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Una teoria de 2-pro-objetos, una teoria de 2-categorias de
2-modelos y la estructura de 2-modelos para 2-Pro(C)

Resumen. En los 60, Grothendieck desarrolla la teoria de pro-objetos de una categoria.

La propiedad fundamental de Pro(C) es que se tiene un embedding C N Pro(C), Pro(C)
tiene limites cofiltrantes pequefios, y estos son libres en el sentido de que para cualquier
otra categoria E con limites cofiltrantes pequefios, la precomposicién con ¢ determina una
equivalencia de categorias Car(Pro(C), E), = Cat(C, E), (el “+” indica la subcategoria
plena formada por los funtores que preservan limites cofiltrantes).

En este trabajo, desarrollamos la teoria de pro-objetos “2-dimensional”. Dada una
2-categoria C, definimos la 2-categoria 2-Pro(C) cuyos objetos llamamos 2-pro-objetos.
Probamos que 2-Pro(C) tiene todas las propiedades bdsicas esperadas relativizadas ade-
cuadamente al caso 2-categdrico, incluyendo la propiedad universal correspondiente.
Damos una definicién de “closed 2-model 2-category” adecuada y demostraciones de
sus propiedades basicas. Dejamos para un trabajo futuro la construccién de su categoria
homotopica. Finalmente, probamos que nuestra 2-categoria 2-Pro(C) tiene una estructura
de “closed 2-model 2-category” si C la tiene.

Parte de la motivacién de este trabajo fue desarrollar un contexto tedrico para manipu-
lar el nervio de Cech en teorfa de homotopia, [3]], en particular en teoria de la forma fuerte,
[23]]. El nervio de Cech estd indexado por las categorias de cubrimientos e hipercubrim-
ientos con morfismos dados por los refinamientos, que no son categorias filtrantes pero si
determinan 2-categorfas 2-filtrantes en las cuales el nervio de Cech también estd definido,
manda las 2-celdas en homotopias, y determina un 2-pro-objeto sobre los conjuntos sim-
pliciales. Usualmente, el nervio de Cech debe ser considerado como un 2-pro-objeto en la
categoria homotdpica, perdiendo la informacién codificada en las homotopias explicitas.

Palabras claves. 2-pro-objeto, 2-filtrante, pseudo-limite, bi-limite, 2-cofinal, 2-categoria
de 2-modelos.



A theory of 2-pro-objects, a theory of 2-model 2-categories and
the 2-model structure for 2-Pro(C)

Abstract. In the sixties, Grothendieck developed the theory of pro-objects over a
category. The fundamental property of the category Pro(C) is that there is an embedding
c-5S Pro(C), Pro(C) is closed under small cofiltered limits, and these are free in the
sense that for any category E closed under small cofiltered limits, pre-composition with ¢
determines an equivalence of categories Cat(Pro(C), E), ~ Cat(C, E), (the “+” indicates
the full subcategory of the functors that preserve cofiltered limits).

In this work we develop a “2-dimensional” pro-object theory. Given a 2-category C,
we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects. We prove that
2-Pro(C) has all the expected basic properties adequately relativized to the 2-categorical
setting, including the corresponding universal property. We give an adecuate definition
of closed 2-model 2-category and demonstrations of its basic properties. We leave for
a future work the construction of its homotpy 2-category. Finally, we prove that our
2-category 2-Pro(C) has a closed 2-model 2-category structure provided that C has one.

Part of the motivation of this work was to develop a conceptual framework to han-
dle the Cech nerve in homotopy theory, [3], in particular in strong shape theory, [23].
The Cech nerve is indexed by the categories of covers and of hypercovers, with cover
refinments as morphisms, which are not filtered categories, but determine 2-filtered
2-categories on which the Cech nerve is also defined, sends 2-cells into homotopies, and
determines a 2-pro-object of simplicial sets. Usually, the Cech nerve has to be considered
as a pro-object in the homotopy category, loosing the information encoded in the explicit
homotopies.

Key words. 2-pro-object, 2-filtered, pseudo-limit, bi-limit, 2-cofinal, 2-model 2-category.
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Introduccion

La teorfa de pro-objetos comenzé en Francia en los afios 60 en el Seminaire de
Geometrie Algebrique du Bois-Marie llevado a cabo por Alexander Grothendieck y otros
matemdticos. Este seminario fue un fenémeno Unico de investigacién y tuvo lugar entre
los afios 1960 y 1969 en el IHS cerca de Paris. En [1] se retinen parte de las notas de estos
seminarios. La categoria Pro(C) de pro-objetos de una categoria C se define alli. Aqui
también se demuestran sus propiedades bdsicas y se da una caracterizacién de la misma
por propiedad universal:

El funtor canénico C —» Pro(C) es 2-universal respecto de los funtores de
C en una categoria con limites cofiltrantes, mds explicitamente: Dada E una
categoria con limites cofiltrantes

Hom(Pro(C), E)., C—> Hom(C, E)

es una equivalencia de categorias (aqui el “+” indica la subcategoria plena
formada por aquellos funtores que preservan limites cofiltrantes).

En esa misma época, Daniel Quillen desarrollaba la teoria de categorias de modelos
[27], vastamente utilizada en teoria de homotopia. Las categorias de modelos de Quillen
permiten construir la categoria homotépica Ho(C) asociada a una categoria C. Esta cate-
goria se obtiene invirtiendo formalmente la clase de morfismos formada por las equivalen-
cias débiles de una estructura de modelos de Quillen de C. Las categorias homotdpicas
asi obtenidas tienen la ventaja de tener muchas buenas propiedades que las hacen muy
utiles en la practica.

El nervio de Cech de un cubrimiento es una herramienta de base en ciertos desarrollos
de la teoria de homotopia, y en teoria de la forma ([3], [24]). Dado un sitio C (por
ejemplo, el reticulado O(X) de los abiertos de un espacio topoldgico X), los
cubrimientos (tomando como morfismos los refinamientos) forman una categoria COV(C)

que no es cofiltrante, por lo cual el nervio de Cech, que es un funtor COV(C) N SS, no
determina un pro-objeto en la categoria de los conjuntos simpliciales y no se pueden uti-
lizar las herramientas de la teoria de pro-objetos. Este problema se resuelve pasando a la
categoria homotdpica Ho(SS). Los cubrimientos ordenados bajo refinamiento si forman
una categoria cofiltrante cov(C), y dados dos refinamientos, los morfismos inducidos entre

los nervios son homotdpicos, por lo que se tiene un pro-objeto cov(C) N Ho(SS). Este
pasaje médulo homotopia pierde la informacién dada por las homotopias explicitas aso-
ciadas a los refinamientos, haciendo que la teoria no sea suficientemente fina en muchas
aplicaciones. En la teoria de la forma fuerte, las homotopias explicitas no se descartan
pero el contexto conceptual de la teorfa de pro-objetos se pierde para el nervio de Cech.
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La teoria de 2-categorias se remonta a los afos 70 pero viene teniendo un gran auge en
los dltimos tiempos. La mayoria de los resultados y construcciones basicos de la teoria de
categorias han sido generalizados al contexto 2-categérico (ver por ejemplo [20] or [21]).
Es esencial para nuestro trabajo la definicién de 2-categoria 2-filtrante [17]], reformulada
en [[11], asi como también es fundamental la nocién de pseudo-limites y, en particular,
la construccién explicita de pseudo-colimites 2-filtrantes de categorias dada por Dubuc y
Street en ese trabajo.

La teoria de pro-objetos 2-categérica ha demostrado ser de gran interés en si misma
y ha planteado muchos problemas interesantes de la teoria de 2-categorias. Nuestra mo-
tivacion original para estudiar estos temas fue la de dar las herramientas necesarias para
poder trabajar en teorfa de la forma fuerte con el nervio de Cech y no perder informacién
pasando médulo homotopia como sucede en teoria de la forma, ni tampoco tener que
reemplazar el nervio de Cech por el menos conveniente nervio de Vietoris como se hace
actualmente en teoria de la forma fuerte. Esta motivacién provino de observar que si
bien, como ya mencionamos, la categoria COV(C) no es cofiltrante, si determina una
2-categorfa 2-cofiltrante sobre la cual el nervio de Cech estd definido y determina un
2-funtor mandando las 2-celdas en homotopias. Esto motivé nuestra definicién de 2-pro-
objeto que hara que el nervio de Cech, que no era un pro-objeto simplicial, si resulte un
2-pro-objeto simplicial. La teoria de 2-pro-objetos fue de hecho una teoria muy intere-
sante en si misma y requirié mucho trabajo en teoria de 2-categorias, posponiendo las
aplicaciones previstas para un trabajo futuro.

Estructuracion del trabajo En esta tesis desarrollamos una teorfa de pro-objetos 2-
dimensional. También damos una nocién de 2-funtor 2-cofinal que nos permite probar la
version 2-categérica de los teoremas de reindexacion de pro-objetos. Por dltimo damos
una nocién de “closed 2-bmodel 2-category” y demostramos que nuestra 2-categoria
2-Pro(C) satisface esta definicién.

La seccidn || esta dedicada a fijar notacién y dejar en claro los resultados basicos
de la teorfa de 2-categorias que usaremos a lo largo de la tesis. La mayoria de estos
resultados son conocidos, sin embargo hay algunos (para los cuales damos demostra-
ciones explicitas) que no parecen encontrarse en la literatura. En probamos que los
pseudo-limites (conicos) en las 2-categorias de 2-funtores Hom(C, D), Hom,(C, D) y
pHomy(C, D) (definicién y los bi-limites en pHom,(C, D) se calculan punto a
punto. Este resultado, si bien era esperable, necesita indefectiblemente una demostracién.
En|[I.3|definimos la nocion de pseudo-funtor 2-cofinal entre 2-categorias y probamos cier-
tas propiedades que usaremos en la seccion |3| para demostrar las propiedades de rein-
dexacién de 2-pro-objetos. En[I.4]construimos un 2-funtor asociado via un pseudo-funtor
2-cofinal a un pseudo-funtor dado. Este resultado tiene interés independiente y serd us-
ado en la seccién Finalmente, en consideramos la nocién de funtores flexibles
dada en [4] y enunciamos una caracterizacién de los mismos muy Util e independiente del



adjunto a izquierda de la inclusion Hom(C, D) — Hom,(C, D) (Proposicién . Us-
ando esta caracterizacion, el pseudo lema de Yoneda dice directamente que los 2-funtores
representables son flexibles. Se sigue también que el 2-funtor asociado a cualquier 2-pro-
objeto es flexible, lo cual tiene consecuencias importantes en la teoria de 2-pro-objetos.

En la seccién 2] se encuentran algunos de los resultados claves de este trabajo. En[2.1]
dada una 2-categoria C definimos la 2-categoria 2-Pro(C) cuyos objetos llamamos 2-pro-
objetos. Un 2-pro-objeto de C es un 2-funtor a valores en C (o diagrama en C) indexado
por una 2-categoria 2-cofiltrante. Nuestra teoria va mdas alld de la teoria de categorias
enriquecidas porque en la definicion de morfismos, en lugar de usar 2-limites estrictos,
usamos la nocién no estricta de pseudo-limites, que es usualmente la de interés préactico.
También en[2.1] establecemos la férmula bdsica que describe los morfismos y las 2-celdas
entre 2-pro-objetos en términos de pseudo-limites y pseudo-colimites de las categorias de
morfismos de C. Inspirados en la definicién hallada en [3] de que un morfismo en la cate-
goria original represente a un morfismo de pro-objetos, introducimos en [2.2|1a nocién de
que un morfismo y una 2-celda en C representen un morfismo y una 2-celda en 2-Pro(C)
respectivamente. También demostramos propiedades técnicas de los 2-pro-objetos que
permiten hacer cdlculos con ellos y, en particular, son necesarias en la demostracién del
teorema que establece que la 2-categoria 2-Pro(C) tiene pseudo-limites 2-cofiltrantes. En
construimos una 2-categoria 2-filtrante que sirve como 2-categoria de indices para el
pseudo-limite 2-cofiltrante de 2-pro-objetos (Definicién [2.3.1]y proposicién 2.3.3)). Esto
también fue inspirado por una construccién con el mismo propdsito hallada en [3]] para el
caso 1-dimensional, pero que en el caso 2-dimensional resulta ser mucho mas compleja.
Nos vimos forzados a recurrir a esta complicada construccion debido a que el tratamiento
conceptual hecho en [1]] no puede ser aplicado al caso 2-dimensional. Esto se debe a
que un 2-funtor a valores en la 2-categoria de categorias Cat no es el pseudo-colimite
(cénico) de 2-funtores 2-representables indexado por su 2-diagrama, como si pasa en el
caso 1-dimensional. Finalmente, en enunciamos y demostramos la propiedad univer-
sal de 2-Pro(C) (Teorema[2.4.6), de una manera inédita incluso si se aplica al caso cldsico
de la teoria de pro-objetos.

También consideramos en esta seccion la 2-categoria 2-Pro,(C) que es “retract
pseudo-equivalent” a 2-Pro(C), hecho que se sigue de que los 2-funtores a val-
ores en Cat asociados a 2-pro-objetos son flexibles. Esta 2-categoria serd esencial en la
secci6n 5]y probard ser interesante en si misma.

La mayor parte de los resultados de las secciones [I]y 2] fueron publicados en [§].

En la seccion [3] probamos los teoremas de reindexacion de pro-objetos para el
caso 2-categérico. Esta seccidn estd inspirada en los resultados andlogos en el caso
1-dimensional dados en [3] pero, como pasaba con los resultados de la seccion @, su
version 2-categdrica supone un desafio mayor. El primer resultado es una version
2-categérica de un resultado debido a Deligne [[1, Expose I, 8.1.6] que es clave en el caso
1-dimensional en el desarrollo de la estructura de modelos de la categoria Pro(C) [12]]. El



enunciado 1-dimensional establece que todo pro-objeto es isomorfo a uno indexado por un
poset cofinito y filtrante. Nuestra version establece que todo 2-pro-objeto es equivalente
a uno indexado por un poset cofinito y filtrante. El segundo resultado establece que todo
morfismo de 2-pro-objetos puede ser levantado salvo equivalencia a un morfismo entre
2-pro-objetos indexados por un poset cofinito y filtrante. Esto es un caso particular de un
tercer resultado que establece que todo diagrama finito en 2-Pro(C) puede ser levantado
salvo equivalencia a un diagrama finito de 2-pro-objetos indexados por un poset cofinito
y filtrante. Es clave para estos resultados la nocién de pseudo-funtor 2-cofinal dada en la
secci6n|[I] Toda esta seccidn serd usada para probar el teorema central de la seccién [5
En la seccidn 4| introducimos las nociones inéditas de “closed 2-model 2-category”
y “closed 2-bmodel 2-category” y enunciamos y demostramos algunos lemas y proposi-
ciones que usaremos mds adelante. Nuestra nocién es mds fuerte que las “fibration struc-
tures” de Pronk ([26l]) pues es una versién 2-dimensional de los axiomas de Quillen com-
pletos para “closed model categories”. También difiere en el hecho importante de que
no asumimos la eleccién de una factorizacion global privilegiada dada de forma pseudo-
funtorial sino que estipulamos, como Quillen, solo la existencia de factorizaciones para
cada flecha. La mayoria de los resultados de esta seccién son generalizaciones al contexto
de 2-categorias de enunciados bien conocidos de la teoria de “closed model categories”.
Para terminar, en la seccion |5 probamos uno de los teoremas centrales de esta tesis
(5.2.5) que establece que si C es una “closed 2-bmodel 2-category”, entonces 2-Pro(C)
también lo es. Para lograrlo, fue necesario demostrar primero los teoremas
and @ que establecen respectivamente que la 2-categoria pHom,(J°P, C) (definicion
[@) y la 2-categoria 2-Pro,(C) son “closed 2-bmodel 2-categories” si J es un poset
cofinito y filtrante y C es de una “closed 2-bmodel 2-category”. Las propiedades de rein-
dexacién probadas en la seccidn [3|son claves para obtener a partir de

Notacion Ademds del usual “pegado” de diagramas, usaremos el Cdlculo de as-
censores para expresiones que denotan 2-celdas (comparar con la notacién usada en
[14, 3.10, 3.17]). Esta es una notacién muy gréfica inventada por Eduardo Dubuc en 1969
para escribir ecuaciones con transformaciones naturales entre funtores. En este trabajo
usamos los ascensores para escribir ecuaciones con 2-celdas en 2-categorias. Los obje-
tos se omiten, las 2-celdas se escriben con celdas, y las 2-celdas identidades como una
doble linea. Es importante remarcar que cuando una 2-celda entre flechas distintas es la
identidad, de todas formas se escribe como una 2-celda etiquetada por “=". Por ejemplo,
la 2-celda estructural de un 2-funtor visto como caso particular de un pseudo-funtor. Las
composiciones se leen de arriba para abajo y de derecha a izquierda. La ecuacioén es



la igualdad bésica para el cdlculo de ascensores:

o f o f

Esto permite mover celdas de arriba hacia abajo y viceversa cuando no hay obstaculos,
como si fueran ascensores. Con esto movemos celdas para formar configuraciones que
den nuevas ecuaciones a partir de ecuaciones validas.
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Introduction

Pro-object theory started in the sixties in France with the Seminaire de Geometrie
Algebrique du Bois-Marie conducted by Alexander Grothendieck and other mathemati-
cians. This seminaire was a unique research phenomenon and took place between years
1960 and 1969 in the IHS near Paris. [/1]] consists on some of the notes of this semi-
naires. The category Pro(C) of pro-objects of a category C is defined there. The authors
also prove the basic properties of this category and give a characterization by universal
property:

The canonical functor C — Pro(C) is 2-universal over the functors from
C into a category closed under cofiltered limits, more explicitly: Given a
category E closed under cofiltered limits

Hom(Pro(C), E), —— Hom(C, E)

is an equivalence of categories (here the “+” indicates the full subcategory
of those functors that preserve cofiltered limits).

By the same time, Daniel Quillen developed model category theory [27]] which was
widely applied in homotopy theory. Quillen’s model categories are useful to construct
the homotopy category Ho(C) associated to a category C. This category is obtained by
formally turning the class of weak equivalences of the model structure into isomorphisms.
Homotopy categories associated to a model category have many good properties that make
them very useful in practice.

The Cech nerve associated to a covering is a fundamental tool in some developments
in homotopy theory and shape theory ([3], [24]). Given a site C (for example, the lattice
O(X) formed by the opened sets of a topological space X), coverings (taking refinements
as morphisms) form a category COV(C) that fails to be cofiltered and so the Cech nerve,

that is a functor COV(C) BN SS, does not determine a pro-object over simplicial sets,
and pro-object theory can’t be applied to this setting. This problem is solved by working
in the homotopy category Ho(SS). Coverings under refinement does form a cofiltered
category (poset) cov(C), and given two refinements, the induced morphisms between the

nerves are homotopic, so there is a pro-object cov(C) N Ho(SS). Working in the ho-
motopy category has the disadvantage that information given by the explicit homotopies
associated to the refinements gets lost, making the theory not enough refined for many
applications. In strong shape theory, the explicit homotopies are not discarded, but the
conceptual framework of the theory of pro-objects is lost for the Cech nerve.
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2-category theory goes back to the seventies but it’s been having a heyday lately. Most
of the results and basic constructions of category theory had been generalized to the 2-
categorical context (see for example [20]], [21]). It is essential to our work the definition
of 2-filtered 2-category [17], reformulated in [11]]. It is also key to our work the notion of
pseudo-limit and, in particular, the explicit construction of 2-filtered pseudo-colimits of
categories given by Dubuc and Street in that paper.

2-categorical pro-object theory had proved to be very interesting itself and had raised
many interesting problems in 2-category theory. Our original motivation to begin with this
work was to give the needed tools to be able to work with the Cech nerve in strong shape
theory so no information is lost by working modulo homotopy as it happens in shape
theory. This motivation came from observing that although, as we mentioned before, the
category COV(C) is not cofiltered, it determines a 2-cofiltered 2-category over which the
Cech nerve is defined and determines a 2-functor sending 2-cells into homotopies. This
encouraged our definition of 2-pro-object that would make the Cech nerve, that was not
a simplicial pro-object, a simplicial 2-pro-object. The tl llamado Mardesic¢ trick debido
a heory of 2-pro-objects was in fact a very interesting theory itself and it required much
work in 2-category theory, postponing its intended applications to future work.

Work structure In this thesis, we develop a 2-dimensional pro-object theory. We also
give a 2-cofinal pseudo-functor notion that allows as to prove the 2-categorical version of
pro-objects reindexing properties. Finally, we give a notion of closed 2-bmodel 2-category
and we prove that our 2-category 2-Pro(C) has a closed 2-bmodel structure.

Section|[I]is intended to fix notation and set down some basic results from 2-category
theory that we will use all along this thesis. Most of this results are well known, although
there are some of them (for which we give explicit proofs) that seem not to be in the
literature. In we prove that (conical) pseudo-limits in the 2-categories Hom(C, D),
Hom,(C,D) and pHom,(C,D) (definition and bi-limits in pHom,(C, D) are
computed pointwise. These result, though expected, necessarily requires demonstration.
In |1.3| we define the notion of 2-cofinal pseudo-functor between 2-categories and prove
some properties that we will use in section [3| to prove 2-pro-objects reindexing proper-
ties. In(1.4f we construct a 2-functor associated to a given pseudo-functor via a 2-cofinal
pseudo-functor. This result has independent interest and we will use it in section [5] Fi-
nally, in[I.5] we consider the notion of flexible functor given in [4] and we state a char-
acterization of them that is very useful and independent of the left adjoint of the inclu-
sion Hom(C, D) — Hom,(C, D) (Proposition [1.5.3). Using this characterization, the
pseudo Yoneda lemma says that representable 2-functors are flexible. It also follows that
the 2-functor associated to any 2-pro-object is flexible, fact which has important conse-
quences in the theory of 2-pro-objects.

In section [2] are some of the most important results of this thesis. In[2.1] given a
2-category C we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects.
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A 2-pro-object over C is a 2-functor landing on C (or a diagram in C) indexed by a
2-cofiltered 2-category. Our theory goes beyond enriched category theory because in
the definition of morphisms, instead of using strict 2-limits, we use the non-strict no-
tion of pseudo-limits, which is usually the one of practical interest. In[2.1] we establish
the basic formula describing morphisms and 2-cells between 2-pro-objects in terms of a
pseudo-limit of pseudo-colimits of categories. Inspired on the definition found in [3]] of a
morphism of the original category representing a pro-objects morphism, in we intro-
duce the notion of a morphism or a 2-cell in C being a representative of a morphism or a
2-cell in 2-Pro(C) respectively. We also prove some technical properties of 2-pro-objects
that allow us to make calculations with them, and, in particular, are needed in the proof
of the theorem that states the 2-category 2-Pro(C) is closed under 2-cofiltered pseudo-
limits. In we construct a 2-filtered 2-category that will be the index 2-category of the
2-cofiltered pseudo-limit of 2-pro-objects (Definition[2.3.1)and Theorem [2.3.3)). This was
also inspired by a construction with the same purpouse in the 1-dimensional case found in
[3]], but the 2-categorical case turned out to be significantly more complicated. We were
forced to make this complicated construction because the conceptual treatment made in
[1] can’t be applied to the 2-categorical setting. This is due to the fact that a 2-functor
landing in the 2-category of categories Cat is not the (conical) pseudo-colimit of repre-
sentable 2-functors indexed by its 2-diagram, as it is in the 1-dimensional case. Finally, in
[2.4] we state and prove the universal property of 2-Pro(C) (Theorem [2.4.6)), in an original
way even applied to the classical pro-object theory.

We also consider in this section a 2-category 2-Pro,(C) which is retract pseudo-
equivalent to 2-Pro(C), fact that follows from the flexible nature of the category-
valued 2-functor associated to a 2-pro-object. This 2-category will be essential in section
5] and may prove to be interesting in itself.

Most of the results of sections[I]and 2] have been published [g]].

In section |3| we prove reindexing properties of pro-objects in the 2-categorical case.
This section is inspired in the 1-dimensional analogous results given in [3]], but, as hap-
pened with results of section 2] its 2-categorical version suppose a greater challenge. The
first result is a 2-categorical version of a result due to Deligne [1, Expose I, 8.1.6] and
that is key to develop the closed 2-bmodel structure for Pro(C) in the 1-dimensional case
treated in [[12]]. The 1-dimensional statement establishes that every pro-object is isomor-
phic to a pro-object indexed by a cofinite and filtered poset. Our version establishes that
every 2-pro-object is equivalent to a 2-pro-object indexed by a cofinite and filtered poset.
The second result establishes that every morphism of 2-pro-objects can be lifted up to
equivalence to a morphism between 2-pro-objects indexed by a cofinite and filtered poset.
This is a particular case of the third result that establishes that every finite diagram in 2-
Pro(C) can be lifted up to equivalence to a diagram of 2-pro-objects indexed by a cofinite
and filtered poset. It is key for these results the notion of 2-cofinal pseudo-functor given
in section[I] All this section will be used to prove the central theorems of section [5

13



In section ] we introduce original notions of closed 2-model and closed 2-bmodel
2-category and state some lemmas and propositions that we are going to use later. Our
notion is stronger than Pronk’s “fibration structures” ([26]) since it is a 2-dimensional
version of the full Quillen’s axioms for closed model structures. It also differs in the im-
portant fact that we do not assume the choice of a privileged global factorization given in a
pseudo-functorial way, but stipulates, as Quillen does, only the existence of factorizations
for each arrow. Most of the results of this section are generalizations to the context of
2-categories of well known statements about closed model categories.

To conclude, in section [5] we prove one of the central theorems of this thesis (5.2.3))
which establishes that if C is a closed 2-bmodel 2-category, then so is 2-Pro(C). For this
result, it was necessary to prove first theorems [5.1.14] and [5.2.4] which establish that the
2-category pHomp(J°7,C) (definition and the 2-category 2-Pro,(C) are closed
2-bmodel 2-categories respectively if C is (J will be a cofinite and filtered poset with a
unique initial object). Reindexing properties proved in section [3| were key to obtain [5.2.4]

from[5.1.14]

Notation In addition to the usual “pasting” of diagrams, we will use the Elevarors cal-
culus for expressions denoting 2-cells (compare with the notation used in [[14} 3.10, 3.17]).
This is a very graphic notation created by Eduardo Dubuc in 1969 to write down equa-
tions with natural transformations between functors. In this thesis, we use elevators to
write down equations with 2-cells in 2-categories. Objects are omitted, 2-cells are de-
noted by cells and identity 2-cells as a double line. It is important to remark that when
a 2-cell between different arrows is the identity, it is still written as a 2-cell with “="" as
label. For example, the structural 2-cell of a 2-functor viewed as a particular case of a
pseudo-functor. Compositions must be read from top to bottom and from right to left.
Equation[I.1.3]is the basic equality for elevators calculus:

LR
o \;;/g d \9/

This allows to move cells up and down when there are no obstacles, as if they were
elevators. In this way, we move cells to form configurations that fit valid equations in
order to prove a new equation out of known ones.

14
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1 Preliminaries on 2-categories

We distinguish between small and large sets. For us legitimate categories are cate-
gories with small hom sets, also called locally small. We freely consider without previ-
ous warning illegitimate categories with large hom sets, for example the category of all
(legitimate) categories, or functor categories with large (legitimate) exponent. They are
legitimate as categories in some higher universe, or they can be considered as convenient
notational abbreviations for extended collections of data. In fact, questions of size play
no overt role in this work, except that we elect for simplicity to consider only small
2-pro-objects. We will explicitly mention whether the categories are legitimate or small
when necessary. We reserve the notation Cat for the legitimate 2-category of small cate-
gories, and we will denote CAT the illegitimate category (or 2-category) of all legitimate
categories.

1.0.1. Notation. 2-Categories will be denoted with the “mathcal” font C, D, ... ,
pseudo-functors (in particular 2-functors) with the capital “mathff” font, F, G, ... and
pseudo-natural transformations (in particular 2-natural transformations) and modifica-
tions with the Greek alphabet. For objects in a 2-category, we will use capital “mathff”
font C, D,..., for arrows in a 2-category, small case letters in “mathff” font f, g, ...,
and we will use the Greek alphabet for 2-cells. However, when a 2-category is intended
to be used as the index 2-category of a 2-diagram, we will use small case letters i, j, ...
to denote its objects, and small case letters u, v, ... to denote its arrows. Categories will
be denoted with capital “mathft” font C, D,..., objects in a category with capital letters
C, D,... and arrows in a category with small case letters f, g, ....

We begin with some background material on 2-categories. Most of this is standard,
but some results (for which we provide proofs) do not appear to be in the literature. We
also set notation and terminology as we will explicitly use in this thesis.

1.1 Basic theory

Let Cat be the category of small categories. By a 2-category, we mean a Cat en-
riched category. A 2-functor, a 2-fully-faithful 2-functor, a 2-natural transformation and a
2-equivalence of 2-categories, are a Cat-functor, a Cat-fully-faithful functor, a Car-natural
transformation and a Cat-equivalence respectively. For an extended treatment on enriched
category theory see [[18].

In the sequel we will call 2-category a structure satisfying the following descriptive
definition free of the size restrictions implicit above. As usual, given a 2-category, we

TP

denote horizontal composition by juxtaposition, and vertical composition by “o”.

1.1.1. 2-Category. A 2-category C consists on objects or O-cells G, D ... , arrows or
1-cellsf, g..., and 2-cells a, B, ... .
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The objects and the arrows form a category (called the underlying category of C),
with composition (called “horizontal”) denoted by juxtaposition. For a fixed C and D,
the arrows between them and the 2-cells between these arrows form a category C(C, D)
under “vertical” composition, denoted by “o”. There is also an associative horizontal
composition between 2-cells denoted by juxtaposition, with units idis,. The following is

the basic 2-category diagram:

(1.1.2)
U a Ja
c— D—" E
B 1y
h h
with the equations (') o (¢’a@) = (B o a’)(B o @), idyid; = idys.
f f
In particular it follows that given C 1o~ D o’ _ E, we have:
9 g
(@ idy) o (idy @) = (idy @) o (&’ id5) = (). (1.1.3)

6 9

We consider juxtaposition more binding than “o”, thus @ oy means (¢f) oy. We will
abuse notation by writing f instead of id; for arrows f when there is no risk of confusion.

1.1.4. Dual 2-Category. If C is a 2-category, we denote by C°P the 2-category with the
same objects as C but with C°P(C,D) = C(D, C), i.e. we reverse the 1-cells but not the
2-cells.

1.1.5 Remark. The category of all categories Cat has a 2-category structure given by the
following:

- Its objects are the categories.

- Its arrows are the functors.

- Its 2-cells are the natural transformations.

With the notation of (I.1.2), the composition between functors and the vertical compo-
sition between natural transformations are the usual ones. And the horizontal composition
between natural transformations is given by (¢’a@)¢ = aéc o f'(ac) for C € C.

One can easily check that this gives a 2-category structure. O

17



1.1.6. Equivalence. An arrow C N D in a 2-category C is said to be an equivalence in
C if there exist another arrow D S, C € C and invertible 2-cells fg N idp, of é idg.
1.1.7. Notation. We will denote equivalences by =~ and isomorphisms by =.

1.1.8 Remark. Equivalences in Cat are usual equivalences of categories. O

1.1.9. 2-functor. A 2-functor F : C — D between 2-categories is an enriched functor
over Cat. As such, sends objects to objects, arrows to arrows and 2-cells to 2-cells, strictly
preserving all the structure.

1.1.10. Pseudo-functor. A pseudo-functor F : C — D between 2-categories is a corre-
spondence that sends objects to objects, arrows to arrows and 2-cells to 2-cells, preserv-
ing all the structure up to invertible 2-cells FQFf = F(gf) and idec = F(idg) instead
of equalities. More explicitly, it is given by the following data:

- For each object G € C, an object F(C) € D. We will abuse notation and write FC
when there is no risk of confusion.

- For each hom-category C(C, D), a functor Fcp : C(C,D) — D(FC, FD).

We will abuse notation and write Ff instead of Fc p(f) and Fa instead
f

of Fcp(@)forC Lo _ D e C when there is no risk of confusion.
g

- For each object C € C, an invertible 2-cell ag 1 idrc = F(idg) € D.

- For each triplet C, D, E of objects of C, a natural isomorphism:

FxF

C(C,D) xC(D,E) D(FC,FD) x D(FD, FE)

C\L =] af ic

C(C.E) _ D(FC, FE)

where ¢ denotes the composition functors.
FgFf

—

More explicitly, o consists on an invertible 2-cell FC Y%y FE for each

F(gh
‘ g f 9

configuration C — D — E € C such that YV C e D Up F

f/ g/

F(p0) o a{g = aﬁ,g’ o FpFo

18



e/ W W

Fgh = F¢’ Ft’
\F(p@) / \zﬁg/
F(@'t) F(@'t)

All this data must satisfy the following equalities:

- ForeachC—f> DeC,

idrp Ff Ff idrc

\“E / idrp  Ff \@E / Ff  idrc
Fidy)  F1 = \-/ ad B Rl = \-/
\af.,-dD / Fi \azo,f / Ff
Ff Ff

f h
- For each configuration A — B 2,cLpe C

Fh Fg Ff Fh Fg Ff
N/ S
f.g g.h

Fh

F(gf) = F(hg) Ff

\e,/ s/

F(hgf) F(hgf)

1.1.11 Remark. A 2-functor is a pseudo-functor such that oz(F: is the equality for each

f
CeCand afF 9 is the equality for each C — D 2 Ecc m|

1.1.12. Pseudo-essentially surjective on objects. A pseudo functor F : C — D is said
to be pseudo-essentially surjective on objects if for each D € D, there exist C € C and an
equivalence FC — D € D.

1.1.13. 2-fully-faithful. A 2-functor F : C — D is said to be 2-fully-faithful if for each
C,De(C F:C(C,D) — D(FC,FD) is an isomorphism of categories.
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1.1.14. Pseudo-fully-faithful. A pseudo-functor F : C — D is said to be
pseudo-fully-faithful if for each C, D € C, F : C(C,D) — D(FC,FD) is an equiva-
lence of categories.

1.1.15. Pseudo-natural transformation. A pseudo-natural transformation
0:F=>G:C—> D between pseudo-functors consists of a family of arrows

6
{FC % GC} and a family of invertible 2-cells {GfHC = 6b Ff} .
CeC C

—DeC
fc
FC GC
Ff =| 6 Gf
FD n GD
D
satisfying the following conditions:
PNO. Foreach C € C, GCQE = B4, © (1890, ie.
idae fc
6c idrc \CYS /
\(I(F; / = Gidc Oc
eit
Oc Fidc \ o /
6c Fidc
idac
. bc Ny
/‘df‘; FC——=GC =l GC
ST
i.e. FC EX} (ZE FC L GC = N Gidg
~7 = || Oiag
Fidc Fidc o

FC

f
PNI. ForeachC — D EN E, QEafg o OgFf o Ggbr = Oyt o a/?ggc, ie.

