siglas en inglés Simple Probabilistic
Automata). Como se notó con anterioridad, la principal diferencia de estos autó-
matas es que su relación de transición está determinada por distintas distribuciones
probabilísticas. Más formalmente, un SPA es una tupla M =< SM , s

0
M , AM , RM >

donde

SM es un conjunto finito de estados.

s0M ∈ SM es el estado inicial distinguido.

AM es un conjunto finito de acciones.

RM ⊆ SM ×AM ×D(SM ) es la relación de transición, donde D(SM ) se refiere
al conjunto de posibles distribuciones probabilísticas sobre el espacio de eventos
determinado por el conjunto de estados SM . Como SM se trata de un conjunto
finito, resulta que las distribuciones en D(SM ) son discretas.
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El producto o composición en paralelo de SPAs se define de manera análoga a
aquel de los Autómatas de Interfaz, con la salvedad de que, durante la sincronización
de dos transiciones que son gobernadas por dos distribuciones δ1 y δ2, se requiere
calcular además el producto de estas dos distribuciones (Definición 2.20) [SL95].

Siguiendo con los paralelismos entre ambos formalismos, también es posible de-
finir la noción de ejecuciones de un SPA (Definición 2.21). En el caso de los SPAs,
la diferencia es que las ejecuciones son secuencias α = s0(a1, p1)s1(a2, p2)s2 . . . que
también alternan estados y transiciones, pero donde estas transiciones están anota-
das no sólo por su acción sino también por la probabilidad asociada al estado de
destino según la distribución probabilística que la gobierna.

La noción de planificadores también está presente para determinar el conjunto de
ejecuciones de un SPA (Definición 2.22). La principal diferencia es que, a diferencia
de los planificadores para Autómatas de Interfaz que sólo planificaban la siguiente
acción y estado, los planificadores de SPAs planifican una distribución probabilística
asociada en vez de un estado único. De esta forma, un planificador no resulta en una
única ejecución, sino en múltiples que dependen de la resolución de esta distribución
probabilística. En particular, en vez de una única ejecución, determinan una única
Cadena de Markov de Salto Discreto [Kul09] (DTMC, por sus siglas en inglés Discrete
Time Markov Chain).

Medidas de las ejecuciones de un SPA

La combinación de un planificador σ con un SPA M define una medida proba-
bilística δ en la σ-álgebra determinada por el conjunto de ejecuciones posibles. Este
espacio de eventos dado por las ejecuciones no es finito, ni tampoco numerable, por
lo que no es posible establecer una medida probabilística discreta sobre los mismos.
En cambio, se hace necesario referirse a conjuntos cilíndricos (a veces también
llamados conos en la literatura) de ejecuciones (Definición 2.26).

En particular, estos cilindros se definen a partir de una ejecución finita α de
un SPA M que nos permite caracterizar sus (posiblemente infinitas) continuaciones.
Dada esta ejecución finita α, el cilindro de α es el conjunto de ejecuciones Cα =
α′ ∈ execs(M) · α ≤ α′. La medida del cilindro Cα definida por un planificador σ se
define como

δ(Cα,M, σ) =
length(α)

∏

i=1

EsP lanificada(σ, α, i− 1, αai )× δplan(σ, α, i− 1)(αsi )

donde δplan : Sched(M)×execs(M)×N → D(SM ), y EsP lanificada : Sched(M)×
execs(M)× N×AM → (0, 1) son tales que δplan(σ, α, n) = σ(α0 . . . αn)δ y

EsP lanificada(σ, α, n, a) =

{

1 si σ(α0 . . . αn)a = a
0 en otro caso

Dicho de otra manera, δplan es la distribución correspondiente a la transición que
está planificada en próximo lugar, mientras que EsP lanificada indica si es el caso
que efectivamente la acción a es la próxima acción planificada.

Semántica de ramificación de los Autómatas Probabilísticos Simples

De manera similar a como es en el caso de los Autómatas de Interfaz, es preciso
tener una semántica que preserve la estructura de ramificación de su comportamien-
to, con la salvedad de que en el caso de los SPAs esta ramificación viene dada tanto
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por el no determinismo como también por el comportamiento inducido por las distri-
buciones probabilísticas de las transiciones. Así como se utilizaban las lógicas CTL y
sus equivalentes para los Autómatas de Interfaz, en el caso de los SPAs utilizaremos
la lógica pCTL (Definición 2.34) [HJ89], que enriquece a CTL con la posibilidad de
referirse además a los valores probabilísticos de los comportamientos capturados.

La lógica pCTL y sus extensiones permiten, además, introducir la noción de va-
lores y estructuras de recompensa (Definición 2.35) [QS96] para tanto estados
como transiciones de una ejecución. En esta tesis en particular nos interesan en par-
ticular las recompensas para transiciones. De esta manera, es posible asociar, además
de una probabilidad, un valor específico a cada ejecución del sistema modelado. Es-
tos valores pueden codificar dimensiones del software tales como su confiabilidad,
tiempos de respuesta, etc.

Dado que las ejecuciones tienen una probabilidad asociada, este valor de recom-
pensa de la ejecución estará definido por una variable aleatoria. Siendo así, también
será de interés el cálculo del valor esperado de este valor de recompensa. Formalmen-
te, el valor de recompensa de las ejecuciones de un SPA viene dado por una estructura
de recompensa, que se define a partir de una función ρ : S ×A× S → R≥0.

Entonces, dada una ejecución π de un SPA M , y una estructura de recompensas
ρ sobre M , el valor de recompensa de π está dado por la suma de las recompensas
de cada una de sus transiciones. Notaremos el valor de esta recompensa como ρ(π).
Una particularidad a tener en cuenta es que las estructuras de recompensa siempre
asignan un valor no negativo a las transiciones. Por lo tanto, dado un prefijo πpref de
una ejecución π, el valor de recompensa de πpref es necesariamente menor (o igual)
al valor de recompensa asociado a π.

Esta posibilidad de calcular el valor esperado de la recompensa para un conjunto
de ejecuciones puede ser combinada con la posiblidad de pCTL de describir conjun-
tos de ejecuciones asociadas a eventos de interés. En particular, podremos calcular el
valor esperado de una recompensa asociada al cumplimiento de una propiedad de al-
canzabilidad del sistema siendo analizado (Definición 2.36) [QS96]. Parte de nuestro
trabajo se concentrará en intentar calcular cotas inferiores a estos valores de recom-
pensa. Estas cotas son especialmente útiles en los casos en que el valor esperado real
no puede calcularse debido a limitaciones causadas por el tamaño del sistema siendo
analizado, o donde el tiempo necesario para el cálculo exacto es excesivo.

Capítulo 3: Autómatas Probabilísticos de Interfaz (Proba-
bilistic Interface Automata)

En este capítulo introducimos nuestra primera contribución de esta tesis, los
Autómatas Probabilísticos de Interfaz (PIA, por sus siglas en inglés Probabilistic
Interface Automata). Este formalismo surge como combinación entre los SPAs y
los Autómatas de Interfaz, a fin de resolver problemas de modelado que surgen
al introducir probabilidades en el contexto de un modelado no determinístico de
sistemas de software.

En primer lugar, analizamos los antecedentes al problema del modelado probabi-
lístico. La discusión de estos antecedentes históricos se centra alrededor de un ejemplo
de modelo de software al cual se desea combinar con un modelo de comportamiento
probabilístico de su ambiente. En este caso, utilizamos el modelo de una máquina
expendedora de café para orientar la discusión. Este modelo puede apreciarse en la
Figura 1.

Esta máquina de café establece sus interacciones con el usuario por medio de
una pantalla táctil. Por medio de esta pantalla, el usuario puede primero elegir su
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Figura 1: Máquina expendedora de café

bebida (café espresso, o café latte). Luego de que la bebida es preparada, el usuario
debe seleccionar si desea azúcar o endulzante en su bebida. Finalmente, la máquina
entrega la bebida al usuario. Sin embargo, la máquina tiene la particularidad de
que eventualmente puede sobrecalentarse. En ese caso, es necesario que se purgue
manualmente la máquina.

Con el objetivo de llevar a cabo un análisis composicional, podemos comenzar a
validar este sistema aisladamente, sin depender de los otros componentes con los que
interactúa. Por ejemplo, puede resultar de interés saber si es posible que la máquina
se sobrecaliente después de que se preparó el café, ya que esta situación puede resultar
peligrosa para el usuario si esa bebida se derrama y resulta en una quemadura.

Es fácil ver que esta situación puede darse; la ejecución que recorre los estados 0,
2, 5, 6, 8, 3 manifiesta este problema. No sólo eso, sino que existe siempre al menos
un 0,05 de probabilidad de que esta situación se manifieste. Esta probabilidad es
independiente del entorno con el cual esta máquina interactúe.

Una vez que se disponga de un modelo del comportamiento del usuario, esta
probabilidad de falla podrá ser refinada. El siguiente paso del análisis es, enton-
ces, realizar un modelo probabilístico del comportamiento del usuario. Sin embargo,
notaremos que esto no es tan simple como parece, ya que algunas elecciones de
modelado pueden conducir a problemas que no necesariamente resulten evidentes.
Estos problemas pueden ser causados por la introducción de las probabilidades y sus
interacciones, o bien por violaciones de interfaz.

Desde el punto de vista de la introducción de probabilidades, debemos tener
en cuenta que históricamente se han planteado dos maneras distintas de hacerlo.
Estas dos maneras han recibido los nombres de modelado generativo [Chr90] y reac-
tivo [vGSS95].

Los modelos generativos son tales que la distribución probabilística de sus transi-
ciones elige en cada caso tanto una acción como un estado de destino. Esto conlleva
problemas a la hora de la composición en paralelo [DHK99]. En primer lugar, requie-
ren que toda transición esté anotada probabilísticamente. Esta ausencia de transi-
ciones no determinísticas resulta en que se está especificando, de manera solapada,
la carrera entre distintas acciones para determinar cual se ejecuta antes que otra.
En general este tipo de aspectos no es controlable por ninguno de los componentes,
sino que depende de agentes externos como los planificadores definidos en la sección
anterior. Otro problema que puede suscitarse es que son posibles las violaciones de
interfaz. Una transición puede resolverse probabilísticamente en uno de los compo-
nentes determinando que cierta acción de salida debe ejecutarse. Sin embargo, el
otro componente puede determinar, de manera similar, que otra acción será la que
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deberá ser aceptada. Esta combinación no es válida, pero sin embargo se le asigna
una valuación probabilística que, en definitiva, no tiene sentido desde el punto de
vista del comportamiento del sistema compuesto. Estos problemas son consecuencia
de la imposibilidad de los modelos generativos de modelar no determinismo, a pesar
de que se vuelve aparente a la hora de la composición.

Los modelos reactivos son más apropiados para esta tarea. Estos modelos tienen
transiciones donde sólo el estado destino es seleccionado probabilísticamente, como
es en el caso de los SPAs introducidos anteriormente. Sin embargo, el problema de
violaciones de interfaces continúa amenazando la aplicabilidad de la técnica.

El resultado de emplear cualquiera de las técnicas de modelado es que, cada
uno a su manera, impide un razonamiento composicional a la hora de analizar los
comportamientos temporales de los sistemas en base a sus componentes. Los compor-
tamientos que se validan a nivel de cada componente resultan, una vez compuestos,
inválidos. Esta contradicción sugiere que existe un problema al nivel del modelado
de los sistemas, o al nivel de la herramienta que estamos utilizando para modelar-
los. El objetivo del formalismo que introducimos en este capítulo es hacer evidentes
estas fallas directamente a la hora del modelado, de manera que cualquier error de
modelado sea descubierto al momento del análisis aislado de cada componente, en
vez de invalidar el análisis en la última fase composicional.

Autómatas Probabilísticos de Interfaz

A partir de este análisis y la necesidad de un formalismo que evite los proble-
mas antedichos es que proponemos como solución a los Autómatas Probabilísticos
de Interfaz (PIA, por sus siglas en inglés Probabilistic Interface Automata). Estos
autómatas surgen de una combinación de las ideas de los Autómatas de Interfaz
(IA) y los SPA ya introducidos en secciones anteriores. Como tal, puede verse (De-
finición 3.1) que los PIA son casos particulares de los SPA, y por lo tanto pueden
utilizarse en un modelado en conjunción con los mismos. Formalmente un PIA A es
una tupla M =< SM , s

0
M , A

I
M , A

O
M , A

H
M , RM > donde los conjuntos AIM , AOM y AHM

son mutualmente disjuntos, y de forma tal que si definimos AM = AIM ∪ AOM ∪ AHM
resulta que la tupla MSPA =< SM , s

0
M , AM , RM > es un SPA como fuera definido

anteriormente.

Así como podemos establecer la relación entre un PIA y su SPA embebido, pode-
mos hacer algo similar para obtener el IA subyacente (Definición 3.2), que resulta
de proyectar las distribuciones que constituyen las transiciones del PIA en transicio-
nes no determinísticas. Mediante esta proyección se vuelve natural la definición de
componibilidad de PIAs (Definición 3.3).

De la misma manera, pero proyectando sobre el SPA subyacente, podemos definir
para PIAs las nociones de ejecuciones y producto en paralelo (Definición 3.4). Este
producto es muy similar al caso del producto de SPAs, tal como puede verse en el
ejemplo de la Figura 2. Por otra parte, heredan de los IA las nociones de estados
ilegales y ambientes legales (Definición 3.5).

En este momento es importante remarcar una notable diferencia entre las no-
ciones de ilegalidad de IAs y aquella de PIAs. La definición de ilegalidad para el
caso de IAs es muy restrictiva. Requiere que, para cada uno de los componentes
involucrados en la composición, las acciones de salida que se quieran ejecutar por
parte de este componente sean inmediatamente aceptadas como acciones de entrada
por el componente contraparte. Sin embargo, esto resulta tan restrictivo que impide
el modelado incremental y el refinamiento de comportamiento interno de un com-
ponente. Por ejemplo, supongamos el caso en que un componente desea solicitarle
un dato a otro componente. Supongamos además que este segundo componente se
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Figura 2: Producto (parcial) de Autómatas Probabilísticos de Interfaz

encuentra actualmente realizando un cómputo que lo bloquea temporariamente y,
por lo tanto, no puede responder inmediatamente a este requerimiento. Este estado
de la composición es, tal como está prescripto por la definición de estados ilegales de
IA, ilegal. Pero supongamos además que el segundo componente, más allá de que se
encuentre realizando un cómputo, es tal que siempre que realiza un cómputo interno
eventualmente vuelve a un estado en el que acepta requerimientos, sin excepción. En
ese caso, el bloqueo del requerimiento al primer componente es tan sólo transitorio.
La eventual respuesta a ese requerimiento está garantizada, siendo el problema so-
lamente que no se puede realizar de manera inmediata. Este tipo de situaciones no
son permitidas por el formalismo de IA, pero sí lo son por los PIAs.

La razón detrás de esta decisión de modelado es que es usual, dentro del proceso de
desarrollo de un software, que sea preciso detallar comportamiento que antes quedaba
a un nivel de abstracción superior. Este proceso de refinamiento no es sólo común
en el desarrollo de software, sino también deseable, ya que converge a introducir
detalle en aquellas secciones del comportamiento que naturalmente van necesitando
una explicación más profunda.

La Definición 3.5, entonces, no sólo permite la sincronización demorada de al-
gunos tipos de interacciones, sino que también formaliza estas situaciones en de-
talle. Esta formalización se sostenie en la lógica de descripción ACTL y la noción
de planificadores ecuánimes para establececer las condiciones exactas en las que la
sincronización demorada está permitida.

Preservación de comportamiento probabilístico

El resultado más fuerte relacionado con el uso de PIAs para el modelado de
sistemas concurrentes es el hecho de que permiten la validación composicional del
comportamiento de estos sistemas. Como ya se discutió anteriormente, un enfoque
de validación composicional debería permitir la validación de comportamiento aisla-
do a nivel de cada componente en primer lugar. En segundo lugar, debería permitir
la validación de estos mismos comportamientos, pero directamente sobre el modelo
global resultante de la composición en paralelo de estos componentes. Finalmente,
y más importante aún, ambas validaciones deben ser coherentes. Es decir, las pro-
piedades que se validaron sobre los componentes aislados deben mantener su validez
inalterada toda vez que se los compone con interfaces apropiadas.

El modelado por medio de PIA efectivamente provee esta garantía, tal como se
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enuncia en el Teorema 3.1. Este teorema establece formalmente que, dados A y B
dos Autómatas Probabilísticos de Interfaz tales que

A y B son componibles; y

su producto A ⊗ B es legal (es decir, no contiene estados ilegales que sean
alcanzables);

entonces vale que cada vez que φA es una fórmula pCTL tal que está expresada
exclusivamente en términos de acciones del autómata A, y A es tal que satisface φA,
entonces también es cierto que A⊗B |= φA

1

Este teorema tiene consecuencias inmediatas respecto de las medidas probabilís-
ticas relacionadas con estos comportamientos. En particular, se desprende el Corola-
rio 3.1 que establece que si la probabilidad de que el PIA A satisfaga la propiedad φA
se encuentra en un intervalo [Pmin, Pmax] ⊑ [0, 1], entonces la probabilidad de que
A⊗B satisfaga la misma propiedad se encuentra en el mismo intervalo (posiblemente
en un intervalo estrictamente incluido en él); es decir, la propiedad probabilística se
sigue verificando si ya lo hacía en primer lugar.

Capítulo 4: Validación preliminar de PIAs

En este Capítulo nos concentramos en validar tres cuestiones que nos parecen
centrales a la utilidad y aplicabilidad de los Autómatas Probabilísticos de Interfaz.
En primer lugar, queremos validar que modelar componentes y, por extensión, siste-
mas concurrentes completos por medio de PIAs no es necesariamente más complejo
que hacerlo mediante formalismos ya establecidos. En segundo lugar, queremos mos-
trar que los modelos resultantes de aplicar el formalismo de PIA para el desarrollo
de modelos de componentes concurrentes resulta en modelos legibles y no contami-
nados de transiciones espúreas. Finalmente, y más allá de que los resultados teóricos
fuesen debidamente demostrados en el Capítulo anterior, queremos validar que efec-
tivamente las propiedades validadas en los componentes mantienen su validez sobre
la composición global.

Con el objetivo de validar estas tres cuestiones, tomamos de la literatura un
ejemplo de sistema reactivo y crítico. En este caso, nos concentramos en el sistema
de TeleAssistance [EGMT09], descripto de manera simplificada en la Figura 3.

El sistema de TeleAssistance (TA) es una aplicación web cuyo objetivo es el de
proveer asistencia médica remota a pacientes que, por alguna razón, carecen de movi-
lidad propia o precisan quedarse en sus hogares, pero que de todas maneras sufren de
alguna afección tal que necesitan atención y monitoreo continuos. La interacción más
básica entre el paciente y el sistema TeleAssistance comienza siempre con el envío
del comando startAssistance hacia el sistema. Como resultado de este comando,
el sistema TA entra en un ciclo reactivo en el que puede aceptar cualquiera de los
siguientes pedidos de interacción:

stopMsg, que indica al sistema TA que el paciente no tiene más requerimientos
que realizar durante esta sesión.

vitalParamsMsg. Este comando permite al paciente enviar sus parámetros vi-
tales hacia el sistema, mediante un dispositivo dedicado a la tarea. Al recibir

1En rigor, el Teorema 3.1 establece algunas condiciones sobre la forma de la fórmula φA, y sobre
los planificadores empleados para verificar la validez de la fórmula en A y A ⊗ B. Sin embargo, el
espíritu del teorema es tal como lo reproducimos en este resumen.
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Figura 3: Un modelo del software del sistema TeleAssistance

este tipo de comando, el servidor de la aplicación se ocupa de evaluar los pa-
rámetros vitales del paciente. A continuación, y de ser necesario, el sistema
sugiere una acción a tomar. Por ejemplo, el sistema puede decidir que es nece-
sario algún cambio en la medicación que está recibiendo el paciente. De ser así,
se lo comunica en forma de uno de dos comandos: changeDrug, que indica que
el medicamento debe cambiar completamente; o bien changeDose que indica
que, si bien el medicamento no cambiará, si lo hará la dosis a administrar. En
cualquiera de estos dos casos, el dispositivo en poder del paciente es notifica-
do, de manera que en el futuro administre los medicamentos según la nueva
configuración. Además, el usuario mismo es notificado de que se realizó un cam-
bio mediante el mensaje notifyPA, aunque no se le informa detalladamente la
naturaleza del cambio.

Si durante el análisis de los parámetros vitales del paciente resulta que se detec-
ta algún tipo de anomalía que pueda amenazar la salud del paciente, el sistema
eleva una alarma y solicita que un equipo de primeros auxilios (FAS, del inglés
First-Aid Squad) sea enviado al domicilio del paciente. En este caso, el sistema
indicará al paciente que espere al FAS mediante el mensaje attendToPA.

También puede darse el caso que el paciente se sienta mal, más allá de que sus
parámetros vitales indiquen un problema o no. Para estas situaciones, el sistema
prevé la utilización del mensaje pButtonMsg, que permite al usuario enviar
una señal de emergencia al sistema. El sistema, al recibir la señal pButtonMsg,
dispara una alarma que eventualmente resulta también en el envío de un equipo
de primeros auxilios al domicilio del paciente. Se espera que cada vez que el
sistema recibe una señal de emergencia, se envíe el equipo de primeros auxilios,
sin excepción.

En el contexto de este trabajo, introducimos cambios en el modelo original a fin
de hacer que esta última parte no sea cierta, y existan condiciones bajo las cuales una
alarma puede ser disparada, pero el equipo de primeros auxilios no sea enviado de
manera correcta. Luego de realizar estos cambios, mostramos que es factible obtener
especificaciones correctas mediante PIAs y que estas no precisan esfuerzo adicional
respecto de especificar con formalismos ya establecidos. En particular, un modelo
válido como ambiente realizado mediante PIAs puede verse en la Figura 4. Como
puede verse, no se introducen dificultades adicionales ni transiciones espúreas, más
allá de las necesarias para ocultar elecciones internas del modelo.
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Figura 4: Un modelo PIA del paciente

A continuación, realizamos la validación de distintas propiedades y contrastamos
los resultados obtenidos para las validaciones de los componentes de manera indivi-
dual, contra los resultados obtenidos al analizar el sistema en su composición global.
Las propiedades que evaluamos están detalladas en el Cuadro 1.

En este Capítulo, analizamos cada una de las propiedades en detalle, para ambos
componentes (Sistema TA y Paciente), y mostramos que los resultados enunciados
por el Teorema 3.1 efectivamente se sostienen como se esperaba.

Capítulo 5: Discusión

En este capítulo evaluamos los enfoques recientes que tienen puntos de contacto
con nuestra propuesta de modelado. En particular nos focalizamos en los trabajos que
tienen como objetivo el modelado de ambientes probabilísticos, a veces llamados tam-
bién perfiles de uso [Che80, Mus93]. Podemos agrupar estos trabajos en dos grandes
grupos: aquellos que apuntan a anotar modelos ya especificados con probabilidades
recientemente relevadas, y aquellos que tienen como objetivo proveer herramientas
de modelado con las probabilidades como parte fundamental del enfoque. Nuestro
trabajo se engloba dentro de este segundo grupo.

Respecto del primer grupo, se evalúan trabajos que si bien resultan en artefactos
anotados, lo hacen a nivel de composición [RM04, EGMT09]. En estos trabajos se
desdibuja la relación entre el valor de las probabilidades y los componentes que las
generan, haciendo imposible una verificación modular.

Dentro del segundo grupo, merece especial mención el trabajo de Delahaye et
al. [DCL11] que presenta un enfoque inspirado en la anotación de contratos. La
idea de contratos es una idea relacionada con aquella de interfaces, ya que establece
las relaciones entre las responsabilidades de distintos componentes que interactúan.
Sin embargo, este enfoque es ortogonalmente distinto al nuestro, lo cual permitiría
aplicarlos de manera complementaria. En primer lugar, el trabajo citado analiza los
contratos de manera aislada y resulta en una cota a la probabilidad de satisfacer
cierta propiedad en el modelo compuesto. Nuestro enfoque, en cambio, establece una
relación directa entre la probabilidad de satisfacción en cada componente, respecto
de la probabilidad de satisfacción en el sistema compuesto. En segundo lugar, el
objeto de estudio es distinto, ya que mientras en nuestro caso operamos sobre una
especificación con semántica de ramificación, el trabajo citado lo hace sobre contratos,
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Propiedad Corresponde al

SP1: El paciente presiona el botón de pánico
(pButtonMsg), pero sin embargo el equipo de prime-
ros auxilios no es enviado al domicilio del paciente.

Sistema TA

SP2: El sistema determina que debe realizar un cambio
de medicación (changeDrug) o de dosis (changeDose),
y el siguiente mensaje que recibe el TA de parte del
paciente genera una alarma que no resulta en el envío
del equipo de primeros auxilios

Sistema TA

SP3: El TA recibe el mensaje de que el botón de pánico
fue presionado durante su primera interacción con el
paciente

Sistema TA

SP4: El TA recibe el mensaje de que el botón de pánico
fue presionado durante alguna de sus primeras cinco
interacciones con el paciente

Sistema TA

EP1: El paciente recibe la notificación de un cambio de
medicación (changeDrug o bien changeDose) y reac-
ciona inmediatamente presionando el botón de pánico

Paciente

EP2: El paciente presiona el botón de pánico durante
su primera interacción con el sistema

Paciente

EP3: El paciente presiona el botón de pánico duran-
te alguna de sus primeras cinco interacciones con el
sistema

Paciente

Cuadro 1: Propiedades evaluadas para validación de PIAs

que tienen semántica de traza. Esta semántica no permite la noción de refinamiento
de especificaciones, aunque sí puede modelar la composición y conjunción de sistemas.

Existen otros trabajos con la misma visión que el nuestro, basados en el principio
de presunciones/garantías sobre autómatas determinísticos [KNPQ10, HKK13], y
similarmente también sobre Cadenas de Markov Interactivas [HK09]. Sin embargo,
estos trabajos no proveen una garantía de preservación de comportamientos a través
de la composición en paralelo.

Respecto de la discusión entre modelado reactivo y generativo, existen varios
trabajos que han trabajado sobre el problema. La discusión respecto del enfoque ge-
nerativo se ha concentrado alrededor de determinar decisiones que permitan realizar
la composición en paralelo de forma que el resultado sea un modelo formalmente
válido, aunque tal vez no correcto desde el punto de vista del sistema a especifi-
car [Chr90, DHK99].

Desde el punto de vista de la validación de interfaces, también se ha explorado
la opción de utilizar los Autómatas de Entrada/Salida [LT87, WSS97]. Sin embargo,
estos autómatas establecen condiciones de sincronización aún más estrictas que las de
los Autómatas de Interfaz, resultando en especificaciones con transiciones espúreas
que existen sólo con el objetivo de cumplir estos requerimientos foráneos al modelado
en sí.

Capítulo 6: Verificación parcial eficiente

Más allá de que el formalismo de PIAs introducido en el Capítulo 4 permite el
modelado composicional de sistemas de software, aún se mantiene el problema de
que la verificación de este tipo de modelos se vuelve rápidamente infactible a medida
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que los modelos crecen en complejidad y tamaño. En este Capítulo presentamos una
técnica de verificación parcial que creemos puede ayudar cuando la factibilidad de
realizar un análisis exhaustivo es amenazada. El enfoque que presentamos en este
Capítulo es una combinación de simulación probabilística, inferencia de propiedades
sobre conjuntos de observaciones, y verificación probabilística.

En el contexto de este Capítulo y aquellos que siguen, nos concentramos en la
aplicación de esta técnica sobre los Autómatas Probabilísticos Simples. Vale recordar
que los Autómatas Probabilísticos de Interfaz presentados anteriormente en esta tesis
son un caso particular de los SPAs, por lo que la técnica presentada en este Capítulo
es aplicable a PIAs, y sus resultados son equivalentemente extrapolables a los mismos.

La técnica que presentamos intenta atacar dos frentes que amenazan la factibi-
lidad de los análisis. En primer lugar, el problema de la explosión de estados, que
surge a medida que los modelos se vuelven más complejos en sus interacciones y,
como consecuencia, crecen exponencialmente en tamaño.

El segundo problema que atacamos está principalmente relacionado con la re-
solución de sistemas probabilísticos. El análisis de este tipo de sistemas implica la
resolución de un sistema de ecuaciones lineales, cuyo tamaño es equivalente a la can-
tidad de estados del sistema. Es claro que si es infactible almacenar el conjunto de
estados en sí mismo, también será imposible analizarlo. Sin embargo, aún en los casos
en que el conjunto de estados es almacenable, puede ser infactible analizarlo. Esto
se debe a que métodos exactos de resolución como la eliminación gaussiana pueden
tomar un tiempo excesivo sobre matrices de tamaño excesivo. Como consecuencia,
suelen utilizarse métodos iterativos que apuntan a aproximar la solución en sus su-
cesivas iteraciones. Estas técnicas precisan un criterio para, eventualmente, detener
la ejecución de la aproximación. El problema es que, en general, no hay garantía que
nos permita conocer qué tan cerca del resultado real se detuvo esta ejecución. Sólo
se pueden dar garantías parciales, como por ejemplo afirmar que al detener la ejecu-
ción siempre se obtiene un valor inferior (o igual) al real (es decir, cotas inferiores al
valor real) en el caso del cálculo de recompensas; y cotas superiores en el cálculo de
probabilidades.

La técnica que presentamos está inspirada en la idea de que analizar sólo una parte
del espacio de estados puede proveer cotas más informativas (es decir, más cercanas al
valor real) que las obtenidas por medio de un análisis exhaustivo. La hipótesis es que
es posible identificar una porción pequeña del espacio de estados, pero significativa
en términos de comportamiento y probabilidad de ocurrencia, considerando todos los
estados fuera de esta porción como estados de error. La intuición es que, además de
facilitar el almacenamiento de una menor cantidad de estados, los métodos iterativos
sobre esta porción del espacio completo tienen, para un mismo presupuesto de tiempo
de ejecución, la posibilidad de avanzar mucho más en sus iteraciones de aproximación.

Más específicamente, la técnica combina simulación, inferencia de propiedades
y model checking probabilístico. Mediante la simulación obtenemos un conjunto de
ejecuciones que representan el comportamiento esperado del sistema. Estas ejecu-
ciones son analizadas y de ellas obtenemos un predicado invariante que las describe
de manera global y sucinta. Finalmente, este invariante es utilizado para generar un
submodelo del original, restringiéndose sólo a aquellos estados que cumplen el predi-
cado invariante. Finalmente, este submodelo es analizado exhaustivamente mediante
model checking probabilístico.

Exploraciones parciales

La base del enfoque que presentamos en este Capítulo es la noción de submodelo
(Definición 6.1). Intuitivamente, un submodelo de un autómata probabilístico M es
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otro autómata probabilístico que retiene algunos estados y transiciones de M , y
donde el resto de los estados no retenidos son condensados en un estado trampa λ.
Más formalmente, dado un modelo probabilístico M = 〈S, s0, A,R〉, un submodelo
de M es otro modelo probabilístico M ′ = 〈S′∪{λ}, s0, A,R

′〉 tal que S′ ⊆ S, s0 ∈ S′,
y R′ ⊆ (S′ ∪ {λ})× (A ∪ {τ})×D(S′ ∪ {λ}) es tal que, para todo a ∈ A

1. para cada (λ, a, µR′) ∈ R′, debe valer que supp(µR′) = {λ} y a = τ ;

2. para cada s ∈ S′, y para cada a ∈ A ∪ {τ}, debe ser que ∃µR′ ∈ D(S′ ∪ {λ})
es tal que (s, a, µR′) ∈ R′ ⇐⇒ ∃µR ∈ D(S) donde (s, a, µR) ∈ R;

3. para cada s1, s2 ∈ S′ y cada a ∈ A ∪ {τ} debe ser el caso de que ∃µR′ ∈
D(S′ ∪ {λ}) donde (s1, a, µR′) ∈ R′ ∧ s2 ∈ supp(µR′) ⇒ ∃µR ∈ D(S) tal que
(s1, a, µR) ∈ R ∧ µR(s2) = µR′(s2);

4. finalmente, para cada s1 ∈ S′ tal que s1 6= λ, y cada a ∈ A ∪ {τ} debe
darse que ∃µR′ ∈ D(S′ ∪ {λ}) tal que (s1, a, µR′) ∈ R′ ⇒ ∃µR ∈ D(S) donde
(s1, a, µR) ∈ R · µR′(λ) = 1−

∑

s2∈supp(µR′ )\{λ} µR(s2).

La cláusula 1 indica que el estado λ efectivamente funciona como estado trampa,
sólo aceptando además la acción interna τ . La cláusula 2 establece que cualquier
transición, salvo las originadas en λ, es una transición que ya estaba presente en el
modelo M . De manera similar, la cláusula 3 nota que las probabilidades de estas
transiciones también son preservadas del modelo original, excepto por aquellas que
fueron redirigidas al estado trampa λ. Finalmente, la cláusula 4 indica que la proba-
bilidad asignada a las transiciones que llevan al estado λ coinciden exactamente con
la probabilidad restante una vez que se tuvieron en cuenta las probabilidades de las
transiciones que se conservan dentro del submodelo.

De esta forma, un submodelo preserva cierta parte del comportamiento presente
en el modelo original. Como consecuencia, resulta también que existe una relación
entre los planificadores que pueden utilizarse para resolver no determinismo en el
modelo original, y aquellos que pueden utilizarse en el submodelo. La noción de pla-
nificadores restringidos (Definición 6.2) captura esta relación. Más aún, es fácil
ver que cualquier planificador aplicable a un submodelo M ′ de M puede ser extendi-
do a un planificador válido para M . Esta relación entre planificadores es clave para
entender por qué es válido el resultado de acotación de los análisis sobre un submo-
delo frente al análisis de un modelo completo. Intuitivamente, si la probabilidad de
cierto evento en un submodelo es p′, esta probabilidad tuvo que haber sido obtenida
mediante un planificador σ′ del submodelo. Dado que este planificador σ′ es válido
también para el modelo original, el evento también debe ser posible en el modelo ori-
ginal. Sin embargo, como este planificador puede ser extendido a otros planificadores
para el modelo original, estos planificadores extendidos podrían planificar acciones
entrelazadas que reduzcan esta probabilidad. Por lo tanto, la probabilidad del evento
en el modelo original será forzosamente un valor p ≤ p′. Un análisis análogo permi-
te mostrar que los valores de recompensas obtenidas sobre un submodelo deberán
ser necesariamente menores o iguales que los valores reales de la misma recompensa
sobre el modelo completo. Los Teoremas 6.2 y 6.1 capturan esta idea, y son demos-
trados en este Capítulo. La demostración formal sigue el argumento de planificadores
restringidos que delineamos anteriormente.

Generación automática de submodelos

Si bien es cierto que cualquier submodelo conlleva estas propiedades de acotación
de los valores de probabilidades y recompensas, es clave que, si nuestro objetivo es
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un enfoque aplicable y eficiente, seamos capaces de obtener submodelos tales que las
cotas que obtienen sean útiles. Una validación preliminar presentada en este Capítulo
muestra que no cualquier submodelo es igualmente útil. Por ejemplo, submodelos
obtenidos por medio de una exploración parcial DFS (profundidad primero) no es
tan útil como una más abarcativa obtenida por BFS (a lo ancho primero). Pero por
otra parte, las exploraciones BFS son también poco útiles en algunos casos. La clave
en todos los casos es maximizar la probabilidad de, en cada transición, mantenerse
dentro del espacio de estados del submodelo.

Lamentablemente, dado un tamaño deseado de submodelo, el problema de encon-
trar este modelo más probabilísticamente denso de ese tamaño es intratable [JD07].
En cambio, nuestro enfoque adopta una heurística para obtener estos submodelos,
concentrándonos en el hecho de que esta densidad probabilística debería ser, de algu-
na manera, observable si evaluamos las ejecuciones que tendría el sistema durante su
tiempo de vida. Nuestro enfoque apunta a aproximar estos submodelos deseables me-
diante una simulación (acotada) del comportamiento del sistema. Es decir, la base de
nuestro enfoque implica la simulación de una cantidad considerable de ejecuciones
del modelo completo. El conjunto resultante resultará testigo del comportamiento
real, y por lo tanto debería cubrir buena parte del modelo probabilísticamente más
denso.

Por otra parte, entendemos que es más eficiente obtener una descripción semán-
tica de estos submodelos, en contraposición a una representación explícita sintáctica.
De esta manera, además de capturar el comportamiento visto en las simulaciones,
podemos además capturar comportamiento relacionado que ha probado ser útil de
analizar, tales como simetrías, eventos independientes, y diferentes planificaciones de
los mismos eventos pero en distintos órdenes [BK08], que pueden contribuir signifi-
cativa y positivamente, a la probabilidad de mantenerse dentro del submodelo.

Más formalmente, esta descripción semántica está dada por el concepto de in-
variante de un conjunto de ejecuciones (Definición 6.3). Mediante esta noción de
invariante, podemos hablar del submodelo inferido por un invariante (Defini-
ción 6.4). Formalmente, dado un modelo probabilístico M = 〈S, s0, A,R〉 y ψ una
fórmula (posiblemente un invariante obtenido de las ejecuciones); el submodelo infe-
rido por ψ es el submodelo M ′ = 〈S′ ∪ {λ}, s0, A

′, R′〉 of M tal que

a) cada s′ ∈ S′ es tal que s′ |= ψ;

b) para cada s′1 ∈ S′, s′1 6= s0, vale s0
α

−→ s′1; y finalmente

c) para todo estado s′2 ∈ S \ S′ tal que existe otro estado s′1 ∈ S, (s′1, a, µR) ∈ R
con µR(s

′
2) > 0, vale que M, s′2 |6= ψ.

Dicho de otra manera, si un estado s′2 no es parte del submodelo, pero es alcanzable
desde otro estado s′1 que sí se encuentra en el submodelo, debe ser que s′2 viola la
propiedad ψ. Es decir, el submodelo está conectado de manera maximal desde el
estado inicial a través de la fórmula ψ.

Automatización de la técnica

Vale notar que en todo momento nuestro objetivo es obtener una técnica com-
pletamente automática, que no requiera de la intervención de un operador humano
en ninguna de sus fases. Esto implica la necesidad de obtener invariantes de manera
automática. Para esto, nos valemos de la posibilidad de realizar, de forma automá-
tica y sistemática, repetidas ejecuciones simuladas acotadas sobre el sistema real.
Luego de obtener este conjunto de ejecuciones finitas, utilizamos la herramienta
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Figura 5: Procedimiento del análisis basado en exploraciones parciales

Daikon [EPG+07], un motor de inferencia de propiedades sobre observaciones, para
obtener los predicados invariantes que se mantienen verdaderos a través de todos
los estados explorados durante estas simulaciones. Estos predicados, a su vez, son
utilizados para construir, también de manera automática, un autómata observador
que, mediante el monitoreo de la validez de la propiedad durante la construcción del
sistema compuesto, permite generar un submodelo inferido acorde.

La figura 5 describe el procedimiento general de nuestra técnica propuesta en sus
distintas fases.

Capítulo 7: Validación empírica

En este capítulo ponemos nuestro enfoque a prueba. Esto comprende tres pre-
guntas fundamentales.

El primero de estos interrogantes tiene que ver con la capacidad de nuestra técnica
de proveer mejores cotas (es decir, más precisas) que los enfoques de model checking
establecidos al momento. Realizamos esta experimentación tanto para el cálculo de
probabilidades como también así para el de recompensas.

En segundo lugar, comparamos nuestro enfoque y sus resultados contra mecanis-
mos de verificación basados en muestro estadístico, es decir, métodos Monte Carlo.

Finalmente, comparamos nuestro enfoque automático con aquel donde podemos
introducir algo de experiencia e intervención humanos. Esta intervención está espe-
cialmente enfocada en la generación de predicados invariantes, ya que un ingeniero
con conocimiento del dominio de la propiedad que se está analizando puede ser ca-
paz de proveer invariantes que nuestro enfoque automático tal vez no puede hallar.
Nos interesa en este caso comparar el esfuerzo entre la generación automática y la
manual, además de comparar los resultados obtenidos por cada técnica.

Todas estas preguntas fueron aplicadas sobre varios casos de estudio, es decir,
distintos sistemas de software y los ambientes con los que ellos interactúan. En primer
lugar, modelamos un sistema de encolado de tareas en tandem, es decir, en dos colas
sucesivas. El evento de falla de interés en este caso es el hecho de que ambas colas
pueden quedar simultáneamente llenas, bloqueando cualquier otra tarea.

En segundo lugar, analizamos un protocolo de envío de datos entre dos compu-
tadoras. Este protocolo no es confiable, por lo que se utilizan bits de control a fin de
no repetir datos innecesariamente en casos en que los paquetes enviados se pierden.
Analizamos dos variantes de este protocolo y su entorno. En el primer caso, el cliente
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Caso de estudio Modelo del
sistema

Determinismo
del ambiente

Propiedades

Cola en tandem
LTS no de-
terminístico

Determinístico
Tiempo promedio a la falla
Probabilidad de falla en tiem-
po acotado

Bounded Retrans-
mission Protocol

DTMC Determinístico
Tiempo promedio a la falla
Probabilidad de falla en tiem-
po acotado

Bounded Retrans-
mission Protocol

DTMC
No determinísti-
co

Tiempo promedio a la falla
Probabilidad de falla en tiem-
po acotado

IEEE 802.3 CS-
MA/CD

SPA No determinísti-
co

Tiempo promedio de turna-
round

Red infectada SPA
No determinísti-
co

Tiempo promedio a infección
total
Probabilidad acotada de in-
fección total
Probabilidad acotada de in-
fección parcial

Cuadro 2: Resumen de los casos de estudio analizados

envía archivos de diverso tamaño, eligiendo de manera probabilística el tamaño de
archivo a enviar. En la segunda variante, esta elección de tamaño es no determinís-
tica y no está cuantificada. El evento de interés en ambos casos es la superación de
cierto límite de reintentos, tras lo cual se aborta el envío del archivo en cuestión.

El tercer caso de estudio que trabajamos es el del protocolo de detección y evasión
de colisiones en el envío de datos por medio de redes wireless. Este protocolo está
descripto por el estándar IEEE 802.3 y prevé la utilización de tiempos de espera en
el caso de colisiones. Estos tiempos de espera se incrementan de manera exponencial
en el caso de detectar nuevas colisiones. En este caso, el evento de interés no es un
error, sino que nos interesa saber cuánto tiempo debe transcurrir en promedio para
que dos terminales, que compiten por el medio de transimisión, puedan enviar con
éxito sus datos.

Finalmente, modelamos el caso de una red de computadoras donde una de ellas
se encuentra infectada por un virus y puede contagiar a sus vecinas. En este caso, los
eventos de interés son la infección de un nodo determinado de la red, y la infección
de la red por completo.

El Cuadro 2 resume los casos de estudio analizados en esta tesis.

Planteo experimental

En cada caso, tomamos modelos de la literatura que fueron analizados con an-
terioridad en la comunidad científica. En algunos de estos casos, modificamos los
modelos existentes a fin de hacerlos más complejos e interesantes si estos eran de-
masiado pequeños para poder realizar un análisis exigente de la técnica. Además,
realizamos modelos de sus entornos operativos, en los casos en que éstos no estaban
disponibles. En cada caso, chequeamos exhaustivamente que la composición de todos
los componentes sea válida respecto de las restricciones planteadas por los Autómatas
Probabilísticos de Interfaz.

Las propiedades de interés fueron modeladas, en cada caso, mediante fórmulas
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de estado a fin de poder verificar de manera automática su alcanzabilidad. Adicio-
nalmente, establecimos estructuras de recompensas adecuadas en los casos en los
que, además de medir la probabilidad del evento, nos interesaban otras dimensiones
asociadas (por ejemplo, el tiempo promedio hasta alcanzar el evento en cuestión).

En aquellos casos en los que fue factible aplicar la técnica de model checking ex-
haustivo, lo hicimos a fin de obtener una cota inicial a los resultados buscados. En los
casos en los que los modelos pudieron ser analizados de manera analítica lo hicimos,
mientras que en aquellos que no, aplicamos el model checker PRISM [HKNP06]. Es
importante recordar que, a diferencia de un cálculo analítico, el model checker realiza
aproximaciones numéricas para llegar al resultado deseado. Dado que esta aproxi-
mación puede no converger en tiempo, notamos el tiempo de corte de la ejecución y
advertimos que este resultado debe tratarse como una cota, y no como el resultado
real.

Finalmente, pusimos a prueba nuestro enfoque en cada caso de estudio. Ob-
tuvimos, para cada caso, distintos invariantes variando los parámetros iniciales de
simulación, es decir, la cantidad de ejecuciones simuladas y su longitud. Utilizamos la
herramienta Daikon v4.6.4 [EPG+07] para producir invariantes. La herramienta fue
configurada a fin de que los invariantes obtenidos fuesen conjunciones de términos
de la forma x ∼ y, donde x e y son o bien variables del modelo o constantes nu-
méricas; y ∼∈ {<,≤,=,≥>}. En estos casos de estudio, un estado del modelo está
representado por las distintas valuaciones que pueden llegar a tomar estas variables
del modelo.

