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Reduction spaces in non-sequential and infinitary
rewriting systems

We study different aspects related to the reduction spaces of diverse rewriting sys-
tems. These systems include features which make the study of their reduction spaces
a far from trivial task. The main contributions of this thesis are: (1) we define a mul-
tistep reduction strategy for the Pure Pattern Calculus, a non-sequential higher-order
term rewriting system, and we prove that the defined strategy is normalising; (2) we
propose a formalisation of the concept of standard reduction for the Linear Substitution
Calculus, a calculus of explicit substitutions whose reductions are considered modulo an
equivalence relation defined on the set of terms, and we obtain a result of uniqueness of
standard reductions for this formalisation; and finally, (3) we characterise the equiva-
lence of reductions for the infinitary, first-order, left-linear term rewriting systems, and
we use this characterisation to develop an alternative proof of the compression result.

We remark that we use generic models of rewriting systems: a version of the notion
of Abstract Rewriting Systems is used for the study of the Pure Pattern Calculus and
the Linear Substitution Calculus, while a model based on the concept of proof terms is
used for the study of infinitary rewriting. We include extensions of both used generic
models; these extensions can be considered as additional contributions of this thesis.
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Espacios de reducción en sistemas de reescritura
no-secuenciales e infinitarios

En esta tesis estudiamos distintos aspectos ligados al espacio de reducción de diversos
sistemas de reescritura. Los sistemas abarcados presentan caracteŕısticas que hacen que
el estudio de sus espacios de reducción diste de ser una tarea sencilla.

Las principales contribuciones son: (1) se define una estrategia de reducción multi-
paso para el Pure Pattern Calculus, un cálculo con patrones no-secuencial, y se demues-
tra que dicha estrategia es normalizante; (2) se propone un criterio para formalizar el
concepto de reducción standard en el Linear Substitution Calculus, un cálculo de susti-
tuciones expĺıcitas cuyas reducciones se consideran módulo una relación de equivalencia
sobre su conjunto de términos, obteniéndose un resultado de unicidad de reducciones
standard para el criterio definido; y (3) se caracteriza la equivalencia entre reducciones
para los sistemas de reescritura de términos infinitarios de primer orden y lineales a
izquierda, utilizándose esta caracterización para desarrollar una demostración alterna-
tiva del resultado de compresión.

Destacamos el uso de modelos genéricos de sistemas de reescritura: se utiliza una
formulación de Sistemas Abstractos de Reescritura para estudiar el Pure Pattern Calcu-
lus y el Linear Substitution Calculus, y un modelo basado en proof terms para estudiar
la reescritura infinitaria. Esta tesis incluye asimismo extensiones de los dos modelos
genéricos utilizados, que pueden considerarse contribuciones adicionales de la misma.
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Espaces de réductions dans les systèmes de réécriture
non-séquentiels et les systèmes de réécriture infinitaires

On aborde dans cette thèse certaines propriétés formelles de systèmes de réécriture
relatives à leurs espaces des dérivations. Les calculs choisis présentent des caractéristiques
particulières qui font l’étude des propriétés choisies des défis intéressants. Les contri-
butions les plus importantes de ce travail sont: (1) nous définissons une stratégie de
réduction multiradicaux pour le Pure Pattern Calculus, un calcul d’ordre supérieur non-
séquentiel, et nous prouvons que cette stratégie est normalisante; (2) nous proposons
une manière de formaliser le concept de réduction standard pour le Linear Substitution
Calculus, un calcul avec substitutions explicites agissant à distance, dont les réductions
sont considérés modulo une relation d’équivalence dans l’ensemble des termes, et nous
aboutissons à des résultats d’existence et d’unicité des réductions standards pour cette
formalisation; (3) nous donnons une caractérisation de l’équivalence entre les réductions
pour les systèmes de réécriture des termes infinitaires du premier ordre linéaires à gauche,
et nous nous servons de cette caractérisation pour développer une preuve d’une version
renforcée du résultat de compression des réductions infinitaires.

Un aspect commun à ces trois sujets est l’utilisation de formalismes génériques de
systèmes de réécriture. L’étude sur le Pure Pattern Calculus et celui concernant le
Linear Substitution Calculus reposent sur le concept de Système Abstrait de Réécriture.
D’autre part, pour le travail sur la réécriture infinitaire, on se sert d’un modèle fondé
sur la notion de proof term. Des extensions à ces formalismes génériques sont des
contributions additionnelles de cette thèse.
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Équivalence entre réductions
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Réécriture infinitaire
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las exigencias de la carrera docente. Entend́ıa nebulosamente que “un doctorado lleva
mucho tiempo”, un tiempo que se mide ¡en años!, donde durante todo este tiempo se
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de estar.

Enri y Elvio: el aliento, la confianza en mis capacidades, la escucha, y el puŕısimo
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Chapter 1

Introduction

Rewriting is the study of stepwise, i.e. gradual and discrete, transformation of objects.
If the objects being transformed are terms, that is, well-formed strings of symbols, then
we speak of term rewriting.

Rewriting has a significant and continuous influence in different areas of computer
science. In this sense, the λ-calculus, one of the most ancient rewriting systems, is
arguably the most influential one.

From a purely theoretical viewpoint, the λ-calculus defines a model of computa-
tion, in equal terms with Turing machines and recursive functions. This fact yields the
relevance of rewriting for the theory of computer science.

On the other hand, maybe the most far-reaching contribution of rewriting in the
practice of programming is that the features and simplicity of λ-calculus led to the
development of the functional programming model, which is enjoying an increasing in-
fluence into the global computer programming community.

Besides the existence of programming languages based mainly in the functional pro-
gramming model, as e.g. Lisp (www.lispworks.com/documentation/HyperSpec/Front/
index.htm), Erlang (www.erlang.com), OCaml (ocaml.org) and Haskell (www.haskell.
org); we remark that some features, concepts and techniques inspired by this model,
such as the inclusion of “λ-expressions” (that is, anonymous functions), and the use of
generics in type systems, have been adopted in mainstream programming languages, in-
cluding Java (docs.oracle.com/javase/specs/), C# (msdn.microsoft.com/en-us/
library/618ayhy6.aspx), Python (www.python.org) and others. The recent (first ap-
peared in 2003) Scala language (www.scala-lang.org) combine several concepts com-
mon in functional programming with the main constructs of object-oriented program-
ming; its rapidly growing popularity contributes to foster functional-related constructs
and practices inside the programming community.

We also mention that some concepts coming from the functional programming lan-
guages and style, like the emphasis on the control of the effect/mutability generated
by the different parts of a program, the use of higher-order functions, and the use of
continuations, permeate into other programming communities.

On another front, rewriting systems offer a formal framework for the study of differ-
ent aspects of programs, such as their evaluation and their type disciplines. Related to
the latter, a plethora of typed rewriting systems have been proposed.

In this thesis, we study formal properties of rewriting systems focused on different
concerns related to functional-based programming languages, including: pattern calculi,

1



2 CHAPTER 1. INTRODUCTION

which model the phenomenon of pattern matching ; explicit substitution calculi, oriented
to the detailed study of the implementation of languages; and infinitary rewriting sys-
tems, which allow to study potentially infinite computations.

In the remainder of this introduction, we revisit the main concepts of rewriting,
then we describe briefly the studied rewriting systems, subsequently we introduce the
two models of reduction spaces being the main tools used in this work, and finally we
comment its main contributions.

1.1 Rewriting

The origins of rewriting, and particularly of term rewriting, predate its establishment
as a definite research area. Historically, the major source for the development of term
rewriting is the emergence in the 1930s of the λ-calculus, together with its twin combi-
natory logic. Several formal properties, currently associated to the general framework of
rewriting, were originally analysed for these systems. Later, the notion of term rewrit-
ing system has been formalised, and their properties studied from a general perspective.
One early example is [KB70].

1.1.1 Some basic features of rewriting

A simple example of rewriting is the simplification of an arithmetic expression in order
to obtain its result. In this view, the computation of the result of the expression p1 �
1q � p0� 0q can be described by either of the following stepwise transformations:

p1� 1q � p0� 0q Ñ 1� p0� 0q Ñ 1� 0 Ñ 0
p1� 1q � p0� 0q Ñ p1� 1q � 0 Ñ 1� 0 Ñ 0

The initial expression is simplified by means of a sequence of rewrite steps. The use
of a directed arrow (instead of e.g. some equality symbol) reflect that transformations,
as modeled in the theory of rewriting, have a definite direction from source to target.
A rewriting system specifies the objects being transformed and the allowed rewrite

steps; in this example, arithmetic expressions and sound simplification steps respectively.
The final expression of both exhibited sequences, namely 0, cannot be further rewritten
(i.e. simplified). Such objects are known as the normal forms of a rewriting system.

We use t� u to denote that the object u can be obtained from t through a sequence
of rewrite steps.

As in this example, most applications of rewriting allow a multiplicity of rewrite
sequences from a common source. This fact leads to two of the most basic concerns of
rewriting:

Termination Do all possible rewrite sequences attain a normal form after a finite
number of steps, or can infinite rewrite sequences be built?

Uniqueness of normal forms If two rewrite sequences having the same source end
in normal forms, is it possible to assert that those normal forms coincide?

Let us analyse the consequence of not enjoying either of these properties in our
example about computing the result of arithmetic expressions. The lack of uniqueness



1.1. REWRITING 3

of normal forms would imply a basic inconsistency: different results could be obtained
from a common expression, depending on how the computation from that expression is
carried on. The lack of termination would imply that certain computations could run
indefinitely without yielding a result.

In many applications of rewriting, both termination and uniqueness of normal forms
are desired properties. There are important exceptions to this observation though. We
mention the examples of CCS [Mil99] and the π-calculus [SW01], which are adequate
models of concurrent computations, despite the fact that they do not enjoy neither of
these two properties.

Another property referred repeatedly in the literature is the confluence or Church-
Rosser property. A rewriting system is confluent iff, whenever t � u1 and t � u2,
there exists an object s verifying u1 � s and u2 � s. That is: in a confluent rewriting
system, given two sequences of rewrite steps from a common source, a common target can
always be obtained by further rewriting them, thus “joining” the two original sequences.
Observe that in a confluent rewriting system, if t � u1, t � u2, and both u1 and u2

are normal forms, then necessarily u1 � u2, because the only object verifying u1 � s is
u1, and similarly for u2. Hence confluence implies uniqueness of normal forms. In fact,
proving confluence is a way to obtain uniqueness of normal forms for a rewriting system.

We end this brief informal description of the field of rewriting, by noticing that
in many cases, the stepwise transformation of objects is specified by rewrite rules.
These rules encode the schemas of the allowed transformations: each rewrite step must
correspond to the application of a rule. A set of rewrite rules form the basis of
a rewriting system. In our example about simplification of arithmetic expressions,
taken from [vO94], the rules:

1� x Ñ x x� 0 Ñ 0

suffice to justify each of the steps in both of the rewrite sequences exhibited. E.g. the
step p1�1q�p0�0q Ñ 1�p0�0q corresponds to an application of 1�x Ñ x, where
x stands for the second occurrence of 1 from the left. Observe that the rule application
in this step does not involve all the source term, but only the subterm 1� 1. Usually,
rules can be applied to either a complete object or only to a part of it.

Notice the use of variables in rules. If we allow variables to stand, not just for
numbers, but for arbitrary expressions, then the following rewrite sequences are also
allowed:

p1� 1q � p0� 0q Ñ 1� p0� 0q Ñ 0� 0 Ñ 0
p1� 1q � p0� 0q Ñ p1� 1q � 0 Ñ 0

1.1.2 Common rewriting terminology

In the rewriting literature, the terms reduction step and reduction sequence are
commonly used for “rewrite step” and “sequence of rewrite steps” respectively. Reduc-
tion steps are sometimes called just reductions. The underlying view is that suggested
in the given example. Rewriting is considered as the stepwise simplification, or reduction
of an initial expression. In many situations, the goal of rewriting is to attain normal
forms.

Another common term in rewriting is reducible expression, or redex. A redex is
usually defined as any part of a term, which makes the term to be subject of a reduction
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step, together with the corresponding rewrite rule. Considering the rewriting system of
the previous section, the term p1�1q�0 includes two redexes, one for the subterm 1�1
and the rule 1 � x Ñ x, and the other for the whole term, and the rule x � 0 Ñ 0.
The contractum is the term resulting of the contraction of a redex, e.g. the contractum
of 1� 2 is 2. The expression ‘redex occurrence’ is used to distinguish different parts
of the same term being instances of the left-hand sides of rewrite rules, even when the
applicable rule, and possibly also the instance, coincide. E.g. the term p1� 3q � p1� 3q
includes two redex occurrences, both corresponding to instances of the left-hand side of
the rule 1� x Ñ x having the form 1� 3.

There is an obvious correspondence between the concepts of redex, more precisely
redex occurrence and reduction step, the main difference being in their respective focus.
The word “redex”, and the expression “redex occurrence”, denote the fact that a trans-
formation step can be performed on a certain term, while “reduction step” stands for
the act of performing that step, or put in other words, of contracting a redex. We use
the terms “redex occurrence” and “step” interchangeably in this thesis.

Finally, we mention the notion of set of coinitial steps, which is simply a set of
steps which share their source object.

1.1.3 Reduction spaces

The transformations modeled by a rewriting system can be described by means of a
directed graph, whose nodes are the objects and whose edges are the reduction steps.
This graph is mentioned as the reduction space (or derivation space) of the system
in, e.g., [KG97], [HL91] and [Mel96]. The reduction sequences are exactly the paths in
the reduction space. The normal forms correspond to the nodes with no outgoing edges.
The pairs of connected objects form the reduction relation of a rewriting system: the
pair xt, uy is in the relation iff t � u. Hence, a reduction space is more detailed than
the corresponding reduction relation.

Complex reduction spaces can correspond to even simple rewriting systems. The
following figure depicts the portion of the reduction space of the rewriting system of our
example, including just the sequences having p1� 1q � p0� 0q as source term.

p1� 1q � p0� 0q

vv ((
1� p0� 0q

zz ))

p1� 1q � 0

uu

{{

0� 0

++

1� 0

��
0

Some of the concepts and properties usually studied in rewriting are closely related
with reduction spaces. This is the case for the equivalence between reduction sequences,
the standardisation properties, and the study of reduction strategies. We describe briefly
these concepts in the following.

An analysis of the equivalence between reduction sequences is usually a good
guide to the understanding of complex reduction spaces. Two sequences are commonly
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considered equivalent if they represent the same reduction activity, performed in different
order. A simple example are the sequences p1 � 1q � p0 � 0q Ñ 1 � p0 � 0q Ñ 1 � 0
and p1� 1q � p0� 0q Ñ p1� 1q � 0 Ñ 1� 0: they include the same steps, performed
in the two possible orders. This situation corresponds exactly to the upper diamond in
the previous figure.

It is not true in general that any two reductions sharing their source and target are
equivalent. A simple example can be given in the rewriting system about simplification
introduced earlier. Consider the term 1 � p1 � 1q. This term includes two redexes,
both for the rule 1 � x Ñ x ; contracting either of them yields 1 � 1. The situation is
illustrated in the following figure, where each occurrence of 1 in the source term 1�p1�1q
is given a different label, and for each step, the corresponding subterm in its source term
is indicated with a brace, and the replacement for x is indicated by underlining

1a � p1b � 1cq

~~   

hkkkkkkkikkkkkkkj
1a � p1b � 1c q 1a � p

hkkikkj
1b � 1c q

1b � 1c 1a � 1c

Figure 1.1: Two confusing steps

The resulting reduction sequences, both consisting in just one step, are not equiva-
lent.

The aim of the study of standardisation is to find subsets of the set of reduc-
tion sequences of a rewriting system covering all the reduction relation. Namely, an
adequate characterisation of a class of standard reduction sequences, shorthand
s.r.s., should enjoy the following condition: whenever t � u, there is a s.r.s. hav-
ing t and u as source and target respectively. In terms of the reduction space, a class of
s.r.s. is a set of paths covering all the pairs of connected objects.

For any rewriting system, an obvious class of s.r.s., namely the one including all
the reduction sequences in the system, exists. The interesting classes of s.r.s. are those
as narrow as possible, the best being those enjoying a uniqueness condition: whenever
t � u, there is exactly one s.r.s. having t and u as source and target respectively. If
equivalence of reductions is considered, then the uniqueness condition can be rephrased
as the existence of exactly one s.r.s. for each class of equivalent reductions.

In the literature, e.g. [CF58, Klo80, GLM92, Mel96, BKdV03], standardisation is
related with the notion of external step: in a s.r.s., external steps should precede
internal ones. E.g., in the term 1� p2� 0q, the step 1� p2� 0qlooooomooooonÑ 2� 0 should precede

1 � p 2� 0loomoonq Ñ 1 � 0. Therefore, the reduction sequence 1 � p2 � 0q Ñ 2 � 0 Ñ 0 is

standard, while 1� p2� 0q Ñ 1� 0 Ñ 0 is not.

A reduction strategy can be described as a “plan” indicating how reduction should
proceed from a given term. A strategy can be defined as a function: for any object t not
in normal form, it indicates a reduction step, or in some cases a set of reduction steps,
having t as source. A target object is obtained by following the indication given by the
strategy, i.e., by performing the selected step(s). In turn, applying the strategy to this
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target object yields a step/a set of steps to be further performed; and so on.1

We name as multistep reduction strategies, those indicating more than one step for
at least one object. In such cases, some way of performing the selected steps simulta-
neously must be defined.2 The notion of complete development of a set of coinitial
steps is usually involved with the task of simultaneous contraction.