20



\ef/ Gg Gf 6c
Gg 6p Ff \aﬁg/
DR
6 Fg Ff \ % /
T
O Fof
FC—2 ~GC FC—°—>GC.__
el s ~
ie. Fgf "jig FDLGD = Fof = |l 6y Gof ﬁgGD
\Nfgl = |l b ng y
FE —,—>GE FE—,—>GE e
.
PN2. Foreach C _la DeC, 6y0Gabc = b6pFaot, ie.
[¢]
Gf 6c Gf 6c
o[
Gg 6 = 6pb Ff
BT
b Fg 6p Fg
FC—< >GC FC—< >GC
ie. Fgl =] 6y th%’lef = Fglglﬁ:u& lef
FD ——>GD FD —,—>GD

As a particular case, we have the notion of pseudo-natural transformation between
2-functors.

1.1.16. 2-Natural transformation. A 2-natural transformation 6 between 2-functors is
a pseudo-natural transformation such that 6 is the equality for each f € C. Equivalently,
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it is a Cat-enriched natural transformation, that is, a natural transformation between the
f

functors determined by F and G, such that for each 2-cell C Lo _ D, the equation
g
Gabc = OpFa holds.

1.1.17. Modification. Given pseudo-functors F and G from C to D (as a particular
0

. . —_—
case F and G might be 2-functors), a modification F ULp _ G between pseudo-natural
n

transformations is a family {HC LEN UC} of 2-cells of D such that:
CeC

f
PM. ForeachC — D € C, ppFfo 6 =nsoGfpg, ie.

Gf 6c Gf 6c
o] )
6p Ff = Gf nc
s
o Ff o Ff
fc L
FC——GC FC _Upc_ GC
nc
i.e. Ff =| 6 Gf = Ff = | Gf
()
FD Ueo_ GD FDT>GD
)

As a particular case, we have modifications between 2-natural transformations, which
are families of 2-cells as above satisfying ppFf = Gfpc.

1.1.18. By the theory of enriched categories, it is well known that 2-categories, 2-functors
and 2-natural transformations form a 2-category (which actually underlies a 3-category)
that we denote 2-C AT . Horizontal composition of 2-functors and vertical composition of
2-natural transformations are the usual ones, and the horizontal composition of 2-natural
transformations is defined by:

F F
GivenC _le D 1o E, (da)c=agoFac (=Gacoapy).
G G’

1.1.19 Definition. Given two 2-categories C and D, we consider three 2-categories de-
fined as follows:
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- Hom(C, D): 2-functors and 2-natural transformations.
- Hom,(C, D): 2-functors and pseudo-natural transformations.

- pHomy(C, D): pseudo-functors and pseudo-natural transformations.

In all cases the 2-cells are the modifications. To define compositions we draw the basic
2-category diagram:

] y @0)c = 66c

v o (@ 0); = 6,6 0 66
F G H

e e (©'p)c = pgpc

H 74

(eop)c =€ opc

It is straightforward to check that these definitions determine 2-category structures. O
6

1.1.20 Remark. [14, 3.17] A pseudo-natural transformation F = G € Hom,(C, D)

(respectively pHom,(C, D)) is an equivalence iff for each C € C, 6 is an equivalence in
D. The same assertion does not hold in Hom(C, D) (c.f.[1.5.3). m|

1.1.21 Remark. Since we are going to make manipulations with the 2-category
Homp(2,C) (where 2 stands for the trivial 2-category with two objects, one morphism
between them and no 2-cells other than identities, i.e. 2 = {0 — 1}), we will give a more
explicit description of it:

f
- An object is a morphism C — D € C.

- A morphism 6 between C R D and C' - D’ in H omp(2,C) is given by two

2 0 Om
morphisms C - c,D — D’ € C and an invertible 2-cell g6y = 6,f as in the
following diagram:

01

- A 2-cell uin Hom,(2,C) between 6 and 1 from C R DtoC -5 D' is given by

two 2-cells 6y é 1o, 61 é 11 € C such that yf o 8,, = 1, o guo.
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0 f = g Mo
\\/Jl/ \ Mm /
m f m f

f
1.1.22 Definition. Let C be a 2-category and C — D, C’ 2, D" wo morphisms in C.
We say that f is a retract of 9 in Hom,(2,C) if there are morphisms f 2, g 9 SN

and an invertible 2-cell n6 N ids in Hom,, (2, C). More explicitly, the retraction consists
Om m
in a tuple (8o, 01, Om, 10, M1 Tms o> 1) such that g6y = 611, fno % 19, 1Moo ﬂ=N0> idc,

17161 ”::l> idp and the following equality holds:

f o 6y

\ m / f 1o 9()
R

m 6 f
AR
idp f

1.1.23. Bi-universal arrows. [14, 9.4] Let D S, C be a pseudo-functor, C € C and

f
D € D. A morphism C — GD € C is a bi-universal arrow from C to G if for each
D’ € D, the following functor is an equivalence of categories

D(D,D") - C(C,GD")
a , G(ao)f
g=9 ’ G()f = G(@@")f

1.1.24. Bi-adjoint pseudo-functors. [14, 9.8] Let F : C__— D : G be pseudo-
Sfunctors. We say that F is bi-left adjoint o G (equivalently that G is bi-right adjoint to F)

éc,
if for each C € C, D € D, there is an equivalence of categories D(FC, D) =3 C(C,GD)
in a way such that ¢ is a pseudo-natural transformation in each variable. In this case, we
use the notation F 4, G.
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1.1.25 Remark. It is straightforward to check that F is bi-left adjoint to G iff there exist

pseudo-natural transformations FG = idp, ide —, GF such that F o Fn = F and
GeonG =G. m|

1.1.26 Proposition. [14, 9.16] Let F : C__— D : G be pseudo-functors. Then F is

bi-left adjoint to G iff there exists a pseudo-natural transformation ide =5 GF such that
nc is a bi-universal arrow from G to GFC VY C € C. m|

F
1.1.27. 2-Equivalence. A 2-functor C — D is said to be a 2-equivalence of 2-categories
G
if there exist a 2-functor D — C and invertible 2-natural transformations FG = idp

and GF é idc. G is said to be a quasi-inverse for F.

F
1.1.28. Pseudo-equivalence. A pseudo-functor C — D is said to be a
G
pseudo-equivalence of 2-categories if there exists a pseudo-functor D — C and equiv-

. a . B . L
alence pseudo-natural transformations FG = idp and GF = id¢. G is said to be a
pseudo-quasi-inverse for F.

Pseudo-equivalences are sometimes called bi-equivalences in the literature. See for
example [21]] where [I.1.30]is mentioned.

Often we have 2-functors that do not have a quasi-inverse but do have a pseudo-quasi-
inverse and thus determine a pseudo-equivalence, see[2.1.5]

1.1.29 Proposition. [18 1.11] A 2-functor F : C — D is a 2-equivalence of 2-categories
if and only if it is 2-fully-faithful and essentially surjective on objects. O

1.1.30 Proposition. A pseudo-functor F : C — D is a pseudo-equivalence of
2-categories if and only if it is pseudo-fully-faithful and pseudo-essentially surjective on
objects. Moreover, F is essentially surjective on objects iff the pseudo-natural transfor-

mation « from is invertible.

Proof. =) Let D S, C be a pseudo-quasi-inverse for F and FG = idp, GF é ide
equivalence pseudo-natural transformations as in Note that for each C € C and
D € D, ap and B¢ are equivalences by [I.1.20]

Let’s check first that F is pseudo-essentially surjective on objects: Given D € D, FGD
is equivalent to D via ap.

Let’s check now that F is pseudo-fully-faithful: To do that, we need to prove that for
eachC, C’' € C,F: C(C,C") — D(FC, FC’) is an equivalence of categories. Recall that
this is equivalent to prove that this morphisms are essentially surjective on objects and full
and faithful in the 1-dimensional sense [22].
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Solet C, C’ € C. To check that F : C(C,C’) — D(FC, FC’) is full and faithful, we

need to prove that F induces a bijection between the set of 2-cells of C between two fixed
f

morphisms C C’ and the set of 2-cells between Ff and Fg. We are going to see first
9

f

that this induced function is injective, so suppose that we have C 16 In _ C’ € C such
g
that FO = Fn. Then GF@ = GFn and so, since 8 is pseudo-natural, we have the following

equality:

f  Bc f  Bc
N
f Bc Bo GFf Bo GFf f Bc
\9/ - oro] = ory| = \n/
g Bc Becr \GFQ/ Becr \GFQ/ g Bc
Y
9 Bc 9 Bc

Then, since B¢ is an equivalence, we have that 6 = 7.

In the same way, one can prove that the corresponding function induced by G is
Ft

also injective. This is going to be useful to prove surjectivity. So, let FC  1p  FC’.
Fg
Consider the following 2-cell u:
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f/f\

idg

\

Bc GFg Bc

% |

g Bc Bc
g idc
g
where ¢ denotes a quasi-inverse for c.
Then, since S is pseudo-natural, we have the following equality:

Bc GFf
s |
Bc  GFf f Bc Bc  GFf

\GF/I/ = \ll/ \Gp/
GFg g B Bc GFg
|» |

Bc GFg

And so, since B¢ is an equivalence, GFu = Gp. This implies that Fu = p because of
the injectivity of G that we have mentioned before.
Finally, to check that F : C(C, C’) — D(FC, FC’) is essentially surjective on objects,

let FC R FC’ € D. Consider g = Bc'Gf8c : C — C’ € C. Then, since S is pseudo-

Ber
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natural, we have an invertible 2-cell GFg = Bc-g8c = Gf. This, plus the fact that
G : D(FC,FC’) — C(GFC,GFC’) is full and faithful (this can be seen as we saw
the equivalent assertion for F), yields that there is an invertible 2-cell Fg — f which
concludes the proof.

<) Given D € D, since F is pseudo-essentially surjective on objects, there exist
GD € P and an equivalence FGD L. DeD.
Given D —f> D’ € D, consider FGD REN ) —f> D’ o, FGD’. Then, since

Gf
F is pseudo-fully-faithful, there exist GD — GD’ € C and an invertible 2-cell

FGf — apfap.

FGf
N
f app f @b
GivenD 4o _ D’ e D,consider || o/ H . Then, since F is pseudo-fully-
g ap 9 D
N
FGg
Gf
faithful, there exists a unique 2-cell GD 4 Go _ GD’ € C such that
Gg
FGf
/ @f\
FGf ap f @D
"Rl
FGg

ap 9 @D
N/

FGg

G
[0
To construct idgp BN Gidp, consider the following invertible 2-cell
FGidp
—_—
FGD Uu FGD:
—_—
Fidgp
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FGidp

2N

ap idp ap

ANV

idrGD
\agD /
Fidesp
Then, since F is pseudo-fully-faithful, there exists a unique invertible 2-cell
Gidp
GD 1Gp  GD such that FGB = u. Take ag = éTg_l.
idap

f
Given D — D -5 D’ e D, consider the following invertible 2-cell

F(GgGf)
_—
FGD un _ FGD":
_—
FGgf
F(GgGf)
/ agfveg\
FGg FGf
/ (yg\ / &g\
n= apr g oo ap  f ap
ap” g f @D
\ (xafl
FGgf
Then, since F is pseudo-fully-faithful, there exists a unique invertible 2-cell
Gg
GD Yo% GD” such that Fa/fG' =1.
Ggf 9

It can be checked that G defined by this data is a pseudo-functor.
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f @p
/=N
idp f ab
Define o = / =\ H H . It can be checked that @ is a pseudo-natural
ap ap f ap
H i)/
ap FGf

transformation.
[e4
It only remains to define 8: For C € C, consider the equivalence FGFC = Fc.

Then, since F is pseudo-fully-faithful, there exist an equivalence GFC ﬁ) C e Cand
h
an invertible 2-cell FB¢ REN arc. For C — C’ € C, consider the following 2-cell

F(hBc)
FGFC up FC’
F(o GFh)
F(hBc)
PO
Bc:h
Fh FBc
I
Fh @Fc
idrc Fh aFc
p= / \
aFc aFc/ Fh arc
\&h‘ /
arc FGFh
\2/
FBc FGFh
\QF /
GFhc/

F(Bc'GFh)
Then, since F is pseudo-fully-faithful, there exists a unique invertible 2-cell

hBe 25 B/ GFh such that FBy = p.
It can be checked that 8 is a pseudo-natural transformation.
The remaining assertion follows immediately from the proof. O
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1.1.31 Remark. The previous proof can be easily adapted to the case of|1.1.29 O

1.1.32 Remark. [15 14.2.] Evaluation determines a  quasifunctor
Hom,(C,D)xC AN (in the sense of [15, L4.1.]), in particular, fixing a vari-
able, it is a 2-functor in the other). In the strict case Hom, evaluation is actually a

2-bifunctor. In the case of pHom,(C, D), it is a pseudo-functor in each variable. ]
H
1.1.33 Remark. [15 1.4.2] Given 2-functors C’ BN C and
Hi 40> . ..
D — D, and F Up G in Hom(C,D)F,G), the definition
n
] H19H0
Hom(Ho,H)(F Up G) = H;FHy UHipHy H;GHy determines a functor
77 H]T]H()

Hom(C, D)(F,G) — Hom(C’, D)(HFHy, H{GHy), and this assignation is bifuncto-
rial in the variable (C, D) (here Hom, denotes either Hom or Hom,). Both constructions
Hom and Hom, determine a bifunctor 2-CAT °’ x 2-CAT — 2-CAT . The same
assertion holds for pseudo-functors (see [[15, 1,4.20]).

If C and D are 2-categories, the product 2-category C X D is constructed in the usual
way, and this together with the 2-category Hom(C, D) determine a symmetric cartesian
closed structure as follows (see [18} chapter 2] or [15} 1,2.3.]):

1.1.34 Proposition. The usual definitions determine an isomorphism of 2-categories :

Hom(C, Hom(D, A)) — Hom(C x D, A).

Composing with the symmetry C X D = DxC vields an isomorphism:

Hom(C, Hom(D, A)) —> Hom(D, Hom(C, A)). a

f

1.1.35. Notation. Let C be a 2-category, Ce Cand D le_ E€C.
g

- f.: C(C,D) 5 C(C,E), futh 25 1) = th Es 1),
- f: C(E,C) = c®,0), F(h L5 by = (i 25 .
- @ fo = g, (@)n = ah.
- at a: g* (@)n = ha.
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f fy

- %Y car C(C.=)D te E) = (C(C.D) La. C(C.E)).
g Ox

f f*

_’C _— E——
= ¢or S5 Car C(-.C)D ta E) = (C(D.C) va. C(E.C)).
g g*

- We will also denote by f* the 2-natural transformation from C(E, -) to C(D, —)
defined by (f*)¢c = f*.

- We will also denote by f, the 2-natural transformation from C(-,D) to C(—, E)
defined by (f.)¢ = f..

- We will also denote by @* the modification from f* to g* defined by (a*)c = .
- We will also denote by a. the modification from f, to g. defined by (a.)c = @.. O

1.1.36. Yoneda 2-functors. Given a locally small 2-category C, the Yoneda 2-functors
are the following (note that each one is the other for the dual 2-category):
)
a. C =5 Hom(C,Can’?, y° = C(C,-), y' =y = a".
b. ¢ L3 Hom(coP, Car), yo = C(=.C), yi = 1. Yo = au.

Recall the Yoneda Lemma for enriched categories over Cat. We consider explicitly

only the case a. of [.1.36]

1.1.37 Proposition (Yoneda lemma). Given a locally small 2-category C, a 2-functor
F : C — Cat and an object C € C, there is an isomorphism of categories, natural in F.

Hom(C, Cat)(C(C,-),F) — FC
I4 . (PC)idg .

6 —n Oc(idc) — nc(idc)
Proof. The application 4 has an inverse

FC £ Hom(C, Car)(C(C, -),F)

cLp — ec L ep

where ((C)p(f = g) = F(C) % Fg(C) and ((¢f)p)r = FI(f). o
1.1.38 Corollary. The Yoneda 2-functors in are 2-fully-faithful. ]
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Beyond the theory of Cat-enriched categories, the lemma also holds for pseudo-
functors and pseudo-natural transformations in the following way:

1.1.39 Proposition (Pseudo-Yoneda lemma). Given a locally small 2-category C, a
pseudo-functor (in particular, a 2-functor) F : C — Cat and an object G € C, there
is an equivalence of categories, natural in F.

pHom,(C, Cat)(C(C, -), F) — FC
(Pc)i
6 n Oc(idc) 25 nc(idc)

Furthermore, the quasi-inverse { is a section of hht=id

Proof. h and £ are defined as in but now £ is only a section quasi-inverse of /.
The details can be checked by the reader. One can find a guide in [25]] for the case of
lax functors and bi-categories. We refer to the arguing and the notation there: In our
case, the unit 7 is an isomorphism because F is a pseudo-functor, and the counit € is an
isomorphism because « is pseudo-natural and the unitor r is the equality. O

1.1.40 Corollary. For any locally small 2-category C, and C € C, the inclusion

Hom(C,Cat)(C(C, -),F) SN Hom,(C,Cat)(C(C, -),F) has a retraction a, natural in
F, i =1id, i« = id, which determines an equivalence of categories.

Proof. Note that i = £ h, then define @ = £ h. O

1.1.41 Corollary. The Yoneda 2-functors in[l.1.36|can be considered as 2-functors land-
ing in the Hom,, 2-functor 2-categories. In this case, they are pseudo-fully-faithful. O

1.2 Weak limits and colimits

By weak we understand any of the several ways universal properties can be relaxed in
2-categories. Note that pseudo-limits and pseudo-colimits (already considered in [2]]) re-
quire isomorphisms, and have many advantages over bi-limits and bi-colimits, which only
require equivalences. Their universal properties are both stronger and more convenient to
use. On the other hand, in many situations bi-limits and bi-colimits are unavoidable and
seems to be the right concept to consider. The defining universal properties characterize
bi-limits up to equivalence and pseudo-limits up to isomorphism.
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1.2.1. Notation. We consider pseudo-limits Lim Fi, and bi-limits biLim Fi, of contravari-
. iel o i€l . o
ant pseudo-functors, and their dual concepts, pseudo-colimits Lim Fi, and bi-colimits
o . iel
biLim Fi, of covariant pseudo-functors.
—_—
iel

1.2.2. Pseudo-cone. Let F : 797 — A be a pseudo-functor and A an object of A. A

pseudo-cone for F with vertex A is a pseudo-natural transformation from the 2-functor
0; .

which is constant at A to F, i.e. it consists in a family of morphisms of A, {A — Fl}

iel

satisfying the following equa-

i jel

0
and a family of invertible 2-cells of A, {FuH = Hi}

tions:

PCO. Foreachic I, ;40 a:.:H,- =1idy, I.e.

ide; 0

o - N\
W
0;

PCI. Foreachi — j ke I, 0,0Fud,=0,,o0 ai’vt?k, ie.

Fu Fv Ok Fu F
Y
0; = F(vu) O

Fu J
\914 / \ vu /
0; 0;
u

PC2. Foreachi lo _ jel, 6,=6,0Fab;, ie.
14

v Ok
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Fu 0]

Fu 6 j \Fa/
= Fv b
9,' \0‘/
0;

A morphism of pseudo-cones between 6 and n with the same vertex is a modification,

i.e. a family of 2-cells of A, {9,- £ Ui} satisfying the following equation:
el

i

PCM. Foreachi J€I, piob,=n,0Fupj ie.

Fu 0, Fu 0;
\y/ g
0; = Fu nj
b v/
i i

Pseudo-cones form a category PC#(A,F) = pHom,(I°7, A)A, F) furnished with a
A F(—
pseudo-cone PC4(A, F) — A(A, Fi), for the pseudo-functor 1°P ARID CAT.

As a particular case, we have the notion of pseudo-cone over a 2-functor.
1.2.3 Remark. Since pHom,(1°P, A) is a 2-category, it follows:
PC
a. Pseudo-cones determine a 2-bifunctor (pHom,(1°F, A) x A)°P — CAT.
From Remark [T.1.33]it follows in particular:

H . .
b. A pseudo-functor A — B induces a functor between the categories of pseudo-

PC
cones PC4(F, A) =5 PCg(HF, HA). O
1.2.4. Pseudo-limit and bi-limit. The pseudo-limit in A of the pseudo-

. . . . TR

unctor F : T°P — A is the universal pseudo-cone, denoted {Lim Fi — Fi ,
p Lim

iel i€l
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Fu 7y
{ \nu / } , in the sense that for each A € A, post-composition with the n;’s is
V& i—jel
an isomorphism of categories

A(A, L|<_m Fi) — PCax(A,F) (1.2.5)
iel

Equivalently, there is an isomorphism of categories A(A, L|(_m Fi) = L|<_m A(A, Fi)
iel iel
commuting with pseudo-cones. Remark that there is also an isomorphism of categories
PCa(A,F) - <Ll_m A(A, Fi) (note that these isomorphisms are 2-natural in the variable
iel

A).

Requiring n, to be an equivalence (which implies that also the other two isomor-
phisms above are equivalences) defines the notion of bi-limit (note that these equivalences
are pseudo-natural in the variable A). Clearly, pseudo-limits are bi-limits.

We omit the explicit consideration of the dual concepts. O

As a particular case, we have pseudo-limits and bi-limits (and its dual concepts) of
2-functors.

1.2.6 Remark. As we are going to use the isomorphism (1.2.5)) in the following sections
(and the equivalence in case of bi-limits), we are going to make the meaning of having
them explicit. In the case of pseudo-limits it means that:

6, . .
s {Fqu = 0,-} . , there exists a unique

. 6 .
- Given a pseudo-cone {A — Fl}
i—jel

iel
f
morphism A — Lim Fi € A such that7;f = 6; Vi€ I and n,f =6, Vi jel.
(—
iel

- And given a morphism of pseudo-cones {Gi LN 7],-}. , there exists a unique 2-cell

iel

.

A g LimFieAsuchthatmu=p;Viel.
—_— b
iel

In the case of bi-limits it means that:

. 91’ . Hu . .
- Given a pseudo-cone {A — Fz} , {Fu@ = 0; , there exist a morphism
iel

}i—>j€]
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A —f> biLim Fi € A and invertible 2-cells <A la;  Fi such that
. 0; iel
el i

\/ \/ L,

0; Vi— jel.

\ / \ “/

- And given a morphism of pseudo-cones {9; LN 77,-}. , there exists a unique 2-cell

i€l
f
A lu biLim Fi € Asuchthat mju =p; Vie 1. |
—a -
1€

It is well known that, in Cat-enriched theory, strict limits and colimits are performed
pointwise (if they exists in the codomain category). Here we establish this fact for pseudo-
limits and pseudo-colimits in both strict and pseudo 2-functor 2-categories. Abusing no-
tation we can say that the formula (Li_)m F)(C) = I_|_>m F;(C) holds in both 2-categories.
The verification of this is straightfori%rd but requilreejs some care. We also checked that
both pseudo-limits and bi-limits (and its dual concepts) are performed pointwise in the
2-category of pseudo-functors.

1.2.7 Proposition. Let I LN A, i — F; be a pseudo-functor where A is either
a°
Hom(C, D) or Hom,(C, D). For each C € C let F;C — LC be a pseudo-colimit pseudo-

,C
cone in D for the pseudo-functor I —> A eV(—>) D (where ev is evaluation, see|l.1.32)).

A
Then LC is 2-functorial in C in such a way that /l? becomes 2-natural and F; — L is a
pseudo-colimit pseudo-cone in A in both cases. By duality the same assertion holds for
pseudo-limits.

f
Proof. Given C _ Ue _ D in C, evaluation determines a 2-cell in pHom,(I, D)

[¢]
_ R _t .
FC UFe_ FD = ev(F(-),C Ua _ D) (note that (FC); = F;C, and similarly for f,
Fg g

g and @). Then, for each X € D, it follows (from Remark[I.2.3]a.) that precomposing
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with this 2-cell determines a 2-cell (clearly 2-natural in the variable X) in the right leg of
the diagram below. Since the rows are isomorphisms, there is a unique 2-cell (also natural
in the variable X) in the left leg which makes the diagram commutative.

(D)
D(LD, X) — 2~ PC(FD, X)

=l

DLEC,X) — L PCH(FC,X)

By the Yoneda lemma (1.1.38)), the left leg is given by precomposing with a unique 2-cell
L

. T . . . .
in O, that we denote LC U La _ LD. It is clear by uniqueness that this determines a
Lg
L

2-functor C — D.

Putting X = LD in the upper left corner and tracing the identity down the diagram
yields the following commutative diagram of pseudo-cones in D:
/lC

FC———>|IC

Fia La

F;f N Fig Lf| =, Lg

D
/1[

F.D ————1LD

This shows that L is furnished with a pseudo-cone for F and that the A; are 2-natural. It
only remains to check the universal property:

G -C .
Let C — D be a 2-functor, consider the 2-functor A ev(—> ) D. We have the following
diagram, where the right leg is given by Remark [[L23]b.:

AL, G) —* PCA(F,G)

ev(—,C)i \LPCW(,C)
(1%
D(LC,GC) — == PCy(FC,GC)

0;
oy
We prove now that the upper row is an isomorphism. Given F; Upi_ G in PCx(F, G), it

i
4C
follows there exists a unique LC 45C  GC in D(LC, GC) such that pC /1? = p;C.
7iC

It is necessary to show that this 2-cell actually lives in A. This has to be checked
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f

_—
for any C Ue_ D in C. In both cases it can be done considering the isomorphism
g

(%

D(LC,GD) PCop(FC, GD). ]
1.2.8 Remark. A similar proof gives the result for pHom,(C, D). It also can be checked,
by changing the arguments just a little bit that bi-limits and bi-colimits are performed
pointwise in pHom,(C, D). We leave the details to the reader. O

1.2.9 Definition. Let A be a 2-category, C € A and E € Cat. We define the bi-tensor
EQR#C as the object of A such that ¥ D € A, there is an equivalence of categories pseudo-
natural in D

C(E®4C, D) ~ Cat(E, A(C, D)).

If this equivalences are isomorphisms 2-natural in D, we call it pseudo-tensor and we
denote it by Q instead of ®. Pseudo-tensors are in fact the tensors of the 2-category seen
as a Cat-enriched category.

We omit to make the dual concept explicit.

It follows from the definition and the Yoneda lemmas (1.1.37and[T.1.39)):

1.2.10 Proposition. For each category E:
1. EQ# () : A— Aisa2-functor.
2. E®a(-) : A — A is a pseudo-functor. m]

From|1.2.10} it can be verified the pointwise nature of pseudo-tensors and bi-tensors
in the 2-functor and pseudo-functor 2-categories:

1.2.11 Proposition.

1. Let A be either Hom(C, D) or Hom,(C, D), F € A and E € Cat. Then E ®p FX
is a 2-functor in the variable X and determines a pseudo-tensor in A. That is:

(E R F)(D) =E R FD

2. Let A = pHom,(C,D), F € Aand E € Cat. Then EQpFX is a pseudo-functor in
the variable X and determines a bi-tensor in A. That is:

(E®&#F)(D) = E®pFD
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We make now precise what we do consider as preservation properties of a
pseudo-functor. We do it in the case of pseudo-colimits, bi-colimits, pseudo-tensors and
bi-tensors, but the same clearly applies to dual concepts.

1.2.12 Definition.

X H
1. Let I — C — A be any pseudo-functors. We say that H preserves a pseudo-

A . . Ha; .
colimit (resp. bi-colimit) pseudo-cone X; — L in C, if HX; — HL is a pseudo-
colimit (resp. bi-colimit) pseudo-cone in A. Equivalently, if the (usual) comparison
arrow is an isomorphism (resp. an equivalence) in A.

H
2. Let C — A be any pseudo-functor. We say that H preserves a pseudo-tensor
(respectively bi-tensor) E ®c C in C (respectively E®:C) if HEE ®c C) (respec-
tively HEE®:C)) is the pseudo-tensor (respectively bi-tensor) E®Q #HC (respectively
E®4HC).

Note that by the very definition, 2-representable 2-functors preserve pseudo-limits
and bi-limits. Also, from proposition it follows:

1.2.13 Proposition. The Yoneda 2-functors in[l.1.36|preserve pseudo-limits. O

Recall that small pseudo-limits and pseudo-colimits indexed by a category of locally
small categories exist and are locally small, as well that the 2-category Cat of small cate-
gories has all small pseudo-limits and pseudo-colimits (see for example [2], [4], [19]).

1.2.14. We refer to the explicit construction of pseudo-limits of category valued
2-functors, which is similar to the construction of pseudo-limits of category-valued func-
tors in [2, Exposé VI 6.], see full details in [9]].

It is also key to our work the explicit construction of 2-filtered pseudo-colimits of
category valued 2-functors developed in [[L1]. We recall this now.

Even though Dubuc and Street work with an alternate definition of 2-filtered
2-category that is more suitable for their calculations, we are going to use the following
equivalent one (see [6]) in the following sections:

1.2.15. 2-filtered. [17] Let C be a non-empty 2-category. C is said to be 2-filtered if the
following axioms are satisfied:

FO. Given two objects C, D € C, there exist an object E € C and arrows C — E,
D—-E
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. - . h . .
Fl. Given two arrows C D, there exist an arrow D — E and an invertible

hf
2-cellC la E.
hg

—_— h
F2. Giventwo 2-cells G Ua UB_ D there exists an arrow D — E such that ha = hg.

The dual notion of 2-cofiltered 2-category is given by the duals of axioms FO, F1 and F2.

1.2.16. Construction LL. [11]] Let 7 be a 2-filtered 2-category and F : 7 — Cat a
2-functor. We define a category L(F) in two steps as follows:

First step ([11, Definition 1.5]):
Objects: (C, i) with C € Fi.
Premorphisms: A premorphism between (C, i) and (D, j) is a triple (u, r, v) where
i — k, j —> kin T and F(u)(C) — F(v)(D) in Fk.

Homotopies: An homotopy between two premorphisms (u, 71, vi) and (up, 72, v2)
is a quadruple (wy,w;,a,B) where k; AN k, k 2k are l-cells of 7 and

B . . .
wiV] N wovy, wiup — wpup are invertible 2-cells of 7 such that the following
diagram commutes in Fk:

Fw)F@)(C) = F(wiup)(C) e, Fwauz)(C) = F(w2)F(u2)(C)
F(W1)(f1)l iF(Wz)(rz)
FwDF(v1)(D) = F(wivi)(D) F(wav2)(D) = F(w2)F(v2)(D)

F(a)p

We say that two premorphisms r{, r, are equivalent if there is an homotopy between
them. In that case, we write r; ~ r;.

Equivalence is indeed an equivalence relation, and premorphisms can be (non
uniquely) composed. Up to equivalence, composition is independent of the choice of
representatives and of the choice of the composition between them. Since associativity
holds and identities exist, the following actually does define a category.

Second step (|11}, Definition 1.13]):
Objects: (C, i) with C € Fi.

Morphisms: equivalence classes of premorphisms.
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Composition: defined by composing representative premorphisms.

1.2.17 Proposition. [11, Theorem 1.19] Let I be a 2-filtered 2-category, F : I — Cat a
2-functor, i = jinI and C -5 D € Fi. The following formulas define a pseudo-cone

F =% £(F):
AC)=(C,i) A4i(r)=1[i,rnil (A)c = [u,Fu(C), ]

which is a pseudo-colimit for the 2-functor F. O

1.3 2-cofinal 2-functors

Propositions[I.3.14]and[T.3.15]are key to prove reindexing properties for 2-pro-objects
in section 3] In order to state and prove them, we give the following definition:

1.3.1 Definition. Let F : T — g be a pseudo-functor (as a particular case, F might be a
2-functor) with I a 2-filtered 2-category. We say that F is 2-cofinal if it has the following
properties:

CFO. Given j € [, there existi € I and a morphism j — Fi e J.

a

CFl. Given je J,i€ I and j Fi € 9, there exist i L 7 e I and an invertible
b

F(u)a

_ >
2-cellj o _Fi'e[d.
F(u)b

a

CF2. Given je€ J,i€ I and j Ua—llﬁ> Fi € J, there exists i L7 e T such that
F(wa = F(u)p. ’

1.3.2 Remark. If F: 7 — 7 is a 2-cofinal pseudo-functor, then 7 is also 2-filtered.

Proof. The proof is straightforward. O

1.3.3 Proposition. Let F : T — 9 be a 2-cofinal pseudo-functor. Then, for each

a . Fi j—u
'/ . \ . . .
J Ty € J, there are morphisms y— i € I and an invertible 2-cell
y Fi g,
J ~_ b Fi’
P
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Proof. 1t is straightforward from FO and CF1. O

1.3.4 Corollary. Let F : I — g be a 2-cofinal pseudo-functor. Given Fi LS F e 9,

y':’%

1 u
there are morphisms ,,> i"” € I and an invertible 2-cell Fi lea Fi” (ie.
l v a\ y 4
Fi
Fu
an invertible 2-cell Fi Lo _ Fi”). O
_—
F(v)a

u
1.3.5 Lemma. Let F : I — J be a 2-cofinal pseudo-functor. Then, given i i'el

v

. . . L> . VI . .
and an invertible 2-cell Fi  la _ Fi’ € , there exist i’ — i’ € I and an invertible
Fv

wu

2-celli U6 _ " € I such that Flw)a = Fé.

wy

Proof. 1t is straightforward from F1 and CF2. O

The following lemmas are used in the proof of [[.3.9]

1.3.6 Lemma. Let J be a 2-filtered 2-category and G : J — Cat a 2-functor. Let

O, J) (arf] ', J') be a morphism in L|_)m Gj, d', V', ¢ morphisms in J and «, 3 invertible
Jjeg
2-cells as in the following diagram:

% c 117
J —

J ,

b
Then [a,r,b] = [d’, s, b"] where s is defined as the composition G(B), G(c)(r)G(a)y

Proof. It is straightforward from Lemma 1.18 of [11]]. O

1.3.7 Corollary. As a particular case (take a’ = ca, b’ = cb and a and 3 the corre-
sponding identities), we have that given (a,r,b) and c as in the previous proposition,
[a, r,b] = [ca, G(c)(r), cb]. m|
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1.3.8 Lemma. Let J be a 2-filtered 2-category and G : J — Cat a 2-functor. Let

rb
o, ) [a—>] (O, J') be a morphism in le Gj and suppose that we have a configuration as
./'EJ
follows:
ap
=ly J2
bo
Then [a,r,b] = [aag,s,bybg]l where s is defined as the composition

G(b287)y G(yb)y Glaza) )(r)G(aza)y.
Proof. In , take @’ := arag, b’ = bybg, ¢ := aray, @ = ara and B := by oyb. O

1.3.9 Theorem. Let F : T — g be a 2-cofinal 2-functor and G : J — Cat a 2-functor.
Then the canonical morphism

. . h . .
Lim GFi — Lim Gj
— —
iel jeT
is an equivalence of categories.