Los invariantes obtenidos fueron utilizados para construir de manera automática
un modelo observador O que monitorea en todo momento la validez del invariante.
Este observador es un autómata en sí mismo que, al ser compuesto con el modelo del
sistema M , sincroniza con todas sus acciones y fuerza a evolucionar hacia el estado
λ cada vez que el estado de destino original resultaría en una violación del invariante
obtenido. Gracias a esta manera monitoreada de construir la composición, el modelo
que obtenemos es con seguridad un submodelo del sistema original.

El Cuadro 3 resume de manera sucinta los resultados obtenidos para cada caso
de estudio para las preguntas que nos planteamos en esta tesis.

Capítulo 8: Discusión

Respecto de la técnica presentada anteriormente, tal vez el punto que merezca
más trabajo es el de poder determinar, de manera automática, los parámetros de
simulación (cantidad y longitud de trazas) que maximicen, durante la fase de aná-
lisis del modelo parcial, la utilidad de los resultados obtenidos. Afortunadamente,
se desprende de los ejemplos estudiados que, en general, se requiere una cantidad
discreta de trazas y una longitud también moderada. Además, se puede ver que la
velocidad con la que se obtienen estimados iniciales es muy veloz, mientras que estas
estimaciones tienden a estancarse una vez establecida esta estimación inicial. Es-
to supone una oportunidad para, de manera rápida, poder comparar la efectividad
de dos configuraciones de simulaciones distintas. Tales comparaciones pueden inclu-
so paralelizarse a fin de obtener rápidamente la mejor combinación tomada de un
conjunto de valores posibles dados.

Por otra parte, es válido notar que esta técnica es completamente ortogonal, y
por lo tanto se beneficia, de otras técnicas de optimización de verificación de mode-
los [KKZ05, HKNP06, SVA05b, You05, KNP06, DG97].

Existen otros enfoques que buscan también realizar mediciones sobre modelos
incompletos. Por ejemplo, el trabajo de [ZVB11, CBvB12] apunta a proveer una



25

Tandem Queue (mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown 4,2× 105 TO 7× 10

7 TO N/A TO 5,5× 107 TO
Tandem Queue (bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown 0,0000 TO 0,0713 TO N/A TO 2,28× 10

−6
19 hs

Fully probabilistic BRP (mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 2,5× 10

7 TO N/A TO 1,69× 107 TO
Fully probabilistic BRP (bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 0,0680 22 hs N/A TO 0,01319 7,9 hs

Non-deterministic BRP (minimum mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 5,6× 10

6 TO N/A TO 9999 126,25 s
Non-deterministic BRP (maximum mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 9,8× 10

6 TO N/A TO 9965,87 46,26 s
Non-deterministic BRP (minimum bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 0,02382* 8,6 hs* N/A TO 0,01239 17,5 hs

Non-deterministic BRP (maximum bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 0,71205 TO N/A TO 0,01321 16,2 hs

WLAN (minimum mean turnaround time)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
1725,00 1725,00 628,00 s 1725,00 0,98 s N/A N/A 1665,63 490,05 s

WLAN (maximum mean turnaround time)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
4301,65 4301,65 54149 s 4300,67* 2 s* N/A N/A 3846,17 1085,87 s

Constrained Virus (minimum mean time to total infection)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
5200,00 OOM TO 500,54 2771 s N/A N/A 999,32 414 s

Constrained Virus (minimum mean time to corner infection)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
1200,00 OOM TO 599,54 1452 s N/A N/A 999,32 1242 s
Constrained Virus (maximum bounded probability to total infection before 5200 steps)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
0,51872 OOM TO 1,0000 ∼ 0 s N/A N/A 1,0000 ∼ 0 s
Constrained Virus (maximum bounded probability to corner infection before 1200 steps)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
0,53898 OOM TO 0,97997 1004 s N/A N/A 0,75805 420 s

Cuadro 3: Resumen de (mejores) resultados para cada técnica y caso de estudio.
TO indica corte de ejecución tras 24 horas. N/A denota resultados que no pudieron
ser obtenidos por superar el tiempo, o que no son confiables debido a la técnica
subyacente.
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medida de avance de un verificador hacia la resolución de una pregunta respecto de
una propiedad dada. Sin embargo, esta medida no está relacionada con el dominio
del problema ni tampoco con el predicado que se desea validar.

Desde el punto de vista de los análisis estadísticos del estilo Monte Carlo, el ma-
yor problema que los afecta es que sólo pueden funcionar para propiedades acotadas
en el tiempo, esto es, de la forma ψU≤Tρ donde T es un tiempo fijado de antemano.
En los casos donde la propiedad no es acotada en el tiempo, el hecho de que las
observaciones simuladas sí sean acotadas impide clasificar a cada simulación como
válida o no respecto de la propiedad. Trabajos tales como [SVA05a, RP09, LP06,
BGH09, RK08, MSW12, MSW13] apuntan a sesgar las simulaciones con el fin de
poder determinar estos valores de verdad. Sin embargo, el impacto de este sesgado
no puede ser cuantificado en general, lo cual amenaza la validez estadística de estos
enfoques. Otros enfoques interesantes son aquellos que apuntan a la simulación es-
tratificada [RC05, VAVA94], donde las simulaciones son sucesivamente recomenzadas
desde puntos intermedios, con la esperanza de que se aproximen al evento de interés.
Estas técnicas requieren, sin embargo, un análisis exhaustivo que permita predecir
dónde realizar estos recomienzos. Por otra parte, debe tenerse en cuenta el hecho
de que este recomienzo puede introducir un sesgo. Debe, en todo caso, medirse el
impacto de este sesgo.

En contraste, el trabajo en [YCZ11] propone dos técnicas que no dependen de
un sesgo en la simulación. Sin embargo, una de ellas requiere un número excesivo
de muestras simuladas, tanto que no pueden ser obtenidas en un tiempo razonable;
mientras que la segunda requiere un procesamiento que precisa que el modelo com-
pleto sea explorado de antemano, justamente uno de los puntos que deseamos evitar
con nuestra técnica.

Otro punto a analizar es nuestra decisión de reemplazar no determinismo por
distribuciones equiprobables durante la simulación. Si bien este enfoque es correcto,
puede no ser óptimo respecto de la calidad de las cotas que pueden obtenerse. En
este sentido, son interesantes los trabajos que intentan desviarse hacia los planifica-
dores extremos [HMZ+12, BFFHH11, LPD+14], que proveen, de manera acorde, los
resultados mínimos y máximos.

Capítulo 9: Conclusiones

En esta tesis, trabajamos sobre el problema de la verificación de sistemas, con un
foco en la verificación cuantitativa, y con el objetivo de producir resultados aún cuan-
do una exploración exhaustiva no es factible. La técnica que proponemos permite,
mediante el modelado apropiado de ambientes operativos, cuantificar estas explora-
ciones parciales y obtener información parcial referida a la propiedad de interés.

Nuestra técnica propuesta puede, en algunos casos, proveer cotas sobre la proba-
bilidad o las recompensas asociadas a propiedades de alcanzabilidad sobre el sistema
bajo análisis. Esto puede ser útil para argumentar que el sistema, a pesar de no
haber sido evaluado de manera exhaustiva, de todas maneras cumple con garantías
mínimas respecto de su confiabilidad u otras prestaciones.

La resolución del no determinismo en estos sistemas es aún un tópico de interés
para investigaciones futuras. En particular, el mecanismo de resolución que utilizamos
a lo largo de este trabajo hace que todas estas decisiones sean uniformes, lo cual
hace que las exploraciones parciales también lo sean, y no se reduzcan lo suficiente
en tamaño. En particular, creemos que puede ser interesante aplicar estrategias de
simulación que emulen un planificador que fuerce la ejecución fuera de los estados de
error de interés, a fin de maximizar el tiempo de ejecución dentro de estos submodelos.
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Además, es interesante focalizar la investigación en la búsqueda de planificadores que
permitan encontrar rápidamente cotas que se aproximen a los valores extremos de
probabilidades y recompensas. Asimismo, creemos que es interesante extender el
uso de la técnica hacia otros formalismos de modelado, incluyendo eventualmente la
aplicación sobre código fuente o programas binarios.

Desde un punto de vista más ingenieril, el trabajo se sostiene sobre un nuevo for-
malismo de modelado de comportamiento probabilístico y no determinístico. En este
sentido, presentamos los Autómatas Probabilísticos de Interfaz como una alternativa
adecuada para el modelado composicional, ya que garantiza la conservación de las
propiedades a nivel componente dentro de la composición. Además, al presentar este
formalismo relajamos además las restricciones más fuertes respecto de sincronización
que eran planteadas por los Autómatas de Interfaz tradicionales. Sin embargo, cree-
mos que requerir ecuanimidad absoluta para los planificadores puede aún resultar
demasiado restrictivo. Este área será foco de trabajo futuro a fin de relajar aún más
estas restricciones.

Finalmente, hemos presentado evidencia experimental que nos permite aseverar
con alto grado de confianza que la técnica propuesta resulta de utilidad en los casos
en que un análisis exhaustivo no es factible. Sin embargo, existen áreas donde pro-
fundizar el trabajo, tales como la inferencia de los parámetros óptimos de simulación,
y la realización de experimentos que permitan argumentar que el uso de invariantes
obtenidos de manera automática es más útil (o demanda menos esfuerzo) que el uso
de invariantes obtenidos por medio de un enfoque de inspección y análisis manual.
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CHAPTER 1

Introduction

1.1. Foreword

The document that you, the reader, have in your hands is succinctly defined as
being a “Ph.D. thesis”. Whatever that may actually mean, the fact is that this thesis,
not as an exception but rather as a generality, is quite a complex document. The
main reason for this complexity is that, although this is a whole, and (hopefully)
coherent document, the ideas and concepts presented here have not been written
either in one go nor linearly. Rather, the process has been quite the contrary. This
document is the result of a journey of several years of research, during which there
have been many side roads, backtracks, detours and even U-turns. During this period
of work, many complex concepts were drawn up, ideas were both produced as well
as fed on, experiments were set up and evidence was gathered. The aim of this
document is then to present all of this work in a way that can be read (and hopefully
understood and better yet, enjoyed) by several different audiences, who come with
different backgrounds.

The goal of this foreword and introduction is to ease up the process of approaching
this document. Here, we will provide a short and informal summary of the topics,
problems and solutions tackled by this thesis. In the spirit of keeping this summary
simple, formality, rigour, detailed explanations and citations are missing from this
introduction. However, the experienced reader should not fret, as every concept
introduced here will be properly defined further on in the thesis. As a result, this
section is by far the most readable and easily approachable.

This introduction will conclude with a roadmap of the remainder of the document.
Some readers may be interested in reading the whole thesis, while others may be
interested only in a fraction of it. This introduction, along with its roadmap at the
end, should give every reader, no matter her background or interests, a good notion
of where to find the topics she would like to know more of.

So now, without further ado, we begin this introduction by discussing why model
checking of systems is an important topic, and which are the particular challenges
we tackle in this thesis.
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1.2. Motivation

In the last years, software systems have become pervasive; and also have come
to perform tasks that are increasingly more critical. The presence of software sys-
tems in our world ranges from small, easily updateable everyday devices like tablets
and smartphones, to the more critical, and harder to modify or upgrade, like space-
flight and plant controllers. These systems are highly reactive, that is, they are
not designed to perform a batch computing task until completion. Rather, they are
designed to respond to external events such as environment sensing and user inter-
action, possibly taking into account previous events and the own system’s reactions.

As a result of this reactivity and the intricacy of the possible interacting environ-
ments, the complexity of these systems increases accordingly. As the system grows
more complex, so does the possibility of introducing errors that may prove crippling
to the system’s ability to perform its intended task. As a result, techniques that can
ensure that a software system will perform its task flawlessly are desirable. Since
deployment and fixing costs increase as the development process matures and the
system is deployed, validation and verification techniques that can be applied earlier
in the process are valuable.

Since the focus of this thesis is in techniques that can be applied early in the
process, the deliverable under analysis will not be the actual implemented software
system, but rather an abstract description of it. This abstraction is a formal one,
since it has a definite syntax and unambiguous semantics, which makes it amenable
to a rigorous analysis. These descriptions that we will work on take the form of
Labelled Transition Systems (LTS), which will be defined further on in Chapter 2.
For now, it will suffice to say that an LTS is a set of system states. From each state
it is possible to traverse to another state, through the triggering of an action.

When analysing these descriptions, it will be interesting to answer questions
regarding their ability to perform the required task. For example, if we were to
analyse the controller of a car’s engine and braking system, we could ask questions
such as “does pressing the brake pedal always result in the wheels being braked?”, or
“is the gas injection cut off every time that the engine surpasses 8000 revolutions per
minute?”. Useful techniques are those that can answer these questions with definite
yes or no answers; and that when answering no, are able to provide a counterexample
to back this negative claim. Following the previous example, such a tool could
answer yes to the second question, but provide a negative answer for the first, while
informing the engineer that the wheels are not braked if the emergency brake was
already applied.

Model checking is an example of these techniques. Given a software model M
such as one expressed by an LTS and a property φ (which is expressed in some modal
logic, usually one that can reason about the time ordering of events), model checking
is an effective procedure to answer whether M satisfies φ, usually noted M |=
φ. Unfortunately, the problem of state explosion seriously hampers applicability.
This problem stems from the fact that even small modifications or additions to one
aspect of the model can impact greatly on the complete model, by generating an
inordinate number of states that the model checking procedure needs to explore.
From a theoretical point of view, it is known that the problem of model checking, for
the type of systems and properties we are interested in, lies in the PSPACE-complete
class of problems.

There has been much research aimed at palliating the state explosion problem.
Some techniques, such as partial order reduction, attack the problem by optimising
the system exploration, avoiding the generation of states that are known to be, in
some way, equivalent to others already visited. Other techniques have the goal of
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minimising the memory requirements while still being able to generate the whole
space of states. For example, symbolic representations of states manage to avoid
explicitly enumerating the states by the use of boolean conditions that successively
refine the state space, eventually refining it to single states. Incremental state space
building (also called on-the-fly state generation), which generates states as their
analysis is needed, also helps in reducing the generated state space, especially in the
case where a counterexample can be found without examining the whole system.
All these techniques can complement each other and contribute to making model
checking applicable to larger domains.

Yet, there is a limit to how much these techniques can help, and it is often the case
that complex systems grow large enough that no combination of techniques is able to
reduce the state space so that its analysis is made feasible. Even if the whole system
state space could be generated, we must take into account that verification procedures
are also costly in execution time. It is usually the case that the time budget for
verification activities does not allow for such costly procedures, and verification tasks
would need to be cut short.

In such cases, what can we expect from a technique such as model checking?
Unfortunately, not much. Recall that a successful model checking procedure has two
possible outcomes: either a yes answer, meaning that the state space was completely
explored and no violation to the property was found; or else a no answer, which
comes accompanied by a counterexample exhibiting the property violation. Positive
answers always need the whole state space to be explored, while the negative ones
may not, as a counterexample may be found at any point in the analysis. Therefore,
if the model checking procedure was terminated (either because the memory was
exhausted, or the time budget was consumed), and no definite answer was provided,
we can only know for sure that, up to the point where termination was forced, the
procedure did not find any property violations (if it had, it would have had the
evidence necessary to provide a counterexample). For most applications, such a
vague answer is not enough, as there could be countless ways for the software to fail
that are present in the portion of the state space that the procedure did not analyse.

This is clearly a lost opportunity. The software model has already been formally
modelled, requirements were elicited and expressed in a suitable logic, and a model
checking procedure is in place that could, in theory, answer the satisfaction question
for this model and property. Even more, if the procedure was actually put to work,
it expended a (possibly large) time budget, and still failed to provide an answer.

This thesis is kicked off by this scenario. The main question that we set ourselves
to answer is this: can we, when faced with models and properties for which model
checking procedures have failed (be it for memory or time reasons), nevertheless infer
some information that is actually useful for the user that intended to verify that model
and property? In a very simple sense, we want to fulfil the promise in the box below
in Figure 1.1.

In the following we summarise the steps we took to answer this question, explore
the contributions’ box in Figure 1.1 in more detail, and we direct the reader to
specific chapters discussing each concept and idea in detail.

1.2.1. Quantitative vs. qualitative information

The model checker procedure we described up to now is such that, when it termi-
nates successfully, gives as a result some qualitative information; that is, it answers
whether the model under analysis satisfies the given property, or not. As we have
discussed in the previous section, the problem is that whenever the procedure fails to
terminate properly, it returns no answer. Further, if we required the model checker
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to return some safe qualitative information, that is, an answer that errs on the side of
caution, the only possible answer would be no, the model under analysis potentially
does not satisfy the property.

Even though qualitative questions do not convey much information in this case,
there are some quantitative questions that can be asked about the portion of the
model that was explored before failing. For example, “how much of the whole system
was found to be free of property violations?”; or “how confident can we be that the
system does not exhibit a violation, given that the model checking procedure did
not see one so far?”. The answer to these questions can provide some interesting
feedback on the failed verification effort. This brings us to the first contribution of
this thesis.

The work presented here provides a way to obtain useful quantitative infor-
mation about the validity of a property even if a complete, automatic model
check is infeasible.

Quantitative answers that are based solely on state space size or on its topology
are usually not very informative. For example, we could have an educated guess
about the expected size of the full model (even though it has not been built) and
answer that a certain percentage of this expected size was analysed without finding
evidence of property violations. But, what would such an answer actually mean to
the engineer posing the question? For instance, recall the example of verifying a
model of a car’s controller. This controller acts over the engine and braking system,
and has anti-lock capabilities (ABS). Assume as well that the property of interest is
that every time that the brake pedal is pressed, the wheels should not lock. Now,
suppose we tried to model check this system, along with its property, and that we
ran out of memory after exploring 75% of the state space. As was discussed earlier,
no failure was found within this explored state space. But, what useful information
can we obtain from this failed model check? What if it turns out that most of the
explored states only depict situations where the car is already at zero speed, or with
its engine off and emergency brake applied? We have a sense that some states are
more important or more interesting than others; and those explored in this case are
clearly the least interesting.

What would be a good measure of how interesting a given state is? Within this
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thesis we will argue that a state will be of greater interest if this state is more likely to
be witnessed during the actual execution of the system. There are several factors that
could impact this likelihood. First, given the high reactivity of these systems, the
likelihood of a given state being witnessed in actual operation will be closely related
to the likelihood of the events that trigger a transition to such a state. Further,
the likelihood of events may itself be influenced by the responses of the system. For
example, a system that controls the elevators on an intelligent building is more likely
to receive requests to go down from upper floors at morning (when people leave to
work), and conversely more likely to receive requests to go up in the afternoon (when
people return). This information is usually captured in what is called an operational
profile, about which we will expand later on.

A second source of likelihood information is the system itself. Just as some
environmental events may be more likely, so may be some of the system’s actions.
For example, and going back to the elevator system above, it may be desirable to
balance the work load of the elevators. One possible way to do this would be, once
a request is received, to choose the elevator randomly between the elevators closest
to the floor where the request originated.

To convey likelihood information such as the one described above, we will enrich
our system and environment models with notions of probability theory. We will also
allow non-deterministic information to be conveyed by these models, since it is often
the case that the likelihood of different, concurrent actions, cannot be quantified. In
Chapter 2 we will summarise and quickly refresh the notions we will employ in the
course of this thesis.

1.2.2. Modelling probabilistic information

Of course, we are not the first to discuss probabilistic models in the context of soft-
ware engineering. Several different modelling formalisms exist, which differ mostly
in two ways. First, they may differ in the nature of the probability distributions that
they allow. For example, some formalisms such as Continuous Time Markov Chains
model probabilistic transitions, as its name implies, through continuous time distri-
butions. Alternatively, Discrete Time Markov Chains model transitions as discrete
probability steps.

A second way in which they differ is more oriented towards the interactive nature
of software systems. Some models allow the probabilistic choices to discern between
different possible actions of the model. Others restrict the probability distribution
to just choose the result of taking a single action. Yet another kind of models
establishes a strict alternation between actions that may have probabilistic results
and actions for which their outcome is not probabilistically quantified and is left
non-deterministic.

The problem that we identify in this thesis, however, is that none of these formal
models allow for a meaningful compositional approach to system model construction.
The main problem is that measuring the likelihood of a system component making
a choice, independently of the behaviour of its environment (which may include
other components), can be notoriously difficult. Quantifying this isolated choices
properly may require a careful decomposition of probabilities that were estimated or
measured from the actual setting of the system. These compound probabilities need
to be decomposed into conditional ones, and these should in turn be incorporated
into a component description that will form part of the composite system.

We characterise the problems that arise from trying to perform this decomposi-
tion as a result of a lack of an appropriate treatment of the notion of action control-
lability in combination with probabilistic descriptions. This leads to problems such
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probabilistic semantics that are unclear, in the sense that their provenance
cannot be easily identified;

unclear relation between the probability distributions of the components and
those of the composite model; and, as a consequence

a lack of preservation of the probabilistic behaviour properties of a component
when in combination with the behaviour of concurrently running components.

In this thesis we propose a novel formalism for probabilistic reasoning in such
a way that individual component behaviour is guaranteed to be preserved over a
composition. This approach achieves the goal by combining, and adding to, notions
taken from Input-Output Probabilistic Automata and Interface Automata. This
analysis leads to another contribution of this thesis.

We present a formalism that supports compositional construction and vali-
dation of probabilistic models.

We can now refine Figure 1.1 as seen in Figure 1.2.

This new automata-like formalism, Probabilistic Interface Automata, is presented
and discussed in Part II of this thesis.

1.2.3. Partial verification

Up to this point, we have discussed the underpinnings of a formalism that allows
meaningful description and analysis of probabilistic and non-deterministic behaviour
in a setting where models are constructed incrementally and through parallel com-
position. However, this is only half the work we need to do, since we still have not
tackled the original problem we posed at the beginning of this introduction; that of
providing quantitative information from a partial, failed model checking effort.

In this thesis, we propose measuring a partial model exploration as a random
variable. In particular, the measure that we will assign to a property evaluated
over a partial model is the expected value of this random variable for an arbitrary
execution trace that traverses outside the explored state space. The rationale for this
definition is that, since there were no property violations observed over the explored
state space, we can safely assume that every unexplored state is a property-violating
state. Defining the measure as this random variable, this value represents a lower
bound on the actual value of the random variable expectation, if it were calculated
over the complete model.
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From a software engineering point of view, we will note that several reliability
measures studied in the software reliability community can be characterised as ran-
dom variables similar to the one we describe here. However, in contrast to software
reliability approaches based on testing and simulation, here we aim to exploit the
rigorous and extensive explorations that model checking tools and techniques are ca-
pable of, thanks to their fine-grained control of the model exploration strategy and
efficient techniques for identifying already visited states.

This results in an additional contribution of this thesis

We present a formalisation of what it means to perform a verification over a
partial exploration of a system model; an analysis of why it makes sense to do
so; the relationship between the results of a partial verification and a full one;
and the expected benefits of performing partial vs. full verifications.

1.2.4. Efficient partial verification

Once the problem of verifying a partial state space is formalised and we know the
relationship between the answer to the full model verification and the partial one,
we set out to finally obtain the desired results.

However, both technical and practical reasons hamper this approach as we de-
scribed it. From the technical point of view, the task of quantitatively annotating a
partial state space exploration a posteriori is unfortunately not feasible. Suffice to
say that, if our initial verification effort failed because of memory exhaustion, it is
very unlikely that we still have enough memory to add this quantitative information
to the mix.

From a practical point of view, and even if such annotation procedure were fea-
sible, the obtained results are bound to not be very informative. The main reason
for this is that model checkers are not really designed towards partial explorations.
Their task is to finish the exploration in full, with no regard of how they get to it
in the meantime. This means that partial explorations are generated with no rhyme
nor reason; they are just as good as being completely random in their exploration
order.

Analysis of this situation causes some questions to arise naturally.

What if we have a way to yield many, different, partial state space explorations?

Will the results obtained from verifying different partial state spaces be com-
parable?

Which state spaces yield better results? (And what does better actually mean?)

Is there a way to tell whether a partial state space will perform better than
another (as in, they will provide more useful feedback results)?

If so, can we consistently obtain good state spaces, in the sense that through
their partial verification we can consistently obtain meaningful information?

In Chapter 6 we will show that not all partial state spaces are created equal.
We argue that there is a relationship between the quality of the feedback results
obtained by the analysis of a given partial state space, and how much of the relevant
behaviour is captured by this state space. In this sense, the more relevant behaviour
it captures, the better the results obtained.
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We will also present a heuristic technique that combines probabilistically-guided
simulations, invariant behaviour inference and model checking to obtain partial state
spaces that i) are consistently small in relation to the full state space size (less than
5% of the projected full state space); and that ii) these partial state spaces, when
subjected to the verification effort, consistently obtain meaningful results, that is,
that they can be used to argue a reliability case for the whole system model.

Finally, we bring all of our results together. We show that Probabilistic Inter-
face Automata are a natural and sensible way to model reactive software systems
and their interaction with a probabilistic environment, even if the reactive system
exhibits probabilistic behaviour itself. These models are amenable to automated ver-
ification techniques, but they can grow large enough to make whole system analysis
infeasible. In such cases, our partial verification technique can be applied, including
the automated generation of partial state spaces that have the potential of providing
useful results.

We also study other approaches that aim at obtaining results while avoiding the
construction of the complete model. In particular, we focus on statistical approaches,
which are usually referred under the umbrella term of Monte Carlo verification. This
techniques have minimal memory requirements, as they only need to keep a single
execution path in memory. We discuss the characteristics of these approaches, and
we compare the results obtained with our technique against the application of these
statistical methods.

This wraps up the final contribution of this thesis

We present an automated technique for exploring a system model in order
to obtain a partial model such that it attempts to maximise the information
conveyed by the partial verification approach.

Further, we validate this approach through several case studies and compare the
results against established approaches. The blown-up contributions of this thesis are
captured by Figure 1.3.

1.2.5. Contributions of this thesis

This thesis puts forth the following contributions, which condense those we men-
tioned along this introduction.
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In summary, this thesis provides an approach for obtaining quantitative infor-
mation on properties that cannot be verified in general using state-of-the-art
approaches such as model checking or Monte Carlo statistical verification. Fur-
ther, this quantitative information is meaningful in terms of the property being
verified in first place.

In order to specify probabilistic behaviour, we present Probabilistic Interface
Automata, a formal model suitable to be used in an incremental, compositional
model construction setting.

We formalise the problem of partial state space probabilistic verification, and
its relationship with the probabilistic model checking of full models. We show
that verification over partial explorations provides meaningful bounds on the
expected results over full models.

Finally, we present an automated approach to efficiently obtain partial state
spaces that consistently provide better results than both full state space model
checking and Monte Carlo approaches.

1.2.6. Roadmap

g

Chapter I
Introduction

Chapter II
Preliminaries

Chapter III
PIA

Chapter VI
Partial 

Verification

Chapter IV
PIA Validation

Chapter V
Discussion

Chapter VII
Validation

Chapter VIII
Discussion

Chapter IX
Conclusions

Part II - Probabilistic Interface Automata

Part III - Partial verification

Figure 1.4: Organization of this thesis.

This thesis has two distinct, mostly independent parts. As a result, it can be
read in three different ways depending on the interests of the reader. These three
ways are depicted in Figure 1.4.

The first way to read it is to simply follow the thesis sequentially. In this way, first
a common background is presented in Chapter 2, and then we progress to Part II
where we present our modelling formalism, Probabilistic Interface Automata, and
discuss related probabilistic modelling work. This first part is based on [PBU09]
where Probabilistic Interface Automata were studied as a probabilistic model for
environments interacting with non-deterministic system models.

After presenting these automata, we move on to our partial verification frame-
work, validate our approach through some case studies from the literature, and dis-
cuss similar and related verification approaches. This second part is based on ideas
first presented in [PBU10] and then expanded in [PBU13]. Finally, we offer our
conclusions and outlook on the subjects tackled by this thesis.

Two alternative ways of reading the thesis are offered for those readers that are
only interested in the formal aspects of the modelling formalism; or those that mainly
want to learn about our partial verification approach. These readers may choose to
read either Part II or Part III only, without sacrifice of a coherent reading. If the
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reader would choose to approach Part III only, some backtracking to background
definitions may be needed; whenever such back references are necessary, these will
be clearly identified in the text.



CHAPTER 2

Preliminaries

This chapter summarises most of the concepts and notation that we will use
throughout this thesis. First, we will introduce and recall some definitions related to
probability theory. Later on we will define labelled transition systems and particular
extensions of them, both non-deterministic as well as probabilistic.

2.1. An introduction to probability theory

In this section we provide a summary of notions from measure and probability
theory that we will use throughout the thesis. Readers experienced with the subject
may skim through this chapter in order to familiarise themselves with the notation
we employ for different concepts. These definitions are by no means a complete
introduction to probability theory, and they are kept simplified for the benefit of
the casual reader. Further, we only focus on discrete probability spaces, since this
thesis does not deal with continuous probabilistic processes. The interested reader
is referred to the classic introduction by Feller [Fel08], from which we borrowed the
definitions below.

Definition 2.1 (Probability space). A probability space is a triple < Ω, 2Ω, µ >
where

Ω is a countable set called the sample space;

2Ω is the powerset of Ω, and its elements are called events; and

µ : 2Ω → [0, 1] is a function such that

• µ(∅) = 0;

• µ(Ω) = 1; and

• given (ωi), i ∈ N a sequence of elements in 2Ω such that they are all disjoint
pairwise, then µ(

⋃

i ωi) =
∑

i µ(ωi).

The function µ is usually called a probability measure or, more often, a probability
distribution. Given a subset ω of a sample space Ω, µ(ω) is referred as the measure
of ω.

41
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Definition 2.2 (Support set). Given a distribution µ on a sample set Ω, the support
set of µ, noted supp(µ) is the smallest closed set S ⊆ Ω such that its complement
with respect to Ω has measure zero.

There is a particular case which occurs when there is a single element ω in Ω
such that µ(ω) = 1, and µ(ω′) = 0 for any other ω′. In that particular case, we say
µ is a Dirac distribution.

Definition 2.3 (Product of probability spaces). Let P1 =< Ω1, 2
Ω1 , µ1 > and P2 =<

Ω2, 2
Ω2 , µ2 > be two probability spaces. We can then consider the product probability

space defined as P1 ⊗ P2 =< Ω1 × Ω2, 2
Ω1×Ω2 , µ1 ⊗ µ2 >, where for each ω1 × ω2 ∈

2Ω1×Ω2 it holds that µ1 ⊗ µ2(ω1 × ω2) = µ1(ω1)× µ2(ω2).

Sometimes we will be interested not only in the probability of an event ω, but also
on the value of functions over these events. For example, suppose the set Ω depicts
the possible outcomes of flipping ten coins. A function of interest, for example, could
be the one which calculates the number of heads for a given event. The value of such
a function is related to the probability space where it is applied. This gives rise to
the notion of random variables.

Definition 2.4 (Random variable). Let < Ω1, 2
Ω1 , µ1 > and < Ω2, 2

Ω2 , µ2 > be two
probabilistic spaces. A random variable X is a function X : Ω1 → Ω2. X is said to
be evaluated on outcomes Ω1 and have range Ω2.

In the context of this thesis, Ω2 will always be R. In this sense, the idea of a
random variable is to convey some numerical value to an outcome ω.

Definition 2.5 (Expected value of a random variable). Let < Ω, 2Ω, µ > be a prob-
ability space and X a random variable on R (that is, X : Ω → R). The expected
value of X, noted E[X] or X, is the weighted average of X based on µ. That is,
X =

∑

ω∈Ω µ(ω)×X(ω).

2.2. Formalisms for system modelling

In the course of this thesis we are interested in the modelling and verification
of properties over reactive systems. That is, we focus on systems that, rather than
perform a batch task without interference from outside entities, actually interact with
their environment by reacting to some events and providing some of its own. These
events that the system generates, in turn, elicit responses on the entities outside the
reactive system. In that sense, these outside entities can be regarded as reactive
systems themselves.

2.2.1. Non-deterministic models

Labelled transition systems are a widespread form of modelling such systems.
One of the main advantages of these models is that, along with a semantics of asyn-
chronous execution but synchronisation on shared events, they allow for incremental
modelling of systems by the way of parallel composition.

We will start first by defining models that do not exhibit any probabilistic be-
haviour. We will refer to these models by the umbrella term of non-deterministic
model, since the choice between different reactions to a given event will be resolved
by choosing one without any quantitative information about this choice (i.e., the
choice is non-deterministic).



2.2. FORMALISMS FOR SYSTEM MODELLING 43

Definition 2.6 (Labelled Transition System [Kel76]). A Labelled Transition System
(LTS) is a tuple M =< S, S0, A,R > where

S is a finite set of states;

S0 ⊆ S is the set of initial states. Without loss of generality, we usually
consider this set to be unitary and note s0 the unique initial state;

A is a finite set of event labels, also usually referred as action labels; and

R ⊆ S ×A×S is the transition relation that specifies, for each state, to which
state the system evolves as a result of a given event. Since R is a relation,
there could exist none, or several different, transition destinations for a same
action.

In order to establish a proper protocol of interaction between components that
run concurrently and synchronise through shared actions, it is useful to segregate
the action set A into three mutually disjoint sets. These sets will represent the input
actions that a component reacts to, the output actions that it generates, and the
hidden or internal actions that represent internal computation and are not visible
from outside the component.

This thesis bases its approach and results on the Interface Automata formal-
ism [HdA01]. Later on we will provide a discussion on this choice, as well as consid-
ering other suitable formalisms that could have been used in its place.

Definition 2.7 (Interface Automata [HdA01]). An Interface Automaton is a tuple
P =< SP , s

0
P , A

I
P , A

O
P , A

H
P , RP > where:

SP is a finite set of states.

s0P ∈ SP is a distinct initial state.

AIP , A
O
P , A

H
P are finite and mutually disjoint sets of input, output and hidden

actions respectively. We denote the set of all actions AP = AIP ∪AOP ∪AHP .

RP ⊆ SP ×AP × SP is the transition relation.

We will write AIP (s), A
O
P (s) and AHP (s) for a state s ∈ SP to denote the subset

of actions in AIP , AOP and AHP , respectively, that are enabled at s. An action a ∈ AP
is said to be enabled at state s ∈ SP if there exists t ∈ SP such that (s, a, t) ∈ RP .
Alternatively, we may say that the transition (s, a, t) itself is enabled if the previous
condition holds. Analogously, we denote AP (s) the subset of actions enabled at
state s, regardless of them being input, output or hidden actions. Without loss of
generality, we require that for each state s ∈ SP , there exists s′ ∈ SP , a ∈ AP such
that (s, a, s′) ∈ RP .

In essence, an Interface Automaton is a labelled transition system where its action
set has been further subdivided to distinguish the input, output and hidden actions.
As we will see, this does not make a syntactic difference, but it does semantically.
Also, note that we have reduced the original set of initial states to a single one
without loss of generality.

Definition 2.8 (Execution fragments and executions). An execution fragment of
an Interface Automaton P is a (possibly infinite) sequence α = s0a1s1a2s2 . . . of
alternating states and action labels. Execution fragments always start with a state
and, if finite, also end with a state. Each subsequence siai+1si+1 within an execution
fragment of P is such that (si, ai+1, si+1) ∈ RP .
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Given an execution fragment α, first(α) denotes the first state of the fragment,
while tail(α) denote the execution fragment from its second state. tail(α) might be
empty if α is finite and consists of only one state. If α is finite, last(α) denotes its
final state.

An execution of an Interface Automaton P is an execution fragment α of P such
that first(α) = s0P , the initial state of P . As executions are execution fragments
themselves, they can also be finite or infinite.

We will also note fragments(P ) and fragments∗(P ) to denote the set of execu-
tion fragments of P and the set of finite execution fragments of P , respectively.
Accordingly, we will note execs(P ) and execs∗(P ) for the set of executions and finite
executions of P . For convenience, we also define length : fragments(P ) → N ∪∞ to
be the number of states traversed by the execution fragment. We also define projec-
tors αsi and αai that return the i-th state and i-th transition label respectively. Note
that αsi is defined from 0 through length(α)− 1, while αai is defined from 1 through
length(α)− 1.

The notation α ≤ α′ will be used to indicate that the execution fragment α is
a prefix of execution fragment α′; that is, for each 0 ≤ i ≤ length(α) − 1, αsi = α′s

i

and for each 1 ≤ j ≤ length(α)− 1, αaj = α′a
j . Accordingly, suffix (α, i) is defined for

every i < length(α) and obtains the execution fragment that results of dropping the
first i states and actions from an execution fragment. Therefore, for an execution
fragment α = s0a1s1a2s2a3s3 . . ., suffix (α, 0) = α, suffix (α, 1) = s1a2s2a3s3 . . . and
so on.

As additional notation, we will note the existence of a finite execution fragment
α from s0 to sn by s0

α
−→ sn.

Parallel composition

As we discussed earlier, we will use Interface Automata to build more complex
system models in an incremental fashion. The notion of action segregation in In-
terface Automata allows for establishing a synchronising communications protocol
between components, as output actions on one component will synchronise with
input actions on another one. The notion of composability of Interface Automata
captures this idea formally.

Definition 2.9 (Composability [HdA01]). Let P and Q be two Interface Automata.
We say P and Q are composable if it holds simultaneously that

AHP ∩AQ = ∅;

AP ∩AHQ = ∅;

AIP ∩AIQ = ∅; and

AOP ∩AOQ = ∅

Furthermore, when discussing the interaction of two Interface Automata P and
Q, it is usual to refer to its shared set of actions, Shared(P,Q) = AP ∩ AQ. Note
that if P and Q are composable, then Shared(P,Q) = (AIP ∩AOQ) ∪ (AOP ∩AIQ). We
recall the definition of Interface Automata product and illegal states.

Definition 2.10 (Product [HdA01]). Let P and Q be two composable Interface Au-
tomata. Their product P ⊗Q is another Interface Automaton such that

Its set of states SP⊗Q is defined as SP × SQ;
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its initial state is s0P⊗Q = (s0P , s
0
Q); and

its segregated action sets are AIP⊗Q = (AIP ∪ AIQ) \ Shared(P,Q); AOP⊗Q =

(AOP ∪AOQ) \ Shared(P,Q) and AHP⊗Q = AHP ∪AHQ ∪ Shared(P,Q).

Finally, its transition relation RP⊗Q is defined by the set

{((s, t), a, (s′, t)) such that (s, a, s′) ∈ RP∧
t ∈ SQ ∧ a /∈ Shared(P,Q)}∪

{((s, t), a, (s, t′)) such that (t, a, t′) ∈ RQ∧
s ∈ SP ∧ a /∈ Shared(P,Q)}∪

{((s, t), a, (s′, t′)) such that a ∈ Shared(P,Q)∧
(s, a, s′) ∈ RP ∧ (t, a, t′) ∈ RQ}

Since the behaviour of a composite Interface Automaton is directly related to the
behaviour of each of its components, there is a close relationship between the execu-
tions (and executions fragments) of a composite system, and those of its components.
However, this depends on the semantics of the interface. The action segregation in-
troduced in the definition of Interface Automata is essentially a description language
tool. Although it has no bearing in the previous formal definitions, it introduces the
notion of illegal composition states. Intuitively, a composition state will be regarded
as illegal if, somehow, it violates the enabledness of the intended actions of each
component.

Definition 2.11 (Illegal states [HdA01]). Given two composable Interface Automata
P and Q, their product’s illegal states are defined by the set Illegal(P,Q) ⊆ SP ×SQ.
For any s ∈ SP , q ∈ SQ, (s, q) ∈ Illegal(P,Q) if ∃a ∈ Shared(P,Q) such that
a ∈ AOP (s) ∧ a /∈ AIQ(q), or conversely ∃a ∈ Shared(P,Q) such that a /∈ AIP (s) ∧ a ∈

AOQ(q).

Informally, the idea behind illegal states is that for a composition to be legal,
component systems should not be able to block each other’s enabled output actions.
We will abuse notation and say that the product P ⊗Q of two Interface Automata
P and Q is legal if the product has no reachable illegal states.

The notions of composability and illegal states make it possible to define what a
valid environment for a given Interface Automaton is.

Definition 2.12 (Valid environment [HdA01]). Given an Interface Automaton P ,
another non-empty Interface Automaton Q is a valid environment for P if all of the
following hold simultaneously:

P and Q are composable;

AIQ = AOP ; and no state in Illegal(P,Q) is reachable in P ⊗Q.

Non-determinism and schedulers

It is important to note that the distinct execution fragments generated by an In-
terface Automata depend on how the choice between different transitions is resolved.
That is, whenever two or more actions can be chosen in a state, the choice of which
action to take is left unspecified, and can only be resolved by an external agent.
In order to distinguish this choice from the probabilistic choices that will appear
later in this thesis, we will refer to these choices as non-deterministic choices. Note
that this is slightly different from a common meaning of non-determinism which is
limited to the choice between different transitions with the same label. Throughout
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this thesis we use the term non-deterministic to distinguish those choices that are
not probabilistic in nature.

In order to characterise this external agent, and thus the different non-deterministic
choices and the execution fragments that they induce, we will introduce the notion
of a scheduler.

Definition 2.13 (Scheduler). A scheduler σ for an Interface Automaton P =<
SP , s

0
P , AP , RP > (also called an adversary) is a total function σ : execs∗(P ) →

RP , such that σ(α) is a transition starting from last(α); and whenever σ(α) =
(last(α), a, s) it must be that (last(α), a, s) ∈ RP . The notation Sched(P ) refers to
the set of all possible schedulers for the automaton P ; while σ(α)a and σ(α)s refer
to the scheduled action and destination state given an execution α, respectively.

The idea behind schedulers is that they drive the execution of the automaton
by resolving all possible non-determinism. As such, they restrict the set of possible
execution fragments. Extending this notion, a set of schedulers defines a set of
possible executions and execution fragments.

Definition 2.14 (Scheduler-generated executions). Given an Interface Automaton
P , a scheduler σP and an execution α ∈ execs(P ), we say that σP generates α over P
if and only if for each 0 ≤ i < length(α) it holds that σP (α

s
0α

a
1 . . . α

s
i ) = (αai+1, α

s
i+1).

Note that once a scheduler σ is set for an Interface Automaton P , this scheduler
eliminates all possible branching behaviour. That is, it generates a single infinite
execution fragment, along with its infinite set of finite prefixes.

Some schedulers will not be very useful to our approach, as they may model
invalid behaviours. In particular, we are interested in schedulers that are fair in
their choices of non-determinism resolution, as they have desirable properties which
will be discussed later. The following definitions deal with our requirements for
fairness, which have been adapted from [BGC09, Var85, BK98].

Definition 2.15 (Fair executions). Let α be an infinite execution over an Interface
Automaton P . For each s ∈ SP , let Traversals(α, s) = {i ∈ N0 · α

s
i = s}, that is

Traversals(α, s) denotes the indexes in α where state s is traversed. Similarly, define
Traversals(α, (s, a, s′)) to be the indexes in α where the transition (s, a, s′) is taken.

We say that α is a fair execution if for each s ∈ SP such that Traversals(α, s) is
an infinite set, it holds that whenever (s, a, s′) is an enabled transition from s (that
is, (s, a, s′) ∈ RP ), then the set Traversals(α, (s, a, s′)) is also infinite.

Informally, an execution is fair if every time that it passes through a state t
infinitely often, then it also progresses over each of its enabled transitions infinitely
often. In other words, whenever a transition is enabled and the execution has the
opportunity to take it, a fair execution cannot avoid taking it indefinitely. We will
extend this notion of fairness to schedulers.

Definition 2.16 (Strictly fair schedulers [CGP99]). A scheduler σ is strictly fair
(also called strong fair) if the infinite execution it generates is itself fair.

The reasons behind the choice of words on defining schedulers as strictly fair in
Definition 2.16 will be made more clear once we examine schedulers for probabilistic
models.
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Logics for property description

Several temporal logics have been put forth for reasoning about the protocols
described by automata-like formalisms. As we will see later when we discuss property
preservation, we need to preserve the branching structure of components within the
composition. We will therefore express these behaviour properties with the logic
CTL (Computational Tree Logic) [EC82], or some variants of it. ACTL [DV90] (not
to be confused with the universal fragment of CTL) in particular is a temporal logic
equivalent to CTL. The main difference is that, while CTL focuses its predicates on
states, ACTL does so on the set of actions. ACTL will become useful to us, as it
allows us to express directly the restrictions that pertain to the availability of actions
for synchronisation. This will allow us to expand the notion of composability when
we present our Probabilistic Interface Automata formalism in Part II.

Definition 2.17 (ACTL Syntax [DV90]). The set of ACTL formulae is defined as
the smallest set of state formulae such that

True is a state formula;

if φ1 and φ2 are state formulae, then ¬φ1 and φ1 ∧ φ2 are also state formulae;

if ψ is a path formula, then ¬ψ is also a path formula;

if ψ is a path formula then ∃ψ is a state formula;

if φ1 and φ2 are state formulae and a is an action label, then Xaφ1, φ1Uφ2 and
φ1Uwφ2 are path formulae.