The aim when defining a reduction strategy is to arrive at normal forms, whenever
it is possible, by its systematic application; that is, by following the “plan” given by the
strategy. More formally, a strategy S is normalising if, whenever t � u and u is a
normal form, there is a reduction sequence t � t0 � t1 � . . . � tn�1 � tn � u, where
for all i, the reduction ti � ti�1 is the result of applying the indication given by S for
ti.

3 We use the term normalisation to refer to the study of how normal forms can
be computed, involving the definition of normalising reduction strategies, and also the
techniques to prove that a reduction strategy is normalising.

Standardisation and normalisation are among the subjects of this thesis.

1.1.4 The λ-calculus and higher-order term rewriting systems

As noted in the beginning of this introduction, the λ-calculus [Chu32, CR36, Chu41,
Bar84] is arguably the most influential rewriting system. This calculus was developed
prior to, and greatly influenced, the emergence of the general study of rewriting. Several
of the main concepts, techniques and results studied in rewriting appeared previously
applied to the particular case of the λ-calculus.

The λ-calculus can be described as a minimalist formalisation of the mechanism
by which a function is applied to an argument. Its syntax includes just the elements
needed to describe function application: variables, the abstraction constructor to define
functions, and application to link a function definition with an argument. Numbers and
arithmetical operands will be used in the following as well, to favor a more intuitively
appealing description.

Let us consider the term

pλx.x� x� xq3

denoting the application of the function pλx.x � x � xq to the argument 3. The oc-
currences of the variable x in the subterm x � x � x are bound by the abstraction
λx. Term rewriting systems including, like the λ-calculus, some mechanism to bind
variable occurrences, are known as higher-order term rewrite systems. Conversely,
in first-order term rewrite systems, no such mechanisms are present.

A note about terminology: in the literature about rewriting, the name
“term rewriting system”, and specially the acronym “TRS”, refer usually to

1In the more general case of non-deterministic reduction sequences, more than one indication can
be given for the same object, so that any of those indications may be followed. In this thesis, only
deterministic reduction sequences will be considered.

2We remark the difference between a multistep reduction strategy and a non-deterministic strategy.
In the former, a set of steps form a single indication, so that all these steps are supposed to be performed
simultaneously. In the latter, there can be several different indications, and only the step(s) in one of
them are supposed to be performed.

3In this characterisation of normalising reduction strategies, uniqueness of normal forms is assumed.
In the general case, it suffices to obtain one of the normal forms which can be reached from t, by
following the strategy.
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first-order systems. We will use the name “term rewriting system” to refer
to the set of all systems, either first- or higher-order, and the explicit form
“first-order term rewriting system” when needed.

Several general formats for higher-order term rewriting system have been proposed,
we mention CRS [Klo80], HRS [Nip91, MN98] and ERS [GKK05].

The λ-calculus includes just one rewrite rule, the β-rule, namely

pλx.squ ÝÑ tx :� uu s

where tx :� uu s stands for the substitution, in the term s, of the (non-bound) occur-
rences of x with the term u. An example of a rewrite step in the λ-calculus follows:

pλx.x� x� xq 3 ÝÑ 3� 3� 3

Observe that this is an atomic step in the model given by λ-calculus: the application of
the substitution tx :� 3u in x � x � x is considered as an external operation. Explicit
substitution calculi, cfr. Section 1.2.2, arise as a way to model the substitution operation
within a rewriting system, providing specific rules to describe how a substitution is
applied to a term.

Results about standardisation and normalising reduction strategies for the λ-calculus
are present in the literature since [CF58]. Afterwards, other works including standard-
isation studies for λ-calculus have appeared, we mention [Bar84] Sec 11.4, [Tak95],
[Kas00] and [Cra09]. The notions of call-by-name, call-by-value and call-by-need reduc-
tion strategies, cfr. [Plo75], characterise different families of reduction strategies for the
λ-calculus; these notions frame, in many cases, the way in which the evaluation of a
program should proceed, a relevant aspect in the design of a programming language.

Finally, we list some acronyms for λ-calculus terms to be used in this manuscript:
I for λx.x, K for λx.pλy.xq, D for pλx.xxq, and Ω for DD. Observe that Ω Ñ Ω, this
being the only step having Ω as source term.

1.2 The rewriting systems studied in this thesis

1.2.1 Pattern calculi

Let us revisit the rule of the λ-calculus:

pλx.squ ÝÑ tx :� uu s

We notice that the rule applies to any abstraction and any argument: there is no way to
restrict, or filter, the set of arguments that are accepted by a given abstraction. More-
over, the abstractions have a unique body : the λ-calculus does not include mechanisms
to define functions allowing different bodies for different kinds of arguments.

This situation does not coincide with the common practice of functional program-
ming languages. These languages include pattern matching features, allowing to
specify restrictions to the possible arguments of a function, and also to give different
definitions of the same function to arguments having different features. A simple exam-
ple is the following definition of the length of a list in Haskell:
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length [] = 0

length (x:xs) = 1 + length xs

The function length requires its argument to be a list, and moreover it has two defining
clauses, for empty (denoted []) and non-empty (denoted x:xs) lists respectively.

These observations lead to the development of pattern calculi; rewriting systems
aiming to provide explicit formalisations of different forms of pattern matching. Several
of these calculi provide some sort of “generalised abstraction”, say having the form

λp.s

where p is a pattern. This is the case of the λ-calculus with patterns [vO90, KvOdV08],
the ρ-calculus [CK98, CK01], the pattern calculus [Jay04, Jay09] and the Pure Pattern
Calculus [JK06a, JK09].4 The set of the valid patterns includes all the variables, imply-
ing that the defined calculus can be considered as a generalisation of the λ-calculus.

The rewrite rule is generalised accordingly to

pλp.squ ÝÑ tp{uu s

where tp{uu is the result of matching the argument u against the pattern p. E.g.,
if we represent pairs as a data structure whose constructor, a constant p, is applied
successively to the left and right components of a pair, as in p 3 4, then the following
should be a valid rewrite step for a pattern calculus:

pλpx y. yq pp 3 4q Ñ 4

If there is no possible matching, as in

pλpx y. yq 3

then the resulting term is not a redex, unless the calculus provides some error mech-
anism to deal with such cases.

The two main issues when devising a pattern calculus are the definition of the set of
valid patterns, and subsequently, that of the argument/pattern matching. A too liberal
choice of the set of patterns (as e.g. accepting any term as a valid pattern), combined
with a näıve definition of matching, would break confluence, and thus uniqueness of
normal forms; cfr. [vO90, KvOdV08, CF07, JK09]. On the other hand, a too restrictive
choice of the pattern set would hinder the possibility of modeling interesting phenomena
related with pattern matching. This observation led to the definition of several different
pattern calculi.

The Pure Pattern Calculus, whose shorthand is PPC, is one of the rewriting
systems studied in this thesis. In PPC, any term can be a pattern. Particularly, a pattern
can include free variable occurrences, and reduction steps can occur inside patterns as
well. These features allow dynamic pattern building.

The PPC is described in Section 3.4.1. We give here some examples of its features,
using a simplified version of its syntax. To allow the pattern of an abstraction to include

4In other proposals, as in the λ-calculus with constructors [AMR06, AMR09], the filter and the
possibility of multiple clauses are modeled by a case construct. The Basic Pattern Matching Calculus,
[Kah03, Kah04] combines both generalised abstraction and case.
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free variable occurrences, a set of bounded variables is attached to the abstractor λ,
written below the λ. E.g., the identity function can be defined in PPC by the term
λtxux.x. Consider the following valid term in PPC:5

t � pλtxux.pλty,zuxpyzq.yqq

In this term, both occurrences of x are bound by the outer abstractor, the one including
x in its set of bound variables.

By giving an appropriate argument to t, we produce a concrete function out of
the generic function specification pλty,zuxpyzq.yq. E.g., if a is a constructor, then the
following reduction sequence

pλtxux.pλty,zuxpyzq.yqq a pap34qq Ñ pλty,zuapyzq.yq pap34qq Ñ 3

shows that the application of t to a constructor produces a function which accepts, as
arguments, only data structures on that constructor. Moreover, if the argument given
to t is in turn a function, that function is applied to the argument pyzq inside the pattern
of λty,zuxpyzq.y. Therefore, we obtain a further flexibility for the construction of the
pattern. Check the following reduction sequence:

pλtxux.pλty,zuxpyzq.yqqpλtx1,y1ux
1y1.py1x1qpp34q

Ñ pλty,zupλtx1,y1ux
1y1.py1x1qpyzq.yq pp34q

Ñ pλty,zupzy.yq pp34q Ñ 4

where the second reduction step is performed inside a pattern, as suggested previously.
As a consequence of these features, forms of polymorphism not present in programming
languages currently used in software development, can be expressed in PPC, cfr. [JK09]
where several examples are given. The just described examples show that patterns in
PPC can be dynamic.

We remark that a carefully defined matching operation allows PPC to handle patterns
like x1y1, as shown in the previous examples. E.g., given the matching rules of PPC, in
the term

pλtx,yuxy.xqppλtzuz.zq3loooomoooonq
the only redex is the one indicated by the brace: a pattern like xy does neither match
nor fail w.r.t. an argument being a redex, thus preventing the loss of confluence, and
consequently of uniqueness of normal forms.

1.2.2 A finer step granularity – Explicit Substitution calculi

To motivate the introduction of explicit substitution calculi, let us revisit this λ-calculus
rewrite step:

pλx.x� x� xq 3 Ñ 3� 3� 3

In the model of the rewrite space given by the λ-calculus, the transformation of pλx.x�
x� xq 3 to 3� 3� 3 is considered as a single, atomic rewrite step. On the other hand,
this transformation can be regarded as a complex operation, involving the replacement

5In fact, in the simplified variant used in this introduction. The actual PPC term corresponding to
this example involves the use of matchables, as described in Section 3.4.1
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of each occurrence of x in the body x� x� x with the argument 3, and (depending of
the desired detail level) also the search for those occurrences inside the body.

The view of substitution as a complex operation is particularly appropriate for the
study of the implementation of functional programming languages. Indeed, it is not sur-
prising that substitution is deeply involved in the evaluation of a functional program,
since functional programming has its roots in the λ-calculus. As a consequence, the im-
plementation of functional programming languages are faced with the task of computing
substitutions, a task revealed to be far from trivial in practice. Hence the need of formal
models reflecting explicitly the complexity of the substitution operation.

This situation motivated the emergence of variations of the λ-calculus widely known
as explicit substitution calculi, shorthand ES calculi. We describe the main features
of these rewriting systems, using the λx calculus, [Ros92, BR95] to illustrate them.

The syntax of the ES calculi includes a construct to explicitly denote substitutions.
If s and u are terms, then

s rx{us

is a valid term as well in the λx calculus.

A rule analogous to that of the λ-calculus is present. The expression subject to
rewrite is the same: the application of an abstraction to an argument. But in this case,
the rule only generates the corresponding substitution, without executing it:

pλx.squ ÝÑ srx{us

Additional rewrite rules model how a substitution is performed. For the λx calculus,
these rules are:6

pt1t2qrx{us ÝÑ pt1 rx{usqpt2 rx{usq
pλy.tqrx{us ÝÑ λy.trx{us

xrx{us ÝÑ u
y rx{us ÝÑ y if y � x
crx{us ÝÑ c

The first and second rule allow to propagate an explicit substitution through a term,
generating copies in the process. As a result, each copy is either applied or erased, by
virtue of the third or fourth rule respectively.

Assuming two constants p and s, the λ-calculus reduction step pλx.pxpsxqq 3 Ñ
p 3ps 3q can be simulated in λx as follows:

pλx.pxpsxqq 3

Ñ ppxpsxqqrx{3s Ñ ppxqrx{3s ppsxqrx{3sq

Ñ prx{3sxrx{3s ppsxqrx{3sq Ñ prx{3sxrx{3s psrx{3sxrx{3sq

Ñ pxrx{3s psrx{3sxrx{3sq Ñ p 3 psrx{3sxrx{3sq

Ñ p 3 psxrx{3sq Ñ p 3 ps 3q

Figure 1.2: Simulation of a λ-calculus step in the λx calculus

6In fact, the syntax of λx does not include constants; they are added to give the examples shown in
this section.
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Observe that this is just one of the many possible reduction sequences in λx simu-
lating the given λ-calculus step.

The possibility of having several explicit substitutions in the same term can further
complicate the reduction space of an ES calculus. Consider the following examples:

pλy.pλx.pxpsyqq yq 3

Ñ p pλx.pxpsyqq yq ry{3s

Ñ p ppxpsyqq rx{ysq ry{3s

pλy.pλx.pxpsyqq yq 3

Ñ p pλx.pxpsyqq yq ry{3s

Ñ p pλx.pxpsyqq ry{3sq py ry{3sq

Ñ pλx. ppxpsyqq ry{3sq py ry{3sq

Ñ pppxpsyqq ry{3sq rx{y ry{3ss

Figure 1.3: Two reduction sequences from the same source in the λx calculus

The reduction spaces of ES calculi turns out to be extremely complex, leading to
difficulties to obtain a calculus simultaneously satisfying a series of properties related
with confluence, termination, and simulation of the λ-calculus (namely, the ability of
simulate in an ES calculus any reduction sequence t � u in the λ-calculus). This situ-
ation implied the development of many different ES calculi, including [HL89, ACCL91,
KR95, BBLRD96, DG01, Kes07].

More recently, a different approach to ES calculi has been proposed. The ES calculi
at a distance, [Mil07a, AK10, Acc12] are based on the idea of avoiding the propagation
of explicit substitutions through a term, allowing a substitution to be applied to a distant
variable occurrence. These calculi include a rule of the shape:

Cvxwrx{us ÝÑ Cvuwrx{us (1.1)

where Cvw is an arbitrary context including a (free) occurrence of x. In these calculi,
explicit substitutions do not move: replacements are performed without any need to
propagate them. This fact leads, in principle, to simpler reduction spaces.

The linear substitution calculus, [ABKL14], an ES calculus at a distance, is one
of the rewriting systems studied in this thesis. We will use the shorthand λ�lsub to refer
to this calculus. It is both a slight generalisation of a calculus by Robin Milner [Mil07a],
related to bigraphs, from which it inherits the substitution rule at a distance (1.1), and
a slight modification of the structural λ-calculus presented in [AK10], related to proof-
nets. This calculus adds a rule to erase “useless” explicit substitutions, corresponding
to the idea of garbage collection:

trx{us ÝÑ t if x R fvptq

The λ-calculus reduction step pλx.pxpsxqq 3 Ñ p 3ps 3q can be simulated in λ�lsub as
follows:7

pλx.pxpsxqq 3 Ñ ppxpsxqqrx{3s Ñ pp 3 psxqqrx{3s

Ñ pp 3 ps 3qqrx{3s Ñ pp 3 ps 3qq

Figure 1.4: Simulation of a λ-calculus step in λ�lsub
7As indicated above for the λx, we added constants to the syntax of λ�lsub, described in Section 4.1,

for the examples shown in this section.
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This simulation is indeed simpler that the one shown for the λx calculus, cfr. Figure 1.2.2.
Moreover, the multiplication of different reduction sequences simulating the same λ-
calculus step is more limited than in λx.

On the other hand, to enhance the analogy between λ�lsub and proof-nets, the def-
inition of the calculus includes three equivalence equations, which model the fact that
substitution constructs must be considered as somewhat “floating” in a term, their ac-
tual positions in a term being irrelevant to a certain extent. E.g., the following equation

trx{ssry{us � try{usrx{ss if x R fvpuq and y R fvpsq

models the idea that (in principle) the order of substitutions in a substitution chain is
irrelevant. Two terms related by the equivalence relation generated by these equations,
can be considered as different descriptions of an unique object being rewritten. This
fact poses a challenge for the study of the calculus.

1.2.3 Infinitary rewriting

Let us consider the rewriting systems T1 and T2 defined as follows. The system T1

includes the number 1, the addition symbol, a unary functor symbol l, the list constructor
denoted by the colon, and the rule

lpxq ÝÑ x : lpx� 1q

The system T2 includes two constants a and b, and the rules

a ÝÑ b b ÝÑ a

Both T1 and T2 are non-terminating rewriting systems, since both allow infinite rewrite
sequences. For T1 we have

lp1q Ñ 1 : lp2q Ñ 1 : 2 : lp3q Ñ 1 : 2 : 3 : lp4q Ñ . . .

where 2, 3, . . . are shorthand for 1� 1, 1� 1� 1, etc.. On the other hand, the following
is a rewrite sequence for T2:

a Ñ b Ñ a Ñ b Ñ a Ñ . . .

Even though both sequences can run indefinitely long without yielding a final result,
a relevant difference can be observed. Consider the sequences of partial results, which
are respectively

x1 : lp2q, 1 : 2 : lp3q, 1 : 2 : 3 : lp4q, . . .y and xb, a, b, a, . . .y

It is not difficult to grasp that while the former sequence converges to the infinite list
of natural numbers, namely 1 : 2 : 3 : 4 : . . ., the latter is a divergent sequence.