Proof. First of all, let’s note that h(x,i) = (x,Fi) V (x,i) € Iﬂ GFi and
iel
h([u, r,v]) = [F(w),r, F(W)] VY (x, l) (x ') € I_I_)m GFi.
iel
Now, recall that is enough to check that h is essentially surjective on objects and full
and faithful ([22]).

- his essentially surjective on objects: Let (y, j) € L|_>m Gj. By CF0, 3 j SFie g
€T
and clearly h(G(a)(y), i) = (y, j) in L_lrg Gj.
€T
: . larp] . . . Fia .
- his full: Let (x,Fi) — (,Fi’)) € L|_>m Gj where ,_—=1 € J
g Fi" 7b
and G(a)(x) SN G(b)(x'). By CFO, 4 j 5 Fi” € J. Then, by [1.3.7,
[a, r, b] = [ca, G(c)(r), cb], so without loss of generality, we can suppose j = Fi”.
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By using for a and b respectively and by [1.3.3] we have the following
configuration:

Fug

T
UaF
”/’
o
8 Fi
\w/

Fvo

0 Fu;
\

Y Fiz
V2
1

Fi
U

Fil =

1
T e
i =

Now, by [I.3.8] [a, r, b] = h([uauo, s, v2v9]) for some s.

[u0,r0,v0] 4o

- h is faithful: Suppose (x,i) - (¥,) € Lim GFi (where . =iy and
[ur,r1,v1] E) 1 Vo
P
\ . . . .
el h that h , 10, =h , T, Lim Gj. Then, th
7 /Vl711 ) suc al ([M() ro V()]) ([u1 ry Vl]) 1n e_j) ] en ere
J

Fip _a B

exists B J and invertible 2-cells aFuq i% bFu;, aFvy = bFv, € g such
Fi; sl

that the following diagram commutes

G(@)G(F(u0))(x) 2% G(b)G(F(u1))(x) (1.3.10)

G(a)(ro)i lG(b)(n)
G(a)G(F(vo))(x) Sy G(b)a(F(v1)(x")

By CFO, 3 j 5 Fiy € 9. By using two times for Fiy % Fi, and

e . . ot i L
Fi; — Fi; respectively, we have >13 , >z4 € 7 and invertible 2-cells

1) V2 7
B
Fuy & F(vy)ca and Fus = F(v3)ch € 7.
Fv, Fi3 i3 Uy
Now, consider Fi, = € J. By[l.33 wehave = ~=is € 7 and an
ﬁ) Fig i4 v

invertible 2-cell FuyFvy = Fv,Fvs € .

Then we have the following configuration
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Fi Fuo
\ Fuy
Fip

F //\
Fi Vo\a‘ =l Fy, Fi3 Fug
N

j—>Fiy =4y Fis

N
F . F
Fi e / =up 4Fz4 "

AN

N\
Fiq
F
Fi’/Fvl N
i @
Then we have >i5 € 7 and invertible 2-cells F(usug) = F(vsuy),
1] = v4us

F(usvg) '8=2> F(vsvy) € J given by the following compositions:

Fuy Fu, Fug Fuy Fu, Fvo

AT TAT

a Fus Fv

R
/T TN

F Fu3 F Fu3

a

] o

It can be checked that (Fus, F(vs)as,82) is an homotopy between (Fuy, ro, Fvg)
and (Fup,r;,Fvy), so without loss of generality, we can suppose from the be-
ginning that the homotopy between h([ug, r9, vo]) and h([u1, r1,v(]) has the form

ig —_u
(Fu,Fv,a0,B0)) where = =i, 1.
v

Let’s apply to the triplets uug, vuy, o and uvg, vvy, By respectively. So, we
Woullo Z0Uvp

. oWo . . 20 . . . LT, .
have iy — i3, i — i4 and invertible 2-cellsi U6 i3, 1 Uvy _ ig4 € 1 such
“wovur T

that F(wg)ag = 6o and F(z9)Bo = vo.
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i3
Then, by |1.3.3] there exist morphisms =~ ~>is € I and an invertible 2-cell
4 21
Fwiwo)
el W
FGi) e _ F(i5) € J and, by|1.3.5, we have is 23 i and an invertible 2-cell
F(z1z0)
Wawwo
—_—
ip U6 _ i"” € I suchthat F(wy)a = 6.
w22120

It can be checked that (wowiwou, waz12ov, (6vuy) o (Wawi6g), (Waz1vp) © (duvy)) is
an homotopy between (ug, ro, vo) and (uy, 1, vi) which concludes the proof.

O

The purpose of the following is twofold. First to construct a cofinite and filtered poset
with a unique initial object M(J) associated to a 2-filtered 2-category (1.3.11]and[1.3.14).
F
And second, to prove that there is a 2-cofinal 2-functor M(J) — 9 (1.3.15). This is a
2-categorical version of a result of Deligne [1, Expose 1,8.1.6], see also [12]] Mardesick
trick. This results are key to prove reindexing properties of 2-pro-objects in section 3]

1.3.11 Definition.

1. A diagram in a 2-category J is a functor C i) J from a category C to the
underlying category of . It is said to be finite if C is a finite category.

2. C i> J is a subdiagram of D LN J if there is an injective (on objects and on

h
morphisms) functor G — D such that gh = f. If h is an isomorphism of categories
we say that the diagrams are isomorphic.

1.3.12 Remark. Final objects ¢ € C, d € D correspond under isomorphism of diagrams.
That is, h(c) = d (thus f(c) = g(d) in 9). O

1.3.13 Definition. Let J be a 2-category. We denote by M(J) the poset of equivalence
classes (under isomorphism) of finite diagrams over J ordered by the subdiagram relation
(in the sense of subsets, not injections). We assume that all index categories G in M(J)
have a chosen empty final object denoted .

1.3.14 Proposition. Let J be a 2-filtered 2-category. M(T) is cofinite, filtered and has a
unique initial object.

Proof. Clearly M(J) is cofinite and has a unique initial object. Let’s check that it is

filtered: Let C i) g and D LN J € M(J). Consider the category E disjoint union of
C and D, and an additional object * together with one morphism ¢ — * from each object
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flxc) _a
c € Corc e D. Clearly * = xg. Since J is 2-filtered, we have ( )>j € 9. For
8(*p) " b

eachc € C(resp. ce D),d! ¢ 5 *g (resp. d!c X *p). Consider the diagram E L g
defined by h = fon C, h = gon D, h(x) = j, h(c - %) = ao f(r.) for ¢ € C, and
h(c = %) = b o g(r;) for c € D.

It is clear that this diagram is above C L J and D LN Y. O

1.3.15 Proposition. Let J be a 2-filtered 2-category. There is a 2-cofinal 2-functor
51

M) i) g where M(J) is the poset defined in
trivial 2-category).

I| (we are considering M(J) as a

Proof. The 2-functor F is defined as follows:

- FC L ) = s,

h
1t C L 7 is a subdiagram of D > J via C = D, 3 ! h(+c) - *p. Then
f g 8
FIC->YJ < D—J) = f(xc) = glh(xc)) = g(+p).
- The 2-cells are the identities so they go to the corresponding identities.

Let’s check that F is 2-cofinal:

CFO. Let j € 7. Then F({x} & ) = J.

a

CFl. Let j€ J,C L J € M(Y) and j f(xc) € J. Since 7 is 2-filtered, we
b

ea

have f(xc) 5 Jj € J and an invertible 2-cell j Ul _ j € J. Consider the
eb
category D disjoint union of C and {x*}, with a morphism from each object of C to

%, Clearly * = sp. Consider the diagram D N J where g is defined by g = f in
C, g(») = j/, and g(c — *) = e o f(r.), where r, is the unique morphism ¢ — *¢ in

C.C Lf/’isasubdiagramofD i>[TandC '—f>J <D i>j’issentbyFt0
flre) = g(x) = j'.

f . — . . .
CF2. Let je J,C — JinM(J),and j e U8 f(x¢c)in J. Since 7 is 2-filtered,
b

we have f(xg) 5 j in J such that e @ = ¢ 8. The proof follows in the same way
that for CF1.
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1.4 2-functor associated to a pseudo-functor

In this subsection we establish a result of independent interest and that will be needed
to prove that 2-Pro,(C) is a closed 2-bmodel 2-category (see provided that C is
. Our construction of A and T are inspired in the constructions for the same purpose
that can be found in [15] or [7]. We think the construction made in [15] has a slight
mistake because the value of T in 2-cells is not considered. Our case is simpler because
we are only interested in the case of filtered categories and we consider pseudo-functors
instead of lax-functors. A reference to the validity of this result is made in [21]. We are
going to use the results of this subsection only for cofinite filtered posets.

f

1.4.1 Proposition. Any category A together with a class B of pairs of arrows A Be
g

A closed under composition and containing all pairs with f = g (note that B is a category)
determine a 2-category A as follows:
f

Objects and arrows are those of A and we add a 2-cell A V6.s B for each pair
g

S
A B € B, subject to the equations
8
- Ohg 0 bgr =0Ohy
(1.4.2)
- Og. s =Oggyy
Note that 0;} = Oy (every 2-cell is invertible). m|

A lax-functor is defined by the same data that a pseudo-functor but without requiring
the structural 2-cells to be invertible.

Let A iR C be a lax-functor. Then, given any tuple of composable arrows, iterating
structural 2-cells determines 2-cells from the composition of the values of F to the value
of F in the composition. It easily follows from the associativity axiom that all possible
iterations are equal. Thus:

1.4.3 Proposition. Given any tuple f = (f1,f2,....T)) of composable arrows
o . . Ff,...Ff,

Ay — Ay... — A, € A, there is a well defined (structural) 2-cell FAy V6 FA,. O
F(fn---fl)
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1.4.4 Proposition. Ler A —F> C be a pseudo-functor and f = (fi,f,...,f,),

9= (91,92 gm) with A =5 Al =5 B A2 B, 2 B e A be such that
Ff,...Ff

fo..f2ft = Qm...0201. Then there is a well defined 2-cell FA E FB. These 2-cells

satisfy equations (1.4.2)). o

Proof. Define 0y¢ = 6 Lo 6. i

1.4.5 Proposition. Let A be a category. There exist a 2-category A and a pseudo-functor

T 4
A — A such that for each 2-category C, there is an isomorphism of 2-categories

Hom,y(A,C) > pHom,(A.C)

Furthermore, if A is filtered, then T is 2-cofinal.

Proof. We define A as follows:

- Objects of A are the objects of A.

- Morphisms of A are tuples of composable morphisms of A. More explicitly, a
f ' "
morphism A — Bis a tuple f = (f1, f2, ..., f») With A L Aq... L B,n>0.

0
- We consider the empty tuple @ = (—) corresponding to n = 0 as an arrow A =

for every object A € A.

- Composition is given by reverse juxtaposition (with identities idy = 04), i.e.

(gl’gb eee gm)(fl’fZ’ cec fn) = (f13f29 eee fn’ 81982, AAAE] gm)

f
We then apply the construction of proposition |1.4.1] with A B e B iff

g
oo S1 = gme-81, 1= 04, g = (idy) or f = (idy), g = 04.

We define A L A as follows:

-TA=A
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- TaL B =)

04 (f.2)
Note that since A AeBand A C € B. Then we have invertible 2-cells
(ida) &f)

. . f g
@) = Oay0, © ida = (idy) and for A = B — C, a} , = Ogp (1.0 (@) = (8/). It
immediately follows that T given by this data is actually a pseudo-functor.

Let’s check that T* is an isomorphism of 2-categories:

- On objects: Let F € pHom,(A,C). We define F as follows:

FA=FA, F(A D B =Ff.Ffi, Fogr=0;' 06 (see[[A3).

It can be easily checked that this data defines a 2-functor F which is unique such
that FT = F.

- On morphisms: Let F 2 G e pHomy(A,C). We define iy = pa and

ff = ugFfu1..FfioGfauys, Ffu1..Ffio...oGf,Gfu1...Gfouy . It can be eas-
ily checked that this data gives the unique pseudo-natural transformation such that

AT = p.
U
_—
- On2-cells: LetF _ Up _ G € pHom,(A,C). We define p4 = pa. It can be easily
/1/

checked that this data gives the unique modification such that pT = p.

Finally, let’s check that T is 2-cofinal in case A is filtered. CFO is clear and CF2
is vacuous since A is a category. CFl: Given A € A, B € A and two morphisms

-5 A . h
A B € A, since A is filtered, 4 B — C € A such that ifi...f, = hgy...gm. Then

(f1eeesSnsh)
B C € B and thus we have an invertible 2-cell 6,)g iy : (B)f = (h)g € A. |
(gl ----- gmsh)
1.4.6 Remark. In particular, from|[1.3.2] we have that if A is filtered, then A is 2-filtered.
O
1.4.7 Remark. A%P = Ao, O

1.4.8 Corollary. Let A be a category. Then the 2-category Womp(A, C) has all bi-limits
of pseudo-functors and bi-cotensors and they are computed pointwise. The dual assertion
also holds.

Proof. The proof follows immediately from [I.4.5|plus[1.2.7]and [T.2.TT] O
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1.5 Further results.

A. Joyal pointed to us the notion of flexible functors, related with some of our re-
sults on pseudo-colimits of representable 2-functors. We recall now this notion since it
bears some significance for the concept of 2-pro-object developed in this thesis. Any
2-pro-object determines a 2-functor which is flexible, and some of our results find their
right place stated in the context of flexible 2-functors.

1.5.1. Warning. In this subsection 2-categories are assumed to be locally small, except
the illegitimate constructions Hom and Hom,,.

The inclusion Hom(C, Cat) LN Hom,(C, Cat) has a left adjoint (=) 4 i, we refer
the reader to [4]]. The 2-natural counit of this adjunction F’ = Fis an equivalence in

Hom,(C,Cat), with a section given by the pseudo-natural unit F g F', eene = 1g,
nrer = 1g, [4, Proposition 4.1.]

F
1.5.2 Definition. [4] Proposition 4.2] A 2-functor C — Cat is flexible if the counit

&F . A . .
F' — F has a 2-natural section F — F’, egd = 1g, der = 1§, which determines an
equivalence in Hom(C, Cat).

We state now a useful characterization of flexible 2-functors F independent of the left
adjoint (—)’, the proof will appear elsewhere [[10].

1.5.3 Proposition. A 2-functor C LN Cat is flexible < for all 2-functors G, the

. . iG . .
inclusion Hom(C, Cat)(F,G) — Hom,(C,Cat)(F,G) has a retraction ag natural in G,
agig = id, igag = id, which determines an equivalence of categories. O

Let Hom(C, Cat); and Hom,(C,Cat)s be the subcategories whose objects are the
flexible 2-functors. We have the following corollaries:

1.5.4 Corollary. The 2-categories Hom(C, Cat) s and Hom,(C, Cat); are pseudoequiva-
lent in the sense they have the same objects and retract equivalent hom categories. O

By the inclusion 2-functor Hom(C, Cat); — Hom,(C, Cat)s has the iden-
tity (on objects) as a retraction pseudo-quasi-inverse, with the equality as the invertible
pseudo-natural transformation F S FinH om,(C,Cat);.

An important property of flexible 2-functors, false in general, is the following:

1.5.5 Corollary. Let 6 : G = F € Hom(C,Cat)s be such that c : GC — FC is an
equivalence of categories for each C € C. Then, 0 is an equivalence in Hom(C, Cat)y.
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Proof. 1t is easy to check that there is a pseudo-natural transformation 7" : F = G such
that 6’ = F and /60 = G in Hom,(F,F) and Hom,,(G, G) respectively. Now, by
there is a 2-natural transformation n : F = G such that = " in Hom,(F,G). Then,
On = F and n6 = G in Hom(F, F) and Hom(G, G) respectively and so 6 is an equivalence
in Hom(C, Cat). O

1.5.6 Proposition. Small pseudo-colimits of flexible 2-functors are flexible.

Proof. Let F = L_Irl} Fi, where each Fi is flexible, and let G be any other 2-functor. Set
iel
A = Hom(C,Cat) and A, = Hom,(C, Cat). Then:

A(F,G) = Lim AFi, G) — Lim A,(Fi, G) = A(F, G).
iel iel

The two isomorphisms are given by definition The arrow i is the pseudo-limit of
the equivalences with retraction quasi-inverses corresponding to each Fi. It is not difficult
to check that i is also such an equivalence. O

It follows also from[I.5.3|that the pseudo-Yoneda lemma (1.1.39][T.1.40) says that the
representable 2-functors are flexible, so we have:

1.5.7 Corollary. Small pseudo-colimits of representable 2-functors are flexible. O

Note that and hold for any pseudo-colimit that may exist.
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Resumen en castellano de la seccion

En esta seccién se fija la notacidon que se va a usar a lo largo de toda la tesis y se
enuncian las definiciones y los resultados bésicos de la teoria de 2-categorias necesarios
para este trabajo.

La mayoria de estos resultados son conocidos. Para aquellos que no hemos encontrado
en la literatura, damos demostraciones detalladas.

En probamos que los pseudo-limites (conicos) en las 2-categorias de 2-funtores
Hom(C, D), Homy(C,D) y pHom,(C,D) (definicién [1.1.19) y los bi-limites en
pHom,(C, D) se calculan punto a punto.

En|l.3|definimos la nocién de pseudo-funtor 2-cofinal entre 2-categorias y probamos
ciertas propiedades que usaremos en la seccion [3| para demostrar las propiedades de rein-
dexacioén de 2-pro-objetos. Alli construimos un poset cofinito y filtrante con un tnico
objeto inicial M(J) asociado a una 2-categoria 2-filtrante (I.3.11|and[1.3.14) y probamos

que se tiene un 2-funtor 2-cofinal M(J) i J (1.3.15).

En[I.4] construimos un 2-funtor asociado via un pseudo-funtor 2-cofinal a un pseudo-
funtor dado. Este resultado tiene interés independiente y serd usado en la seccién [5
Nuestra construccion de A y T fueron inspiradas en las construcciones hechas en [15] o
[7].

A. Joyal nos sefial6 la nocién de funtores flexibles, relacionada con algunos resultados
de esta tesis acerca de pseudo-colimites de 2-funtores representables. Recordamos en
esta nocién ya que tiene relevancia para el concepto de 2-pro-objeto desarrollado en esta
tesis. Todo 2-pro-objeto determina un 2-funtor flexible, y algunos de nuestros resultados
tienen su enunciado correcto en el contexto de 2-funtores flexibles.
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2 2-Pro-objects

Warning: In this section 2-categories are assumed to be locally small, except illegit-
imate constructions as Hom, Homy,, for large C or 2-CAT .

Some of the main results of this thesis are in this section. In we define the
2-category of 2-pro-objects of a 2-category C and establish the basic formula for mor-
phisms and 2-cells of this 2-category. Then, in[2.2] we develop the notion of a morphism
and a 2-cell in C representing a morphism and a 2-cell in 2-Pro(C) respectively, inspired
in the 1-dimensional notion of an arrow representing a morphism of pro-objects found
in [3]. We use this in [2.3] to construct the 2-filtered 2-category that serves as the index
2-category for the 2-cofiltered pseudo-limit of 2-pro-objects. This is also inspired in a
construction for the same purpose found in [3]. We were forced to appeal to this com-
plicated construction because the conceptual treatment of this problem found in [[1]] does
not apply in the 2-categorical case. This is because a 2-functor is not the pseudo-colimit
indexed by its 2-category of elements of 2-representable 2-functors. Finally, in [2.4] we
prove the universal property of 2-Pro(C).

2.1 Definition of the 2-category of 2-pro-objects

In this subsection we define the 2-category of 2-pro-objects of a fixed 2-category and
prove its basic properties. A 2-pro-object over a 2-category C will be a small 2-cofiltered
diagram in C and it will be the pseudo-limit of its own diagram in the 2-category 2-Pro(C).

2.1.1 Definition. Let C be a 2-category. We define the 2-category of 2-pro-objects of C,
which we denote by 2-Pro(C), as follows:

X
1. Its objects are the 2-functors 1°? — C, X = (Xi, Xy, Xo)iu.cer, With I a

small 2-filtered 2-category. Often we are going to abuse the notation by saying
X = Xiier-

2. If X = (Xpier and Y = (Y) jeg are two 2-pro-objects,

2-Pro(C)Y(X,Y) = Hom(C, Cat)””(l.i(_m C(X;,-), |£ C(Yj, =)
iel Jjeg

= Hom(C. Car)(Lim C(Y},-), Lim C(X;,-)
jeg iel

Compositions are given by the corresponding compositions in the 2-category
Hom(C, Cat)? so it is easy to check that 2-Pro(C) is indeed a 2-category.

2.1.2. Notation. We are going to use the subindex notation to denote the evaluation of
2-pro-objects.
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2.1.3 Proposition. By definition there is a 2-fully-faithful  2-functor
L
2-Pro(C) — Hom(C, Cat)°P. Thus, there is a contravariant 2-equivalence of
L
2-categories 2-Pro(C) — Hom(C, Cat);lc7 , where Hom(C, Cat)s. stands for the full
subcategory of Hom(C, Cat) whose objects are those 2-functors which are small

2-filtered pseudo-colimits of representable 2-functors. However, it is important to note
that this equivalence is not injective on objects. O

From Corollary it follows:
2.1.4 Proposition. For any 2-pro-object X, the corresponding 2-functor LX is flexible. O

2.1.5 Remark. If we use pseudo-natural transformations to define morphisms of
2-pro-objects we obtain a 2-category 2-Pro,(C), which anyway, by results pseu-
doequivalent (see [1.5.4) to 2-Pro(C), with the same objects and retract equivalent hom
categories. We think our choice of morphisms, which is much more convenient to use,
will prove to be the good one for the applications. Nevertheless, this other version is un-
avoidable to prove that 2-Pro(C) has a closed 2-bmodel structure (see section[3)) due to the
nature of the axioms of closed 2-bmodel 2-category where commutativities are non-strict
but only holds up to invertible 2-cells.

2.1.6 Remark. The assertion from[2.1.3]also holds replacing 2-Pro(C) for 2-Pro,(C) and
Hom(C, Cat) for Hom,(C, Cat). m]

Next we establish the basic formula which is essential in many computations in the
2-category 2-Pro(C):

2.1.7 Proposition. There is an isomorphism of categories:

2-Pro(C)(X,Y) = L|<_m I_|_)m CXi,Y)) .1.7)
jegJ iel

Proof.

IR

2-Pro(C)(X,Y) = Hom(C, Cat)(l.i_)m C(Yj,-), L|_>m C(Xi, )

jeg iel
Lim Hom(C, Cat)(C(Y, -), Lim C(X;,-)) = Lim Lim C(X;, Y ;)
JjegJ iel JjeJ iel
The first isomorphism is due to[I.2.4]and the second one to i

2.1.8 Remark. In the case of 2-Pro,(C), formula (2.1.7) is an equivalence of categories
instead of an isomorphism since the second = is only an equivalence (see|1.1.39). O
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2.1.9 Corollary. The 2-category 2-Pro(C) is locally small. O

2.1.10 Corollary. There is a canonical 2-fully-faithful 2-functor C = 2-Pro(C) which
sends an object of C into the corresponding 2-pro-object with index 2-category {x}. Since
this 2-functor is also injective on objects, we can identify C with a 2-full subcategory of

2-Pro(C). O

Where there is no risk of confusion, we will omit to indicate notationally this identi-
fication. By the very definition of 2-Pro(C) it follows:

2.1.11 Proposition. If X = (X;);cr is any 2-pro-object of C, then X = L|<_m X; in2-Pro(C).

iel
X is equipped with a pseudo-cone structure, {X SN Xi} , {Xu n; SN 71'1'} . -
i€l i—jel
Under the isomorphism 2-Pro(C)(X, X;) = L|_)m CXg, X)) (2.1.7), projections
kel
X 5 X; correspond to objects (idx,, i) in construction |
2.1.12 Remark. The previous proposition also holds in 2-Pro,(C). ]

Note that from proposition|2.1.11|it follows:

2.1.13 Remark. Given any two pro-objects X, Z € 2-Pro(C), there is an isomorphism

of categories 2-Pro(C)(Z, X) — PCa-proc)(Z, cX), where PCy-p,0(c) is the category of
pseudo-cones for the 2-functor cX with vertex Z.

It is important to note that when I;'E X; exists in C, this pseudo-limit would not be

iel
isomorphic to X in 2-Pro(C). In general, the functor ¢ does not preserve 2-cofiltered
pseudo-limits, in fact, it will preserve them only when C is already 2-Pro(C), that is,
when c is an equivalence.

2.2 Lemmas to compute with 2-pro-objects.

In this subsection, we establish technical lemmas to be used in computations with
2-pro-objects.

2.2.1 Definition.

f
1. Let X — Y be an arrow in 2-Pro(C). We say that a pair (r, @) represents f, if ¢

rm;

is an invertible 2-cell X V¢ _ Y;. That is, if we have the following diagram in
7T_]'f
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2-Pro(C):

X —=X;
fi =le lr
Y —>Y;
S .
2. Let X _Ua Y €2-Pro(C)and X; 10 _ Y; € C as in the following dia-
gram: ’ )
X —> X
Y 7 j
We say that (6,r, @, s, ) represents « if (r, ) represents f, (S,) represents g, and
the following equality holds in 2-Pro(C):
r r 7
AN
s m =T f
Vel ]
i 9 i 9
That is, On; = mja “modulo” a pair of invertible 2-cells ¢, .
2.2.2 Remark. Same definitions may be given in 2-Pro,(C). O

2.2.3 Proposition. Let X = (X;)jcr and Y = (Y ) jeq be any two 2-pro-objects.

1.

2.

f
Let X — Y € 2-Pro(C). Then, for any j € J there existi € I and X; N Y;jeC,
such that (r, id) represents f.

f

_—
Let X Yo Y € 2-Pro(C). Then, for any j € J there exist i € 1,
¢}
r

_—
Xi e _Y; € C, and appropriate invertible 2-cells ¢ and  such that
S

@,1,¢,s,¥) represents a.

Observe that in case « is invertible, one can choose a representative with an in-
vertible 0.
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njf
Proof. Consider X _Uma Y and use formula [2.1.7| plus the constructions of pseudo-
ﬂjg

limits (1.2.14) and 2-filtered pseudo-colimits of categories (I.2.16). O

From the previous proposition plus the pseudo-equivalence of [2.1.5] it follows:

2.2.4 Proposition. Let X = (X))icr and Y = (Y ) jeg be any two 2-pro-objects.

f
1. Let X — Y € 2-Pro,(C). Then, for any j € J there existi € 1, X; SN YieC
and an invertible 2-cell ¢, such that (r, @) represents f.

f

2. Let X _la _ Y € 2-Pro,(C). Then, for any j € [J there exist i € I,
g
r

Xi I: Y; € C, and appropriate invertible 2-cells ¢ and ¢ such that
S
@,1,¢,s,¥) represents a.
m|

2.2.5 Lemma. Let X = (X))ier be a 2-pro-object, let X; N C, X; >,Ce C, and

r; Xy

X _ta Ce€2ProC). Then,I . Sk € Tand Xy _ V6 _ C € C such that
sm; JTv sX,

@ o rm, = sm, o Oy in 2-Pro(C):

T Xk
Xll
XX v X
i
X Um  [X L6 r = X——=X ie.
j Xj . C ”]\L Ja J{r
Xj —C

r X, Tk r Xu T
U o
s X, T = r T

S T S 7y

Observe that in case « is invertible, one can choose 8 to be invertible.
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Proof. By formula and the construction of 2-filtered pseudo-colimits (1.2.16), @ is

. rXu
given by (r, i) w03 (s,)) € L|_>m C(X;,C) . Thus, 4 ;>l: k € I and X E: CecC
such that @ o rmr, = smy, o (‘)mie,fals we wanted to prove. >
]
The following is an immediate consequence of [11, Lemma 2.2.]
2.2.6 Remark. If i = j, then one can choose u = v. O

2.2.7 Remark. From the previous proposition plus the pseudo-equivalence of [2.1.5] it
follows that the previous lemma also holds in 2-Pro,(C), and so also[2.2.8|and[2.2.16] O

The following two lemmas will be used to prove reindexing properties of
2-pro-objects in section [3|and will be also needed in section [5}

f

2.2.8 Lemma. Let X — Y be a morphism in 2-Pro(C), X; N Y Xy Sy 7 ecC

and ¢, ¥ invertible 2-cells in C such that (r, ) and (S,y) both represent f and there are
7 v

morphisms i el j N J € J. Then there are morphisms l,> i” €1 and an
1 w

Y.s X,
invertible 2-cell \ 0 / € C such that ¢ o rm, o Oy = mf o Yub o Y871y, ie.
r X,
X, T Y. s

Y. s
\ e/
r X

71'1'//

Xy
v/
Tt

) T p s
o/ e
r Tt Yu y f
| e \e/
7T f T f
Proof. In take X := X, X; := X;, Xj == Xy, C == Y, r :=r, r := Y,S and
r T
Ve
7y f
a = /721\ H . O
Ya 7TJ f
| e
Y, s Ty
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2.2.9 Lemma. Let {X L Yl}
I=1,...,

..........

. Cou . a . i—r .
phisms i — i’ €1, j— j' € 9. Then there are morphisms _/>l” € I and

w
Ylos X,
invertible 2-cells \ o / € CVY I = 1,..k such that for each | = 1,..k
X,
om0 Oy =m,fo Yég{/l ) YlaSﬂTW, Le.

l i’
s X, T Yo oS X T

Yl
\ o/
ry X

) T Y, s T
/o e
ri i Y, wy fi
7 fi m; f,

Proof. We are going to proceed by induction in k. For k = 1, use[2.2.8]

R
k = k+1: by inductive hypothesis, 3 il’> ip € 1 and, foreach ! = 1, ...k, an invertible

wo
Yé Si XW()
2-cell \é, / € C such that
r Xvo
YL s Xyo Tio YL s Xy, T
-/ v
r Vo T, Yi S/ Ty
\ro/ = \ " / (2.2.10)
r i Y! Ty f;
Y
T fi 7 f,
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. YERL sp1 Xy,
Also, 3 _,> i1 € I and an invertible 2-cell \ Best / € C such that

! " Fi+1 Xv1
Y§+1 Sk+1 Xy, Ty YI;H Skr1 Xy, i,
S, o
li+1 le i, Y§+1 Sk+1 Ty
\/ = \ b / (2.2.11)
M1 T Yﬁ“ Ty fra1

LY

T fre1 feet
. . io -2 . T T . .
Since 7 is 2-filtered, 4 =i, morphisms i, — i3, i — i4 and invertible 2-cells
i1 7w
wav] Vawo . v
. . . 32 . . .ou o, . .
i w03, 10 b iy €1, __>is,a morphism is — "’ and an invertible
UV Vo UIWIW1 4 w3
w3l
LT,
2-celliy Um " el].
_—
Uy V3o

Consider v = upvsugvavg and w = upwsuivowg, foreachl =1, ..,k

Y];H Skr1 Xy Xiy Xy Xivy Xiy

| =

YLost Xy Xoy Xiy Xy Xy YA s Xy Xuy Xup Xy Xapy
\ \ o~/

0= 1 X, X, Xuy Xyy Xy, and Oyq = e1 Xy, Xy Xy Xy Xu
| > | * |

Xy Xy Xig Xog Xy e Xy, Xy Xug Koy Xu

=y

Mk+1 Xvo XV2 Xuo XV3 Xu2

Let’s check that this data satisfies the desired property:
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wo sz Xu1 XW3 Xuz Tt

YL sr Xy Xy Xup Xy Xuy 7

B

Yla Sl XWO XVZ Xu| XW3 ﬂ-iS

\/
Yuz/ Yla Si Xwo sz Xul Ty
\7rul/

r XVO XV2 Xul XW} Xuz Tt

Tti,

3

\n; YL s Xy X,
IR
! Xivo Ty
rr Xy Xy, T, \rwt/

Y’"z / YL s Ty

Xy, Tty \ W /
e/ v
CL v/
\ ; / 7j

Where the equality is due to (2.2.10) plus axiom PC2 of pseudo-cones.

Forl=k+1:
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Y/;'l Sk+1 XW() sz Xul XW3 Xu2 i
[ Y
Y]L(l_'-l Sk+1 le sz Xul XW3 Xug Ttjrr
Nt /0
Mk+1 XV| sz Xu| XW3 Xuz Tt
e
lk+1 le sz Xuo XV3 Xllz i
[ R A
lk+1 XV() XV2 Xu() XV3 Xuz Tty
(. o \™/
rk+ 1 XVO XVZ Xu() XV3 7Ti5
. I e/
rk+] XVO XVZ up ﬂ-i3
[ I N/
rk+1 XV() %) ﬂiZ
(. N4
Fke1 Ry Ty
N
k1 T
\ Pr+1 /
mj fre1
Y§+1 Sk+1 XWO XVZ Xu1 XW3 Xuz Ty
[ Y
Y][;_H Sk+1 le sz Xu1 XW3 Xuz T
Nt /]
Mk+1 le sz Xu] XW3 XMZ T
(. o\
rk+ 1 V1 XWZ Xu1 XW3 ﬂiS
I I e/
- rk+l XV] sz Ul ﬂi4
| [NV
rk+1 le w2 ﬂ-i2
| N/
Mer1 Ry iy
NV
M+ 1 7
\ Ph+1 /
j fre1

YL si X Xoy Xy Xy Xy 7o
[ TR
Y§+1 Sk+1 le sz Xul XW3 Xuz Tt
N /]
Me+1 le XW2 Xul XW3 Xu2 Tt
I Iy % [
lk+1 V1 XW2 Xu() XV3 Xuz Tty
|l o\
rk+1 XV| XWZ Xuo XV3 7T[5/
[ o N/
I’k+1 le XW2 Xuo ﬂ-i3
(. N/
Fr+1 XV| XW2 ﬂiZ
(. N/
lk+1 le i)
[NV
lk+1 T
\ Pr+1 /
T fre1
YZH Sk+1 Xwo sz Xul XW3 Xuz Ty
[ 7R I
Yg“ Sk+1 le sz Xu1 XW3 Xu2 Tt
I I I AR 2Y
Y§+1 Sk+1 le XWZ Xu1 XW3 ﬂ-iS
o\
YI;-H Sk+1 le sz Xul Tty
o N\
YA s Xy Xog T
o\
YERL s Xy, i,
[ N4
YERL i Ty
H \ Vi1 /
YI;H Uy fr+1
\m/ [
T fre1
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Y1;+1 Sk+1 XW() XV2 Xul XW3 Xuz Tt

[ I Y I 4

Y](;+1 Sk+1 XW() sz Xul XW3 s

o N\
T,

Y§+1 Sk+1 XW() sz Xu]

I\
Y§+ ! Sk+1 XW() sz Ty
=0\~
Yﬁ“ Sk+1 Xy Tip
I N\~
YA gy my
H \ Ykl /
ykel o my fret1
\7/ H
T frs1

Where the first, the second and the last equalities are due to elevators calculus plus axiom
PC2 of pseudo-cones and the third one holds by elevators calculus plus (2.2.TT). o

f

2.2.12 Lemma. Let X = (X;)ier be a 2-pro-object and X; 16 V¢ C € C such that
g

On; = Om; in 2-Pro(C). Then A i 25 " € T such that 60X, = 'X,.
Proof. It follows from and [11, Lemma 1.20.] O

The following lemma will also be used in section

f;
2.2.13 Lemma. Let X = (X;)ier be a 2-pro-object and {Xi Lo 16 C} € C be
9 I=1,..k
such that Om; = O ¥ 1 = 1, ..k in 2-Pro(C). Then i 5 " € T such that 0 Xy = /X,
Yi=1,..k

Proof. We are going to proceed by induction in k. For k = 1, use[2.2.12

k = k + 1: By inductive hypothesis, 3 i BN io € I such that ;X,, = QEXMO Yi=1,..,k

and 3i -5 iy € I such that O1 Xy, = 0, Xy,.