Definition 2.18 (ACTL Semantics [DV90]). Let M =< SM , s
0
M , A

I
M , A

O
M , A

H
P , RM >

be an Interface Automaton. The semantics of an ACTL formula are given by a satis-
faction relation, which is defined for M over execution fragments α ∈ fragments(M)
for path formulae ψ (noted M,α |= ψ), and over states s ∈ SM for state formulae φ
(noted M, s |= φ). The satisfaction relation is defined inductively as follows, where
φ1, φ2 denote state formulae and ψ denotes a path formula, and a ∈ AM :

M, s |= True always holds
M, s |= ¬φ ⇔ ¬(M, s |= φ)
M, s |= φ1 ∧ φ2 ⇔ M, s |= φ1 ∧M, s |= φ2
M, s |= ∃ψ ⇔ ∃α ∈ fragments(M) such that

αs0 = s ∧ α |= ψ
M,α |= ¬ψ ⇔ ¬(M,α |= ψ)
M,α |= Xaφ ⇔ length(α) > 1 ∧ αa0 = a∧

M,αs1 |= φ
M,α |= φ1Uφ2 ⇔ (∃0 ≤ j < length(α))(∀0 ≤ i < j)

M,αsi |= φ1 ∧M,αsj |= φ2
M,α |= φ1Uwφ2 ⇔ (M,α |= φ1Uφ2)∨

(∀0 ≤ i < length(α))M,αsi |= φ1

We will abuse notation and, given a finite set of actions A, note XAφ as an
equivalent to

∨

a∈AXaφ. Also, we can further refine the satisfiability notion to ask
whether a formula φ is satisfiable by an Interface Automaton M when under a given
scheduler σ. The satisfiability semantics are kept almost the same, except that
whenever we need to check for fragments in fragments(M), we must restrict them to
those generated by σ.
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2.2.2. Probabilistic models

The probabilistic models that we will work within this thesis are automata-like,
so they are essentially LTSs where the transition relation is enriched with proba-
bilistic information. In order to convey these probabilistic semantics, we will use
as foundation a well-known probabilistic formalism, that of Segala’s Simple Prob-
abilistic Automata [SL95, Seg95]. Again, we will discuss on this choice and other
alternatives when we show the distinct problems of introducing probabilities in our
setting, and when we survey related work.

As we will see, SPAs extend classic LTSs by modifying the transitions so that
they no longer reach a single state, but a probabilistic distribution over a set of
destination states instead.

Definition 2.19 (Segala’s Simple Probabilistic Automaton (SPA)). A Simple Prob-
abilistic Automaton is defined by a tuple M =< SM , s

0
M , AM , RM > where

SM is a finite set of states.

s0M ∈ SM is a distinct initial state.

AM is a finite set of actions.

RM ⊆ SM × AM ×D(SM ) is a transition relation, where D(SM ) denotes the
set of probabilistic distributions over the sample set of states SM . Note that
since SM is finite, D(SM ) turns out to be a discrete distribution.

We will note RM (s) to denote the set of all transitions that originate on state
s, that is, those tuples in RM where the first component is s. Similarly, we will
note RM (s, a) to note the set of transitions originating in s through action a. For
convenience and without loss of generality, we will assume that for all states s ∈ SM ,
the transition relation is such that RM (s) 6= ∅ [dA97].

In a manner similar to other automata-based behaviour description formalisms,
Simple Probabilistic Automata can be constructed compositionally as the product
of other, smaller Simple Probabilistic Automata.

Definition 2.20 (Simple Probabilistic Automata product [SL95]). Let M1 =<
S1, s

0
1, A1, R1 > and M2 =< S2, s

0
2, A2, R2 > be two Simple Probabilistic Automata.

Their product M1 ⊗ M2 is defined to be another Simple Probabilistic Automaton
M =< SM1⊗M2

, s0M1⊗M2
, AM1⊗M2

, RM1⊗M2
>, such that

SM1⊗M2
= (S1 × S2)

s0M1⊗M2
= s01, s

0
2

AM1⊗M2
= A1 ∪A2

given (s, t) ∈ S1 ⊗ S2, a ∈ A1 ∪A2 and δ ∈ D(SM1⊗M2
), RM1⊗M2

is such that
((s, t), a, δ) ∈ RM1⊗M2

if and only if any of the following is satisfied:

1. a ∈ A1 ∧ a /∈ A2 ∧ ∀s′ ∈ S1(∃δ1 ∈ D(S1) such that (s, a, δ1) ∈ R1 ∧ ∀s′ ∈
S1, δ((s

′, t)) = δ1(s
′))

2. a ∈ A2 ∧ a /∈ A1 ∧ ∀t′ ∈ S2(∃δ2 ∈ D(S2) such that (t, a, δ2) ∈ R2 ∧ ∀t′ ∈
S2, δ((s, t

′)) = δ2(t
′))

3. a ∈ A1 ∩ A2 ∧ ∃δ1 ∈ R1(s, a) ∧ ∃δ2 ∈ R2(t, a) such that ∀s′ ∈ S1, t
′ ∈

S2, δ((s
′, t′)) = δ1(s

′)× δ2(t
′).
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As is the case for Interface Automata, SPAs are composed through an asyn-
chronous product, but synchronising on shared actions. This distinction is made
clear when defining the transition relation for the product SPA. Clauses 1 and 2
state that, whenever an action is not shared by both processes, the possible dis-
tributions governing transitions in the product are exactly those that come from
each component process. Clause 3 describes the synchronising nature of the Simple
Probabilistic Automata product. The distributions for transitions where the action
label is shared are computed as the product of the distributions for each of the com-
ponents. Note that, when composing states from different components, if at any
of these states the shared action is not enabled (i.e., the state does not provide an
outgoing transition through the shared action), then no distribution is present and
the product cannot be computed. In that case, the product state does not have an
outgoing transition on the shared action—it does not synchronise.

The definitions for execution fragments and complete executions still apply to
Simple Probabilistic Automata, as we are still interested in the possible traces of the
Simple Probabilistic Automaton.

Definition 2.21 (SPAs’ execution fragments and executions). An execution frag-
ment of a Simple Probabilistic Automaton M is a (possibly infinite) sequence α =
s0(a1, p1)s1(a2, p2)s2 . . . of alternating states and transitions, where these transitions
are annotated by their governing action and associated probability. Execution frag-
ments always start with a state and, if finite, also end with a state. Each sequence
si(ai+1, pi+1)si+1 within an execution fragment of M is such that there exists a prob-
abilistic distribution δ such that (si, a, δ) ∈ RP , and δ(si+1) = pi+1.

Given an execution fragment α, first(α) denotes the first state of the fragment,
while tail(α) denotes the execution fragment from its second state. tail(α) might be
empty if α is finite and consists of only one state. If α is finite, last(α) denotes its
final state.

An execution of a Simple Probabilistic Automaton M is an execution fragment
α of M such that first(α) = s0M , the initial state of the automaton. As executions
are execution fragments themselves, they can also be finite or infinite.

As was the case for Interface Automata, we will also note fragments(M) and
fragments∗(M) to denote the set of execution fragments of M and the set of finite
execution fragments of M , respectively. Additionally, we will note execs(M) and
execs∗(M) for the set of executions and finite executions of M . We also define
length : fragments(M) → N∪∞ to be the number of states traversed by the execution
fragment. For additional convenience, we define projectors αsi , α

a
i and αpi that return

the i-th state, i-th transition label and i-th associated probability respectively. Note
that αsi is defined from 0 through length(α) − 1, while αai and αpi are defined from
1 through length(α)− 1. Finally, we will note α ≤ α′ to indicate that the execution
fragment α is a finite prefix of execution fragment α′. Again, suffix (α, i) is defined
for every i < length(α) and obtains the execution fragment that results of dropping
the first i states and probability-action pairs from an execution fragment. Therefore,
for an execution fragment α = s0(a1, p1)s1(a2, p2)s2(a3, p3)s3 . . ., suffix (α, 0) = α,
suffix (α, 1) = s1(a2, p2)s2(a3, p3)s3 . . . and so on.

As additional notation, we will note the existence of a finite execution fragment
α from s0 to sn by s0

α
−→ sn. Note the notation is different to quickly distinguish

probabilistic execution fragments from purely non-deterministic ones.

The notion of schedulers for resolving non-determinism is also preserved, but
note that instead of scheduling an action and a destination state, it schedules a
distribution on destination states instead.
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Definition 2.22 (Scheduler for Simple Probabilistic Automata). A scheduler σ for
a Simple Probabilistic Automaton M =< SM , s

0
M , AM , RM > (also called an adver-

sary) is a total function σ : execs∗(M) → AM ×D(SM ), such that if σ(α) = (a, δ)
it must be that (last(α), a, δ) ∈ RM .

It is noteworthy, however, that resolving non-determinism via a scheduler for an
SPA does not, as was the case for Interface Automata, produce a unique execution.
Rather, resolving non-determinism induces a fully probabilistic process, specifically
a Discrete Time Markov Chain (DTMC) which, in turn induces a set of execution
fragments. For more insight on these probabilistic processes the reader may refer
to [Fel08, Kul09]. We will need, however, a couple of concepts related to the DTMCs
obtained by fixing a scheduler. The following definitions on DTMCs have been lifted
from [Kul09].

Definition 2.23 (Irreducibility). Let A be a Discrete Time Markov Chain (in par-
ticular, A could have been obtained as the result of fixing a scheduler σ for a SPA
M). The DTMC A is said to be irreducible if, for every pair of states s, s′ in its
state space, there exists an execution fragment α such that s

α
−→ s′.

In other words, a DTMC is irreducible if it is possible to get from any state to
any other state.

Definition 2.24 (Periodicity). A state s in a Discrete Time Markov Chain A is
said to have a period k if

k = gcd{length(α) · α ∈ fragments∗(A) ∧ length(α) > 0 ∧ s
α

−→ s}

where gcd denotes the greatest common divisor.

Put more plainly, a state s on a DTMC A has period k if every execution fragment
that starts at s and traverses back to s has a length that is a multiple of k. If k = 1,
s is said to be aperiodic. If every state s of A is aperiodic, then the whole DTMC A
is said to be aperiodic.

Theorem 2.1 (Periodicity and reachability). Let A be a DTMC and s, s′ two states

in its state space such that there exist α, α′ ∈ fragments∗(A) and s
α

−→ s′, s′
α′

−→ s.
Then, if s has period k and s′ has period k′, it holds that k = k′.

Corollary 2.1 (Periodicity and irreducibility). If A is an irreducible DTMC, then
all of its states have the same period.

Corollary 2.2 (Aperiodicity check on irreducible DTMCs). Let A be an irreducible
DTMC. Then, A is aperiodic if and only if any of its states is aperiodic.

Definition 2.25 (Ergodicity). If a Discrete Time Markov Chain A is irreducible
and aperiodic, it is said to be ergodic1.

Both irreducibility and aperiodicity can be easily tested in the underlying graph
of the DTMC [JS99]. Ergodic DTMCs have desirable properties, which we will turn
to further in the thesis. For now, we continue introducing other concepts related to
schedulers and the measures they induce.

The combination of a scheduler σ and an SPA M defines a probability measure δ
on the σ-algebra generated by the set of execution fragments defined by the scheduler

1The knowledgeable reader may know that this is not exactly so. Irreducibility and aperiodicity
are sufficient for ergodicity, but not necessary. However, we will not need that level of detail. The
exact definition of ergodicity requires additional definitions and can be found in [Kul09].
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σ. Note that the sample set of execution fragments is neither finite nor countable,
therefore distributions over this sample space will not be discrete. We need to resort
to measuring by using cylinder sets (also called cones in the literature) of execution
fragments.

Definition 2.26 (Cylinders and probability measure [Seg95]). Given a finite exe-
cution fragment α of an SPA M , the cylinder of α is the set of execution fragments
Cα = α′ ∈ fragments(M) · α ≤ α′. The measure of a cylinder Cα under scheduler σ
is defined as

δ(Cα,M, σ) =
length(α)
∏

i=1

IsSched(σ, α, i− 1, αai )× δSched (σ, α, i− 1)(αsi )

where δSched : Sched(M)×fragments∗(M)×N → D(SM ), and IsSched : Sched(M)×
fragments∗(M)× N×AM → (0, 1) are such that δSched (σ, α, n) = σ(α0 . . . αn)δ and

IsSched(σ, α, n, a) =

{

1 if σ(α0 . . . αn)a = a
0 otherwise

In other words, δSched obtains the distribution corresponding to the next scheduled
transition, while IsSched checks whether in fact a is the next scheduled action.

Cylinder measure as defined in Definition 2.26 can easily be extended for sets
of non-overlapping cylinders. Given a SPA M , a scheduler σ, and a set Γ of finite
execution fragments such that for every αi, αj ∈ Γ neither is a prefix of the other,
we can define the measure of the set Γ (noted δ(Γ,M, σ)) as follows:

δ(Γ,M, σ) =
∑

α∈Γ

δ(Cα,M, σ)

The notion of cylinders is essential for the definition of the σ-algebra underlying
SPAs, since it gives us a way to measure sets of traces, where nevertheless each
individual trace has zero probability. As we will see later, this concept will have a
strong relation with the logics we will employ to reason about SPA behaviour.

With the leverage of the previous definitions, we can characterise the set of exe-
cution fragments generated by a scheduler σ on an SPA M .

Definition 2.27 (Simple Probabilistic Automaton scheduled fragments). Let M be a
Simple Probabilistic Automaton, and σ a scheduler for M . The set of scheduled exe-
cution fragments of M through σ is the set of execution fragments fragments(M,σ) ⊆
fragments(M) such that α ∈ fragments(M,σ) ⇔ (∀α′ ∈ fragments∗(M) · α′ ≤ α ⇒
δ(Cα′ ,M, σ) > 0).

In other words, fragments(M,σ) is the set of the execution fragments of SPA M
that may be generated probabilistically given a scheduler. Each scheduler for an SPA
generates a (possibly infinite) set of executions and execution fragments, instead of
a single execution as was the case for automata that do not exhibit probabilities.
Therefore, schedulers alone are not enough to exercise complete control over the
executions of an SPA, as probabilities also have an influence on possible behaviour.
In particular, this implies that the notion of scheduler fairness needs to be adjusted.
Consider for example the case of the SPA depicted in Figure 2.1, and two possible
schedulers σ1 and σ2 that behave roughly as described beside the automaton. In both
cases, a non-fair execution is possible – 0a1b1b1 . . . b1b1b1 . . . in the case of scheduler



52 CHAPTER 2. PRELIMINARIES

10 2

a

b

c 0.50

0.50

d







σ1(0, α) = a
σ1(1, α) = b
σ1(2, α) = d







σ2(0, α) = a
σ2(1, α) = c
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Figure 2.1: A Simple Probabilistic Automaton and two unfair schedulers. σ2 is
probabilistically fair

σ1, and 0a1c0a1c0a1 . . . c0a1c0a1 . . . in the case of scheduler σ2. Under the previous
definition, neither of these schedulers are themselves fair. However, note that the
probability of the non-fair executions under σ2 is actually zero, while those under σ1
have nonzero probability.

This important distinction leads to the definition of probabilistically fair sched-
ulers. Once again, this definition has been put forth previously in [BGC09, Var85,
BK98].

Definition 2.28 (Probabilistically fair schedulers). A scheduler σ is probabilistically
fair for an SPA M if it either is strictly fair, or else the measure of the subset of
non-fair executions within its scheduled fragments set fragments(M,σ) is zero.

In other words, a probabilistically fair scheduler generates fair execution frag-
ments almost surely, while they almost never produce unfair execution fragments.
For the remainder of this thesis, when we refer to fair schedulers for SPAs, we will
be implicitly referring to probabilistically fair ones, unless specifically noted.

Simulations for probabilistic automata

The notion of simulations [Mil89] is useful to compare the behaviours of au-
tomata, and is a step forward to establishing equivalence between them. In the
context of probabilistic automata the concept of simulations has also been stud-
ied [SdV04]. In this work we will leverage on the particular notion of probabilistic
branching simulations [Seg95]. We will later employ these simulations to show that
the probabilistic formalism that we propose in this thesis establishes a close relation-
ship between their parallel composition and these simulations.

Before we can define probabilistic branching simulations properly, we need to
understand the basic blocks with which they are built. Probabilistic branching sim-
ulations must show that the probabilistic information is simulated between different
automata. The main mechanism through which this is achieved is by showing that a
probability distribution on the simulated system can be embedded into a probability
distribution over the system that simulates it.
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Definition 2.29 (Distribution embedding [SL95]). Let R ⊆ S × T be a relation
between two sets S and T ; and let δS ∈ D(S) and δT ∈ D(T ) be two distributions on
each of those sets. We say δS and δT are in relation ⊑R, noted δS ⊑R δT if there
exists a weight function w : S × T → [0, 1] such that

1. for each s ∈ S,
∑

t∈T w(s, t) = δS(s);

2. for each t ∈ T ,
∑

s∈S w(s, t) = δT (t);

3. for each (s, t) ∈ S × T , w(s, t) > 0 =⇒ sRt.

The notion of distribution embedding bears a close relationship to embedding a
probabilistic transition of one system into a combination of several transitions on the
other, and vice versa. The notion of combined steps captures this relationship.

Definition 2.30 (Combined step [SL95]). Let M be an SPA and s ∈ SM an arbitrary
state in S. Let δC ∈ D(AM × SM ). We say (s, δC) is a combined step of M if there
exists a weight function w : RM (s) → R such that the following hold:

∑

(t,a,δ)∈RM (s)w((t, a, δ)) = 1; and

for every s′ ∈ SM it holds that δC(s
′) =

∑

(t,a,δ)∈RM
w(t, a, δ)δ(s′).

In other words, a combined step of M at state s is a convex combination of the
transitions allowed by M at state s. We will note s

a,p
−→C s′ every time that there

exists a combined step C = (s, δC) such that δC(a, s
′) = p.

A related notion is that of weak combined steps. A weak combined step is
essentially a product of many combined steps where at most one of them is via a
non-internal action, while the rest are internal.

Definition 2.31 (Internal combined step [SL95]). Let M be an SPA, s ∈ SM and
δIC ∈ D(SM ). (s, δIC) is an internal combined step if either

1. δIC(s) = 1; or

2. there exists a combined step (s, δC) such that for every (a, t) ∈ AM × SM such
that δC(a, t) > 0 it holds that

a) a ∈ AHM ;

b) there exists an internal combined step (t, δ(a,t)) noted step(s, a, t); and

c) for every state s′ ∈ SM , δIC(s
′) =

∑

(a,t)∈AM×SM
δC(a, t) ∗ δs,a,t(s

′); where
δs,a,t is the distribution given by the combined step step(s, a, t).

In other words, an internal combined step is a combination of subsequent com-
bined steps where each combined step is such that it assigns non-zero probabilities
only to internal actions. Figure 2.2 shows an example of an internal combined step.
In this case, all actions are hidden so no labels on transitions are necessary. Differ-
ent transition distributions are told apart by the arc between the transitions. The
combined transition depicted is obtained through an embedded distribution. This
embedded distribution is the result of combining the distributions from state 0 with
a factor of 0.5 on each distribution; and from state 1 using factors 0.3 (distribution
shown on left) and 0.7 (distribution shown on right). In this case the combined step
“skips” state 1.

There is a combination of combined steps and internal combined steps that is of
important interest, which is the case when a state can be reached by any combination
of exactly one action in AIM ∪ AOM and countably many interleavings of actions in
AHM in between. We shall denote these as weak combined steps.
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Figure 2.2: An internal combined step

Definition 2.32 (Weak combined step [SL95]). Let M be an SPA, s ∈ SM and
a ∈ (AIM ∪ AOM ). (s, a, δC) is a weak combined step if and only if there exists a
combined step (s, δ′C) such that every time that δC(action, state) > 0 the following
hold:

1. action = a ∨ action ∈ AHM ; and

2. if action = a then either δ′C(state) > 0 or else there exists an internal combined
step denoted step(s, a, state) = (state, δ′IC);

3. otherwise, if action ∈ AHM , there exists a weak combined step denoted

step(s, action, state) = (state, a, δC)

4. and finally, for every state t ∈ SM it holds that

δC(t) =
∑

(action,state)∈AM⊗SM

δ′C(state) ∗ δs,action,state(t)

where δs,action,state is the distribution of step(s, action, state).

Figure 2.3a shows an example of distributions that can be combined as a weak
combined step. Inside the arc corresponding to a distribution we note the triggering
action. a is an action that is presumably shared with an external environment, while
h is an internal action to the component we are modelling in this case. Figure 2.3b
shows the resulting weak combined step. In this case, we obtained this step by
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Figure 2.3: A weak combined step on action a

combining the first two transitions (originating from state 0) with factors of 0.5
each; on state 3 we use factors 0.3 and 0.7. In this case, the combination is far
more complex, as hidden actions may appear before or after the action a, and even
multiple times. However, it can easily be seen that the resulting step is much more
simpler as well.

Definition 2.33 (Probabilistic branching simulation (PBS) [SL95]). Given two Sim-
ple Segala Automata M1 and M2, a probabilistic branching simulation is a relation
R ⊆ SM1

× SM2
such that

1. the initial state of M1 is related through R with the initial state of M2;

2. for each s1Rs2 and each possible transition (s1, a, δ1) ∈ R1 then:

a) if a ∈ AM2
, there exists a weak combined step (s2, a, δ2) such that the

distribution δ1 can be embedded into δ2 through R, that is, δ1 ⊑R δ2.

b) if a /∈ AM2
, there exists an internal combined step (s2, δ2) such that δ1 ⊑R

δ2.

3. every time that s1Rs2, it must be that if s2
ai−→ for a set of actions ai ∈ AM1

,
then s1

a
=⇒ as well for at least one of these actions ai; where s

a
−→ denotes

that there is a transition from s with action a; and s
a

=⇒ denotes that s can
weakly transition to some other state on action a. That is, it either has a
enabled, or there is a path of internal transitions to a state where a is enabled.
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In other words, whenever s2 weakly enables some actions, at least one of them
must be weakly enabled in s1. This establishes a liveness condition2.

Whenever there exists such a simulation relation R between M1 and M2 we will say
that M2 simulates M1, and note it M1 ⊑R M2 (or succinctly M1 ⊑M2 if we do not
care about the particular relation R).

Logics for property description

In order to express and analyse properties over probabilistic models such as SPAs,
these automata are coupled with modal logics whose formulae express said properties.
For the specific case of probabilistic models, the temporal logic pCTL [HJ89] has been
introduced as an extension of the well known temporal logic CTL. Essentially, pCTL
replaces path quantifiers present in CTL for probabilistic quantification bounds on
the related path formulae.

Definition 2.34 (pCTL Syntax and Semantics). pCTL formulae are built from state
and path formulae, just as CTL. Let AP be a finite set of atomic propositions. If φ
stands for a state formula, and ψ for a path formula, then pCTL formulae are built
as follows

φ→ true | a ∈ AP | ¬φ |φ ∧ φ |P∼pψ
ψ → Xφ |φUφ |φU≤kφ

In the above, ∼∈ {<,≤,=,≥, >} and p ∈ R, p ∈ [0, 1]. Given an SPA Q and a
mapping of states to atomic propositions V : SQ → 2AP defining the subset of atomic
propositions that are valid for each state, we can define the satisfiability of pCTL
formulae for a state s ∈ SQ, a scheduler σ ∈ Sched(Q) and an execution fragment
α ∈ fragments(Q) as follows

Q, s, σ |= true ⇔ true
Q, s, σ |= a ⇔ a ∈ V (s)

Q, s, σ |= ¬φ ⇔ ¬(s, σ |= φ)
Q, s, σ |= φ1 ∧ φ2 ⇔ (s, σ |= φ1) ∧ (s, σ |= φ2)
Q, s, σ |= P∼pψ ⇔

∑

α∈ψsat
δ(Cα, σ,Q) ∼ p

where α ∈ ψsat iff α, σ |= ψ and
for every other α′ ∈ ψsat neither
α ≤ α′ nor α′ ≤ α.

α, σ |= Xφ ⇔ αs1, σ |= φ
α, σ |= φ1U

≤kφ2 ⇔ ∃0 ≤ i ≤ k · αsi , σ |= φ2∧
∀0 ≤ j < i · αsj , σ |= φ1

α, σ |= φ1Uφ2 ⇔ ∃0 ≤ k · α, σ |= φ1U
≤kφ2

It is interesting to note that satisfiability verification of a pCTL formula can be
reduced to a reachability problem coupled with an optimization problem if more
than one scheduler is possible [BdA95]. Informally, given a path formula φ, a typical
pCTL state formula takes the form of a restricted classic CTL state formula, but
where path quantifiers have been replaced by the probabilistic operator P∼a. Thus, a
state formula P≤aφ (resp. P≥aφ), is true at a given state of the system if its possible
evolutions from that state satisfy the formula φ with probability at most (resp. at
least) a.

Note that satisfiability depends heavily on schedulers. Under two different sched-
ulers, the same pCTL formula may be satisfiable or not. This plays a critical role

2In [SL95] liveness is required on every action, although it is stated that it can be relaxed in the
way we state here.
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especially in the case of probabilistic operator formulae (that is P∼pψ) as two dif-
ferent schedulers may assign distinct probabilities. In general, the scheduler is left
unknown when evaluating the satisfiability of a formula. Therefore, it is more in-
teresting to know if a formula holds for any possible scheduler. In that case, for a
probabilistic formula ψ, there will exist a scheduler σψmin that induces a minimum

probability on the satisfiability of the formula; and another one σψmax (not necessarily
a different one) that induces a maximum probability. Then, we will usually employ
a different form of the probabilistic operator to query whether the minimum or max-
imum probabilities satisfy our requirements. We will usually replace the operator
P∼p by two other operators Pmin

∼p and Pmax
∼p , which are evaluated globally for every

scheduler. Satisfiability will be defined as follows:

s |= Pmin
∼p ψ ⇔ s, σψmin |= P∼pψ

s |= Pmax
∼p ψ ⇔ s, σψmax |= P∼pψ

It is important to note that there is a close relationship between pCTL satisfi-
ability and the notion of cylinders defined in Definition 2.26. We can see from the
semantics definition of pCTL that s, σ |= P∼pψ if the measure of the set of traces
that satisfy ψ holds the relation ∼ p. We have already established that cylinders
induce a σ-algebra (in particular, a measure). The set of traces that satisfy ψ can be
characterised by a (possibly infinite, but numerable) set of disjoint cylinders, based
on the prefixes of the traces. Therefore, the set of traces that satisfy ψ has a definite
measure induced by the cylinders that characterise it.

Finally, note that in the context of this work we will focus on a restriction of
pCTL, namely its weak fragment, which we denote as WpCTL. A WpCTL formula
is restricted in the sense that the X and U≤p operators are prohibited. Such a
restriction is reasonable when the aim of the approach is to allow further refine-
ment by modelling internal computation of components. The next and bounded until
operators, which we choose to avoid, distinguish models based on these internal com-
putations. However, from the point of view of an external observers, such internal
computation should not be discernible.

Reward structures

In addition to pCTL property specification, reward structures are used to convey
some sense of value to traces from probabilistic models, that can then be weighed
by their corresponding probability. For example, a transition reward structure that
assigns a value of 1 to each transition is a standard way of defining overall time steps
cost for the traces of a model. This provides a good way to model discrete time, and
reliability measures such as mean time to failure can be easily interpreted over this
notion of time.

The value of a reward is a random variable itself, as the accumulation of rewards
over traces will depend on the probability of the transitions taken. By weighing
the values of this modelling of time over the (possibly infinite) set of traces and
their probabilities, we can obtain the expectation –or bounds to this expectation– of
running time for an arbitrary execution.

Definition 2.35 (Reward Structures [QS96]). Given a probabilistic model M =
〈S, s0, A,R〉, a transition reward structure is a function ρ : S ×A× S → R≥0.

Given a trace π of a probabilistic model M , and a reward structure ρ over M , the
path-reward of π is the sum of the reward of each of its transitions. We will abuse
notation and note ρ(π) to note the path-reward of π based on reward structure ρ.
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It is important to note that a reward structure assigns a non-negative reward value
to transitions. Therefore, if we were to take any prefix πprefix of a trace π, the
path-reward of πprefix will necessarily be at most that of π.

We will note ΠSend
(M) (where Send is a set of states) to refer to the possibly

infinite set of all execution traces of M , but where they have been pruned so that
the last state of each trace is one of those in Send , and no other state in Send exists
in the trace before the end. Note that ΠSend

(M) may contain traces of infinite length
(i.e., those that never reach a state in Send and therefore have not been pruned).
This definition will allow us to define the value of a reward structure for reachability
properties.

Definition 2.36 (Reachability reward values [QS96]). Let M = 〈S, s0, A,R〉 be a
probabilistic model, Sreach ⊆ S be a set of states from M , σ a scheduler for M and
ρ a reward structure over M . The reachability reward value for Sreach under the
conditions above is a random variable Xreach(Sreach ,M, σ) on R≥0∪{+∞} such that
the probability p of Xreach = k is defined as

Pr(σ,Xreach = k) =
∑

π∈ΠSreach
(M),ρ(π)=k

Pr(π, σ,M)

In the definition above, Xreach is a random variable denoting the reward value
for a random execution trace until it reaches a state in Sreach . As such, it may be
of interest to know its expected or mean value, that is, the expected value taking
into account every possible execution trace. We will note this expected value Xreach .
Note that Sreach may contain states for which there is a non-zero probability that
they won’t be reached at all. In such a case, it will happen that ΠSreach

will contain
some infinite paths. More so, these infinite paths may themselves accumulate infinite
reward. In such cases, the mean Xreach is defined to be ∞.

Simulations and property preservations

There is a close relationship between automata that can be shown to be in a
probabilistic branching simulation, and the sets of WpCTL formulae that they sat-
isfy. However, since an automata that simulates another will probably have more
behaviour than the simulated one, it is necessary to take into account some precau-
tions regarding fairness if we wish to study these sets of properties. As we will see,
this idea has a close relationship to that of probabilistically fair schedulers 2.28.

Definition 2.37 (Probabilistically convergent automata [SL95]). A Simple Proba-
bilistic Automaton M is probabilistically convergent under a set of schedulers Sch if
for every state s ∈ SM and σ ∈ Sch, the probability of diverging (that is, performing
infinitely many internal actions and no input or output actions) from state s is 0.

Proposition 2.1 (Convergence of SPAs). Let M be a Simple Probabilistic Automa-
ton and Sch a set of probabilistically fair schedulers for M . Then, it holds that M
is probabilistically convergent under Sch.

Proof. The proof is immediate from the definition of probabilistically fair schedulers.
The only way for an infinite sequence of internal actions to have a measure larger
than zero is that there is only a finite number of probabilistic choices with probability
less than 1. For having such a situation be possible, there should be only a finite
number of non-deterministic choices made in favour of input/output actions instead
of internal actions. However, such a choice would be in direct violation of proba-
bilistically fair schedulers, therefore no probabilistically fair scheduler may result in
a divergent automaton.
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Finally, we recall a central theorem from [Seg95] regarding probabilistic branching
simulations and convergent SPAs.

Theorem 2.2 (PBSs preserve WpCTL [SL95]). Let M1 and M2 be two SPAs and
such that M1 ⊑ M2. Let φ = P≥pψ be a WpCTL formula with no recursive P∼p

operators. Then, it holds that M2 |= φ =⇒ M1 |= φ, where the formula satisfaction
is considered only under fair schedulers.

In other words, Theorem 2.2 states that, under the conditions described, if the
minimum probability of M1 satisfying ψ is p, then the minimum probability of M2

satisfying ψ is at least as much. Note that the theorem also applies to maximum
probabilities, since the minimum probability pmin of satisfying a given formula is
equal to 1− p¬max where p¬max is the maximum probability of satisfying the negation
of that same formula.

This notion of probabilistic branching simulations and property preservation is
central to the first Part of this thesis, as will become clearer in Chapter 3.

This sums up the preliminary concepts that we use throughout this thesis. In the
next part, we tackle the problem of defining a new probabilistic modelling formalism
that is suitable for the incremental specification of systems through composition, and
that is amenable to incremental verification as well.
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CHAPTER 3

Probabilistic Interface Automata

In this chapter we introduce our new probabilistic modelling formalism, Prob-
abilistic Interface Automata (PIA). But first, we start by showing why we believe
there is a need for this new modelling tool in the context of software engineering.

3.1. Why a new formalism?

In the previous chapters we have hinted that there already exist several modelling
formalisms, both non-deterministic and probabilistic. In this section we present a
simple example to motivate the problem of compositional construction and analysis
of probabilistic models. We also highlight the main issues related to the modelling
of non-determinism and probabilities that threaten the compositional construction
approach.

As a motivating example, we present a simple system model that will help us
illustrate the problem. This discussion will be focused on the system model for a
coffee machine, which is presented in Figure 3.1.

This coffee machine has a digital tactile screen with which it interacts with the
user, showing the user various options at different times during operation. First, the
coffee machine offers the user, through the screen, a beverage choice between either an
espresso or a latte. Once the user chooses her selection, the machine clears its screen
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Figure 3.1: A simple coffee machine.
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and possibly shows a message telling the user to wait for beverage preparation. At
this point, in a way unknown to the user, the machine prepares the beverage. Then,
the machine informs the user it has finished the preparation. After the beverage has
been prepared, the screen prompts for the addition of sugar or sweetener. Once the
choice is made by the user, the machine finally delivers the prepared drink. However,
this coffee machine is known to overheat sometimes. If this happens, it is required
that the user performs a manual drainage on the machine. We have some information
about the conditions under which the machine overheats, so we add this information
to the model.

We can already validate some behaviour on this coffee machine model. Note that
we can do so without the need of having a model of the user behaviour yet. For
example, we may be interested in knowing whether the machine can overheat after
it has added coffee to the cup, as at this point the coffee may boil and spill violently
towards the user, posing a safety hazard.

By observing the trace that traverses states 0, 2, 5, 6, 8, 3, we see that such an
error is clearly possible. Moreover, note that there is always at least a 0.05 chance
that this behaviour will manifest itself. This probability is completely independent
of user choices; the user has no way to avoid this undesired behaviour (other than
abstaining from using the machine altogether). The probability of this risky scenario
could be even greater if the machine always overheats at state 4, but we do not have
the probabilistic information to quantify this claim. All we know is that the likelihood
of the unsafe behaviour lies between 0.05 (this is certain) and 1 (if it were the case
that the machine does overheat at state 4).

For the sake of argument, assume for a moment that it is not economically vi-
able to fix this behaviour unless its likelihood surpasses some probability threshold
poverheat > 0.05. Once we have the user model and compose it with our coffee ma-
chine, we could answer whether this threshold is met or not. For example, if the user
were such that she never orders a latte, then the system model will never traverse
state 4. In that case, the probability of overheating is exactly 0.05, and therefore
there is no need for a fix. However, if she does order lattes, then it could theoretically
overheat every time this happens.

In other words, if we want to analyse the economical viability of fixing the ma-
chine, we are interested in quantifying the occurrence of this error based on the
expected behaviour of the environment interacting with the coffee machine.

In order to achieve this objective, we set out to produce a probabilistic model of
the user’s behaviour. However, not every modelling formalism will suit our compo-
sitional construction approach. Some choices may lead to problems which may not
be immediately obvious, and these may arise from both the probabilistic aspect of
the modelling and the non-deterministic as well.

3.1.1. Issues arising from probabilistic modelling

There exist two main approaches for modelling probabilities over transitions of
a behaviour model; namely modelling them via a generative [Chr90] approach or a
reactive [vGSS95] one.

Generative models are characterised by having a transition relation that defines,
for each source state, a distribution on the cartesian product of the set of states
and actions. That is, for each transition, both an action an a destination state
are probabilistically selected by the same distribution. This choice of distribution
modelling leads to some well-known problems when trying to compose a generative
model with another [DHK99].

The first problem is that the generative paradigm requires all transitions to be
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probabilistically annotated. This is true even in the case of states that may transition
because of both input and output actions. Probabilistically quantifying such choices
would encode the probabilities of the resolution of this race between actions. This
race is usually an aspect that is outside the control of either component, since the
race between actions is actually a race between two independent components that
are running asynchronously.

A second problem arises if a component specifies a certain probability for an
output action that is not accepted by its counterpart; or conversely provides a prob-
ability for witnessing an input action that actually may never be triggered by the
environment. In such a case, the probability of that action being observed should
be obviously zero in the composition, yet the component specified a non-zero proba-
bility. This contradiction needs to be resolved at composition time. Although some
solutions have been proposed to redistribute this missing probability [DHK99], they
are all arbitrary in the sense that they need to guess what the component would
have done if the action were not present.

These problems can be explained technically in terms of a lack that generative
models have in modelling non-determinism, and a lack of clear semantics for the
concurrent composition in such cases. Not allowing non-determinism means that
these models are unsuitable for use when it comes to modelling external actions the
environment must act in response to.

Alternatively, the environment can be modelled under what is called the reactive
paradigm [vGSS95]. Under this paradigm, for each action on each state there is a
probabilistic distribution that defines the next state. In turn, the action at each
state is chosen in a non-probabilistic fashion (even allowing for non-determinism
between different distributions for a same action), and only then the destination
state is determined probabilistically. Reactive models, contrary to their generative
counterpart, do allow for non-determinism, but do not allow probabilistic choice
between different actions. There is a workaround for this, however, using hidden
probabilistic internal actions that evolve the model towards states that are either
accepting input actions, or generating outputs. State 6 in the coffee machine model
of Figure 3.1 shows an example of this workaround.

The use of a reactive probabilistic model solves many of the issues of the genera-
tive paradigm. However, in general, reactive probabilistic models allow for behaviour
that does not necessarily consider input/output restrictions between components.
Recall the property that the machine may overheat after dispensing coffee. We have
already seen that this property holds with probability at least 0.05 for our modelled
system. Yet, we can model a user environment that chooses to never synchronise
on the overheat action, effectively blocking it. Oddly enough, the result obtained
using standard composition [vGSS95] and analysis [HKNP06] is that the probability
of the composite system overheating in an unsafe way is now zero, which means the
error has probability 0. This would make the probability of this erroneous behaviour
to be below the lower bound to error (0.05) that we had established when validating
the machine model in isolation. The reason for such an unintuitive result is that
the environment constrains the occurrence of a transition that should be controlled
by the coffee machine. In other words, just because a component chooses not to
acknowledge a certain action cannot be considered as a guarantee that the event
modelled by the action will not happen.

The result in the analysis of the previous scenario is quite unintuitive. There is a
property that holds for the machine, and that does not depend on any environment to
hold; but when composed with a certain environment it does not hold any more. Such
a contradiction indicates that something is wrong with the way we have modelled
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either the system or the environment; in the way we composed them together, or in
the probability computation. Again, this lack of behaviour preservation makes our
goal of performing early probabilistic validation impossible.

It is important to note that, contrary to the case of generative modelling, these
problems do not relate strictly to the probabilistic annotations. Rather, they arise
as a consequence of the inappropriate treatment of the notion of controllability.
However, they do have an impact in terms of preservation of component properties.
As such, we will make use of reactive modelling for the introduction of probabilities
into the environment, but will need to resolve the synchronisation issues to ensure
that components cannot restrict what other components are intended to control.

3.1.2. Issues arising from system-environment action controllability

Most of the aforementioned synchronisation semantics problems have been tack-
led by introducing a semantic distinction between input, output and internal (also
called hidden) actions. These sets of actions represent those that the component
can listen to (in the case of input actions) and emit (in the case of output actions).
The set of internal actions represents those that cannot be observed from outside
the component, and do not take part of the interface of the component. The most
well-know approaches to modelling that take this action segregation idea are those
of Input/Output Automata [LT87] and Interface Automata [HdA01], which we have
already introduced in Chapter 2. Input/Output automata have the same action label
segregation as Interface Automata. Additionally, they require that each component
is input-enabled, that is, that they accept every possible input at every state. As we
have already pointed out, Interface Automata relaxes this condition a little by only
enforcing that input synchronisations are always possible, but do not force an input
to be enabled at a given state if it is known that it will not be triggered at that state.

Strict input-enabledness introduces two modelling problems. First, it clutters
models with unnecessary transitions. For example, we can look at the models in
Figures 3.2a and 3.2b. In this figure, the I/O automaton A models a coffee machine
that is much simpler to the one discussed above, since it does not allow for ordering
lattes, nor exhibits the problematic overheating behaviour. In turn, I/O automaton
E models a potential environment that will interact with A. It is noteworthy that
the requirement for input enabledness does make the modelling more cumbersome.

The second problem is that input-enabledness restrictions are unrealistic for mod-
elling some systems. It is usually the case that a component will accept some inputs
in one state, while it will accept a different set of inputs in another. In fact, it may
not accept any inputs at all until it finishes some internal computation, at which
point it will accept new inputs. The need for immediate synchronisation with in-
tended output actions hampers an iterative refinement approach where this internal
behaviour is gradually modelled. As an example of how this problem arises, refer
back to Figures 3.2a and 3.2b. An engineer may now decide that the level of ab-
straction used to depict the behaviour of A is too high, and she may decide to model
some of the internal behaviour of the component. In particular, the engineer decides
it would be interesting to note that the machine needs to heat the water for the bev-
erages prior to preparing them. The result of this decision is a new model depicted
in Figure 3.3a. However, this new model is now not an I/O automaton respective to
the environment model, as the grey state is blocking inputs from the environment
that, at this point, may choose the beverage and later whether to add sugar or not.

In order to turn this model into a valid Input/Output automaton it becomes
necessary to take into account that the environment model expects a single push of
the espresso button to prepare the drink, and a second one for the sweetener choice.
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Figure 3.2: I/O models for the simple coffee machine

Simply adding loops and ignoring the environment espresso, sugar and nosugar

actions is insufficient, as the environment would now be expecting the beverage to
be dispensed, and such an action would never happen. The model depicted by the
automaton shown in Figure 3.3b fulfils both this requirement and I/O synchronisa-
tion. It is easy to see that it is overly complex because of this need to remember
user choices that may have happened during the internal actions of the machine.
This complexity arises even for the very simple behaviour exhibited for this ma-
chine. Of course, an alternative modelling could consider signalling the environment
that although the input actions are enabled, they are being ignored. However, such
a decision involves a rework on the environment itself. Worse, such changes are a
result of trying to fit a methodology rather than an attempt at modelling the actual
interaction.

Interface Automata

An alternative formalism, but one that still retains the notion of segregating
interfacing actions, Interface Automata [HdA01] has been proposed. The Interface
Automata formalism stipulates that the composition of a pair of components will
be legal only if components do not block each other, that is, if every time that one
component intends to exercise one of its output actions, the other component enables
such action (as part of its own input actions). In this case, it is not necessary to
spuriously enable input actions, as only those that are actually needed are mandatory
to be enabled. In this sense, Interface Automata allow for succinct modelling of
interfacing protocols than their Input/Output counterpart, which assumes input-
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Figure 3.3: Approaches to refinement of the coffee machine model

enabledness. However, similarly to I/O automata, they do require that the non-
blocking behaviour be immediate, that is, whenever a component wants to emit one
of its output actions, the corresponding input action must be immediately enabled
at its counterpart component.

Except for the immediacy restrictions depicted above, Interface Automata seem
to be a natural choice for modelling synchronisation and controllability. From an
engineering point of view, it is natural to model the restriction of certain actions at
selected states as long as these restrictions are compatible with the behaviour of the
component that controls them.

In this way, assumptions about the behaviour of cooperating models can be en-
coded directly, easing the task of modelling interactions such as protocols enforc-
ing ordered method calls, internal uninterruptible behaviour or system exceptions,
among other useful system properties. This results in more concise models, as the
engineer is released from the obligation of having to explicitly model responses for
interactions that are known to not occur in the reality being modelled.

It is important to note, however, that specifying a similar formalism to the one
we will present, but using Input/Output automata-like modelling is feasible. The
choice of Input/Output Automata over Interface Automata is of no consequence
regarding the solutions to the problems described in the previous sections, and the
way to resolve them would be similar in both cases.

Regarding the immediate enabledness requirements discussed above, a formalism
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that allows for modelling such delayed synchronisation is thus desirable. Of course,
an important requirement for such a model is that it can be guaranteed that for every
possible future behaviour, the synchronisation point will always be available. Such
guarantees will require some restrictions on unfair behaviour of the system under
analysis that may hamper such guarantees. We will study these guarantees when we
present our modelling formalism in Section 3.2.

3.1.3. Combining probabilities modelling and synchronisation se-

mantics

Summarising the previous sections, in order to model the probabilistic behaviour
of the environment and compose it with a non-probabilistic behaviour model of
the system to obtain meaningful quantitative results, a formalism is needed that
can i) allow for modelling of both non-deterministic behaviour and probabilistic
behaviour, ii) address notions of controllability and monitorability of actions by the
environment and system (including synchronisation notions and delayed behaviour),
and iii) preserve probabilistic properties of the environment after composition.