Interestingly, the rules of both systems can be easily rendered in a functional pro-
gramming language. Using Haskell, we can define

natlist n = n : natlist (n+1)

diva = divb

divb = diva
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The evaluation of these functions behaves as suggested by analysing the corresponding
rewriting systems. While the evaluation of natlist 1 generates the list [1,2,3,4... ,
the evaluation of diva runs indefinitely without producing any partial result.8

These considerations motivate the study of infinitary (term) rewriting systems;
cfr. [KKSdV90, DKP91, KKSdV95], and [BKdV03] Ch. 12. In these systems, both the
terms being rewritten and the rewrite sequences can be infinite. Convergence is a central
concept in the study of infinitary rewriting: the study of properties of the reduction space
is mostly focused on convergent reductions.

Different convergence criteria have been proposed. In this thesis, strong conver-
gence, as defined in [KKSdV95], is used. For a reduction sequence to be strongly
convergent, it does not suffice to obtain ever-growing fixed prefixes, but it is also re-
quired that the sequence formed by the depth (i.e. distance to the root) of each step in
the sequence tends to infinity. If we consider the rule fpxq Ñ fpgpxqq, the sequence

fpaq Ñ fpgpaqq Ñ fpgpgpaqqq Ñ . . .

is not strongly convergent, because all its steps are head steps.
The requirement about depths, added in the strong convergence criterion, is crucial

for the characterisation of equivalence of infinitary reductions we present in Section 5.3,
which is consequently valid for strongly convergent reductions only. Furthermore, other
interesting properties, as the compression result (see below), and the possibility of defin-
ing projections, also hold only for strongly convergent reduction sequences, as mentioned
in [KKSdV95, BKdV03, KdV05], where strong convergence is favored. These consider-
ations lead to the adoption, in this thesis, of the strong convergence criterion.

If an infinite rewrite sequence converges, via its sequence of partial results, to a
certain term, we consider that term as the (infinitary) target of that sequence. Following
some of the existent literature, we write

t�� u

to denote that the term u is the target of a convergent rewrite sequence having t as
source. Then the example for the system T1 can be described as follows

lp1q�� 1 : 2 : 3 : 4 : . . .

The concept of termination can be extended to infinitary rewriting as follows: a
rewrite sequence is infinitarily terminating iff it either yields a final result (as in
finitary rewriting), or it converges to an infinitary result. The infinite rewrite sequence
given for the system T1 is infinitarily terminating. The concepts of confluence
and uniqueness of normal forms can be extended to infinitary rewriting analogously.
Several results, both positive and negative, of the extension of well-known properties of
finitary rewriting into its infinitary counterpart are present in the literature, we mention
[Ken92, KKSdV95, KdV05, Zan08, EGH�10, EHK12].

Another well-known result about infinitary rewriting is compression, cfr. [KKSdV90,
KKSdV95, BKdV03, Ket12]. To motivate it, let us add the pair construct, denoted by
angle brackets, into T1, and consider the following rewrite sequence

xlp1q, lp1qy Ñ x1 : lp2q , lp1qy Ñ x1 : 2 : lp3q , lp1qy Ñ x1 : 2 : 3 : lp4q , lp1qy Ñ . . .

8The div in the names diva and divb are for “divergent”.
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This sequence converges to x1 : 2 : 3 : 4 . . . , lp1qy . On the other hand, this result is not
final, the reduction sequence can continue as follows:

x1 : 2 : 3 : 4 . . . , lp1qy Ñ x1 : 2 : 3 : 4 . . . , 1 : lp2q y Ñ x1 : 2 : 3 : 4 . . . , 1 : 2 : lp3q y Ñ . . .

The infinitary final result x1 : 2 : 3 : 4 . . . , 1 : 2 : 3 : 4 . . . y can be obtained by resorting again
to convergence.

This situation is modeled in infinitary rewriting, by considering reduction sequences
whose length go beyond the first infinite ordinal, ω. In the example, the two reduction
sequences shown can be concatenated obtaining a rewrite sequence having length ω� 2.
We obtain

xlp1q, lp1qy�� x1 : 2 : 3 : 4 . . . , lp1qy�� x1 : 2 : 3 : 4 . . . , 1 : 2 : 3 : 4 . . . y

The compression property states that the restriction of rewrite sequences to the first
infinite ordinal does not affect the power of infinitary rewriting. Formally, for any t, u
terms, if t �� u, then there is a reduction sequence whose length is at most ω having
t and u as source and target respectively. The following reduction sequence, having
length ω, coincides in source and target with that having length ω � 2 just shown:

xlp1q, lp1qy Ñ x1 : lp2q , lp1qy Ñ x1 : lp2q , 1 : lp2qy

Ñ x1 : 2 : lp3q , 1 : lp2qy Ñ x1 : 2 : lp3q , 1 : 2 : lp3qy

Ñ x1 : 2 : 3 : lp4q , 1 : 2 : lp3qy Ñ x1 : 2 : 3 : lp4q , 1 : 2 : 3 : lp4qy

�� x1 : 2 : 3 : 4 . . . , 1 : 2 : 3 : 4 . . . y

1.3 Generic models of rewriting systems

The features of the different rewriting systems introduced in Sec. 1.2 show the great
diversity of term rewriting systems present in the literature.

In spite of this diversity, there are some basic notions common to all of them: term,
reduction step, redex, reduction sequence, reduction space. There are also some prop-
erties whose study is interesting for many term rewriting systems, as equivalence of
reductions, standardisation, or normalising reduction strategies.

These similarities motivate the definition and study of generic models of rewriting
systems. A generic model allows for abstract definitions of notions, and for abstract
proofs of properties, about rewriting systems. The defined notions and the proved
properties are, thus, valid for any rewriting systems which fits into the model.

Two generic models, of different nature, are used in this thesis. They are described
in the following.

1.3.1 Abstract Rewriting Systems

Several abstract models of transformation, which apply to rewriting systems, have been
proposed in the literature; we mention those presented in [New42, Hin69], [Bar84] Chap-
ter 3, [BKdV03] Chapter 1, and [BKdV03] Chapter 8.2. We use in this thesis a model,
first presented in [GLM92], and later refined by Paul-André Melliès in [Mel96, Mel05].
In this proposal, a rewriting system is modeled as a structure named Abstract Rewrit-
ing System, shorthand ARS; we refer to this abstract model of rewriting as the ARS
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model. In the following, we introduce the version described in [Mel96], the one used in
this thesis.

The definition of an ARS is based on two sets, that of the objects being rewritten,
notation O, and that of the rewriting steps, notation R.9 In this model, no detail is
included about the structure, or any other intrinsic aspect, of objects. Each step is
modeled primarily as the link between a source object and a target object, defined by
means of two functions src, tgt : RÑ O.

In this way, any term rewriting system can be modeled as an ARS, by considering
terms and rewriting steps as the sets of objects and steps respectively.

The letters a, a1, a1, b, c, etc. will be used to denote steps, and we will sometimes

decorate the arrow denoting a step by the name given to that step, e.g.
b
ÝÑ.

We notice that the identification of steps allows to describe adequately situations
like that shown in Fig. 1.1, page 5. Modeling that case by an ARS would yield two

different steps, sharing their source and target objects:

ahkkkkkkikkkkkkj
1� p 1� 1loomoon

b

q
a
ÝÑ 1� 1loomoon

b

. and

ahkkkkkkikkkkkkj
1� p 1� 1loomoon

b

q
b
ÝÑ 1� 1loomoon

a

.

Additional information is modeled through a number of relations defined on steps.

The residual relation is a ternary relation; the notation avbwa1 denotes that the
triple pa, b, a1q is in the residual relation. Residuals are related with the tracing of steps.
A triple avbwa1 indicates that the step a1 is a direct correlate, in the target of b, of the
step a present in the source of b. We say in this case that a1 is a residual of a after b.

As an initial example, let us consider the step p1 � 1q � p0 � 0q
b
ÝÑ 1 � p0 � 0q

in the rewriting system about arithmetic expressions. It is intuitively clear that the
step corresponding to 0 � 0 in the term 1 � p0 � 0q is a direct correlate of the step
corresponding to the same subterm in p1� 1q � p0� 0q. If we name these redexes as a1

and a respectively, then we have avbwa1. The following figure depicts this situation

p 1� 1loomoon
b

q � p 0� 0loomoon
a

q
b
ÝÑ 1� p 0� 0loomoon

a1

q

Figure 1.5: A simple example of residuals

In Fig. 1.5, we identify a step a with its redex, i.e. the corresponding subterm in its
source term; cfr. Section 1.1.2. This convention is used subsequently throughout this
thesis. In Fig. 1.6, we show different cases in which the behavior of steps w.r.t. residuals
is less straightforward. The three examples included in this figure verify avbwa1, in
Fig. 1.6:(b) we have avbwa2 as well.

9Called redexes (in French “radicaux”) in [Mel96], hence the reason why we use the letter R.
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a)

bhkkkkkkkkikkkkkkkkj
pλx.3qppλy.yq5loomoon

a

q
b
ÝÑ 3 b)

bhkkkkkkkkkikkkkkkkkkj
pλx.xxqppλy.yq5loomoon

a

q
b
ÝÑ ppλy.yq5loomoon

a1

q ppλy.yq5loomoon
a2

q

c)

bhkkkkkkkikkkkkkkj
pλx. pλy.yqxloomoon

a

q5
b
ÝÑ pλy.yq5loomoon

a1

Figure 1.6: Examples of residuals in the λ-calculus

A step a can have no, or several, residuals after another step b, as shown in Fig. 1.6:(a)
and (b). In turn, Fig. 1.6:(c) shows that the subterm corresponding to a step can differ
from that of a residual: the subterm of the step a, pλy.yqx, is “transformed” into pλy.yq5
by the contraction of b.

The set of objects, that of steps together with the source and target functions, and
the residual relation, form a minimal version of the definition of an ARS.

Noticeably, equivalence of reduction sequences can be studied in the obtained model.
In Fig. 1.7, we revisit the example of equivalence given previously, now decorated by
giving names to the participating terms and steps.

t � p 1� 1loomoon
b

q � p 0� 0loomoon
a

q

b

xx

a

&&
s1 � 1� p 0� 0loomoon

a1

q

a1

((

s2 � p 1� 1loomoon
b1

q � 0

b1

ww
u � 1� 0

Figure 1.7: Equivalence of reductions

In the figure, a1 is the only residual of a after b, and analogously, b1 is the only
residual of b after a. The steps a and b do not interfere with each other in this example:
the effect of performing the residual of a after b (on the term s1) can be considered as
equivalent to that performing the original step a (on t).10 This observation indicates that
the steps a and b are orthogonal11, and therefore, that the shown reduction sequences
are equivalent : they consist of a followed by the residual of b, and b followed by the
residual of a, respectively.

Observe that in the example of Fig. 1.7, permuting in either reduction depicted the

10The equivalence can be further verified by giving labels to suitable symbols in the terms, as done
when introducing equivalence of reduction sequences.

11We remark that this characterisation of orthogonality, based on the behavior of steps and residuals,
differs from that resulting of a more syntactic approach, based on the form of rewrite rules. Notably,
orthogonality of rewrite steps, and in general of rewriting systems, can be studied without making
reference to set of rules of the latter.
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order in which the steps a and b are performed, yields the other one.12 In the ARS model,
the notion of step permutation leads to the formal definition of the equivalence of
reductions: two reduction sequences are considered equivalent if either of them can be
obtained from the other by means of a sequence of step permutations.

We remark that the definition of an ARS involves only the identity of objects and
steps. No syntactic information is included in this model. Considering the example
shown in Fig. 1.7, an ARS modeling the arithmetic simplification rewriting system would
include four objects and four steps, which can be given the names t, s1, s2, u and a, b, a1, b1

for this description, which satisfy the following: srcpaq � srcpbq � t, tgtpbq � srcpa1q � s1,
tgtpaq � srcpb1q � s2, tgtpa1q � tgtpb1q � u, avbwa1, and bvawb1.

In spite of the expressive features of the residual relation, the binary embedding
relation on steps, notation  , must be considered as well for most interesting uses of the
ARS model. Embedding provides a partial order between steps having the same source.

The intent of the pair b   a is to denote that b has some direct power over a,
which is reflected in the residuals of a after b. A possible form of this power would
be that b can erase or duplicate a, i.e. to make a have no, or several, residuals after
b. As the λ-calculus examples shown in Fig. 1.6 suggest, this power is, in many cases,
related with the fact that b actually nests a, namely, that the subterm corresponding
to b encompasses that of a, as in Fig. 1.6. Indeed, when modeling the λ-calculus as an
ARS, a possible definition of the embedding coincides exactly with nesting as it was just
defined.13

The concepts of step, residual and embedding yield a model focused on the study of
the reduction space of the modeled rewriting system. Cfr. [Mel96], pg. 70:

The abstract approach allows to study a (rewriting) system through the
derivation space it induces.14

ARS equipped with the residual and embedding relations are rich enough to develop
fully abstract proofs, notably about standardisation (cfr. Section 2.1.8) and normal-
ising reduction strategies. In an abstract proof, only the information pertaining to the
ARS model is used in order to prove some statement. In turn, the statement subject of
an abstract proof usually correspond to the following pattern:

any ARS, provided that it verifies some axioms, enjoys a certain property.

Some of the axioms describe basic properties of the residual relation, while others de-
scribe comparisons between the embedding of some steps and that of their corresponding
residuals. The axioms can be said to provide an abstract characterisation of the residual
and embedding relations.

An example of axiom regarding residuals follows:

12If a has more than one residual after b, or vice versa, then the permutation of a and b is not as
simple as shown in Fig. 1.7. Cfr. Section 2.1.7 for details.

13Observe that, in fact, the step pλx.squ Ñ tx :� uus can only erase or duplicate steps lying in-
side u. This observation leads to a second possible model of the λ-calculus as an ARS, considering
a restricted embedding relation. The properties of (the ARS yielding from) both “full-nesting” and
restricted embeddings are studied in [Mel96].

14In the French original: “L’approche abstraite permet de traiter un système à partir de l’espace des
dérivations qu’il induit.”
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Ancestor Uniqueness b1vawb
1 and b2vawb

1 ñ b1 � b2.

This axiom expresses the condition that the step b1 cannot be residual of two different
steps at once, after the contraction of a.

The following axiom express a condition involving residuals and embedding:

Context freeness bvawb1 ^ cvawc1 ùñ a   c_ pb   cô b1   c1q

This axiom indicates a necessary condition, namely a   c, to allow a to break the
invariance in the embedding relation between two redexes b and c, w.r.t. their respective
residuals, that is, to “dissolve” the embedding between b and c in their residuals, or to
“create”, between the residuals of b and c, an embedding which did not exist before.

Regarding the use of ARS in this work, modeling the linear substitution calculus
as an ARS equipped with the residual and embedding relations suffices to obtain the
standardisation results we aim at.

On the other hand, the work on Pure Pattern Calculus requires an extended version
of the ARS model, involving a third relation on steps. We introduce the gripping
relation by means of an example in λ-calculus. Let us consider the following step, where
we tag other steps and their residuals

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

b

qp

chkkikkj
I3 q

a
ÝÑ Dp

c1hkkikkj
I3 qloooomoooon
b1

In the situation depicted, bvawb1 and cvawc1. Observe that b1   c1, while neither of their
origins, b and c respectively, embed the other one. Besides a embedding both b and c in
the original term pλx.DxqpI3q, there is another factor crucial for this change in relative
embeddings: the subexpression corresponding to b, Dx, includes an occurrence of the
variable x, bound by the abstraction λx.Dx. The replacement of this occurrence of x
by I3 provokes the appearance of a new embedding on the residuals.

There is another consequence, particularly harmful for the work on the Pure Pattern
Calculus, of this relation between b and a. Observe the following diagram

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

b

qp

chkkikkj
I3 q

b //

a
��

a1hkkkkkkkkikkkkkkkkj
pλx.xxqp

c1hkkikkj
I3 q

a1
��

Dp

c1hkkikkj
I3 qloooomoooon
b1

p

c11hkkikkj
I3 qp

c21hkkikkj
I3 q

Observe that c has one residual after a. This situation changes for the respective
residuals after b: now there are two residuals of c1 after a1. This change in the number
of residuals affects, in a critical way, a measure used in one of the main proofs of this
work.

Thus the need to consider the gripping relation. In the example, we say that the
step b grips the step a. We will avoid the use of gripping steps, in the situations where
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invariance of a measure related to numbers of residuals is required. We give some details
when describing the results of this work, at the end of this Section.

1.3.2 Proof terms

The concept of proof term provides another generic model of reduction spaces. It is a
model less abstract than that given by ARS: the structure of the objects being rewritten
is involved, and the rules play a fundamental role. On the other hand, it keeps more
information about the modeled reduction sequences.

Several versions of the proof term model have been developed for λ-calculus in [Hil96],
for first-order term rewriting systems in [BKdV03], and for a generic formalism of higher-
order term rewriting systems in [Bru08]. The brief description which follows is based in
the first-order term rewriting version.

A proof term is the representation of a reduction sequence as a term, using an
enlarged set of symbols. Indeed, the language of the proof terms for a given term
rewriting system includes all the symbols in that system, plus the rule symbols, which
indicate the application of rules in a reduction sequence. There is one rule symbol for
each rule, its arguments corresponding to the variables occurring in the rule.