. . . . Vo . . Vi . . .
Since 7 is 2-filtered, we have morphisms ip — ', iy — i’ and an invertible 2-cell
Vvouo
,
i Uu ' elT.
_—

viuy
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It is easy to check that u = vyug satisfies the desired property. O

2.2.14 Remark. The previous two lemmas (and so the following one) also hold in
2-Pro,(C) (have in mind the pseudo-equivalence of [2.1.5). m|

_ _r o
2215 Lemma. Let X _Ua _ Y in 2-Pro(C) and X; 16 V¢ Y, in C such that
g s
@, r, ¢, s, %) and (&, 1, ¢, S, ) both represent a. Then, there exists i 2 i e T such
that X, = 'X,.

Proof. Since both (6,r,¢,s,¥) and (8',r1, ¢, S, ) represents «, and ¢, i are invertible, it
follows that 6rr; = &' 7;. Then, by[2.2.12} there exists i i € T such that X, =0'X,. O

N ;
2216 Lemma. Let X __la _ Y € 2-Pro(C), (r,¢) representing f, X; — Y and (s, )
g
S Xy
_—

representing @, Xy =, Y;. Then, 1 _l,>k € I and X ue Y; € C such that

l v sX,
0, rX,, rm, 0@, sX,, sm, o) represents a. Observe that in case « is invertible, one can
choose 0 to be invertible.

r

\ e/

T f i

Proof. In lemma[2.2.5, take C = Y;, and @ = || \e/. Then,3 >k € I and
T g b

Vvt ]

s Ty
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Xy
Xk U6 _ Y, €C such that

sX,
r X Tk
\m, / r X Ty r X Tk
o W v/
T T s
s X, Tk = T f , 1.e \nv/ = \ % /

\ y! / T g 7Ty g
S Ty
This proves that (6, rX,, rm, o ¢, sX,, Sm, o i) represents a. O
From remark [2.2.61 we have:
2.2.17 Remark. If i = //, then one can choose u = v. ]

2.3 2-cofiltered pseudo-limits in 2-Pro(C).

Let J be a small 2-filtered 2-category and J° L 2-Pro(C) a 2-functor,
X/ = (X{)igj, I?p X, C. Recall (2.1.11) that for each j in J, X/ is equipped with a

i ~ j J _ / .
pseudo-limit pseudo-cone {7Ti }idi, {”“}iin"ef_,- for the 2-functor X/. We are using the

supra-index notation to denote the evaluation of X.
We are going to construct a 2-pro-object which is going to be the pseudo-limit of X in
2-Pro(C). First we construct its index category.

2.3.1 Definition. Let Kx be the 2-category consisting on:

O-cells of Kx: (i, j), where j€ J,i€ I

1-cells of Kx: (i, j) i @, j), where j 5 jedg, Xl] 5 X{ € C are such that
(r, @) represents X°.

0 v
2-cells of Kx: (a,r, ) (az) (b,s,y), where a = be g and (0,r,¢,S,Y) represents
X,
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Proof.

The 2-category structure is given as follows:

(l'll, j//)

(a,r) @.r'¢)
Wa.0) Wa'.0")
.. (b.s.0) v '8y
l’ b
(i, J) W @, J) RS
(ctg) (GRS
rr T
|\ ¢
r Ty Xa’
- @, r,o)a,r,0)=(da,r’, \¢/ )
T Xa NG
I \N=/
T Xa’a

- (,0)(,0) = (da,08)

- B,no(a,0)=(Boa,nob)

2.3.2 Proposition. The 2-category Ky is 2-filtered.

FO. Let (i, j),(7', j') € Kx. Since J is 2-filtered, 3

One can easily check that the structure so defined is indeed a 2-category, which is clearly
small.

j a
= J" €J.Byp23
J b

| X{:/ LN X{ and X{;f LN X{r € C such that (r,id) represents X* and (ra, id)

b . -
represents X”. Since 7 ;- is 2-filtered, 3 =" € I j». Then, we have the
1%

2

following situation in Kx which concludes the proof of axiom FO:

@i, ) W)

(i/aj/) (b, I'QX‘], , rzyri )
o 7
X ), r
|y |
nu

1 -1’ 17
Note that ri), = 1y ! and ol = n

u i v

\ = \

ﬂ{ X4 71{,
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(a.r.p)
Fl. Let (i,j))____(,j) € Kx. Since J is 2-filtered, 3 — j” and

(b,s.4)
_ca Lo
an invertible 2-cell j le j' € 9. By [2.2.3 EIXi —>X{, eC
cb
rot 771]{
|\ =
r ﬂ{, X¢
such that (1,id) represents X°. Then (rt, \‘so/ H ) represents
ﬂ{ x4 X¢
oN\=/
ﬂ{ X
s t ﬂi
|\ =
S n{, X¢
X and (st, \_w/ H ) represents X, so, by [2.2.16 there exists
ml Xb X¢
N\=/
ﬂ{ xea
rtX{:,
k—>i"eTl  and an invertible 2-cell le Lo _ X' €C such that
stX{:,
rotx al st x' a
7 7
r t ! S t b4
k k
N R I I T
O, X, r nl{ X¢ ,stX! ) s nl{ X¢ ) represents X,
Ve | Vv |
m X4 X m Xb X
N\=/ o N\=/
oo e oy
l 1

(Xl ix] Yar)
_ >

Then we have an invertible 2-cell in Kx (i, ) U@o (”,j”) which
_—

(etXl nl Yb.sw)
concludes the proof of axiom F1.
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(ar)

F2. Let (i,j) U@® L@ (7,j) € Kx. Since J is 2-filtered, 3 j — j/ € T
_— >

(b.sy)

such that ca = ca’.
(t,id) represents X°.

X¢ and therefore we have that (6, rt, \fp /

r t ni

|\ o=

r zr{, X

(0't, rt, \‘w/

71{ X4 X¢

N\=/
x X

r t niN
Wl
S i ﬂi
S 71{;, X¢
y
ﬂ'j ¢

N/

1 1

Also, by 23, 3 X/ — X/ e C such that
Then, it is easy to check that (i,t,id,1,id) represents
rt niN s t nlJ:
= =
r o X¢ S ﬂ{, X¢
H , St, \_w/ H ) and
ﬂ{ X4 X¢ ﬂ{ Xb X¢
N\=/ N\=/
ﬂ.l{ Xca ﬂ.l{ Xca
S t ﬂiﬁ
|\ o=
S n{, X¢
H ,st, \'z/// H ) both represent X
n{ Xb X¢
N\=/
ﬂJ XC(I
r t 77}{ r t 771]{
r 71'{,, )G r JTI{I G
|+ )
TN/
x Xb\ /xc Ao X
ﬂ-j ch 71-!. \ch/

where the first equality is due to elevators calculus plus the fact that (6,r, ¢, s, )

represents X?.

Then, by 2215, 3k 5 @ e I, such that atx) =6tx), so
(e, XX tm,)(@, 0) = (¢, tXL , tm,)(a/, @), which concludes the proof of axiom F2.
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_ % _ .~
2.3.3 Proposition. Let X be the 2-pro-object K" — C defined by X jy = X!, X(ary) =T,
and F)Z(a,g) = 0. Then the following equation holds in 2-Pro(C):

X = Lim X/
(_
jegT

h, . hy
Proof. Let Z € 2-Pro(C), and {Z N XJ} {Xahj/ = hj} e be a pseudo-cone

jeJ’ J—J'e

g

for X with vertex Z (1.2.2). Given (i, j) (a—"’f) (', ') € Kx, the definitions h; ;) = n{hj

<

r 7{{/ hjf

1
\er _
and h ) = nl! X¢  hj determine a pseudo-cone for cX (where c is the morphism of
I \h/
! h;
2.1.10) with vertex Z:

PCO. It is straightforward.

ar

e, s,
PC1. Given (i, j) =5 @, 1) 225 @, ) e %y,

r s ﬂ-l{;' ha r s ”,]/,rl h»
|+ | |+
j, i i 22
rom, xt h ron Xt h;
|\ e
r ﬂ-{: h], = 7T[J Xa Xb hju
el N/
”{ X hj’ ﬂ{ Xba hj//
N T\
7-[{ h j 71-{ h j

where the equality is due to elevators calculus plus the fact that h is a pseudo-cone.

. . B (a,r’w) . .
PC2. Given (i,j) l@®_ ({,J) € Kx,
(b,s.4)
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, hj r 77{, hj

\w/ ‘ X hy s n’ hj
sx e
\/ doeohowx

' ' i
|\ | \“b/
X
where the first equality is due to the fact that h is a pseudo-cone and the second one

is valid because (0,1, ¢, S, i) represents X®.

It is straightforward to check that this extends to a functor, that we denote p (for
the isomorphism below see [2.1.13):

PCo-proc)(Z.X) = PCaproic)(Z. cX) = 2Pro(C)(Z. X)

The proposition follows if p is an isomorphism. In the sequel we prove that this is the
case.

1. p is bijective on objects: Let

) har @

{Z e (i,j)} (a,rp)

J
f}o’,j)ewx’ Karoha. = rhiy = i) e

be a pseudo-cone for X with vertex Z 1}
ha,) : )
Check that for each € 9, {Z =3 X{ }ie] together with

{hu =h .. j: X{;h(ir,j/) - h(i,j)}. J

is a pseudo-cone for X/.  Then, since
(X)) iSier, p .

{XJ — X{ }‘GI , {X[,irlj = } p is a pseudo-limit pseudo-cone, it follows that there
i€l

iJitlsier;

hy .
exists a unique Z —%5 X/ such that
VieI; nlhj=hg) and Vi—>i €I; mh;=h, (2.3.4)

It only remains to define the 2-cells of the pseudo-cone structure. That is, for each

hq .
j = j €., we need invertible 2-cells X%y = hj, such that {h;} cq together with
{h, } form a pseudo-cone for X with Vertex Z.

72



7’h
) 7'!'1. . . i) .
Consider the pseudo-cone {XJ — X{ }‘GI . Then the compositions {Z X! }
1 j .
i€l ;

determine two pseudo-cones for X/ with vertex Z.
Claim 1 Let (r, ¢) and (S, ) be two pairs representing X as follows:

2 o
ﬂ./

.'/ s ﬂ‘// o
XJ'——= X X/ ——= X,
ﬂ__i/ 1 ﬂ[! l
Then, h(a’r#;) o (p_lhj' = h(a,s,w) o lﬂ_lhj/, ie.
o Xe  hy xl Xe hy
r ﬂ-lj’ hj/ = S n’["l’/ h]'
\ earg) / \hmsw) /
oo x hj
(proof below).
Claim 2 For each i € I let (r,9) be a pair representing X°, and set
7Tj X4 h]’
v/l
pi:h(a’r,",,)oga_lhj/ =r n{, hy . Then, {p,'}l-dj determines an isomorphism of
h(a,rw /
xh
i
pseudo-cones {Z U pi X{ } (proof below).
xlXeh, i€l

J}‘ “ier is a pseudo-limit pseudo-cone, the
i j

J_J i
, {Xuﬂ., =
. i ifilie

Since {Xf i X{}.EI
it

(), .
functor 2-Pro(C)(Z, X/) = PCa-proc)(Z, X/) is an isomorphism of categories V j € 7.
h .

.
Then, from Claim 2 it follows that there are invertible 2-cells Z  1h, = X/ € 2-Pro(C)
Xah
J
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. h; .
such that p; = n’h, Vi € I;V j € J. Let’s check that {Z L X __ together with
i J g

JET

h :
{X"h 7 =h j} . a is a pseudo-cone over X:
=

7T
PCO. By Claim 1, in Claim 2 we can take r = id and ¢ = id, so p; = id and therefore
hiy = id.
b
PCl. Given j — j — j” € Jand i € I, by Claim 1, in Claim 2 we can take

(r, id) representing X%, X{;’ LN X{ , (8, id) representing XP, X{: =, Xl{, and (rs, id)
representing X"*. Then

ﬂl{' X¢  xb o hp
! | Xa xb ¥4 \hb / r ﬂ'lj Xt hj
VAR R AR
] ' Xa hy = \ / ‘ = r s g hp=

\/ o

J .
ﬂ'l. h J

7rJ X xb ],,

”i’ ],, lJ Xe xb h Iz
= \: / = H \hb a/
r s m, hp m  hj
\ Nwars,ia)
! h;

1

where the first, the second and the last equalities hold by definition of h, is),
N.s.iay and Ny rs iay Tespectively plus some elevators calculus; and the third equal-
ity is due to the fact that h is a pseudo-cone.
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Since we checked this for any i € 1, it follows:

Xa  xb hjr

AT

>

Q

&‘3-

Il
e
7

h;
a r
. . —— . . . i’ I 1 .
PC2. Given j _le _ j € J andi € I}, there is X{, Lo X{ and appropriate
b s

invertible 2-cells ¢,  such that (6, r, ¢, S, ¥) represents X*. By Claim 1, in Claim 2
we can take those representatives of X and X” and then:

ﬂ'lj X4 h]’
ﬂf X4 hj \ ¢! / ‘
ﬂ.l Xa h i \ ¢! / ‘ r - l,/' h j'

ﬂ{ h;
7le X4 hj
LW e
77{ Xb hjy H \”/ ‘
TN I
. .

where the first and last equalities hold by definition of h ) and h(,s ) respec-
tively, the second equality is due to the fact that h is a pseudo-cone and the third
one is valid because (0,1, ¢, S, ) represents X®.
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Since we checked this for any i € 1, it follows:

X4 hy
< w
W

hj
xlh;
v ‘
2. pis full and faithful: Let {Z U paj X{ } be a morphism of pseudo-cones
xlm; (i, )eKx
ﬂ,jhj
v, . . —_— . .
for X. It is easy to check that for each j € 7, {Z Upip X! } is a mor-
—_— i s
ﬂ{mj el

phism of pseudo-cones for X/. Then arguing as above, there exists a unique morphism
hj

Z Up, X/ e€2-Pro(C) such that for each i € T s ﬂ{p ;i = pG,j- It only remains to
mj
prove that {p;} jc7 is a morphism of pseudo-cones:

PCM. Given j SN J € J andi € I}, by Claim 1, in Claim 2 we can take (r, id) repre-

. oo
senting X¢, X{, — X{ and then:

m o Xa hj
n.lJ Xu h j/ ﬂ-lJ Xa h j/ r ﬂ-{, h j/
A B\ |7 |
71'{ h j = ﬂ-l{ h j = r "{' mj =
| ¥ | o | |- |
] mj ] m; Xt my

| \n/
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T lJ, h 7 T lj X4 h J
T/ T ¢
= r ﬂi; m j/ = ﬂ-l] Xa m j'
|- | \r/
m X4 m ! m;
| \m/
by m;

where the second equality is valid because p is a morphism of pseudo-cones.

Since we checked this for any i € 1, it follows:
X4 hj
| v
| ¥

A
o\

mj mj

O

Proof of Claim 1. First assume that i/ = i’ and (r, ), (S,¥) are related by a 2-cell

(a.rp)
. - - . . .
i, j) U@d_ (@,))in Kx. Then:
(a,s.)
71'{ X4 hj’
ﬂ{ X4 hJ’ \ y! / ﬂ'{ X4 h/
Kel T I AL S
A A N
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where the first equality holds because 6 represents id (the identity of X¢), and the second
one is valid because h is a pseudo-cone.

(arg) (i, j')

The general case reduces to this one as follows: we have (i, /) —_ € Kx.
@sy) (@, J)

iP—u . . . .
Take W\ k in 1 ;. This yields a particular instance of lemma|2.2.16
i v
X/ ———X/
X4 g X4 rX{,J inl
Xj ———= X/
7 !
m j/ v ],
Ny N I
with (rX}, r ) ) and (sX/, s xl, ) both representing X*. It
e Vv
] X4 ] X
I xJ
: w 7 e Y
follows that there exists k — k' € I, and X;, _ 16 _X{ € C such that
s
sX] X/,
i + j/ o 5 j’
rx; x/ T s X X, T
(I [ =7
- - r Xi’ ﬂi - - S X‘\]/, ﬂJ
O, rX, X5, H Nl / , SXI X1, H N\l / ) represents id (the iden-
r 71'1, S 7ZJ,/
1A 1
Ve Vv
! X4 ] X4
tity of X%).
-t - J - - j’
rx, X, T s X X, T
| N U
v - r X‘l{i, ﬂ]i - - S X‘\I/, ﬂIJC
Considering (X! X/, H N ) and (sX! X/, H \al / ) both rep-
r ot s ,
l 1
Lo Vv
! X4 ! X4

1

1

resenting X“, we have a situation that corresponds to the previous case. Thus:
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] X4 hy  n X4 hj
| / | /
r h ¥4 S / h ¥4
/, ) \ %f ) \
r u h]/ = S v h],
%ﬂw \ /”w \
J 7 " 7 J ”
r X, X, m, h; s X, X m, hj
hea.rXd X2 1) / \ hea.sX! I .11) /
j ‘ J .
m h; ! h;
7oy J 7oy J
rX, X, T s X; X, Ty
(I | A
rox; o s X'
where [ = H N\l / and /] = H N\l /
r m, s ),
¢ \ovo
! X4 ] X¢
Then, since h is a pseudo-cone, we have that
! X4 hy ! X4 hj
e / Lo
r h; S Ty, h;
ﬂm \ /n{i y!
r u h 7 S X‘J) ﬂi h J
‘ / o )\ = ‘ (n{;f)*\
J " J J J "
r Xu Xw 7Tk/ hj S Xv XW nk’ h]
\ hy Xi Xl xd / \ hy x5l X wl) /
7 , 7 ,
r ) hj S o, hj
\ h(a r.e) / \ h(cz,s,w) /
J ; J :
T h_] 7Tl- hj
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From and the fact that X/ is a pseudo-cone, it follows that

J h . J h
r T, J S T j
/(ni')‘\ ‘ /ﬂi')‘\ ‘
J J ) i J "
roox/ ! h; s X/ ) h;
‘ %ﬂ(ﬁ)‘\ ‘ and ‘ %zrﬂf)‘\ ‘
J J J , 7 7 J ,
r Xu Xw T, h] S Xv XW T hJ
h i’ i’ i’ i’ h i’ i’ i’ i’
\ /X by X 7 ) / \ XX X ) /
r ) hj s ), hy
are identities. So
! X4 hj ml X¢ hj
r ﬂ-ljl h j; = S ﬂlJ/ , h j/
\ h(ayw) / \ Pasu) /
J : .
m h; 7 h;
as we wanted to prove. O

Proof of Claim 2. Given any i Sker j» we have to check the PCM equation in m
Given the pair (s, ) used to define p, it is possible to choose a pair (r, ¢) to define p; in
such a way that the equation holds. This arguing is justified by Claim 1. O

2.3.5 Remark. A similar proof can be done in case X is only a pseudo-functor. Replace
X4 Xb Xa Xb
the equality 2-cell \= /by the structure 2-cell \a,’fh / in the elevators. O
Xba Xba
2.3.6 Theorem. 2-Pro(C) is closed under small 2-cofiltered pseudo-limits. Considering
the equivalence in[2.1.3} it follows that the inclusion Hom(C, Cat)s. € Hom(C, Cat) is

closed under small 2-filtered pseudo-colimits O
Proof. It is immediate from[2.3.3] |

Having [2.3.5]in mind, from the fact that 2-Pro,(C) is pseudo-equivalent to 2-Pro(C)
it follows easily that:

2.3.7 Corollary. 2-Pro,(C) is closed under small 2-cofiltered bi-limits of pseudo-
functors. O
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2.4 Universal property of 2-Pro(C)
In this subsection we prove for 2-pro-objects the universal property established for
ro-objects in [[1, Ex. I, Prop. 8.7.3.]. Consider the 2-functor C N 2-Pro(C) of Corollary

F
2.1.10/and a 2-pro-object X = (X;);cr. Given a 2-functor C — & into a 2-category closed
under small 2-cofiltered pseudo-limits, we can naively extend F into a 2-cofiltered pseudo-

F —_
limit preserving 2-functor 2-Pro(C) — & by defining FX = L|<_m FX;. This is just part
iel
of a 2-equivalence of 2-categories that we develop with the necessary precision in this
subsection. First the universal property should be wholly established for & = Cat, and
only afterwards can be lifted to any 2-category & closed under small 2-cofiltered pseudo-
limits.

2.4.1 Lemma. Let C be a 2-category and F : C — Cat a 2-functor. Then, there exist a
2-functor F : 2-Pro(C) — Cat that preserves small 2-cofiltered pseudo-limits, and an

isomorphism Fec— Fin Hom(C, Cat).

Proof. Let X = (X))ier € 2-Pro(C) be a 2-pro-object. Define:

FX = (Hom(C,Car)(~,F)o X = Hom(C, Cat)(l.i_)m Cc(X;,-),F) —
N iel N
— I(_|_m Hom(C, Cat)(C(X;, —), F) —> I(_|_m FX.
iel iel

Where L is the 2-functor of the first isomorphism is by definition of pseudo-
colimit [.2.4] and the second is due to the Yoneda isomorphism Since it is a
2-equivalence, the 2-functor L preserves any pseudo-limit. Then by Corollary it
follows that the composite Hom(C, Cat)(—,F) o L preserves small 2-cofiltered pseudo-
limits m]

2.4.2 Theorem. Let C be any 2-category. Then, pre-composition with C = 2-Pro(C) is
a 2-equivalence of 2-categories:

c*

Hom(2-Pro(C),Cat),

Hom(C, Cat)

(where Hom(2-Pro(C), Cat)+ stands for the full subcategory whose objects are those
2-functors that preserve small 2-cofiltered pseudo-limits).

Proof. We will check that the 2-functor ¢* is essentially surjective on objects and
2-fully-faithful (see[I.1.29):

- Essentially surjective on objects: It follows from lemma (2.4.1
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- 2-fully-faithful: We will check that if F and G are 2-functors from 2-Pro(C) to Cat
that preserve small 2-cofiltered pseudo-limits, then

Hom(2-Pro(C). Cat),(F.G) ~— Hom(C.Cat)(Fc,Ge) (2.4.3)

is an isomorphism of categories.

Oc
Let Fe  Uu _ Ge € Hom(C,Cat)(Fc,Gc). It can be easily checked that com-
_—

nc
9)([.
. Fri v .
posites {FX — FX;  Umx GX,} determine two pseudo-cones for GX to-
nx; iel

gether with a morphism of pseudo-cones. Since G preserves small 2-cofiltered

. . . Gr; . . .
pseudo-limits, post-composing with GX = GX; is an isomorphism of cate-
(Gnm).

gories Cat(FX,GX) — PCgu(FX,GX). It follows that there exists a unique
0%

2-cell in Cat, FX _Uux  GX, such that Gmi6y = 6Ox,Fr;, Griny, = nx,Fr;, and
X

Gy = px,Fmi, Vi € I. Itis not difficult to check that 65, n} are in fact 2-natural
on X, and that x5 is a modification. Clearly 6'c = 6, 7'c = n, and y’c = u. Thus
[2.4.3]is an isomorphism of categories.

O

2.4.4 Lemma. Let C be a 2-category, & a 2-category closed under small 2-cofiltered
pseudo-limits and F : C — & a 2-functor. Then, there exists a 2-functor
F : 2-Pro(C) — & that preserves small 2-cofiltered pseudo-limits, and an isomorphism

Fe - F in Hom(C, E).

Proof. It X = (X))ier € 2-Pro(C), define FX = I_|<_m FX;. We will prove that this is the
iel
object function part of a 2-functor, and that this 2-functor has the rest of the properties

asserted in the proposition.
F _
Consider the composition yyF : C — & X9, Hom(EP, Cat), where y is
the Yoneda 2-functor (1.1.360). Under the isomorphism |[1.1.34] this corresponds to a
2-functor £°? — Hom(C, Cat). Composing this 2-functor with a quasi-inverse (—) for

the 2-equivalence in[2.4.2] we obtain a 2-functor &7 — Hom(2-Pro(C), Cat).., which in

F —_—
turn corresponds to a 2-functor 2-Pro(C) — Hom(EP, Cat). The 2-functor F preserves
small 2-cofiltered pseudo-limits because they are computed pointwise in Hom(EP, Cat)
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(1.2.7). By chasing the isomorphisms one can check that we have the following diagram:

C 2-Pro(C) (2.4.5)
FC i) y(_)F, FL .U,E l'ﬁ
& —~— Hom(&", Cat)

Consider the following chain of isomorphisms (the first and the third because F and y(_)
preserve pseudo-limits (1.2.13)), and the middle one given by [2.4.5)):

FX = FLim X; — Lim FeX; — Lim y)FX; «<— y,Lim FX.
— — — —
iel iel iel iel

This shows that FX is in the essential image of Y(-. Since y(- is 2-fully-faithful (1.1.38}), it

—_~ = o~ F
follows there is a factorization y_yF — F, given by a 2-functor 2 Pro(C ) — E. Clearly
F preserves small 2-cofiltered pseudo-limits. We have Ve )Fc — Fe — Yy F. Finally,

the fully-faithfulness of y_ provides an isomorphism Fc —> F. This finishes the proof.
]

Exactly the same proof of theorem [2.4.2] applies with an arbitrary 2-category & in
place of Cat, and we have:

2.4.6 Theorem. Let C be any 2-category, and & a 2- categorjy closed under small

2-cofiltered pseudo-limits. Then, pre-composition with C 50 Pro(C) is a 2-equivalence
of 2-categories:

Hom(2-Pro(C),E)y ———>  Hom(C,E)

Where Hom(2-Pro(C),E), stands for the full subcategory whose objects are those
2-functors that preserve small 2-cofiltered pseudo-limits. O

From theorem it follows automatically the pseudo-functoriality of the assign-
ment of the 2-category 2-Pro(C) to each 2-category C, and in such a way that ¢ becomes
a pseudo-natural transformation. But we can do better:

If we put & = 2-Pro(D) in[2.4.6)it follows there is a 2-functor (post-composing with
c followed by a quasi-inverse in [2.4.6)

Hom(C.D) — "> Hom(2-Pro(C), 2-Pro(D)), . 2.47)
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and for each 2-functor C i D, a diagram:

2-Pro(C) i> 2-Pro(D) (2.4.8)
CT EN) TC
C D

Given any 2-pro-object X € 2-Pro(C), set 2-Pro(F)(X) = FX. Ttis straightforward to
check that this determines a 2-functor

2-Pro(F)

2-Pro(C) 2-Pro(D)

making diagram [2.4.8] commutative. It follows we have an isomorphism

FX — 2-Pro(F)(X) 2-natural in X. This shows that the 2-functor 2-Pro(F) preserves
small 2-cofiltered pseudo-limits because F does. Also, it follows that 2-Pro(F) deter-
mines a 2-functor as in In conclusion, denoting now by 2-CA7T the 2-category of
locally small 2-categories (see[I.1.18)) we have:

2.4.9 Theorem. The definition 2-Pro(F)(X) = FX determines a 2-functor
2-Pro(-) : 2-CAT — 2-CAT .

in such a way that ¢ becomes a 2-natural transformation (where 2-CAT .. is the full sub
2-category of locally small 2-categories closed under small 2-cofiltered pseudo limits and
small pseudo-limit preserving 2-functors). O
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Resumen en castellano de la seccién 2]

En esta seccién se encuentran algunos de los resultados claves de este trabajo. En
dada una 2-categoria C definimos la 2-categoria 2-Pro(C) cuyos objetos llamamos
2-pro-objetos. Un 2-pro-objeto de C es un 2-funtor a valores en C (o diagrama en C)
indexado por una 2-categoria 2-cofiltrante y serd el pseudo-limite de su propio diagrama
en la 2-categoria 2-Pro(C). También en establecemos la férmula bésica que describe
los morfismos y las 2-celdas entre 2-pro-objetos en términos de pseudo-limites y pseudo-
colimites de las categorias de morfismos de C.

En [2.2] establecemos ciertos lemas técnicos que nos permiten operar con 2-pro-
objetos en las secciones siguientes.

En dada ¥ una 2-categoria 2-filtrante y un funtor 7 L 2-Pro(C), construimos
un 2-pro-objeto que serd el pseudo-limite de X en 2-Pro(C). Para esto, primero constru-
imos una 2-categoria 2-filtrante que sirve como 2-categoria de indices para el pseudo-
limite (Definicién y proposicién[2.3.3).

Finalmente, en [2.4] enunciamos y demostramos la propiedad universal de 2-Pro(C)
(Teorema establecida para pro-objetos en [[1, Ex. I, Prop. 8.7.3.]. Considerar

el 2-funtor C —— 2-Pro(C) del corolario [2.1.10] y un 2-pro-objeto X = (X;);cy- Dado

F .
un 2-funtor C — & a una 2-categoria cerrada por pseudo-limites 2-cofiltrantes, pode-

mos extender F a un 2-funtor que preserva pseudo-limites 2-cofiltrantes 2-Pro(C) 5 &
definiendo FX = <Ll_m FX;. Esto es solo una parte de una 2-equivalencia de 2-categorias
que desarrollamoslzeléul’. Primero debemos desarrollar completamente la propiedad univer-
sal para & = Cat, y solo después de esto, puede ser traspasada a una 2-categoria cualquiera
& cerrada por pseudo-limites 2-cofiltrantes.

También consideramos en esta seccion la 2-categoria 2-Pro,(C) que es “retract
pseudo-equivalent” a 2-Pro(C), hecho que se sigue de que los 2-funtores a val-
ores en Cat asociados a 2-pro-objetos son flexibles. Esta 2-categoria sera esencial en la
secci6n 3]y probard ser interesante en si misma.
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3 Reindexing properties for 2-pro-objects

In this section we prove some reindexing properties for the 2-categories 2-Pro(C) and
2-Prop(C) that will be used to determine closed 2-bmodel structures on them (see
as Edwards and Hastings do in [12]] for Pro(C) in the 1-dimensional case. The reindexing
properties for Pro(C) can be found in [3]] or [1]].

3.1 Reindexing for objects

3.1.1 Proposition. Let X = (X;)jcq be a 2-pro-object and F : I — J be a 2-cofinal
2-functor with I a 2-filtered 2-category. Then, the 2-pro-object Xp = (XF())icr IS equiva-
lent to X in 2-Pro(C).

Proof. First note that the 2-pro-objects X and Xr are equivalent if the canonical 2-natural

transformation Ii)n C(XF@iy, —) =6> L|_>m C(Xj, —) is an equivalence in Hom(C, Cat).
iel Jjeg

Now, for each C € C, consider the 2-functor 4 Cat . Then, by |1.3.9

j ——C (X s C)

0
Li_)m C(XF), C) 5 I_I_n)1 C(X}, C) is an equivalence of categories YC € C and so, by |(1.5.6
iel jeg
and[I.5.5] 6 is an equivalence. O

f
3.1.2 Remark. If we denote the equivalence given by the previous proposition X — X
and its quasi-inverse f, then ff = idx.

3.1.3 Corollary. It follows from|[I.3.15|that every 2-pro-object X = (X)) e is equivalent
in 2-Pro(C) to a 2-pro-object indexed by the cofinite filtered poset with a unique initial

object M() via a 2-cofinal 2-functor M(J) L Y.

Proof. Tt is immediate from [I.3.15]and[3.1.1} ]

Since every morphism in 2-Pro(C) is a morphism in 2-Pro,(C), and also
hold in 2-Pro,(C). However, it is worth mentioning that a proof similar to the one for

can be done for 2-Pro,(C) and[1.5.6] wouldn’t be needed because of [1.1.20

3.2 Reindexing for morphisms

3.2.1 Definition. Let f be a morphism from X = (Xp)jer to Y = (Y)jeg in 2-Pro(C). We
are going to denote by M; the following 2-category:
Objects are the pairs (r, @) that represent f.
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Morphisms (r,o) — (8,¥) (r : X; = Y}, 8 : Xy — Yj) are triplex (u,a,0) where
Y, s

iSi el j 5 j € 9 and 0 is an invertible 2-cell \ 0 / such that

Y, s Ty
y |
ko
\nu/ =Y, 7 f

Ty f
(u,a,0) }
A 2-cell (r,p) _ 4 (s,¢) is a pair (u,a) where i e i € I and
v.b.n) v
a
_——
j Ve _ j €9 are such that
b
Ya S Ya S

Yy
\n
h

Identities and compositions are defined in the obvious way.

3.2.2 Lemma. Let f be a morphism from X = (Xp)ier to Y = (Y))jeg in 2-Pro(C).

. Mi——1 M——T
The 2-category M is 2-filtered and the 2-functors , _are

ro——i ©er——
2-cofinal.

Proof. M is 2-filtered:

FO: Let (r,¢), (s,¢) € M (r : X; = Y;, s : Xy — Yj). Since J is 2-filtered, we

J—a .

have =] € J and, by [2.2.3[ and the fact that 7 is 2-filtered, we have
a
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Xirr —t> Y;» € C and an invertible 2-cell € such that (1, €) represents f and there

/ u
are morphisms l,> i’ € I. Then we have (r, ¢) and (1, €) both representing
1 v

f equipped with morphisms i 5 er, j N j’ € 9. So, by , there are

_ Yot Xy
morphisms jlﬁ;f € 7 and an invertible 2-cell \9 / € C such that
l O r Xuo
Yo ot Xy T Ya t Xy T
N/ \y/
r X T Y t i

w a
72 B

r T Yo T f
| e \e/
j f

Ty f
t Xy, 7
| e
Then we have (s, ¢) and (tX,,, t my ) both representing f equipped with
\ e
Ty f
~ b
morphisms 7’ Nier, j — j’ € 9. So, by [2.2.8] there are morphisms
thXVOXV1
P . . /
Ilp € 7 and an invertible 2-cell U] € C such that
sXy,
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Yb t XV()
Yb t XVO XV 1 7Ti0

Xy T
v/
Yb t X s
s Xu, Ty \n,,(/

Yb t Ttjn

Tty \ & /
Yo Ty f

! v/
Ty f

(r, ) (viuo,a.0X,, )
It can be checked that there are morphisms in M - Xy Xy, 1) -
(S ¥) ™ Gurbap

N

where
t XVO le ﬂio
\r/
t Xy Us
a o/
t i
| e
Uy f
(u,a,0) c
F1: Let (r,¢) (s,¥) € M. Since J is 2-filtered, we have j/ — j and an
(v,b,n)

invertible 2-cell ca = cb € J and, by [2.2.3and the fact that T is 2-filtered, we

have X; —t> Y+ € C and an invertible 2-cell € such that (1, €) represents f and there
VI VO . . "

are a morphism i’ — "’ and an invertible 2-cell wu = wv € 1.