In the following sections we propose a formalism which distinguishes output/-
controlled and input/monitored actions, and also supports probabilistic and non-
deterministic behaviour. Our formalism is inspired on probabilistic reactive models
for introducing probabilities, as we discussed above. Synchronisation will be modelled
inspired on Interface Automata. This combination allows for satisfying objective i)
in the above paragraph, as well as ii).

However, challenges arise from the combination of these two formalisms. The
previous discussion hints at some of these challenges, and we elaborate on our solution
on the next sections. We focus especially on the mechanisms that allow us to ensure
that iii) is satisfied.

We will also tackle the problem of the need for immediate synchronisation.To
this end, we will introduce a notion of fairness for executions of these automata that
allows us to distinguish those cases where future synchronisation of delayed actions
is guaranteed from those where it is not. Further, we will also present a suitable
composition operator for these automata and in Theorem 3.1 we demonstrate the
required results of property preservation.

3.2. Probabilistic Interface Automata

In this section we present our new modelling formalism. This automata-like
formal model is designed to overcome the shortcomings other probabilistic modelling
formalisms have, as was discussed in Section 3.1.

3.2.1. Definitions, relations with IA and SPA

Leveraging on the definitions presented in previous sections, we can attain our
aim of merging the notion of Segala’s Simple Probabilistic Automata with that of In-
terface Automata. As a way to attain this objective, we define Probabilistic Interface
Automata based on SPAs.

Definition 3.1 (Probabilistic Interface Automata). A Probabilistic Interface Au-
tomaton (PIA) is a tuple of the form M =< SM , s

0
M , A

I
M , A

O
M , A

H
M , RM > where the

sets AIM , AOM and AHM are mutually disjoint, and such that defining AM = AIM ∪
AOM ∪AHM yields a Simple Probabilistic Automaton MSPA =< SM , s

0
M , AM , RM >.
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Therefore, a Probabilistic Interface Automaton is an SPA that shares the input,
output and hidden action semantics from Interface Automata. Note that since a
Probabilistic Interface Automaton must induce an SPA, then RM ⊆ SM × AM ×
D(SM ). Note also that a Probabilistic Interface Automaton A has an underlying
Interface Automata, noted A ↓ and defined as follows:

Definition 3.2 (Underlying IA). Given a Probabilistic Interface Automaton E, we
define its underlying Interface Automaton as the classic Interface Automaton E ↓=<
SE↓, s

0
E↓, AE↓, RE↓ > such that

SE↓ = SE;

s0E↓ = s0E;

AE↓ = AE; and

for all s, s′ ∈ SE↓, a ∈ AE↓, (s, a, s′) ∈ RE↓ if and only if there exists a
distribution δ ∈ RE(s, a) such that δ(s′) > 0.

Simply put, the underlying Interface Automaton of a Probabilistic Interface
Automaton is a non-deterministic automaton with the same state and transition
edge structure, but where all probabilities have been forgotten and replaced by non-
deterministic transitions, leaving all other information unchanged. Conversely, it is
also worth noting that a classic Interface Automaton can be embedded in a Proba-
bilistic Interface Automaton by restricting RM to Dirac distributions. This definition
is akin to that of underlying graph of Markov chains [Seg95], but this definition makes
explicit the fact that the obtained graph is an Interface Automaton.

The notion of underlying Interface Automaton turns out to be useful for a natural
way to define Probabilistic Interface Automata composability.

Composability and product

Definition 3.3 (Composability). Given P and Q two Probabilistic Interface Au-
tomata, we will say that P and Q are composable if their underlying Interface Au-
tomata P ↓ and Q ↓ are themselves composable (refer to Definition 2.9).

The concepts of execution fragments and schedulers that were introduced in
Chapter 2 still apply to Probabilistic Interface Automata. Since these automata can
be directly embedded into an SPA, we will refer to the SPA definitions for these con-
cepts while working with PIAs. Probabilistic Interface Automata product, however,
does express some differences regarding the composition of the transition relation.
The definition of illegal states in Probabilistic Interface Automata is of special inter-
est, as the synchronisation conditions on PIAs are much more relaxed than those of
classic Interface Automata. Of course, this relaxation does have an impact on the
modelled behaviour of the components and the composition. We will analyse this
relation with further detail later in this chapter, and we will establish a link between
these synchronisation conditions and our objective of behaviour preservation.

Definition 3.4 (Product). Given P and Q two composable Probabilistic Interface
Automata, their product P ⊗Q is defined by the Probabilistic Interface Automata

P ⊗Q =< SP⊗Q, s
0
P⊗Q, A

I
P⊗Q, A

O
P⊗Q, A

H
P⊗Q, RP⊗Q >

where SP⊗Q ,s0P⊗Q, AIP⊗Q, AOP⊗Q and AHP⊗Q are defined in the same way as Interface
Automata composition. Its transition relation RP⊗Q ⊆ SP⊗Q × AP⊗Q × D(SP⊗Q)
however, is constructed in the same way as it was constructed for SPAs (refer to
Definition 2.20).
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Figure 3.4: Probabilistic Interface Automata (partial) product. Only the composite
state 1A is shown.

Note that we are overloading the operator ⊗ to refer to all of IA, SPA and PIA
compositions. The specific meaning in each case, however, can be easily understood
from the context in which we use the operator. Refer to Figure 3.4 for an example
of two-state composition, where a? makes explicit that a is an input action for the
automaton, and a! denotes it is an output. Action labels that are left without
annotation are internal.

Recall that we would like the definition of Probabilistic Interface Automata to
exceed a syntactic notion and actually have an interesting semantics, as otherwise its
usefulness would be drastically reduced. We will see to this objective in Theorem 3.1.

Note that the probabilistic composition operator and the underlying Interface
Automata operator are distributable over one another. That is, if P and Q are two
Probabilistic Interface Automata, then (P ⊗Q) ↓= P ↓ ⊗ Q ↓.

Illegal states and valid environments

The notions of illegal states and valid environments can also be extended for
Probabilistic Interface Automata. In essence, they share the same definition, except
for an important difference in the illegal states concept. As we discussed earlier in
this chapter in Section 3.1, the original criteria for defining illegal states in the case of
Interface Automata is too stringent, as it requires immediate enabledness of output
actions in the component to be composed with.

In the following definition, we will make use of ACTL formulae over the under-
lying Interface Automaton of a given Probabilistic Interface Automaton P . Refer
back to Definitions 2.17 and 2.18 on Chapter 2 for a refresher on ACTL.

Definition 3.5 (Illegal states). Given two composable Probabilistic Interface Au-
tomata P and Q, their product’s illegal states are defined by the set IllegalProbIA(P,Q) ⊆
SP × SQ. For any s ∈ SP , t ∈ SQ, (s, t) ∈ IllegalProbIA(P,Q) if it is the case that
either

i) for any action a ∈ AOP ∩ Shared(P,Q) enabled in s (respectively, actions b ∈
AOQ ∩ Shared(P,Q) enabled in state t) it must be that the ACTL formula

∀(XaTrue) ∨ (XAQ\Shared(P,Q)True)U(XaTrue)
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does not hold for Q ↓ at state t under fair schedulers (respectively

∀(XbTrue) ∨ (XAP \Shared(P,Q)True)U(XbTrue)

does not hold on P ↓ at state s); or

ii) s is such that its only enabled actions on P are a subset As of AIP∩Shared(P,Q)
(respectively, enabled actions at t on Q are a subset At of AIQ ∩ Shared(P,Q))
and the ACTL formula ∀(XAQ\Shared(P,Q)True)U(XAsTrue) does not hold on
Q ↓ at state t (respectively the formula ∀(XAP \Shared(P,Q)True)U(XAtTrue)
does not hold on P at state s) when being evaluated, restricting evaluation only
to fair schedulers.

Note that the semantics of the U operator above is that of a strong until. The
difference between weak until (Uw) and strong until is subtle and merits a reminder:
an execution α satisfies the path formula ψUwφ (that is, α |= ψUwψ) if there exists
an index i such that αsi |= ψ and ∀0 ≤ j < i · αsj |= φ; or alternatively αsk |= φ for
every k ≥ 0. The strong until is more stringent in the sense that it does not allow
the second alternative, and it needs the step αsi such that αsi |= ψ to exist. In other
words, the strong until demands the formula ψ to be true at some point, while weak
until does not, as long as φ is never violated.

The illegal state definition for Probabilistic Interface Automata relaxes that of
Interface Automata, so that synchronisation does not need to be available at each
state, but may be finitely delayed, under certain conditions. Intuitively, the first
clause (i) enforces the claim that states will only be legal if they allow an output
action to be taken immediately; or else, if the current state is momentarily blocking
it, it is such that every possible continuation of the trace from that state involves
only internal actions of the blocking component until it allows the blocked behaviour
to happen. However, it still is required that the synchronisation be carried out,
regardless of any internal actions the delaying component takes. It must be noted
that this future synchronisation delayed by a component cannot depend on action
requirements by its counterpart. That is, a component may delay synchronisation
only through the execution of internal actions, and every possible fair continuation of
such execution fragments must eventually synchronise. Such restrictions are essential
to further probabilistic analysis, because failure to eventually accept such behaviours
would result in missing behaviour from the environment, along with its probability.
Note that we refer to fair executions in the sense of probabilistic fairness. In other
words the probability distributions that govern the transitions may allow for an
indefinite delay of the required synchronization, but the probability of selecting this
delay indefinitely should be zero (i.e., such a situation should almost never arise).

Clause (ii) in turn, describes that states that only allow for shared input actions
are such that they must eventually always receive one of these input actions in or-
der to advance. These are states that need to receive an input in order to advance
(because the states themselves do not generate outputs and do not perform internal
actions), and must be guaranteed to eventually receive one of these inputs and can-
not be kept stuck forever. This second restriction essentially imposes an advancing
condition on quiescent states of the components. On the one hand, this forces the
counterpart component to actually have one of those actions as an output to be pro-
cessed by the blocked component. On the other hand, fairness conditions are vital
to ensure, additionally to the fact that the action must be available, that again the
action is taken at some point in the future and is never indefinitely delayed.

These restrictions allow us to relax the stringent immediate blocking semantics,
and let us model components’ internal behaviour in a way that doesn’t interfere
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with the synchronising semantics. Also, note that these conditions are not necessarily
exclusive to Probabilistic Interface Automata. They can be used to relax the Interface
Automata illegal states condition as well.

3.2.2. PIAs and property preservation

In the case of Probabilistic Interface Automata, WpCTL is a viable logic for
property observation, since we can leverage on their underlying SPA structure and
the scheduler definition (recall Definition 2.13). For a refresher on WpCTL, refer
back to Definition 2.34.

The main contribution of Probabilistic Interface Automata to software engineer-
ing practices is to convey the notion that the product of two interfacing probabilistic
models is not merely a syntactic convenience, but that it does maintain a semantic
relationship between the individual models, their composition, and their observable
properties. The following theorem and its corollary see to this objective.

Theorem 3.1 (WpCTL property preservation). Let A and B be two composable
Probabilistic Interface Automata such that their product A ⊗ B is legal (that is, it
contains no reachable illegal states). Let φA be a WpCTL property such that φA is
expressed only in terms of the alphabet of actions in A. Then, if A |= φA under fair
schedulers, then it holds that A⊗B |= φA under fair schedulers as well.

Informally, the theorem provides a validation for the compositional view of the
component-composite model relation, as properties formulated early in the validation
process do not lose their meaning once the components are integrated into a whole
composite model. Intuitively, this is true, since the composition does not add new
behaviour and neither does it prohibit allowed behaviour by the environment.

We delay for a moment proving the theorem and present a useful corollary re-
garding the extreme probabilities (minimum and maximum) of satisfaction of a given
WpCTL property.

Corollary 3.1 (Maximum and minimum scheduler probability). Let A and B be
defined as in Theorem 3.1. Further, let φA = P≤pψA, where p satisfies that for any
other formula ρA = P≤p′ψA where p′ > p, it holds that A |= φA but A |6= ρA. In
other words, p is the maximum probability of satisfying ψA on A.

Similarly, let φA⊗B = P≤qψA such that A ⊗ B |= φA⊗B; and q is such that any
other ρA⊗B = P≤q′ψA for q′ > q is not satisfied by A⊗B. That is q is the maximum
probability of satisfying ψA on A⊗B. Then, it holds that q ≤ p.

This same corollary applies analogously to the minimum probabilities of satisfying
ψA.

Proof. Suppose q = p + r with r > 0. Then A ⊗ B |= P≤p+rψA. Because of Theo-
rem 3.1, it must be then that A |= P≤p+rψA. But p was the maximum probability
of satisfying ψA on A. Contradiction.

We can now go back to the proof of Theorem 3.1.

Proof. Recall Theorem 2.2. This theorem expresses a property over two SPAsM1 and
M2 that are related under a probabilistic branching simulation such that M1 ⊑M2.
If that condition holds, then for a WpCTL formula φ it also holds that M2 |= φ =⇒
M1 |= φ. Since in our setting A, B and A ⊗ B are PIAs, they are also SPAs. If
we were to show that there exists a probabilistic branching simulation R such that
A⊗B ⊑R A, the theorem would be proved as a consequence of Theorem 2.2.
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We will show that R indeed exists by construction. We define R ⊆ SA⊗B × SA
such that (s, t)Rr if and only if s = r. We informally recall the four conditions of
PBSs definition (Definition 2.33) and show they are satisfied by R and we’ll prove
each formally.

First, we check that the initial state of A⊗B is related through R with the initial
state of A. The initial state of A⊗B is (sA0 , s

B
0 ), the product of the initial states of

A (sA0 ) and B (sB0 ). By definition of R, (sA0 , s
B
0 )Rs

A
0 .

Second, we check the simulation conditions on internal actions of A⊗B and those
shared with A. Now take an arbitrary reachable state (s, t) ∈ SA⊗B. By definition
of R it holds that (s, t)Rs. Consider the possible steps originating on (s, t) at A⊗B,
that is RA⊗B((s, t)) ⊆ AA⊗B × D(SA⊗B). Let (a, δ) be an arbitrary transition on
this set.

Proving for an action a invisible to A If a ∈ AA⊗B \ AA, then a is an action
invisible to A (internal to A ⊗ B). In this case we need to see that there exists an
internal combined step (s, δIC) for A, such that δ ⊑R δIC . Define δIC = Dirac(s),
that is, δIC(s) = 1 and 0 everywhere else. To prove δ ⊑ δIC , we refer back to
Definition 2.29. We need to show the existence of a weight function w : (SA×SB)×
SA → [0, 1] such that

1. ∀r ∈ SA,
∑

(x,y)∈SA×SB
w((x, y), r) = δIC(r);

2. ∀(x, y) ∈ SA × SB,
∑

r∈SA
w((x, y), r) = δ(x, y); and

3. w((x, y), r) > 0 ⇒ (x, y)Rr.

We define the weight function w as follows:

w((x, y), r) =

{

δ(x, y) if x = r
0 otherwise

We prove each condition on w individually. First, let r ∈ SA. We compute
∑

(x,y)∈SA×SB
w((x, y), r).

∑

(x,y)∈SA×SB
w((x, y), r) =

=
∑

y∈SB
w((r, y), r) as w is defined as 0 otherwise

=
∑

y∈SB
δ(r, y)

Now, recall that δ is a distribution arising from a transition on an action invisible
to A. Therefore if the originating state was (s, t), only states of the form (s, ti) will
have nonzero probability for δ. So, if r 6= S,

∑

y∈SB
δ(r, y) = 0 = δIC(r) as δIC was

0 everywhere but s. If r = s, then
∑

y∈SB
δ(r, y) =

∑

y∈SB
δ(r, y) which sums over

the whole support set of δ, so equals to 1, which in turn is δIC(s).
Conversely, take an arbitrary (x, y) ∈ SA × SB. Now,

∑

r∈SA
w((x, y), r) =

w((x, y), x) as w is zero otherwise. And w((x, y), x) = δ(x, y) by definition.
Finally, it is easy to see that if w((x, y), r) > 0 it must be that r = x. By

definition of R, (x, y)Rx, so the final point is proven.

Proving for a shared action a In this case, we need to show the existence of a
weak combined step (s, a, δWC) on A. Action a is obviously enabled on s as otherwise
a would not synchronise and a would not be enabled on (s, t) either. Since a is a
shared action, the distribution δ on A ⊗ B must have arisen from the product of a
distribution δA on a transition from A, and a distribution δB on B. That is, for any
(x, y) ∈ SA × SB, δ((x, y)) = δA(x)× δB(y).
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In this case, we define δWC = δA, while w is defined in the same way as it was
defined before. The conditions on w are proven in the same way as in the previous
case.

Proving the liveness condition on simulations Finally, in order for R to be
a probabilistic branching simulation, we need to show that whenever (s, t)Rs and s
enables a set of actions AA(s), then (s, t) weakly enables a set of actions AA⊗B(s, t)
with at least one action in common. The proof is a direct consequence of the fact
that A ⊗ B has no illegal states. Assume s

o
−→ s′ for at least one output action

o. Because of condition i) on illegal states, every internal-action path on B must
eventually enable action o to be illegal-state-free. Therefore, o is weakly enabled on
A⊗B.

Alternatively, suppose that s
i

=⇒ only for internal actions i. In this case, because
of condition ii) on illegal states, B must weakly enable at least one of them, so
enabledness on A⊗B is also guaranteed.

As an additional note, it is worth noting that composition, while preserving
WpCTL properties, may not actually preserve the exact event probabilities for a
given property. For example, assume environment E satisfies the property P≤0.75ψ.
Recalling the satisfiability definition, this means that E satisfies ψ with probability
at most 0.75 under the control of any scheduler. There may, or may not, be an actual
scheduler that, when controlling E actually witness probability 0.75 for formula ψ.
The interesting issue is that even if there is such a scheduler, the existence of a
scheduler for E⊗S witnessing probability 0.75 for ψ is not guaranteed; in fact every
scheduler for E ⊗ S may witness an inferior probability.

This distinction, however, is only important from a more formal point of view.
In practice, if the approach is being used in a software engineering context, this
distinction is not as important. For example, an engineer may be interested in
proving that a given component has at most a 0.05 chance of failing. That is, the
engineer poses the formula P≤0.05failure, where failure is a formula capturing the
conditions under which the component actually fails. The engineer then validates
this formula over the component and finds it to be true. Then, it is guaranteed
that the probability of this same component failing over the whole composition is at
most 0.05. Further, suppose that in fact the engineer observes that the probability
of failure of the isolated component is exactly 0.05. However, it may very well be
that, because of behaviour restriction imposed by the composition, the exact failing
probability drops to, for example, 0.03 or even zero in the composition. In any
case, the reliability objective posed by the engineer, although it does not preserve
the exact probability, is only reinforced by the composition. The failing probability
never increases because of the composition, it can only decrease (and in fact, can
only decrease down to the minimum probability of failure of the isolated component,
and no further).





CHAPTER 4

Preliminary evaluation

In this Chapter we outline, through the use of the model of a critical reactive
system, the benefits of modelling systems with Probabilistic Interface Automata. We
further argue that i) realising a model of an interacting environment that conforms
to Probabilistic Interface Automata is not necessarily hard; ii) the resulting model is
easily understandable and is not cluttered by the presence of unnecessary transitions
that are foreign to the actual interaction. In addition, iii) we empirically show,
by calculating the probability of some interesting properties, that the preservation
results of Theorem 3.1 do hold.

In order to illustrate our approach, we will quantitatively analyse the behaviour
of an existing software system. We provide a model of this system and analyse some
properties of interest. We validate our approach by constructing a probabilistic
behaviour model of the system’s environment, and show that it is a Probabilistic
Interface Automaton. Further, we show that this Probabilistic Interface Automaton
is a legal environment for the system model.

Later, we analyse the impact of varying the expected probabilistic behaviour of
this environment, as well as the probabilistic behvaiour of the system itself. By doing
so we show that, in a way that is independent of the actual probabilities modelled
in the behaviour, the result of Theorem 3.1 holds. In other words, the initially
validated behaviour of the system (or the environment) is shown to still be valid
when interacting with these different environment (or respectively, system) models.

In order to show that this behavioural preservation holds, the various environ-
mental/system variations are composed with the original system/environment mod-
els, and we produce bounds on the probability of environment-specific and system-
specific properties holding. In each case, we verify the composability of the sys-
tem/environment ensemble, and analyse and validate the property preservation char-
acteristics of Probabilistic Interface Automata.

4.1. The TeleAssistance System

The software system we analyse is an extension of the case study presented
in [EGMT09], which was further refined in [PBU09]. The original model was realised
under the stringent synchronisation conditions of Interface Automata. Although our
approach is applicable to Interface Automata, in this Chapter we relax the restric-
tions that were previously present regarding the immediate need for synchronisation,
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Figure 4.1: The TeleAssistance Software.

and allow for it to be delayed. This is in fact a more realistic approach to modelling
the problem, which takes into account the internal processing of the TeleAssistance
software. In turn, this will allow us to better illustrate the modelling benefits of
Probabilistic Interface Automata.

The TeleAssistance (TA) software is envisioned as a web-based application pro-
viding remote assistance to patients that, for any reason, need to remain at their
homes and need constant monitoring. In its most basic interaction, the patient com-
mences operation via a startAssistance command. This results in the TA system
entering an infinite loop, where it can accept any of the following requests:

stopMsg, which signals that the user wishes to cancel TA service for now.

vitalParamsMsg. This signal allows the user to send various body readings
via a supplied device. The patient’s health parameters are analysed by the
application server which, if necessary, may then suggest a course of action.
The system may decide that a change in the patient’s medication is needed,
and communicates this decision via either the changeDrug or changeDose com-
mands. These messages result in an automatic adjustment of the medication
that is delivered to the user. If a successful adjustment is made, the patient
is notified via the notifyPA message, but no details regarding the kind of ad-
justment are communicated to the user. If any anomalies are detected during
the analysis, a First-Aid Squad (FAS) is requested and sent. In the case of a
FAS being sent, the patient is informed via the attendToPA message.

pButtonMsg allows the patient to activate a panic signal. The patient may
trigger such a signal if at any moment she begins to feel sick and cannot cope.
The pButtonMsg signal triggers an alarm in the TA service. A successful pro-
cessing of the alarm results in a FAS being sent to the patient’s home. The
system is expected to always dispatch a FAS in the case of a panic signal.

We have augmented the simplified model presented in [EGMT09] in two ways
in order to introduce richer software-environment interactions. First, by specifying
that for emergency reasons the panic button may be pushed at any operational state
of the software, even if waiting for other results. Second, by refining the feedback
provided by the software so that the patient is also told if no medication adjustment
is needed. Note that these changes make the system model more complex, rather
than ease our environment modelling task, since the model actually grows larger
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and introduces new reactive actions. Similarly, the changes we introduced are quite
general; they are in no way tailored to our modelling approach.

We depict an abstract model of the TA software system in Figure 4.1. Note that
the model can be understood as an Interface Automaton, which is a particular case
of the Probabilistic Interface Automata introduced in the previous Chapters. As is
customary, output actions are appended with ‘!’, and input actions are appended
with ‘?’, while internal actions are left with no annotations.

The TeleAssistance software as modelled exhibits a critical failure. This failure
is reached by the triggering of the failedAlarm event. This happens if an alarm
has been raised but it failed to be acknowledged or properly handled, thus not
calling and sending the First-Aid Squad. In this iteration of the system model,
such an error (state 9) can be reached at several times during execution. All of the
interactions that reach the error state are the result of the user pressing the panic
button. However, it is not always the case that this button press will trigger the
failure. The reasons behind this erratic behaviour are unknown, but we have some
quantitative, probabilistic information that we can analyse. We know that once the
software has started analysing vital parameters’ data the probability of failure when
the panic button is pressed increases (see states 1, 7, 10 and 11). This is likely the
result of event sequences not properly foreseen by the team documenting the system
specification.

Relying on the software’s model only, we can easily see that such a state is reach-
able. However, actual probability of reaching said failure state is highly dependent
on factors external to the TA system as well as the depicted probabilities. First, it
will depend on the environment’s behaviour, which may be modelled probabilisti-
cally. For example, if the user never panics and does not press the button, the failure
is evidently never realised. Another source of uncertainty is in the timing races that
come up in the interaction between the environment and the system. Sometimes,
the system may be fast enough that it does not allow the button to be pressed while
analysing the data, and therefore it will avoid the failure. This speed can work
against the software reliability as well. If the button press is processed after the
drug or dose is changed, it will surely end in failure. Therefore the probability of
reaching the failure state in a given execution depends on both the environmental
interaction as well as the scheduling between the environment and the system. The
probability of failure can range between 0 if the user never panics and 1 if the user
panics repeatedly, since the failure will eventually happen in that case. It is also
interesting to note that on any one interaction cycle the probability of failure ranges
between 0 and 0.90 if it both panics and the drug has been changed. Table 4.1 shows
a range of failure properties and their associated probabilities. Recall that, because
of non-determinism, we will not obtain a single probability as the event measure,
but rather an interval of where the probability lies. These intervals are determined
by the schedulers for which the probability of occurrence of the event is lowest; and
conversely, the scheduler for which this probability is largest. Minimum probabilities
are sometimes uninteresting since they are zero in these cases.

Table 4.1 first states the properties being evaluated in a colloquial manner. The
first two properties have been extracted from [EGMT09]. To perform the calculations
we used the model checker PRISM [HKNP06], a well-known probabilistic verification
tool. These properties were sometimes modelled with suitable pCTL formulae, and
some others were modelled by an additional observer automaton, which was modelled
in the form of a valid, composable PIA. For example, property SP1 is captured by
the formula trueU (state = 9); and SP3 and SP4 are modelled respectively by the
formulae actionCount < 1U (state ∈ {4, 8, 12}) and actionCount < 5U (state ∈
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System property Pmin Pmax
SP1: The button is pressed yet the First-Aid Squad is not

sent to the patient location
0.0000 1.0000

SP2: A changeDrug or changeDose occurs, and the next
message received by the TA generates an alarm which fails

0.0000 0.9000

SP3: The button is pressed during the first interaction 0.0000 1.0000
SP4: The button is pressed sometime before the fifth

interaction
0.0000 1.0000

Table 4.1: Some example system properties
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Figure 4.2: An initial environment for the TA system

{4, 8, 12}). In these cases, actionCount is an additional variable that tracks the
number of interactions carried out in the TeleAssistance system. Alternatively, SP2
was modelled by an observer automaton that monitors the property.

We now show how to model the probabilistic behaviour of the environment using
Probabilistic Interface Automata, and how such model and the theory presented
in previous Chapters allow meaningful quantification of the probability of critical
failures based on the modelled probabilistic assumptions of the environment.

4.2. Modelling the Environment

In Figure 4.2 we depict a first attempt at modelling the probabilistic behaviour
of the environment of the TeleAssistance software. This environment, when waiting
for a vital parameters analysis response, probabilistically chooses to wait patiently,
or press the panic button. Also, it reflects a certain degree of anxiety in the patient’s
behaviour, since it behaves quite differently depending on whether the software de-
termines to adjust her medication or not. If the medication is not adjusted, the
environment reverts to its usual behaviour, however, if the medication is indeed
adjusted, the patient becomes more prone to pressing the panic button.

Although seemingly a reasonable model of this environment, this is not the case.
It is straightforward to see that Figure 4.2 is a Probabilistic Interface Automaton.
Further, this PIA is composable with the TA system model in Figure 4.1 (see Defini-
tion 3.3). However, the PIA depicted in Figure 4.2 is not a valid environment for the
TA system model, as it allows reachable illegal states (see Definition 3.5). For exam-
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ple, the composite state consisting of state 9 in the TeleAssistance system model; and
state 9 of the environment is an illegal pair that is reachable in the parallel compo-
sition of both models via the trace: (0s, 0e) startAssistant (1s, 1e) choice (1s, 2e)
vitalParamsMsg (5s, 5e) analyseData (7s, 5e) choice (7s, 8e) pButtonMsg (8s, 5e)
choice (8s, 9e) failedAlarm (9s, 9e). We have suffixed each state with either e or s
to make clear whether we refer to the environmental or system state respectively.

The fact that (9s, 9e) is an illegal state highlights that the environment is making
incorrect assumptions on the behaviour of the system and renders the probabilistic
environment behaviour modelled meaningless. For instance, analysing the behaviour
of the probabilistic environment it is easy to conclude that the probability of send-
ing a vitalParamsMsg to the system as the next message if being at state 9e is
at most 0.7, and at least 0.205. Note that the upper bound is obtained if the
noChange/attendToPA transition is followed, while the lower bound is the result of
the sum of the possible outcomes of taking the notifyPA transition.

However, the same analysis on the (potential) product results in a probability
inconsistent with the analysis on the environment alone. The inconsistency is that
while on the environment the lower bound for the property was 0.205, the lower
bound was decreased to zero (rather than increased) when composed with the system.
The increase of the lower bound is due to the fact that the environment’s behaviour
specified in the environment’s state 9e is restricted when the system is in its own
state 9s, hence the environment probabilistic contribution that outgoing transitions
from 9e made to the lower bound of the property are no longer possible. However,
this particular environment fails to makes a provision in modelling the possibility of
such a restriction.

In summary, if the analyses performed to validate the probabilistic behaviour of
the environment are not valid once the environment is composed with the software,
then the model of the environment has a limited, if any, potential for sound analysis.
The definition of legal environment, which the model in Figure 4.2 does not satisfy,
is aimed to guarantee sound analysis.

We could, however, produce a legal environment for the TA system by slightly
modifying the current one. For example, a possible solution is to add timeout

transitions from states 9e and 11e (denoted with thick dotted lines), modelling that
the environment can give up waiting for the software response, concluding that it has
probably crashed in some way. That is to say, the previous model of the environment
was establishing very strong assumptions on the system; the environment required
the system to always generate an input at these states. This assumption, which
turns out to be wrong, results in an illegal environment as it generates illegal states
in the composition–see condition (ii) in Definition 3.5.

The probability of sending a vitalParamsMsg starting from state 9e now evaluates
to the interval [0, 0.7] in this legal environment. This is consistent with the evaluation
of the property when composing the legal environment with the software. In fact,
due to Theorem 3.1 we know that any property that has been used to validate the
probabilistic behaviour in this legal environment will be preserved in its composition
with the software. Asserting the validity of the conditions for legal environments
essentially entails verification of several liveness properties, which all check out in
this case.

In a similar way as we did for the system model, we also evaluated the probability
of some properties over the environment in isolation, as depicted in Table 4.2. In
the case of the environment, all of the properties were modelled by suitable observer
automata.
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Environment property Pmin Pmax
EP1: A changeDrug or changeDose is received, and the

next user action is a button press
0.0000 0.7373

EP2: The button is pressed during the first interaction 0.2500 0.9281
EP3: The button is pressed before the fifth interaction 0.2500 0.9281

Table 4.2: Some example environment properties

4.3. Quantitative Analysis of the TeleAssistance System

Now that we have a legal environment for the TA software, we can quantitatively
analyse the behaviour of the TA software system by checking the probability of sys-
tem properties holding when the TA software is composed with the legal probabilistic
environment.

We will now consider all the properties that we already analysed in Tables 4.1
and 4.2. In order to have a complete analysis, we first computed the product of the
Interface Automaton for the TA software and the Probabilistic Interface Automaton
modelling the environment. We later used PRISM to quantify the probabilities of
the events described, and the results are comprised in Table 4.3.

Consider the failure property that states that the First-Aid Squad may not be
sent to the patient location whenever the alarm has been raised (property SP1).
Clearly, the TeleAssistance software may realise this failure (see the transition from
state 8 to state 9 in the system model, which we already discussed). However,
it is interesting to quantify the probability of such error under the assumption of
a particular probabilistic behaviour of the environment. When we quantitatively
analysed the TA system behaviour in isolation, we could only say that there exist
execution traces that exhibit the failure with probability 0 (i.e., they always avoid it);
and others that realise the failure with probability 1. Note that this analysis assumes
schedulers that can non-deterministically choose to stop operation, or that can avoid
pressing the panic button. However, looking at the environment it is clear that there
is a non-zero chance that the button will be pressed, even in the first interaction with
the system. This suggests that the minimum probability of failure of the system
composed with its environment is actually greater than zero. In fact, recall that
the probability of property SP1, when analysed over the system only, was found to
lie in the [0, 1] interval. Once we analyse the composition however, we find that
it actually lies in the [0.2, 0.9057] interval. This is consistent with the preservation
theorem (Theorem 3.1). The minimum probability is being raised as a consequence
of the fact that, for the environment, there is always a nonzero chance that it will
press the button. For example, it may be the first action it takes, with probability
0.25. Then, the system can fail with probability 0.05. This seems to suggest that
the minimum probability of failure is 0.25 × 0.05 = 0.00125, and not 0.2. However,
this is only taking into account just one interaction; once the infinite possibilities are
compounded we get to the obtained 0.2 value. Similarly, the maximum is diminished
from 1 to 0.9057 since the system cannot force the environment to always press the
button.

Similar results are obtained for the other properties, where the interaction be-
tween environment and system makes some choices unenforceable, thus restricting
the possible probability values. The case of properties EP2 and EP3 is noteworthy,
since the probabilities do not change at all from the isolated environment analysis
to the composed one. However, this is a natural consequence, since the decision of
pressing the panic button is completely governed by the environment. The system
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Property
Composite probs. Component probs.
Pmin Pmax Pmin Pmax

SP1: The button is pressed yet the
First-Aid Squad is not sent to the

patient location
0.2000 0.9057 0.0000 1.0000

SP2: A changeDrug or changeDose
occurs, and the next message

received by the TA generates an
alarm which fails

0.0000 0.7982 0.0000 0.9000

SP3: The button is pressed during
the first interaction

0.2500 0.7400 0.0000 1.0000

SP4: The button is pressed
sometime before the fifth

interaction
0.2500 0.9489 0.0000 1.0000

EP1: A changeDrug or changeDose
is received, and the next user

action is a button press
0.0000 0.7252 0.0000 0.7373

EP2: The button is pressed during
the first interaction

0.2500 0.9281 0.2500 0.9281

EP3: The button is pressed before
the fifth interaction

0.2500 0.9281 0.2500 0.9281

Table 4.3: Properties’ probabilities for the composite system

Source state Original µ Variant TA1 Variant TA2

1 {0.95 7→ 4, 0.05 7→ 8} {0.99 7→ 4, 0.01 7→ 8} {0.75 7→ 4, 0.25 7→ 8}
5 {0.90 7→ 4, 0.10 7→ 8} {0.95 7→ 4, 0.05 7→ 8} {0.60 7→ 4, 0.40 7→ 8}
7 {0.50 7→ 4, 0.50 7→ 8} {0.75 7→ 4, 0.25 7→ 8} {0.20 7→ 4, 0.80 7→ 8}
11 {0.10 7→ 12, 0.90 7→ 8} {0.20 7→ 12, 0.80 7→ 8} {0.01 7→ 12, 0.99 7→ 8}

Table 4.4: TeleAssistance distribution variants

cannot either block the environment from pressing the button, nor can it force the
environment to press it.

The (rather high) value of the maximum probability of SP1 (alarm failure) is sen-
sitive to the probabilistic behaviour of both the environment and the TeleAssistance
system. The probabilistic distributions in states 1, 5, 7 and 11 on the TeleAssistance
system; and states 1, 5, 6 and 10 all contribute to this probability. Varying the prob-
abilities on these transitions has an impact on the probabilistic system behaviour.

To better understand this impact, we built some variants of both the TeleAssis-
tance model as well as the patient model, by varying these distributions’ probabilities.
Table 4.4 and 4.5 summarise these variants. We calculated the probability of prop-
erty SP1 over the composite system for each combination of these variants. These

Source state Original µ Variant E1 Variant E2

1
{0.70 7→ 2, 0.25 7→

3, 0.05 7→ 4}
{0.60 7→ 2, 0.15 7→

3, 0.25 7→ 4}
{0.50 7→ 2, 0.05 7→

3, 0.45 7→ 4}
5 {0.70 7→ 8, 0.30 7→ 9} {0.50 7→ 8, 0.50 7→ 9} {0.30 7→ 8, 0.70 7→ 9}
6 {0.15 7→ 2, 0.85 7→ 3} {0.50 7→ 2, 0.50 7→ 3} {0.85 7→ 2, 0.15 7→ 3}
10 {0.90 7→ 6, 0.10 7→ 1} {0.50 7→ 6, 0.50 7→ 1} {0.10 7→ 6, 0.90 7→ 1}

Table 4.5: Patient distribution variants
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TA1 TA2

E1 Pmin = 0.0059 Pmax = 0.5543 Pmin = 0.1304 Pmax = 0.6144
E2 Pmin = 0.0011 Pmax = 0.2425 Pmin = 0.0270 Pmax = 0.2763

Table 4.6: Evolution of probabilities for SP1 with different distribution variations

results are depicted in Table 4.6. Not surprisingly, the major factor in decreasing the
probability of failure is reducing the probability of the patient pressing the button,
either by decreasing that probability itself, or increasing the probability of stopping
the interaction with the system.

Summarising, in this Chapter we have shown how Probabilistic Interface Au-
tomata supports quantitative analysis of non-deterministic models. The notion of
legal environment (and related theorems) is crucial, since it constrains the acceptable
models of the probabilistic behaviour of the environment to those that ensure that
analysis performed to validate the environment’s probabilistic behaviour is sound
and preserved when analysing the composite system.



CHAPTER 5

Discussion

In the last few decades, researchers have paid attention to the concept and
consequences of operational profiles in system reliability specification and analy-
sis [Che80, Mus93].

Regarding enriching models with probabilistic information, we can mention the
work in [RM04, EGMT09]. This work, unlike our own that allows for composite-
level modelling, yields a verification artefact that is a single model containing all
the relevant probabilistic transition information, both pertaining to the environment
and to the system. Our approach has the added benefit of allowing the engineer to
isolate each component, and only add probabilistic information to the source where
it has already been validated.

Additionally, the Markov models such as those obtained in [RM04, EGMT09]
are purely probabilistic, which may not allow the engineer to fully model the non-
deterministic behaviour of concurrent systems. This is an issue especially in the case
where a system is known to behave in different ways at the same point, but the
choice between these different behaviours cannot be properly quantified.

The problem of being able to model both probabilistic and non-deterministic
behaviour through a single, consistent formalism is not a new issue. For example,
although generative models [Chr90] do not directly allow non-determinism them-
selves, an asynchronous parallel composition (à la CSP [Hoa78]) induces such non-
determinism and must be dealt with, while preserving the intended behaviour of
the components. Works such as [DHK99] advance in this direction resorting to
redistributing probabilities when finding synchronising actions with no matching
counterpart. It is unclear if this approach is suitable when the probabilities reflect
system-environment interaction. The environment (in the most usual case, a user)
may not actually redistribute probabilities on allowed action when the desired one
is not allowed. Regarding reactive models [vGSS95] we have already discussed the
limitations they pose towards realising our modelling goals. This discussion can be
found in Section 3.1.1.

It must be noted as well that an important precedent to this work is that of Prob-
abilistic I/O automata [WSS97]. This model enriches classic I/O automata [LT87]
with probabilities, establishing a hybrid between the generative and reactive mod-
els, since output actions are modelled in a generative way while input actions are
modelled reactively. The approach in itself is interesting, but the probabilistic I/O
automata model has some characteristics we consider problematic. In the first place,
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it inherits from I/O automata the notion of input-enabledness. Under this paradigm,
every component automaton, at every state, must allow every possible input as a
transition. As we previously argued, this is not a realistic restriction in most cases,
since systems are usually designed with some concept of the environment in mind,
and thus it is reasonable that they restrict some inputs at certain points of execution.
Another characteristic aspect of probabilistic I/O automata is that they introduce a
real-valued parameter to each state in each component automaton. This parameter,
an additional random variable as it happens, models a delay on each automaton
state. The rationale for this delay is the need to somehow resolve conflicting races,
since at some points of the asynchronous concurrent execution, it would be feasible
for more than one component to synchronise its actions. This delay is intended to
establish an order in which the automata advance, that is, the automata in which
the state delay is the least will advance first. Since the delay variable is random, this
allows this order to also be random.

The notion of resolving races between competing transitions is also present in our
model, as in other proposed models [SdV04]. However, this choice is represented by
an external entity, the scheduler. The scheduler, however, can be seen as a process
that is completely independent of the system model itself; while the system behaves
independently of the scheduler as well. Additionally, the notion of a scheduler mod-
els an unknown within the system under analysis. That is, it models a behaviour
that cannot be explicitly quantified. The I/O automata notion of delay defeats this
modelling objective. In this sense, we argue that the idea of a built-in scheduler as
a composite aspect of the system model–be it probabilistic or not–is undesirable, as
we aim for a separation of concerns.

Finally, a behaviour composability result is presented for probabilistic I/O au-
tomata, though it is different to the one we present in this thesis. Probabilistic I/O
automata behaviour preservation stems from that of the original non-probabilistic
I/O automata. This result states that every execution trace in the composite au-
tomata, when restricted to the actions of each component automaton, is an execution
trace of said component automaton. However, this result leverages heavily on the
embedded scheduler concept depicted above. Our result does not establish such a
stringent relation, since we establish that system-environment composition does re-
fine the specified behaviour, but observed probabilistic behaviour in the environment
is still preserved, thus allowing for early elicitation of interesting properties.

Apart from modelling system behaviour by means of synchronising automata,
there have also been advances in quantitative contract-based modelling or, in a sim-
ilar fashion, quantitative assume-guarantee reasoning. The work by Delahaye et
al. [DCL11] presents a contract-based approach that shares many similarities with
the work we present in this thesis. In particular, both this work as well as ours aim
at presenting a formalism that can reason about isolated components in the context
of a composite systems.

There exist two key differences between the approach presented here and that
of [DCL11], which allow both techniques to be used complementary. First, the work
in [DCL11] analyses contracts in isolation, and results in a lower bound for the prob-
ability of satisfying the contract that results of the composition of these contracts.
Our approach is also intended for the isolated analysis of components; however we in-
troduce a notion of preservation of behaviour properties rather than bounds. Second,
the object of study is very different in both cases. Our work deals with automata-like
description of behaviour, while Delahaye et al. deals with contracts which are rep-
resented by sets of traces. This allows them to define composition and conjunction
between systems (by composing or conjoining their contracts), while also allowing for
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a notion of refinement between systems (that is, contracts that refine other contracts
that otherwise allow less or require more). This marks another few differences with
our work, as we do provide the notion of composition, but where conjunction does
not have a direct analogue. However, our choice of automata as models allows for
explicit representation of non-deterministic choices. Although this choice hampers
the possibilities of properly defining a notion of refinement, it allows a larger degree
of expressibility than that of the contracts of Delahaye et al. In that sense, our
approach is closer to modelling formalisms such as Segala’s Probabilistic Automata
and Markov Decision Processes than those of contracts.

There is also work on assume-guarantee verification of safety properties, which
have some similarity to our own. The work of Kwiatkowska et al. [KNPQ10] is
noteworthy. In that work the authors model probabilistic systems through proba-
bilistic automata much like those presented here, and aim at the verification of safety
properties modelled via deterministic automata. [HKK13] also presents an assume-
guarantee approach where the object of study are Interactive Markov Chains [HK09].
However, in all these cases there is no notion of preservation of behaviour through
compositional construction.

The notion of refinement in automata-based formalisms is related to that of simu-
lation (and bisimulation). Since our Probabilistic Interface Automata are a restricted
case of Segala Simple Probabilistic Automata [Seg95], the notion of (bi)simulation is
well-defined. However, bisimulation can be too strict, and not an effective notion, in
the presence of components with internal computation that needs to be abstracted
away. In regards to this question, the notion of weak bisimulation [Mil89] has been
employed effectively in the context of non-probabilistic systems. Such a notion of
weak bisimulation has been recognised, although it is problematic for probabilistic
systems [HJ90, SJ90]. We do not go into detail in these aspects, however some
interesting work includes [BH97] where the authors present a weak bisimulation no-
tion along with a decision procedure, albeit focused on fully probabilistic systems
alone. Also, [SL95] introduces a notion of weak bisimulation for systems exhibiting
non-determinism, where the bisimulation proposed includes the potential generation
of infinite probabilistic distributions representing all possible intermediate internal
steps. Philippou et al. [PLS00] and Cattani [CS02] attack this problem by restricting
distributions to a certain class. In order to prove the behavioural preservation prop-
erties of Probabilistic Interface Automata, we have based our efforts on the notion
of weak probabilistic branching simulations [Seg95]. It remains to be seen, however,
if other simulation notions are just as suitable.

An important improvement relative to Interface Automata is also presented in
the previous Chapters. This result regards the synchronising conditions for Interface
Automata, and is independent of probabilities. We found the synchronising condi-
tions posed by Interface Automata to be too strict regarding the immediate necessity
for synchronisation. However, software systems that need to perform several internal
actions before allowing inputs from its environment are commonplace. Such systems
cannot be easily modelled with Interface Automata without abstracting away such
internal behaviour, eliminating the possibility to document this potentially interest-
ing behaviour, and possibly analyse it at a component level. When developing the
Probabilistic Interface Automata formalism, we have relaxed the need for immediate
synchronisation in these cases, while requiring a notion of fairness on the schedulers
allowed for the composite system.