The two rules given for the arithmetic simplification rewriting system would therefore
correspond to two rule symbols, let us name them µ and ν. The relation between each
rule symbol and its corresponding rule can be described as follows

µpxq : 1� x Ñ x νpxq : x� 0 Ñ 0

We introduce the notion of proof term by means of some examples. We show three proof
terms denoting single rewriting steps in the arithmetic simplification rewriting system,
along with the step corresponding to each one. In each case, the subterm being affected
by the step is indicated with an upper brace, and the subterm corresponding to the
argument of the rule symbol is underlined.

µp3q :
hkkikkj
1� 3 Ñ 3

µp1q � p0� 0q : p
hkkikkj
1� 1 q � p0� 0q Ñ 1� p0� 0q

1� νp1� 1q : 1� p

hkkkkkikkkkkj
p1� 1q � 0q Ñ 1� 0

In order to denote reduction sequences, the binary (infix) symbol � , denoting con-
catenation, or composition, of steps, is added. A proof term of the form A �B denotes
the reduction sequence represented by A, followed by that represented by B. We show
some proof terms along with the reduction sequences they denote. Concatenation being
associative, we omit brackets in the last example.

3�νp2�1q � νp3q : 3�pp2�1q�0q Ñ 3�0 Ñ 0
µp1q�p0�0q � 1�νp0q : p1�1q�p0�0q Ñ 1�p0�0q Ñ 1�0

µp1q�p0�0q � 1�νp0q � µp0q : p1�1q�p0�0q Ñ 1�p0�0q Ñ 1�0 Ñ 0

Moreover, rule symbols and concatenation can be combined in different ways, allowing
to denote specifically that several steps are performed simultaneously, and/or that some
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sequence of steps is localised in some part of a term. Some examples follow:

µp1q�νp0q : p1�1q�p0�0q ÝÑ� 1�0

µpνp2qq : 1�p2�0q ÝÑ� 0

µp2�pνp3qq � νp2q : 1�p2�p3�0qq ÝÑ� 2�0 Ñ 0

2�
�
µp1q�3 � µp3q

�
: 2�pp1�1q�3q Ñ 2�p1�3q Ñ 2�3

where the symbol ÝÑ� denotes that a number of steps are simultaneously performed.

Observe that the proof term µp1q�νp0q, which describe the simultaneous application
of the two steps in the term p1� 1q� p0� 0q, is different from either µp1q�p0�0q � νp0q
or p1�1q�νp0q � µp1q� 0, which describe the reduction sequences comprising the same
steps in any of the two possible orderings. In general, proof terms denoting simultaneous
or localised reduction, as the ones just described, are different from those denoting the
reduction sequences comprising exactly the same steps, in any possible sequential order.
This fact indicates that the proof term model allows to distinguish subtle differences in
the way in which rewriting steps are applied.

In this document, we will use the name contraction activity to denote the whole
set of possibilities in which reduction steps can be combined. As we have just seen,
the proof term model allows to describe many different forms of contraction activity,
including but not limited to reduction sequences.

Equivalence of reductions is defined in this model by means of equational reasoning
on proof terms: two reduction sequences are equivalent if the proof terms denoting them
can be proven equivalent in the congruence generated by some equation schemas.

By means of the obtained equational logic, cfr. Section 2.2.3,15 (a proof term de-
noting) the concatenation of two orthogonal steps can be “packed”, obtaining (another
proof term denoting) their simultaneous contraction. Reciprocally, a simultaneous con-
traction can be “unpacked”, obtaining the sequential concatenation of its component
steps. The permutation of two adjacent steps can be modeled by “packing” them, and
subsequently “unpacking” them in reverse order.

Let us illustrate this idea by means of an example. The reduction sequences

p 1� 3loomoonq � p2� 0q Ñ 3� p 2� 0loomoonq Ñ 3� 0

p1� 3q � p 2� 0loomoonq Ñ p 1� 3loomoonq � 0 Ñ 3� 0

are equivalent: the same two steps are contracted, in a different order. These reduction
sequences are denoted by the proof terms

pµp3q � p2� 0qq � p3� νp2qq and pp1� 3q � νp2qq � pµp3q � 0q

respectively. The equivalence of these proof terms is obtained by means of the following
abridged (i.e. not all the details are included) judgement:

pµp3q � p2� 0qq � p3� νp2qq � µp3q�νp2q � pp1� 3q � νp2qq � pµp3q � 0q

Notice that the concatenation of the two steps is “packed”, obtaining µp3q� νp2q, and
subsequently this simultaneous contraction is “unpacked” in the other order, yielding

15The characterisation of the equivalence of reductions through equational reasoning on proof terms
is extended in this thesis to infinitary rewriting, cfr. Section 5.3.
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p1�3q�νp2q � µp3q�0. Observe that we can establish, not only the equivalence of the
two reduction sequences, but also that both reduction sequences are equivalent to the
simultaneous contraction of its two steps.

On the other hand, the equivalence of the following reduction sequences:

1� p 2� 0loomoonq Ñ 1� 0 Ñ 0 1� p2� 0qlooooomooooon Ñ 2� 0 Ñ 0

which involve two nested steps, can be verified analogously, as follows:

1� νp2q � µp0q � µpνp2qq � µp2� 0q � νp2q

We end this brief description of the proof term model by indicating that in [BKdV03]
a second characterisation of equivalence for the proof term model, based on the concept
of the residuals of one proof term after another, is described. A third characterisation,
based on tracing, uses proof terms as one of its ingredients. The three characterisations
are proven equivalent for first-order term rewriting systems.

1.4 Outline of the contributions

Three directions of work were pursued in this thesis, regarding respectively the Pure
Pattern Calculus, the linear substitution calculus, and the class of first-order infinitary
rewriting systems.

In all cases, the rewriting systems are analysed by means of a generic model: the
ARS model for the Pure Pattern Calculus and the linear substitution calculus, the
proof term model for infinitary rewriting systems. Also in all cases, the work includes
adaptations to the model and/or the development of new abstract proofs, needed to
obtain the desired results. These adaptations and proofs are also contributions of this
thesis in their own merit.

Hence this thesis can be regarded as a work about the use of generic models, to
study rewriting systems whose features make the analysis of their reduction spaces a
challenging task.

We describe the contributions obtained in each of the three directions.

1.4.1 Normalising reduction strategies for non-sequential calculi

The first aim of the work in this direction is to obtain a normalising reduction strategy
for the Pure Pattern Calculus, or PPC. The challenge lies in PPC being a non-sequential
rewriting system: there exist terms, not being normal forms, and not having any needed
redex.16

A redex in a term t is said needed if its contraction cannot be avoided when computing
a normal form for t. That is, if for any reduction t � u where u is a normal form,
either the redex, or at least one of its residuals, is included in the reduction. Several
results about normalisation of reduction strategies present in the literature are based on
systematic contraction of needed redexes, assuming that each term not being a normal
form includes at least one needed redex. This is the case of the leftmost-outermost

16For a brief discussion about the notion of (non-)sequential rewriting systems, cfr. the introduction
to Chapter 3.



22 CHAPTER 1. INTRODUCTION

reduction strategy for the λ-calculus, first studied in [CF58], and also of the theory of
neededness developed in [HL91] for first-order term rewriting.

The study of the literature about non-sequential systems suggests to consider mul-
tistep reduction strategies; cfr. [SR93, vR97, vO99] and the study of external strategies
in [Mel96]. On the other hand, we aimed at being not too liberal in the sets of redexes
selected.

The first contribution of the work in this direction is the definition of a multistep
reduction strategy for PPC. This strategy selects a single redex in many situations.
Particularly, it coincides with leftmost-outermost if PPC is restricted to the λ-calculus.

Of course, a proof stating that the defined strategy is normalising must be developed.
We favored a proof having an abstract flavor, ideally described in some generic model of
rewriting systems. By pursuing this approach, we aim to obtain a proof which could be
applied to other strategies and systems. Moreover, in the author’s opinion, the devel-
opment of a proof relying in abstract properties contributes to a deeper understanding
of the notions participating in that proof.

An additional contribution of the work in this direction is an abstract normalisa-
tion proof, described in the ARS model. As indicated in Section 1.3.1, the residual,
embedding and gripping relations are considered. The proof, cfr. Section 3.3, states that
systematic contraction of necessary and non-gripping sets of redexes is normalising, for
ARS verifying a number of axioms.

This proof was originally developed only for PPC ([BKLR12]). The proof we present
in this thesis is the result of translating the structure of that proof to the abstract setting
given by the ARS model.

The notion of necessary set of steps is a generalisation of that of needed step. A set
of steps in a term t is necessary if for any reduction t� u where u is a normal form, at
least one step in the set, or one of its residuals, is contracted. Systematic contraction
of necessary sets of steps is proved normalising for first-order term rewriting systems in
[SR93]. Our abstract normalisation proof takes the main ideas of that proof, and re-
elaborates them in the broader setting given by the ARS model, in which higher-order
systems can be described as well. The non-gripping condition is, as the name suggests,
defined in terms of the gripping relation, and it is the culprit for the inclusion of that
relation in the present thesis.

The abstract normalisation proof relies in all the basic, embedding and gripping
axioms pertaining to the ARS model, described in Sections 2.1.3 to 2.1.6, except for one
of the embedding axioms. The axiom not considered in the proof, Stability, describes a
property related with residuals and embedding, which does not hold for non-sequential
rewriting systems. Therefore excluding this axiom allows to use the ARS model to
reason about such systems.

On the other hand, the abstract normalisation proof also relies in a novel axiom,
described in Section 3.1.4. This axiom allows to complete the analysis of the preservation
of embedding in residuals, by targeting a case complementary with those covered by the
axioms included in the ARS model presentation.

As a side effect, the proof shows that some notions about (sets of) redexes and their
relation with reduction sequences, can be adequately defined and handled in the ARS
model.
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1.4.2 Standardisation for the linear substitution calculus

Some years after the appearance of the first ES calculi, standardisation results for one of
them, namely λσ [ACCL91], were presented in [Mel96]. Interestingly, the ARS model is
used to study λσ. Indeed, this system is one of the main examples given as applications
of the ARS model in [Mel96]. In spite of the many ES calculi proposed afterwards, the
author is aware of no other standardisation results for any of them.

We present in this thesis results of existence and uniqueness of standard re-
ductions for the linear substitution calculus, λ�lsub. We use the ARS model to
study this system. In the author’s opinion, the existence of these results suggests that
the reduction spaces of ES calculi at a distance are indeed more manageable than those
of previous ES calculi.

The ARS modeling λ�lsub verifies all the axioms required for the standardisation
existence result in [Mel96]. Therefore, this result applies immediately to λ�lsub. On the
other hand, two of the axioms required for the standardisation uniqueness result given
in [Mel96] do not hold for λ�lsub. We overcome this difficulty by developing a novel proof
of the standardisation uniqueness result, which does apply to λ�lsub despite the fact that
it does not satisfy some of the conditions required by the statement in [Mel96]. This
abstract standardisation proof, described in Section 4.6, is the second contribution
of this direction of work.

Given an original ARS, the proof is based on the construction of a second ARS, coin-
ciding in objects, steps and residuals with the original one, and whose embedding relation
is a total order including the embedding of the original ARS. The proof states that stan-
dardisation existence for the original ARS, together with standardisation uniqueness for
the second ARS, imply standardisation uniqueness for the original ARS.

We also remark that the definition of an ARS modeling λ�lsub imposes two challenges.

Firstly, to define the embedding relation describing the power of a step to dupli-
cate or erase others, since such embedding does not coincide with nesting between the
corresponding redexes.

Secondly, to obtain definitions of steps, residuals and embedding being stable by the
equivalence relation on terms, generated by the equations commented in Section 1.2.2.
We obtain stable definitions by labeling each redex in a term, analogously as the use of
labels in Fig. 1.1. We subsequently adapt the equivalence equations to labeled terms,
and equate redexes conveying the same label in equivalent labeled terms. Stability is
proved by observing some invariants about labels w.r.t. application of the equivalence
equations on labeled terms.

1.4.3 Equivalence of reductions for infinitary rewriting systems

As we mentioned, various results about some basic properties (as termination, conflu-
ence, or uniqueness of normal forms) for infinitary term rewriting systems are present in
the literature, cfr. [Ken92, KKSdV95, BKdV03, KdV05, Zan08, EGH�10, EHK12]. On
the other hand, the only characterisation of equivalence of reductions for such systems
known by the author is the definition of equivalence given in [KKSdV95], based on that
presented in [HL91].

The first contribution in this direction is a new characterisation of equivalence
for strongly convergent reductions in infinitary, left-linear, first-order term
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rewriting systems. It is based on the notion of step permutation: for any pair of
orthogonal rewrite steps, say a and b, perform a followed by b (more precisely, by the
residuals of b after a), is equivalent to perform b followed by (the residuals of) a (after
b).

This characterisation allows to verify the equivalence of infinite reduction sequences,
operating on infinite terms, in several examples we analysed. Particularly, it allows to
model the permutation of a step w.r.t. an infinite number of steps. Consider the rules
fpxq Ñ gpxq and mpxq Ñ npxq, and let us use fω to denote the term fpfpfp. . . . In
order to verify the equivalence between the following two reductions:

mpfωq Ñ mpgpfωqq Ñ mpgpgpfωqqq �� mpgωq Ñ npgωq
mpfωq Ñ npfωq Ñ npgpfωqq Ñ npgpgpfωqqq �� npgωq

the last step in the former reduction must be permuted with an infinite number of
steps, since it corresponds with the first step in the latter reduction. The obtained
characterisation also allows to model an infinite number of step permutations.

The obtained equivalence characterisation also allows to describe adequately the
phenomenon, unique to infinitary rewriting, of infinitary erasing.

We use the proof term model to study infinitary rewriting. We give in this thesis an
extension of the proof term model, as it is presented in [BKdV03] Sec. 8.2 and 8.5
for finitary, left-linear, first-order term rewriting, to infinitary term rewriting. This
is a second contribution of the work in this direction. This extension is also limited to
left-linear rewriting systems.

The obtained model is complete: we prove that any infinitary reduction sequence
can be represented by a proof term. Moreover, the representation is proven unique up
to (an infinitary extension of) rebracketing.

We remark that the definition of the set of proof terms is given by inductive, rather
than coinductive, means. Transfinite induction is used to reason on proof terms, the
limit case being infinite concatenation chains.

The starting point to model infinitary reduction equivalence through proof terms,
is the congruence generated by six basic equations, which is proposed in [BKdV03] to
chraracterise finitary reduction equivalence. We extended this definition in two ways:
besides adding a new basic equation, we propose two novel congruence rules. One of
the new rules incorporates the notion of limit into the equivalence judgements: if the
difference between two reductions can be made as less relevant as desired, then the two
reductions can be considered as equivalent. Relevance of a reduction is measured by
the (inverse of the depth of the) unaffected prefix. E.g., a reduction including a head
step17 has the greatest relevance, since there is no unaffected prefix in this case. Such a
relevance criterion is in line with the notion of strong convergence.

We also present a novel proof of the compression result, which is the third
contribution in this direction. The proof is based on the equivalence of infinitary re-
ductions, using our definition. We remark that it is the first proof, at the extent of
the author’s knowledge, which applies to both orthogonal and non-orthogonal rewriting

17that is, a step which involves the head symbol of a term. If we consider the rule fpxq Ñ gpxq, then
the step fpfpaqq Ñ gpfpaqq is a head step, while this is not the case for fpfpaqq Ñ fpgpaqq. In the latter
example, the unaffected prefix corresponds to the outer occurrence of f , which is the head symbol of
both fpfpaqq and fpgpaqq.
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systems, and at the same time asserts that the compressed reduction is equivalent to
the original one.

1.4.4 Previous presentations of the results

Material included in this thesis has been presented in different conferences, as we detail
in the following:

1. The strategy defined for PPC, and the normalisation proof in the version valid for
PPC only, was presented in RTA 2012, cfr. [BKLR12]. This work was developed in
collaboration with Delia Kesner, Eduardo Bonelli and Alejandro Ŕıos.

2. The abstract normalisation proof described in Section 3.3, which was developed
in collaboration with Delia Kesner, Eduardo Bonelli and Alejandro Ŕıos, is the
subject of an article in preparation.

3. The results about λ�lsub were presented in POPL 2014, cfr. [ABKL14]. This work
was developed in collaboration with Delia Kesner, Beniamino Accattoli and Ed-
uardo Bonelli.

4. The results about infinitary rewriting were presented in RTA 2014, cfr. [LRdV14].

Work in this direction was firstly presented at the first Workshop on Infinitary
Rewriting held in 2013, cfr. http://joerg.endrullis.de/wir.html.

This work was developed in collaboration with Alejandro Ŕıos and Roel de Vrijer.
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Chapter 2

Preliminaries – generic models of
rewriting systems

We describe in this chapter the generic models of rewriting systems we use in this thesis:
the Abstract Rewriting Systems, in the formulation of [Mel96], and the proof term model,
as presented for first-order term rewriting systems in [BKdV03]. In the introduction,
these models are presented in Sections 1.3.1 and 1.3.2 respectively.

2.1 Abstract Rewriting Systems

The main elements and features of the ARS model, as well as the ideas shaping this
model, are described in Section 1.3.1. In the following, we formalise the definition of
an ARS, recall some notations presented in Section 1.3.1, introduce some new notations
and notions, and give additional examples. Afterwards, we present the axioms which
formalise the features of a rewriting system, when modeled as an ARS. A short descrip-
tion of the intent of each axiom is included. Subsequently, we describe how equivalence
of reductions and standardisation are captured in the ARS model. A brief comment
about total embeddings closes this presentation.