Then we have (s,y) and (1,€) both representing f equipped with morphisms
v up

i " el, J =5 J’ € 9. So, by[2.2.8] there are morphisms i,\«\ ip €1
i

/
Vo
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Yot Xy
and an invertible 2-cell \ i / € C such that

s Xuo
Ye t Xyo i Y t X, Ty
\ o/ \V4
s Xy Ty Ye t i
\% / = \ . / (3.2.3)
S 4 Ye oo Ty f
| \r/
iy f Ty f

Plus, since 7 is 2-filtered, there is a morphism iy -, 7 and an invertible 2-cell
I
Wiy = wvgw € 1.

Let’s check that we a have a morphism in M
t XV() XW ﬂ;

\o/
TT, io

(.
t X

(Wvow,c,8Xg 00Xy) Vo
(S’ 170) B (tXV()XﬂM H \”VO/ ):
t T
Ve
iy f
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Y. ot X Xp T s Xuo X T
\ o/ /o
S Xuo X T s Xy Xvp X
| /o v
Xyo Xo T = s Xy Xyo Ty
% o/
s s X, i
e \/
Ty f s Ty
I
Ty f
Y. t Xy, X T Ye t Xy Xp T
\/ \e/
Ye t X Ty Ye t Ty
\ v/ o/
- s Xy Tiy = Y. t T
% L
s Ty Ye Ty f
I \e/
Ty f Ty f

where the first equality follows from axiom PCI1, the second one holds by elevators
calculus plus axiom PC2 and the last one is due to (3.2.3).

Now observe that
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4

VAN

T i

7z

S
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Ya Yc t XV() X17I/ 777
Y, Y. t Xy, T,
\e/
Y. Y. t T
Yo Y. Ty f
Y, Ty f
7y f
b -
r Tty
r Xy Ty
r Xy Xy T
K
r X, Xu T
/7
r Xy X Xy T,
f\
r Xv Xw Xvo XW ﬂ?
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Y, Y. t Xy Xy T
\e/
a Yot Xy Ty
\/
s Xy Ty
\m
Y, S Ty
e
Ya Ty f
e/
Ty f
N
r us
i\
r Xu Ty
/=
r Xu Xy T
||
r X, Xy T
/5
r Xy Xy Xy T,
/#\
r Xy Xy Xy X 7



Yo Yo vt Xy o Xy o T
\o/
Y, s Xy X 4
v/
Y. s Xy Tiy Yo Ye t Xoo X U
A4 \oo/
Y, s iy Ya S Xuo Xy TT;
Lo | /xN
r Xu Ty =Y, s Xy Xy Xp T
SN e
r Xu Xy Tty r Xu X, Xvo Xy TG
/3 |
r Xu X o Xy Tty r Xy X o Xy X Ti
A
X, X Xe  Xe o T
||
r X, X, Xyo Xy T

where the first equality is due to axiom PC2, the second one and the fifth one require
some elevators calculus plus (3.2.3), the third holds because (v, b, 17) is a morphism
in M;, the fourth one and the last one are valid by elevators calculus plus axiom
PC2 and the sixth one is due to elevators calculus plus the fact that (u,a,0) is a
morphism in M.

Then, by [2.2.12] there exist a morphism i -, i1 € 1 such that
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F2:

YoYe t XXX Yo¥e t X XiaXi
I \o /
YoYe t Xy XipXig Yo s Xy XaXup
| o [ =]
Yo s Xu XaXws = Ya S XoXoXiXu
[») |
Yo S XoXuoXiaXu X X Xog X Xong
H s
r Xy X Xpp XX Xy X Xoo XX

We can conclude that we a have a morphism in

(wowvow,c,sXzX

X
W OéXﬂ’ XWO ) ‘ ‘ ‘ ‘ \ HW/
X

(s,¥) — Xy Xa X, t Xy, T ) and
I\
t i
Vo
T f

invertible 2-cell in M,

B ~ (woWwvop,@)
(Wowvow, ¢, Xz Xy, © Xz Xy (U, a,0) =

an

(woWwvow, ¢, Xz Xy, © éXWXWO)(V, b,n).

(u,a,0)

Let (r, )l Lep) (S,¥) € M;. Since J is 2-filtered, we have j 5 jeyqg

.b,n)

such that ce« = ¢B and, by and the fact that 7 is 2-filtered, we have
t: Xy» = Y;» € C and an invertible 2-cell € such that (t, €) represents f and there

. . ., W o~
is a morphism i/ — i € 7 such that wy = wp.

i uo
Now, since 7 is 2-filtered, we have morphisms > ip €1.
4
T
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vo
| e
Then we have (s, y) and (tX,,, t my» ) both representing f equipped with
Ve
Ty f
morphisms 7’ o ivel,j SN j” € 9. Then, by , we have morphisms
thxvoxvl
! uj
] i1 € I and an invertible 2-cell \ ] / € C such that
I~ v
sXy,
Y. t X,

Xy, i)
YC t XVO le ﬂ-i] \TVI/

Y. t T,

XVO
s Xo o T \””“/

ﬂ'l'//

t
. L]
T e
oy

Ty f

Plus, since 1 is 2-filtered, we have a morphism i; l) i» and an invertible 2-cell

\
<

- Ko
wiup = wviugw € 1.

It can be checked that there is a  morphism in M
t Xy Xy X T

| N\

t XV() le ﬂ-ll
(Wviuow,c,8Xg 00Xy) H H \ﬂvl/
Tty

(s,¥) — X Xo Xios £ Xy, ) such that
IERNGY4
t i
Ve
7 f

(Wviuew, ¢, 8X; © 6X)u, a,0) = (wviugw, c, sXj o X)) (v, b, 7).
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My ——1T
18 2-cofinal:
(r’ ‘P) P l

CFO: Leti € 1 and let X; Sy ;j € C such that (r, id) represents f. Since 7 is 2-filtered,
we have il’>v i’ € 1. Itis straightforward to check that (rX,, rr,) together with
i—i"el proves CFO.

u

CFl: Letie I,(r,¢) € Mi(r: Xy — Y;)and i i” € I. Since I is 2-filtered, we

v
have i/ 5 # and an invertible 2-cell wu = wv € I. It is straightforward to check
r Xy Tjrr
| N/
r b % ) proves CF1.
\ e/

Ty f

), id,id
that (, 0) - 3 (X,

u

_—
CF2: Letie I,(r,¢) €e Mg (r: Xy —» Yj)andi Uu Up_ i € 1. Since 7 is 2-filtered,
v

we have i/ — i/ € I such that wu = wp. It is straightforward to check that

r XW ﬂ'i//
(wiid,id) H \”W/
r,p) — (X, r Ty ) proves CF2.
\ e
Ty f
Mi——T
is 2-cofinal:

(r’ ‘70) 'H.]

CFO: Let j € J. By[2.2.3] we have r : X; — Y; € C such that (r, id) represents f. This
clearly proves CFO.
_4 .
CF1: Let jo € J, (r,¢) € M (r : X; = Y;) and jo j € YJ. Since J is 2-filtered,
b
we have j 5 j' and an invertible 2-cell ca = ch e J. Now, by , we have
s : Xy — Y € C such that (s, id) represents f.

From the proof of the fact that M; is 2-filtered, we have morphisms

(r,e) (”\’Cﬂ{ . . (u,c,0)
s.id) = (t,y) . It is straightforward to check that (r,¢) —  (1,4) proves
S, id) “(v,idn)

CFl.
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a

CF2: Let jo € J, (o) € Mi (r : X; = Yj)and jo Ue UB_ j € J. Since J is
b

2-filtered, we have j 5 j € J such that ca = ¢8. Now, by , we have
s : Xy = Y € C such that (s, id) represents f.

From the proof of the fact that M; is 2-filtered, we have morphisms

(r, @) (cH . . (u.c.0)
= (t,y¥) . It is straightforward to check that (r,¢) —  (1,4) proves
(s, id) (vid)

CF2.
O
f
3.2.4 Proposition. Every morphism of 2-pro-objects X = (Xj)ier = Y = (Y;)jeq can be

fm
represented up to equivalence by a 2-pro-object {X], = Y, }uepm in 2-Pro(Hom,(2,C)),
i.e. 3 a 2-filtered 2-category M, 2-pro-objects X' = (X )mepm, Y = (Y, mem and a

f/
morphism X' — Y’ such that the following diagram commutes in 2-Pro(C) up to iso-
morphism:

X—t—y (3.2.5)

X’ —,>Y/

f

;Droof. Take M = M as defined in , XEW) = X; and er,w) =Y, @{fr:X; = Y;) and
re) =1

R

. My——1 My——=T .
Since and _ are 2-cofinal, by |3.1.1] X’ is equivalent to X
(r,QD)'—)i (r,SO)'—)J

and Y’ is equivalent to Y. It is straightforward to check that diagram (3.2.5)) commutes up
to the isomorphism given by ¢ and the universal property of Y’. O

The previous proposition can be also stated as follows:

3.2.6 Remark. Every object f € Hom(2, 2-Pro(C)) have a lifting to Hom(M°P,C) up to
equivalence for some 2-filtered 2-category M.

Hom(M°?,C)

/ \L .
~ inc

2 2-Pro(C)

f
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3.2.7 Corollary. Let X = (Xp)jer —f> Y = (Y))jeg € 2-Pro(C). There exists a cofinite

fl
filtered poset with a unique initial object J, and a morphism X' — Y’ € Hom(J?, C) such
that the following diagram commutes in 2-Pro(C) up to isomorphism:

f

X Y (3.2.8)
X’ Y’

!

Equivalently every object f € Hom(2,2-Pro(C)) have a lifting to Hom(J°?,C) up to
equivalence for some cofinite and filtered poset with a unique initial object J.

Hom(J°P,C)

~ inc

25— 2Pro(C)

Proof. Consider f' given by and consider the following diagram:

Hom(M°P,C)
2 = inc ~ Wom(M(M)OP’ &)
\ \L inc
2-Pro(C)

where M(M) 5 M is the one given by |1.3.15] Note that the equivalence in the right
triangle is because F is 2-cofinal.
Then take J = M(M) and ' = (F°P)*f’.

The lifting property also holds for 2-Pro,(C):

3.2.9 Corollary. Let X = (Xi)ier —f> Y = (Y))jeg € 2-Pro,(C). There exist a cofinite

f/
filtered poset with a unique initial object J, and a morphism X' — Y’ € Hom(J, C) such
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that the following diagram commutes in 2-Pro,(C) up to isomorphism:

f

X Y (3.2.10)
X’ Y’

f

Equivalently every object f € Hom(2,2-Pro,(C)) have a lifting to Hom,(J?,C) up
to equivalence for some cofinite and filtered poset with a unique initial object J.

Hom,(JP,C)

2 f 2-Pro,(C)

f
Proof By [2.1.5, there exist X — Y € 2-Pro(C) and an invertible 2-cell
f==fe2- -Pro,(C). Apply [3 n to f to obtain a cofinite filtered poset with a unique ini-

tial object J, and a morphism X’ LN Y € Hom(J°P,C) such that the following diagram
commutes in 2-Pro(C) up to an invertible 2-cell y:

X— Y G.2.11)
a:k =y ‘/b:
X’ — Y’
Then we have
X ——>Y
az‘ = || yober lb: € 2-Pro,(C)
X—FY
as we wanted to prove. o

3.3 Reindexing for diagrams

The following proposition is a generalization of
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D
3.3.1 Proposition. Let A — 2-Pro(C) be a finite diagram with commutation relations
and no loops in 2-Pro(C). Then D can be represented up to equivalence by a 2-pro-object

over Hom,(A,C), i.e. there exists an inverse 2-filtered system of diagrams {A i Cliem
in C such that the diagram induced by the Dy’s in 2-Pro(C) is equivalent to D up to
isomorphism.

Equivalently, every object D € Hom(A, 2-Pro(C)) have a lifting to Hom(M°P,C) up
to equivalence for some 2-filtered 2-category M.

Hom(M°?,C)

2-Pro(C)

A D

Proof. We are going to proceed by induction in the amount of vertices of A. The initial
case is trivial.
Now, suppose that we have proved the proposition for diagrams with n — 1 vertices

and let A i> 2-Pro(C) be a diagram with n vertices. Let x be an initial vertex of A
and let A’ be the diagram resulting by taking x out of A and D’ the induced diagram in
2-Pro(C). By inductive hypothesis, there exists an inverse 2-filtered system of diagrams
{D;.} jeg such that the diagram induced by the Dfi’s in 2-Pro(C) is equivalent to D’. Let

.....

all the morphisms in 2-Pro(C) corresponding to morphisms from x to some other vertex

of A when we apply D. In what follows, we are going to abuse the notation by using Y’

for the corresponding objects via the equivalence between D’ and the diagram induced by

the D;.’s and f; for the composition of the previous f; with the corresponding equivalence.
Define M as the following 2-category:

Objects are m-tuples of pairs (r;, ¢;) with X; N Yé. € Csuchthati € 7, j € 9 and
(r, ) represents f; V[ =1, ...,m.

..........

.....

YL s
2-cell \ o, / such that
X,
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Y, som

L)

W
\901 / T fl

T f;
(u,a,{91}1=1 ,m,m)
—— . .
A 2-cell {(r,@nhi=1,..m y {(s,¥D}i=1,.m 18 a pair (u,@) where
Wb {nibi=1....m)
u a
. . — o
Uvu i"'el,j Uba jeJandVi=1,..,m
Y, Si YL s
\Yfz/ \91/
Yé S; = rn Xy
\771/ \Xu/
I‘[ XV rl Xv

Identities and compositions are defined in the obvious way.
In the following, we are going to prove that M is 2-filtered and the 2-functors

M I M J
and are 2-cofinal.

{reDbi=1,.m — i {reDbi=1,.m——

..........

J T .
2-filtered, we have € 9 and, by[2.2.3|and the fact that 1 is 2-filtered,
7

t
we have X;» N Yﬁ € C and invertible 2-cells ¢ such that V [ = 1,...m (1}, )

. i—U o
represents f; and there are morphisms _,> i’ € 1. Observe that, in this case,
i v

we are using the fact that 7 is 2-filtered as in but also to achieve that all t;
have the same source.
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Then we have {(r;, ¢))}i=1....m and {(t;, €)}1=1,.. m such that V I = 1,...,m, (r;, ¢;) and
(1, ) both represent f; and there are morphisms i irer . J N j'ed. So,

Yé tr Xy
S
by [2.2.9} there are morphisms ~f;>; € 7 and invertible 2-cells \9, /
i "
I Xu()
€ C such that
Yé t; XVO T YZ t XVo Ui
\ o/ \o/
" X 0w Yeoou o omw
N2 RN
f i vLo o f
R
j fi n; f,
tl XVo U
Y
Then we have {(S;,¥)}i=1...m and {(tlxvo, t; TTir Vi=1,..m such that
\ e
T f;
tl XV() U
|\
Vi=1,..,m(s;,y)and (4X,,, 1 my ) both represent f; and there are mor-
\ e
j f;
phisms i’ i e Vi 2, j’ € 9. So, by , there are morphisms
YéthVoXW

VU

1
. > ip € I and invertible 2-cells \ m / € C such that

1 Vi
SlXu1
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F1:

Yi) tl XV() le ﬂ-iO

2N T
Si Ty \ &l /
\ | b

Ty fi
It can be checked that there are  morphisms in M
{(r1, @D Yi=1,.. pviuo.a (6% Yi=1,..m)
{tXy, Xy, Dhi=1
(s, ¥D}i=1,..m  @rbdmbi=t,..m)

where
t Xvo le Tiy
\r/
1:l XVo Us
1= \TL’()/
tl TCir
I
7'['j// fl
(w,a{0i}i=1,...m)
Let {(r eDbi=1,.m  ____  {(SLYD}=1,...m € M. Since J is 2-filtered, we have
Wbnibi=1...m)

7 5 j and an invertible 2-cell ca = cb € J and, by [2.2.3|and the fact that T is

2-filtered, we have morphisms X;- i) Yé.,, € C and invertible 2-cells ¢ such that

Vi=1,.. m(,e¢) represents f; and there is a morphism i’ 5 ”” and an invertible

" L . .
2-cell wu = wv € 7. Have in mind the same observation made in the proof of
axiom FO.
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Then we have {(s;, ¥}i=1...m and {(t;, €)}i=1,...m such that V [ = 1,..,m (S}, ;) and
(t;, &) both represent f; and there are morphisms i’ Nirer . N j’ed. So,

.....

Yé tl XV()
) ug
by|2.2.9| there are morphisms _l”>i0 € 1 and invertible 2-cells \ é /
i Vo
Si Xu()
€ C such that
YZC t; XVO T, Yé t Xvo i
\ v/ \e/
S X iy b i
\% / - \ . / (33.2)
S[ ﬂ'l" Yé 7'['j// fl
\\ Vi / \n'a/
Ty f; T f;

Plus, since 7 is 2-filtered, there is a morphism iy L i and an invertible 2-cell

- Ko
Wiy = wygw € 1.

Let’s check that we a have a morphism in M
1:l XV() X\Zz ﬂ;
| J e/
- q t V Ty
(Wvow,c{si X001 Xip}i=1,...m) 0
N S (7 % R AN T D | MR
1; Tt
Ve
Ty fi
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YL Y Xy Xo 7 S/ Xito X 7

\ oo/

S/ Xuo Xw i S w Xy Xy T
o o
s Xy T = s X, Vo Ty =
T Ny
Sy Si Xy i
] o/
Ty fi S Ty
I
Ty fi
Yoy Xy Xeo T Y
\e/ \/
YLt X Tig Yo oot
\ o/ \/
= S X iy = Yoo i
VR RN
S/ Ty Y,  my fi
T
Ty f; mj f,

where the first equality follows from axiom PC1, the second one holds by elevators
calculus plus axiom PC2 and the last one is due to (3.3.2).

Now observe that
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a C
)
YoYLoot X Xp i
\ 6 /
YEYL ot X Xy ; Y, st X Xi; m
\Yé/ \V4
YéY 1 Xy, XW Us Yé Si Xuo Ty
Xug w 717 = Yé S| Ty =
/ A /
vo Xy T Yé S Xy Tprr
\'" /] /2
n Xy Xy Xy Xy T YZ S X Xy i
YZ Si Xy Xvo Xiv U
||
r X, X Xy Xi T
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Yoyl XVO Xp T
YLYL Xy Xy 7T \Yé / \ /
I I A
YIYL 4 X T \ /
(VAR S A
A \ . /
|~ I
\m/ Y, T fi
v v/
\ ¥y ! / B T f;
Ylb S; Ty \ ‘pl_l /
\rn / r T

r X, X VO Xp T

r Xy Xy Xog Xy 7
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Yé Yi tl Xvo Xﬁ/ Us
\ﬂ'ﬂ/
YEOYL oy X, T
o/
Yooyl
|-
vooyL omp g,
v/
Yé Ty f;
\ﬂa/
T fl _
I
f1 T
Jr
r Xu T
/A
r Xy Xy i
|
rl XV XW Tt
/A
r[ XV XW XVO 7Ti()
/=
r Xy Xy Xyp Xip i

110

YLyl
‘PG
\
Y, S/
Yl S
Y, 7y
v/
7j
\
r
r
r
N
N
r




YLDy X X i

-/
Y s Xy X bis1
o
Y S T, Y, YL t; Xvo X iy
o/ T\
Yl S T Y4 S Xuo X b
o e
r Xu Ty = Yﬁl s; Xy Xio Xy 7
SN
r Xu X i r X, X, Xy, X; 7
% |
r Xy Xy Xy, T, r X, X, " Xy T
i
I

I

where the first equality is due to axiom PC2, the second one and the fifth one
require some elevators calculus plus (3.3.2)), the third holds because (v, b, 7)) is a
morphism in M, the fourth one and the last one are valid by elevators calculus plus
axiom PC2 and the sixth one is due to elevators calculus plus the fact that (u, a6;)
is a morphism in M.

Then, by [2.2.13 there exist a morphism 7 2, i, € T such that
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F2:

YZYé tl XvoXVvXWO Yl Yl tl Xvox XWO

N \o/

Yl Yl 1 XVOXWXWO Yl s; X, WO
| | Xﬁ\
YIS Xuy XX = YL s X, xw,xwxwo
%] |
Yo st X Xuo XX nXe Xy xvox Xivo
N )

[ Xy X XuoXiXug M X X Xop XX

We can conclude that we a have a morphism in M
XV() X\X/ XW() ﬂ-il

H T ey

Xy Xp T
(WOWVOWC{SIXX 000X X Vt,.m) H I \”/
{(s,¥D}i=1.... o {WX0 Xia X 1 X, Ti Wi=1,.m
I N/
t T
\ e
T fi

and an invertible 2-cell in M

(WoWwvop,a@)
—

((Wowvow, ¢, {81 XaXwy © 0 XwXowo bi=1,...m) (s @, {01 i=1,...m)

((WOWVOW, c, {SlXﬁXWO o HIXWXWO} ..... m)(V b, { Yi=1,...m)-
(w,a{0hi=1...m)

Let {(r;, oD }i=1...m b @) L@h {(S;, Y )}i=1...m € M. Since J is 2-filtered, we have
Wb, {nibi=1....m)

.....

represents f; and there is a morphism #’ 5 7 € I such that Wi = wp.

. . . -

Now, since 7 is 2-filtered, we have morphisms - ip €1.
21/
l Vo
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tl Xvo Ty

o/

Then we have (¥}t m and {(tXy, & 7 heim such that
\ o
ﬂ'jr/ fl
tl XVO ﬂ;
N
Vi=1,..,m(s,y;) and (1X,,, Y i) both represent f; and there are mor-
\ e
mj fi
phisms 7’ e T , N j” € 9. Then, by , we have morphisms
YLt Xy Xy,

! up
f > i1 € I and invertible 2-cells \ 6, / € C such that
I~ v

SlXu1

ch o Xy Xy Ty
\e/

Tt
Sl Xu] Tril

X,
N/
\ml / = v m
s n \ ; /
|

tl XV() XV] 7T 1
vi t

Y f;

) JC 1
¢ J
ﬂ'jl fl \ﬂc/
7le

f;
Plus, since 1 is 2-filtered, we have a morphism i i) i» and an invertible 2-cell

- Mo
Wi, = wviuow € 1.

It can be checked that there is a morphism in M
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tl Xvo XV| XW T,

Oviuow,c, {8 X300 X Yi=1,...m
{su¥dli=1,.m — g(TszoXVIXw, t Yo Tt I=1,...m
\/
t i
| e
Ty fi

such that

(Wv1uow, ¢, {81 Xz © OXati=1,...m) W, b, (i i=1,...m)-

M I
is 2-cofinal:

{reDbi=1,.m——i

CFO: Letie fandletVI=1,...mX; N Yi. € C and invertible 2-cells ¢; such that
(r1, ¢p) represents f;. Note that we are using the fact that 7 is 2-filtered to make all

r;’s have the same source. Also because 1 is 2-filtered, we have l,>u i el It
rn X Tjr
I \=/ .
is straightforward to check that {(r;X,, I i )i=1....m together withi — "/
\e
Tj f;

proves CFO.

u

CF1: Leti € 1, {(ri,oD}li=1....m € M (r; : Xy — Yi.) and i i’ € I. Since T is

sssss
v

. . . . " : .
2-filtered, we have i’ Y i and an invertible 2-cell wu = wv € 7. Itis straight-

rl XW Tt
(wid fidY=1,_m) I \=/
forward to check that {(r;, @)}i=1,..m — {(rX,, 11 T i=t,...m
\ e
Ty f;
proves CF1.
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u

.....

2-filtered, we have i’ — i”” € I such that wu = wp. It is straightforward to check
n X T

W
(wiid i1, ) \m/

that {(r;, o)}i=1,..m — {(r Xy, N1 Tir )}i=1,..m proves CF2.

Ve

Ty i

M

{roeDbi=1,.m——j

1s 2-cofinal:

CFO: Let j € J. By and the fact that I is 2-filtered, we have
Yi=1,...mr:X;— Ys. € C and invertible 2-cells ¢; such that (r;, ¢;) represents
fr. {(r1, @1)}i=1....m clearly proves CFO.

a

CFl1: Let jo € T, {(r, e)}i=1,.n € M (1 2 X; — Yi-) and jjo — J €Y. Since J is

2-filtered, we have j 5 J' € J and an invertible 2-cell ca = chb e J. Now, by
2.2.3] we have s : Xy — Y € C such that (s, id) represents f.
From the proof of the fact that M is 2-filtered, we have morphisms
(L eDbi=1,.m  (wedilir.m)
{GLYDh=1,..m . It is straightforward to check that
_—
{(Sl’ld)}l:l m (V’id»{nl}hl ,,,,, m)

(u,c.{0hi=1,..m)
{reDbi=1.m  —  {,¥D}i=1,..m proves CFI.

.....

. 1 . > . . .
CF2: Let jo € I, {(r, oD}i=1..on € M(r; - X; — YJ.) and jo Uabllﬁ j€ YJ. Since J is

2-filtered, we have j 5 Jj € g such that ca = ¢B8. Now, by and the fact that
I is 2-filtered, we have VY [ = 1,...,m s;: Xy — Y?, € C and invertible 2-cells y;
such that (s;, ;) represents f;.
From the proof of the fact that M is 2-filtered, we have morphisms
{(r eDbi=1,.m _ welOhizr..m)

(G eDi=1,..m - It is straightforward to check that

(w,c0}i=1,..m)
{rooDhi=1,.m — {1, &@)}i=1,..m proves CF2.



Send x to X;, A’ to D} and the morphisms that link both parts to the corresponding r;’s.
o

D
3.3.3 Corollary. Let A — 2-Pro(C) be a finite diagram with commutation relations and
no loops in 2-Pro(C). Then there exists a cofinite and filtered poset with a unique initial

D
object J and a diagram A — Hom(J?, C) equivalent to D up to isomorphism.
Equivalently every object D € Hom(A, 2-Pro(C)) have a lifting to Hom(J°?, C) up to
equivalence for some cofinite and filtered poset with a unique initial object J.

Hom(JP,C)

T

2-Pro(C)

A f

Proof. It follows from [3.3.1]as follows from[3.2.4] O
3.3.4 Corollary. [3.3.3|also holds in 2-Pro,(C).

Proof. 1t follows from[3.3.3]as [3.2.9| follows from O
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Resumen en castellano de la seccién[3]

En esta seccion probamos ciertas propiedades de reindexacion para las 2-categorias
2-Pro(C) y 2-Pro,(C) que serdn usadas para probar que son “closed 2-bmodel
2-categories” (4.1.3) asi como Edwards-Hastings lo hacen para Pro(C) en [12]] en el caso
1-dimensional. Las propiedades de reindexacién para Pro(C) pueden hallarse en [3]] o [1]].

El primer resultado es una versién 2-categérica de un resultado debido a Deligne [1,
Expose I, 8.1.6] que es clave en el caso 1-dimensional en el desarrollo de la estructura
de modelos de la categoria Pro(C) [12]. El enunciado 1-dimensional establece que todo
pro-objeto es isomorfo a uno indexado por un poset cofinito y filtrante. Nuestra version
establece que todo 2-pro-objeto es equivalente a uno indexado por un poset cofinito y
filtrante. El segundo resultado establece que todo morfismo de 2-pro-objetos puede ser
levantado salvo equivalencia a un morfismo entre 2-pro-objetos indexados por un poset
cofinito y filtrante. Esto es un caso particular de un tercer resultado que establece que todo
diagrama finito en 2-Pro(C) puede ser levantado salvo equivalencia a un diagrama finito
de 2-pro-objetos indexados por un poset cofinito y filtrante. Es clave para estos resultados
la nocién de pseudo-funtor 2-cofinal dada en la seccion [I} Toda esta seccion serd usada
para probar el teorema central de la seccién
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4 Closed 2-model 2-categories

In this section we introduce original notions of closed 2-model and closed 2-bmodel
2-category and state some lemmas and propositions that we are going to use later. Our
notion is stronger than Pronk’s “fibration structures” ([26]) since it is a 2-dimensional
version of the full Quillen’s axioms for closed model structures. It also differs in the im-
portant fact that we do not assume the choice of a privileged global factorization given in a
pseudo-functorial way but stipulates, as Quillen does, only the existence of factorizations
for each arrow.

Most of the results of this section are generalizations to the context of 2-categories of
well known statements about closed model categories. For definitions and results in the
1-dimensional case, check for example [27] or [[13]].

4.1 Definitions and basic lemmas

4.1.1 Definition. Let C be a 2-category and A - XY B two morphisms in C. We
say that the pair (i,p) has the lifting property (or equivalently that i has the left lifting
property with respect to p or equivalently that p has the right lifting property with respect
to i) if for each diagram in C of the form

A—Y 4.1.2)

Lo
YaR

In this case, we say that (f, A, p) is a filler for diagram (4.1.2).

such that
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4.1.3 Definition. We say that a 2-category C is a closed 2-model 2-category (respectively
a closed 2-bmodel 2-category) if it is equipped with three classes of morphisms called
fibrations, cofibrations and weak equivalences satisfying the following properties:

2-MO: C is closed under finite weighted pseudo-limits and pseudo-colimits of pseudo-
Sfunctors F : P — C with finite weights W : P — Cat (see [[19]).
(Respectively:

2-MOb: C is closed under finite weighted bi-limits and bi-colimits of pseudo-functors
F : P — C with finite weights W : P — Cat (see [19]).)
To simplify, by finite we mean that P is finite and W(P) is finite for all P € P.

2-M?2: Every morphism f € C can be factored up to isomorphism as f = pi with i a cofibra-

tion which is also a weak equivalence and p a fibration or i a cofibration and p a fibration
which is also a weak equivalence.

2-M5: Given a diagram of the form

h
X—Y
NS
Z
If two of the three f, g, h are weak equivalences, then so is the third one. Every isomor-
phism is a weak equivalence.

2-Mb6a): A morphism p € C is a fibration iff the pair (i, p) has the lifting property for every
i that is both a cofibration and a weak equivalence.

2-M6b): A morphism i € C is a cofibration iff the pair (i,p) has the lifting property for
every p that is both a fibration and a weak equivalence.

2-M6¢c): A morphism f € C is a weak equivalence iff it can be factored up to isomorphism
as f = uv where u has the right lifting property with respect to all cofibrations and v has
the left lifting property with respect to all fibrations.

For some of the proofs of section [5] we are going to assume that our 2-category C
satisfies the following “2-niceness conditions”:

2-N1 Every cofibration is a bi-pushout of a cofibration between cofibrant objects.
2-N2 Every fibration is a bi-pullback of a fibration between fibrant objects.
2-N3 At least one of the following is satisfied.:

2-N3a) Every object is cofibrant.  2-N3b) Every object is fibrant.

4.1.4 Remark. A fourth niceness condition is considered in [[12] in the 1-dimensional
case: N4: There exist functorial cylinder objects. Though it is not mentioned, we think
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that this condition is only needed in the proof of the analogous of but we also
believe that this condition is not necessary as we proved in the 2-dimensional case that
locally pseudo-functorial cylinder objects can be chosen (see [4.2.8)) which is enough to
prove[5.2.12] Clearly, from the proof of 4.2.8| we see that it follows from Quillen’s axioms
that is possible to choose locally functorial cylinder objects, result that we have not found
in the literature.

4.1.5 Remark. Any closed 2-model 2-category is a closed 2-bmodel 2-category. Note
also that the two notions differ only in the first axiom. O

4.1.6 Remark. To check axiom 2-MOb, it is enough to check the existence of bi-
equalizers, finite bi-products (binary plus bi-1) and bi-cotensors with a finite category
(see [28], [19], [SD). O

4.1.7 Remark. If C is a closed 2-bmodel 2-category, in particular C has finite bi-limits
(that is finite conical weighted bi-limits) indexed by a poset, and more in particular bi-
pullbacks and bi-1. O

4.1.8 Lemma. Let C be a 2-category with three classes of morphisms satisfying 2-Mb6a),
2-M6b) and 2-M6¢). Then a morphism p € C is both a fibration (respectively cofibra-
tion) and a weak equivalence iff it has the right lifting property (respectively left lifting
property) with respect to all cofibrations (respectively fibrations).
Proof. We will prove the case where p is a fibration. The other case is similar and we
omit it.

=) LetY P, Be C be a morphism that is both a fibration and a weak equivalence

and A — X € C a cofibration and suppose that we have the following situation:

Since C satisfies axiom 2-M6c¢) and p is a weak equivalence, there exist morphisms u,
v and an invertible 2-cell p = uv such that u has the right lifting property with respect to
all cofibrations and v has the left lifting property with respect to all fibrations. Then there
exist fillers (f1, 41, p1), (f2, A2, p2) for the following diagrams

Y —=Z

%

j
B

v .
a % idy

A Z
k = |} yoe'la ‘/ v =|e p
X—B
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A et
idy a \62/ H

Let’s check that (fofy, / 42\ , u f, ) is the filler that we were looking for:
fz vV a \Pl/
|\ b
fy fi i
a
A
e a0y A
//12\ P idy a
p 1 v a \s / p a
UERURERY
f] i \f_/ b |

pf

o/

u f] |

\pl/

b i

The first equality holds by elevators calculus plus the fact that (f;,A;,0;) and
(f2, A2, p2) are fillers for the corresponding diagrams.

<) Since C satisfies axioms 2-M6a) and 2-M6c¢), it is clear that p is a fibration and it

is also a weak equivalence because it can be factored as p = pidy.
]

4.1.9 Proposition. Let C be a 2-category with three classes of morphisms satisfying ax-
ioms 2-M6a), 2-M6b) and 2-M6c¢). Then the following hold:

2-M1: Given i a cofibration and p a fibration, if one of them is a weak equivalence, then

the pair (i, p) has the lifting property.

2-M3b: Fibrations (respectively cofibrations) are closed under composition and bi-
pullbacks (respectively bi-pushouts). Every isomorphism is a fibration and a cofi-
bration.

In particular:

2-M3: Fibrations (respectively cofibrations) are closed under composition and pseudo-
pullbacks (respectively pseudo-pushouts). Every isomorphism is a fibration and a
cofibration.
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2-M4b:

If f € C is the bi-pullback (respectively bi-pushout) of a fibration (respectively
cofibration) which is also a weak equivalence, then f is a weak equivalence.