This decision on fairness restrictions, however, calls for further analysis. Although
the fairness conditions imposed are not esoteric or overly restrictive, it may be the
case that they can be refined and further relaxed. Preliminary analysis has shown



88 CHAPTER 5. DISCUSSION

that the fairness requirement over some states may be relaxed in some cases–for
example, loops made up purely of internal actions, that can be ignored if not allowed
to happen–but a generalisation and proper characterisation remain as future work.

5.1. Conclusions and Further Work

Quantitative model checking and analysis are promising techniques to comple-
ment Yes/No automatic analyses of behaviour. This first Part of the thesis has dealt
with some of the software engineering challenges that need to be solved to enable
such a technology, namely, the incorporation of probabilities into system models
lacking probabilistic information. This naturally raises several formal and practical
challenges. These challenges range through several aspects: first, it is important
that these probabilities be introduced in a component-wise fashion, as it is often
difficult to establish the quantitative behaviour of the system at large. Second, this
probability introduction should not interfere with the behaviour that was described
previously, that is, it should not preclude previously modelled behaviour, nor oth-
erwise allow for emergent behaviour that was not modelled before. Finally, the
introduction of probabilities should be in such a way that component-wise verified
properties still make sense, and hold, once the whole model is built as a composition
of these components. That is, the formal model and composition must preserve the
meaning of annotations in both of the existing and composed artefacts.

The key to these challenges is a careful treatment of controllability of actions,
non-determinism, and fairness assumptions over the behaviour of composite systems.
We presented Probabilistic Interface Automata as a suitable formalism satisfying
these requirements and showed that the language is compositional, that is, there is a
notion of property preservation between the components and the composite system.
Although we have preliminarily validated this approach, research on the generation
of useful and sound environments is the focus of future and ongoing work.

Deeper understanding of fairness assumptions also merits further work. In the
particular case of the work presented here, we have shown that a notion of strong
fairness, relaxed for probabilistic behaviour, is sufficient to ensure compositionality
of Probabilistic Interface Automata. However, it remains to be seen if such assump-
tions are completely necessary, or if they could be weakened. If so, further analysis
is necessary for understanding under which conditions these assumptions may be
weakened and what their impact is on modelling different environmental domains.
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CHAPTER 6

Efficient partial verification

In this Part of the thesis we will focus on defining and solving the problem of
obtaining feedback information from failed model checking efforts, as was described
in the introductory part of the thesis. We will formalise the notion of partial state
space, and will introduce our ideas for meaningful quantitative feedback.

After the introduction of these concepts, we will perform a preliminary valida-
tion of the approach. This experimentation, apart from resulting in a satisfactory
sanity check of the technique, allowed us to identify further requirements towards an
approach that can both scale in time and space, and also provide the practitioner
with useful information.

As a result of the previous analysis, we motivate the approach in its present form.
Further in this Chapter, we delineate the basis of a quantification and verification
procedure that is suitable to our setting. The technique we present is tailored to-
wards avoiding, or at least reducing, the problems that threaten the applicability
of a straightforward quantification and analysis technique. The result of the work
presented in this Chapter is a technique that comprises a combination of guided
simulation, analysing the features of these simulated paths, property inference, and
probabilistic model checking.

In addition, we extend the target of our work to reactive probabilistic systems in
general, and no longer limit our work to the quantification of the partial state space
of a non-deterministic system’s behaviour. The workflow presented in this Chapter is
applicable without modifications to any reactive probabilistic system model, either
monolithic or compositionally built. Of course, the scenario that kicked off our
research remains as a particular case of this, more general, analysis setting.

In the remainder of these chapters, we will specialise on Segala’s Simple Prob-
abilistic Automata [SL95, Seg95] as the reactive formalism of study (recall Defini-
tion 2.19). Note that since the Probabilistic Interface Automata presented in Def-
inition 3.1 are Segala’s Simple Probabilistic Automata themselves, this approach is
applicable to our original research setting.

6.1. The problems with state-of-the-art techniques

As we have already discussed in the introduction of this thesis, applicability of
model checking techniques for verification of properties of complex model is threat-
ened by the sheer size of these models. Probabilistic model checking is no exception
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to this, as this topological problem is still present in its resolution method. Even
worse, techniques such as on-the-fly model building are not applicable in a proba-
bilistic setting, since the numerical resolution part of the analysis requires the whole
model to be built. Any attempt at reliability assessment of complex models through
probabilistic model checking will suffer from these drawbacks.

Although state space reduction techniques exist [LLPY97, CGMP99], they may
still fail to prevent state explosion to a manageable extent on sufficiently complex
models. As if this was not discouraging enough, even in the event that the entire
state space can be explored in its totality, its size typically impedes exact numerical
calculation of reliability metrics through methods such as Gaussian elimination or the
Grassmann, more stable, algorithm. To overcome this limitation, iterative methods
(such as Jacobi or Gauss-Seidel) that approximate metrics need to be used. However,
these methods do not always have convergence guarantees. In fact, even in the cases
where they do converge, they may do so slowly; as much as to become intractable.
The latter problem is heightened in the case of metrics related to rare events (e.g.
reliability estimation for models where the probability of failure in a fixed period lies
below 10−5). In this case, since the execution budget time for the iterative methods
is not infinite, exhausting this budget can lead to iterations being cut short far from
the actual value of the metric being estimated. This becomes a problem for safety
critical systems since, as the model is further refined and corrected, it is expected
that the remaining errors will become rarer with every iteration.

In summary, although probabilistic model checking may seem to promise exact
calculation of quantitative reliability properties, state space explosion and appli-
cation of numerical methods can be computationally prohibitive or result in poor
approximations. Despite these limitations, probabilistic model checking can provide
bounds with 100% confidence for reliability metrics even though the distance of these
bounds to the real value cannot be known in general.

Numerical analysis and, to some extent, state explosion can be avoided using
statistical methods over many samples of the system. Variations of these approaches
are usually referred to with the umbrella term of Monte Carlo estimations. When
using these techniques to estimate quantitative metrics, the actual population mean
X is approximated through an estimator such as the sample mean X [Lyu96]. Of
course, such estimation is subject to statistical error and thus it is crucial to under-
stand how far and with what likelihood the estimator deviates from the actual mean.
This contrasts with probabilistic model checking, which does not suffer from such
statistical imprecision.

The deviations from the actual value that result from the specific samples used
while performing Monte Carlo based estimations is usually conveyed in terms of
statistical errors and confidence intervals. Bounds for statistical error and confidence
intervals can be computed, based partly on the number of samples being analysed
and prior knowledge of the distribution of the events of interest (in particular its
variance). Although significant progress for fast generation of random walks over
models has been made [Nim10, RP09], sample generation can be very costly time-
wise even for analyses with modest guarantee requirements, simply due to the sheer
number of samples required [Saw03].

The number of samples required is not the only limiting factor for these ap-
proaches Sample-based reliability estimations must also take into account the length
of samples. Sample length can be particularly problematic, since sampled executions
must reach a state satisfying a (usually unlikely) property (e.g. a failure) in order
to allow the computation of an estimator. This fact, compounded with the need for
many samples, may turn sample generation for high-reliability systems intractable.
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In summary, statistical techniques can provide approximations with measurable
confidence intervals and error bounds. However, in the presence of models with
rare events, the required number and length of samples may make such techniques
intractable, and attempts to reduce either sample size or length might result in
weakened (or downright lost) statistical guarantees over results.

In this Chapter we present an alternative to exhaustive model exploration—as
in probabilistic model checking—and partial random exploration—as in statistical
model checking—which may counter some of the limitations of existing model-based
reliability verification techniques. Our hypothesis, inspired on the Pareto principle,
is that a (carefully crafted) partial systematic exploration of system models can
be effectively analysed to provide good bounds on quantitative metrics with lower
computation cost. More specifically, probabilistic model checking of a submodel of
the system can bound the value of these metrics for the complete model, and do so in
a cost effective manner. Furthermore, it can produce better approximations, given
equal time and memory budgets, than those that both probabilistic and statistical
model checking can achieve.

We hypothesise that there is a gain to be had by identifying a small, but prob-
abilistically significant, portion of the state space, considering all other states as
failures and performing probabilistic model checking on the resulting submodel. The
intuition is that, in contrast to full-model probabilistic model checking, performing
a probabilistic check on only a portion of the full model allows for faster iterations
of the numerical analysis methods. Consequently, more iterations can be performed
within the same time budget and, for slowly converging models, a better approxima-
tion may be achieved.

More specifically, in this Part of the thesis we present a novel automated technique
for quantitative metric estimation that combines simulation, invariant inference and
probabilistic model checking. We use model simulation to produce a set of traces
that represent likely behaviour of the full model. These traces are used to infer an
invariant that describes the state space explored during the simulation. A submodel,
which restricts the states by not allowing those that do not satisfy this invariant, is
constructed and the value of the desired metric is computed over this partial model
using a probabilistic model checker.

The technique we propose obtains lower bounds to the actual values of the desired
metrics with 100% confidence (as full-model probabilistic model checking and in
contrast to statistical model checking). In a more technical note, our technique
provides a lower bound on the expectation of a random variable. This random
variable is modelled as a reward structure over suitable probabilistic models. Our
technique also provides bounds on the probability of a reachability property being
satisfied.

In a subsequent Chapter, we will put the proposed approach to the test. As
the results will show, the experimental evidence suggests that the lower bounds
achieved (for a fixed budget of time and memory) are higher than those obtained by
full model probabilistic and stochastic model checking, especially for models where
the probability of reaching the interesting property is low given a fixed time. High
bounds are of special interest in reliability, as they allow to argue a reliability case
even in the absence of the exact values. Furthermore, automated invariant generation
seems to perform reasonably well against domain-expert provided invariants, and
have the added advantage of being useful when such expert-provided invariants are
unavailable.
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6.2. Approach

This section formally defines an approach to computing bounds to reachability
probabilities and reward values of probabilistic system models. The approach is
based on calculating this values for only a partial systematic exploration of the
model’s state space. We first define what is meant by a partial exploration and show
that the mean reward computed over these partial explorations is indeed a lower
bound to the mean reward computed over the entire system model. We also show
that reachability probabilities computed over partial models are an upper bound to
those that would be computed over the whole model.

We then show how some partial explorations can be specified declaratively through
invariant properties that drive the exploration, discussing at length the details of the
procedure. Finally, we show how these invariant-driven partial explorations can be
obtained automatically from any given model, without need for human intervention.
In the next section we will show, via some case studies, that given a fixed budget of
time and memory, analyses performed over automatically inferred invariant-driven
partial explorations perform at least as well as, and sometimes outperforms, partial
explorations driven by manual specification.

6.2.1. Partial Explorations

We refer to a partial exploration of a system model as a submodel. Intuitively, a
submodel of a probabilistic process M is a model that retains a subset of the states
and transitions of M and in which all other states in M have been abstracted away
into a new λ trap state. Moreover, the retained states include the initial state, and
all other retained states are reachable from this initial state. Formally, the notion of
a submodel of a probabilistic model is captured by the following definition.

Definition 6.1 (Submodels). Given a probabilistic model M = 〈S, s0, A,R〉, a sub-
model of M is another probabilistic model M ′ = 〈S′∪{λ}, s0, A,R

′〉 such that S′ ⊆ S,
s0 ∈ S′, and R′ ⊆ (S′ ∪ {λ})× (A ∪ {τ})×D(S′ ∪ {λ}) is such that for all a ∈ A

1. for each (λ, a, µR′) ∈ R′, it must be the case that supp(µR′) = {λ} and a = τ ;

2. for all s ∈ S′ and a ∈ A ∪ {τ}

a) for all µR′ such that (s, a, µR′) ∈ R′, there exists µR such that i) (s, a, µR) ∈
R, ii) for all s′ ∈ S′ µR′(s′) = µR(s

′), and iii) µR′(λ) = 1−
∑

s′∈S′ µR(s
′).

b) for all µR such that (s, a, µR) ∈ R, there exists µR′ such that i) (s, a, µR′) ∈
R′, ii) for all s′ ∈ S′ µR′(s′) = µR(s

′), and iii) µR′(λ) = 1−
∑

s′∈S′ µR(s
′).

Clause 1 states that transitions originating on the λ state all lead back to the
same λ state, and that they do so through the model’s internal action τ . Clause 2
states that action transitions on the submodel are drawn from the original model
ones, that is, if an action transition is possible at a given state in the submodel, that
action must have been possible from the same state in the whole model. Further,
it also states that the probabilities on those transitions are also preserved from the
original model, except for the case of those that were rerouted to the λ state, which
accumulates the probabilities of those rerouted transitions. Finally, Clause 2 states
that every transition on the original model is preserved on the submodel for each
of the states present in the submodel, while the λ states accumulates the remaining
probability.

There is a close relationship between the schedulers that can be defined for a
given model M and those that can be defined on its submodels M ′. Intuitively, any
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scheduler σ for M is still a valid scheduler for M ′, although with some changes. In
particular, transitions that over the original model traverse to states that do not
exist in the submodel are instead rerouted to the λ state. The following definition
captures these changes.

Definition 6.2 (Restricted schedulers). Let M = 〈S, s0, A,R〉 be a probabilistic
model, and M ′ = 〈S′, s0, A,R

′〉 one of its submodels. Let σ be a scheduler for M .
Also, let α ∈ execs∗(M ′) which implies that either α ∈ execs∗(M) or last(α) = λ.
The restriction of scheduler σ to M ′ is another scheduler σ′ for M ′ such that

if last(α) = λ then σ′(α) = (τ, µ) where µ is such that supp(µ) = {λ}.

if last(α) 6= λ and σ(α) = (a, µ) and (a, µ) ∈ R′(last(α)), then σ′(α) = (a, µ).

if last(α) 6= λ and σ(α) = (a, µ) and (a, µ) /∈ R′(last(α)) then it must be the
case that, because of Definition 6.1, there must exist (a, µ′) ∈ R′(last(α)) such
that

• (supp(µ′) \ {λ}) ⊆ supp(µ);

• for each s′ in supp(µ) ∩ supp(µ′) it holds that µ(s′) = µ′(s′);

• λ ∈ supp(µ′) and is such that µ′(λ) captures the remaining probability.

In such cases, σ′(α) = (a, µ′).

We also say that σ′ is the scheduler σ restricted to M ′.

It is also easy to see that any scheduler for a submodel can be extended to
a scheduler that is valid for the complete model—in fact, it can be extended to
possibly many schedulers. In other words, every valid scheduler for a submodel is a
restriction of one or more schedulers of the complete model.

Submodels are key to our approach since they conservatively approximate the
value of both probabilities and reward structures for reachability properties. Even
though we restrict ourselves to reachability properties, this more than suffices for our
intended verification setting. For example, consider the mean time to failure metric.
In order to be able to calculate this metric, we first need to be able to describe what a
failure means in our system. In other words, we need to identify which system states
model a failure, or an irrecoverable situation. In the setting of this work, these states
would comprise the interesting Sreach set. Calculating the mean reachability reward
value to this Sreach set effectively calculates the mean time to failure of the system.

Expressing this bounding property more formally, given a reward structure ρ
for a model M and a scheduler σ, the mean reward value of ρ under σ for M until
reaching some state in a distinguished set Sreach ⊆ S is always greater or equal to the
mean reward value of any of its submodels M ′, under the same scheduler restricted
to M ′, until reaching a state in the set S′

reach = (Sreach ∩ S′) ∪ {λ}.

On a similar note, submodels also bound reachability probabilities, both for time
unbounded reachability (i.e., formulae of the form φUψ) as well as bounded reacha-
bility (i.e. φU≤tψ). However, as we will see later on when performing experimental
validation, this is not as useful as bounding rewards. The following two theorems
express this in a formal way. We provide the proof for the case of rewards, but the
proof follows the exact same argument for the case of probabilities.

Theorem 6.1 (Submodels bound reward values). Let M , M ′, S, S′, Sreach , S
′
reach , σ

and σ′ be defined as in Definition 6.2. Then Xreach(S
′
reach ,M

′, σ′) ≤ Xreach(Sreach ,M, σ).
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Proof. Note that, for every trace in the complete model, it either exists completely
in the submodel, or the submodel contains only a prefix that is extended by the
λ state. Since reward structures are based on transitions, every trace in the full
model accumulates at least as much reward to each of the interesting states (possibly
∞) as the corresponding trace (or prefix) in the submodel. Hence these prefixes
contribute to Xreach(S

′
reach ,M

′, σ′) at most what their extensions in M contribute

to Xreach(Sreach ,M, σ).

Alternatively, if the submodel allows a trace that never reaches either λ or one
of the target states in S′ ∩ Sreach , then this trace also exists in the complete model.
In such a case, both Xreach(Sreach ,M, σ) = Xreach(S

′
reach ,M

′, σ′) = ∞.

Theorem 6.2 (Submodels bound reachability probabilities). M = 〈S, s0, A,R〉 and
M ′ = 〈S′, s0, A,R

′〉 be two probabilistic models with state spaces S and S′ and such
that M ′ is a submodel of M . Let Sreach ⊆ S be a set of states representing the
interesting events and σ a scheduler for M . Also, let σ′ be the restriction of σ to M .
Then, the following holds for every p, q ∈ [0, 1] such that q ≤ p

M ′, s0, σ
′ |= P≤q(true U1S′

reach
) =⇒ M, s0, σ |= P≤p(true U1Sreach

)

where 1B : B → true, false denotes the indicator function of set B, that is, the
function that returns true if and only if its argument is in set B.

Proof. The proof for the theorem bounding probabilities is analogous to that of re-
ward bounding, although it must be noted that probabilities, as opposed to rewards,
decrease the longer the execution fragment is extended by the scheduler.

The above results entail that if computing the value of either a reachability proba-
bility or a reward structure for a system model is intractable, it can be conservatively
approximated on any of its submodels. In the case of Segala’s Simple Probabilistic
Automata, because of the presence of non-determinism, it is interesting to examine
the case for the extrema schedulers. The following corollaries captures the bounding
relation for these extreme values.

Corollary 6.1 (Extreme rewards bounding). Let the probabilistic model M as de-
fined in the previous theorem, and its submodel M ′, be SPAs. Let σmin and σmax be
two schedulers for M such that, for any other scheduler σ for M

Xreach(Sreach ,M, σmin) ≤ Xreach(Sreach ,M, σ); and

Xreach(Sreach ,M, σmax) ≥ Xreach(Sreach ,M, σ).

In turn, let σ′min and σ′max be schedulers for M ′ such that for other schedulers σ′ for
M ′ it holds that

Xreach(S
′
reach ,M

′, σ′min) ≤ Xreach(S
′
reach ,M

′, σ′); and

Xreach(S
′
reach ,M

′, σ′max) ≥ Xreach(S
′
reach ,M

′, σ).

Under these conditions, it holds that Xreach(S
′
reach ,M

′, σ′min) ≤ Xreach(Sreach ,M, σmin)

and also that Xreach(S
′
reach ,M

′, σ′max) ≤ Xreach(Sreach ,M, σmax).

Corollary 6.2 (Extreme probabilities bounding). Let the probabilistic model M be
as defined in the previous theorem, and its submodel M ′, be SPAs. Let pmin, p

′
min,

pmax, p
′
max all lie in the interval [0, 1]; let σmin and σmax be two schedulers for M

such that, for any other scheduler σ for M
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M,σmin, s0 |= P≤pmin
(true U1Sreach

);

M,σmin, s0 |6= P≤q(true U1Sreach
) for any other q < pmin;

M,σ, s0 |6= P≤q(true U1Sreach
) for any other q < pmin;

for the minimum probability case, and also for the maximum probability:

M,σmax, s0 |= P≥pmax(true U1Sreach
);

M,σmax, s0 |6= P≥q(true U1Sreach
) for any other q > pmax;

M,σ, s0 |6= P≥q(true U1Sreach
) for any other q > pmax;

In turn, let σ′min and σ′max be schedulers for M ′ such that for other schedulers σ′ for
M ′ it holds that

M ′, σ′min, s0 |= P≤p′min
(true U1S′

reach
);

M ′, σ′min, s0 |6= P≤q(true U1S′
reach

) for any other q < p′min;

M ′, σ′, s0 |6= P≤q(true U1S′
reach

) for any other q < p′min;

for the minimum probability case, and also for the maximum probability:

M ′, σ′max, s0 |= P≥p′max
(true U1S′

reach
);

M ′, σ′max, s0 |6= P≥q(true U1S′
reach

) for any other q > p′max;

M ′, σ′, s0 |6= P≥q(true U1S′
reach

) for any other q > p′max;

Under these conditions, it must hold that pmin ≤ p′min and analogously pmax ≤ p′max.

Proof. Again we prove the case only for the bounding of rewards, and note that the
proof for probabilities is analogous.

The proof stems directly from the proof of Theorem 6.1. The case for σmax is
straightforward. Suppose that Xreach(S

′
reach ,M

′, σ′max) > Xreach(Sreach ,M, σmax).
Recall that, because of the definition of restricted schedulers, it must be the case
that every trace generated by σ′ in M ′ either exists as it is in M , or else it diverts to
λ at the end. In any case, traces in M ′ cannot accumulate more reward in M ′ than
they would accumulate in M , therefore such a situation is not possible.

By the same argument, let σ′ be the scheduler obtained by restricting σmin
to M ′. By the previous theorem, it must happen that Xreach(S

′
reach ,M

′, σ′) ≤

Xreach(Sreach ,M, σmin). Since σ′min, by definition, yields a lower reward, it must
be that Xreach(S

′
reach ,M

′, σ′min) ≤ Xreach(Sreach ,M, σmin).

In a similar manner as Theorems 6.2 and 6.1, these results indicate that i) esti-
mations for the minimum and maximum reachability probabilities over a submodel
yield an upper bound to the actual minimum and maximum probabilities; and in
the case of rewards, that ii) estimations for the minimum and maximum rewards
over a submodel yield lower bounds for the actual minimum and maximum rewards,
respectively, for the whole model.

Key questions are which submodels are cost-effective (i.e. provide good approxi-
mations at reasonable computation cost) and how to find them. Another important
question to address is whether effective submodels provide reasonable approxima-
tions in general. With this objective in mind, we first validate our submodel ideas
over simple partial explorations of the full model.
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Figure 6.1: The degraded TeleAssistance software model
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6.2.2. Preliminary submodel evaluation

In this section we set out to validate our approach against very simple submodels.
We will perform this preliminary experimentation over a variation of the TeleAssis-
tance software [EGMT09] presented in Chapter 4. An abstraction of this version of
the software is depicted in Figure 6.1.

In this variation, the system does not inform the user whether it changed either
the administered drug or its dosage. Another important difference is that, when
the patient presses the panic button while the data is being analysed (see state 15)
the system, rather than fail outright, enters a degraded mode. In this mode, the
system is bound to fail, but it is somewhat more resilient than in the previous case.
Once the system has entered this degraded mode, it might safely raise the alarm.
However, if the patient persists in notifying panic before the alarm is raised, the
system will eventually fail. More specifically, it will fail if it does not raise the alarm
while the patient triggers five additional panic signals (see states 16 through 21).
The actual model is much larger than what we can show here, since it has several
other degradation modes built in. The triggering mechanism is similar in all of them,
although it is raised at different moments in the execution.

We first compose this software model with a model of its environment, that is, a
model of the patient’s behaviour. This model can be seen in Figure 6.3. Again, this
model is an abstraction of the patient’s actual behaviour.

Note the behaviour highlighted in states 5 and 11. At this point, the patient
has sent her vital parameters to the system, and is now waiting for the results.
However, there is a probability that the patient will become uneasy and press the
panic button. This behaviour may be repeated indefinitely while the patient is
waiting for the system’s response. Recall, however, that if the patient persists and
presses the panic button five or more times before the system sends its response, the
failure described above may be triggered.

We first calculated, using the PRISM model checker, the probability that the
failure is eventually triggered. The minimum probability of failure is actually zero,
since there are schedulers that can consistently avoid the degradation mode. Some of
these schedulers represent, for example, a not very anxious patient. The maximum
probability of failure was established to be 0.00005089.

For the sake of argument, let us assume now that a model checker fails to verify
neither the minimum or maximum probabilities of the failure state being reached.
So, we set out to validate our approach by generating some submodels from the full,
composed model. We performed this generation by setting a bound to the number
of states explored by the model checker. We further modified the model checker’s
exploration algorithm so that it would explore either in a breadth-first search (BFS)
or depth-first search (DFS) order. The complete model spans 6717 states, and we
generated submodels by setting the state space size bound to 600, 1800, 3100 and
4400 states.

Submodels constructed through a DFS exploration turn out to provide very bad
bounds. In fact, in every case the probability of reaching either a failure state or
the special λ state in these DFS-generated submodels turned out to be 1. Although
this is a correct bound, it doesn’t convey any information. The rationale behind
the failure of these DFS-driven submodels is that, since DFS explorations prioritise
exploring deeper in the model, they avoid traversing transitions very early in the
model. As a result, schedulers that choose these transitions early on are very likely
to reach the λ state quickly.

BFS explorations, on the contrary, do not suffer from this problem and perform
better. Table 6.1 shows the results obtained for the BFS-driven submodels for the
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Submodel size Probability bound Difference to actual probability

600 0.806334 0.80628311
1800 0.729199 0.72914811
3100 0.611195 0.61114411
4400 0.051490 0.05143911

Table 6.1: Estimated probability bounds for different submodel sizes (BFS explo-
rations)
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Figure 6.2: Preliminary evaluation of BFS-driven submodels

unbounded property Pmax(true U(state = 22∨state = λ)), where 22 is the error state
as seen in Figure 6.1. In turn, Figure 6.2 shows the progression of estimations of prob-
ability for the time-bounded property Pmax(true U

≤bound(state = 22 ∨ state = λ)),
which would eventually converge to the values shown in the Table. Different coloured
lines represent the values obtained with differently sized submodels. The horizontal
axis shows the progression on the bound variable used to bound the property, while
the vertical axis shows the probability bounds obtained in each case.

It is clear that in the case of BFS-driven submodels, we can obtain some meaning-
ful bounds, as we have bounded the failure probability to at most ∼ 0.05. However,
in order to get probability bounds closer to the actual probability it is necessary to
have a BFS driven model of more than 4400 states. This comprises roughly 65%
of the complete state space. In case of models that fail to be verified because of
memory exhaustion, 65% of the total might still be unmanageable.

Two preliminary conclusions arise from this analysis. First, that not every sub-
model is created equal, and submodel size is not the only factor that comes into
play. Some submodels may be able to provide useful bounds, whereas others of the
same size will not be as effective. A second conclusion is that there is a need for an
effective procedure to generate submodels that i) provide good bounds to the values
of interest, and ii) provide a cost-effective way to approximate these bounds.

The preliminary evaluation seems to suggest that simplistic ways to drive the
submmodel generation, such as standard BFS or DFS explorations, may not suffice



6.2. APPROACH 101

0 1
startAssistance!

3

6

panic!
choice [0.35]

2choice [0.6]

4choice [0.05]

5

vitalMsg!

7

stop!

noChange?

attendPA?

wait

9notifyPA?

11

choice [0.3]

12

choice [0.7]

attendPA?

stop!

choice [0.05]
10

choice [0.95]

choice [0.95]

choice [0.05]

noChange?

attendPA?

panic!

notifyPA?

wait

noChange?

attendPA?
notifyPA?

wait

Figure 6.3: Patient behaviour model for the degraded TeleAssistance software

for these objectives. In the next subsection we discuss one particular way of driving
the generation of submodels that results in cost-effective bounds computation. The
key insight to this approach is that the semantics of the model under analysis must
be taken into account in the submodel generation procedure. Later, in Chapter 7
we will argue that the submodels obtained through our approach are effective at
estimating these bounds.

6.2.3. Automatic submodel generation

From the previous analysis we conclude that, although any submodel will provide
a lower bound for the value of a given probability or reward structure, the key to a
tractable estimation technique is to identify a submodel for which its values of interest
can be computed within a reasonable time budget, and for which the resulting bound
is a useful approximation to the actual value sought after in the full model. In the
section above we have already shown results that hint that submodels obtained as
the result of a depth-first search exploration are generally very bad at providing
either good reward or good probabilities estimates. Conversely, submodels obtained
through breadth-first search explorations seem to outperform those obtained through
DFS, most likely due to the fact that they do not escape the explored space as
quickly. Nevertheless, they still do not provide good estimates in general either. In
other words, not all submodels are created equal; two submodels similar in size can
obtain wildly different estimates.

Regrettably, and independently of the fact that the values of interest for the
full model is unknown, the problem of computing an exact solution (i.e. obtaining
the “best” submodel for the computation of an estimate) is intractable [JD07]. In
this section we discuss a heuristic for automatically constructing submodels that can
provide better bounds for reliability at lower computation cost than both full model
checking and Monte Carlo approaches.

Our approach adopts a heuristic based on the reasoning that the submodel con-
struction strategy should aim to identify a portion of the model that is probabilis-
tically dense, that is, a submodel for which the probability of reaching the λ trap
state in a given fixed time is low. More formally, a submodel M1 of M is more
probabilistically dense than another submodel M2 if, for every n ∈ N, the maximum
probability of reaching the trap state λ in at most n steps in M1 is at most as much
as that probability in M2. That is, Pmax(trueU

≤n(state = λ)) is lower in M1 than
it is in M2.
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Figure 6.4: Example partial exploration of a state space

These probabilistically dense models will contain loops that are more probabilis-
tically likely. These loops delay the traces from reaching the submodel boundary.
Since reward structures are always positive and can never decrease, these loops con-
tribute to a larger bound for the reward being estimated (or conversely, a smaller
bound in the case of probability estimation).

The problem of finding the most probabilistically dense submodel is known to be
NP-hard [JD07]. Our approach attempts to approximate such a submodel through
bounded simulation. Hence, the basis of our approach involves the simulation of sev-
eral traces over the full model. The resulting set of finite traces, if sufficiently large
and consisting of sufficiently long traces, is likely to cover a good part of a proba-
bilistically dense submodel. These traces form the basis for building our submodels.
The smallest submodel that includes the set of states and transitions covered by the
simulated traces can be constructed easily by simply adding any non-visited tran-
sitions between any two visited states, abstracting all non-visited states into the λ
trap state, and adding transitions to the λ state for whichever state has transitions
that were neither explored nor added in the first step. Figure 6.4 shows such a con-
struction, where solid lines represent transitions that were covered by the simulated
traces, while dotted lines are transitions in the model that were not covered. States
outside the boundary have not been covered, and would be abstracted away into the
λ state of the submodel.

However, submodels built through such a procedure are likely to have relatively
short traces that escape the submodel (see path s0, s2, s10, . . . in the figure). These
short traces contribute a relatively high probability of escaping the submodel (in
general, the shorter the prefix, the larger the probability of the set of traces that
extend from it), reducing the bound estimated by the submodel. Note that, in our
example, s10 falls back within the boundary to s6 with high probability. If we were
to include this state into our submodel, and according to the submodel completion
procedure outlined before, the result would be that the bound estimated by the
submodel would be raised. This is consistent with our experimentation in [PBU10].
In that work, we observed that submodels generated with a breadth-first search
strategy tend to approximate reliability measures better, as they delay the chance of
escaping traces until the lowermost levels of the breadth-first exploration.

In the approach that we detail in this present work, rather than adopting a
syntactic notion of breadth first traversal for extending the submodel determined
by a simulation of the full model, we take a more semantic approach based on
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the attributes of states visited during the simulation. We compute state invariants
based on the states visited during the simulation and then add to the submodel
any states that satisfy the invariant, as well as the transitions between them. In
this way, we expect to add behaviour that, although not exactly equivalent to what
was simulated, represents variations in terms of symmetries, race conditions, and
independent events [BK08], and contributes significantly to the probabilistic weight
of the submodel.

We now formally define our submodel construction method. We start with the
notion of invariant of a set of traces.

Definition 6.3 (Invariant). Given a probabilistic process M = 〈S, s0, A,R〉, and a
set of finite execution traces T obtained from said model, an invariant of M through
T is a state predicate ψ on the variables of M such that for every execution trace
t = s0

p0
−→ s1

p1
−→ s2 . . . sn ∈ T , it holds that ∀0 ≤ i ≤ n, si |= ψ.

An invariant then induces a unique submodel as follows:

Definition 6.4 (Invariant-driven submodels). Let M = 〈S, s0, A,R〉 be a probabilis-
tic model and ψ a state invariant; an invariant-driven submodel induced by ψ is a
submodel M ′ = 〈S′ ∪ {λ}, s0, A

′, R′〉 of M such that

a) each state s′ ∈ S′ is such that s′ |= ψ;

b) for each s′1 ∈ S′ such that s′1 6= s0 it holds that s0
α

−→ s′1; and finally

c) for all states s′2 ∈ S \ S′ such that there exist s′1 ∈ S′, (s′1, a, µR) ∈ R with
µR(s

′
2) > 0, it is the case that M, s′2 |6= ψ.

In other words, if a state s′2 not in the submodel is directly reachable from a state
s′1 in the submodel, it must be the case that s′2 violates ψ. The submodel is thus
maximally connected from the initial state through the invariant ψ.

Our approach places a focus on maximising the automation of the estimation
process. Therefore, we aim at automatically obtaining invariants. To this end,
we produce probabilistically driven walks over the full system model, bounded in
length, while we record the states (i.e. variable valuations) traversed. We use the
tool Daikon [EPG+07], an invariant inference engine, to obtain predicates that hold
over all traversed states. These invariant predicates, in turn, are used to synthesise
an observer automaton that can drive the generation of a submodel via its parallel
composition with the system model.

It is important to note that for working with Segala’s Simple Probabilistic Au-
tomata it is necessary to resolve non-deterministic transitions during the proba-
bilistically driven walk generation. In this thesis, we have chosen to replace non-
deterministic transitions with an equiprobable distribution that chooses between the
possible target distributions. The correctness of our approach is not hampered by
this choice, as in fact any method of resolving non-determinism would serve our
needs – any non-determinism resolution approach yields a valid submodel. However,
it is left to be studied if this is the best way to resolve non-determinism. That is,
whether a different determinisation scheme exists that produces a DTMC that, when
analysed for determining reliability bounds, obtains better bounds or does so with
less computational effort. We discuss on this decision and possible alternatives in
Chapter 8.

The first step of our approach is then to perform simulation over an equiprobably
determinised version of the original SPA.
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Figure 6.5: Workflow for partial exploration analysis

Definition 6.5 (Equiprobably Determinised Segala Simple Probabilistic Automa-
ton). Let M = 〈S, s0, A,R〉 be a Segala Simple Probabilistic Automaton. The equiprob-
ably determinised Segala Simple Probabilistic Automaton of M is a DTMC Mdet =
〈Sdet, s0, A, Rdet〉 constructed in such a way that S ⊆ Sdet, and for every (s, a, µ) ∈ R:

If (s, a, µ) is the only transition for s in M , add the transition to Rdet;

otherwise, take all (s, ai, µi). Add i states ts1, . . . , t
s
i to Sdet. Add a transition

(s, τ, µ) to Rdet where µ(tsj) = 1/i for each of those added states, and 0 ev-
erywhere else. Finally, add transitions (tsi , ai, µi) to Rdet for each of the added
states.

Once the invariant is inferred through the simulations, it is used to generate
the partial submodel of the original SPA. Figure 6.5 depicts the workflow of this
approach.

In the following Chapter we put our approach to the test. We identify some
exemplars from the literature that we believe are representative of several different
system models and evaluate some of their properties. We state our research ques-
tions and present the results and conclusions we obtained by the application of our
technique.



CHAPTER 7

Empirical Evaluation

In this section we set out to answer three questions in order to validate our
approach.

Q1 : can our approach, when compared to model checking over full explo-
rations, produce better bounds, in less time, for reward values and reachability
probabilities of system models?

Probabilistic model checking approaches rely heavily on numerical solving of
linear equations to calculate both reward values and probabilities. These numerical
methods can suffer from convergence problem, which causes this calculation to grow
steadily but very slowly. Since time budget is not unlimited, there must exist a
stopping criteria for this convergence; either an absolute one such as stopping after
a certain number of iterations or execution time, or else stopping whenever the
increases in calculation is smaller than a given tolerance. In any case, results yielded
by model checkers need to be considered as bounds because of this reason. This first
research question aims at establishing whether the bounds obtained for our approach
are more useful than those obtained by full-model checking efforts.

We will subdivide this research questions into questions Q1a for evaluation of
reward bounds and Q1b for the case of probabilistic reachability bounds. Here we also
answer related questions: first, whether submodels obtained through our approach
perform better than similarly-sized submodels obtained through other approaches
such as predetermined exploration criteria (e.g., BFS or DFS); and second, how
good the obtained bounds are, especially in the cases where we can actually obtain
the real reward value, and therefore we can contrast our estimated bounds to the
actual value. Whenever we cannot obtain the actual reward value, we compare the
bounds obtained through our approach to those obtained through the established
model checking approach.

Q2 : can our approach, when compared to Monte Carlo approaches, produce
better bounds, in less time, for the reward values and reachability probabilities
of system models? Can Monte Carlo approaches benefit from our partial ex-
ploration techniques, that is, do Monte Carlo approaches perform better over
partial explorations?

105
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This question aims to compare our approach to Monte Carlo techniques, which are
suited especially for the cases where the complete state space cannot be computed.
We will study the assumptions needed to apply Monte Carlo techniques as well as
our own, and will discuss these assumptions and their impact on the case studies
that we analyse.

Q3 : how do the reward value and reachability probability estimations for
submodels compare when these submodels are generated from automatically in-
ferred invariants as in our approach against manually generated ones?

Q3 aims at assessing the added value of automatic techniques for obtaining sub-
models, against the cost of gaining a deep understanding of the model to be verified
and developing a good submodel manually.

For each of the three research questions, the cases where the interesting states to
be reached are rare events are of special interest, and we will discuss these at length.

7.1. Methodology

We analysed three different systems from the literature, and properties that can
be expressed in terms of reward values or probabilistic bounds. These systems are
especially amenable to be specified in either LTS, DTMC or SPA form, depending
on their reliance on non-determinism, and whether the systems are probabilistic in
nature. In the following sections we provide a description of each of these systems.

For each case study, we analysed the system models whenever they were avail-
able, or built them if they were not. Some of these models are probabilistic in nature,
while others are non-deterministic. If appropriate operational environments were not
available, we drew up environment model for them. The probabilities exhibited in
our environment models are not meant to be reflective on real use, but rather as
examples based on educated guesses. For some case studies, we built more than
one environment for experimental reasons, such as varying probabilities or intro-
ducing non-determinism. In each case, we exhaustively checked that the resulting
environment-system models conformed to Probabilistic Interface Automata restric-
tions. That is to say, in every case we modelled a valid PIA environment for each
system model.

We modelled the properties of interest as state reachability formulae, and defined
appropriate reachability reward structures for the properties needing such informa-
tion.

When possible, we first computed the desired probabilities and rewards over
the complete composite model either analytically when this was feasible, or using
the PRISM model checker [HKNP06] if that was not the case. The model checker
performs a numerical approximation to calculate probabilities and rewards. As this
approximation may not converge, we made a note of convergence in each case and
therefore treated convergent results as certain results, and non-convergent ones as
bounds on the actual result.

Then we put our approach to the test for all case studies. We tested the approach
for several automatically generated invariants varying the number and length of
traces used for invariant inference. We used Daikon v4.6.4 [EPG+07] configured to
produce invariants that are conjunctions of terms of the form x ∼ y, where x and y
are either variables in the model, or integer constants, and ∼∈ {<,≤,=,≥>}. States
in the models we analysed are described as different valuations of these variables.
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The invariants we obtained were used to automatically build an observer automa-
ton O, that monitors the validity of the invariant. This observer, when composed
with the system model M , synchronises with all actions and forces transitioning into
the λ trap state whenever the destination state of the intended transition would re-
sult in an invariant violation. Because of this manner of construction, the resulting
subsystem is guaranteed to be a submodel of the original system model.

7.1.1. Experimental setting for Q1

For Q1 we used a modified version of PRISM v4.0.3 to perform probabilistic
model checking to estimate the reward values for both the full state space and
for its invariant-driven submodels. Modifications allow for batch trace generation
on a format understandable by Daikon (used for invariant inference) and time and
memory-use tracking (used for generating intermediate reward results and for tim-
ing out when time budget is up). Intermediate reward and reachability probability
results were generated for visualising convergence rates. PRISM was deployed on an
8x Core Intel Xeon CPU @1.60 GHz with 8 GB RAM.

PRISM provides different numerical methods for reward calculation. We per-
formed a preliminary comparison of computation of the desired values over the full
and partial explorations of smaller models for the Jacobi, Gauss-Seidel and Power
methods. In every case the Backwards Gauss-Seidel numerical method outperformed,
although not dramatically, the other methods. Because of this reason we opted to
use this same numerical method for all our experimentation.

PRISM runs were considered complete when any of the following criteria held:
first, we cut the iterative computation if the absolute difference between results of
successive iterations of the numerical method was less than 10−2 in the case of
rewards; and for the case of probabilities the difference was set to 10−7. Relative
differences are not an adequate stopping criteria because of slow convergence, which
causes iterative methods to cut too early. This is especially true in the case of
convergence of probabilities, where the magnitude of the expected values is extremely
small compared to reward values, and thus requires a much smaller difference as
stopping criteria.

Alternatively, we also interrupt the computation if the running time reached 24
hours; or if the available memory, which was limited to 1 GB for each run as they
were deployed concurrently, was exhausted. Note that the time measured includes
only the execution of the numerical methods. This allows for convergence analysis
and favours full-model exploration as the time spent on construction of the model
state space is not considered (we comment on execution time for submodel generation
later in the Experimental Results subsection).

As we discussed above, in the case of reward estimation this choice of cutting
iterations short (for whichever reason triggers the cut) results in that the obtained
result is a lower bound on the actual value. Additionally, it cannot be known exactly
how far this bound is from the actual value. Even though we will show that the
obtained results are useful for arguing about the reliability of the systems under
analysis, we performed additional checks. Taking advantage of Theorem 6.2, we
calculate the probability of an arbitrary execution exceeding the bound obtained. We
perform this probability calculation over the complete model (in the cases where this
is possible), and over the obtained submodels. Recall that the probability obtained
by performing the calculation on the submodels is an upper bound on the actual
probability. This combination of lower bounds (on rewards) and upper bounds (on
probability) further strengthens our reliability claims.
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7.1.2. Experimental setting for Q2

For Q2 Monte Carlo simulations were generated using the same version of PRISM
and the same hardware as Q1. However, note that while our approach produces
lower bounds to actual reward values with 100% confidence but for which precision
(percentual difference between the estimation and the actual value) is unbounded,
Monte Carlo produces estimations with varying degrees of confidence but for which
precision can be bounded. Consequently, we aimed at performing Monte Carlo-based
estimations for a range of confidence and precision values.

A critical precondition for applying Monte Carlo approaches is that all randomly
generated traces must eventually reach the target states, and enough traces must be
generated in order to guarantee estimations with a fixed precision and confidence.
Setting a trace length horizon for the simulator to ensure all traces reach their target
is typically done based on a rough estimation of the actual reward value, or an
estimate of the underlying probability distribution [SVA05a]. This seemingly circular
procedure can, however, work in practice. In our particular setting, we used the
estimations obtained in Q1 as the basis for setting this horizon for each case study.
The reason for choosing such an estimate are twofold: first, the actual rewards are
guaranteed to be at least as much; and second, we will already have a measure of
how much effort is needed to arrive at such an estimation. We will see that even
under this setting, Monte Carlo approaches may require excessive effort to arrive to
similar results in some of the case studies.

In those cases where Monte Carlo techniques turned out to be infeasible, we per-
formed additional validation. In addition to comparing probabilistic model checking
of submodels against Monte Carlo simulations of the complete model, we compared
probabilistic model checking against Monte Carlo simulations over the same sub-
models. In other words, starting from the hypothesis that submodel generation does
provide an added value, we wanted to further establish which approach was best for
the second phase of the analysis; that is, whether probabilistic model checking or
Monte Carlo evaluations should be employed over the obtained submodels.

7.1.3. Experimental setting for Q3

Finally, Q3 uses the same setup and reward estimation approach based on in-
ferred invariants as in Q1. The key difference is in the method for submodel gener-
ation. Manually produced invariants for submodel generation were put forth before
any of the experiments were performed. Therefore, the manually proposed invari-
ants were not tainted by knowledge gained from the automatic approach. The main
heuristic for coming up with the invariants was analysing the model and identifying
necessary (and more likely) conditions for reaching the target states.