We follow the presentation of the ARS model given in [Mel96].

2.1.1 Basic elements

The basic definition of an ARS follows.

Definition 2.1.1 (ARS with embedding). An ARS with embedding is defined as a
tuple xO,R, src, tgt, v�w, y where O and R are the sets of objects and steps respectively,
src, tgt : RÑ O are the source and target functions, v�w � R�R�R is the residual
relation, and   � R�R is the embedding relation. The embedding relation must be a
well-founded order.

All these elements are described in Section 1.3.1. The work about normalisation de-
veloped in Chapter 3 uses an extension of the ARS model, which includes the gripping
relation.

Definition 2.1.2 (ARS with embedding and gripping). An ARS with embedding
and gripping is a tuple xO,R, src, tgt, v�w, ,!y, where ! � R � R is the gripping
relation; cfr. Section 1.3.1 and Section 3.3.1.

27
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Some notational conventions and basic definitions about the ARS model follow.

Notation 2.1.3 (ARS, elements of an ARS). We use A,A1,A1, etc., to denote an ARS.
We usually use in this thesis the symbols a, a1, a1, b, c, . . . for steps, and t, t1, u, s, v, r, . . .
for objects. Another usual notation is t

a
ÝÑ u, which denotes that srcpaq � t and

tgtpaq � u. Recall from Section 1.3.1 that we use bvawb1 for pb, a, b1q P v�w, and that
we adopt the infix notation for   and !. Moreover, we use bvaw to denote the set
tb1 { bvawb1u.

Notation 2.1.4 (Steps of an object). Given an object t, we write ROptq to denote the
set ta { srcpaq � tu.

If t
a
ÝÑ u and b1 P ROpuq, then it could be the case that b1 is not the residual of any

step in t. In this case, we say that b1 is created by a.

Definition 2.1.5 (created step). Let t
a
ÝÑ u and b1 P ROpuq, such that there is no

b P ROptq verifying bvawb1. In this case, we say that b1 is created by a, and we write
Hvawb1.

Definition 2.1.6 (Coinitial steps). Two steps a and b are said coinitial iff srcpaq �
srcpbq; the notion of coinitial set of steps is defined analogously. We use A,A1,B, C, . . .
to denote sets of coinitial steps.

Definition 2.1.7 (Disjoint steps). If a and b are coinitial, and none of a � b, a   b
and b   a hold, then we say that a and b are disjoint steps, notation a ‖ b.

Definition 2.1.8 (Normal form). Let t be an object. If ROptq � H, then we say that t
is a normal form. We denote the set of normal forms of an ARS by NF.

The notion of residual can be extended to sets of coinitial steps.

Definition 2.1.9. Let B be a set of coinitial steps, a a step, coinitial in turn with B,
and b1 P ROptgtpaqq. We say that b1 is a residual of the set of coinitial steps B
after a, notation Bvawb1, iff bvawb1 for some b P B. We also use the notation Bvaw, to
denote tb1 { Bvawb1u.

Notice that for any a and b, bvaw is a set of coinitial steps; the same happens with Bvaw
for any B.

The residual, embedding and gripping relations must verify the following condition:
whenever bvawb1, a   b or a ! b, a and b must be coinitial; for the residual relation,
srcpb1q � tgtpaq is also required.

Recall that the intent of the residual relation is to trace a step b, after the contraction
of a step a, so that bvawb1 indicates that b1 is (perhaps part of) what is left of b, after
a has been performed. Hence the restrictions srcpbq � srcpaq and srcpb1q � tgtpaq make
sense. Cfr. Fig. 2.1.

srcpaqloomoon a
ÝÑ tgtpaqloomoon

b is here b1 is here

b vaw b1

Figure 2.1: Schema of the residual relation
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Let us describe how the λ-calculus can be modeled as an ARS.

The set O of objects is the set of terms of the λ-calculus. A step corresponds to any
subterm of the form pλx.squ, lying inside a term. The formal definition of the set of steps
can be given by resorting to the concept of position, as done for PPC in Section 3.4.3, or
alternatively by using contexts, as described for λ�lsub in Section 4.2.

W.r.t. the residual relation, bvawb1 holds iff b1 is a “copy” of the (subterm correspond-
ing to) the step b, in the target term of a. A graphical way of computing the residuals
of b is to underline, in the common source term of a and b, the λ symbol of the subterm
pλx.squ corresponding to b, and perform the step a on the underlined term. Then bvawb1

holds iff the λ symbol of (the subterm corresponding to) b1 has an underline, in the
underlined version of tgtpaq. A similar technique, based on labels, is used for λ�lsub in
Chapter 4. Cfr. Section 4.1.1. 1

Fig. 2.2 includes several cases of steps and residuals. We use underlining to trace
residuals. Cfr. also Fig. 1.6, on page 16.

a) p

ahkkkikkkj
pλx.xq3q ppλy.yq4loomoon

b

q
a
ÝÑ 3 ppλy.yq4loomoon

b1

q

b) pλy.

ahkkkikkkj
pλx.xq3�yq4loooooooooomoooooooooon

b

a
ÝÑ pλy.3� yq4looooomooooon

b1

c)

ahkkkkkkkkkkkkkikkkkkkkkkkkkkj
pλx. pλy.x� x� yq3loooooooomoooooooon

b

q4
a
ÝÑ pλy.4� 4� yq3loooooooomoooooooon

b1

d)

ahkkkkkkkkkkkkkkikkkkkkkkkkkkkkj
pλx.x� x� 4qppλy.yq3loomoon

b

q
a
ÝÑ ppλy.yq3loomoon

b1

q � ppλy.yq3loomoon
b2

q � 4

e)

ahkkkkkkkkikkkkkkkkj
pλx.4qppλy.yq3loomoon

b

q
a
ÝÑ 4

f)

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx.px3q � 4qpλy.yq

a
ÝÑ ppλy.yq3q � 4

Figure 2.2: Examples of steps, residuals, and a created step, in the λ-calculus

In Fig. 2.2:a) to d), we have bvawb1, and moreover bvawb2 in d). The example c) shows
that the subterm corresponding to a residual can be different from that of the original
step. The example d) shows a case of duplication: there is more than one residual
of b after a. The example e) shows a case of erasure: there is no residual of b after
a. Finally, the example f) shows a case of step creation: the step in the target term,
whose corresponding subterm is pλy.yq3, is not the residual of any step in the source
term.

The embedding relation can be defined as follows: a   b if the subterm corresponding
to b is nested inside that of a in their common source term. That is, a step corresponding

1The definition of the residual relation for PPC given in Chapter 3 is based on computations performed
on the positions of steps. Cfr. Section 3.4.3.
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to some subterm pλx.squ inside a term, embeds those steps whose subterm is inside s
or u. E.g., in Fig. 2.2:c), d), e), we have a   b, while in b) we have b   a.

As commented in Section 1.3.1, this is not the only possible definition of the em-
bedding relation for λ-calculus. A meaningful alternative is to consider that the step
whose subterm is pλx.squ embeds only the steps whose subterms are inside u. Using the
alternative definition, we have a   b in Fig. 2.2:d) and e), but not in c).

Following the idea described in Section 1.3.1, we define the gripping relation for the
ARS modeling the λ-calculus as follows: if the subterm for a step a is pλx.squ, then we
have a ! b iff the subterm for b is inside s and x occurs free in that subterm. E.g., in
Fig. 2.2:c) we have a ! b, because x occurs free in pλy.x� x� yq3. On the other hand,
in b) we have b   a but not b ! a, since y does not occur free in pλx.xq3.

2.1.2 Reduction sequences and developments

Sequences of rewriting steps admit a natural description in the ARS model.

Definition 2.1.10 (Reduction sequence, source, target, length). A reduction se-
quence is either nilt, an empty sequence indexed by the object t, or a (possibly in-
finite) sequence a1; a2, . . . ; an; . . . of steps verifying tgtpakq � srcpak�1q for all k ¥ 1.
In the former case, we define the source as t and in the latter case as the source of
the first step in the sequence. We define the target of a reduction sequence as follows:
tgtpniltq :� t, tgtpa1; . . . ; anq :� tgtpanq. The length of a reduction sequence, denoted
by | � |, is defined as follows: |nilt| :� 0, |a1; . . . ; an| :� n. The target and length of an
infinite sequence are undefined.

Some notations about reduction sequences follow.

Notation 2.1.11. We write RS for the set of reduction sequences. In the following,

reduction sequences are given the names δ, δ1, δ1, γ, π, etc. We write t
δ
Ý� u to indicate

that srcpδq � t and tgtpδq � u. Also, if δ � a1; . . . ; an, we denote with δrks the step ak,
and write δri..js for the subsequence ai; . . . ; aj, if i ¤ j, and nilsrcpaiq, if i ¡ j. We use
the symbol ; to denote the concatenation of reduction sequences, allowing to concatenate
steps and sequences freely, e.g. a; δ or a; b or δ; a or δ; γ, as long as the concatenation
yields a valid reduction sequence.

The concept of normalising object is crucial for Chapter 3.

Definition 2.1.12 (Normalising object). An object t is normalising iff there exists a

reduction sequence δ such that t
δ
Ý� u and u is a normal form.

The notion of residuals can be extended to reduction sequences as follows.

Definition 2.1.13 (Residuals after a reduction sequence). The relation of residuals
of a step after a reduction sequence, v�w � R � RS � R, is defined as follows:
bvniltwb for all b P ROptq, and bva; δwb1 whenever bvawb2 and b2vδwb1 for some b2. We
use the notation bvδw, to denote tb1 { bvδwb1u. We extend the definition of residuals
after a reduction sequence to sets of coinitial steps, as follows: we say that Bvδwb1 iff
bvδwb1 for some b P B, and define Bvδw as tb1 { Bvδwb1u; cfr. Dfn. 2.1.9. Observe that
Bva; δw � Bvawvδw.
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The central role that residuals play in the ARS model yields a natural way to describe
developments.

Definition 2.1.14 (Development, complete development). Let A � ROptq for some
object t. The reduction sequence δ is a development of A iff srcpδq � t and δris P
Avδr1..i�1sw for all i ¤ |δ| (the condition srcpδq � t is in fact redundant unless A � Ht).
A development δ of A is complete, written δ , A, iff δ is finite and Avδw � H.

E.g. let us consider the set A � ta, bu � ROptq given by

t �

ahkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj
pλx.pλz.3� zqxqp I4loomoon

b

q

The reduction sequence pλx.pλz.3 � zqxqpI4q
a
ÝÑ pλz.3 � zqpI4q

b1
ÝÑ pλz.3 � zq4 is a

development of A: observe that a P A � Avniltw, and bvawb1 implies b1 P Avaw. The

reduction sequence pλx.pλz.3 � zqxqpI4q
b
ÝÑ pλx.pλz.3 � zqxq4

a1
ÝÑ pλz.3 � zq4, where

avbwa1, is also a development of A. Note also that the reduction sequence consisting
solely of the step a is a development of A too, and analogously for the step b. On the
other hand, pλx.pλz.3� zqxqpI4q

a
ÝÑ pλz.3� zqpI4q Ñ 3� pI4q is not a development of

A, because the second step is not in Avaw.

Developments yield a useful measure on sets of coinitial steps.

Definition 2.1.15 (Depth of a set of coinitial steps). The depth of a set of coinitial
steps A, written νpAq, is the length of its longest complete development.

Note that it is not a priori clear that a development terminates, nor that the residual
relation is finitely branching. Moreover, since there may be more than one develop-
ment of a given set of coinitial steps, it is natural to wonder whether they all have the
same target and induce the same residual relation. These topics are discussed when
introducing the finite residuals, finite developments and semantic orthogonality axioms.

2.1.3 Initial axioms

The ARS model allows to state and prove properties in an abstract fashion. The results
thus obtained are valid for any ARS (and therefore, for any rewriting system which can
be modeled as an ARS), provided that it verifies some properties. These requirements
are encoded in the ARS model as axioms, stated in an abstract way.

Several of the axioms introduced in [Mel96] are used in this thesis. They are de-
scribed in this and the following sections. In this section we describe three initial axioms.
Later sections deal with the finite developments and the semantic orthogonality axioms,
the group of embedding axioms, concerning the interaction between residuals and em-
bedding, and finally the group of gripping axioms, which express basic properties of
the gripping relation. We remark that the material in Chapter 3 requires an additional
axiom, not present in [Mel96]; cfr. Section 3.1.4.

A note about notation: in what follows, free variables in the statement of an axiom
are implicitly assumed as universally quantified. For example, “avaw � H” should be
read as “For all a P R, avaw � H”. Bear in mind also that in an expression such as
“ avbwa1 ”, steps a and b are assumed coinitial.
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The three initial axioms have to do with the properties of the residual relation. The
embedding and gripping relations do not participate in these axioms. The first is Self
Reduction and states, quite reasonably, that nothing is left of a step a if it is contracted.

Self Reduction avaw � H.

The second is Finite Residuals and states that the residuals of a step b after con-
traction of a coinitial (and possibly the same) one a is a finite set. In other words, a
step may erase (bvaw � H) or copy other coinitial steps, however only a finite number
of copies can be produced.

Finite Residuals bvaw is a finite set.

The third one, namely Ancestor Uniqueness, states that a step a cannot “fuse” two
different steps b1 and b2, coinitial with a, into one, by allowing some step b to be residual
of both b1 and b2 simultaneously. In other words, if we use the term “ancestor” to refer
to the inverse of the residual relation, then any step can have at most one ancestor
(recall that created steps have no ancestor).

Ancestor Uniqueness b1vawb
1 and b2vawb

1 ñ b1 � b2.

2.1.4 Finiteness of developments and semantic orthogonality

As indicated at the end of Section 2.1.2, it is not clear, in principle, whether developments
enjoy certain desired properties. In this section we address this problem by introducing
two axioms which guarantee the expected behavior of developments.

The finite developments axiom, acronym FD, asserts that no development can run
indefinitely.

Finite developments (FD) All developments of A are finite.

This axiom, together with Finite Residuals, imply that the notion of depth of a set of
coinitial steps, cfr. Section 2.1.2, is well-defined.2

In turn, an additional axiom, called PERM in [Mel96] and semantic orthogonality,
acronym SO, in this thesis, guarantees, for any pair of coinitial steps A � ta, bu, the
existence of two complete developments of A, one starting with a and the other with b,
which are confluent and induce the same residual relation. Cfr. Fig. 2.3.

Semantic orthogonality (SO) Dδ, γ. δ , avbw and γ , bvaw and
tgtpa; γq � tgtpb; δq and the relations
va; γw and vb; δw coincide.

2If we render the developments of a set of coinitial steps A as a tree, whose root is the source term
of A and each edge is a step, then the Finite Residuals axiom implies that such tree is finitely branching,
and FD entails the nonexistence of infinite branches. Therefore König’s Lemma yields that the described
tree is finite, hence the well-definedness of the depth of A.
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t
a //

b

��

u1

γ , bvaw

����
u2

δ , avbw
// // s

Figure 2.3: The semantic orthogonality axiom

The axioms FD and SO, together with Self Reduction and Finite Residuals, suffice
to guarantee that complete developments of arbitrary multisteps of an ARS are also
confluent and induce the same residual relation. This is reflected in the following result
(Lem. 2.18 and Lem. 2.19 in [Mel96]):

Proposition 2.1.16. Consider an ARS enjoying the Self Reduction, Finite Residuals,
FD and SO axioms. Suppose δ , A and γ , A. Then tgtpδq � tgtpγq and the relations
vδw and vγw coincide.

The properties expressed by the axioms FD and SO have long been present in the
formal study of rewriting systems, allowing to obtain relevant results.

We mention the proof of confluence (property described in Section 1.1.1) given for
a variant of the λ-calculus in [CR36], where FD is explicitly stated and proved. Early
proofs of this axiom for λ-calculus can be found in [Sch65, Hin78].

In turn, orthogonality is a regularity criterion which simplifies the analysis of rewrit-
ing systems. The study of the so-called orthogonal rewriting systems can be traced,
at least, to [HL91], which is in fact a revised version of a technical report from 1979.
This work, whose subject is first-order term rewriting, takes a syntactic approach to
orthogonality, based on the notion of ambiguity.3 We describe this notion by means of
an example. The inclusion, in a first-order term rewriting system, of the rules

hpfpxq, yq Ñ x hpx, gpyqq Ñ y

provokes an ambiguity w.r.t. all the terms having the form hpfpt1q, gpt2qq where t1 and
t2 are arbitrary terms, since both rules apply to any such term. Taking as example
the term hpfpcq, gpdqq, we have two steps a1 and a2, where hpfpcq, gpdqq

a1ÝÑ c and
hpfpcq, gpdqq

a2ÝÑ d. The absence of ambiguities is a requirement for a rewriting system
to be orthogonal.4

As the example suggests, lack of orthogonality can break confluence, and thus unique-
ness of normal forms. In the syntactic view of orthogonality, the statement of the SO
axiom is in fact a property, which is proved for any (syntactically) orthogonal rewriting
system, cfr. Prop. 4.2.8 and Prop. 4.2.10 in [BKdV03], page 96.5 Besides Chapter 4
in [BKdV03], the syntactic approach of orthogonality is also described in [BN98], Sec-
tion 6.3.