In particular:

: Iff € Cis the pseudo-pullback (respectively pseudo-pushout) of a fibration (respec-

tively cofibration) which is also a weak equivalence, then f is a weak equivalence.

. Fibrations, cofibrations and weak equivalences are closed under isomorphisms, i.e.

if there is an invertible 2-cell f = g and f is a fibration (respectively a cofibration
or a weak equivalence), then Q is also a fibration (respectively a cofibration or a
weak equivalence).

Proof. 2-Ml: is clear by 4.1.8]
2-M3b: We are going to prove the case of fibrations, the case of cofibrations is similar
and we leave it to the reader.

- Suppose that p and q are two fibrations in C. By axiom 2-M6a), to prove that gp is

a fibration, we only need to check that it has the right lifting property with respect
to all morphisms that are both cofibrations and weak equivalences. So let i be a
cofibration which is also a weak equivalence and suppose that we have a diagram
of the form

Since q is a fibration, there exists a filler (fy, Ag, og) for the following diagram

z

Now, since p is also a fibration, there exists a filler (f;, A1, 0;) for the following
diagram

a p

—Y —

q

W<=—7"N

=ly
—_—
b
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ap f
| ey

Let’s check that (fj, 45, @ f, ) is the filler that we were looking for:

T
S RN

- Now suppose that p is a fibration and we have a bi-pullback

o
—_—

P Y
71'1‘/ = a lp
Z B

-

f

(4.1.10)

We need to prove that r; has the right lifting property with respect to all morphisms
that are both cofibrations and weak equivalences. So let i be a cofibration which is
also a weak equivalence and suppose that we have a diagram of the form

A—2—p

—p <

123



Since p is a fibration, there exists a filler (fy, Ao, po) for the following diagram

Since @.1.10) is a bi-pullback, there exists a morphism X 2, P and invertible

2-cells mpg ﬁzo fo, m1Q g b satisfying the following equality:

p m 9 P m 9

I ¢
| Y ]

f b

It is straightforward to check that (g, 4,8;) is the filler that we were looking for,
o a T a

|+ g

i andmd =

fo b i
i\ Ve
7o g T g i

where A is such that mg1 =

- To conclude with axiom 2-M3b, suppose that f is an isomorphism, i is a morphism
that is both a cofibration and a weak equivalence and we have a diagram of the
form

Since f is an isomorphism, there exists B 2, ¥ such that fg = idg and gf = idy. It
is clear that (gb, y, id) is the filler that we were looking for.
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2-M4b: Suppose that p is both a fibration and a weak equivalence and we have a
bi-pullback

P———Y 4.1.11)
ﬂ]l = a ‘/P
Z B

Since we have already proved axiom 2-M3b, we know that 7 is a fibration. By 4.1.8] we
have to check that 7y has the right lifting property with respect to all cofibrations. The
proof follows as the proof of axiom 2-M3b.

2-M7: Suppose that f is a fibration (the case of a cofibration is similar and we leave

it to the reader) and there is an isomorphism f = g. We want to check that g has the
right lifting property with respect to all morphisms that are both cofibrations and weak
equivalences. So, suppose that i is a morphism that is both a cofibration and a weak
equivalence and we have a diagram of the form

X<—>
I
=
<=
«
-
RTR
%

Il
X<—>
I
=

<

[}

)

QO
W<~—-=<

It is straightforward to check that (fp, Ao, f fg ) is the filler that we were looking for.

oo/

b
To conclude, suppose that f is a weak equivalence and there is an isomorphism f = g.
Then g = f = uv as in 2-M6c¢) and so is also a weak equivalence. O

Although we do not use it in this work, we set (for the record) the following definition:
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4.1.12 Definition. We say that a 2-category C is a 2-model 2-category (respectively a
2-bmodel 2-category) if it is equipped with three classes of morphisms called fibrations,
cofibrations and weak equivalences satisfying 2-MO (respectively 2-MOb), 2-M1, 2-M2,
2-M3 (respectively 2-M3b), 2-M4 (respectively 2-M4b), 2-M5 and 2-M?7.

4.1.13 Corollary (of d.1.9).
1. If Cis a closed 2-bmodel 2-category, then C is a 2-bmodel 2-category.
2. IfCis a closed 2-model 2-category, then C is a 2-model 2-category. O

4.1.14 Remark. By axiom 2-M7, axiom 2-M5 can be replaced in each definition by its
following weaker version

2-M5w: Given two composable morphisms f, g € C, if two of the three f, g, gf are weak
equivalences, then so is the third one. Every isomorphism is a weak equivalence. O

The following is the 2-dimensional version of “the retract argument” [16} 7.2.2].

4.1.15 Proposition. Let C be a 2-category and let X N YecC.

1. If tis factorized as f = pi and the pair (f,p) has the lifting property, then f is a
retract of i in Maps,(C).

2. Iftis factorized as f = pi and the pair (i,f) has the lifting property, then f is a retract
of p in Maps,(C).

Proof. 1. Let (g, 4, p) be a filler for the following diagram

Then f is a retract of i via (idx, g, 4, idx, p, y‘l, idigy, P).

2. The proof is similar to the previous one and we leave it to the reader.
]

4.1.16 Proposition. Let C be a 2-category, p’ a retract of p and i a retract of i. If the pair
(i, p) has the lifting property, then the pair (', p’) also does.
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Proof. We know that p’ is a retract of p via (6y, 61, 6, 70, 771, Im»> Mo, 1) and i’ is a retract
of i via (6], 61, 0,,, 1y 1} > T H(y» 1) Suppose that we have a diagram of the form

AN ————Y “4.1.17)

X ——— B

b

By hypothesis, there is a filler (f, A, p) for diagram

9037](’)
A—Y

il =y lp
X B

61bm;
p 6 a
V| | H
6, pf a
where y = H \ 7/ H :
v
BRY
01 b m i

o N Ve
/10\ H ﬁ\ H S\

It can be checked that (rpf6", 0

[ 1\

is the filler that we were looking for. O

4.1.18 Proposition. Let C be a 2-category with three classes of morphisms satisfying
axioms 2-Mb6a), 2-M6b) and 2-M6¢). Then fibrations, cofibrations, morphisms that are

127



both fibrations and weak equivalences and morphisms that are both cofibrations and weak
equivalences are closed under the formation of retracts.

Proof. 1t is straightforward from[4.1.16] plus [4.1.8] O

We believe the previous statement is also true for weak equivalences but its proof is a
deeper result. Classically (in the 1-dimensional case, for closed model categories) it fol-
lows immediately from Quillen’s theorem “y(f) invertible iff fis a weak equivalence”
(where vy is the universal functor inverting weak equivalences). We expect to finish a
2-dimensional version of this theorem in future work.

4.2 Locally functorial factorizations and cylinder objects

4.2.1 Definition. A factorization up to invertible 2-cell for arrows in a 2-category C is
said to be locally pseudo-functorial (on the sequel we will just say functorial) if given

f 2, e Hom,(2,C) as in the following diagram

0o 70

X X X"
’ 14
Y a Y Y
there are suitable factorizations
X % Y X/ % Y/ XI/ % Y/I
Z Y z"

such that there exist morphisms Z 2z LN Z" and invertible 2-cells \ B / , \ Y / ,
g i h ¥

p/ g pr/ h
\ H / , € / fitting in the following diagram:
6 P m p
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0o U]

X X’ X
NS
z 7 "z
f % f ;/p, i o
Y 0 Y’ m Y”
and satisfying the following equations:
f’ to 170
A ST o
) \ O / p” i o \ i /
\ﬁ / = & f and \ 4 / = m 4
9 i / a\ P’  h ¥ / af\
DR
6 P i m proV

4.2.2 Proposition. If C is a closed 2-bmodel 2-category, then the factorization of axiom

2-M?2 is locally functorial.

o=
Proof. In the situation of , by axiom 2-M2, we have a factorization f = pi where
i is a cofibration and p is both a fibration that is also a weak equivalence. Consider the

following diagram

o

X X’ X"
=6 =4
i bi—p.o. Ao bi—p.o. A
o 4
Z P Q
[ f 7 7
N N s
NN =021 P !
| \ h ~ |
p =/ al ==a 2/——>7" ==& Ib
| 4 N |
! //, =lp :\ !
v P NN
7 142
Y ; Y — Y
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Both bi-pushouts exist by axiom 2-MOb. P Ay together with invertible 2-cells

a Ao 6o
w/ | a o 6
A \

a /10 a 1 f 90 H \ 5 /
\ﬁo / , \ Bi / such that \oe = a A1 i exist by universal

o Vol

f Y
1 VA o P
6 P

property of P. By axiom 2-M2, we have a factorization a = p’i with T a cofibration and p’

b A
b
a fibration and a weak equivalence. Q — Y”’ together with invertible 2-cells \:36 / ,
f/l

b A, 1m0
B/
\f’(i/ o b A 0
b li 4
\ Nm / H \ o /
/ B \ such that 1M f = b A Ao exist by
;o H /BN /o
L 7 A moop i

1 a 0
| /N
m T A
universal property of Q. By axiom 2-M2, we have a factorization b = p” with ¥ a

cofibration and p”’ a fibration and a weak equivalence. Finally, (h, 4, p) is a filler given by
axiom 2-M6. Thus we have the following equality:

T A4 p” T4
Vol
P’ h T o= b4
|7 f o\
m o p i m p 7

Take i’ = idp and i = i7/16 which are cofibrations because they are compositions of
cofibrations (g and /16 are cofibrations by axiom 2-M3). It is straightforward to check that
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f! f’ :
f /136\ /ﬂé_\ ) ‘

Ja\, a A, b D,g=Thg=| \o/.v=7 2 a,
SR AN T )
N - A R Nt
T A
Nt P’ h
u= a A; and € = \ o / satisfy the desired property. m]
\ Bi / m p

01 p

4.2.3 Remark. In the situation of 4.2.1} if f = f” and 0, n are part of a retraction from f
to ', then factorizations for f and f* given by can be chosen in such a way that i is a
retract of i’ and p is a retract of p’. ]

4.2.4 Definition. Let C be a closed 2-bmodel 2-category and X an object of C.
1. We say that X is a fibrant object if the only morphism X — * is a fibration.
2. We say that X is a cofibrant object if the only morphism 0 — X is a cofibration.

4.2.5 Remark. Note that 0 and * are denoting the bi-initial and the bi-terminal object
respectively given by axiom MOb. More explicitly, O satisfies that for each X € C, there
exists a morphism 0 — X € C up to unique invertible 2-cell. And * satisfies that for each
X € C, there exists a morphism X — * € C up to unique invertible 2-cell.

In the previous definition the abuse of saying “the only morphism” is justified by
axiom 2-M7. O

4.2.6 Definition. Let C be a closed 2-bmodel 2-category and X an object of C.

1. A cylinder object for X consists of a diagram

4.2.7)

. iX
idy ) . o 1. . . .
where VX = ( X ), X ( .?( ] is a cofibration and o is a weak equivalence. By

idyx I
X1 X we denote the bi-coproduct.
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2. A path object X consists of a diagram

X X
=y J{px

X ——=XxX
A

s

where AX = (idy, idy), p* = (p?)(, p>1() is a fibration and s* is a weak equivalence.
By X x X we denote the bi-product.

The following corollary says that in a closed 2-bmodel 2-category there are locally
functorial cylinder objects (c.f. 4.1.4).

4.2 8 Corollary (of B2.2). Let C be a closed 2-bmodel 2-category. Given
X 4 X’ N X" € C. There are suitable cylinder objects for X, X’ and X"

XX x X UX X' UX o
ixl = yX ix'i EﬂN iX”J/ Eﬂyx"\
X T> X X! T) X X T X

X faf X7 Iy X 9
morphismsi X LX and invertible 2-cells \B / , \ Y / , \ 7 / s
g ¥ h X f o oX
o h
\ € / fitting in the following diagram:
X

XHX fLf XIHXI$XNHXN

. X/ N
X\ lx zX
— g —_ h ~

X Xl X/I

vX /’X VX’ /X ’ VX” /( ”
7’
X X _

f

satisfying the following equations:
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vX fIf VX’ faf

/yx’)\ vX fIIf /yx”r\ vX’ It
O'X,

X fLIf \ = / X X" It \ = /

\ﬁ/ = f VX and \7/ = f vX
X g X ! o h ¥ /(yx/)“\
BIRES R
f oX X f o X

O

f
4.2.9 Proposition. Let C be a closed 2-bmodel 2-category and X — Y € C a cofibration.
There exist suitable cylinder objects for X and Y such that f induces a morphism that is
both a cofibration and a weak equivalence

and a cofibration

YaXvy -5 ¥

where Y & X is the following bi-pushout

X———>X
y k
Y T YA X
andY X VY is the following bi-pushout
XX X

= |
fLIf bi Lo laf
i—p.o

YUY ———>YaXvY

Plus, if f is both a cofibration and a weak equivalence, so is ki.
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For a geometric intuition, one can think of Y A X as the cylinder of f which is obtained
by pasting a copy of Y on the bottom part of the cylinder of X viaf. AndY A X VY can be
seen as the double cylinder of f, which is obtained by pasting a copy of Y on the top and
another one on the bottom of the cylinder of X via f.

Proof. By axiom 2-M2, we can choose a cylinder object for X with ox a fibration

XX X (4.2.10)
X —x X
Now consider the following diagram
i 4.2.11)
=y
X 11X —- X s X
= | 6

fLIf bi—p.o. laf =1 B f

by L \ L

Yuy YAXVY -~~~ ~—~ >Y

Vi  at
The upper left bi-pushout exists by axiom 2-MOb. V; and invertible 2-cells \ Br / ,
foX
Vi & iX
\ & | Vi ooa X
Vi b foooX iX [ \ o |
\Vf / such that | N7/ = Vi br fIIf are given by the uni-
VY f VX \yf/ H
\ o= vY fIIf
VY fLIf

versal property of Y A XvY.

134



By axiom 2-M2, we can factorize Vi with oy a fibration that is also a weak equivalence

and ks a cofibration.
Consider the following cylinder object for Y:

Yoy -
kfbfl :m

YT>Y

(4.2.12)

where yY =yibso O ! Then, k¢ is the wanted cofibration.
To construct Y A X and k¢, consider the following diagram:

The upper left bi-pushout exists by axiom 2-MOb and then, by univer-
b/
f

Rf a]: r(f
sal property, we have ki and invertible 2-cells \af/ , \llf / such that
as b Ao
k& i ke af iy
\(If / H H \ 5 /
as ii)( =k bf' f -

/o V)|

f br Ao f

by Ao

Take kf, = kfRf.
Recall that the upper left square of (4.2.T1) is a bi-pushout. Then, it can be easily
checked that the following diagram is also a bi-pushout:
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X X Y A X X———vaX
fl =l (6 :Mf ke T | =U@oeardf |k
Y— YUY —>YaXvY Y——-YaXvY

Thus, since f is a cofibration it follows from axiom 2-M3b that k; is also a cofibration.
We can conclude then that k{ is a cofibration.

It only remains to check that ki is a weak equivalence (then, in case f is a weak
equivalence, k; is also a weak equivalence by axiom 2-M3b and so, by axiom 2-M5, k; is
a weak equivalence):

Also by axiom 2-MS5, it is enough to check that b} is a weak equivalence because oy
is a weak equivalence and Uyk]f b; = jdy. To check that, consider the following diagram

idy
 =ln
IO — O'X
X X X 4.2.13)

Y T YaX— 3 —2Y
= vt
idy
h a h b}
By universal property of Y aX, there exist h and invertible 2-cells \ & / , \Vf /
f oX idy
h & i
H e i

| o

(o i |\
such that ‘ \yé / = h bf’ f -

f idx \Vf/ H

- idy

idy f

Again, by axiom 2-M35, it is enough to check that h is a weak equivalence and this is
the case because o is a weak equivalence and the right square of diagram @.2.13) is a
bi-pushout since both the left square and the outside square are bi-pushouts.
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O

f f
4.2.14 Remark. If X — Y is a retract of X’ — Y’ via (8o, 01, 61, 170, 71, > Mo» M1) and
the constructions of the previous proposition are performed for both morphisms, then kg
is a retract of ky and kf’ is a retract of k;,.

Proof. We give a sketch of the proof, leaving the details to the reader. First observe

that VX is a retract of VX'. Then, from plus one can choose “retract cylinder
objects” for X and X’ as in the following diagram

XX — oy — 3 xqrx

\ i \
g h —~

X X’ X

v /TX v /X/ v /TX

X - X’ - X

By functoriality of the bi-pushout, one can construct a retraction

— — A —

YAXYY LY AX VY -5 YAXVY and it can be checked that this is part of
a retraction from Vi to Vy. Then, by #.2.3] one can factorize Vi and V¢ in such way that
ks is a retract of kg

— g — h ~
YAXVY Y aAX VY ———=YaAXVY

ki % Ky
vy 3
O.Y O_Y’ O_Y
Y 7 Y’ m Y
Similar arguments can be used to prove that k{ is a retract of k. O

4.3 Some transfer properties

43.1 Lemma. Let F : C__— D : G be pseudo-functors such that F 4, G via €, n

(see|l.1.25) and let A —|> XeCand¥Y LN B € D. Then the pair (Fi,p) has the lifting
property iff the pair (i, Gp) does.
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Proof. =) Suppose that we have a diagram of the form

A GY
i‘ =y Gp
X GB

By hypothesis, we have a filler (f, A, p) for the following diagram:

FA—2 - Fgy — v
Fik =y lp
FX ———~FGB —— B
p ey Fa
= |
es FGp Fa
N
Gp.a
where y' = &8 F(Gpa)
il
B F(bi)
VAN
b,i
€8 Fb Fi
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a
S =N\ Gp
idgy a \“&f/
. =\ [ G(ph) X

ey ney a \Gr/ H
H \ =/ GlsFb)
Gey GFa 7a AN [
It is straightforward to check that (Gfny, NS, ey ‘ , Gep GFb nx)1is
G(eyFa) | \ m
\&y H Gep NGB b

G(fFi) nA N\ = / H
SN idas b
Gf GFi 7A \\ = /
| \ o/ b
Gf nx  Fi
the filler that we were looking for.

<) The proof is similar to the previous one. m]

432 Lemma. Let F : C__— D : G be pseudo-functors between closed 2-bmodel
2-categories such that F -, G. The following properties hold:

1. F preserves cofibrations iff G preserves morphisms that are both fibrations and
weak equivalences.

2. F preserves morphisms that are both cofibrations and weak equivalences iff G pre-
serves fibrations.

Proof. 1. =) Let p be a morphism in D that is both a fibration and a weak equiva-
lence. By we only need to check that Gp has the right lifting property with
respect to all cofibrations. So let i be a cofibration in C, then Fi is a cofibration in
D and so it has the left lifting property with respect to all morphisms that are both
fibrations and weak equivalence. Then the pair (Fi, p) has the lifting property and,
by [@.3.1] so does the pair (i, Gp).

<) The proof is similar.

2. The proof is similar.
O

F
4.3.3 Proposition. Let C — D be a 2-functor that is a retract pseudo-equivalence of
2-categories (I.1.28). If D is a closed 2-bmodel 2-category and we define the correspond-
ing structure in C, then C is also a closed 2-bmodel 2-category.
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Proof. Let G be a pseudo-quasi-inverse to F and FG - idgp an equivalence as in
such that GF = id,.

2-MOb: The proof is straightforward.

2-M2: Let f € C. Since D satisfies 2-M2, Ff can be factorized as Ff = pi where p is
a fibration and 1 is both a cofibration and a weak equivalence. Let p = Gp and i = Gi.
Then, it can be easily checked that Fp = FGp is a retract of p. Then, by Fpisa
fibration in O and so p is a fibration in C. With a similar argument, one can check that i
is both a cofibration and a weak equivalence in C. Plus f = GFf = Gpi = GPpGi = pi as we
wanted to prove. The case in which p is a weak equivalence is similar and we leave it to
the reader.

2-M5w: Let f and g be two composable arrows in C such that two out of the three f, g
and gf are weak equivalences. Then two out of the three Ff, Fg and Fgf = FgFf are weak
equivalences and so is the third because 2-M5w is satisfied in . But this implies that f, g
and gf are all weak equivalences as we wanted to prove.

2-M6a): =) Let p be a fibration and i a cofibration which is also a weak equivalence
in C and suppose that we have a diagram of the form:

Since Fp is a fibration and Fi is both a cofibration and a weak equivalence in D, there
exists a filler (fy, Ao, po) for the following diagram

FA—2 > FY

Fi‘/ = || Fy le

FX T> FB
a p Gfy
\of =/ H
GFa GFp Gfo
\G/l(/. \agp.fo/
It is straightforward to check that (Gfy, G(foFi) , G(Fpfo) ) is the filler
(af((a)v’:i)_l Gp
| \=/ -
Gf() i \b/

140



that we were looking for.

<) LetY P, Be C such that it has the right lifting property with respect to all mor-
phisms that are both a cofibration and a weak equivalence. To check that it is a fibration,
we need to check that Fp is a fibration in  where we have axiom 2-M6a). So suppose
that we have a morphism i € 9 which is both a cofibration and a weak equivalence and a
diagram of the form:

b
Then we have a diagram in C as follows
GA—2 .y (4.3.4)
Gik =y ‘/P
GX T‘ B
p Ga
GFp Ga
\a?p,a /
where y’ = G(Fpa)
Gy,
G(bi)
(g™
Gb Gi

We are going to prove that Gi is both a cofibration and a weak equivalence: In order to
do that, by [4.1.8] we only need to check that FGi has the left lifting property with respect
to all fibrations. So suppose that we have a fibration g and a diagram of the form

3

FGA ——

F

II?

FGX
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Since i is both a cofibration and a weak equivalence and q is a fibration, the following
diagram admits a filler (f;, 11, p1)

an a

A FGA N
il =y q
X—LTX>FGX5—>B
q a aa
\ 7 H
b FGi aa
AN
wherey = b ax @x FGi aa
|1 Ve |
b ax i @A aa
I ] =/
b ax i
a
/AN A
adan an \o/ |
It is straightforward to check that (f;ax, \/11/ H , b ax @x)is the filler that we
fi i aa \E
|\ b
fi ax FGi

were looking for.
Then, by hypothesis, diagram (4.3.4)) admits a filler (fo, 29, 00).
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It is straightforward to check that

/a\

a an ap  Fp afy Ffo ax

Ve I yew I

aFy FGa an ars Fp Ffo ax

H /F/lO\ I H \Fro,/ [
(apyFfoax, @FY Ffo FGi an, arg FGb ax)

| =N e H

ary Ffy ax a\x FGi an p ax ay

I Ve LN
ary Ffy ax i o aa b/

N =/

ary Ffy ay i

is the filler that we were looking for.

2-M6b): The proof of this axiom is similar to the previous one and we leave it to the
reader.

2-M6c¢): =) Let f € C be a weak equivalence. Then Ff € D is a weak equivalence and
therefore we can factorize it as Ff = uv where u has the right lifting property with respect
to all cofibrations and v has the left lifting property with respect to all fibrations. Consider
0 = Gu and V = Gv. Then Fii = FGu is a retract of u. Then, by f.1.18] 0 has the right
lifting property with respect to all cofibrations.

By a similar argument, we can prove that V has the left lifting property with respect to
all fibrations.

So we factorized f as we wanted because f = GFf = Guv = GuGv = V.

<) Let f = uv € C with u having the right lifting property with respect to all cofibra-
tions and v having the left lifting property with respect to all fibrations. We want to check
that Ff is a weak equivalence in D: since Ff = FuFv, we only need to check that Fu has
the right lifting property with respect to all cofibrations and Fv has the left lifting property
with respect to all fibrations. This can be checked by working as before. O
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Resumen en castellano de la seccién 4]

En esta seccién introducimos las nociones inéditas de “closed 2-model 2-category”
y “closed 2-bmodel 2-category” y enunciamos y demostramos algunos lemas y proposi-
ciones que usaremos mas adelante. Nuestra nocién es mas fuerte que las “fibration struc-
tures” de Pronk ([26]]) pues es una version 2-dimensional de los axiomas de Quillen com-
pletos para “closed model categories”. También difiere en el hecho importante de que
no asumimos la eleccion de una factorizacién global privilegiada dada de forma pseudo-
funtorial sino que estipulamos, como Quillen, solo la existencia de factorizaciones para
cada flecha.

La mayoria de los resultados de esta seccidn son generalizaciones al contexto de 2-
categorias de enunciados bien conocidos de la teoria de “closed model categories”. Para
ver las definiciones y resultados en el caso 1-dimensional, se puede consultar por ejemplo
[27] o [13].
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5 Closed 2-bmodel structure for 2-Pro(C)

In this section, we give 2-Pro(C) a closed 2-bmodel structure provided that C has
one. This section is inspired in the proof given in [[12] of the fact that Pro(C) is a closed
model category in the 1-dimensional case. The proof in our context turned out to be more
complicated due to the fact that diagrams doesn’t strictly commute but only commute up to
an invertible 2-cell. This is the reason why we were forced to work with pseudo-functors
and pseudo-natural transformations even though objects and morphisms in 2-Pro(C) are
2-functors and 2-natural transformations. We proceed in three steps. First, in[5.1|we define
a closed 2-bmodel structure for the 2-category pHom,(J°7,C) (see out of a closed
2-bmodel structure for C, where J is a cofinite and filtered poset with a unique initial
object. Second, in we use the closed 2-bmodel structure in pHom,(J°P, C) to define
such an structure in the 2-category 2-Pro,(C). Finally, we transfer this structure into
2-Pro(C) using that this 2-category is retract pseudo-equivalent to 2-Pro,(C) (see[2.1.5).

5.1 Closed 2-bmodel structure for pHom,(J°?,C)

The aim of this subsection is to prove that given a closed 2-bmodel 2-category C and
a cofinite and filtered poset J with a unique initial object, the 2-category pHom,,(J°F,C)
(see is a closed 2-bmodel 2-category. The proof is inspired in the 1-dimensional
case treated in [12]. For the 2-categorical setting, things become more complicated. So is
that we were forced to work with pseudo-functors and pseudo-natural transformations in-
stead of 2-functors and 2-natural transformations because of the non-strict commutativity
of diagrams. One would think (and we did for a while) that 2-functors and pseudo-natural
transformations should be enough but they are not. The reason for taking pseudo-functors
evidences itself in the proof of axiom 2-M2 where Z turns out to be a pseudo-functor that
is not necessarily a 2-functor even if all the others are.

All along this subsection, J will be a cofinite and filtered poset with a unique initial
object 0 and C will be a closed 2-bmodel 2-category. We comment that in [12] J is not
supposed to have a unique initial object, which for us is an essential requirement, also in
the 1-dimensional case.

5.1.1. Notation. Since there are at most one morphism between any pair of objects of J,
we will write a1 ; instead of @< <; (see[[.T.T0). Also, we will use the subindex notation
for the evaluation of 2-functors.

5.1.2 Definition. We define fibrations, cofibrations and weak equivalences in
pHom,(J°?,C) as follows:

o A morphism t € pHom,(J°P,C) is a cofibration if the morphism {; is a cofibration
inCV jedJ. Wesay “pointwise cofibration”.
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o A morphism f € pHom,(J°?,C) is a weak equivalence if the morphism {; is a weak
equivalence in CV j € J. We say “pointwise weak equivalence”.

o A morphismf € pHom,(J°?,C) is a fibration if it has the right lifting property with
respect to all the morphisms that are both cofibrations and weak equivalences.

5.1.3 Lemma.

1. The 2-functor constant diagram from C to pHom,(J°P,C) preserves cofibrations,
fibrations and weak equivalences.

2. The pseudo-functor inverse bi-limit from pHom,(JP,C) to C preserves fibrations
and morphisms that are both fibrations and weak equivalences.

Proof. 1. It is clear that the 2-functor constant diagram preserves cofibrations and
weak equivalences. We will check now that it also preserves fibrations:

Let C > D ¢ C be a fibration. We need to check that if we embed p in
pHom,(J°P, C), then it has the right lifting property with respect to all morphisms

that are both cofibrations and weak equivalences. So let A S Xe pHom,(JP,C)
be a cofibration which is also a weak equivalence and suppose that we have the
following situation:

We are going to define the filler (f, 4, p):

C is a closed 2-bmodel 2-category, so, since p is a fibration and iy is both a cofi-
bration and a weak equivalence, there exists a filler (fy, A, 09) for the following
diagram

ao

Ay ———C (5.14)
io =l p

Xo——D
bo
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For j # 0 € J, take f; = foXo<j, foc; = idp, fy, = f/a}(’

J

aj
f VA AN P f
=N o Ry |/~

fo Xo<; VZON [ P fo  Xos
fej = | /N =T o Aejandpi= \eo/ |
fo Xo<k Xk<j H \ i5<lj / bo X0<j
\-/ l o Koo i,/
fi Xk<j \=/ [ b,
fj y

Let’s check that f defined this way is a pseudo-natural transformation: PNO is
straightforward and PN2 is vacuous since J doesn’t have any non trivial 2-cells.
For axiom PN1, we need to verify that V k < [ < j € J the following equality holds:

idc idg f;
\ fi<j / idg idg f;

idC f[ Xl<j \:/

\ fra / = idc f;
fr  Xika Xi<j \ fic) /
\’11(,1, / fx Xk< j

fi X<

But,if 0 <k <[ < J,
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idec idc f;

Ve
ide idg f; ide fo Xo<j
| oo /AN
ide f Xi<j ide o Xo<i Xi<j
R I N :
fr X Xi<j  idg f; I<j
Nt/ e
f i< i Xi<i Xi<j
fr Xi<j
ids idg £
e

ide fo Xow X \ b /

fi i<

where the second equality is satisfied by inductive hypothesis and the third one is
due to the fact that X is a pseudo-functor (cases where k = 0 or there are equalities
are straightforward).

To check that A is a modification, we need to verify that V k < j € J the following
equality holds:
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//lk\ fk Xk<J ij
fr i Ar<j \ k< /
fk ik Ak<j
But
idg a; idg a;
\ ak<j / \ a0<j /
ay Ai<j =) Ao<;
idc @j / ao<x /’ék,./\
\\ ak<j/ Ao Ao Ak<j o Ao<k Ak<j

A
fo 0 Aock A<y
B

fo  Xo<k i Ak fo  Xo<k Ik Ar<j

v

k A<

149



idc a;

0 Ao<j
-\
fo i Ao<;
g1 A
fo i0 Aok Ak
||
fo Xo<k ik Ak<j
\fk/ i Ai<j
idc a;j

L
/ \

IO A0<]

g

fo  Xo<j ij
]
fio  Xi<j i
¥
fr ir Ak

idc a;j

L~

ao Ao<j
/\
fo io Ao<;
| = -
0<j

X0<J

i\

fo Xoak  Xi<j ij

&

—h
(=}

fo Xo<k ir Ak<j
fi e A<
idg

/i

ldC f i j
-
fe Xe<j

-

fo e Ay

where the second equality is due to the fact that a is a pseudo-natural transforma-
tion, the third one is due to elevators calculus, the fourth one is due to the fact that
i is a pseudo-natural transformation, the fifth one is due to elevators calculus plus
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the definition of f;; and the last one is due to the definition of ;. Again, simpler
cases are omitted.

To check that p is a modification, we need to verify that V k < j € J the following
equality holds:

p f;

/N \ /

p fk Xk<j =

\o/ /b“\

by Xi<j Xi<j
But
p fj\
p P fo Xo<;
/k<\ %5
p Xk</ X0<k Xk<j =
\Pk / \Po /
by Xk<j Xo<k Xk<j

Xk< Jj
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p f; p

/N A

p fo Xo<;j p fo  Xo<j p fj
\e/ e/ \e/
= b Xo<j = b Xo<j = b;
AN T e R
bo  Xo« Xi<j b; br X<

Xk<j

'
b

where the second equality is due to elevators calculus and the third one is due to
the fact that b is a pseudo-natural transformation. Simpler cases are omitted.

Finally, let’s check that (f, 4, p) is the filler that we were looking for:

J
/Dk< /\
br

Xk<j

a; P a;a;
R
a0 Ao<j a0 Ao« /ﬂkx
P a; /10\ /10\ P a0 Ao
fo o A i

p
0<j p f i Ao<j \70 /

ol < [T e

p fo X0<j |/ b() i() A0<j \ i(;ij / b,l,

bj ij \PO/ \ial,-/ bo X0<j ij
bo  Xo<j ij bo  Xo<j ij \boij /
i/ i/

b; i b; i

J

©

pfjij:

J

The second equality is due to elevators calculus, the third one is due to the fact that

(fo, Ao, po) s a filler for diagram (5.1.4) and the last one is due to the fact that y is a
modification.
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2. By[1.1.26] it is straightforward that the 2-functor constant diagram is left bi-adjoint
to the pseudo-functor inverse bi-limit. Then, by {.3.2] and the previous item, we
have what we wanted.

O

The following characterization of fibrations, similar but stronger than pointwise fibra-
tions, is key to manipulate fibrations and prove that [5.1.2] determines a closed 2-bmolel

structure (Theorem [5.1.14)).

5.1.5 Lemma. A morphism Y P, B¢ pHomy(J°P,C) is a fibration iff ¥V j € J the
morphism Q; of the following diagram is a fibration in C:

7y bilim Yy
j% —

k<j
bipb biLim py
= | a; k<j
biLim By
Bj—— ‘
al,  k<J
where  biLim px is induced by the pseudo-cone  {Pymiji<;,

k<j
Biat  PI m Big, , Pr 7k

\ Pr<i / H \(af)’l/ .
{ P Yiqg T } U{ idg, Pr Tk } , a{( is induced by the pseudo-
H \ﬂk<1/ k<l<j \ = / k<j
Pk Tk Px Tk
Yia, Yi<j
Vi Vi - H |
cone {Yi<jli<js { \Yk,l,j/ } U { idy, Yi<j } , aé is induced by the
Yi <j k<l<j \ = / k<j
Yk< Jj
Bia, Bi<;
Bi< B @) |
pseudo-cone {Bj<li<j, { \Bk,l,_j/ } U{ idp, Bi<; } and so we have:
Bk<j k<l<j \ = / k<j

Bk< Jj
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. . . Hik .
a) invertible 2-cells mibiLim py = prrr ¥ k < j such that

biLim py

k<j
- B ]
biL k<l .
Bi., 7 (_l_ﬂ Px \ k<j
k< Hi
Th<l
N Biat  Pu
Tk blL(—Im Pk - \ Pr<i /
k<j
\ L / Pk Yk<l
Tk<l
Pk Tk \\,//

Px

b) invertible 2-cells ﬂka{( é Yi<j ¥ k < jsuch that

Yi<i oA Yea: T

\Tkl/

Tk aj,
\m /

Yk< Jj

= Yia Yi<j

Y
\" k. /
Yk< Jj

c) invertible 2-cells ﬂkaé é Bi<; V k < j such that

Y
"\

Bi< B« T

v ]
\Ya

Bk< Jj
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Vk<l<j

Vk<l<j

Vk<l<j



d)

biLim pg o

Tk k<j 0 qj

Hi Bl

biLim \ / \°

. ‘ Pk ﬂé qj /

k<j Pk T a

\ a; / \7]/
k

A oo vE

W
iy al pj Bi<j Pj
/gk\
Tk aé P,

Proof. =) Since C is a closed 2-bmodel 2-category, it is enough to check that V j € J, q;
has the right lifting property with respect to all morphisms that are both cofibrations and

weak equivalences. So, let A — X € C be a cofibration which is also a weak equivalence
and suppose that we have the following situation:

Let's define K, L, K — L K =5 Y and L —> B in pHom,J?,C)

idy ifk<l<j
X ifk<j i ifk<jandl=j
by K¢ = A ifk=j , Kg = idk, Kiqgq=:0—0X ifk<jandl ¥ j,
0 otherwise 0— A ifk=jandl £
idy otherwise
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idy ifk<l<j

X ifk<j ) . . .
Lk = . » Lig = id,, Lkg=30—0X ifk<jandl ],
0 otherwise

ido otherwise
idy itk < j malb ifk < j
o= Qi ifk=j . a = Ja ifk=j , a, = ()4,
idy otherwise 0 — Y, otherwise
Tt b ifk<l<j i . .
a = <j0O i - k< iandle i b Bkﬁjﬂ'{b lfkﬁj
k<l Y © M) "aen a i JanGi=g. B 0 — By otherwise’
idy_,y, otherwise
af b k<<
bl = (@)7'bj and b, = 1Bij(@®)'mfb ifk < jandl=j. Itis straightforward
idy—,p, otherwise

to check that K and L are 2-functors, i’ is a 2-natural transformation and a’, b’ are
pseudo-natural transformations.