The cost of manually generating an invariant is not simple to estimate. However,
coming up with invariants that are useful for a partial exploration does demand
from the user a deep understanding of the model under analysis. This is in general
not trivial. In the context of this work, the cost of manually generating invariants,
although non-trivial, was mitigated by the fact that the authors are familiar with the
models under analysis. Eliminating this author bias would require further validation,
possibly involving a well-designed user study. Such a study falls outside the scope of
this thesis and remains future work.
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Case study System
model

Environment
determinism

Properties

Tandem queue
Non-
deterministic
LTS

Deterministic
Mean time to Failure (Re-
ward)
Bounded failure reachability
(Probability)

Bounded Retrans-
mission Protocol

DTMC Deterministic
Mean time to Failure (Re-
ward)
Bounded failure reachability
(Probability)

Bounded Retrans-
mission Protocol

DTMC
Non-
deterministic

Mean time to Failure (Re-
ward)
Bounded failure reachability
(Probability)

IEEE 802.3 CS-
MA/CD

SPA Non-
deterministic

Mean turnaround time (Re-
ward)

Network virus SPA
Non-
deterministic

Mean time to total infection
(Reward)
Bounded total infection
reachability (Probability)
Bounded node infection
reachability (Probability)

Table 7.1: Summary of case studies analysed.

7.2. Case Studies

In the following paragraphs we will describe in detail each of the case studies
employed. However, in an attempt to introduce all of the case studies and their
analysed properties as early as possible, we quickly summarise this information in
Table 7.1.

7.2.1. Tandem Queueing Network

The first case study is a tandem queueing network, based on [HMKS99]. Queue-
ing systems have been extensively studied in queueing theory, and analytical solutions
for some variants exist. However, due to the complexity of this particular model and
its different queueing modes, general analytical queueing models are not easily appli-
cable. Generating an ad-hoc analytical formulation would require extensive expertise
and time, and it would not be easily adaptable to modifications in the design of the
queueing system; even if these modifications are smaller ones.

The system consists of two process queues C and M of given (and in this partic-
ular case equal) capacities. Clients queue processes for execution in the first queue
while it is not full. This first queue may either route a process to the second queue af-
ter a probabilistically chosen time elapses, or it might choose to deal with the request
itself. The behaviour of this first queue is governed by two different phases. The
difference between the phases is given by the probability with which it will choose
to route its requests to the second queue or deal with them directly. The second
queue has no other queue on which to unload its processes. Therefore, all it can do
is service its requests, and it does so after a probabilistically chosen time elapses.
A failure is observed when both queues are full, as at this time, clients cannot do
anything but wait until some requests have been serviced and there is room in the
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first queue for another process.

In our specific scenario devised for experimentation in this thesis, the capacity
of the queues is fixed at 1200 each. The system environment is represented by the
behaviour of the clients. Clients are less inclined (i.e., they take more time in average)
to enqueue processes as the free capacity of the queues decreases. The clients were
modelled accordingly using PIAs.

The reliability metric that we wish to estimate is the the mean time to failure
(MTTF) of the system. Mean time to first failure is a widely accepted metric for
reliability. This metric represents for how much time a client can expect to operate a
system until it experiences its first failure. In this case, the failure is represented by
the moment where a client cannot push any more tasks in the queues, and the first
queue cannot offload any more work to the second. That is, a failure is met when
both queues are full.

Consequently, the reward structure ρ we choose to model assigns the value 1 to
every timing transition. It is generally accepted to employ execution time rather
than calendar time for MTTF estimations [Lyu96]. While calendar time measures
real time in terms of hours, weeks, etc., execution time is the time actually spent in
system execution. This distinction is important for reactive systems which may have
long idle times.

In our model, the state predicate that captures failure is cliC = 1200 ∧ cliM =
1200, and computing the mean time to failure amounts to calculating the expectation
of the accumulated reward before reaching a state satisfying this predicate. Once
we have a satisfactory value for this mean expected time to failure, we also aim at
calculating the probability of experiencing a failure before this mean time.

7.2.2. Bounded Retransmission Protocol

The second case study [DJJL01] models a robust communication protocol that
attempts to ensure coherent and complete delivery of data, the bounded retransmis-
sion protocol (BRP) [HSV94].

BRP is a variant of the alternating bit protocol, which allows for a bounded num-
ber of retransmissions of a given chunk (i.e., a part of a file). The protocol consists
of a sender, a receiver, and two lossy channels, used for data and acknowledgements
respectively. The sender transmits a file composed of a number of chunks, by way of
frames. Each frame contains the chunk itself and three bits. The first bit indicates
whether the chunk is the first one; the second one if it is the last chunk; and the
third bit is the alternating one, used for avoiding data duplication.

The sender waits for acknowledgement of each frame sent. The sender may time-
out if either the frame or the corresponding acknowledgement are dropped which
could be caused, for example, by either the frame or the corresponding acknowledge-
ment being dropped. When this happens, the sender resends the frame and does so
repeatedly up to a specified retry limit. If the limit is reached and the transmission
is terminated, the sender may be able to establish that the file was not sent (if some
chunks were left unsent) or it may not know the outcome (if the last frame was sent
but no acknowledgement was received). In any case, the sender may send a new file,
resetting the retry count. A maximum of 256 retransmissions are attempted per file
before the sender gives up and aborts transmission of the file, regardless of the size
of the file being sent, Once a file is sent successfully or its transmission fails, the
system waits for another file to be sent.

Protocol clients send files one at a time. Each of these files is of a different size
(in number of chunks). This size may be different for each file, varying between just
a few and 1500 chunks. We developed two probabilistic models for this problem,
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and analysed them separately. First, we assumed complete knowledge about the
distribution of the sizes of the file being sent. Therefore, the choice of file size
was modelled probabilistically, yielding a deterministic PIA as environment model,
where exceedingly large or small files are modelled to be less likely to be sent than
those of average size. In the second model we developed, we introduced uncertainty
regarding this knowledge, and kept the size choice non-deterministic, representing
this absence of information. Under this modelling choice, the second case yielded a
non-deterministic PIA.

In this case, we also wish to estimate the mean time to the first failure, where
failure is defined as the sender failing to send a complete file (incomplete) or not
being able to establish if a file was sent successfully (unknown). Consequently, the
state predicate describing failures is incomplete ∨ unknown. The definition of time
for this case study aims at establishing how many data packets can be expected
to be sent successfully before failure. For the DTMC model we obtained the mean
number of packets being sent before experiencing failure, while for the SPA model we
obtained both the minimum and maximum mean number of packets, which represent
the worst case and best case scenarios respectively.

Again, once we calculated the mean expected time to failure, we also calculated
the probability of experiencing this failure before the obtained mean time.

7.2.3. IEEE 802.11 Wireless LAN

The third case study depicts the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) mechanism of the IEEE 802.11 protocol [Ins97]. The proto-
col uses a randomised exponential backoff rule to minimise the likelihood of trans-
mission collision. That is, whenever a collision was averted by a component sensing
the busy carrier when trying to send data over busy media, the component is backed
off (it needs to wait until trying to resend) for a time. This time is chosen randomly
from a specified range of possible delays, and successive failures cause this range to
increase exponentially. The goal of the protocol is to divide, as equally as possible,
the access to the channel between all participants that may collide.

The model used depicts a two-way handshake mechanism of the IEEE 802.11
medium access control scheme, operating in a fixed network topology. The prob-
abilistic model itself was extracted verbatim from [HMZ+12]. This model exhibits
both stochastic behaviour (for example, in the randomised backoff procedure, that
allows up to seven exponential backoff levels) and non-deterministic behaviour (for
example, in modelling the interleaving of actions between the two independent emit-
ter stations). Therefore, the model is an SPA.

In this case, the protocol is probabilistically guaranteed to never fail, that is,
both stations will eventually be able to send their packets. However, it is interesting
to know for how long they will have to wait, in average, to achieve this objective.
Turnaround time is a measure for both reliability of systems, as it may include time
necessary for error correction or recovery, as well as a measure for performance. In
general, the turnaround time for a process refers to the time that elapses between it
starting its task until it finishes or provides some result. The starting and finishing
times may be arbitrarily defined (for example, start time may be either the moment
the process takes control of execution, or rather the moment it is sent a request). In
general, we may refer to turnaround as the time it takes a process to produce the
required results after it is started.

In this case, we are interested in estimating the turnaround time for two stations
to be able to successfully send their packets and advance to their done state, while
avoiding potential collisions. As such, the state predicate that describes this final
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Figure 7.1: A 3× 3× 3 network cube. On the lower right the infected node 111, the
target node is 333 in the upper left.

state is station1 = done ∧ station2 = done. Note that, unlike the previous case
study, both stations managing to send their messages is not a rare event at all if the
protocol works correctly. However, the sheer size of the model does hamper direct
estimation.

7.2.4. Network virus infection

In this case, we analyse the behaviour of a virus infection on a computer network.
This case study is based on [KNPV09, DNKLM06] but is heavily expanded as we
will detail further on.

The network is a cubic grid of nodes, as opposed to the original case study
in [KNPV09] which was based on a plane grid; a cubic grid allows more virus paths
as well as customising the model to sizes that quickly grow to be intractable. The
size of the network is given by N , the number of nodes in any given edge of the cube.
Each node is connected to the nodes at its left, right, up and down, as well as to
those behind and in front of it. Nodes in the outer faces may have less connections.
Figure 7.1 depicts a 3× 3× 3 cubic grid.

We model the behaviour of a virus infection on a firewalled, self-healing network.
In this setting, once a node is infected, it tries to propagate to its neighbouring
nodes. In order to succeed, it needs to first defeat the node’s firewall, and then
attempt infection once the firewall is down. The network is self-healing, as healthy
nodes will try to repair its infected neighbours.

The scheduling between these actions is completely non-deterministic. On the
other hand, we built a Probabilistic Interface Automaton of the environment that de-
scribes the probabilities of success when trying to break a firewall, infect a vulnerable
node, or repair an infected node.

In each case we start with a healthy network, save for one of the corner nodes,
which starts infected. The properties of interest we analyse in this case are the
following.

the minimum expected time to total infection of the network;

the minimum expected time to infection of the node at the opposite corner of
the initially infected one;
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Figure 7.2: Results of analysis of Tandem Queue for different sized submodels, Back-
wards Gauss-Seidel method.

the probability that the network is completely infected after a given number
of operations; and

the probability that the farthest node from the initial infection is infected after
a given number of operations.

7.3. Experimental Results

We now present the experimental results obtained for the three research questions
presented above.

7.3.1. Question 1

When comparing probabilistic model checking of both full and partial models we
are interested in considering the relationship between the inferred invariant, the size
of the resulting submodel, and the value of the reward estimation obtained from it.
We are also interested in gaining insight on combinations of trace length and number
of traces that are likely to yield the best overall result.

Tandem Queue analyses

For the Tandem Queue case study the estimated mean time to failure, calculated
using probabilistic model checking, in 24 hours over the full model was 4.20 × 105.
This full model comprises ∼ 1.50 × 107 states. Regarding computations over sub-
models, we report on MTTF estimation (Figure 7.2), submodel sizes (Figure 7.3)
and a representative selection of invariants obtained (Table 7.2) for various settings
of sample size and individual trace length. The complete set of obtained invariants
can be seen in Tables A.1 and A.2 in Appendix A.

Note that our best MTTF estimation is about 7 × 107, a full two orders of
magnitude larger than what could be estimated through full model checking. Even if
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parameters.

Traces Length States Invariant

5000 1000 14134 cliC ≤ 69 ∧ cliM ≤ 18 ∧ state ≤ 9
10000 1000 16086 cliC ≤ 83 ∧ cliM ≤ 17 ∧ state ≤ 9
5000 2000 23388 cliC ≤ 100 ∧ cliM ≤ 21 ∧ state ≤ 9
10000 2000 22486 cliC ≤ 92 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 3000 20932 cliC ≤ 98 ∧ cliM ≤ 19 ∧ state ≤ 9
10000 3000 25228 cliC ≤ 108 ∧ cliM ≤ 21 ∧ state ≤ 9
5000 4000 24538 cliC ≤ 105 ∧ cliM ≤ 21 ∧ state ≤ 9
10000 4000 24882 cliC ≤ 94 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 5000 26424 cliC ≤ 104 ∧ cliM ≤ 23 ∧ state ≤ 9
10000 5000 23686 cliC ≤ 97 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 6000 26182 cliC ≤ 99 ∧ cliM ≤ 24 ∧ state ≤ 9
10000 6000 31902 cliC ≤ 121 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 7000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9
10000 7000 30674 cliC ≤ 121 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 8000 23910 cliC ≤ 107 ∧ cliM ≤ 20 ∧ state ≤ 9
10000 8000 29424 cliC ≤ 116 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 9000 29924 cliC ≤ 118 ∧ cliM ≤ 23 ∧ state ≤ 9
10000 9000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 10000 27174 cliC ≤ 107 ∧ cliM ≤ 23 ∧ state ≤ 9
10000 10000 27460 cliC ≤ 100 ∧ cliM ≤ 25 ∧ state ≤ 9

Table 7.2: Tandem Queue model - Selection of submodel sizes and invariants for
different parameter configurations.

this is not the actual MTTF, this jump in estimation quality could make a difference
in establishing a case for reliability assurance of the system.

The first figure shows, for different automatically generated sized submodels, the
estimated MTTF (shown over a logarithmic scale for convenience) along with how
much time it took for the calculation to finish. Executions that finished before the 24
hour timeout are flattened on the MTTF axis at the time the result was reached. It is
noteworthy that none of the automatically obtained submodels is larger than 35000
states, comprising roughly 0.25% of the states of the complete model. Despite having
explored only such a small percentage of the full model, the obtained lower bound
for MTTF is quite large in some cases, possibly sufficient to argue for high system
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reliability – MTTF is at least in the order of 107. Although very small submodels do
not provide good bounds, larger submodel MTTF estimations increase dramatically,
quickly rising to the 7× 107 maximum MTTF witnessed, which is a full two orders
of magnitude beyond the estimation for the full model.

An important question is whether good submodels can be obtained in a consistent
fashion by parameterising trace quantity and length parameters of the simulation
phase. Figure 7.3 shows that such submodels can be obtained automatically in a
consistent way for this example. Focusing on the upper-right corner of the figure,
it can be seen that choosing values for trace length and sample size in that region
consistently results in appropriate submodels.

It can be observed that experiments with trace length below 3000 do not consis-
tently produce rich enough models that yield good MTTF estimates. Unsurprisingly,
small sample sets are also inconsistent in their results. However, once the sample set
size parameter is set to at least 6000 samples, the submodels produced consistently
yield large MTTF estimates. In summary, for this case study a minimum of 6000
samples of traces at least 4000 steps long are necessary for consistent results. Fur-
thermore, increasing these parameters does not yield clear advantage in terms of the
final MTTF estimation. Both figures also show that results become more stable as
these parameters are increased.

State space size alone is not the only important factor when evaluating the ef-
fectiveness of the approach. For a given size expressed in number of states, many
submodels of that size exist, and not all of them may be effective. In [PBU10] we
have already shown that submodels obtained through depth first search (DFS) ex-
plorations yield very poor results, as they allow short traces to escape the submodel
to the λ state. Although breadth first search (BFS) obtains higher MTTF lower
bounds than DFS when used as a submodel generator, it performs poorly against
our approach, as the state space that it explores is not as relevant. For exam-
ple, our approach using 10000 traces 10000 states long (one of the best perform-
ers) obtains a 27460 state sized submodel, which is characterised by the invariant
cliC ≤ 100 ∧ cliM ≤ 25 ∧ state ≤ 9. Consider a similarly sized BFS generated sub-
model of 28000 states. The Tandem Queue model allows four different actions (push,
fwd, svc1,svc2). Conservatively assuming at most two actions enabled at each state,
an equal sized BFS submodel would explore at most ⌈log2(27460)⌉ = 15 levels deep.
Such a submodel would only allow for very limited behaviour. If each transition level
generated a new state, queues of no more than 15 elements could be generated by
such a submodel. Of course, it is not always the case that a new state is generated.
In fact, a BFS exploration that allows for 50 elements per queue results in a 32000
state submodel. The MTTF obtained through such a submodel is ∼ 70000, very far
from the results we obtain.

Regarding potential overhead of trace generation and invariant inference, memory
consumption is negligible with respect to representing the state space of the full
model, as only one relatively short trace needs to be kept in memory at a time. Time-
wise, analysis of 10000 traces of length 10000 took less than an hour. Accounting
for this hour in the verification time budget, the submodel that yielded the highest
MTTF lower bound would have achieved a result of ∼ 6 × 107 in 23 hours, still a
large increase against the estimation obtained via full model verification.

Although not intended to be shown to developers, we report on some of the
automatically inferred invariants in Table 7.2. The discovered invariants deal with
bounding the size of both queues, while the variable state encodes whether the queues
are full or not, and the phase the system is in at the time. It is noteworthy that
although it is intuitive that an invariant should bound the queue sizes, it is unlikely
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Figure 7.4: Tandem Queue failure bounded reachability probabilities for state spaces
obtained from different sample size and trace length parameters.

that a human would come up with the particular bounding values used.

Bounded reachability properties A potential criticism to the previous analyses
is that, just as it happens when performing model checking of complete models,
the reward estimation over the partial submodels does not necessarily converge.
Therefore, even though we know for certain that the mean number of operations
before a failure is larger than O(107), we still don’t know how far this may be from
the actual mean.

In order to provide a more convincing answer to this question, we set out to
validate whether an arbitrary execution is likely (or not) to exceed this obtained
result. To this end, we performed a second verification over the obtained partial
submodels. In this case, the property of interest is quantifying the probability of an
arbitrary execution reaching the failure state before 107 operations have taken place.

We first attempted to verify this property over the complete model. Unfortu-
nately, the probability calculation did not converge after 24 hours of execution, and
at this time it had calculated a probability of 0. This is clearly wrong, as the failure
state is reachable; and so is the trap λ state.

After this (failed) initial attempt at a complete verification, we proceeded to verify
the same property over each of our previously constructed partial state spaces. We
adjusted the convergence criteria to an absolute difference of 106 to account for slow
convergence. The results obtained are depicted in Figure 7.4. Recall that, because of
Theorem 6.2, the probabilities we get from these partial state spaces are upper bounds
to the actual reachability probability. Therefore, in this case smaller probabilities
are better. As a consequence, Figure 7.4 depicts smaller probabilities with greener
colours. The number in each square is the actual probability obtained.

It must be noted that, in every case, the probability calculation converged well
before the 24-hour timeout. If this convergence was not attained, the results would
be difficult to interpret. This is not an issue for reward estimation, where the results
yielded are lower bounds. However, in the case of probabilities, the results are upper
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bounds. If convergence is not attained, there is no telling whether the probability
bound wouldn’t keep rising.

We can see that our experiments concluded that the reachability probability is
guaranteed to be at most 0.07127, a result we obtained from the partial state space
constructed from 9000 traces that were 9000 steps long. The combination of both the
lower bound on the mean time to failure with the maximum bound on the probability
to exceed a large number of steps allows us to argue strongly for the reliability of
this system.

Bounded Retransmission Protocol - probabilistic/deterministic environ-
ment

For the BRP case study in its fully probabilistic variation, similar results were
obtained and are shown in Figures 7.5 and 7.6. Table 7.3 shows some selected invari-
ants, while the complete list can be found in Tables A.3 through A.6 in Appendix A.

In contrast to the prior case study, we were unable to obtain the MTTF for
the full model due to state explosion that exhausted available memory. However,
observations prior to running out of memory showed that the full model contains at
least 30 million states. Referring to the results figures and tables, this means that
the submodels we analysed represent up to 2% of the size of the full model, still
a very low percentage. Furthermore, the highest MTTF bounds were obtained for
submodels with a size starting from 400000 states (less than 1.33% of the full model),
which turned out to yield an MTTF in the order of 2.5 × 107. This result is most
significant, because of the impossibility of estimating MTTF for the full model.

Note that for submodels whose size is around the 400000 and 500000 states mark,
there are both estimations that provide very good bounds and those that yield not
so useful ones. Interestingly enough, those that do not perform well arise from
submodels obtained through invariants inferred from sample sets where generated
traces were shorter than 7000 states long, while sets of longer traces perform very
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well. This shows that appropriate trace length, as well as sample size, is critical to
the final MTTF estimation.

Performing a similar analysis to that performed for the Tandem Queue model,
we discover that similarly sized submodels obtained through BFS exploration do not
provide such higher MTTF lower bounds. One of our best performers, at 10000
traces 10000 states long, produces a submodel 392786 states in size which (with
eight BRP actions and conservatively assuming three enabled at any time) results in
a BFS submodel of depth ⌈log3(392786)⌉ = 12, which models very few frames being
sent. In fact, a BFS-like submodel that allows only for 5 frames to be sent per file
comprises ∼ 400000 states and yields an MTTF of only 40.

Figure 7.6 depicts information related to the possibility of obtaining useful sub-
models. It can be seen that it is quite easy to obtain such submodels, without many
restrictions on experiment configuration. In fact, the configurations for this case
study behave much more steadily than with that of the Tandem Queue. Sets of 4000
traces of at least 7000 states seem to be enough for obtaining good estimates. Further
increases of these parameters yield larger and slightly better-performing models, and
this increase is much smoother (hence predictable) than is the case for the Tandem
Queue submodels.

As in the previous case study, trace generation and invariant inference incurs an
overhead. In this case, since the model is more complex, this analysis can take up to
2 additional hours. Reducing the verification time by these 2 hours, the estimated
MTTF would have been still large, about 2× 107. Recall that this overhead was not
included in measured time to allow graphs to show convergence speed of numerical
analysis.

Regarding the invariants in Table 7.3, it turns out they can be quite cryptic.
The variables fileSize, i and nrtr describe the size of the file being sent, how many
frames have been sent for that file, and the number of retries attempted, respectively.
Other variables such as sab, rab, bs and fs encode the bit alternation in the protocol.
The invariants obtained establish relationships between variables that at first glance
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Traces Length States Invariant

5000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 4000 315191

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

5000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

5000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 6000 348129

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

5000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 8000 486334

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 9000 505704

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table 7.3: BRP (fully probabilistic) model - Selection of submodel sizes and invari-
ants for different parameter configurations.

seem unrelated, making them quite unintuitive even for a domain expert.

Bounded reachability properties Just as we analysed the probability of reach-
ing an error within a reasonable bound for the Tandem Queue system, we performed
the same analysis for the case of the BRP system. The outcome of this experimen-
tation is depicted in Figure 7.7. The results are similar to those obtained for the
Tandem Queue case: for the BRP system model, the best performing submodels
when it came to MTTF estimation are also the best estimators for the reachability
probability. Additionally, the obtained probability bounds are low enough for us to
guarantee reliability.

However, as opposed to the case of the Tandem Queue analyses, these results
must be taken with a grain of salt. In these cases, the results were obtained after the
24 hour timeout, and we have no certainty to what point these bounds might have
increased.
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Figure 7.7: BRP failure bounded reachability probabilities for state spaces obtained
from different sample size and trace length parameters.

Bounded Retransmission Protocol - non-deterministic environment

As we explained before, we also developed a version of the BRP model that
leaves the file size choice to a non-deterministic process. Recall that introducing non-
determinism into a model requires a scheduler function to solve this non-determinism,
and that we focus on those that yield the minimum and maximum probabilities or
reward values. Therefore we turned our attention to finding out the minimum and
maximum possible mean times to failure. We performed the same verifications we
did for the deterministic model, but effectively twice, as we require both extreme
values. However, the invariant inference phase is performed over only one set of
simulation traces, regardless of whether we will ultimately estimate minimum or
maximum values. The same submodel will be used for both extreme estimations.
Figure 7.8 shows the sizes of the submodels obtained. Note that they are slightly
smaller than in the fully probabilistic case. Also, larger submodels are obtained more
consistently in this non-deterministic case.

As was the case for the fully probabilistic case, we were unable to obtain an
estimation for the MTTF for the full model via probabilistic model checking, because
of memory being exhausted due to state explosion. After the 24 hours of allotted time
elapsed for each extreme value estimation, the results yielded a model comprising
nearly 29 million states, while the reward estimation set a minimum MTTF value
of 60297 and, surprisingly, a maximum MTTF of 50819. This discrepancy of the
maximum estimation being actually less than the minimum one can be explained as
an unintended consequence of the numerical verification procedure. The verification
algorithm for extreme probabilities involves solving an optimisation problem for each
extreme value. In the case of the minimum time to failure, the optimisation resolution
converges much faster. Indeed, the minimisation procedure actually performed about
20% more iterations than its maximisation counterpart, a factor that can explain this
discrepancy.

After failing to obtain an exact value for the MTTF extreme values, we turned
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Figure 7.10: Verification times and submodel sizes for maximum MTTF estimation

our attention to the estimation over partial explorations. We report on these exper-
iments in Figures 7.9 through 7.10. The first two summarise the results obtained for
minimum MTTF estimation, while the other two do the same for maximum MTTF
estimation.

It is interesting to note several things about these results. First, the submodels
analysed represent, similarly to the fully probabilistic case, about 2% of the size of
the full model, a very low percentage. It also quickly becomes evident that there
is a strange phenomenon taking place with the estimation of the minimum rewards.
Almost all results are polarised either towards the 5.6 × 106 value; or towards the
much less impressive [1000, 8000] range. Further, the length of traces simulated
is critical, particularly in the case of estimating the minimum MTTF. Note that
simulating traces less than 9000 actions long, results in the smaller estimations for
minimum MTTF. This seems to have its correlation with the invariants that were
inferred in each case, for which we have a selection in Table 7.4 (the complete list of
invariants can be found in Tables A.7 through A.10 in Appendix A).

The invariants explain the results obtained. Note that, in the invariants obtained
with traces less than 9000 steps long, the variable i is restricted to no more than 1333.
Recall that i indicates the number of packets of the file that have already been sent.
These invariants show that, for the traces analysed, sometimes the maximum file
size (1500) was chosen, but never completely sent. For our approach, such situations
would lie in the unknown set of the state space, and thus conservatively evaluated
as failing states. However, invariants obtained for longer traces do allow i to reach
its maximum of 1500, which explains the dramatic increase of the estimations. Even
more, increasing the simulation length to 10000 actions does pay off in some cases,
although the increase is not nearly as dramatic.

In the case of the maximum MTTF estimation, all submodels behave more or less
uniformly, except for a couple of runs that estimate a lower MTTF. Note however
that these submodels are obtained as the result of the analysis of few, and short,
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Traces Length States Invariant

5000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 4000 315191

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

5000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 5000 428334

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 7000 363159

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

5000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table 7.4: BRP (non-deterministic) model - Selection of submodel sizes and invari-
ants for different parameter configurations.

simulation traces. As a result, it is not surprising that these simulations failed to
capture a significant portion of the system behaviour.

When compared with the result obtained for full model estimation, it can clearly
be seen that estimation over submodels pays off – the maximum MTTF estimated
for submodels is, in all cases, at least 50 times larger than those obtained for the full
model.

There is a final point that needs to be noted. As we discussed earlier, the sub-
models obtained by analysing shorter simulations are not very good for minimum
MTTF estimation. However, they are the best performers for estimating maximum
MTTF. This is a consequence of the state space being smaller, as this allows for
more numerical iterations in the same time budget. Another important factor is
that choosing a smaller file size allows for a larger Mean Time to Failure. This is
because when transmitting a smaller file, the chance that the protocol will deplete its
allowed retries is smaller than with a bigger file, simply because it has less chances
to fail. This contrasts with the minimum MTTF calculation, which becomes larger
just as bigger files are allowed in the model.
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Figure 7.11: BRP (non-deterministic) failure maximum bounded reachability prob-
abilities for state spaces obtained from different sample size and trace length param-
eters.

Bounded reachability properties Similar to the case of the fully probabilistic
environment model, we also analysed the bounded error reachability probabilities for
the non-deterministic environment model. The outcome of this experimentation is
depicted in Figures 7.11 and 7.12.

The maximum reachability probability results follow a pattern similar to the
fully probabilistic case. The larger probabilities, though, suggest that the actual
mean time to failure is closer to 1 × 107 than in the fully-probabilistic case. These
experimental runs converged in every case, so there is little question to their correct-
ness.

The minimum reachability properties calculated are roughly the same for all
submodels, differing in at most ∼ 0.05 in most cases. It also happened that all
calculations converged before the 24 hour timeout, reinforcing their validity.

There are some exceptions where the probability estimations take values closer
to one. These cases coincide, unsurprisingly, with those for which the estimation of
maximum mean time to failure performs poorly. Again, this is likely a result of the
simulation traces not being descriptive enough to produce a significant submodel.

WLAN collision avoidance protocol

We now turn our attention to the analysis of the WLAN collision protocol model.
In this case study, we are interested in estimating the turnaround time (TAT) for
both emitting stations to complete sending their intended data. That is, we wish to
know the mean time from the moment the first station intends to send data until
both of them have successfully sent their data, including all necessary backoff time.

For this case study we also attempted to produce an estimate for the full model.
Contrasting with the previous case studies, the event under analysis is not a rare
event at all. On the contrary, it is desirable that in every instance both stations are
able to send their data in a reasonable time. During this analysis, we obtained a
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Figure 7.12: BRP (non-deterministic) failure minimum bounded reachability proba-
bilities for state spaces obtained from different sample size and trace length param-
eters.

full model comprising about 75 million states. The minimum TAT was estimated at
1725 after executing for just 10 minutes, while the maximum one was calculated to
be 4301.65, after 15 hours into the verification process execution. Turnaround time
is measured in microseconds (µs).

Again, we compared this performance with our approach. We depict the results
obtained for the minimum turnaround estimation in Figure 7.13 and those for maxi-
mum turnaround estimation in Figures 7.14 and 7.15. These Figures have been split
to ease readability. We also show some of the obtained invariants in Table 7.5. The
complete invariant list can be found in Tables A.11 through A.15 in Appendix A.

In this case, the results are much easier to interpret. We analyse first the results
for minimum turnaround time estimation. These graphs show, for each combination
of sample size and trace length, the size of the obtained submodel (in red), and
the verification time. In every case the minimum turnaround time estimated was
1725.00, which coincides with the actual minimum.

Estimation of this minimum reward was also very efficient, requiring no more
than 7 seconds for every case, while several of the estimations were completed in
much less time, about 1 second. From the Figures it is clear that there is a direct
correlation between the verification time and the submodel sizes. We can group the
submodels in roughly two groups: those that comprise about 120000 states, and those
that grow to about 4500000 states. The former required only 1 second of verification
while the latter were closer to 7 seconds. We will explain these size differences when
we take a look at the inferred invariants.

In the case of the maximum turnaround estimation, the submodels do not esti-
mate the exact value. However, all estimations differ in no more than 1.25% from
the actual value estimated through full model evaluation, which was 4301.65. More-
over, most estimations are only 0.53% away from the actual value, with only one
estimation straying farther away. Figure 7.15 shows the different estimated values
for the sample size and trace length combinations.
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Figure 7.15: WLAN maximum turnaround estimation values

The verification times that were necessary for estimating these results are what
are most significant. All reward estimations finished in less than 17 seconds, with
most of those estimations taking much less time. Again, larger submodel sizes cor-
respond with longer verification times as can be seen in Figure 7.14.

These results mark a stark contrast with the time needed for the full model
verification. Recall that minimum TAT calculation over the full model required 10
minutes, while maximum TAT calculation was finished only after 15 hours. Although
the partial verification requires an initial simulation and inference step, this time is
offset in the case of full model verification by the time required to build the model.
Simulation an inference was finished after 2 hours, which is roughly the same time
required to build the complete model.

The size of the submodels evaluated is also striking. In all cases, this size is
about 0.15% to 0.50% of the size of the whole model. This seems to suggest that
the full model has a very large portion of behaviour that is largely irrelevant with
regards to their actual contribution to the system’s TAT. In fact, it is easy to see
from Table 7.5 that although the waiting slots (slot1 and slot2) can be increased to
as much as 128 different slots, the simulations only observed waiting times up to 4
of these slots. Since the slot is chosen equiprobably within the same backoff level,
this seems to suggest that only the first two backoff levels were taken on all of the
simulated executions. In other words, it was never necessary to increase the backoff
to more than this second level.

As in the previous case study, the choice of parameters for the number of traces to
simulate and the length of the simulated paths also plays a role. However, this is not
as clear-cut as in the previous case. Note that the size of the submodels evaluated
seems to lie either near the 120000 state mark except for a few that lie near the
460000 state mark, yielding a partial state space that is roughly 4 times as large as
the others. This also explains the discrepancy on the estimation times. When the
larger submodels were analysed, the calculations took nearly 7 times as much time
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Traces Length States Invariant

5000 1000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 1000 108964

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

5000 2000 127016

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

10000 2000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 3000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 3000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 4000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

10000 4000 116549

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

5000 5000 116549

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

10000 5000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

5000 6000 108964

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

10000 6000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 7000 127195

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

10000 7000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

5000 8000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 8000 471284

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

5000 9000 126363

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

10000 9000 127195

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

5000 10000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 10000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

Table 7.5: WLAN collision avoidance model - Selection of submodel sizes and invari-
ants for different parameter configurations.

as the other estimations. The estimated values, however, were not much better than
the ones estimated over smaller partial state spaces. They all yielded an estimate
equal to the actual value in the case of the minimum turnaround time. In the case
of the maximum turnaround time, estimations over the larger partial state space did
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produce a value that is closer to the actual value than the other estimations, but
this difference is only marginal.

We may, however, find an explanation for such a disparity in the invariants
inferred–see Table 7.5. In the cases where a bigger submodel was generated, it
turns out that the second sender station was allowed to take the slot number 3 in
some of the executions, while in the smaller ones it never did. Since the choice of
slot is uniform, and whenever the slot 2 is available the slot 3 also is, we can only
conclude that these differences are only a coincidental artefact of the stochasticity
of the sampling procedure.

Network virus infection

Finally, we study the network virus infection scenario. As we described earlier,
this network has a cubic grid topology. For these experiments we chose to set the
number N of nodes per edge to be 3; that is, the network is comprised of a total of
27 nodes. This is more than enough to quickly deplete all available memory before
reaching a full state space. The total potential state space is 327 ∼ 7 × 1012 states.
The actual reachable states are less. For example, a state where every node has its
firewall down is unreachable (there should be at least one infected node responsible
for having broken the firewall of the last node). However, the reachable states are
still enough to make a complete analysis infeasible.

This is a similar situation to that of the BRP case study. Therefore we focus on
partial explorations only. We will show, however, that in this case we have a way of
computing the values of interest in an analytical manner.

We start out with a non-deterministic model of the network, since we do not
know which distribution (if any) governs the races between the different nodes. At
any given point any of the nodes can choose to perform its action. However, we mod-
elled probabilistically the behaviour of each node through a Probabilistic Interface
Automaton.

According to the behaviour we modelled, the nodes are quite resistant to attack.
An infected node has a 0.01 chance to break a neighbour’s firewall. Once this firewall
is down, it has a further 0.01 chance to infect it. A healthy node is much more efficient
and has a 0.98 chance of repair success. However, all nodes are agnostic respect the
status of their neighbours. This means that an infected node may attempt to reinfect
an already infected node, and a healthy node may attempt to repair a non-infected
one.

Properties of interest The first property of interest is the expected time to
total infection of the network. Since the system model is non-deterministic, we
will need both a minimum expected time as well as a maximum expected time.
However, the maximum expected time is infinite. A fair scheduler may choose to
alternatively infect a node, and once it is infected, have a neighbour repair it, and
do so indefinitely. Therefore, there exist valid schedulers that avoid attaining total
infection. In fact, there are valid schedulers that make infection of any one given
node infeasible (apart from the initially infected one). Additionally, given that we
are analysing the possibility of failure, it is more interesting to study the worst case
(i.e., the fastest possible time to total infection).

In a similar way, we aimed at calculating the probability of achieving total infec-
tion of the network before a given time bound. In the evaluation of this property, we
regard a time step as a communication operation (firewall break, infection, or repa-
ration attempt) between any two nodes, regardless whether they are successful or
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not. Again, the minimum probability of such total infection is 0, given the scheduler
described above. Therefore, we are interested in the maximum probability.

Following the same reasoning, we analysed a second pair of probabilistic prop-
erties. In this case we wish to calculate the mean time and the (bounded in time)
probability of propagating infection from one corner of the cubic grid to the opposite
corner. In contrast with the previous case, we do not require full infection.

Analytical solutions Even though we cannot perform a complete model check
over the whole system, we can calculate the values of the interesting properties in
an analytical manner.

For the first property, the fastest way to achieve total infection is to infect each
of the remaining 26 nodes, without allowing for any recovery from the healthy nodes.
Recall that infection of a node implies first lowering its firewall. Since the proba-
bility of breaking the firewall and infecting a vulnerable node is the same (0.01),
the previous analysis amounts to studying a Negative Binomial distribution with
parameter 0.99. In order to witness total infection, we need to see 52 (26 firewall
breaks + 26 infections) failure events. Therefore the expected time to total infection
is 52/0.01 = 5200.

In the case that we give a time bound N for total infection, we can also calculate,
for the worst scheduler case described in the previous example, the probability of
failure before time N . This is given by the cumulative distribution function (CDF)
of the Negative Binomial distribution (CDFNB), which is given by

CDFNB(N, 52) =

N−52
∑

k=1

P (52 successes and k failures)

=
N−52
∑

k=1

(

k + 52− 1

k

)

0.01520.99k

For example, the probability of total infection at time at most 5200 (the mean
expected time) is ∼ 0.51872.

The case for corner infection is similar. We can calculate the mean time to corner
infection, since the worst scheduler is the one that takes the fastest vector of infection
from one corner to another. This involves infecting just 6 nodes to reach the opposite
corner. The expected time to corner infection and the probability of corner infection
before a certain time bound follow the same distributions as before. Following these
known distributions, it turns out that the expected time to infection of the opposite
corner is 1200, and the probability of infecting it before this mean time is 0.53898.

Partial exploration approach results As we did with the other case studies,
we put our approach to the test. Although we managed to obtain correct results,
in this case the values obtained turned out to lie far from the actual values. Using
our standard simulation parameters of simulating 1000-10000 traces of 1000-10000
steps each, we always obtained submodels for which i) the bound to mean time
to total infection was ∼ 200; ii) the bound to probability of total infection before
5000 steps was very close to 1; iii) the bound to mean time to corner infection was
again ∼ 200; and iv) the bound to probability of total infection is again close to 1.
These results are a consequence of the simulated traces not capturing enough of the
system’s behaviour. This is caused, in turn, by the strongly non-deterministic nature
of the model. It happens that, at any given point in simulation, there exist several
possible actions to take. Namely, since each node is unaware of its neighbours status,
each node can try to break or infect its neighbours (if itself is infected), or repair
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Figure 7.16: Sizes of submodels of the Virus infection model for different simulation
parameters. OOM denotes submodels that exceeded available memory.

it (if it is not infected). At each point, there are in excess of 27 choices possible,
each with a simulation probability of 1/27 = 0.03737. This makes it extremely
unlikely that a simulation will even infect 2 nodes. In fact, the probability of a
simulation immediately infecting two nodes is (0.03737×0.01)4 = 1.95×10−14. Even
taking into account that a simulation can take up to 10000 steps, the probability
still remains extremely small. This results in submodels that describe very little
behaviour. However, the results are still correct, although arguably not as useful as
in the other cases.

In order to be able to perform a more meaningful analysis, we modelled a second
version of the virus infection where we restricted some behaviour. This second model
introduces two changes. First, the nodes do not perform repair operations. Therefore,
once a node is infected, it stays infected. Second, nodes are aware of their neighbours
status. As a result, infected nodes do not try to break broken neighbours, and do
not try to infect infected neighbours. These two changes significantly constrain the
model, and reduce both the number of reachable states as well as available transitions.
Interestingly enough, the analytical results for the extreme case still hold the same
values, as the analysis is still valid under this constrained model.

From initial experimentation it was clear that running simulations as long as those
we performed for the previous case studies yielded submodels that were still large
enough to be infeasible to analyse. Therefore, we reduced the length of simulations
for this case study. The results we present in this section were obtained by performing
simulations where the number of traces varied between 1000 and 10000 (stepping size
by 1000), and the traces were between 100 and 1000 steps long (stepping size 100).
Even with this model simplification and simulation parameters adjustment, we also
ran into cases where memory was not enough to hold the submodel. Figure 7.16
shows these results.

As a result we only report results on those submodels that we could analyse.
Figures 7.17 and 7.18 show the bounds on minimum and maximum expected time to
total and corner infection, respectively, along with the time taken to arrive to those
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Traces Length States Invariant

1000 100 7728

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2∧true∧s112 ≤ 2∧s113 ≤ 1∧s121 ≤ 2∧s122 ≤ 1∧s123 ≤ 0∧s131 ≤ 1∧s211 ≤ 2∧s212 ≤

2∧s221 ≤ 1∧s311 ≤ 1∧s111 ≥ s112∧s111 > s113∧s111 ≥ s121∧s111 > s122∧s111 >

s123∧true∧s111 > s131∧s111 ≥ s211∧s111 ≥ s212∧s111 > s221∧s111 > s311∧s112 ≥

s113 ∧ s112 ≥ s122 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

5000 100 17378

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 >

s122∧s111 > s123∧true∧s111 > s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 >

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

1000 400 3128661

s133 = s223 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2∧ s122 ≤ 2∧ s123 ≤ 1∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤

1 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s231 ≤ 1 ∧ s232 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤ 1 ∧ s321 ≤

1 ∧ s322 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 >

s123 ∧ s111 ≥ s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s231 ∧ s111 > s232 ∧ s111 ≥

s311 ∧ s111 > s312 ∧ s111 > s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥

s232 ∧ s112 ≥ s322 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s232 ∧ s121 ≥

s322 ∧ s122 ≥ s133 ∧ s122 ≥ s232 ∧ s122 ≥ s322 ∧ s123 ≥ s133 ∧ s123 ≥ s322 ∧ s131 ≥

s133 ∧ s131 ≥ s322 ∧ s132 ≥ s133 ∧ s132 ≥ s232 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤

s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s232 ∧ s133 ≤ s311 ∧ s133 ≤

s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥ s231 ∧ s211 ≥ s311 ∧ s211 ≥ s321 ∧ s211 ≥

s322 ∧ s212 ≥ s213 ∧ s212 ≥ s312 ∧ s221 ≥ s232 ∧ s222 ≥ s232 ∧ s222 ≥ s322

4000 400 13385277

s223 = s232 ∧ s223 = s233 ∧ s223 = s313 ∧ s223 = s322 ∧ s223 = s323 ∧ s223 =

s331 ∧ s223 = s332 ∧ s223 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤

2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s223 ≤ 0 ∧ s231 ≤ 2 ∧ s311 ≤

2 ∧ s312 ≤ 2 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ true ∧ s111 ≥

s231 ∧ s111 ≥ s311 ∧ s111 ≥ s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥

s223 ∧ s113 ≥ s223 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s122 ≥ s133 ∧ s122 ≥

s223 ∧ s123 ≥ s133 ∧ s123 ≥ s223 ∧ s131 ≥ s133 ∧ s131 ≥ s223 ∧ s132 ≥ s223 ∧ s133 ≤

s211 ∧ s133 ≥ s223 ∧ s211 ≥ s223 ∧ s211 ≥ s311 ∧ s212 ≥ s223 ∧ s213 ≥ s223 ∧ s221 ≥

s223 ∧ s222 ≥ s223 ∧ s223 ≤ s231 ∧ s223 ≤ s311 ∧ s223 ≤ s312 ∧ s223 ≤ s321

1000 500 10495696

s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤

2∧ s221 ≤ 2∧ s222 ≤ 2∧ s223 ≤ 1∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 2∧ s321 ≤ 1∧ s322 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥

s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥

s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 ≥

s312 ∧ s111 > s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s112 ≥

s223 ∧ s113 ≥ s133 ∧ s113 ≥ s223 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s121 ≥

s322 ∧ s122 ≥ s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s123 ≥ s223 ∧ s131 ≥ s133 ∧ s132 ≥

s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤

s223 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥

s311 ∧ s211 ≥ s322 ∧ s212 ≥ s223 ∧ s212 ≥ s322 ∧ s213 ≥ s223 ∧ s312 ≥ s322

2000 500 21603820

s133 = s232 ∧ s133 = s233 ∧ s133 = s322 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤

2∧ s221 ≤ 2∧ s222 ≤ 2∧ s223 ≤ 1∧ s231 ≤ 2∧ s311 ≤ 2∧ s312 ≤ 2∧ s313 ≤ 1∧ s321 ≤

2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥

s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥

s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ s111 ≥ s231 ∧ s111 ≥ s311 ∧ s111 ≥

s312 ∧ s111 > s313 ∧ s111 ≥ s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s223 ∧ s112 ≥

s313 ∧ s113 ≥ s133 ∧ s113 ≥ s313 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s121 ≥

s313 ∧ s122 ≥ s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤

s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s223 ∧ s133 ≤

s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s313 ∧ s133 ≤ s321 ∧ s211 ≥ s223 ∧ s211 ≥

s311 ∧ s211 ≥ s312 ∧ s211 ≥ s313 ∧ s213 ≥ s313 ∧ s221 ≥ s223 ∧ s222 ≥ s223

Table 7.6: Selection of virus infection submodel sizes and invariants for different
parameter configurations.

results (note that the scale for minimum and maximum estimations changes). In the
case of the minimum estimation, the results are still not close to the actual values,
but are much more informative than in the more relaxed case.