The ARS model takes a different, more semantically-oriented perspective on orthog-
onality. In this view, a rewriting system is defined as orthogonal iff it satisfies the
criterion about the meeting of developments expressed by the SO axiom.

3The notions of overlapping [Ros73], and of critical pair [KB70], refer to the same phenomenon.
4There is another requirement, i.e., a rewriting system must be also left-linear to be considered

orthogonal. Cfr. [HL91] p. 398, [BKdV03] p. 88.
5The statement of the SO axiom a stronger version of the local confluence, or WCR, property, which

states that whenever tÑ u1 and tÑ u2, there exists an object s verifying u1 � s and u2 � s.
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We remark the existence of term rewriting systems which verifies the semantic or-
thogonality criterion described by the SO axiom, despite the fact that they admit syn-
tactic ambiguities. Let us consider the first-order term rewriting system whose only
rules are

hpfpxq, yq Ñ e hpx, gpyqq Ñ e

Again, any term having the form hpfpt1q, gpt2qq is ambiguous for this system. But in
this case, the possible steps are hpfpt1q, gpt2qq

a1ÝÑ e and hpfpt1q, gpt2qq
a2ÝÑ e, for any

such term. Moreover, none of these steps has any residual after the other one. Hence
semantic orthogonality is not compromised: the diagram in Fig. 2.3 closes trivially as
u1 � u2 � s � e. In fact, we can identify the steps a1 and a2 in this case, considering
the existence of just one step hpfpt1q, gpt2qq

a
ÝÑ e.

Another ambiguous system, non-orthogonal from a syntactic perspective, which en-
joys the SO axiom, is the parallel-or first-order term rewriting system, referenced in
the literature at least since [Plo77] in relation with denotational semantics, and [Ken89]
specifically in relation with the existence of normalising reduction strategies. It includes
the following rules

orpx, ttq Ñ tt orptt, xq Ñ tt

Both rules apply to orptt, ttq, giving rise to two different steps, and therefore to an
ambiguity. On the other hand, the target of both steps, namely tt, coincide. Therefore,
the behavior of this system is analogous to the previous example, so that again we can
identify the two ambiguous steps.

Observe that both of the just presented rewriting systems are almost orthogonal, cfr.
[vR97], from a syntactic perspective. On the other hand, the linear substitution calculus
we study in Chapter 4, is syntactically not almost orthogonal: moreover, it is not even
weakly orthogonal, [vO94]; despite this fact, it verifies the SO axiom.

A further comment about the two perspectives on orthogonality is included in Sec-
tion 6.2.3.

In the following, we say that an ARS is orthogonal iff it satisfies the three initial
axioms, FD and SO.

2.1.5 Embedding axioms

The embedding axioms establish coherence conditions between the embedding relation
  and the residual relation v�w. In reading these axioms it helps to think about the
embedding relation as described for the λ-calculus in Section 2.1.1: a   b if the subterm
corresponding to a nests that of b. Bear in mind however, that the ARS model does
not assume the existence of terms nor of syntactic nesting; this reading is solely for the
purposes of aiding the interpretation of the axioms.

The first axiom, Linearity, states that the only way in which a step a can either
erase or produce multiple (two or more) copies of a coinitial step, is if it embeds it.

Linearity a ¦ b ñ D!b1 { bvawb1.

This axiom formalises the intent of the embedding relation as part of the ARS model,
described in Section 1.3.1: a pair a   b indicates that the step a has, potentially, the
power to erase or to duplicate b.
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The second axiom pertains to the invariance of the embedding relation w.r.t. con-
traction of steps. Consider three coinitial steps a, b and c. Suppose that bvawb1 and
cvawc1, for some steps b1 and c1 (this implies a � c and a � b). The only case in which
the contraction of a can add, to (the residual of) b, the feature of embedding (that
of) c, i.e. b �  c ^ b1   c1, or conversely, revoke this feature (in the residuals), that is
b   c^ b1 �  c1, is when the step a itself embeds c, that is, when a   c.

Context-Freeness bvawb1 and cvawc1 ñ a   c _ pb   c ô b1   c1q.

An example in λ-calculus follows; recall that I, K and D are defined at the end of
Section 1.1.4:

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

b

qp I3loomoon
c

qpK

ehkkikkj
I4looomooon
d

q
a
ÝÑ Dp I3loomoon

c1

qloooomoooon
b1

pK

e1hkkikkj
I4looomooon
d1

q

In this case, a   c. Therefore, the axiom allows to modify the relative embedding of b
and c after the contraction of a, as it is indeed the case: b �  c and b1   c1. On the other
hand, a �  d and a �  e, hence the relative embeddings of any step with d and e must be
invariant w.r.t. the contraction of a. We observe e.g. b �  d and b1 �  d1, and also d   e
and d1   e1.

The next two axioms, Enclave–Creation and Enclave–Embedding, are used in con-
texts in which the axiom Linearity is assumed. Consider two coinitial steps a and b, such
that b   a, so that Linearity implies the existence of a unique b1 verifying bvawb1. The
Enclave axioms establish conditions which guarantee, given some c1 coinitial with b1,
that b1   c1. Two cases are considered, first when c1 is created by a (Enclave–Creation),
and when it is a residual, after a, of some step c (Enclave–Embedding).

Enclave–Creation b   a, bvawb1 and Hvawc1 ñ b1   c1.
Enclave–Embedding bvawb1, cvawc1 and b   a   c ñ b1   c1.

Notice that Enclave–Embedding complements, in some sense, Context-Freeness: it en-
forces the invariance of the relative embedding between b and c, that is b   c^ b1   c1,
in a case where a   c, so that the case is not covered by Context-Freeness.

We illustrate the Enclave–Creation and Enclave–Embedding axioms by means of two
examples in λ-calculus. Consider

aq

bhkkkkkkkkkkkkikkkkkkkkkkkkj
pλx. Dxloomoon

d

qp IKloomoon
a

3q
a
ÝÑ

b1hkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

d1

qp K3loomoon
c1

q

bq

bhkkkkkkkkkkkkkikkkkkkkkkkkkkj
pλx. Dxloomoon

d

qpIp K3loomoon
c

qloooomoooon
a

q
a
ÝÑ

b1hkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

d

qp K3loomoon
c1

q

In a), the step c1 is created by the contraction of a. Moreover b   a, so that Enclave–
Creation enforces b1   c1. On the other hand, d �  a, so that this axiom does not assert
anything about the relative embeddings of d1 and c1. In b), we have b   a   c, so that
Enclave–Embedding implies b1   c1.
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An additional axiom, which complements in turn Context-Freeness and Enclave–
Embedding, is introduced in Section 3.1.4.

The last embedding axiom in this presentation, Stability, assumes implicitly Linearity,
as well as Ancestor Uniqueness and SO, to hold. Suppose two coinitial steps, a and b,
such that a ‖ b, and let a1, b1 their unique mutual residuals, namely avbwa1 and bvawb1;
Linearity implies the existence, and also the uniqueness, of a1 and b1. Then SO implies
that the target of a; b1 and b; a1 coincide. Let d1 be a step in this common target, such
that it is not created, neither by b1 nor by a1. That is, d1vb

1wd1 and d2va
1wd1, for some

steps d1 and d2, coinitial with b1 and a1 respectively. Fig. 2.4:a) depicts this situation.

Assume the existence of a step d verifying dvawd1, so that dva; b1wd1. In this case, SO
implies dvb; a1wd1, that is, dvbwd2 and d2va1wd1 for some d2. In turn, Ancestor Uniqueness
implies d2 � d2, so that dvbwd2. Cfr. Fig. 2.4:b).

a)
a

yy

b

%%

b1
%%

d1

��
a1

yy

d2

��

d1

��

b)
a

yy

b

%%

d

��

b1
%%

d1

��
a1

yy

d2

��

d1

��

Figure 2.4: The Stability axiom

Therefore, there are just two options: either d1 and d2 are residuals of some common
step d, or d1 and d2 are created by a and b respectively, so that both a and b have the
ability to create (an ancestor of) d1. The axiom Stability forbids the latter possibility:
it states that a step, in this case d1, cannot be created by different, disjoint steps.

Stability Assume a ‖ b, avbwa1, bvawb1, and there exists some d1 such
that d1vb

1wd1 and d2va
1wd1. Then there exists d such that

dvawd1, dvbwd2, and either a ¦ d or b ¦ d.

Therefore, in any case corresponding to Fig. 2.4:a), the situation in Fig. 2.4:b) must
hold. In the latter we distinguish the conclusion of the axiom, that is, the existence of
d, by a dashed line.

We point out that the condition a ¦ d or b ¦ d is superfluous for the λ-calculus,
and also for all the ARS we introduce in Chapter 3 and Chapter 4, because for those
ARS, this condition holds for every set of three coinitial steps ta, b, du such that a ‖ b.
Notice that dvawd1 and dvbwd2 imply d � a and d � d, cfr. Self Reduction. Moreover,
given an object t, the embedding relation restricted to ROptq has the shape of a tree,
so that a   d and b   d would imply a   b or b   a, contradicting a ‖ b.

The parallel-or rewriting system, introduced in Section 2.1.4, does not enjoy Stability.
Consider the term

orp orptt, ffqloooomoooon
a

, orptt, ffqloooomoooon
b

q
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and the following diagram

orp orptt, ffq , orptt, ffq q

a

tt

b

**
orptt, orptt, ffq q

b1
**

d1

��

orp orptt, ffq , ttq

a1
tt

d2

��
tt orptt, ttq

d1

��

tt

tt

If we identify the two possible steps orptt, ttq Ñ tt in the ARS interpretation of this
rewriting system, then both a and b can create (an ancestor of) this “unified” step.
Moreover a ‖ b. Hence this is a counterexample for Stability. This is by no means
accidental: the explicit purpose of the Stability axiom is to avoid what is called in
[Mel96] (cfr. page 80) the “parallel-or behavior”.

2.1.6 Gripping axioms

The properties characterising the gripping relation in the ARS model, are described by
means of three axioms, provided in [Mel96] to extend to higher-order term rewriting an
abstract proof of finite developments, developed originally for first-order term rewriting
systems by O’Donnell, cfr. [O’D77].

The first one, Grip–Instantiation, states the role gripping plays in the creation of
new embeddings. Consider three coinitial steps a, b, c and steps b1, c1 such that bvawb1

and cvawc1. Suppose that b1   c1, and moreover, that this embedding is generated by the
contraction of a, that is, b �  c. Axiom Context-Freeness gives some information, since
it enforces a   c in such case. This axiom may be seen to provide further information:
the only way in which a can place (the residual of) c under the (residual of) b, is that b
grips a.

Grip–Instantiation bvawb1, cvawc1 and b1   c1 ñ b   c _ pa ! b ^ a   cq.

Recall the example for λ-calculus given in Section 1.3.1 to introduce gripping:

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

b

qp

chkkikkj
I3 q

a
ÝÑ Dp

c1hkkikkj
I3 qloooomoooon
b1

We have b �  c and b1   c1. The new embedding is generated by the presence of a free
occurrence of x, the variable bound in the abstraction corresponding to a, inside the
subterm of b. This link between the steps a and b is exactly the phenomenon modeled
by the gripping relation.

The second axiom, Grip–Density, states a condition for the generation of a new
gripping. Consider again bvawb1 and cvawc1. The contraction of a can cause c1 to grip b1



38 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

when this is not the case for their respective ancestors, i.e. b �! c and b1 ! c1, only if a
links b and c forming a “chain” of grippings, that is, b ! a ! c: the contraction of a
makes b1 and c1 contiguous in this chain.

Grip–Density bvawb1 ^ cvawc1 ^ b1 ! c1 ñ b ! c _ b ! a ! c.

An example in λ-calculus follows:

bhkkkkkkkkkkkkikkkkkkkkkkkkj
pλy. pλx. Ixloomoon

c

qyloooooomoooooon
a

q z
a
ÝÑ

b1hkkkkkkkikkkkkkkj
pλy. Iyloomoon

c1

q z

The third axiom, Grip–Convexity, establishes conditions to embed a gripping step:
if c embeds b which in turn grips a, then c either grips or embeds a.

Grip–Convexity a ! b ^ c   b ñ a ! c _ c ¤ a.

Consider this example in λ-calculus:

dhkkkkkkkkkkkikkkkkkkkkkkj
Ippλx.

chkkkkikkkkj
Ip Dxloomoon

b

qq3loooooooomoooooooon
a

q,

where a ! b, c   b, and also d   b. We have a ! c and d   a, so that both cases are
compatible with the statement of Grip–Convexity.

2.1.7 Permutation equivalence in the ARS model

Residuals lead to a simple description, in the ARS model, of the permutation of con-
tiguous steps. If a and b are coinitial steps, δ , bvaw, and γ , avbw, then the reduction
sequence a; δ corresponds to the contraction of a followed by (the residuals of) b, while
b; γ corresponds to b followed by (the residuals of) a. Therefore, permuting a with b in
a; δ yields b; γ, and vice versa.

This is the case of the example about equivalence of reductions given in Section 1.3.1
for the arithmetic simplification rewriting system. An example in the λ-calculus follows.

ahkkkkkkkkikkkkkkkkj
pλx.xxqp Iyloomoon

b

q

a

vv

b

&&

p Iyloomoon
b11

qp Iyloomoon
b12

q

b11
""

a1hkkkkikkkkj
pλx.xxqy

a1

||

yp Iyloomoon
b22

q

b22 ''
yy
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In this case, b has two residuals after a: bvaw � tb11, b
1
2u. Therefore, in this case, it takes

more than one step to develop bvaw, i.e. |δ| ¡ 1. On the other hand, avbw � ta1u. We
have δ � b11; b22 and γ � a1.6 Permuting a with b in a; b11; b22 yields b; a1, and vice versa.

If we choose a and b such that a erases b, then we get a triangular diagram, e.g.:

ahkkkkkkkikkkkkkkj
pλx.zqp Iyloomoon

b

q

a

}}

b

$$

z

a1hkkikkj
pλx.zqy

a1
oo

In all the examples given so far, we obtain closing diagrams: the target term of
a; δ and b; γ coincide. This is always the case for orthogonal ARS, in a strong sense
involving residuals as well as target: for any orthogonal ARS, and for any δ , bvaw and
γ , avbw, tgtpa; δq � tgtpb; γq and cva; δw � cvb; γw for any c coinitial with a and b. This
is a consequence of Prop. 2.1.16, since both a; δ and b; γ are complete developments of
ta, bu. Prop. 2.1.16 entails also that the choice of δ and γ is irrelevant, since target and
residuals coincide for any complete development of bvaw, and analogously for avbw.

The aforementioned considerations lead to the characterisation of permutation equiv-
alence in the ARS model, for orthogonal ARS.

Definition 2.1.17. Two reduction sequences δ and γ are one permutation of steps
away if δ � δ1; a;π; δ2, γ � δ1; b; θ; δ2, π , bvaw and θ , avbw. The permutation can be
depicted graphically as follows.

π

��δ1 //

a
??

b ��

δ2 //

θ

??

Definition 2.1.18. Permutation equivalence is defined as the reflexive and transitive
closure of the “one-permutation-away” relation.7

Given Prop. 2.1.16, it is straightforward to verify that δ and γ being permutation equiv-
alent implies tgtpδq � tgtpγq and vδw � vγw.

2.1.8 Standardisation in the ARS model

Recall from Section 1.1.3 that in a standard reduction sequence, external steps should
precede (residuals of) internal ones. The embedding relation allows to describe the

6Notice that a has the power of duplicating b. Therefore, a model of the λ-calculus as an ARS
should provide a   b; cfr. the Linearity axiom. This is the case for the three embedding relations for the
λ-calculus proposed in [Mel96], Section 2.7.2.

7Recall that Self Reduction implies, for any step a, that avaw � H. Therefore, if we consider
δ � δ1; a; niltgtpaq; δ2 and b � a in Dfn. 2.1.17, it is easy to conclude that the relation of being “one
permutation of steps away” is already reflexive, except for empty reduction sequences. Therefore, taking
the reflexive closure in Dfn. 2.1.18 is needed for empty reduction sequences only. We could ask a � b in
Dfn. 2.1.17, in this case the reflexive closure in Dfn. 2.1.18 would be needed for any reduction sequence.
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notion of “more external step” in the ARS model. Given two coinitial steps a and b,
the condition a   b indicates precisely that a is more external than b.

In this way, the external condition corresponds with the notion of a step having some
power over another, introduced in Section 1.3.1: a step a is more external than b if a can
possibly erase or duplicate b. The Linearity axiom makes this correspondence explicit.

Therefore, the criterion for a reduction sequence to be standard can be rephrased as
follows: in a s.r.s., a step a should precede (any residual of) a coinitial step b if a has
some power on b.

In the following, assume an orthogonal ARS which enjoys also the Ancestor Unique-
ness and Linearity axioms.

Consider a reduction sequence γ � δ1; b; a1; δ2 where avbwa1 and a   b. The presence
of the anti-standard pair b; a1 indicates that γ is not a s.r.s.. Moreover, performing a
permutation of the contiguous steps b and a on γ allows to “reorder” the anti-standard
pair, obtaining δ1; a;π; δ2 where π , bvaw. This observation leads to the following
definition:

Definition 2.1.19 (Standardising permutation). δ is obtained from γ by means of a
standardising permutation (of contiguous steps), notation δ=γ, iff γ � δ1; b; a1; δ2,
δ � δ1; a;π; δ2, avbwa1, π , bvaw, and a   b.