Then, since p is a fibration and i’ is both a cofibration and a weak equivalence, there exists
a filler (f, 4, p) for the following diagram

LS (5.1.6)
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Pk Tk né b
L2 s 1|
- biLim py b
k<j 0 . .
H = H ifk < j
Tk a’ b
B 1
Ne i
Bi<; m b
where ¥y = [of a
_/ﬂ'{)fl\
| q; a
" \ v/
] b i ifk=j
/=N
idp; n{ b i
/A
Big; | b i
idy_,p, otherwise
T . qj fJ
\B/
oF f;
\pj/
Let’s check that (f;,4;,p") (where p’ is such that mp" = bj and
=N
B, /b
\(a?)"/ |
ldBj 7T{ b
m™oonl q; f;
Y- 7
Ty aJ f
Y J
N T/ [ . .
TP’ = Yi<j f; ) is the filler that we were looking for: To do that, it is
\fk<j/
fi
PN
Tk 716 b

enough to check that ﬂkﬂé(p/i 0Qjd;) = nkﬂéy Y k < jand ﬂ‘{(p'i 0Qjdj) = ﬂ{y:
By elevators calculus plus the fact that A is a modification, we have the following
equality:
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Tk ﬁé Qi ;i
\ﬁé/
Tk al f; T 9 a
\/ SRk
Yie, f; i T omooboi
o/
fr i
/N
Tt ﬂé b i

And, by elevators calculus plus the fact that (f, 4, p) is a filler for diagram (5.1.6), we
have the following equality:

n{ q; a

T o 4 a

\ \/
1 1
P, fi P; a n{ q;, a
ol ST
b’ i Big; n{ b i ,T-{ b i
/N v

Bid; n{ b i idp, n{ b i

i
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<) Let A LiXe pHom,(J°P, C) be a cofibration that is also a weak equivalence
and suppose that we have the following situation:

We are going to construct the filler (f, 4, p) inductively:
Po = Qo and therefore is a fibration. So, since C is a closed 2-bmodel 2-category, there
exists a filler (fy, Ao, po) for the following diagram

AOLYO

iol =y lpo

XOT)BO

Suppose that we have already constructed (f¢, A, px) Yk < j. Then, since q; is a fibration
and i; is both a cofibration and a weak equivalence, there exists a filler (f;, 4;,0;) for the
following diagram

A — oy, (5.1.7)

where c; is given by diagram (G.1.8) and ¥%; is such that
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that

LT 9  aj
H N A/ I
Tk a-\’( a;
o/ H |
Yi<j a; oo 9 8
\ <) / \B1/ 1
_ A Ak<j _ Pj a;
ﬂkﬂéilj = N I and ﬂ{)?j = \ Yo
fk I Ak< Jj b j I
I VR DN\ I
f | b ' T Ci
Voo 5 l
Tk ., ij
[IZCIEN [
Tk 7'[(]) CJ' I]
R (5.1.8)
%
7, biLim Yy
> (—_—
k<j
bipb biLim p
= | a, k<
biLim By
/el
al  k<J
B
where a{( v is induced by the pseudo-cone {ti X<} i< s
Yiear T Xi<j Yig, , T Xi<j
V] Nt |
{ fr  Xiej Xi<j } U { idy, fx Xi<j } and so we have:
H \ail’]/ k<I<j \ - / k<j
fr X< fr  Xisj
e) invertible 2-cells nka{(Y % X; VK j such
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Tk

J

J
Yk<l 7Tl aX,Y

|

Yt 11 Xi<j
= \ frat /
fk Xk<1 X[<j
Nt/
kl.j
i X<
T
k<j
E
Px Tk

Cj

\
/ ] \;; /

biLimpe

Vk<l<j

0 Cj
\%/
J
ayy
" /

Xk< j

Xk< Jj

T

b; \ b, /
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a<( f Yig; 1;
S\ Lo |
Tk m q f idy, f;
Take fio; = | \ﬁj/ . e, = \ =/ and
Tk ﬂé C j fj idxj
Na I\
Tk ajy fi K
| e
fi Xi<j

Pj
/s \ I
a f
pi= Il \o/
n{ | Cj
\ o /
b;
Now we are going to check that f constructed this way is a pseudo-natural transfor-

mation: PNO is satisfied by construction and PN2 is vacuous since there are no 2-cells in
J. To check axiom PN1, we need to check that the following equality holds V k < [ < j:

Yiar Yi<j f;
\ fi<j / Y« Yl<.i fj

Yiaa T Xi<j \YZIJ/

\ fk<] / = Yk<j fj
fr X Xi<j \ fi< /
\ll)f,l, / fx Xi< j

But
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/ m'\ \QZJ’ /
Yt T aj, f; Yi<j fj
/ é)—l /nkl\
Yia ™ x) Q f; Ty al, j
= Yk<l T 71'(]) C] = Tk ﬂ'{) q] fj =
\ 9{; / \f’f/
) i :
Y T ay y e m, Cj
i J
Tk a{w Tk ayy
| I
fk Xk< j fk Xk< Jj

Yi<i Yie;
e/
= Yi<j fj
o
fr X<

where the second equality is due to e) and the third one is due to elevators calculus plus
b).

To check that A is a modification, we need to verify that the following equality holds
Vk<j:
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Yi<j a;
\ A< / Yi<j
ay Acj = \ fi< /
/ /ik\ fr X< j
fi i Ak<j \ k<
fr i
But
Yi< Jj
/nkl\
J .
Yk<j aj m Ay fj
/ A,-\ / GO
Yk<j fj ij Tk 776 Qj fj
\ fk<j / = \.5//
fi Keisj lj T xl Cj
\ ik<j / \9{) /
fi ik k<j j
J Tk af(’Y
|-
fr X<
.
fi ik
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Ty a{( aj
/(ﬁé)_]
J . .
e m, q; & Yi<; a;

T T

= Tk ﬂ'é Cj | = ax Ak<j
j 4
\%/ /k\
' f i A<
Tk a{(Y i k k k<j
fr Xk<j ij
fk ik Ak<j

where the second equality is due to elevators calculus plus the fact that (f;, A;, §;) is a filler
for diagram (5.1.7) and the last one is due to the definition of ¥; plus elevators calculus.

To check that p is a modification, we need to verify that the following equality holds
Vk<j

Bi< j p; f j

Bi<j Pj f;
| \/
\ fi<j / = B b;

Pk fk Xk<j \ o< /
bk Xk< J

bk Xk< Jj
But
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Bi< j P;

Pk Yi<j
PN
] 2
e Yi ST
ol
Pr fr Xy Pk o oq
\e/ \#,/
bk Xi<j o T A ;
|-
Pk fr X<
e/
bk X<
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Bi<; Pj fj

Px Yi<j fj

SN
Px Tk a{( fj
/ﬁé)‘\
P Tk / ai f
"0 . / Bicj Pj f;
\o/ \o/
Pj
= M Tk ”{) Ci = By b,
E cr
Tk QI_LI_ Pk 7 cj b X<
k<j 0
\ (lj /
Tk aé 71{ Cj
\sk / \9{ /
B
bk Xk< Jj

where the second equality is due to item f) and the last one is due to item d).
Finally, let’s check that (f, A, p) constructed this way is the filler that we were looking
for:
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Pj a; P b /éb‘\

oF f;
\/
b

|
N
——
Ne]
~.
~
Il

~
N
~
o
~
-

where the second equality is due to elevators calculus plus the fact that (f;, 4;, 5;) is a filler
for diagram (5.1.7) and the last one is due to the definition of ¥;. O

5.1.9 Lemma. IfY P, Be pHom,(JP,C) is a fibration, then p; is a fibration in
CVjeld

Proof. po = qo which is a fibration by [5.1.3]

If j € Jis not the initial object, consider p as an object in pHom,({k € J | k < j}°7,C).
Since p € pHom,(J°P,C) is a fibration, by p € pHomy({k € J| k < j}°P,C) is
a fibration and then, by [5.1.3 M pr € C is a fibration. Then, since C is a closed
k<j
2—bmodel 2-category, 71'{ is a fibration. We also know that q; is a fibration by Then,
p; = m{q; € C is also a fibration. O

5.1.10 Lemma. A morphism Y . Be pHom,(JP,C) is both a fibration and a weak
equivalence iff q; is both a fibration and a weak equivalence in C ¥ j € J where q; is

defined as in

Proof. =) By[5.1.5} it only remains to check that g is a weak equivalence V j € J. We
are going to prove this inductively:

Qo = po and therefore is a weak equivalence.

Suppose that g, is a weak equivalence V k < m. Let’s check that, in that case, b||_<_|m Pk

k<m
is both a fibration and a weak equivalence:
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By[.1.8] it is enough to check that it has the right lifting property with respect to all

cofibrations. So let A —s X € C be a cofibration and suppose that we have the following
situation:

a biLim Y}
-4 =
k<m
i =y ‘blle o
k<m
biLim By
(—
b k<m

fr< J

f
We are going to define a pseudo-cone {X —= Yk} ’ {Yk< ifi= fk} and in-
k<m k<j<m

, {pkfk p:k ﬁkb} as follows:
k<m k<m

For the initial object, use m to construct a filler (fy, Ao, go) for the following dia-
gram:

A
vertible morphisms of pseudo-cones {ﬂka = fki}

A mpad YO

= | moy lpo

X mob BO

If j is not the initial object, suppose that we have already defined f, Ay, gr ¥ k < j

and consider the following diagram:

b’

X XY
‘ N
h j
Cj\ Eﬂ@o

Q j T
EU@{ Pj—>ﬂ0 MY](

k<j

bipb lbiLim P
biLim
k<j

where biLim p; and aé are defined as in [5.1.5| and b{(’Y is induced by the pseudo-cone

k<j
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{fi)iej» tficthcr<,- Then we have invertible 2-cells nkbi’Y 2% £, V k < j such that

J
Yi<i T bX,Y Yia 7T

%/ a

b;(,Y Yies Vk<l<j (5.1.11)
\Vk/ \‘kd/
fi
and we also have the following equality
biLimpy
C .
T k<j 7TO /
\ i / \9{)/
Pk T bf(’Y
biLim \ h /
Ty —— Pk n-j Cj
k<j pk fk
\ a; = \ B / Vk< ]
Tk aé ﬂ{ Cj
Bk<] b
/ & \ @) /
Tk a’é n{ Cj
(5.1.12)

Then there exists a filler (f;, 4;, p;) for the following diagram

A———=Y; (5.1.13)

where q; corresponds to a diagram as the one in B; is given by the formulas
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4y b i
N
71{ Cj i
Pj fj
i
71"{ q; f;
Take §; = \p_’,-/ i
71'{ Cj
N
7T b

\/
Tk a{/ Tj a
o/
Yi<j T a
o/
and  maly; = i a Vk<j.
o
fr i
/A
T b§<,v i
ol
Tk né Cj i
Yiej f;
/\
192 a{( f;
X
-dj:(a}{)‘lfj and fioj = g ﬂ(J) qj\ f].
i
Ttk ﬂé Cj
N/
T bf(,v
\r/
fi

172



k</

f
To verify that {X - Yk} {Yk< = fk} is a pseudo-cone, observe that
k<m” k<j<m

axiom PCO is satisfied by definition and axiom PC2 is vacuous because there are no 2-cells
in J. So, we only need to check that axiom PC1 holds. To do that, we need to prove that
the following equality holds V k < [ < j < m:

Yiar Yi<j f; Y« Yiej

Yoo\

Yi< Yi<j

o/ v/

But

Yi<i Yi<j J f;
/N
Yi<i fj
/ J \
Yi« Y[<J fj Yi<: T 0 j
Y i

Yt Yia 7

\ﬁ«/ \\ o /

Yiar 7 b{(’y
Y i
\fk<[ /

fi
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/%
Yict T al fj
/ﬂ{;)-l
J .
Vit 7Ty % f Yi<i Yicj f;
= Y M x c; = Yi<j f
\\ 9(/; / \fk<]/
Yk<l T bg(’y fk
Tk b§<,Y
\ " /
i

where the second equality is due to the definition of b{( y and the last one to the definition
J
aY.

A
To check that {nka = fki} is a morphism of pseudo-cones, we need to verify that
k<m

the following equality holds V k < j < m:

Yi<j T
w
Tk
|

-——
e

But
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Yiej fji
/N
J .
Yiej T a i A b
\ z.f/ o
Yk<j f] | = Tty ﬂ'é q] f] | =
¥k</ \l);/
fk i T ﬂ'é C b i
\ o /
J
Ty bx’Y i
fk |
Yi<j i a
/N
Tk ay i a
(ﬂj)71
/ ’ \ Yej T a
Tk ﬂé q; i a \Tk< /
= \ ¥i / = Tk a
Tk ﬂé C] | \ ;lk /
\ o / fi i

i .
bX,Y i

Tk
\w /
fi

where the first equality is due to the definition of fi<;, the second one is due to elevators
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calculus plus the fact that (f;, pl js p;.) is a filler for diagram (5.1.13)) and the last one is due
to the definition of ¥;.

To check that {pkfk ELN nkb} is a morphism of pseudo-cones, we need to verify
k<m

that the following equality holds V k < j < m:

Bk<j Pj f
\ Pr<j / Bk<j o fj
Pk Yk<] f \ pj /

\fm / Bi<; Ti b
Pk \’”«f‘ /
\ Px / Tl b
g b

But
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Bi<j  Pj fj
g
P Yiej

Bk<j

Pk

Px

Tk

Pj fj
Pi<j /
Yiej i
/"
Tk al, f;
/(ﬁ{;r‘
Ttk ﬂ'é q; f;
v/
Tk ﬂé C;
¢/
s bf(’Y
\o
i
-
b
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Bk< J

\ Pr<j
Px
Pk Ty
Px Tk
Pk Tk
Pk Ty
biLi
Ttk
k<j
Tk al,
\Sk /

P f;

aJY f J
é>‘\
oA q; f;
né Cj

) j
n{ Cj
o
Ty b
b
Bi<j Pj
= Bigj T

Bk<j
/ﬁ
Bk<j 71'{
. J
Bk<] ye
Bi<; T




where the first equality is due to the definition of fi;, the second one is due to (5.1.12)),
the third one is due to item d) from[5.1.5|and the last one is due to the definition of ;.
Then, by the universal property of biLim Yg, there exist a morphism

k<m

f B
X — biLim VY. and invertible 2-cells mf = ft Y k < m such that
b

k<m
\of
f

Yk<j i f
Tk k<j i Yk < j < m; and there also exist invert-

Voo

Yk<j 7y f

Tk

Y

ible 2-cells a é fi, b é biLim pif such that md =

fr i and
(_—_
/A
T foi
- biLim py
k<m
I~ ]
Pk Ty f
o = \ 5 / ¥ k < m. To check that (f, 4, p) is the filler that we were looking
Pk fk
N
Uy b

for, it is enough to check that the following equality holds V k < m:
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x, BILIM P

k<m
R x DLimpe
k<m
T biLim py . = \ y /
k<m
\/ A
Tk b i
But
b]Lle Pk
<m
biLim px
DL P N ! e
k<m T biLim px ¢ i \ 0 /
2 k<m
Hk Pk Ty
T biLim py Fo = _ \
k<m ! Pk Tk f i
\/ N Yo
i b i P oo \p" /
\ Pk / Tk b

Tk b [

180




biLim py

Ty p
Px T a \ Hi /
\ A / Pk i a
Pk 2 i /ﬁ{)\
/ﬁ{)‘\ B Ok Tk a’_
k

/
\

Tk b I
- biLim py a
k<m
] |
Tk b i

where the first equality is due to the definition of p, the second one is due to elevators
calculus plus the definition of 4, the third one is due to the definition of p, the fourth one
is due to elevators calculus plus the fact that (fy, Ay, 0}) is a filler for diagram (5-I.13) and
the last one is due to the definition of ¥;.

Finally, since C is a closed 2-bmodel 2-category, P; i B, is both a fibration and a
weak equivalence. Also, by definition of weak equivalences, p; is a weak equivalence.
So, q; is also a weak equivalence by axiom 2-M5.

<) By it is clear that p is a fibration. Let’s check inductively that p; is a weak
equivalence: If j = 0, pp = qop and so is a weak equivalence. Now suppose that py is a
weak equivalence V k < j and consider p as an object of pHom,({k € J | k < j}°7,C).
Since p € pHomy(J°,C) is a fibration, by p € pHom,({keJ|k < j}’”,C)
is also a fibration. Plus, we know that p is a weak equivalence as an object of
pHom,({k € J | k < j}°”,C) and then, by [5.1.3 kM pr € C is both a fibration and a
k<j

weak equivalence. Then, since C is a closed 2-bmodel 2-category, n{ is a weak equiv-
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alence. We also know that g; is a weak equivalence and so p; = n{ g; € Cis a weak
equivalence as we wanted to prove. O

5.1.14 Theorem. pHom,(J°?,C) with the structure provided in is a closed
2-bmodel 2-category.

Proof.
Axiom 2-MOb: It is clear from [4.1.6] since bi-limits, bi-colimits, bi-tensors and bi-
cotensors in pHom,(J°?,C) are computed pointwise and therefore exist (see and

[L.2.TT). o
Axiom 2-M2: We will first do the case where p is a fibration and i is both a cofibration
and a weak equivalence:

. L YiE . . .
It is enough to check that we can factor pji; = f;vjed,i= {Ij}jeJ andp = {pj}jEJ
are pseudo-natural transformations, i; is both a cofibration and a weak equivalence V j € J,

q; (associated to p as in|5.1.5) is a fibration V j € J and y = {yj}je J is a modification. We

are going to do this by induction in j:

If j is the initial object of J, since C is a closed 2-bmodel 2-category, we can factorize
fo as poio i fo where i is both a cofibration and a weak equivalence and py is a fibration.
As Qo = po, Po is a fibration.

Now, suppose that we have already defined py, i and y; V k < j and let’s define pj, i;
and y;:

Consider the following diagram in C:

aj biLim X
X — 7k (5.1.15)
k<j
; biLim i
=16, \L‘ijljm *
Q h b|L|m Zi
k<]
bipb b|L|m Pk
=4 =
YJE— b|L|m Y
a’ k<]

Y P T
Pi<i / H
where biLim py is induced by the pseudo-cone {pimilyc;, { Py  Zig m} v
k<l<j

k<j H Yk‘/
Pk

Tk
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Yig, , Pk 7k
Nt/ |
{ idy, Pk ﬂk} , biLim i is induced by the pseudo-cone {ixmi}i<;,
NS
Pt 7k
Zia p 7 Zig, ik T
Vi || Vol || |
{ v Xi<l 7Tl} U{ idz, i ﬂk} , ai is induced by the pseudo-cone
| Nawe/ ksl \ = ) ke
Xid, Xi<j
X<t Xij \ ail )’1/ [ .
{Xk<j}k<j’ { \a,):lyj/ } .U{ idx, Xk<j} L a{( is induced by the
Xk<j k<lI<j \ :/ k<j
Xk< Jj
Yia, Yi<j
Yi<t Yi<j (@) |
pseudo-cone {Yk<j}k<j’{ \a{,.]/ } U{ idy, Yk<j} , and so we have:
Yk<] k<l<j \ — / k<]
Yk<j
. . - i .
a) invertible 2-cells m;biLim Pk = pitry ¥ k< j such that
k<j
biLim px
o Y Ty —
biLim k<l ;
k< Hi /
k<l
Yt Pu gl
iLi = Vk<l<j
Tk bIL(_Im pk \ Pk<t / J
k<j
\ Hi X P Zra |
Tr<l
Pr Tk \ /
Pr Tk
b) invertible 2-cells mbilim i — m Y k < j such that
(—_—
k<j
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biLim i
b

T Z 4
biLim i k<t ;
Zya mo— \ k<
k<j g /
Tk<l .
VST il
biLimi, = \ _ / Vk<l<j
Tty — lk<i
k<j
\ e / ik X T
\U«/
Ik Ttk
i Tk
¢) invertible 2-cells nkai é Xesj Yk < j such that
X<l T a{( Xkl Ty a{(
\U«l/ \‘PI/
Xk< j X< j
. . i 1
d) invertible 2-cells nka<( = Yie; ¥V k < j such that
Vi<t My Yt T a{/
\n«z/ \lﬁz
Tk a{( = Yi« Yl<j Vik<l<j
\m / \a,j,,’ /
Yi< Jj Yk<j
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- biLim py h

k<j 0 &
Hi / 96 /
biLi Pr Tk t& L af(
. %pk hoa; \ ) k<
\ 5f/ / _
€ o j .

| Pk Tk aj Yk
J Joa; = <]

‘ 3y hl / \7k / \sﬂk /
\61/ fr X< J

Tty J f _
ay / \ £l /

/U/kl\
7t al,

fj

e

Since C is a closed 2-bmodel 2-category, a; can be factored as i; — a j where i is
both a cofibration and a weak equivalence and q;. is a fibration. Consider p; = h{ q;. and
Yj= h{ y;.. Let’s check that this data satisfies the desired properties:

It can be easily checked that Z is a pseudo-functor (Z<; = mi héq;, a? = idz;, af L=
Zi Z<j

Tk hé of
Zk< Jj
We are now going to prove that i is pseudo-natural:

’

J

).
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™ h q, i
0 j J Zu i,
\/ o1
J
J .
T hy 3 idz, i
We define ix<; = L 9‘6 / and iidj = \ = /
biLim iy j . .
— l; ldx.
iy i< aX J J
-] y
ij Xidj

g aj,
\ "/

i Xi<j
PNO is satisfied by definition and PN2 is vacuous because there are no 2-cells in J, so

we only need to check PN1: consider k < [ < j, we want to check that the following
equality holds:

ZiZi<j ij
\ il<j / Zk<] Zl<j |]
Zi i Xi<j \af,z,j /

¥

ik Xk<[ Xl<j \ i< /

\Qf’w/ |k Xk<]
Xk<j

i

= Zicj )

But
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m hhoaqp om hy qQ; i
|
I o j :
me hy 9 m h) a;
ZiaZi<j ij L ” /
0
i< biLim i ;
\ / m hhoq 7 oy aj,
Zi g Xi<j \ / ‘
€ /
\ik<l/ = - . ST
e hy Q) iy my ag(
ix Xkt ‘ \w /
1
a .
\ kl’/ e hy q is Xi<j
A
ik Xi<i Xi<j
H \(lk[j /
i Xi<j
o hp A mo h) A
I ’ ’ .
H \V,/ T hy G 7 a4
mo hfq  m  h) a H H H \7/
I ’ j .
0 / 198 h q; ™ a;
biLim i, !, o
e hloq) m al 0
0 k<j X i h b|L| i
\EI / \ W k<j ax
Tk hf) q; il Il aj - Tk<l H
_ biLim iy ,
li<i Tt T aX
. J
i X<t aj, \ @ /
; J
i : | N/
X Pk
H \W‘ / i X<
ik X< j
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j ’
Tk hO qj I
Y .
\/ Ziar i<y
j :
Ty hy a; \"fz /
= L z = Zicj
T biLim i a{( \ e /

i% Xie< J

Tk ay
\ Pk /

ik X<

where the second equality is due to the elevators calculus plus c), the third one is due to
b) and the fourth one is due to elevators calculus again.
Now we are going to prove that p is pseudo-natural:

Yk<j pj Yi A o
VN / =\ Ydfl !
Tk ay h 9 \%-) /
s K
We define py<j = 7k EIZIZIJ— P hé q;- and Pid; = \ = / . PNO is
Hk / H H oF idzj
J

i

Pj  Zi

Pr Mk hy 9
H NS
Px Zk<j

satisfied by definition and PN2 is vacuous because there are no 2-cells in J, so we only
need to check PN1: consider k < [ < j, we want to check that the following equality
holds:
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Y Pr Zj \%,,-/

\ Pi<;j / Y« Yl<j P,

\Dk<1 / = Yk<j Pj
Pr Zi Z; \ Pi<j /
\xf, / Pk Zi<j
Pr Zi<j
But
Yia  Yigj h’ g;
/"
Yiat T a{( h{ q
. e
Vit Vi b'L'er / /
iLi o
\ Pi<;j / Yia T k<j Pk h{) j
Yia P 2 1 /
\Pk<// = Yia PI b4 hé q;.
Pk Zk<l Zl<j \ /
Pr<i
\I’%’/ z h d
Pk Zi« 4 j
Px Zk<j 3 0/
\de
Pk ﬂk\ h) 9;
Pk Zi<j
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. I q i o
Y Yiej hy G; Yia Yij h! g

N
g T al

i q o
hl q] Yk<j h] q;

Y
biLim px ! ;

Yi

Vi T S hy 9 Tk al h dq
Tk<l = L 6j1/
- biLimpy '
biLim C — J q.
Tk (_ pk hé qJ s k<) hO q]
k<j
\ Hk / \ M /
—— i q.
Pk . hl Q; P T ho/qJ
Px Zk<j Pk Zk<j

Yk<l Yl<j p]

\/

= Yi< Jj P,
\ pk<j /
Pk Z< Jj

where the second equality is due to a) and the third one is due to elevators calculus plus
d).

Now we are going to prove that y is a modification: Consider k < j, we want to check
that the following equality holds:
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But

191

Xi<j
:
k<j
Yk<j
H
Yk<j h{
VAN |
Tk ay, hi
AN
Tk %pk hé
\,lk Fo
Pk Ttk h)
|1
Px Tk hé
biLi&n
Pk Tk oy
|«
Pk i Tk
H H
Pk ik
\'}’k/
fi



Yk< Jj

Pj
/ :\ _ Yie)
Ij

Yi<j h Q} " it
R A
Ye; i a Yicjh{ @5 ) YiciPi
| V5| v/
Ty a{( h{ a; = Yigj h{ aj = Y
e/ Ay
me al Yie f; fo i
N e
Yi<j f; (0 Xec)
ey
fi Xie

where the second equality is due to elevators calculus plus e) and the third one is due to
elevators calculus.

i; is both a cofibration and a weak equivalence by construction.

It can be easily checked that the q; associated to p is q;. and so is a fibration.

Now we will focus on the case where p is both a fibration and a weak equivalence and
i is a cofibration:

. L YiE . . .
It is enough to check that we can factor pji; = fvjed,i= {Ij}jeJ andp = {pj}jEJ
are pseudo-natural transformations, i; is a cofibration ¥ j € J, q; (associated to p as in

5.1.5)) is a fibration ¥ j € J, p; is a weak equivalence ¥ j € J and y = {yj}jeJ is a

modification. We are going to do this by induction in j:

If j is the initial object of J, since C is a closed 2-bmodel 2-category, we have poig =
fo where ig is a cofibration and py is a both a fibration and a weak equivalence. As gy = po,
Qo is a fibration.

Now, suppose that we have already defined pg, ix and y; VY k < j. In order to define

P, i; and y;, consider diagram (5.1.15) as before:

Since C is a closed 2-bmodel 2-category, a; may be factored as q;i j L a ; Where i;

is a cofibration and q;. is both a fibration and a weak equivalence. Consider p; = h{ q;. and
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h’ q i

j
\7}/ . Let’s check that this data satisfies the desired properties:

h{ a;
\“’/
fj

One can check as before that Z is a pseudo-functor, i is pseudo-natural, p is pseudo-
natural and 7y is a modification.

i; is a cofibration by construction.

As before, q} is the g; associated to p and it is a fibration.

It only remains to check that p; is a weak equivalence: Since p is a fibration, by[5.1.9]
p; is a fibration V j € J. Then py is both a fibration and a weak equivalence ¥V k < j and
so, by[5.1.3 E'_L'_m P is both a fibration and a weak equivalence. Therefore, since 2-M4
k<j

is satisfied in C, h{ is a weak equivalence. Then p; is a weak equivalence by axiom 2-MS5.

Axiom 2-MS5: It follows from the fact that weak equivalences in pHom,(J°7,C) are
defined pointwise and C is a closed 2-bmodel 2-category.

Axiom 2-M6a): It is tautological from the definition of fibrations in pHom,(J, C).

Axiom 2-M6b): =) Suppose that we have a cofibration i, a fibration p which is also
a weak equivalence and they fit in a diagram

The filler can be constructed inductively exactly as in the proof of <.

<) Suppose that A — X has the left lifting property with respect to all morphisms
that are both fibrations and weak equivalences. We have to check that i; is a cofibration
¥ j € J but, since C is a closed 2-bmodel 2-category, it is enough to check that i; has
the left lifting property with respect to all morphisms that are both fibrations and weak

equivalences. So take a morphism Y P Be C which is both a fibration and a weak
equivalence and suppose that we have a diagram of the form
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Let’s define E, D, E - D, A -5 E, X — D € pHom,(J?, C) by:

. ) idy ifk>j
Y ifk>j . . . .
Ex = . Big, = idg,, Eici= Y —x ifk# jandl>j,
*  otherwise . .
id, otherwise
id ifk>j
B ifk>j . ° = .
Dk = . s Dig, = idp;, Dici=4B— = ifk# jand!l> j,
*  otherwise ] .
id, otherwise
~ . . . . . idgs ifk>j
pifk> idy ifk>j i ) . .
Pt =4. ., Pig =9 s Pr< =qidy_,, ifk#jandl> ],
id, otherwise idig, otherwise i .
idiq, otherwise
g = aA ;< ifk>j S éAjska/,’j ifk>j
kT A — = otherwise’ e idp,,.  otherwise ’
=/ A -1 . . o . .
) fk> ; >
A = a7 ifk> i by bXjr  ifk> J
idp, . otherwise Xy — * otherwise

b — 5Xj§kai( itk>j
i = idy,_,, otherwise
b@®, ) ifk>j
and bk<l = ( ]’k’l) ] .
idy,_,, otherwise
It is straightforward to check that E and D are 2-functors and that p, a and b are

pseudo-natural transformations.

By using[5.1.10] p is both a fibration and a weak equivalence and then there exists a

194



filler (f, 4, p) for the following diagram

p a Ajck
"
b i Ak ifk>
where yy =
| % |
Jj<k
6 stk ik
idp, . otherwise
a p
A
a idp b X,
Consider A = \“f / and p = \\a}‘)‘/
é. Aidj 6 idxj
RIRY
i b

Let’s check that (f;, 1, p;) is the filler that we were looking for:

195

(5.1.16)



ol
Q

T~

o
an
>

—
\S)
ST <
O
Q
Y
>

ol

3 Aig; P a
Rt
Xid; b
v/
idy; I

6\6/ |

—r
~
—
Il
Ti_—— T
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where the first equality is due to the fact that (f, A, p) is a filler for diagram (5.1.16) and
the last one is due to elevators calculus plus the definition of y; and the fact that i is a
pseudo-natural transformation.

O1l——0t1_— T
)
~.
—

lj

Axiom 2-M6c): =) Let f be a weak equivalence. By axiom 2-M2, f can be factored
as f = uv where u is both a fibration and a weak equivalence and v is a cofibration. Since
f; is a weak equivalence ¥ j € J and C is a closed 2-bmodel 2-category, u;v; is a weak
equivalence ¥V j € J and so uv is a weak equivalence. Then, by axiom 2-M5, v is also a
weak equivalence. This plus axioms 2-M6a) and 2-M6b) conclude the proof.

<) By an argument similar to the one used in the proof of =), it is enough to check
that uv is a weak equivalence. And to do that, it is enough to check that u and v are both
weak equivalences. We are going to do the proof for v (the proof for u is analogous but
easier): By definition, we want to check that v; is a weak equivalence ¥V j € J and, by
[4.1.8]and the fact that C is a closed 2-bmodel 2-category, it is enough to check that it has
the left lifting property with respect to all fibrations. So suppose that we have a diagram
of the form
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where p is a fibration.
The proof follows by an argument exactly as the one used in the proof of axiom 2-
M6b) <.
m]

5.1.17 Corollary. Let C be a closed 2-bmodel 2-category. Then Womp(JO” ,C)isaclosed
2-bmodel 2-category.

Proof. Tt follows immediately from [5.1.14] and [T.4.3] O

It is worth mention that the proof given in this subsection can be easily adapted to the
case of closed 2-model 2-categories giving the following also interesting result:

5.1.18 Theorem. pHom,(J°P,C) with the structure provided in is a closed 2-model
2-category if C is. O

5.2 Closed 2-bmodel structure in 2-Pro(C)

In order to prove that 2-Pro(C) is a closed 2-bmodel 2-category, we are going to give
first a closed 2-bmodel structure to its retract pseudo-equivalent 2-category 2-Pro,(C)
(see[2.1.5). As we have already said, we were forced to work with pseudo-natural trans-
formations instead of 2-natural transformations due to the non-strict commutativity of
diagrams. We start with the finite completeness and finite cocompleteness aspects of the
2-category 2-Pro,(C).

5.2.1 Proposition. Let J be a filtered category and C a 2-category with finite bi-colimits
(respectively bi-limits, bi-tensors and bi-cotensors). Consider J = J (see . Then

. . inc . . ..
the inclusion 2-functor Hom,(J°?,C) — 2-Pro,(C) preserves finite bi-colimits (re-
spectively bi-limits, bi-tensors and bi-cotensors).