Perhaps a yet more interesting result from these graphs is that the obtained
values are exactly the same both for the total infection property as well as the corner
infection, although verification times are higher for the total infection case due to the
added complexity of the formula that describes this total infection. This suggests
that the bound is being calculated to the point of reaching the trap state rather
than the actual infection states. This is confirmed by the invariants obtained, that
effectively prune the infection states out of the partial state space. Table 7.6 shows
a subset of the invariants for the submodels where partial verification was feasible.
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Figure 7.17: Minimum and maximum mean time to total infection. Bounds calcu-
lated on submodels obtained through combinations of traces and trace lengths.

The complete set of feasible invariants can be found in Tables A.16 through A.19 in
Appendix A.

We also attempted to calculate bounds to maximum bounded probabilities of
total and corner infection. In this case, however, the results do not improve much
and are not very informative, as all the obtained values are very close to 1. This
result showcases that the simulation step was not able to capture a partial statespace
that is representative of usual behaviour or, alternatively, that the usual behaviour
is not concentrated around a minority of the complete state space.

Further in this chapter we will compare the performance of our approach to that
of the Monte Carlo approaches and submodels obtained through manually provided
invariants.

Summary of analyses

What all case studies and experiments indicate is that, through careful partial
exploration of the model, we can obtain useful bounds for reward estimation and
reachability probabilities with very low percentages (< 1.5%) of the actual state
space explored. Further, submodels that yield these results also converge very quickly
(much before the 24 hour timeout) to good estimation results.

In the case of estimations that did not converge, it turned out that while they do
constantly improve during the rest of the 24 hours, they do so at a much slower pace
than at the beginning. This was the case for some of the reward estimations. Far
from being a problem, this turns to be good news, as even with the trace analysis,
good results can still be attained under the same time budget. From these results
it follows that, for these case studies, effort into estimating reward values through
automatically obtained submodels through model invariants of the full model pays
off.

It must be noted that it is possible that the actual value of the reward being
estimated is much larger than any of those obtained. Of course, we are always
limited by the fact that the actual reward value cannot be calculated, neither with
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Figure 7.18: Minimum and maximum mean time to corner infection. Bounds calcu-
lated on submodels obtained through combinations of traces and trace lengths.

partial nor full models. It can be argued, though, that it is often the case that the
exact value is not needed as such; rather, satisfying a minimum threshold value is
a sufficient guarantee for the reliability measure being analysed. Hence, methods
which provide higher lower bounds faster are potentially useful.

It is also interesting to note that the efficiency of our proposed approach does not
seem to depend on whether the states tested for reachability are actually reachable
in the submodels or not. For example, in all of the Tandem Queue, BRP and Virus
infection cases, the inferred invariants preclude the failure states from appearing in
the submodels. However, in the case of the WLAN protocol, the interesting states
which describe the property of interest are not completely cut out from the submodels
by the invariant.

7.3.2. Question 2

Monte Carlo estimation of system properties

Contrasting to the previous experimentation that aimed to compare our approach
with probabilistic model checking, Q2 aims to establish a comparison with Monte
Carlo techniques. Experimentation to answer this question is not straightforward due
to the problem of generating sufficient failing simulations to ensure given precision
and confidence parameters. We first aimed at performing a straightforward statistical
analysis of the model. A first experiment was designed requiring a result precision
of 99%. As is standard for statistical analyses, we also required a 95% confidence.

A straightforward calculation of the necessary sample size based on the Chernoff
bound [Che52] determines that a total of ∼ 60000 samples are necessary, which
does not seem excessive. However recall that each sample must eventually reach
a state where the property can be determined to be true or false. For systems
where witnessing this behaviour is rare, this means that samples may be extremely
long. Through trial and error, and based on the bounds obtained in Q1, we tried to
determine the minimum length for samples to consistently reach failure states. For
the Tandem Queue full model—for which its MTTF was already estimated to be at
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least 7× 107—even samples as long as 4× 108 do not consistently reach the failure
state where the queues are both full. Considering that generating a sample of such
length takes 15 minutes, generation of the full 60000 traces required leads to a 2 year
period for sample generation. A similar situation is found upon analysis of the BRP
model.

Relaxing the precision requirement to 95% reduces the sample generation cost to
1 month. Further relaxation to 90% still requires a week of execution. In fact, if we
were to set a 24 hour budget for sample generation, the precision obtained would be
of just 70%. That is, the MTTF estimate would be up to ±30% away from the true
MTTF value with a 95% guarantee. Note that this is a very conservative estimate
as it is unlikely that all traces of length 4× 108 generated in the 24 hour period will
consistency reach failure states, and possibly much lengthier traces will be needed.

To overcome this limitation of standard Monte Carlo verification, we tried car-
rying out a variation of Wald’s sequential testing [Nim10]. This procedure generates
samples while at the same time it determines whether more samples are necessary
or not. As a result of this online estimation, it might require less samples than
those mandated by the Chernoff bound, although it cannot be stated beforehand
how many samples will be needed exactly. This optimization does not eliminate the
need for samples to reach property-determining states, so sample length remains a
problem. We attempted to perform this analysis truncating generated samples at
length 4×108 and treating them as failing samples once they reached this threshold.
This is a similar strategy as the one used in our approach (anything beyond the
submodel is a failure). However, this procedure yielded no results after 24 hours of
execution, indicating that the sequential testing still needed more evidence in order
to produce a reasonable estimate.

In the case of the bounded probability properties, the main difference is that the
horizon for trace simulation length is already set by this bound. This represents an
advantage with respect to the previous properties. However, recall that we aim at
calculating these probabilities for meaningful bounds, that is, bounds that bear some
resemblance to those already obtained by our partial verification approach. For both
the Tandem Queue and BRP case studies, we set this bound to be 107. Such a length
makes generation of 60000 samples also prohibitive. Setting a confidence parameter
of 95%, sampling would require at least a month of computer time.

As a final approach to this strategy of over-approximation of failures in Monte
Carlo verification, we generated samples over the submodels with highest MTTF
obtained in Q1 rather than over the full model. However, the problem of producing
samples that consistently fail persisted, failing to provide an estimate for MTTF
in the budgeted time. These results suggest that Monte Carlo approaches may be
unsuitable to answer reliability questions in systems with high MTTF (i.e., rare
failures). Monte Carlo approaches are not suitable either for probability estimation
in these cases.

Monte Carlo evaluation of non-rare events

As we have seen in the previous discussion, Monte Carlo approaches are not
amenable to scenarios where the properties of interest entail rare events. However,
in both the WLAN collision avoidance protocol and Virus infection case studies, the
event under analysis is not a rare event at all. This makes Monte Carlo analyses for
these cases presumably feasible.

We first set out to estimate the minimum and maximum turnaround times for
the WLAN collision avoidance protocol. Recall that we already analysed this model
completely and found these times to be 1725 and 4301.65 for the minimum and
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maximum cases respectively. In the previous section, we already established that
60000 samples would be necessary for a robust estimation. Since we know that the
maximum expected turnaround time is ∼ 4300, we set the trace horizon to 10000 in
order to have a reasonable confidence that every trace would hit the success state
(i.e., one where both stations have sent their data successfully).

The obtained results are disconcerting, however. In both cases, the estimation
procedure was efficient, as it only required 80 seconds of execution in both cases.
The reason for this fast sample generation is that not only is the bound low, but the
required property is reached on an average of 25 steps as well. This is because, unlike
the other case studies, the reward structure for the WLAN case assigns a reward of
at least 50 to transitions. Because of these reasons, most samples are very short and
are generated very quickly.

The estimations themselves are the problem in this case. For the minimum
turnaround estimation, we obtained a time of 2729.45±0.1929 with 95% confidence.
Surprisingly enough, the estimation for the maximum turnaround is extremely simi-
lar: 2731.06± 0.1915 with 95% confidence. Not only are both results the same, they
are equally incorrect.

The estimation analysis for the Virus infection case does not fare better. We have
already noted that we could calculate the minimum time to complete infection and
the minimum time to infection of the opposite corner network node in an analytical
way. We already calculated these expected times to be 5200 and 1200 respectively.
However, we know that the maximum expected time is actually infinite. This makes
the setting of a trace horizon as difficult as in the Tandem Queue and BRP cases. In
fact, experimentation showed that traces as long as 107 steps long do not consistently
reach the target state. This situation renders the estimation analysis as infeasible as
in the BRP and Tandem Queue cases.

On the other hand, since the minimum bounds are low enough, we set out to use
them as bounds for a bounded probability analysis. We performed Monte Carlo esti-
mations of the probability of reaching total infection before the expected 5200 steps,
and the probability of infecting the opposite node before the 1200 steps expected in
that case. The results for these analyses are included in Table 7.7. Again, it can
easily be seen that these results cannot be correct.

These (incorrect) results can be easily explained, however. Both the WLAN
collision avoidance protocol and the Virus infection system share the trait of being
non-deterministic. Unfortunately, Monte Carlo approaches are not very good at
dealing with non-determinism [HMZ+12]. The reason is that simulated executions,
when faced with a non-deterministic choice, are at a loss regarding which transition
to choose next. The simple approach taken in these cases is to choose one of the
available transitions uniformly.

This uniform choice explains why both minimum and maximum estimations re-
sulted in the same values. Since the neither the best nor the worst schedulers are
uniform in their choice, these extreme behaviours are not witnessed, and therefore
cannot be estimated. The second problem is that turning a non-deterministic choice
into a probabilistic one introduces a bias that cannot be estimated itself. As a result,
estimation results when non-determinism is present are meaningless.

Surprisingly, this uniformity also explains why the Monte Carlo approach yielded
a result close to the actual one in the case of total virus infection, but not in the case of
corner infection. In the case of total infection, since every node needs to be infected,
every non-deterministic choice needs to be taken. Since the Monte Carlo simulations
are more or less uniform in resolving non-determinism, they turn out to actually
be selected, and therefore provide a result close to the true one. However, in the
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Property Known value Time to estimation Estimation

WLAN minimum
turnaround

1725.00 81.67 sec. 2729.45± 0.1929

WLAN maximum
turnaround

4301.65 80.22 sec. 2731.06± 0.1915

Max. prob. of total
network infection
before 5200 steps

0.51872 20 hours 0.00± 0.00

Max. prob. of corner
infection before 1200

steps
0.53898 4 hours 0.00± 0.00

Max. prob. of total
network infection
before 5200 steps

(constrained model)

0.51872 693.34 sec. 0.54200± 9.8× 10−4

Max. prob. of corner
infection before 1200
steps (constrained

model)

0.53898 166.23 sec. 0.00± 0.00

Table 7.7: Monte Carlo estimations for the WLAN collision avoidance protocol and
Virus infection systems.

case of corner infection, only non-deterministic options that lead to advance towards
the corner have to be selected. This is not the case for uniform non-determinism
resolution, and therefore the (wrongly) estimated probability is 0.

In the next chapter we will discuss some recent research that has attempted to
provide some alternatives to attack this problem.

Summary of Monte Carlo analyses

The conclusion of the previous analyses is that applicability of Monte Carlo
techniques is limited to those cases where i) the property under analysis is both
known to be realised, and not a rare event; and ii) the system under analysis does
not exhibit non-determinism. These restrictions rule out a large class of interesting
system behaviour. In fact, the case studies presented in this section are representative
of somewhat common behaviour, but they are not amenable to Monte Carlo based
analyses.

Our partial evaluation technique, however, obtains meaningful results for each of
these cases, even though in the case of the Virus infection these are not as useful as
in the other cases.

7.3.3. Question 3

In this section, we compare the results obtained while answering Q1 with the
results a practitioner might obtain by specifying invariants herself, based on her
knowledge of the model. Prior to experimenting on automatically generated invari-
ants, we analysed the models and came up with at least one invariant for each one.
These invariants were selected based on our understanding that their negation is a
necessary condition for reaching failure states. In particular, we manually inspected
each model looking for variables that we believed, a priori, would increase as the
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c Size
MTTF Bounded reach. prob.

Value Time Value Time

20
2398 st

0.83·103 68.75 s 1.00000 544.47 s
6560 tr

40
8778 st

1.12·104 82.72 s 1.00000 1984.27 s
24280 tr

60
19158 st

1.25·105 276.69 s 1.00000 4351.62 s
53200 tr

80
33538 st

1.36·106 64.06 m 0.97873 7768.94 s
93320 tr

100
51918 st

1.49·107 17.93 h 0.29723 12734.36 s
144640 tr

120
74298 st

5.50·107 TO 0.03181 21985.64 s
207160 tr

140
100678 st

4.63·107 TO 0.00296 26322.19 s
280880 tr

160
131058 st

3.17·107 TO 2.71× 10−4 49119.85 s
365800 tr

180
165438 st

2.31·107 TO 2.48× 10−5 44882.64 s
461920 tr

200
203818 st

1.66·107 TO 2.28× 10−6 68516.20 s
569240 tr

900
4067118 st

8.41·105 TO 0.0000 TO
11381440 tr

1600
11219198 st

4.20·105 TO 0.0000 TO
31407194 tr

2400
14362898 st

4.20·105 TO 0.0000 TO
40213194 tr

Table 7.8: Experimental results for tandem queue (2 × 1200 processes) mean times
to failure and bounded reachability probabilities.

execution grew closer to the failure state. Once these variables were identified, we
wrote invariants stating upper bounds for their possible values.

Manual invariant analysis of Tandem Queue

For the Tandem Queue case study, we established the invariant to be that the
total number of enqueued processes globally in both queues is less than c, and ran
experiments for different values of c ranging up to the total capacity of the queueing
system (2 × C). A failure entails that the invariant does not hold for c < 2 × C,
and that for c = 2× C the resulting invariant-driven submodel is exactly the whole
model. In our experiments we found that there exist multiple c values for which the
invariant resulted in a significantly higher MTTF than the MTTF estimated for the
full model.

Table 7.8 summarises the results obtained for various submodels derived from
different values for parameter c of this manual invariant. From the table it follows
that the best MTTF is obtained for the submodel which considers up to 120 processes
queued (MTTF> 5.5∗107), and the best bound on the bounded reachability property
was 2.28 × 10−6. Here we only take into account results for which convergence was
attained. These results are summarised in Table 7.8.
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retries Size
MTTF Bounded reach. prob.

Value Time Value Time

1
366915 st

1.50·106 21.06 h 0.99870 5.70 h
489574 tr

2
480460 st

1.69·107 TO 0.01319 7.87 h
646758 tr

5
821095 st

1.08·107 TO 0.0000 TO
1118310 tr

10
1388820 st

6.29·106 TO 0.0000 TO
1904230 tr

50
5930620 st

1.39·106 TO 0.0000 TO
8191590 tr

150
17285120 st

4.86·105 TO 0.0000 TO
23909990 tr

250
28639620 st

2.73·105 TO 0.0000 TO
39628390 tr

256
N/A st

N/A OOM N/A OOM
N/A tr

Table 7.9: Experimental results for probabilistic BRP (256 retries) mean times to
failure and bounded reachability probabilities.

Manual invariant analysis of Bounded Retransmission Protocol

In the case of the Bounded Retransmission Protocol case study, a parametric
invariant chosen was that the number of retries performed while transmitting a single
file was less than maxretries. We ran experiments for different values of maxretries
ranging up to the true maximum number of retries (256). A failure entails that the
invariant does not hold for maxretries < 256. For retries = maxretries the resulting
invariant-driven submodel is the whole model.

Again, we show a selection of submodels ranging from the very small upwards
to almost the complete model. Results for these experiments are depicted in Ta-
ble 7.9. Estimation results are even more significant than for the previous case study
considering that analysis of the full model with 256 retries was not possible within
the memory budget. However, the trend indicates that augmenting the number of
retries considered does not yield better MTTF and in fact, a very low number of
retries gives a much higher MTTF. A similar conclusion can be obtained from the
reachability properties, where for a low retry limit we get a bound of 0.01319. Larger
models fail to converge in a timely fashion.

We also performed the same analysis for the non-deterministic version of the
protocol environment, with similar results, depicted in Table 7.10.

Manual invariant analysis of WLAN Collision Avoidance

Although the WLAN collision avoidance protocol could be verified in its totality,
we nevertheless ventured an invariant that we thought would be useful in reducing
the state space. It turns out in this case that our proposed invariant is much simpler
than those inferred by the automatic approach, as our initial belief was that bounding
the time a sending station is forced to backoff, the model would be reduced. This
interpretation, however, turned out to be erroneous. In fact, regardless of how many
times a sending station found a collision, the backoff time is chosen uniformly over
the whole possible range. The results we obtained by applying these invariants are
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retries Size
MTTF Bounded reach. prob.

Min. Time Max. Time Min. Time Max. Time

1
279582 st

9965.87 46.26 s OOM N/A 0.99805 12.74 h 0.99871 12.92 h
358393 tr

2
393127 st

9998.93 57.51 s OOM N/A 0.01239 17.52 h 0.01321 16.22 h
515577 tr

5
733762 st

9999.00 126.25 s OOM N/A 0.00000 TO 0.00000 TO
987129 tr

10
1301487 st

9999.00 190.43 s OOM N/A 0.00000 TO 0.00000 TO
1773049 tr

50
5843287 st

9999.00 904.36 s OOM N/A 0.00000 TO 0.00000 TO
8060409 tr

150
17197787 st

9999.00 2943.54 s OOM N/A 0.00000 TO 0.00000 TO
23778809 tr

250
28552287 st

9999.00 4412.72 s OOM N/A 0.00000 TO 0.00000 TO
39497209 tr

256
N/A st

N/A OOM OOM N/A OOM N/A OOM N/A
N/A tr

Table 7.10: Experimental results for non-deterministic BRP (256 retries) mean times
to failure and bounded reachability probabilities.

backoff1 and backoff2

bounding
Model checking

Max. backoff time States Min. TAT Time Max. TAT Time

0 59185713 465.97 109.36s 1201.71 176.88s
5 64160812 559.68 206.37s 1273.44 224.98s
10 68239697 686.78 304.47s 1460.94 286.30s
15 71431132 901.65 440.29s 1764.45 364.90s
20 73735117 1157.81 614.94s 2244.19 435.67s
25 75151652 1392.19 641.49s 2922.23 781.37s
30 75680737 1665.63 490.05s 3846.17 1085.87s

Table 7.11: Selection of WLAN submodel TAT evaluation results for different manual
invariants.

presented in Table 7.11. Note that even restricting the backoff time to just one value
(zero) does not really reduce the size of the model. Although for smaller values
of this bound the verification time is reduced drastically, these execution times are
still much larger than those that result from the automatically inferred invariants.
Further, the turnaround times obtained, both minimum and maximum, are very
poor contrasted with those that resulted from the automatic approach.

Manual invariant analysis of Virus infection

Finally, we turn our attention to the Virus infection model. The manually stated
invariants in this case deal with limiting the number of infected nodes that can coexist
at once. We first applied these invariants to the original, unconstrained model. As
was the case with the results obtained with our approach, these manually inferred
invariants can’t restrict the model size enough. Setting the limit to just two infected
nodes, we quickly obtained a bound to minimum mean time to failure of ∼ 200, the
same value obtained with our approach. However, raising this limit to three infected
nodes makes analysis infeasible.

Consequently, we applied these same manual invariants to the constrained infec-
tion model. The results of these analyses are pictured in Tables 7.12 and 7.13.

In this case, it can be seen that these manually posed invariants perform slightly
better than the automatically inferred ones. More specifically, increasing the limit of
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# infected Size
Min. time to infection Max. bounded reach. prob.
Value Time Value Time

1
74 st

199.88 ∼ 0.00 s 1.00000 0.02 s
222 tr

2
1269 st

399.69 0.07 s 1.00000 0.23 s
5233 tr

3
19181 st

599.55 0.64 s 1.00000 3.97 s
99607 tr

4
351990 st

799.43 17.88 s 1.00000 93.51 s
2215026 tr

5
6035220 st

999.32 414.14 1.00000 1822.42 s
44517828 tr

≥ 6
N/A st

N/A OOM N/A OOM
N/A tr

Table 7.12: Experimental results for mean times to total infection; and its bounded
reachability probability.

infected nodes by one results in model size increases that do not grow as dramatically
as in the case of growing the number of traces and their length in the automatic
approach. This allows for better submodels to be obtained and therefore better
bounds, up to 5 infected nodes. On the other hand, the obtained bounds on times
to failure and probabilities are still far from the actual values.

# infected Size
Min. time to infection Max. bounded reach. prob.
Value Time Value Time

1
74 st

199.88 ∼ 0.00 s 0.99992 ∼ 0.00 s
222 tr

2
1269 st

399.68 0.07 s 0.99777 0.05 s
5233 tr

3
19181 st

599.55 2.79 s 0.97998 0.92 s
99607 tr

4
351990 st

799.43 51.71 s 0.91072 21.56 s
2215026 tr

5
6035220 st

999.32 1241.86 s 0.75805 420.44 s
44517828 tr

≥ 6
N/A st

N/A OOM N/A OOM
N/A tr

Table 7.13: Experimental results for mean times to corner infection; and its bounded
reachability probability.

Summary of manually-inferred invarianty analyses

Here we compare the performance of our automatic approach to that of manual
invariants. In each case we take the best result for both the automatic approach and
the manual one. Note that in both cases we tried several parameters to arrive to this
best result, and in both cases it is difficult to predict which parameters will perform
best.

In the cases where the manual invariants did succeed, the Tandem Queue and
BRP protocol, it is interesting to note that for relatively small submodels (e.g. c = 80
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on the Tandem Queue case study, and maxretries < 2 for BRP) the estimated MTTF
is much higher than the MTTF computed over the complete model. Still, while the
manual invariant approach did provide useful bounds, it turns out that the best
MTTF values generated by the automatic approach obtains slightly higher bounds
for the same time budget. For the Tandem Queue study, the best automatically
estimated MTTF is of ∼ 7× 107 against ∼ 5.5× 107.

For the fully probabilistic BRP case study the best automatic estimation is ∼
2.5×107 versus ∼ 1.69×107 when manual intervention is applied. In the case of non-
deterministic environments for the BRP system, the results obtained with manual
invariants are notoriously different from the ones yielded by our automatic technique.
Manual invariants fail to obtain good bounds to both minimum and maximum mean
times to failure. Our interpretation of these results is that bounding the sizes of the
sent files yields better submodels than bounding only the number of retries.

The results obtained for the WLAN case study are also far from those of the
automatic approach, suggesting that there are complex interactions between the
model variables that may be out of reach to a manual inspection and attempt at
suggesting invariants.

The case of the Virus infection model is atypical, as the manually posed invariants
slightly outperformed the automatically inferred ones.

An initial interpretation of the results would suggest that, except for the non-
deterministic BRP and WLAN case studies, automatically inferred invariants do not
have an added advantage over manually suggested ones. This is evidenced more
starkly in the Virus infection case. However, there is an added cost in understanding
a protocol model and being able to suggest which factors are the most relevant in
increasing a model size or in making numerical computation infeasible. This cost
is in general not trivial, and requires a thorough understanding of the modelling
formalisms as well as the verification procedures under the hood. These are not, a
priori, traits that every engineer can be reasonably expected to have.

Summary of case studies results by technique

Table 7.14 summarises the results obtained for each case study and property,
with each of the established approaches, including our partial exploration one. We
highlight the best performer for each case. We first provide, if it was attainable,
the actual value of the property analysed. This was either obtained analytically or
through a full model check that converged, as described in each case study section.
We then compare the results obtained through each approach, as follows

Full is a model checking effort over the full model. We always report on
bounds on rewards obtained, if any. Bounds on probabilities are only reported
if convergence was attained.

Partial denotes our approach, ignoring simulation times. Since we also per-
form a model checking step, we omit probabilities that did not converge in
time.

Monte Carlo denotes the statistical estimation based on trace simulation.

Manual describes the best result obtained by any of the manual invariants
posed for the case study.

In the case of ties, or very close results with very disparaging running times, we
opted to report the fastest performer as the best result. We mark these cases with
an asterisk.
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Tandem Queue (mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown 4.2× 105 TO 7× 10

7 TO N/A TO 5.5× 107 TO
Tandem Queue (bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown 0.0000 TO 0.0713 TO N/A TO 2.28× 10

−6
19 hs

Fully probabilistic BRP (mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 2.5× 10

7 TO N/A TO 1.69× 107 TO
Fully probabilistic BRP (bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 0.0680 22 hs N/A TO 0.01319 7.9 hs

Non-deterministic BRP (minimum mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 5.6× 10

6 TO N/A TO 9999 126.25 s
Non-deterministic BRP (maximum mean time to failure)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 9.8× 10

6 TO N/A TO 9965.87 46.26 s
Non-deterministic BRP (minimum bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 0.02382* 8.6 hs* N/A TO 0.01239 17.5 hs

Non-deterministic BRP (maximum bounded reachability probability)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
Unknown OOM TO 0.71205 TO N/A TO 0.01321 16.2 hs

WLAN (minimum mean turnaround time)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
1725.00 1725.00 628.00 s 1725.00 0.98 s N/A N/A 1665.63 490.05 s

WLAN (maximum mean turnaround time)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
4301.65 4301.65 54149 s 4300.67* 2 s* N/A N/A 3846.17 1085.87 s

Constrained Virus (minimum mean time to total infection)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
5200.00 OOM TO 500.54 2771 s N/A N/A 999.32 414 s

Constrained Virus (minimum mean time to corner infection)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
1200.00 OOM TO 599.54 1452 s N/A N/A 999.32 1242 s
Constrained Virus (maximum bounded probability to total infection before 5200 steps)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
0.51872 OOM TO 1.0000 ∼ 0 s N/A N/A 1.0000 ∼ 0 s
Constrained Virus (maximum bounded probability to corner infection before 1200 steps)

Actual value
Full Partial Monte Carlo Manual

Result Time Result Time Result Time Result Time
0.53898 OOM TO 0.97997 1004 s N/A N/A 0.75805 420 s

Table 7.14: Summary of (best) results for each technique and case study. TO denotes
timeout at 24 hours. N/A denotes results that could not be obtained before timeout
or were erroneous due to technique shortcomings.
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7.4. Threats to validity

As usually happens with any experimental attempts at validating a new tech-
nique, our experiments and their results are subject to threats regarding their va-
lidity. We do not foresee threats to construct validity, since our comparison scores
in each case are precisely the results of the verification procedures, which is exactly
what we want to measure. We do not establish a score function that could confound
an outside factor with this measure.

7.4.1. Threats to external validity

The main threat to our experimental approach is that of external validity, that
is, whether the present experimentation allows us to generalise our conclusions. We
have done our best in attempting to perform validating experiments for a range of
potential systems. The models which we analysed are very different in nature and
the functions they provide are different as well, as are the measures under analysis
for each one. Although we cannot affirm that our approach is sure to perform for
an arbitrary system as well as we have shown in our experimentation, this variety
in case studies under analysis does provide potential users with confidence that the
approach may work to their advantage in their setting.

A first threat is that, although the model probabilities present in the model seem
to be representative of usual behaviour, they might be inaccurate. They are a result
of informed estimations rather than the result of significant observation. We have
observed, however, that systems for which their probabilities are very uniform, or for
which there exists a large degree of non-determinism, are not extremely well suited
to our approach. As we have discussed, this is due to the simulation step failing
to discriminate much of the behaviour and exploring so much of the system that a
useful size reduction is not achieved.

There also exists a potential threat regarding the convergence of the iterative
linear equation resolution methods employed. As was noted, not every one of these
methods will converge in every case. In particular, convergence for the best performer
(Gauss-Seidel method) is not guaranteed.

This potential problem, however, can be mitigated or downright avoided in several
ways. The most obvious way to avoid the problem altogether is abstaining from using
iterative methods that do not always converge. For example, the powers method can
be safely used in all cases, although its convergence is usually much slower than with
the Jacobi or Gauss-Seidel methods. Alternatively, variations of the Gauss-Seidel
method such as the Block Gauss-Seidel are known to be convergent if the underlying
DTMC is ergodic [SI97, Lan10].

The systems studied in this section are a mixed bag with respect to this prop-
erty. We have verified through graph-based analysis that both the BRP and WLAN
collision avoidance protocol are ergodic. This is not the case of the Tandem Queue
system model which has a period of 2. This is intuitive, since to return to the empty
queue state it is ostensibly needed to perform the same number of push and pop op-
erations. However, this does not necessarily mean that the numerical procedure will
not converge, since the Tandem Queue may actually have a finite, unknown mean
service time.

Our partial exploration approach obtains system models that are clearly not
irreducible. In fact, the trap state constitutes by itself a bottom strongly connected
component. This does not mean that ergodicity is lost, but it cannot be guaranteed.
However, for those cases where the estimation needed to be cut short because it had
reached the limit of its allotted verification time, the iterative methods were clearly
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monotonous increasing. Although this does not guarantee convergence, it has at least
provided in every case a good argument for lower bounds on the desired reliability
metrics.

7.4.2. Threats to internal validity

We also need to confront threats to internal validity. This is an issue in the
analyses we performed, since the non-convergence of numerical methods constitutes
a problem.

This non-convergence is a problem especially for the rewards estimations, as
several of our experimentation runs on partial state spaces did not converge to a
fixed value. In fact, those runs that provided our best bounds did not converge.
Additionally, it is expected that, had the experiments run for further time, the
obtained bounds would have increased.

However, we are confident in the contribution of our results for two reasons. First,
whenever the verification failed to converge, the obtained bounds were much more
larger than what could be obtained from the verification of the complete models.
As a further confirmation of the reliability of the systems, we also verified bounded
reachability properties over the system models, using a bound that is in the order of
the obtained results. The results derived from these verifications were very good in
terms of establishing reliability.

Adding to the confidence of the previous results, it is good news that, in the case
of the bounded reachability properties convergence was not an issue. For each case
study we obtained at least several good probability bounds on verification runs that
did converge. Even though we witnessed some runs that did not converge, these were
vastly outnumbered by those that converged.





CHAPTER 8

Discussion

In these last few chapters, we have presented a fully automated technique for es-
timation of probabilistic reachability properties and reward values of system models.
Experimental results have shown that this approach may provide more useful estima-
tions than both standard probabilistic model checking and Monte Carlo verification,
at a fraction of the cost required by such techniques. We have also observed that
these results are especially notorious when the properties under analysis are proba-
bilistically rare. We believe that these results can be explained by the fact that the
simulation traces capture a significant part of the most probable behaviour of the
system model. Additionally, since we choose to characterise this partial state spaces
through the use of invariants, it is likely that states similar to those visited during
simulation are captured. This results in several behavioural loops to be present in
these submodels. These loops capture a greater probability mass, while at the same
time not increasing the state space size in a significant way.

However, some parameters exist that need to be set for the approach to work.
First, there is the matter of the size of the simulation set and the length of the
simulated traces; and second, in the case where non-determinism is present in the
model under analysis, a strategy is necessary for solving these non-deterministic
choices during the simulation phase.

Regarding the size of the simulation set and its traces, good news is that our
experimentation has shown that, at least for the examples studied, very good results
can be obtained through a relatively small set of short traces. Results have shown
that there may be a broad combination of parameter values for which high estimation
results are obtained in reasonable time. Further, overshooting these parameters does
not have a dramatic impact in the resulting submodel size, so erring in the side of
caution and choosing larger parameters does not seem to be a cause for concern.
It is important to note that exploration of an appropriate parameter space can be
done concurrently, taking as the final reward estimation the highest of the bounds
obtained. Full model probabilistic checking cannot exploit concurrent computation
in such a way. Monte Carlo verification can be applied concurrently, however we
believe that the significant time cost for sample generation would not be outweighed
by concurrent execution; further experimentation is needed to address this point.

As was previously mentioned, most probabilistic model checkers [KKZ05, HKNP06,
SVA05b, You05] provide functionality that may either reduce the time required to
obtain results, or reduce the memory footprint required for verification, such as sym-
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metry reductions [KNP06], lumping [DG97] and several numerical methods. All these
optimizations are orthogonal to the model checking procedure itself. Our work relies
on probabilistic model checking and the experiments were run on PRISM, which
implements some of these optimizations. In this way, our technique complements
state-space reduction approaches. A related approach is that of [ZVB11, CBvB12],
which aim at providing a measure of how much a model checker progressed towards
the verification of a property. The results of such an approach however, lack an
understandable link between the progress measure and the property that is being
verified.

In those settings where exhaustive probabilistic model checking of models is in-
tractable due to required memory size or verification time, statistical simulation has
proven to be an effective technique. As was mentioned in the previous Chapter, an
important issue with simulation approaches is that they tend to work well mostly in
the case that the specified properties are bounded in time, i.e. when these properties
can be written in the form ψU≤Tρ for a fixed T . This is so because estimation of
the random variable Xφ by means of a sample of traces σi requires that the question
of whether M,σi |= φ or not be answered in a definite way for each trace σi in the
sample set. If the formula φ is temporally bounded, then termination is guaranteed
when evaluating its truth for the traces, but for temporally unbounded formulae such
termination is threatened.

In such cases, generating traces within acceptable length bounds that answer
the property definitively can be very unlikely. To address this problem biased sam-
pling [SVA05a, RP09, LP06, BGH09] has been studied. However, bias to sampling
must be done manually resulting in an impact on the analysis results that cannot
be quantified in general. The result obtained by our approach is guaranteed to be a
true bound to the reward values being sought after.

Related work by Younes et. al. [YCZ11] proposes two novel Monte Carlo ap-
proaches that do not rely on biased sampling. However, one of them may require an
inordinate number of samples to produce results; while the other relies on reacha-
bility analysis, which requires the full model to be constructed, relinquishing one of
the key advantages of Monte Carlo model checking over probabilistic model check-
ing. The work in [HJB+10] also presents a bounded statistical approach for checking
unbounded properties that does not need the full model to be constructed. However,
the bound on the necessary trace length is excessively large, as traces may be as
long as the total number of states in the model. Other works [KJD02] acknowledge
the problem of generating traces exhibiting the failure (or guaranteeing its absence).
This approach relies on extreme value theory to produce results. Unfortunately, ex-
treme values techniques still require a good number of actual samples exhibiting the
property, as these techniques require the inference of a fitting distribution. Having
too few samples to work with usually results in fitting distributions that are actually
different than the one being analysed [Col01].

As noted, an additional point for analysis lies in the strategies for resolving
non-deterministic choices during simulation. Several works have attempted to solve
this problem, especially in the context of generating simulations for Monte Carlo
estimation. In these cases, it is critical that the simulation of non-deterministic
transitions is performed in such a way that there is no bias in the generation (or
alternatively, in such a way that this bias can be controlled and quantified), as doing
so otherwise would introduce errors in the final estimation. In [HMZ+12] the authors
leverage on the fact that, usually, verification is performed while looking for the worst
and best cases. In that sense, only the two schedulers that induce the best and worst
results are of interest, and the authors propose a self-adjusting simulation algorithm
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that converges to these extremes.

In [BFFHH11], rather than focusing on the problem of biasing scheduler selection,
the authors aim at detecting whether non-determinism can be ignored safely. As
the authors point out, it is often the case that non-deterministic choices are actually
behaviour-equivalent. By detecting these situations via partial order methods, it can
be used to identify situations where non-determinism can be ignored while keeping
only one of the possible choices when performing simulation.

In our present work, we have opted to resolve non-determinism by simply assum-
ing an equiprobable distribution over the possible non-deterministic choices at a given
state. However, it must be noted that, in the context of our work, any method of
resolving non-determinism would have been acceptable, as we always produce a lower
bound to the actual reward value, regardless of the procedure used for simulation.
This is not to say that any non-determinism resolution method will produce the same
outcome, as variations in these choices may lead to different invariants. Although the
results presented in this thesis are promising, it still remains to be seen if different
approaches to the initial simulation might produce even better results. In particular,
the choice of simulating via equiprobable distribution of non-deterministic transi-
tions is a double-edged sword. On the one hand, by establishing a balanced choice,
it maximises the chance of exploring most of the non-deterministic alternatives so
that verification of all of them is carried out at a later step. But, on the other hand,
some of this explored behaviour might possibly be irrelevant when calculating the
maximum (or minimum) rewards, as the best and/or worst schedulers might never
take some of the explored non-deterministic transitions. In this sense, adapting the
approach of [HMZ+12] to the simulation step of our framework might prove to be
beneficial. Although that proposed approach is geared towards model checking of
probabilistic properties rather than reward calculations, it may be adapted to our
needs. It is worth noting, however, that such an approach would need to carry out
two simulation steps as opposed to one. This is because the approach in [HMZ+12]
aims at simulating executions that resemble those of the extreme scheduler that is of
interest, which may be either the one providing the minimum value, or the maximum,
but not both at the same time. In that sense, if we are interested in calculating both
extreme values, we would need different simulation sets, one for each extreme.

The analysis of system behaviour that exhibits rare yet relevant events (e.g. fail-
ures) is the subject of focused study within the simulation community as well. A
technique that is usually used in conjunction with stochastic processes that have
rare events is that of importance sampling [RK08]. Roughly speaking, the idea of
importance sampling is to replace the original process’s distribution for another more
likely to generate the (originally) rare event during the sample generation. The dis-
tribution replacement is chosen so that results from analyses for the new distribution
can be translated back to results valid for the original distribution. Although this
is a promising approach, finding suitable replacement distributions is a complex and
ad-hoc task for which further research and expertise is necessary, as different sys-
tem models possibly require different sampling distributions. Further, special care
is required when proposing importance sampling distributions. In fact, it is possi-
ble to choose a replacement distribution such that it makes the simulation process
more costly and requiring even more samples than the original one. In practice,
choosing optimal replacement distributions is extremely difficult and not suitable
for a general, complex process model. In this context of Importance Sampling, the
work in [MSW12, MSW13] is closely related to ours. In this work, the authors use
Importance Sampling in order to drive the exploration of the model by truncating
explorations that do not contribute to the rare event probability, sharing our idea of
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partial model exploration. However, the reliance on Importance Sampling requires
an external understanding of the model. In contrast, our technique is agnostic with
respect to the system being modelled.

Another promising simulation technique that also focuses on rare events is that of
sample splitting [RK08, RC05], most notably the RESTART implementation [VAVA94]
which, roughly, rather than starting each simulation from the initial state, it does
so from a state s visited in a previous simulation and from which reaching a rare
event is more likely. The likelihood of reaching state s from the initial state is taken
into account for producing the final analysis results. Key to the application of these
techniques is making appropriate decisions on where to restart simulations. These
decisions demand deep understanding of both the model and the underlying splitting
technique, as naïve splitting may not help the verification effort. Worse, it could even
hamper the effort if the splits are not done in such a way that they are incrementally
closer to fulfilling the rare event. Another interesting approach is that of [RdBSH13],
which is geared toward simulating rare events, although restricted to Stochastic Petri
Nets.

Finally, common to both the Monte Carlo approach and the simulation tech-
niques discussed is the fact that they are inherently statistical results. As such,
there is always a non-zero probability that the results obtained are completely off
the mark. Further reducing this error probability may require excessive amount of
additional traces to be sampled in order to obtain the guarantee. Our technique,
though conservative in the bounds it obtains, is definitive in its answers.

The technique we introduce in this thesis is concerned with the verification of
systems that are specified through the use of automata-like languages. We be-
lieve our approach can be extended in order to analyse source code as well. In
this regard, there have been promising advances similar to our work. For example
in [FPV13, BFd+14], symbolic execution is used to analyse the source code, and that
information is used to direct a sampling approach towards interesting portions of the
source code. The setting for this work is different and complementary, though, as it
focuses on non-reactive, non-probabilistic software (by quantifying the usage profile
of program variables); and the inference of conditions for reaching a given portion of
the code. Further, this approach requires the solution space to be built and available
for analysis; we argue that this, in our setting, is prohibitive in size.

On a related note, [LPD+14] has tackled the problem of synthesising appropriate
schedulers for attaining a desired probability, a goal that is closely related to finding
the extrema probabilities in the presence of non-determinism. Approaches such as
this could benefit our technique by resolving non-determinism in a way that later
directs verification to the more extreme (and interesting) values.

8.1. Conclusions and Further Work

In this Part of the thesis we have proposed an approach to estimating mean
reward values and reachability probabilities for probabilistic system models. The
approach is a novel combination of simulation, invariant inference and probabilistic
model checking. We report on experiments that suggest that reward estimation using
this technique can be more effective than (full model) probabilistic and statistical
model checking for system models. This increase in effectiveness is most evident
in the case of models where the properties under analysis are rare events, or else
are unbounded in time. In addition, our estimation approach also supports non-
determinism besides probabilistic behaviour.

We believe the notion of reliability analysis over partial yet systematic explo-
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rations offers an alternative to, and hence complements, exhaustive model exploration–
as in probabilistic model checking–and partial random exploration–as in statistical
model checking.

The experimental results presented in the previous Chapter are promising. Our
experiments show that, for system models extracted from reliability and probabilistic
verification literature, bounds to probabilities and reward values can be obtained with
little effort compared to full model verification. More specifically, we have shown that
we can obtain reliability values that allow for strong dependability arguments, while
only performing an exploration of typically less than 5% of the projected total state
space of the system. These savings also translate into verification time as well, and
the additional effort required for inferring submodels remains a good trade-off taking
into account the quality of the obtained results.

The obtained results are more striking when the behaviours under analysis are
rare events, and they have not been witnessed in the (already small) submodel being
explored. However, experiments have also shown that our technique is effective even
in the case of systems where the behaviour of interest is not rare, and even when
some of the states exhibiting this behaviour are present in the obtained submodels.
This evidence provides encouragement towards arguing for generalisation of results.

We also believe that further experimentation is required to achieve a better un-
derstanding of the influence of parameter choices in the process. In particular, an
area that calls for future work is looking for a better understanding of the relation-
ship between the simulated set of traces (both its size as the trace length) and the
submodels that result from them, as well as the estimations that can be expected
from them. This understanding should lead to heuristics for setting appropriate
values to these parameters in order to achieve more cost-effective submodels.





CHAPTER 9

Conclusions and lookout

The main contributions and conclusions of this thesis have, in some way or an-
other, already been discussed in Chapters 5 and 8. We will recall them here, as well
as introduce research lines that can be derived using this thesis as a basis.

In this work, we tackled in the first place the problem of qualitative property
verification, which is more often than not threatened by the state explosion problem.
We propose a technique that can obtain partial, quantitative information related
to the property under verification. This technique involves a careful modelling of
the interfacing components, especially the operating profile of the environment with
which the system interacts. This modelling can aid in quantifying partial explo-
rations, which can then be thoroughly analysed. In summary, although we cannot
provide a definite answer to the original qualitative question, we can provide bounds
on related quantitative questions.

If the original property of interest is a safety predicate, expressed as “is it true that
the following, failing, state is not reachable?”, and this question cannot be resolved
in a timely manner by a classic model checking approach, our proposed technique
can establish several quantitative bounds on the property. Obtaining information
such as the minimum operational time that the system will run before reaching the
failure state can be useful when arguing a reliability case, or as additional information
when weighing deployment risks. Similarly, it is also possible to bound the maximum
probability of the failure manifesting itself. This also adds to a reliability case if this
maximum probability is low enough to be accepted by the stakeholders.

In this thesis we have also attempted to characterise those systems for which our
proposed technique consistently outperforms established approaches such as proba-
bilistic model checking and statistical (Monte Carlo) approaches. Through our case
studies we have evidence that, for systems where these failures are rare events and
their state spaces are large and complex, our technique can offer more information,
given the same time and memory budget, than both probabilistic model checkers
and statistical verification approaches.

Non-determinism remains an important challenge to our technique, especially in
the cases that this causes the behaviour of the system under analysis to be uniform.
In these situations, the simulation approach fails to identify a portion of the state
space that is both small enough to be manageable, and probabilistically dense enough
to offer valuable information. We believe there is work to do in this aspect, especially
on the topic of simulation strategies for non-deterministic systems. Specifically, sim-
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ulation strategies that aim at mimicking the behaviour of the scheduler that makes
the interesting states more likely are of special interest, as are those that make these
interesting states be the least likely. This is closely related to the fact that, when
performing quantitative validation of systems, we are most often interested in the
extreme values of the failure probabilities or times to failure.

An interesting extension of this work would be its applicability to software de-
liverables closer to the end product. We envision our approach could be used in
the context of software model checkers, such as Java Pathfinder [HP00]. Challenges
toward this goal are the increased memory requirements which come as a result of
the modelled states being much more fine grained than in our abstract case. This
goal is also closely related to the previous simulation one, since achieving a Java
Pathfinder implementation would also require simulation optimisations to be added
to the JPF virtual machine.

Our work is also underpinned by the formalisms used to model probabilistic be-
haviour. We have presented Probabilistic Interface Automata as a suitable formalism
that allows for compositional behaviour modelling and validation. We also relaxed
some of the modelling restrictions posed by the underlying Interface Automata for-
malism, introducing fairness conditions to allow for delayed synchronisations. In the
context of this work, we imposed strong fairness conditions that can be overly re-
strictive. More study is required in this sense, as there could exist fairness conditions
that are not as stringent but that still enforce delayed synchronisation. Open ques-
tions are whether finding these fairness conditions requires a deep understanding of
the model under analysis, or if these conditions can be established in general.