Recall that Linearity implies a1 , avbw, hence a standardising permutation is indeed
a particular case of the permutation of contiguous steps. Standardising permutations
induce an order8 on reduction sequences, as suggested by the symbol = used to denote
them.

Notice that permutations of disjoint steps do not affect the “standardisation degree”
of a reduction sequence: they are neutral in that sense. On the other hand, perform-
ing such permutations can be required to unveil anti-standard pairs, and thus enable
standardising permutations. This implies the relevance of the following definitions.

Definition 2.1.20 (Square permutation, square equivalence). We say that δ and γ

are one square permutation (of contiguous steps) away, notation δ
1
3γ, iff δ �

δ1; a; b1; δ2, γ � δ1; b; a1; δ2, bvawb1, avbwa1, and a ‖ b. Linearity entails b1 , bvaw and
a1 , avbw, hence a square permutation is indeed a permutation. We define the square

equivalence, notation 3, as the reflexive and transitive closure of
1
3. It is immediate

to verify that 3 is symmetric, and thus that it is indeed a equivalence relation.

We show how to standardise a reduction sequence δ, i.e. obtain a s.r.s. permu-
tation equivalent to δ, by performing square and standardising permutations. In the
following, we (ab)use the same name for a step and its residuals. Consider:

δ �

ahkkkkkkkkikkkkkkkkj
pλx.1xqp I2loomoon

b

qp I3loomoon
c

q
b
ÝÑ

ahkkkikkkj
pλx.1xq2p I3loomoon

c

q
c
ÝÑ

ahkkkikkkj
pλx.1xq2 3

a
ÝÑ 123

Observe that δ is not standard because (the residual of) a comes after b, while a   b.
Nonetheless, δ does not include any contiguous anti-standard pair, a square permutation

8A preorder in the general case, an order in the rewriting systems studied in this thesis
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is needed prior to perform a standardising permutation. Namely, δ is transformed first
to:

δ1 �

ahkkkkkkkkikkkkkkkkj
pλx.1xqp I2loomoon

b

qp I3loomoon
c

q
b
ÝÑ

ahkkkikkkj
pλx.1xq2p I3loomoon

c

q
a
ÝÑ 12p I3loomoon

c

q
c
ÝÑ 123

a reduction sequence including the anti-standard pair b; a. Now we can perform a
standardising permutation, obtaining:

δ2 �

ahkkkkkkkkikkkkkkkkj
pλx.1xqp I2loomoon

b

qp I3loomoon
c

q
a
ÝÑ 1 I2loomoon

b

p I3loomoon
c

q
b
ÝÑ 12p I3loomoon

c

q
c
ÝÑ 123

which is a s.r.s.. We can concisely describe the way δ2 is attained as follows:

δ � b; c; a
1
3 b; a; c =a; b; c � δ2

Notice that there is another way to standardise δ:

δ � b; c; a
1
3 c; b; a =c; a; b � δ3

resulting in:

δ3 �

ahkkkkkkkkikkkkkkkkj
pλx.1xqp I2loomoon

b

qp I3loomoon
c

q
c
ÝÑ

ahkkkkkkkkikkkkkkkkj
pλx.1xqp I2loomoon

b

q 3
a
ÝÑ 1p I2loomoon

b

q3
b
ÝÑ 123

where δ23δ3, as c is disjoint to both a and b. Notice that if a reduction sequence
is standard, then any other reduction sequence in its class of square equivalences is
standard as well.

We formalise the standardisation process by means of the following definitions.

Definition 2.1.21. We write δ
1
� γ iff δ3γ or δ=γ, use � to denote the reflexive-

transitive closure of
1
�, and say that δ is more standard than γ, notation δ � γ, iff

δ � δ1=γ1 � γ. Notice that δ � γ implies that δ and γ are permutation equivalent.

By the preorder � , we stratify the 3-equivalence classes of reduction sequences
by their “standardness degree”: if δ13δ2 and γ13γ2, then δ1 � γ1 iff δ2 � γ2. This
argument allows to obtain an order9 �{3 .

Definition 2.1.22. A reduction sequence is standard iff it is contained in a 3-
equivalence class minimal for �{3.

Given this characterisation of s.r.s., in [Mel96] two results relating standardisation
with the ARS axioms are stated and proved. Namely:

Theorem 2.1.23. All ARS enjoying the initial axioms, FD, SO, Linearity and Context-
Freeness, verify the following proposition: for any reduction sequence γ, there exists a
s.r.s. δ such that δ � γ, and therefore δ and γ are permutation equivalent.

9Again, a preorder in the general case, an order in the rewriting systems studied in this thesis. Cfr.
[Mel96] Section 4.8.1.
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Theorem 2.1.24. All ARS enjoying the initial axioms, FD, SO, and all the embedding
axioms, verify the following proposition: for any reduction sequence γ, there exists a
s.r.s. δ such that δ � γ, and therefore δ and γ are permutation equivalent. Moreover,
δ is unique modulo 3, i.e. for any s.r.s. δ1 equivalent with γ, we have δ13δ.

These are among the main results obtained through the ARS model in [Mel96].

2.1.9 A remark on total-order embeddings

We end this section with a remark, which will be important for the study of the linear
substitution calculus in Chapter 4.

Assume an ARS whose embedding relation is a total order, i.e. there are no disjoint
steps. Such an embedding can simplify the proofs of the embedding axioms: in the case
analysis of the relative embeddings between two steps a and b, if a ¦ b, the only possible
case left is b   a. Particularly, the Stability axiom becomes trivial, since its hypothesis
includes the disjointness of two steps.

On the other hand, for such ARS the 3 equivalence coincides with equality. No
square permutations are possible, all permutations are either standardising or anti-
standardising. Therefore, the conclusion of Thm. 2.1.24 is stronger: the existence of a
unique s.r.s. equivalent to a given reduction sequence is stated, thus uniqueness is
not “modulo 3”.

Hence, an ARS equipped with a total order as its embedding relation leads to a
simpler standardisation theory. This fact will be exploited in Chapter 4 to obtain a
standardisation result for a rewriting system having a partial-order embedding relation,
in two steps. First, a simpler ARS with a total-order is defined. For this ARS, all the
axioms required in Thm. 2.1.24 are verified, and thus standardisation is obtained as
a corollary of that theorem. Afterwards, this result is used to prove standardisation
for the partial-order ARS, by a novel abstract argument. Uniqueness of s.r.s. (now
modulo square equivalence) is obtained, even though the partial-order ARS does not
satisfy all the embedding axioms.

2.2 The proof term model

As described in Section 1.3.2, the intent of the proof term model is to provide a tool
to formally denote, or witness, reductions in a given rewriting system. We introduce
in this section the main concepts, and some relevant features, of this model, as it is
presented for first-order, left-linear term rewriting in [BKdV03], Chapter 8. This is the
presentation we extend in Chapter 5 to the realm of infinitary rewriting.

We do not intend to give a complete presentation of the proof term model in this
section. The aims of the material we present here are: to give a first glimpse of this
generic model of rewriting, including several examples, and to introduce the definitions
of some basic notions as given originally for finitary rewriting, to enable the comparison
with the infinitary counterparts we introduce in Chapter 5.

In Section 2.2.1 we provide a few basic preliminary definitions, which are essential
in order to introduce the proof term model. In Section 2.2.2 we formalise the notion of
finitary proof term, providing several examples. In Section 2.2.3 we describe the charac-
terisation of the equivalence of reductions in the proof term model, given in [BKdV03]
Section 8.3, which resorts to the notion of permutation of contractions. The notion of
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permutation is also used in the ARS model to describe the equivalence of reductions, cfr.
Section 2.1.7. As we pointed out in Section 1.3.2, several characterisations of the equiv-
alence of reductions are proposed in the presentation of the proof term model given in
[BKdV03]. We include here only that based in permutations, because it forms the foun-
dation for the characterisation of the equivalence of infinitary reductions we introduce
in Section 5.3.

2.2.1 Preliminaries – first-order term rewriting system

Prior to formally introducing proof terms, we must define the notion of first-order term
rewriting system. We give here just the definitions we need in Section 2.2.2. For a
general presentation of finitary first-order rewriting, cfr. e.g. [BN98], Sections 3.1 and
4.2; and also [BKdV03], Sections 2.1 to 2.3, 2.7 and 2.8. The main concepts of first-order
rewriting are defined for infinitary rewriting in this thesis, in Sections 5.1.2 to 5.1.4; cfr.
also [BKdV03], Sections 12.1 to 12.3, or [KdV05], Section 2.

Definition 2.2.1 (Signature, function symbol, constant). A signature is a finite set of
symbols along with a function from this set to N¥0, called arity and noted ar. The usual
notation is Σ :� tfi{niuiPI , where each fi is a symbol and ni � arpfiq. We follow the
custom of writing f P Σ as a shorthand notation for Dn.n P N¥0 ^ f{n P Σ.

A constant is a function symbol c such that arpcq � 0.

Definition 2.2.2 (Rewrite rule, term rewriting system). Assuming a set of variables
Var and given a signature Σ, a rewrite rule (just rule if no confusion arises) over Σ
is a pair of terms xl, ry satisfying the following conditions: l R Var, and each variable
occurring in r occurs also in l. Notation for a rewrite rule: l Ñ r, also µ : l Ñ r if
assigning explicit names to rules is desirable. The terms l and r, respectively, are the
left-hand side and right-hand side, lhs and rhs for short, of the rule lÑ r.

A first-order term rewriting system is a pair T � xΣ, Ry, where Σ is a signature and
R is a set of rules over Σ.

Definition 2.2.3 (Left-linear term rewriting system). A term rewriting system is left-
linear iff for any l left-hand side of a rule, and for any x variable, x occurs in l at most
once.

The proof terms we present in the following, as well as the extension to infinitary
rewriting we introduce in Chapter 5, apply to left-linear term rewriting systems only.

2.2.2 Proof terms

Proof terms for a given term rewriting system T are terms, in a signature extending
that of T . As described in Section 1.3.2, the signature for proof terms includes a rule
symbol for each rule in T , plus a single binary symbol to denote the concatenation, or
composition, of reductions. Formally:

Definition 2.2.4 (Signature for proof terms). Let T � xΣ, Ry be a term rewriting
system. We define the signature for the proof terms for T as follows: ΣPT :� Σ Y
tµ{n { µ : l Ñ r P R ^ |FV plq| � nu Y t � {2u, where FV plq is the set of variables
occurring in l. The symbol � , called the dot, denotes the composition, or concatenation,
of reductions. It is written infix.
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The set of proof terms for a rewriting system T , along with their source and target
terms, can be defined inductively as follows.

Definition 2.2.5 (Proof terms, source, target – [BKdV03], Dfn. 8.2.18). Let T � xΣ, Ry
be a term rewriting system. We say that ψ is a proof term for T , and that the terms t
and u are the source and target terms of ψ, iff the conclusion

ψ : t © u

can be obtained inductively from the following rules:

ψ1 : s1 © t1 . . . ψn : sn © tn f{n P Σ

fpψ1, . . . , ψnq : fps1, . . . , snq © fpt1, . . . , tnq
Repl

ψ1 : s1 © t1 . . . ψn : sn © tn ρ{n is a rule symbol ρ : lÑ n

ρpψ1, . . . , ψnq : lrs1, . . . , sns © rrt1, . . . , tns
Rule

ψ : s © t φ : t © u

ψ � φ : s © u
Trans

In the Rule-rule, we employ the following notational convention.

Notation 2.2.6. In case ρ : l Ñ r is a rule, lrs1, . . . , sns and rrs1, . . . , sns denote the
terms obtained by substituting si in l and r, respectively, for the i-th variable of ρ. Here
we assume the variables to be ordered in some arbitrary but fixed way depending on ρ.
Note that while si occurs always exactly once in lrs1, . . . , sns, it may occur more than
once, or not occur at all, in rrs1, . . . , sns, if the corresponding variable appears more
than once, or does not appear, in r.

A convention on terminology follows:

Notation 2.2.7 (Object rewriting system). When discussing about proof terms for a
rewriting system T , we refer to T as the object rewriting system. We use the expressions
“object signature”, “object term” and “object reductions” as well.

Notice the absence of rules for constants or variables in Dfn. 2.2.5. Constants are
just symbols in the object signature Σ whose arity is 0; if a{0 P Σ, then a : a © a can be
obtained by just applying the Repl rule. On the other hand, the intent of this definition
of proof terms is to model only reductions involving closed terms; hence the absence of
a rule for variables. The restriction to closed terms does not hinder the study of the
concepts, particularly the equivalence of reductions, being the aim of the proof term
model; to these effects, variable occurrences in a term can be considered as constants.
Cfr. [BKdV03], Remark 8.2.21. As a consequence, the inclusion of at least one constant
in the signature is required in order to model reductions in a given term rewriting system
by using proof terms.

In the following we give several examples of proof terms. Based on these examples,
we discuss some features of the proof term model. We use these rules:

µ : fpxq Ñ gpxq ν : gpxq Ñ kpxq ρ : hpkpxq, yq Ñ jpy, xq
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As expected, we can denote the reduction sequence fpaq Ñ gpaq Ñ kpaq by the proof
term µpaq � νpaq. The corresponding derivation w.r.t. Dfn. 2.2.5 is described in Fig. 2.5.

Repl
a : a © a

Rule
µpaq : fpaq © gpaq

Repl
a : a © a

Rule
νpaq : gpaq © kpaq

Trans
µpaq � νpaq : fpaq © kpaq

Figure 2.5: Derivation of a simple proof term

Proof terms can also denote the simultaneous contraction of steps. E.g. the term
hpgpaq, fpbqq is the source of two steps, corresponding to the rules µ and ν respectively,
which can be contracted simultaneously, yielding hpkpaq, gpbqq as result. We denote
the simultaneous contraction of steps by the decorated arrow ÝÑ� , so that we write
e.g. hpgpaq, fpbqq ÝÑ� hpkpaq, gpbqq. Cfr. Section 3.1.1 for a discussion of simultaneous
contraction and their description in the ARS model. Simultaneous contraction can be
also composed with other reductions. Check Fig. 2.6; in this derivation, as well as in
those following, some details are omitted.

a : a © a

νpaq : gpaq © kpaq

b : b © b

µpbq : fpbq © gpbq
Repl

hpνpaq, µpbqq : hpgpaq, fpbqq © hpkpaq, gpbqq ρpa, gpbqq : hpkpaq, gpbqq © jpgpbq, aq
Trans

hpνpaq, µpbqq � ρpa, gpbqq : hpgpaq, fpbqq © jpgpbq, aq

. . .

b : b © b

νpbq : gpbq © kpbq a : a © a
Repl

jpνpbq, aq : jpgpbq, aq © jpkpbq, aq
Trans

phpνpaq, µpbqq � ρpa, gpbqqq � jpνpbq, aq : hpgpaq, fpbqq © jpkpbq, aq

Figure 2.6: Derivation of a proof term involving simultaneous contraction

We can say that the proof term phpνpaq, µpbqq � ρpa, gpbqqq � jpνpbq, aq denotes the
reduction hpgpaq, fpbqq ÝÑ� hpkpaq, gpbqq Ñ jpgpbq, aq Ñ jpkpbq, aq. The following figure
depicts the correspondence between (simultaneous) steps and components of the proof
term.

hpgpaq, fpbqq ÝÑ� hpkpaq, gpbqq Ñ jpgpbq, aq Ñ jpkpbq, aq

p hpνpaq, µpbqq � ρpa, gpbqq q � jpνpbq, aq

The example given in Fig. 2.7 shows that the steps involved in a simultaneous con-
traction can be nested.

a : a © a
Rule

µpaq : fpaq © gpaq

b : b © b
Rule

µpbq : fpbq © gpbq
Rule

ρpµpaq, µpbqq : hpkpfpaqq, fpbqq © jpgpbq, gpaqq

Figure 2.7: A proof term for simultaneous contraction of nested steps.
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Finally, we remark that proof terms allow to denote contractions being performed
inside a particular subterm in a term, as the following example shows.

. . . cfr. Fig. 2.5 . . .

µpaq � νpaq : fpaq © kpaq b : b © b
Repl

hpµpaq � νpaq, bq : hpfpaq, bq © hpkpaq, bq ρpa, bq : hpkpaq, bq © jpb, aq
Trans

hpµpaq � νpaq, bq � ρpa, bq : hpfpaq, bq © jpb, aq

The preceding examples show that proof terms denote not only reduction sequences,
but also different ways in which the contraction of reduction steps can be organised. We
use the term contraction activity to encompass these different forms of contraction.

We point out that different ways to organise the contraction of the same steps yield
different proof terms, implying that the proof term model allows to faithfully denote,
and distinguish between, subtly different forms of contraction activity. As an exam-
ple, let us recall the two steps in the term hpfpaq, gpbqq, cfr. the discussion preceding
Fig. 2.6. These steps can be performed sequentially in either order, and their simul-
taneous contraction is also possible, leading to three different ways to contract these
steps. A proof term corresponds to each option, namely: hpµpaq, gpbqq � hpgpaq, νpbqq,
hpfpaq, νpbqq � hpµpaq, kpbqq, and hpµpaq, νpbqq. Note that the source and target terms
of all these proof terms coincide. The characterisation of the equivalence of reductions
we introduce in the next section yields that these three proof terms are equivalent.