Proof. We are going to prove the assertion for bi-colimits and bi-tensors, other cases are
dual to these ones.
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- Let {Dg}oer be a finite diagram in Hom,(J°P,C). We have to check
that inc(biLim D,) is the bi-colimit biLim inc(D,) in 2-Pro,(C) i.e. that
—_— —

ael ael

VY= {Yi}[ej € Z-PI’OI;(C),

2-Pro,(C)(inc(biLim D,),Y) = biLim 2-Pro,(C)(inc(Dy), Y)(see [1.2.4):

aell aell
We do as follows:
. - J . - ) I
2-Pro,(C)(inc(biLim D,),Y) = L|(_m L|_>m C((biLim D)()),Y;) =
ael’ i€l jeg ael’

N - . oI . . v
I.l(_m L|_>m C(biLim D, j,Y;) = I(in L|_>m biLim C(D,J,Y;) =
el jegJ aell i€l jeJ ael

Lim biLim Lim C(D,, Y;) % biLim Lim Lim C(D,j,Y;) =
— — — —_——

i€l ael jeg aell el jeJ
biLim 2-Pro,(C)(inc(Dy),Y)
ael’

where [ is due to 11 is due to the fact that bi-colimits in Hom,(J°P,C) are
computed pointwise (see[[.4.8)), 711 holds by 1V is true because the 2-filtered
bi-colimit and the finite bi-limit of categories can be replaced by equivalent pseudo-
colimit and pseudo-limit, and these commute ([5]), V holds because bi-limits are
associative up to equivalence and V1 is due to[2.1.8]again.

- Let E be a finite category and F € Hom,(J°?,C). We denote for simplicity
&+ = B¢om,(gor.C)» O = ®2-pro,c)- We have to check that inc(E®xF) is the
bi-tensor EQpinc(F), i.e. that V'Y = {Yi}icr € 2-Pro,(C),

2-Pro,(C)(inc(E&«F),Y) = Cat(E, 2-Pro,(C)(inc(F), Y))(see [[.2.9):

We do as follows:

2-Pro,(C)(inc(E&xF).Y) = Lim Lim C(E&F)(j). Yi) =
el jeJ

. . ~ . i . . . 1A%
Lim Lim C(E&cF . Y») = Lim Lim Cat(E,C(Fj.Y))) =
iel jegJ i€l jegJ

. . . \4 . . . VI
Lim Cat(E, Lim C(F}, Y1) = Cat(E, Lim Lim C(F . Y))) =
iel JjegJ i€l jeg
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Cat(E,2-Pro,(C)(inc(F),Y))

where I is due to [2.1.8} /7 is due to the fact that bi-tensors in Hom,(J°P,C) are
computed pointwise (see[I.4.8] [1.2.T1), /11 holds by definition[I.2.9] IV is true by
[11, 2.4], V is due to definition|l.2.4{and VI holds by again.

O

5.2.2 Proposition. If C has finite weighted bi-limits and bi-colimits of pseudo-functors
F : P — C with finite weights W : P — Cat (see [19)]), then so does 2-Pro,(C) (to
simplify, by finite we mean that P is finite and W(P) is finite for all P € P).

Proof. We are going to prove only the case of bi-colimits. The case of bilimits is analo-
gous and we leave it to the reader. We are going to check that 2-#ro,(C) has bi-colimits
of pseudo-functors indexed by a finite category A with no loops. As a particular case, we
will have bi-coequalizers, binary bi-coproducts and O which, by is enough to prove
the statement in the proposition.

D
Let A — 2-Pro,(C) be a pseudo-functor. Then, by [3.3.4, we have

D/
A — Hom,(JP,C) equivalent to D in 2-Pro,(C) as in the following diagram with J
a cofinite and filtered poset with a unique initial object:

Hom,(J7,C)

A — 2-Pro,(C)

If we apply the construction of 1.4.5|to J, we obtain A LN H omp(JOP ,C) which by
.1.1)is equivalent to D in 2-Pro,(C).

It suffices to show that the bi-colimit of inc(D”) exists in 2-Pro,(C) and this follows
from[5.2.1] plus the fact that C is a closed 2-bmodel 2-category.

To conclude the proof, we have to check that 2-Pro,(C) has bi-tensors E®2-pmp(c)X
with E a finite category:

By we obtain a 2-pro-object X’ equivalent to X and indexed by a cofinite and
filtered poset with a unique initial object J. Then, by [T.4.3| plus[3.1.T} we can construct a
2-pro-object X" equivalent to X and indexed by J = J. Then, by M there exists the
bi-tensor E®-p/,,c)X”” and so there exists the bi-tensor E®-p/,,c)X. O

In all what it follows we assume that C is a closed 2-bmodel 2-category.

5.2.3 Definition. We define strong fibrations, strong cofibrations, strong trivial fibrations,
strong trivial cofibrations in 2-Pro,(C) as the image of fibrations, cofibrations, fibrations
that are also weak equivalences and cofibrations that are also weak equivalences respec-
tively in some Womp(j"” ,C) with J a cofinite, filtered poset with a unique initial object.
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A morphism f € 2-Pro,(C) is a cofibration if is the retract in Hom,(2,2-Pro,(C))
of a strong cofibration.

A morphism t € 2-Pro,(C) is a fibration if is the retract in Homp(2,2-Pro,(C)) of
a strong fibration.

A morphism t € 2-Pro,(C) is a trivial cofibration if is the retract in
Hom,(2,2-Pro,(C)) of a strong trivial cofibration.

A morphism t € 2-Pro,(C) is a trivial fibration if is the retract in
Homp(2,2-Pro,(C)) of a strong trivial fibration.

A morphism t € 2-Pro,(C) is a weak equivalence if it can be factored up to iso-
morphism as f = pi where p is a trivial fibration and i is a trivial cofibration.

All the rest of this section is devoted to prove the following theorem:

5.2.4 Theorem. If C is a closed 2-bmodel 2-category, then 2-Pro,(C) with the structure
given in[5.2.3]is a closed 2-bmodel 2-category. O

But before we state and prove the theorem we wanted in the first place:

5.2.5 Theorem. If C is a closed 2-bmodel 2-category, then 2-Pro(C) is a closed 2-bmodel
2-category.

Proof. Recall that the inclusion 2-Pro(C) — 2-Pro,(C) is a retract pseudo-equivalence

(see[2.1.5)). Then, the result follows immediately from and i
Proof of theorem[5.2.4|

Axiom 2-MOb: It holds by proposition

Axiom 2-M2: We are going to give the proof for the case where p is both a fibration
and a weak equivalence and i is a cofibration. The other case is analogous and we leave it
to the reader.

Let X R Y € 2-Pro,(C). By|3.2.9, we have a diagram of the form
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. . .. — = f
where a and b are equivalences with quasi inverses aand b and X" — Y’ € Hom,(J°7,C)
for some J cofinite, filtered poset with a unique initial object.

Consigigr JoP L I’Z’\z JoP a5 in|1.4.5| Then there are Z—flmctorg\)’(\', Y Jr — ¢
such that X’T = X" and Y’T = Y’. Then, by (1.4.5|plus|3.1.1, X" and Y’ are equivalent to
X’ and Y’ respectively in 2-Pro,(C) via some equivalences a’, b’ with quasi inverses a/,

b’. Then we have the following diagram in 2-Pro,(0):

X Y X— sy
al =ly lb

X’ f —Y = aa| =|bydf |bb
e e

)’(\, ? X’ 7) Y’ ? ?, X’ _— Y’

where the bottom row of this diagram belongs to Hom p(:J"p ,0).

Since Womp(JOP,C) is a closed 2-bmodel 2-category, b’f’a’ can be factored as
bia =— p’i" where p’ is both a fibration and a weak equivalence and i’ is
a cofibration in Womp(JOP ,C). Consider i = ia’a and p = bb’p’. Then
f = bb’b’bf = bb’b’f’a’a’a = bb’p’i’a’a = pi. It can be easily checked that p is a retract
of p’ and so, by definition of the structure in 2-Pro,(C), it is a fibration and i is a retract
of i’ and so it is a cofibration. It only remains to check that p is a weak equivalence: We
know that p” is a weak equivalence in H omp(JOP ,C), then p’ = uv where u is both a
fibration and a weak equivalence and v is both a cofibration and a weak equivalence in
‘Homp(jol’ ,C) and so, p = bb’uv. It can be checked that bb’u is a retract of u and v is a
retract of v which concludes the proof of axiom 2-M2.

In order to prove axioms 2-M5 and 2-M6, we state and prove some previous lemmas:

5.2.6 Lemma. Given a diagram in 2-Pro,(C) of the form

a

where p is a fibration and i is a trivial cofibration (or p is a trivial fibration and i is a
cofibration), there exists a filler (f, A, p) for that diagram.

Proof. We will focus on the case where i is a trivial cofibration and p is a fibration. The
other one is analogous and we omit it. Also, since the lifting property is preserved by the
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formation of retracts (see 4.1.16), it is enough to check this lemma for i a strong trivial
cofibration in some Hom,(K°?,C) and p a strong trivial fibration in some Hom,(J°?,C):

. . . A For .
We are going to define an order preserving morphism J°7 — K°P and we are going
to construct a diagram

a

A ——>Y (5.2.7)
i/k =1y lp € Homp (I, C)

X'—B

where A" = AF, X’ = XF, (8;, €) represents a and (Bj,,uj) represents b ¥V € J for some
invertible 2-cells €;, u;:

For j = 0, consider kg € K and morphisms Ag l Yo, X, — By and appropriate
invertible 2-cells €, uo such that (aé, €o) represents a and (b)), uo) represents b (see .
Poay
Consider Az : By and o given by the following composition

.
boic,

_
1l
—

) PoyAg <k,
Then, by [2.2.7} there exists ko < ko € K and an invertible 2-cell Ay, L6 _ By € Csuch

/i~ ~
bl Ay <ko

that
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7’

Po 3.6 Al}oSko Mo Po &, Ak0<k0

N o/

b(,) i/'NCO ko</<0 Po 36 Tk
b(') 1% T b6 i]~(O Ty
Po éo
H / =\
Po 3-6 Al}0<k0
|\ @ /
Take F(0) = ko, iy = ik, 80 = ajAL <4, Do = byXg i 70 = 00 i% Atk
H \ i/_cosko /
b6 Xi{oSko ikO
\=/ \=/
bo Iy

and we redefine € and y so that (3, &) represents a and (b, o) represents b.
For j # 0, suppose that we have already defined all the data V j* < j. By using[2.2.4]

consider k ; € K, morphisms A,gj l Y, X/{, 4B ; and appropriate invertible 2-cells €;,
1 such that (a;., €;) represents a, (b;., uj) represents b and k; > F(j) V j* < j (this can be
done because K is cofinite and filtered).
Suppose {j'|j/ < j} = {0, jo,..., ju}. By applying [2.2.7| to &y and a;. we obtain
Y0<IE’1 AA <k

c >k, F(0) and an invertible 2-cell Ax Up Y, such that
Y kj —————
boA

F(O)sk:j
. 4 ~ = = . 4 ~ o= s
Y0<] aj AkjSkj kj Y0<] aj Akjﬁk_/ kj
\ u / % | <k /

~ a/. bied

ao ¢(0)</< j j
\;7(0)</ = \ &j /

ap () Yo<; a

\ £0 / \T(k /
o a a
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! _ A’ . . . . . :
We rename a; = ajAk} <% and €; the corresponding invertible 2-cell. We repeat the

procedure with each j; from jj to j, instead of 0. Then we do the same thing for b and
consider a new k; above both the obtained ones. Then we repeat for j the procedure we

P a;
AN
bj 2 A<t
did in the beginning for 0 and we take i;. =if;and ¥; = \ it <0 /
0 Xi<u( I

i
|

v

Since F is an order preserving morphism, we define it in morphisms and 2-cells in the
obvious way.

It is straightforward to check that A’ and X’ are 2-functors. It also can be easily
checked that &, b and i’ are pseudo-natural transformations.
Then we have a filler (f', 2’, p") for diagram (5.2.7).

X )
. x 0y \=/ H . N
Since {X — j}jeJ, XF(j)<F(j) Mo (18 @ pseudo-cone, there ex-
W(.i’xﬂy I<J
To(j')
. . g :
ists a morphism X — X' € 2-Pro,(C) such that 7,9 = nr; VvV j € J

and 7y <;Q =nr<F) Y J' < j€J. In a similar way, we can define a morphism

f
A— A e Z—PVOP(C) such that 7ij = TTF(j) Y ] € Jand 7ij<jf = TF(j")<F(j) Y j' < J e Jd.

a bg
We also have invertible 2-cells A e Y, X U8 Y induced by the mor-

af b

T a i b g

Vet A=/ |

aj Ty b Tj g

phisms of pseudo-cones { I / =\ } , { I =/ } respectively.
aj 7 f)jed E] To(j) jed

V= | VH
i oa f T b

Note that i'f = gi.
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a
Ja\ PTG
a t \v/ |

Then, (f'g, //l’\ , b 9) isthe filler that we were looking for.

o f
BUERG
|

b
9

5.2.8 Lemma.

1. A morphism i € 2-Pro,(C) is a trivial cofibration iff is both a cofibration and a
weak equivalence.

2. A morphism p € 2-Prop(C) is a trivial fibration iff is both a fibration and a weak
equivalence.

Proof.

1. =) Leti € 2-Pro,(C) be a trivial cofibration. Since strong trivial cofibrations are
cofibrations, i is a cofibration by definition. Plus, we can factorize i = idi and so i
is a weak equivalence.

&) Leti € 2-Pro,(C) be a morphism that is both a cofibration and a weak equiv-

alence. Then we can factorize i & pj where p is a trivial fibration and j is a trivial
cofibration. It is enough to check that i is a retract of j but this is true by 4.1.15|plus
5.2.6]

2. The proof is analogous to the previous one and we leave it to the reader.

O

Axiom 2-Mé6a): =) If p is a fibration and i is both a cofibration and a weak equiv-
alence, then, by [5.2.8] i is a trivial cofibration and, by [5.2.6] the pair (i, p) has the lifting
property.

<) Suppose that we have a morphism X P, Y that has the right lifting property with
respect to all morphisms that are both a cofibration and a weak equivalence. By 2-M2, p
can be factorized as p L qi where q is a fibration and i is both a cofibration and a weak
equivalence. Then the pair (i, p) has the lifting property and so, by .1.15] p is a retract of
g. Then p is a fibration.

Axiom 2-M6b): The proof of this axiom is analogous to the previous one and we
leave it to the reader.
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5.2.9 Lemma.

1. A morphism i € 2-Prop(C) is a trivial cofibration iff for every fibration p, the pair
(p, 1) has the lifting property.

2. A morphism p € 2-Pro,(C) is a trivial fibration iff for every cofibration i, the pair
(p, i) has the lifting property.

Proof.

1. =) Itis immediate from[5.2.6]

<) By axiom 2-M2 plus , we can factorize | = uv where u is a fibration and v
is a trivial cofibration. By[4.1.13] i is a retract of v which concludes the proof.

2. The proof is analogous to the previous one and we leave it to the reader.
m|

Axiom 2-Mé6c¢): It follows immediately from [5.2.9]and the definition of weak equiv-
alences in 2-Pro,(C).

5.2.10 Lemma.

1. If a morphism i € 2-Pro,(C) has the left lifting property with respect to all fibra-
tions between fibrant objects, then i is a trivial cofibration.

2. If a morphism p € 2-Pro,(C) has the right lifting property with respect to all
cofibrations between cofibrant objects, then p is a trivial fibration.

Proof.

1. By 5.2.9, it is enough to check that the set
L = {p| the pair (i, p) has the lifting property } contains all fibrations. In or-
der to do that, first, we are going to prove some properties about this set:

(a) L is closed under bi-pullbacks: The proof is the same as the one in {4.1.9|of
the fact that fibrations are closed under bi-pushouts.

(b) Given an inverse bi-limit pseudo-cone {Y SN E(/)}jes where {E())}jey
is an inverse pseudo-system in 2-Pro,(C) with J a cofinite filtered poset
with a unique initial object O such that for each j # 0 € J, the morphism

j E(k<j
E()) l biLim E(k) induced by the pseudo-cone {E(j) (—<>j) E(O)}i<)»
k<j
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Ekk<Il) E(<))
{ N/ } belongs to L, then the induced morphism
Ek < j) k<l<j

Y% E (0) also belongs to L:
Suppose that we have a diagram as follows in 2-Pro,(C):

A—2 vy

i =]y o

f.
We are going to define inductively a pseudo-cone {X SN E()} jed> {fr<jli<

and an isomorphism of pseudo-cones {r;a % fii}jes: fo = b, @9 = y. Sup-
pose that we have already defined f, ax ¥V k < j:

From definition of e;, we have invertible 2-cells me; é Ek<pHVk<j

E(k<l) me; E(k<D)m €;
v \o/
such that Ty €j = Etk<l) E(<j) Vk<lI<j.
W/
E(k<)) E(k<))

Since e; € L, there exists a filler (f}, A j»pj) for the following diagram:

m;a .
A——E(@)

€j

I
=
2

biLim E(k)
X—————«——
b k<j

where b is induced by the pseudo-cone {fili<j, {fk<itk<i<; and so

- 5
we have invertible 2-cells b - ft V kK < j such that
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Ek<) ™ B Etk<l) m §

N I\

b = Ek<) f, VYk<I< j And?# issuch

\?k / \fkf' /

(op

that
Tk €; Ti a
Nea |
E(k<)) T a
N
Yy = Tk a vVk<j.
Voow
fr i
SN
Tk b [
E(k<j) f
SN
Take fi<; = H \ﬁ j/ andaj= A ;- It can be easily checked that
Tk b
\ Ok /
fi

this data defines a pseudo-cone and an isomorphism of pseudo-cones as we
wanted.

f
This pseudo-cone induces a morphism X — Y € 2-Pro,(C) and

so we have invertible 2-cells nf #=j f; Vv j € J such that
Ek<I) nof Etk<l) m f

xﬂ«/ \ﬂl/
Tk = Ek<] f, Vk <1 < j Let’s check

N\

that (f, A, p) is the filler that we were looking for, where A is such that
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a

T = f; i Yjedandp = puop:

A

- L

(c) L is closed under the formation of retracts: It follows immediately from

4116

Now we are going to prove that L contains all fibrations in 2-Pro,(C):

Let p be a fibration in 2-Pro,(C). If p is a fibration between fibrant objects of
C, by p is a fibration between fibrant objects in pHom,(J°P,C) and p is a
fibration between fibrant objects in Womp(j”l’ ,C). But pis p seen as a morphism in
Womp(jol’ ,C) and so p is a fibration between fibrant objects in 2-Pro,(C). Then,

by hypothesis, p € L.

Since L is closed under bi-pullbacks and C satisfies axiom 2-N2, L contains every

fibration in C.

LetY 2 Be H omP(J"p ,C) be a fibration for some cofinite and filtered poset J

with a unique initial object.

We are going to construct a system {E()} jey satisfying the hypothesis of b):
Take E(0) = B and for each j # 0, let E(j) be the following bi-pullback:

h

E(j) ——=Y;

h{ =] p;

B—0> B



E(0 <)) = h{ and if 0 # k < j, E(k < j) is given by the following diagram

YieiN}

E()

N
Elk<)) =14y

B——F%— Bi
T
Pk h{  E(k<))
|
Pe hy  Ek<)) o Vi,
Vel Vo
andso 7y hi  E(k<j) = B P hy . It can be checked
|/ L
2 h/ Br<j 3 hi
\eo/
m; ut

that E is a pseudo-functor.

Let’s check that Y satisfies the universal property of biLim E(j) with projection
jed
ho = p:

For j # 0, take Y 4, E()) as in the following diagram:
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and so we have

Pj hl 7 Pj hl 7

ST

>kl m o= P !
W)

B B

7Tj P ﬂj p

Then take mo<; = 0{ and if 0 # k < j, mi<; such that
he  Etk<)) T
| A / H ht Ek<j) 7
Yi<j hé j \ﬁf’/ ‘
| N4/ h]
hgﬂk<j = Yk<j 7T}/ and hllcﬂk<j = \9{ /
\”Zq/ p

oy
N
h](‘) bq

It can be checked that this data defines a pseudo-cone.

k

Now suppose that we have another pseudo-cone {Z ﬂ> E()}jeys
Pk<j h-/"p‘.
{E(k < o; éﬁ itk<- Consider the pseudo-cone {Z 2y i}jeds

Yi< j h{) Pj

{ \ @B I

h’é Etk<j) ¢j } . Then there exists a morphism Z Zive 2-Pro,(C)
k<j

Il \‘%;:/

k
hO
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Yk<j hé Pj

R X

such that ﬂ}(go =hlg; and \ . / H = he  E(k<)) @)
O T BN

Pj . . .
It can be checked that {7 ;¢ SN ¢} jeJ 1s an isomorphism of pseudo-cones where

h) e
AN
pjissuchthathlp; = 7 ¢ and
\ o=
hy ®j
2 hom ¢
|/ |
e p ¢
|- H
Pk ﬂ'Z ¥
oy -
Pk h’g Pk
B/ \B " ék ",
nehipj = T 1 k ¥ k € J where j’ is such that k, j < j'.
I | SN
e he Ek<j) ¢
[ e/ |
ﬂ-]|<3 J @

hl
VRN

P Y EGi<j) @y

T N/
Pj

By similar arguments, one can check the full and faithfulness of the equivalence.
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. N .
Now we are going to check that E(j) — biLim E(k) € L:
k<j
Suppose that we have a diagram of the form

A—2 S E()) (5.2.11)

biLim E(k)
X > e
b k<j

It can be checked that the following square is a bi-pullback

biLim E(k) aly  biLim Yy

k<j k<j
7{5 = v b|L<—|m Pk
k<j
B biLim By
b’ k<j

where biLim pg is defined as in |5.1.5 bé is induced by the pseudo-cone
(—
k<j

B
T

{B LN Bili<jo {n,'? _Jk<i<j and so we have an isomorphism of pseudo-cones
. B P . hore

{nEbJB = n,'?}/xj; and a]E’Y is induced by the pseudo-cone {biLim E(k) — Yi}i<;,

k<j
Yi< j hé b4
-
{ h’é E(k<I) m } and so we have an isomorphism of pseudo-cones
k<l<j
\U«l
he Ty

. 6,
Y,/ k
{7Tk aE’Y — hoﬂk}k<j-

Consider the following diagram

213



b biLim E(k)

X - a
~ - k<] E.Y
~
~ _h
b > =fv
~ .
biLim E(k) Sap = biLim Y,
k<j 2y / k<j
. bipb biLim
7o ”11 ! I I- .
= a; k<j
biLim B
B B, . k
ﬂ'B a-/ k<]

B

where aé is defined as in m and the following equality holds

biLim pg j b<———ILIm P 7
— m, h k<j 0
k<j ’
\ @; / \ %
. ! — biLim pg i
J J = — J
aB 7'1'1 h k< aE,Y
j B E .
a, 7 i, b al ﬂjB nt
B biLim py o) b
k k<) EY
| 7
B j E
T bg n, b
here € is such that 7B = \ﬁ;/ H H Vik<j
where € 1s suc atm e = ﬂ,‘f’ ﬂg b J-
S N I
/a\ | I
B J B E
7Tk aB ﬂ-] 770 b

Consider also g as in

Now consider (h’, 2, o) a filler for the following diagram

214

o  —>=T
o_/



where 7y’ is such that ﬂZﬂ'é’y
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=]y qu‘
—P;
h
7TZ 71'6 q;
| N\&/
m{ ay
N/
Yk<j
\ ﬁg\f_l
hg
[
hg Tk
| w
Tk al,
|
Tk n{)




&/ I
P h) a
\B 0j /
7rj h{ a
| Jighiy\
my= 75 EQ < j) a
Y AN
ﬂ? o eJ- a
I \ 7
ﬁ o b i
o
ﬂ{ h i

Y

E() ——=Y;
h/ l birb kp.f
=14

It can be checked that (g,4,p) is a filler for diagram (5.2.11) where A is

= |l p|

h{ a

, SN\ H

h) a EQO < j) a

| O N

such that hé/l = /h’ i, h{/l = o e 7 and p is such that

i1 \ v

hé ' \g i o | b i

[

h’ g i
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hG 2 &
H N
hg E(k<) g
Vo |
Yi<; hy 9 hy np € g
H \P(]) \ﬁk/ H
k<j h’ i EGk<p 9
/N H '/ H
hinbp = 7 8y h and hinfp = hy g
N LA
ﬂz n{) q; h’ ﬂg b
I o/ PN H
ﬂZ ) h hk nE b
H o
oy aty b
| o |
hg e b

Vk<j

Then, by b), Y — B € L.

We have proved that L contains all strong fibrations. Then, by c), L contains all
fibrations as we wanted to prove.

2. The proof is analogous to the previous one and we leave it to the reader.

O

5.2.12 Lemma. Iffand g are two composable morphisms in 2-Pro,(C) such that f and g
are both fibrations or both cofibrations, then if two out of the three morphisms f, g and gf
are weak equivalences, so is the third one.

Proof.  We will do the case where f and g are both cofibrations. The other case is
analogous and we omit it.

- Case I: Suppose that f and g are both weak equivalences. By it is enough to
check that df is a trivial cofibration and, by this can be checked by proving
that gf has the left lifting property with respect to all fibrations. The proof is dual
to the proof of the fact that fibrations are closed under composition from§.1.9]
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- Case II: Suppose that f and gf are both weak equivalences. We want to check that g
has the right lifting property with respect to all fibrations. So suppose that we have
a fibration p and a diagram of the form

Since gf is a trivial cofibration, there exists a filler (h’, A, p") for the following
diagram

af

N<T- < <" x

= | of p

(o]

%B

b

f n
Since f is a trivial cofibration, there exists X’ — Y’ € Hom,(J?,C) for some
cofinite filtered poset J with a unique initial object such that f is a retract of f'.
From the fact that Hom,(J°P,C) is a closed 2-bmodel 2-category and [4.2.9, we

- ke —~ N
have that  induces a trivial cofibration Y A X' VY’ — Y’ € H om,(J°?,C) and

— ki —~
0, by 4.2.14{f induces a trivial cofibration Y A X V'Y S Ye 2-Pro,(C). Then
there exists a filler (hg, Ao, po) for the following diagram

- a A afeX v h'g
YaAXvY——=>E

k¢ xlaapBVeé P

(o8]

Y bgoY
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p a
\ v
b g
where @ = H /=\ , B =
b 9 idy
I s
b 9 oY ki br Ao
PN g
\o'/ [
b g
s= | /=0
b g idy

b g9 o' ki b A

p a
\ 7
b g
b 9

— ky —
By similar arguments, g induces a trivial cofibration ZA'Y —2, Z. Then there exists

a filler (hy, 41, p1) for the following diagram

ZA
l
Z

—_ h/AhO
%E

=l Ap J/p

_—
bo? B

where a =
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\k' [
kg by
[
bg

and



/ PN

b g oY
| s
b Vg ag
g=1I  /%\ H
b a'z kg ag
| VAN
b o4 Kg Kg a’
| N/
b o2 kg a
a
be/ll\
ho ki bs Ap

A T g

h; g aé ki bs Ap \,Dl / H
H /=\ H \:/ 7 z
I z h; K ko aj i b o i
t can be checked that (hloll, 1 g g g 0 R H \72/ ) is
L I R 20 R R #4
hi kg kg by 9 \= ~
| I v b

1 kg bg Ao g
H

hi (i) g
the filler that we were looking for.

- Case III: Suppose that g and gf are weak equivalences. By|[5.2.10} it is enough to
check that f has the left lifting property with respect to all fibrations between fibrant

objects. So suppose that we have a fibration E ®, B between fibrant objects and a
diagram of the form

Since g is a trivial cofibration, there exists a filler (h’, 2’,p’) for the following
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diagram
y—> B
g =
Z—> %

Since gf is a trivial cofibration there exists a filler (h, 4, p) for the following diagram

X———E X———E
fl =ly fi
Y b p = Y =| Afoy p
gl/ = gi
Z—w 7B Z—w 7B
p h g
e/
It is straightforward to check that (hg,4, h’ g) is the filler that we were
e/
b

looking for.

O

f =
5.2.13 Lemma. If X — Y is a weak equivalence and f - pi with i a trivial cofibration
and p a fibration, then p is a trivial fibration.

Proof. Since f is a weak equivalence, we can factorize f i p’i" where p’ is a trivial
fibration and i’ is a trivial cofibration. Then there exist fillers (g, 4, p), (§’, A, p") for the
following diagrams

la \ =B \
- Y

L——>Y L—>Y ' ——>Y ' ——

p p p p

By[4.2.9] there exist fillers (hg, g, po), (h1, 41, 01) for the following diagrams
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— idz A i0c* v g'g idyr & VoX v gg

ZaXvZ——>Z ZAXvZ ——>Z
ki| =Uidp & idy v pop’g |P ki | = idy A idyy V p'opg’ |p’
z Y zZ Y
z oo Z oo
By working as in the proof of[5.2.12|Case II, one can check that p and p” have similar
lifting properties and so, by [5.2.9] p is a trivial fibration. i

f =
5.2.14 Lemma. If X — Y is a weak equivalence in 2-Pro,(C) and f — pi with i a
cofibration and p a trivial fibration, then i is a trivial cofibration.

Proof. The proof is analogous to the proof of [5.2.13]and is omitted. i

The following lemmas assume that 2-N3a) holds in C but they would be analogous in
case 2-N3b) holds instead of 2-N3a).

5.2.15 Lemma. IfE P, Bis a trivial fibration in 2-Pro,(C), then there exists a trivial

cofibration B — E such that ps = id. Furthermore, every quasi-section of p is a trivial
cofibration.

Proof. By axiom 2-N3, B is cofibrant. Then, by [5.2.6] we have a filler (s, 4, p) for the
following diagram:

|

R
©

B T) B
Then ps = id.
Let s’ be a quasi-section of p. One can proceed as in the proof of [5.2.12| Case II to
prove that s’ has the left lifting property with respect to all fibrations and so is a trivial
cofibration. O

5.2.16 Lemma. If X R Y is a trivial fibration, Y 2, Zis a trivial cofibration in
2-Prop(C) and h = gf, then h is a weak equivalence.
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Proof. First observe that since we have already proved axioms 2-M6a), 2-M6b) and
2-M6c), we can assume that axiom 2-M7 holds in 2-Pro,(C). Then it is enough to prove
the lemma only for the case where h = gf.

By axiom 2-M2, ¢f can be factored as gf = pi where p is a trivial fibration and i is a

cofibration. Also, by|5.2.15| there exists a trivial cofibration Y —>5 X such that fs i 1.
Since p is a fibration and g is a trivial cofibration, there exists a filler (h, A, p) for the
following diagram

is

Y

W
9‘ = || gBoas ‘IO
Z

/———

idz

Observe that, by [5.2.15] h is a trivial cofibration. Then, since g is also a trivial cofi-
bration, by axiom 2-M3 (this axiom is satisfied by and the fact that we have already
proved axioms 2-M6a),b) and c)) plus [5.2.12] hg is a trivial cofibration. Then, since
is = hg, is is also a trivial cofibration and so, by i is a trivial cofibration which
concludes the proof. O

Axiom 2-MS5w: Case [: Suppose that f and g are weak equivalences: In this case,
we can factorize f = pi and g = qj where p, q are trivial fibrations and i, j are trivial
cofibrations. By jp is a weak equivalence and so it can be factorized as jp = rk
where r is a trivial fibration and K is a trivial cofibration.

By plus axiom 2-M3, qgr is a trivial fibration and ki is a trivial cofibration. Then
of = qjpi = grki and so is a weak equivalence as we wanted to prove.

Case II: Suppose that f and gf are weak equivalences: In this case, we can factorize
f = pi where p is a trivial fibration and i is a trivial cofibration. By axiom 2-M2, we can
also factorize g = qj where q is a fibration and j is a trivial cofibration. Then gf = gjpi
where jp is a weak equivalence by [5.2.16] Then we can factorize jp = rk where r is a
trivial fibration and K is a trivial cofibration and so gf = grki where qr is a fibration and ki
is a trivial cofibration by [5.2.12] Therefore, by [5.2.13] gr is a trivial fibration and so, by
[5.2.12] q is a trivial fibration which concludes the proof that g is a weak equivalence.

Case III: Suppose that g and gf are weak equivalences: The proof is analogous to the
proof of Case II but using[5.2.14]instead of [5.2.13]

To conclude the proof, suppose that f is an isomorphism. Then it can be easily checked
that f has the left lifting property with respect to all fibrations and so, by [5.2.9] f is a trivial
cofibration. Besides, f can be factored as f = idf and so is a weak equivalence.

This was the only remaining axiom to conclude that 2-Pro,(C) is a closed 2-bmodel
2-category as we wanted to prove. O
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Resumen en castellano de la seccién 3

En esta seccion dotamos a 2-Pro(C) de una estructura de “closed 2-bmodel
2-category” cuando C la posee. Esta seccion estd inspirada en la prueba dada en [12]
del hecho de que Pro(C) es una “closed model category” en el caso 1-dimensional. La
demostracién en nuestro contexto resulté ser mucho mds complicada debido a que los
diagramas no conmutan estrictamente sino que conmutan salvo isomorfismo. Por esta
razon, nos vimos obligados a trabajar con pseudo-funtores y transformaciones pseudo-
naturales si bien los objetos y los morfismos en 2-Pro(C) son 2-funtores y transforma-
ciones 2-naturales. Se podria pensar (y nosotros lo hicimos por un tiempo) que trabajar
con 2-funtores y transformaciones pseudo-naturales seria suficiente pero no lo es. La
raz6n para tomar pseudo-funtores queda evidenciada en la prueba del axioma 2-M2 para
pHom,(J°P,C) donde Z resulta un pseudo-funtor que no es necesariamente un 2-funtor
aun cuando todos los demads lo son.

La demostracion del teorema principal que establece que 2-Pro(C) es una “closed 2-
bmodel 2-category” tiene tres pasos. El primero, [5.1] consiste en definir una estructura de
“closed 2-bmodel 2-category” para la 2-categoria pHom,(J°P,C) a partir de una
estructura para C, donde J es un poset cofinito y filtrante con un tGnico objeto inicial. Cabe
comentar que en [[12]] no se pide que J tenga un tnico objeto inicial, lo cual para nosotros
es un requisito esencial, incluso en el caso 1-dimensional. El segundo paso, [5.2] consiste
en usar la estructura en pHom,,(J°P, C) para definir una en la 2-categoria 2-Pro,(C). Para
esto se prueban primero los aspectos de completitud y co-completitud finita que resul-
tardn en la demostracion del axioma 2-MOb y luego se demuestran de manera encadenada
el resto de los axiomas que requieren la demostracién de varias propiedades que desta-
camos como lemas pues tienen interés en si mismas. Finalmente, el tercer paso consiste
en transferir esta estructura a 2-Pro(C) usando que esta 2-categoria es “retract pseudo-
equivalente” a 2-Pro,(C) ([2.1.5) mediante el resultado probado en[4.3.3]
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