We have presented experimental evidence that allows us to argue that our ap-
proach can obtain useful results in the cases where a full verification effort is infeasi-
ble. However, there are some limitations to this approach, which we aim to tackle in
a near future. First, the technique is dependent on a simulation step for which there
are some parameters that must be set. Namely, the number of simulation traces and
the length of these traces are crucial. Different combinations of these parameters
can yield very diverse submodels. The results obtained through these submodels, in
turn, can vary in their usefulness. The problem is that it can be difficult to ascertain
which parameter combination will yield submodels that will perform well in their
estimation. This topic requires further study.

An additional concern is that of the invariants that we aim to obtain. In this
work, we have restricted ourselves to a very simple and small class of invariants. In
particular, all invariants consist of the conjunction of arithmetical comparisons of
variables and constants. Although these invariants have performed well in general,
the question remains whether more complex invariants can help in those cases where
our approach struggled, such as the Virus Infection case study. More study is required
on other classes of invariants, even including temporal rather than static invariants.

Finally, we have argued that automatic approaches are more desirable than ap-
proaches that require manual intervention. However, we have not validated these
claims in a controlled, user populated environment. There is a need for the design
of a user experience experiment, that could answer whether users would be more
comfortable sacrificing understanding (since the submodels and the invariants that
obtain them are not necessarily intuitive) in exchange for a potentially more efficient
partial model exploration.



APPENDIX A

Additional tables

Traces Length States Invariant

1000 1000 10662 cliC ≤ 65 ∧ cliM ≤ 14 ∧ state ≤ 9
2000 1000 14158 cliC ≤ 77 ∧ cliM ≤ 16 ∧ state ≤ 9
3000 1000 16334 cliC ≤ 80 ∧ cliM ≤ 18 ∧ state ≤ 9
4000 1000 15990 cliC ≤ 71 ∧ cliM ≤ 20 ∧ state ≤ 9
5000 1000 14134 cliC ≤ 69 ∧ cliM ≤ 18 ∧ state ≤ 9
6000 1000 14698 cliC ≤ 80 ∧ cliM ≤ 16 ∧ state ≤ 9
7000 1000 20334 cliC ≤ 100 ∧ cliM ≤ 18 ∧ state ≤ 9
8000 1000 15134 cliC ≤ 74 ∧ cliM ≤ 18 ∧ state ≤ 9
9000 1000 17446 cliC ≤ 71 ∧ cliM ≤ 22 ∧ state ≤ 9
10000 1000 16086 cliC ≤ 83 ∧ cliM ≤ 17 ∧ state ≤ 9
1000 2000 18734 cliC ≤ 92 ∧ cliM ≤ 18 ∧ state ≤ 9
2000 2000 13370 cliC ≤ 77 ∧ cliM ≤ 15 ∧ state ≤ 9
3000 2000 17970 cliC ≤ 80 ∧ cliM ≤ 20 ∧ state ≤ 9
4000 2000 21270 cliC ≤ 95 ∧ cliM ≤ 20 ∧ state ≤ 9
5000 2000 23388 cliC ≤ 100 ∧ cliM ≤ 21 ∧ state ≤ 9
6000 2000 27924 cliC ≤ 110 ∧ cliM ≤ 23 ∧ state ≤ 9
7000 2000 19730 cliC ≤ 88 ∧ cliM ≤ 20 ∧ state ≤ 9
8000 2000 24886 cliC ≤ 102 ∧ cliM ≤ 22 ∧ state ≤ 9
9000 2000 21050 cliC ≤ 94 ∧ cliM ≤ 20 ∧ state ≤ 9
10000 2000 22486 cliC ≤ 92 ∧ cliM ≤ 22 ∧ state ≤ 9
1000 3000 18788 cliC ≤ 80 ∧ cliM ≤ 21 ∧ state ≤ 9
2000 3000 19708 cliC ≤ 84 ∧ cliM ≤ 21 ∧ state ≤ 9
3000 3000 22150 cliC ≤ 99 ∧ cliM ≤ 20 ∧ state ≤ 9
4000 3000 20858 cliC ≤ 89 ∧ cliM ≤ 21 ∧ state ≤ 9
5000 3000 20932 cliC ≤ 98 ∧ cliM ≤ 19 ∧ state ≤ 9
6000 3000 23206 cliC ≤ 95 ∧ cliM ≤ 22 ∧ state ≤ 9
7000 3000 22928 cliC ≤ 98 ∧ cliM ≤ 21 ∧ state ≤ 9
8000 3000 21050 cliC ≤ 94 ∧ cliM ≤ 20 ∧ state ≤ 9
9000 3000 28432 cliC ≤ 90 ∧ cliM ≤ 29 ∧ state ≤ 9
10000 3000 25228 cliC ≤ 108 ∧ cliM ≤ 21 ∧ state ≤ 9
1000 4000 20134 cliC ≤ 99 ∧ cliM ≤ 18 ∧ state ≤ 9
2000 4000 17992 cliC ≤ 84 ∧ cliM ≤ 19 ∧ state ≤ 9
3000 4000 20168 cliC ≤ 86 ∧ cliM ≤ 21 ∧ state ≤ 9
4000 4000 18334 cliC ≤ 90 ∧ cliM ≤ 18 ∧ state ≤ 9
5000 4000 24538 cliC ≤ 105 ∧ cliM ≤ 21 ∧ state ≤ 9
6000 4000 23388 cliC ≤ 100 ∧ cliM ≤ 21 ∧ state ≤ 9
7000 4000 22370 cliC ≤ 100 ∧ cliM ≤ 20 ∧ state ≤ 9
8000 4000 29038 cliC ≤ 102 ∧ cliM ≤ 26 ∧ state ≤ 9
9000 4000 23910 cliC ≤ 107 ∧ cliM ≤ 20 ∧ state ≤ 9
10000 4000 24882 cliC ≤ 94 ∧ cliM ≤ 24 ∧ state ≤ 9

Table A.1: Tandem Queue system submodel sizes and invariants for different param-
eter configurations.

155



156 APPENDIX A. ADDITIONAL TABLES

Traces Length States Invariant

1000 5000 15418 cliC ≤ 84 ∧ cliM ≤ 16 ∧ state ≤ 9
2000 5000 19730 cliC ≤ 88 ∧ cliM ≤ 20 ∧ state ≤ 9
3000 5000 22486 cliC ≤ 92 ∧ cliM ≤ 22 ∧ state ≤ 9
4000 5000 26990 cliC ≤ 121 ∧ cliM ≤ 20 ∧ state ≤ 9
5000 5000 26424 cliC ≤ 104 ∧ cliM ≤ 23 ∧ state ≤ 9
6000 5000 22006 cliC ≤ 90 ∧ cliM ≤ 22 ∧ state ≤ 9
7000 5000 27174 cliC ≤ 107 ∧ cliM ≤ 23 ∧ state ≤ 9
8000 5000 25424 cliC ≤ 100 ∧ cliM ≤ 23 ∧ state ≤ 9
9000 5000 25958 cliC ≤ 91 ∧ cliM ≤ 26 ∧ state ≤ 9
10000 5000 23686 cliC ≤ 97 ∧ cliM ≤ 22 ∧ state ≤ 9
1000 6000 21088 cliC ≤ 90 ∧ cliM ≤ 21 ∧ state ≤ 9
2000 6000 17134 cliC ≤ 84 ∧ cliM ≤ 18 ∧ state ≤ 9
3000 6000 25402 cliC ≤ 96 ∧ cliM ≤ 24 ∧ state ≤ 9
4000 6000 25142 cliC ≤ 95 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 6000 26182 cliC ≤ 99 ∧ cliM ≤ 24 ∧ state ≤ 9
6000 6000 25366 cliC ≤ 104 ∧ cliM ≤ 22 ∧ state ≤ 9
7000 6000 27190 cliC ≤ 99 ∧ cliM ≤ 25 ∧ state ≤ 9
8000 6000 34174 cliC ≤ 135 ∧ cliM ≤ 23 ∧ state ≤ 9
9000 6000 30430 cliC ≤ 111 ∧ cliM ≤ 25 ∧ state ≤ 9
10000 6000 31902 cliC ≤ 121 ∧ cliM ≤ 24 ∧ state ≤ 9
1000 7000 21088 cliC ≤ 90 ∧ cliM ≤ 21 ∧ state ≤ 9
2000 7000 22008 cliC ≤ 94 ∧ cliM ≤ 21 ∧ state ≤ 9
3000 7000 25674 cliC ≤ 101 ∧ cliM ≤ 23 ∧ state ≤ 9
4000 7000 23848 cliC ≤ 102 ∧ cliM ≤ 21 ∧ state ≤ 9
5000 7000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9
6000 7000 27742 cliC ≤ 105 ∧ cliM ≤ 24 ∧ state ≤ 9
7000 7000 27924 cliC ≤ 110 ∧ cliM ≤ 23 ∧ state ≤ 9
8000 7000 28262 cliC ≤ 107 ∧ cliM ≤ 24 ∧ state ≤ 9
9000 7000 26182 cliC ≤ 99 ∧ cliM ≤ 24 ∧ state ≤ 9
10000 7000 30674 cliC ≤ 121 ∧ cliM ≤ 23 ∧ state ≤ 9
1000 8000 24886 cliC ≤ 102 ∧ cliM ≤ 22 ∧ state ≤ 9
2000 8000 28726 cliC ≤ 118 ∧ cliM ≤ 22 ∧ state ≤ 9
3000 8000 23924 cliC ≤ 94 ∧ cliM ≤ 23 ∧ state ≤ 9
4000 8000 25366 cliC ≤ 104 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 8000 23910 cliC ≤ 107 ∧ cliM ≤ 20 ∧ state ≤ 9
6000 8000 26702 cliC ≤ 101 ∧ cliM ≤ 24 ∧ state ≤ 9
7000 8000 28522 cliC ≤ 108 ∧ cliM ≤ 24 ∧ state ≤ 9
8000 8000 31414 cliC ≤ 103 ∧ cliM ≤ 28 ∧ state ≤ 9
9000 8000 30076 cliC ≤ 102 ∧ cliM ≤ 27 ∧ state ≤ 9
10000 8000 29424 cliC ≤ 116 ∧ cliM ≤ 23 ∧ state ≤ 9
1000 9000 22192 cliC ≤ 104 ∧ cliM ≤ 19 ∧ state ≤ 9
2000 9000 20830 cliC ≤ 93 ∧ cliM ≤ 20 ∧ state ≤ 9
3000 9000 23924 cliC ≤ 94 ∧ cliM ≤ 23 ∧ state ≤ 9
4000 9000 27674 cliC ≤ 109 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 9000 29924 cliC ≤ 118 ∧ cliM ≤ 23 ∧ state ≤ 9
6000 9000 27046 cliC ≤ 111 ∧ cliM ≤ 22 ∧ state ≤ 9
7000 9000 31126 cliC ≤ 128 ∧ cliM ≤ 22 ∧ state ≤ 9
8000 9000 30214 cliC ≤ 99 ∧ cliM ≤ 28 ∧ state ≤ 9
9000 9000 32590 cliC ≤ 119 ∧ cliM ≤ 25 ∧ state ≤ 9
10000 9000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9
1000 10000 20398 cliC ≤ 87 ∧ cliM ≤ 21 ∧ state ≤ 9
2000 10000 23032 cliC ≤ 108 ∧ cliM ≤ 19 ∧ state ≤ 9
3000 10000 26330 cliC ≤ 118 ∧ cliM ≤ 20 ∧ state ≤ 9
4000 10000 25230 cliC ≤ 113 ∧ cliM ≤ 20 ∧ state ≤ 9
5000 10000 27174 cliC ≤ 107 ∧ cliM ≤ 23 ∧ state ≤ 9
6000 10000 33214 cliC ≤ 109 ∧ cliM ≤ 28 ∧ state ≤ 9
7000 10000 25402 cliC ≤ 96 ∧ cliM ≤ 24 ∧ state ≤ 9
8000 10000 28522 cliC ≤ 108 ∧ cliM ≤ 24 ∧ state ≤ 9
9000 10000 29562 cliC ≤ 112 ∧ cliM ≤ 24 ∧ state ≤ 9
10000 10000 27460 cliC ≤ 100 ∧ cliM ≤ 25 ∧ state ≤ 9

Table A.2: Tandem Queue system submodel sizes and invariants for different param-
eter configurations (cont.).
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Traces Length States Invariant

1000 1000 85304

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 1 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ i ≥ k ∧ r ≥ l

2000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 1000 85612

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 1 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 2000 209228

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ i ≥ k ∧ r ≥ l

2000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 3000 196344

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 1 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

3000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 3000 276133

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.3: BRP system (fully probabilistic) submodel sizes and invariants for differ-
ent parameter configurations.
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Traces Length States Invariant

1000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 4000 405252

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 4000 315191

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

1000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

6000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

9000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

1000 6000 347634

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

2000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 6000 447706

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 6000 348129

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

Table A.4: BRP system (fully probabilistic) submodel sizes and invariants for differ-
ent parameter configurations (cont.).
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Traces Length States Invariant

1000 7000 362664

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

2000 7000 362664

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

3000 7000 362728

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1166 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 8000 486334

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 9000 393127

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

4000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 9000 505704

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 9000 505704

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.5: BRP system (fully probabilistic) submodel sizes and invariants for differ-
ent parameter configurations (cont.).
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Traces Length States Invariant

1000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 10000 505704

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 10000 505704

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.6: BRP system (fully probabilistic) submodel sizes and invariants for differ-
ent parameter configurations (cont.).

Traces Length States Invariant

1000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 1000 85612

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 1 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 1000 120010

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 2000 149352

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 1 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.7: BRP system (non-deterministic) submodel sizes and invariants for differ-
ent parameter configurations.
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Traces Length States Invariant

8000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 2000 209646

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 3000 196080

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 1 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ i ≥ k ∧ r ≥ l

2000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 3000 354910

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 3000 275792

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 4000 314432

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ i ≥ k ∧ r ≥ l

2000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 4000 314850

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 4000 315191

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 4000 315191

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 667 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

1000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 5000 428334

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.8: BRP system (non-deterministic) submodel sizes and invariants for differ-
ent parameter configurations (cont.).
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8000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 5000 332758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 5000 428334

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 6000 347634

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

2000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 6000 347788

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1000 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 7000 362818

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 7000 363159

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

1000 8000 377604

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

2000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 8000 486334

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 8000 377758

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.9: BRP system (non-deterministic) submodel sizes and invariants for differ-
ent parameter configurations (cont.).
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Traces Length States Invariant

1000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

2000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 9000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

1000 10000 392632

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ nrtr ≤ r ∧ nrtr ≤ rrep ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

2000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

3000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

4000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

5000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

6000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

7000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

8000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

9000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

10000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤

2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤ i∧ srep ≤ r ∧ srep ≤ rrep∧nrtr ≤

fileSize∧nrtr ≤ i∧fileSize ≥ r∧fileSize ≥ rrep∧fileSize ≥ k∧fileSize ≥ l∧r ≥ l

Table A.10: BRP system (non-deterministic) submodel sizes and invariants for dif-
ferent parameter configurations (cont.).

Traces Length States Invariant

1000 1000 118252

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 1000 118272

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

3000 1000 470448

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

4000 1000 468424

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

5000 1000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

Table A.11: WLAN system submodel sizes and invariants for different parameter
configurations.
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Traces Length States Invariant

6000 1000 124134

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

7000 1000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

8000 1000 118105

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

9000 1000 470448

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 1000 108964

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 2000 118232

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 2000 122650

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

3000 2000 126310

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

4000 2000 125575

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

5000 2000 127016

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

6000 2000 471284

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

7000 2000 127610

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

8000 2000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

9000 2000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

10000 2000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

1000 3000 118232

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 3000 126907

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

3000 3000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

4000 3000 472595

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 3000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

6000 3000 125575

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

7000 3000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

8000 3000 455726

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

Table A.12: WLAN system submodel sizes and invariants for different parameter
configurations (cont.).
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9000 3000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 3000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

1000 4000 118252

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 4000 126907

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

3000 4000 127610

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

4000 4000 128157

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

5000 4000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

6000 4000 473779

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 4 ∧ backoff1 ≤

31∧ bc1 ≤ 4∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 5∧ backoff2 ≤ 31∧ bc2 ≤ 4∧ col ≤

s1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 ≥ slot1 ∧ s1 ≥ bc1 ∧ slot1 ≤

bc1 ∧ slot1 ≤ s2 ∧ s2 ≥ bc2

7000 4000 470448

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

8000 4000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

9000 4000 508342

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 3 ∧ backoff1 ≤

31∧ bc1 ≤ 4∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 4∧ col ≤

s1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥

bc1 ∧ s1 > slot2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ s2 > slot2 ∧ slot2 ≤ bc2

10000 4000 116549

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

1000 5000 137248

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 < s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

2000 5000 125434

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

3000 5000 118272

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

4000 5000 126907

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

5000 5000 116549

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

6000 5000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

7000 5000 467376

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

8000 5000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

9000 5000 125434

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 5000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

1000 6000 127610

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

2000 6000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

Table A.13: WLAN system submodel sizes and invariants for different parameter
configurations (cont.).
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3000 6000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

4000 6000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 6000 108964

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

6000 6000 467376

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

7000 6000 467494

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1∧ col ≤ s2∧ col ≥ slot2∧ c1 < s1∧ c1 ≤ s2∧ c2 ≤ s1∧ c2 < s2∧ s1 > slot1∧ s1 ≥

bc1∧s1 > slot2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

8000 6000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

9000 6000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

10000 6000 468306

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

1000 7000 118272

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 7000 131553

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

3000 7000 128380

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

4000 7000 117284

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

5000 7000 127195

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 2∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

6000 7000 116549

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

7000 7000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

8000 7000 455726

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

9000 7000 118105

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

10000 7000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 > bc2∧slot2 ≤ bc2

1000 8000 118124

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ bc1 ≥

slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 8000 118232

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

3000 8000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

4000 8000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 8000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

6000 8000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

Table A.14: WLAN system submodel sizes and invariants for different parameter
configurations (cont.).
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7000 8000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

8000 8000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

9000 8000 127610

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

10000 8000 471284

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

1000 9000 118232

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 2∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 9000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

3000 9000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

4000 9000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 9000 126363

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

6000 9000 470662

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

7000 9000 455726

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

8000 9000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

9000 9000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

10000 9000 127195

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 10000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

2000 10000 130818

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

3000 10000 118393

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

4000 10000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 2∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

5000 10000 126010

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≥

slot1 ∧ col ≤ s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 ≥

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 < s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

6000 10000 125575

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 2 ∧ backoff1 ≤

31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥ 1∧ slot2 ≤ 1∧ backoff2 ≤ 31∧ bc2 ≤ 3∧ col ≤

s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 >

slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 >

slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

7000 10000 119096

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

8000 10000 455726

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 ≥ slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

9000 10000 464017

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 3 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥

bc2 ∧ slot1 ≤ bc1 ∧ slot1 ≤ s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

10000 10000 463087

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 3∧backoff1 ≤ 31∧bc1 ≤

3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 2 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤

s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2∧s1 ≥ bc2∧slot1 ≤ bc1∧slot1 ≤ s2∧bc1 ≤ s2∧s2 > slot2∧s2 ≥ bc2∧slot2 ≤ bc2

Table A.15: WLAN system submodel sizes and invariants for different parameter
configurations (cont.).
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Traces Length States Invariant

1000 100 7728

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2∧true∧s112 ≤ 2∧s113 ≤ 1∧s121 ≤ 2∧s122 ≤ 1∧s123 ≤ 0∧s131 ≤ 1∧s211 ≤ 2∧s212 ≤

2∧s221 ≤ 1∧s311 ≤ 1∧s111 ≥ s112∧s111 > s113∧s111 ≥ s121∧s111 > s122∧s111 >

s123∧true∧s111 > s131∧s111 ≥ s211∧s111 ≥ s212∧s111 > s221∧s111 > s311∧s112 ≥

s113 ∧ s112 ≥ s122 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

2000 100 10790

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 =

s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 =

s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 1∧ s121 ≤ 2∧ s122 ≤ 1∧ s123 ≤ 0∧ s131 ≤ 1∧ s211 ≤ 2∧ s212 ≤ 1∧ s221 ≤

2∧s222 ≤ 1∧s311 ≤ 1∧s111 ≥ s112∧s111 > s113∧s111 ≥ s121∧s111 > s122∧s111 >

s123 ∧ true ∧ s111 > s131 ∧ s111 ≥ s211 ∧ s111 > s212 ∧ s111 ≥ s221 ∧ s111 >

s222 ∧ s111 > s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥

s131 ∧ s121 ≥ s222 ∧ s121 ≥ s311 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤ s211 ∧ s123 ≤

s212 ∧ s123 ≤ s221 ∧ s123 ≤ s222 ∧ s123 ≤ s311 ∧ s211 ≥ s311 ∧ s221 ≥ s222

3000 100 12992

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 1 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 1 ∧ s111 ≥ s112 ∧ s111 > s113 ∧ s111 ≥ s121 ∧ s111 >

s122∧s111 > s123∧true∧s111 > s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 >

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

4000 100 35031

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122∧s111 > s123∧true∧s111 > s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 ≥

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

5000 100 17378

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 >

s122∧s111 > s123∧true∧s111 > s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 >

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

6000 100 14760

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 1 ∧ s221 ≤ 1 ∧ s311 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122∧s111 > s123∧true∧s111 > s131∧s111 ≥ s211∧s111 > s212∧s111 > s221∧s111 ≥

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

7000 100 52442

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 =

s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 =

s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤ 2 ∧ s212 ≤

2 ∧ s221 ≤ 2 ∧ s222 ≤ 1 ∧ s311 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 > s123 ∧ true ∧ s111 > s131 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥

s221 ∧ s111 > s222 ∧ s111 ≥ s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥

s123 ∧ s121 ≥ s131 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤ s211 ∧ s123 ≤ s212 ∧ s123 ≤

s221 ∧ s123 ≤ s222 ∧ s123 ≤ s311 ∧ s211 ≥ s222 ∧ s211 ≥ s311 ∧ s221 ≥ s222

8000 100 35031

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 2 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122∧s111 > s123∧true∧s111 ≥ s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 >

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

9000 100 45641

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 2 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122∧s111 > s123∧true∧s111 ≥ s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 ≥

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

10000 100 45641

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 =

s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 2 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s221 ≤ 2 ∧ s311 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122∧s111 > s123∧true∧s111 ≥ s131∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 ≥

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123∧s123 ≤ s131∧s123 ≤ s211∧s123 ≤ s212∧s123 ≤ s221∧s123 ≤ s311∧s211 ≥ s311

1000 200 64878

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 =

s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 =

s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 0∧ s131 ≤ 2∧ s211 ≤ 2∧ s212 ≤ 2∧ s221 ≤

2∧s222 ≤ 1∧s311 ≤ 2∧s111 ≥ s112∧s111 ≥ s113∧s111 ≥ s121∧s111 ≥ s122∧s111 >

s123 ∧ true ∧ s111 ≥ s131 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥ s221 ∧ s111 >

s222 ∧ s111 ≥ s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥ s222 ∧ s113 ≥ s123 ∧ s121 ≥

s123 ∧ s121 ≥ s131 ∧ s121 ≥ s222 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤ s211 ∧ s123 ≤

s212 ∧ s123 ≤ s221 ∧ s123 ≤ s222 ∧ s123 ≤ s311 ∧ s211 ≥ s311 ∧ s212 ≥ s222

Table A.16: Virus infection system submodel sizes and invariants for different pa-
rameter configurations.
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Traces Length States Invariant

2000 200 358163

s123 = s133 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 =

s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 =

s333∧ s111 ≤ 2∧ s111 ≥ 2∧ true∧ s112 ≤ 2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤

0 ∧ s131 ≤ 2 ∧ s132 ≤ 1 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 1 ∧ s221 ≤ 2 ∧ s222 ≤

2 ∧ s311 ≤ 2 ∧ s312 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 > s123 ∧ true ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s112 ≥

s113 ∧ s112 ≥ s123 ∧ s112 ≥ s213 ∧ s112 ≥ s312 ∧ s113 ≥ s123 ∧ s113 ≥ s213 ∧ s121 ≥

s123 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤ s132 ∧ s123 ≤

s211 ∧ s123 ≤ s212 ∧ s123 ≤ s213 ∧ s123 ≤ s221 ∧ s123 ≤ s222 ∧ s123 ≤ s311 ∧ s123 ≤

s312 ∧ s131 ≥ s132 ∧ s211 ≥ s311 ∧ s212 ≥ s312

3000 200 182675

s132 = s133 ∧ s132 = s213 ∧ s132 = s223 ∧ s132 = s232 ∧ s132 = s233 ∧ s132 =

s312 ∧ s132 = s313 ∧ s132 = s322 ∧ s132 = s323 ∧ s132 = s331 ∧ s132 = s332 ∧ s132 =

s333∧ s111 ≤ 2∧ s111 ≥ 2∧ true∧ s112 ≤ 2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤

1∧ s131 ≤ 2∧ s132 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s221 ≤ 2∧ s222 ≤ 1∧ s231 ≤ 1∧ s311 ≤

2 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 >

s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥

s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥

s123 ∧ s112 ≥ s132 ∧ s112 ≥ s222 ∧ s113 ≥ s132 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s121 ≥

s222 ∧ s122 ≥ s123 ∧ s122 ≥ s132 ∧ s123 ≥ s132 ∧ s123 ≤ s211 ∧ s131 ≥ s132 ∧ s132 ≤

s211 ∧ s132 ≤ s212 ∧ s132 ≤ s221 ∧ s132 ≤ s222 ∧ s132 ≤ s231 ∧ s132 ≤ s311 ∧ s132 ≤

s321∧s211 ≥ s231∧s211 ≥ s311∧s211 ≥ s321∧s212 ≥ s222∧s221 ≥ s231∧s221 ≥ s321

4000 200 262023

s133 = s222 ∧ s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 =

s322 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 1 ∧ s131 ≤ 2 ∧ s132 ≤

1∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤

1 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 >

s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 >

s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥ s132 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s113 ≥

s133 ∧ s113 ≥ s213 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s121 ≥ s133 ∧ s121 ≥

s213 ∧ s122 ≥ s123 ∧ s122 ≥ s132 ∧ s122 ≥ s133 ∧ s123 ≤ s131 ∧ s123 ≥ s133 ∧ s131 ≥

s133 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤

s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s211 ≥ s213 ∧ s211 ≥ s231 ∧ s211 ≥

s311 ∧ s211 ≥ s321 ∧ s212 ≥ s213 ∧ s221 ≥ s231 ∧ s221 ≥ s321 ∧ s311 ≥ s321

5000 200 157951

s132 = s133 ∧ s132 = s213 ∧ s132 = s223 ∧ s132 = s231 ∧ s132 = s232 ∧ s132 =

s233 ∧ s132 = s313 ∧ s132 = s322 ∧ s132 = s323 ∧ s132 = s331 ∧ s132 = s332 ∧ s132 =

s333∧ s111 ≤ 2∧ s111 ≥ 2∧ true∧ s112 ≤ 2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤

1∧ s131 ≤ 2∧ s132 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s221 ≤ 2∧ s222 ≤ 1∧ s311 ≤ 2∧ s312 ≤

1 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 >

s123∧s111 ≥ s131∧s111 > s132∧true∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s221∧s111 >

s222 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥

s132 ∧ s112 ≥ s312 ∧ s113 ≥ s132 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s121 ≥ s222 ∧ s121 ≥

s321 ∧ s122 ≥ s123 ∧ s122 ≥ s132 ∧ s123 ≥ s132 ∧ s131 ≥ s132 ∧ s132 ≤ s211 ∧ s132 ≤

s212 ∧ s132 ≤ s221 ∧ s132 ≤ s222 ∧ s132 ≤ s311 ∧ s132 ≤ s312 ∧ s132 ≤ s321 ∧ s211 ≥

s222∧s211 ≥ s311∧s211 ≥ s312∧s212 ≥ s222∧s221 ≥ s222∧s221 ≥ s321∧s311 ≥ s312

6000 200 702579

s123 = s132 ∧ s123 = s133 ∧ s123 = s223 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 =

s313 ∧ s123 = s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤

2∧s111 ≥ 2∧true∧s112 ≤ 2∧s113 ≤ 2∧s121 ≤ 2∧s122 ≤ 2∧s123 ≤ 0∧s131 ≤ 2∧s211 ≤

2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 2∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 1∧ s321 ≤

1∧s111 ≥ s112∧s111 ≥ s113∧s111 ≥ s121∧s111 ≥ s122∧s111 > s123∧ true∧s111 ≥

s131 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 >

s231 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥

s213 ∧ s112 ≥ s312 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥ s123 ∧ s123 ≤

s131 ∧ s123 ≤ s211 ∧ s123 ≤ s212 ∧ s123 ≤ s213 ∧ s123 ≤ s221 ∧ s123 ≤ s222 ∧ s123 ≤

s231∧s123 ≤ s311∧s123 ≤ s312∧s123 ≤ s321∧s211 ≥ s311∧s212 ≥ s312∧s221 ≥ s231

7000 200 242870

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s312 ∧ s133 = s313 ∧ s133 =

s321 ∧ s133 = s322 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤

2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 1 ∧ s131 ≤

2 ∧ s132 ≤ 1 ∧ s133 ≤ 0 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 1 ∧ s221 ≤ 2 ∧ s222 ≤

1 ∧ s231 ≤ 1 ∧ s311 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 > s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥

s211 ∧ s111 ≥ s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥

s311 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥ s132 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s113 ≥

s132 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s121 ≥ s133 ∧ s121 ≥ s231 ∧ s122 ≥

s132 ∧ s122 ≥ s133 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s131 ≥ s231 ∧ s132 ≥ s133 ∧ s133 ≤

s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤

s311 ∧ s211 ≥ s231 ∧ s211 ≥ s311 ∧ s212 ≥ s222 ∧ s221 ≥ s231

8000 200 742218

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 =

s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 1∧ s131 ≤ 2∧ s132 ≤ 1∧ s133 ≤ 0∧ s211 ≤

2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 1∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 1∧ s321 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 > s123 ∧ s111 ≥

s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 >

s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 >

s321 ∧ s112 ≥ s113 ∧ s112 ≥ s132 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s113 ≥ s133 ∧ s121 ≥

s131 ∧ s121 ≥ s133 ∧ s121 ≥ s231 ∧ s122 ≥ s123 ∧ s122 ≥ s132 ∧ s122 ≥ s133 ∧ s123 ≥

s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s132 ≤ s211 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤

s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤

s321∧s211 ≥ s213∧s211 ≥ s222∧s211 ≥ s311∧s211 ≥ s312∧s211 ≥ s321∧s212 ≥ s213

9000 200 598846

s123 = s133 ∧ s123 = s223 ∧ s123 = s232 ∧ s123 = s233 ∧ s123 = s313 ∧ s123 =

s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 0 ∧ s131 ≤ 2 ∧ s132 ≤

1 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 1 ∧ s221 ≤ 2 ∧ s222 ≤ 1 ∧ s231 ≤ 1 ∧ s311 ≤

2 ∧ s312 ≤ 1 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 > s123 ∧ true ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 >

s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥

s131 ∧ s121 ≥ s231 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤ s132 ∧ s123 ≤ s211 ∧ s123 ≤

s212 ∧ s123 ≤ s213 ∧ s123 ≤ s221 ∧ s123 ≤ s222 ∧ s123 ≤ s231 ∧ s123 ≤ s311 ∧ s123 ≤

s312 ∧ s123 ≤ s321 ∧ s211 ≥ s231 ∧ s211 ≥ s311 ∧ s211 ≥ s321

10000 200 645738

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 =

s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 1∧ s131 ≤ 2∧ s132 ≤ 1∧ s133 ≤ 0∧ s211 ≤

2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 1∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 1∧ s321 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 > s123 ∧ s111 ≥

s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 >

s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 >

s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s112 ≥ s231 ∧ s113 ≥ s133 ∧ s121 ≥

s131 ∧ s121 ≥ s132 ∧ s121 ≥ s133 ∧ s121 ≥ s231 ∧ s122 ≥ s132 ∧ s122 ≥ s133 ∧ s122 ≥

s231 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤

s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤

s321 ∧ s211 ≥ s311 ∧ s212 ≥ s213 ∧ s212 ≥ s312 ∧ s213 ≤ s222 ∧ s221 ≥ s231

Table A.17: Virus infection system submodel sizes and invariants for different pa-
rameter configurations (cont.).
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Traces Length States Invariant

1000 300 355686

s132 = s133 ∧ s132 = s223 ∧ s132 = s232 ∧ s132 = s233 ∧ s132 = s313 ∧ s132 =

s322 ∧ s132 = s323 ∧ s132 = s331 ∧ s132 = s332 ∧ s132 = s333 ∧ s111 ≤ 2 ∧ s111 ≥

2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 1 ∧ s131 ≤ 2 ∧ s132 ≤

0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 1∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤

1 ∧ s321 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 >

s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 >

s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 ≥

s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥ s132 ∧ s112 ≥ s213 ∧ s112 ≥ s222 ∧ s112 ≥

s312 ∧ s113 ≥ s123 ∧ s113 ≥ s132 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s121 ≥

s213 ∧ s121 ≥ s222 ∧ s121 ≥ s231 ∧ s122 ≥ s132 ∧ s122 ≥ s222 ∧ s122 ≥ s231 ∧ s123 ≥

s132 ∧ s123 ≤ s211 ∧ s131 ≥ s132 ∧ s131 ≥ s231 ∧ s132 ≤ s211 ∧ s132 ≤ s212 ∧ s132 ≤

s213 ∧ s132 ≤ s221 ∧ s132 ≤ s222 ∧ s132 ≤ s231 ∧ s132 ≤ s311 ∧ s132 ≤ s312 ∧ s132 ≤

s321∧s211 ≥ s311∧s211 ≥ s312∧s211 ≥ s321∧s212 ≥ s213∧s212 ≥ s312∧s311 ≥ s321

2000 300 808516

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 =

s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 1∧ s133 ≤ 0∧ s211 ≤

2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 1∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 1∧ s321 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥

s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 >

s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 >

s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥ s133 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥

s132 ∧ s121 ≥ s133 ∧ s121 ≥ s231 ∧ s121 ≥ s321 ∧ s122 ≥ s132 ∧ s122 ≥ s133 ∧ s123 ≥

s133 ∧ s131 ≥ s132 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s132 ≤ s221 ∧ s133 ≤ s211 ∧ s133 ≤

s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤

s312∧s133 ≤ s321∧s211 ≥ s311∧s211 ≥ s321∧s212 ≥ s213∧s221 ≥ s231∧s311 ≥ s321

3000 300 2803116

s133 = s223 ∧ s133 = s231 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 =

s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤

2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 1∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤

2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 2∧ s232 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 2∧ s321 ≤ 1∧ s322 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 > s123 ∧ s111 ≥

s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 >

s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s232 ∧ s111 ≥ s311 ∧ s111 ≥ s312 ∧ s111 >

s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s113 ≥ s133 ∧ s121 ≥

s131 ∧ s121 ≥ s133 ∧ s122 ≥ s133 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤

s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s232 ∧ s133 ≤

s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥ s213 ∧ s211 ≥ s232 ∧ s211 ≥

s311 ∧ s211 ≥ s312 ∧ s211 ≥ s322 ∧ s212 ≥ s213 ∧ s212 ≥ s232 ∧ s212 ≥ s322 ∧ s213 ≤

s222∧s213 ≤ s232∧s213 ≤ s322∧s221 ≥ s321∧s222 ≥ s232∧s222 ≥ s322∧s232 ≤ s322

4000 300 1982414

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s322 ∧ s133 = s323 ∧ s133 =

s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤

2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 1∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤

2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 1 ∧ s231 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤ 1 ∧ s313 ≤

1 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥

s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 >

s312 ∧ s111 > s313 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s123 ∧ s112 ≥ s133 ∧ s112 ≥

s313 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s313 ∧ s122 ≥ s123 ∧ s122 ≥

s133 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤

s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤

s313 ∧ s133 ≤ s321 ∧ s211 ≥ s311 ∧ s212 ≥ s313 ∧ s213 ≥ s313 ∧ s312 ≥ s313

5000 300 3256902

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 =

s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 1∧ s133 ≤ 0∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s213 ≤ 1 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s231 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤

1 ∧ s321 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥

s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 >

s312 ∧ s111 ≥ s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s112 ≥ s312 ∧ s113 ≥

s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s122 ≥ s133 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥

s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤

s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s211 ≥ s311 ∧ s211 ≥ s321

7000 300 4523552

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 =

s323 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤

2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 1 ∧ s131 ≤ 2 ∧ s132 ≤ 1 ∧ s133 ≤ 0 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s231 ≤ 2 ∧ s311 ≤ 2 ∧ s312 ≤

1 ∧ s321 ≤ 1 ∧ s331 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 > s123 ∧ s111 ≥ s131 ∧ s111 > s132 ∧ s111 > s133 ∧ true ∧ s111 ≥

s211 ∧ s111 ≥ s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 ≥ s231 ∧ s111 ≥

s311 ∧ s111 > s312 ∧ s111 > s321 ∧ s111 > s331 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s113 ≥

s133 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s121 ≥ s132 ∧ s121 ≥ s133 ∧ s121 ≥ s331 ∧ s122 ≥

s133 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s131 ≥ s331 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤

s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤

s312 ∧ s133 ≤ s321 ∧ s133 ≤ s331 ∧ s211 ≥ s311 ∧ s211 ≥ s331 ∧ s231 ≥ s331

8000 300 8315973

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 =

s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2∧ s113 ≤ 2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤

2∧ s212 ≤ 2∧ s213 ≤ 1∧ s221 ≤ 2∧ s222 ≤ 2∧ s231 ≤ 2∧ s311 ≤ 2∧ s312 ≤ 2∧ s321 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥

s131∧s111 ≥ s132∧s111 > s133∧true∧s111 ≥ s211∧s111 ≥ s212∧s111 > s213∧s111 ≥

s221 ∧ s111 ≥ s222 ∧ s111 ≥ s231 ∧ s111 ≥ s311 ∧ s111 ≥ s312 ∧ s111 > s321 ∧ s112 ≥

s113 ∧ s112 ≥ s133 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s122 ≥ s133 ∧ s123 ≥

s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤

s221∧s133 ≤ s222∧s133 ≤ s231∧s133 ≤ s311∧s133 ≤ s312∧s133 ≤ s321∧s211 ≥ s311

10000 300 9141232

s133 = s223 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2 ∧ s122 ≤ 2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤ 0 ∧ s211 ≤ 2 ∧ s212 ≤

2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 1 ∧ s231 ≤ 2 ∧ s232 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤

1 ∧ s321 ≤ 2 ∧ s322 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥

s211 ∧ s111 ≥ s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 > s222 ∧ s111 ≥ s231 ∧ s111 >

s232 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 ≥ s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥

s133 ∧ s112 ≥ s322 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s232 ∧ s121 ≥

s322 ∧ s122 ≥ s133 ∧ s122 ≥ s232 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s131 ≥ s232 ∧ s132 ≥

s133 ∧ s132 ≥ s232 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤

s222 ∧ s133 ≤ s231 ∧ s133 ≤ s232 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤

s322 ∧ s211 ≥ s311 ∧ s211 ≥ s322 ∧ s311 ≥ s322 ∧ s312 ≥ s322 ∧ s321 ≥ s322

Table A.18: Virus infection system submodel sizes and invariants for different pa-
rameter configurations (cont.).
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Traces Length States Invariant

1000 400 3128661

s133 = s223 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2∧ s122 ≤ 2∧ s123 ≤ 1∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤

1 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s231 ≤ 1 ∧ s232 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤ 1 ∧ s321 ≤

1 ∧ s322 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 >

s123 ∧ s111 ≥ s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s231 ∧ s111 > s232 ∧ s111 ≥

s311 ∧ s111 > s312 ∧ s111 > s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥

s232 ∧ s112 ≥ s322 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s232 ∧ s121 ≥

s322 ∧ s122 ≥ s133 ∧ s122 ≥ s232 ∧ s122 ≥ s322 ∧ s123 ≥ s133 ∧ s123 ≥ s322 ∧ s131 ≥

s133 ∧ s131 ≥ s322 ∧ s132 ≥ s133 ∧ s132 ≥ s232 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤

s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s232 ∧ s133 ≤ s311 ∧ s133 ≤

s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥ s231 ∧ s211 ≥ s311 ∧ s211 ≥ s321 ∧ s211 ≥

s322 ∧ s212 ≥ s213 ∧ s212 ≥ s312 ∧ s221 ≥ s232 ∧ s222 ≥ s232 ∧ s222 ≥ s322

3000 400 7925064

s133 = s223 ∧ s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s322 ∧ s133 = s323 ∧

s133 = s331∧s133 = s332∧s133 = s333∧s111 ≤ 2∧s111 ≥ 2∧true∧s112 ≤ 2∧s113 ≤

2∧ s121 ≤ 2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤

2∧ s213 ≤ 2∧ s221 ≤ 2∧ s222 ≤ 2∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 2∧ s321 ≤ 1∧ s111 ≥

s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥

s132∧s111 > s133∧true∧s111 ≥ s211∧s111 ≥ s212∧s111 ≥ s213∧s111 ≥ s221∧s111 ≥

s222 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 ≥ s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥

s133 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s231 ∧ s122 ≥ s133 ∧ s123 ≥

s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤

s221∧s133 ≤ s222∧s133 ≤ s231∧s133 ≤ s311∧s133 ≤ s312∧s133 ≤ s321∧s211 ≥ s311

4000 400 13385277

s223 = s232 ∧ s223 = s233 ∧ s223 = s313 ∧ s223 = s322 ∧ s223 = s323 ∧ s223 =

s331 ∧ s223 = s332 ∧ s223 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤

2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤ 1 ∧ s211 ≤

2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s223 ≤ 0 ∧ s231 ≤ 2 ∧ s311 ≤

2 ∧ s312 ≤ 2 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥

s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ s111 ≥ s211 ∧ s111 ≥

s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ true ∧ s111 ≥

s231 ∧ s111 ≥ s311 ∧ s111 ≥ s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥

s223 ∧ s113 ≥ s223 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s122 ≥ s133 ∧ s122 ≥

s223 ∧ s123 ≥ s133 ∧ s123 ≥ s223 ∧ s131 ≥ s133 ∧ s131 ≥ s223 ∧ s132 ≥ s223 ∧ s133 ≤

s211 ∧ s133 ≥ s223 ∧ s211 ≥ s223 ∧ s211 ≥ s311 ∧ s212 ≥ s223 ∧ s213 ≥ s223 ∧ s221 ≥

s223 ∧ s222 ≥ s223 ∧ s223 ≤ s231 ∧ s223 ≤ s311 ∧ s223 ≤ s312 ∧ s223 ≤ s321

1000 500 10495696

s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤

2∧ s221 ≤ 2∧ s222 ≤ 2∧ s223 ≤ 1∧ s231 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 2∧ s321 ≤ 1∧ s322 ≤

1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥

s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥

s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ s111 > s231 ∧ s111 ≥ s311 ∧ s111 ≥

s312 ∧ s111 > s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s213 ∧ s112 ≥

s223 ∧ s113 ≥ s133 ∧ s113 ≥ s223 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s121 ≥

s322 ∧ s122 ≥ s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s123 ≥ s223 ∧ s131 ≥ s133 ∧ s132 ≥

s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤

s223 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥

s311 ∧ s211 ≥ s322 ∧ s212 ≥ s223 ∧ s212 ≥ s322 ∧ s213 ≥ s223 ∧ s312 ≥ s322

2000 500 21603820

s133 = s232 ∧ s133 = s233 ∧ s133 = s322 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 =

s332 ∧ s133 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤

2∧ s122 ≤ 2∧ s123 ≤ 2∧ s131 ≤ 2∧ s132 ≤ 2∧ s133 ≤ 0∧ s211 ≤ 2∧ s212 ≤ 2∧ s213 ≤

2∧ s221 ≤ 2∧ s222 ≤ 2∧ s223 ≤ 1∧ s231 ≤ 2∧ s311 ≤ 2∧ s312 ≤ 2∧ s313 ≤ 1∧ s321 ≤

2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥

s131 ∧ s111 ≥ s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥

s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ s111 ≥ s231 ∧ s111 ≥ s311 ∧ s111 ≥

s312 ∧ s111 > s313 ∧ s111 ≥ s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥ s223 ∧ s112 ≥

s313 ∧ s113 ≥ s133 ∧ s113 ≥ s313 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s121 ≥

s313 ∧ s122 ≥ s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥ s133 ∧ s133 ≤

s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s223 ∧ s133 ≤

s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s313 ∧ s133 ≤ s321 ∧ s211 ≥ s223 ∧ s211 ≥

s311 ∧ s211 ≥ s312 ∧ s211 ≥ s313 ∧ s213 ≥ s313 ∧ s221 ≥ s223 ∧ s222 ≥ s223

Table A.19: Virus infection system submodel sizes and invariants for different pa-
rameter configurations (cont.).
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