The set of proof terms is a proper subset of the set of terms over the proof term
signature. Any term over that signature not including occurrences of the concatenation
symbol, i.e. the dot, is a valid proof term, as it can be verified by a simple inductive
argument. These proof terms denote the simultaneous contraction of some set of coinitial
steps.10 Particularly, the contraction of a single step is naturally denoted by a proof
term with no occurrences of the dot, and with exactly one occurrence of a rule symbol,
e.g. µpaq, ρpfpaq, gpbqq or hpµpaq, gpbqq. We also remark that all the object terms are
valid proof terms, they denote the trivial reduction from a term to the same term, not
involving any reduction step.

The restrictions shaping the set of valid proof terms are related with the occurrences
of the dot, as reflected in the Trans-rule: for ψ � φ to be a valid proof term, a coherence
condition applies: the target of ψ and the source of φ must coincide. E.g. the term
µpaq � νpbq is not a valid proof term, because the target of µpaq and the source of νpbq,
gpaq and gpbq respectively, are different terms.

2.2.3 Equivalence of reductions

Different ways to contract the same steps, regarding sequential versus simultaneous
contraction, and/or the sequential ordering in which coinitial steps are performed, yield
equivalent contraction activities; cfr. the simple example given in Section 1.1.3. As dis-
cussed in relation with the ARS model for the particular case of reduction sequences, cfr.
Section 2.1.7, the equivalence of reductions can be described in terms of the permutation

10More precisely, the proof terms without concatenation occurrences denote the simultaneous contrac-
tion of coinitial and mutually orthogonal sets of steps. We remark that orthogonality of the subjacent
term rewriting system is not required.
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of contiguous steps: two reduction sequences are considered equivalent iff each of them
is the result of a sequence of permutation of steps applied to the other one.

In [BKdV03], Section 8.3, the following equivalence relation on proof terms, which
formalises the notion of permutation equivalence for contraction activities, is presented.

Definition 2.2.8 (Permutation equivalence, cfr. [BKdV03] Dfn. 8.3.1). The permuta-
tion equivalence relation of proof terms, notation � , is the equivalence and contextual
closure of the set of valid instances of the following basic equation schemas:

pIdLeftq srcpψq � ψ � ψ
pIdRightq ψ � tgtpψq � ψ
pAssocq ψ � pφ � χq � pψ � φq � χ
pStructq fpψ1, . . . , ψmq � fpφ1, . . . , φmq � fpψ1 � φ1, . . . , ψm � φmq
pOutInq µpψ1, . . . , ψmq � µps1, . . . , smq � rrψ1, . . . , ψms
pInOutq µpψ1, . . . , ψmq � lrψ1, . . . , ψms � µpt1, . . . , tmq

where µ : l Ñ r, si � srcpψiq, ti � tgtpψiq, and an instance of an equation is valid
iff both the left- and the right-hand sides in that instance are valid proof terms. Cfr.
Notation 2.2.6 for the meaning of lrψ1, . . . , ψns and rrψ1, . . . , ψns.

We remark that this characterisation of permutation equivalence resorts to equational
logic, applied to proof terms.

The basic equation schemas pStructq, pOutInq and pInOutq formalise the equivalence
of sequential and simultaneous contraction, for parallel steps in the case of pStructq, and
for nested steps regarding the latter two. The other equation schemas do not change the
organisation of the denoted contraction activity; they are sometimes needed in order to
enable the application of some of the other, more significant schemas. Cfr. the square
equivalence relation in the ARS model, Dfn. 2.1.20.

As a first example, let us consider the rule µ : fpxq Ñ gpxq, and the proof terms
hpfpaq, µpbqq � hpµpaq, gpbqq and hpµpaq, fpbqq � hpgpaq, µpbqq. These proof terms denote
the sequential contraction of the same two, coinitial and parallel, steps, in the two pos-
sible orders. Therefore, (the reduction sequences denoted by) these proof terms are
equivalent. An abridged permutation equivalence judgement, justifying the equivalence
of these proof terms by means of Dfn. 2.2.8, follows.

hpfpaq, µpbqq � hpµpaq, gpbqq
� hpfpaq � µpaq , µpbq � gpbqq
� hpµpaq, µpbqq
� hpµpaq � gpaq , fpbq � µpbqq
� hpµpaq, fpbqq � hpgpaq, µpbqq

By applying pStructq and then pIdLeftq and pIdRightq, we obtain hpfpaq, µpbqq �hpµpaq, gpbqq �
hpµpaq, µpbqq, i.e., the equivalence of the sequential and simultaneous contraction of the
two involved steps. By means of a similar argument, using the equations in the opposite
direction, we obtain that hpµpaq, µpbqq � hpµpaq, fpbqq � hpgpaq, µpbqq. In turn, transi-
tivity yields the equivalence between the two sequential proof terms. We can draw some
observations from this example:

• The characterisation of the equivalence of reductions given by Dfn. 2.2.8 allows
to state not only the equivalence of the two reduction sequences denoted by the
original proof terms, but also of both of them with the simultaneous contraction
of the involved steps.
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• The role of the pIdLeftq and pIdRightq schemas to enable, or complement, the
applications of the pStructq schema can be appreciated.

• In order to prove the equivalence of the two sequential proof terms, starting with
one of them, we “pack” the two contracted steps obtaining a proof term denoting
their simultaneous contraction, namely hpµpaq, µpbqq. Subsequently, we “unpack”
this simultaneous contraction to obtain the other sequential proof term. Cfr. the
description of permutation equivalence in Section 1.3.2.

Let us analyse a second example, involving nested steps. Let us consider the rule
ν : gpxq Ñ kpxq, as well as the µ rule used in the previous example. The proof terms
pfpµpaqq � fpνpaqqq � µpkpaqq and µpfpaqq � pgpµpaqq � gpνpaqqq describe the contraction
of two nested µ-steps, plus the ν-step created by the contraction of the internal µ-step.
The latter proof term can be considered as the result of permuting, in the former one,
the external µ-step w.r.t. the two internal steps. The equivalence of these proof terms
can be justified by the following permutation equivalence judgement.

pfpµpaqq � fpνpaqqq � µpkpaqq

� fpµpaqq � pfpνpaqq � µpkpaqqq

� fpµpaqq � µpνpaqq (2.1)

� fpµpaqq � pµpgpaqq � gpνpaqqq

� pfpµpaqq � µpgpaqqq � gpνpaqq (2.2)

� µpµpaqq � gpνpaqq (2.3)

� pµpfpaqq � gpµpaqqq � gpνpaqq

� µpfpaqq � pgpµpaqq � gpνpaqqq

By applying pAssocq and then pInOutq, we obtain (2.1), which describes the contraction
of the inner µ-step followed by the simultaneous contraction of the other two involved
steps. The application of pOutInq and then pAssocq yields (2.2), in which the external
µ-step is permuted with the internal ν-step w.r.t. the original proof term. Subsequently,
we apply again pInOutq to obtain (2.3), where the simultaneous contraction of the two
µ-steps precedes the ν-step. Finally, by applying again pOutInq and then pAssocq, we
obtain the desired result.

We present an example related with the phenomenon of erasure. Consider the rules
µ and ν as in the previous example, and ι : hpx, yq Ñ jpyq, and the reduction sequence

hpfpaq, gpbqq
µ
ÝÑ hpgpaq, gpbqq

ν
ÝÑ hpgpaq, kpbqq

ι
ÝÑ jpkpbqq (2.4)

where we decorate each arrow with the rule corresponding to each step. The ι step can
be permuted with the ν step, resulting in

hpfpaq, gpbqq
µ
ÝÑ hpgpaq, gpbqq

ι
ÝÑ jpgpbqq

ν
ÝÑ jpkpbqq

In turn, the ι step can be permuted with the µ step also. Applying ι first yields
hpfpaq, gpbqq

ι
ÝÑ jpgpbqq. The target of this step does not include traces of the source

of µ step. The permutation of the ι step w.r.t. the µ step implies the erasure of the



2.2. THE PROOF TERM MODEL 49

latter: after the step ι has been performed, there is no step µ to perform. Therefore,
the complete result of the permutation is

hpfpaq, gpbqq
ι
ÝÑ jpgpbqq

ν
ÝÑ jpkpbqq (2.5)

where the µ step has been erased; it is not longer present. A description of the phe-
nomenon of erasure is included in the presentation of the ARS model in this thesis, cfr.
Section 2.1.1, particularly Fig. 2.2.

The characterisation of permutation equivalence described in this section, models
adequately the erasure of contraction activity. We verify this assertion by formalising the
just given example. The reduction sequences (2.4) and (2.5) can be denoted, respectively,
by the following proof terms:

hpµpaq, gpbqq � hpgpaq, νpbqq � ιpgpaq, kpbqq ιpfpaq, gpbqq � jpνpbqq

The following abridged derivation proves the equivalence of these proof terms:

hpµpaq, gpbqq � hpgpaq, νpbqq � ιpgpaq, kpbqq

� hpµpaq, νpbqq � ιpgpaq, kpbqq

� ιpµpaq, νpbqq

� ιpfpaq, gpbqq � jpνpbqq

In this derivation, we first “pack” the µ and ν steps as in the first example given in this
section, by applying pStructq, pIdLeftq and pIdRightq. In turn, this allows to apply pInOutq,
obtaining the simultaneous contraction of the three involved steps. Subsequently, we
apply pOutInq, yielding the final result.

We note that the instances of pOutInq corresponding to the ρ rule have the form
ρpψ1, ψ2q � ρpsrcpψ1q, srcpψ2qq � jpψ2q. If we apply this equation from left to right, as
in the last derivation, then the activity denoted by ψ1, µpaq in the example, is erased.
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Chapter 3

Normalisation

The subject of this chapter is normalisation, that is the computing of normal forms in
a given rewriting system, particularly for non-sequential systems. The aim is to define
normalising reduction strategies, described in the introduction, for these systems, and
ways to prove that a given strategy is normalising.

The concept of needed step is closely related with normalisation. A step in a term
t is said to be needed if its contraction cannot be avoided when computing a normal
form for t. That is, if for any reduction sequence t� u where u is a normal form, either
the redex, or at least one of its residuals, is included in the reduction.

A theory of needed redexes is developed in [HL91] for orthogonal first-order term
rewriting. For these systems, it is proved that any term not in normal form includes
at least one needed redex, and also that systematic reduction of needed redexes is
normalising.

Other approaches to normalisation can be subsumed in the concept of needed re-
dexes. Perhaps the first stated result about normalisation, given in [CF58], is that
systematic contraction of leftmost-outermost redexes is normalising. Consider the term
K 3 Ω. Contracting the redex Ω yields exactly the same term. Therefore, continuous
contraction of (each successive copy of) Ω generates an infinite reduction sequence. On
the other hand, the normal form 3 is obtained by a reduction having just two steps if
we contract systematically leftmost-outermost redexes. Namely:

K 3 Ω Ñ pλy.3qΩ Ñ 3

Systematic contraction of leftmost-outermost redexes is also normalising for left-normal
rewriting systems,1 as has been proved in [O’D77] and [Klo80] for the first-order and
higher-order cases respectively. It is not difficult to show that the leftmost-outermost
redex of any term (not in normal form) of any of these rewriting systems is a needed
redex.

On the other hand, it is clear that approaches to normalisation based on the concept
of needed redex do not apply to rewriting systems which admit terms, not being normal

1a rewriting system is left-normal iff it is orthogonal and, moreover, for every rewrite rule t Ñ u,
all the occurrences of function and constant symbols in the left-hand side t precede (in the textual
rendering of the term) any variable occurrence. E.g. a rewriting system whose unique rule is fpa, xq Ñ b
is left-normal, while if the rule is fpx, aq Ñ b it is not, because the occurrence of a does not precede that
of x.

51
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forms, and not including any needed step. A simple example is the parallel-or first-order
term rewriting system, introduced in Section 2.1.4, cfr. page 34. We recall its rules:

orpx, ttq Ñ tt orptt, xq Ñ tt

Consider the term orporptt, ffq, orpff, ttqq. This term includes two redexes, namely
the occurrences of orptt, ffq and orpff, ttq. The reduction sequences to normal form

orporptt, ffq, orpff, ttqq Ñ orporptt, ffq, ttq Ñ tt

orporptt, ffq, orpff, ttqq Ñ orptt, orpff, ttqq Ñ tt

show that neither of the two redexes present in the original term is needed: the left
(resp. right) redex is not contracted in the first (resp. second) sequence.

This feature in the behavior of the parallel-or rewriting system can be associated
with the notions of sequentiality and strong sequentiality in term rewriting systems.
Roughly speaking, a term rewriting system is considered sequential iff given an external
and “fixed” term structure, say a context C not including redexes, a number i exists such
that, for any term having the form Crr1, . . . , rns where all ri are redexes, the redex ri is
needed. The number i is called an index for the context C. In turn, strongly sequential
term rewriting systems satisfy a stronger condition, which implies that indexes can
be effectively computed. Moreover, it is decidable whether a first-order, orthogonal
term rewriting system is strongly sequential; cfr. e.g. [HL91]. Different formalisations
of the notion of (strongly) sequential term rewriting system have been proposed, cfr.
e.g. [HL91, KM89, KM91, SR93]; it is clear that in any case, a rewriting system which
admits terms not being normal forms and not having needed redexes, as the parallel-or
system, is non-sequential.

The example shown for the parallel-or system seems to suggest that no sensible nor-
malising reduction strategy indicating, for a given term, just one step to be contracted,
could be built for non-sequential rewriting systems. Indeed, this argument is the moti-
vation to name such systems as non-sequential. It should be mentioned, however, that
any almost orthogonal first-order term rewriting system, such as the parallel-or exam-
ple, does admit a normalising one-redex strategy, cfr. [Ken89] and [AM96]. There is
a price to pay though, namely that such a strategy has to perform lookahead (in the
form of cycle detection within terms of a given size).2 In this work, we are interested in
the definition of strategies avoiding such lookahead, as well as the need of keeping the
history of the previous steps in a reduction sequence. The only information available to
a strategy should be the structure and the set of steps of the term it analyses.

Some of the results about normalisation for non-sequential systems found in the
literature we are aware of, agree in the convenience of considering multistep strategies.
Recall from Section 1.1.3 that the “indication” given by a multistep strategy for a given
term is a set of its redexes, whose contraction is assumed to be performed simultaneously.

One of these results is given in [vO99], where normalisation is proved for any
outermost-fair multistep reduction strategy. This result, which extends a previous one

2The existence of such sequential and normalising reduction strategies for e.g. the parallel-or rewriting
system leads to the following comment included in [Ken89], page 32: “In view of this result, it is not
clear that the name ‘non-sequential’ is appropriate for such systems.” Nevertheless, we use the name
“non-sequential” with the meaning given above, implying that we consider the parallel-or rewriting
system, and also PPC as we will describe shortly, as non-sequential systems.
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appeared in [vR97], applies to a large family of higher-order rewriting systems, includ-
ing non-sequential ones, and described in the generic formalism HRS, cfr. [Nip91]. The
proof is strongly based on two relations defined on the sets of positions of the terms
being rewritten. A reduction strategy is said outermost-fair iff any outermost step is
eventually selected. We observe that the leftmost-outermost reduction strategy for the
λ-calculus is not outermost fair. Consider the term

Ω ppλx.xq3q

The leftmost-outermost strategy, given this term, would select the Ω redex, and therefore
cycle indefinitely without considering the pλx.xq3 redex.

On the other hand, systematic contraction of necessary sets of steps is proven nor-
malising in [SR93] for first-order term rewriting. This proof is based on the concepts of
residual and nesting between steps. The condition of being a necessary set is a general-
isation, to sets of redexes, of the concept of needed step. A set of redexes in a term t is
necessary if for any reduction t � u where u is a normal form, at least one redex in
the set, or one of its residuals, is contracted. Of course, the set of all redexes in a term
is indeed necessary; the point is to detect proper subsets being still necessary.

The motivation for the study of normalisation to be presented here is to obtain a
systematic way to compute normal forms for the Pure Pattern Calculus, PPC in the rest
of this chapter.

As mentioned in the introduction, PPC is a pattern calculus allowing any term to
be a pattern, and also admitting dynamic pattern formation. The error mechanism of
PPC makes it non-sequential. The phenomenon can be already observed in a simpler
pattern calculus, allowing only data structures to be patterns. Let us establish that the
error mechanism of this calculus consists in yielding the distinguished value f, which is a
normal form. E.g., the contraction of the term pλax.xqpb cq produces the value f, that is
pλax.xqpb cq Ñ f, because of the mismatch between the pattern ax and the argument
b c. Let p be a ternary data constructor representing a person including her/his name,
gender and marital status. For example, p j m s represents a person name j (for, say,
“Jack”), who is male and single. A function such as λpx m s.x returns the name of any
person being male and single, triggering the error mechanism if any other value is given
to it. Consider the person a (for “Alice”) being female and divorced, and the following
term

pλpx m s.xqpp pIaq pIfq pIdqq

In this case, the contraction of pIfq yields the argument p pIaq f pIdq, which is to be
matched with the pattern px m s. There is a partial mismatch, between the constants m
and f in the pattern and argument respectively. In PPC, any partial mismatch suffices
to trigger the error mechanism. Observe that contraction of pIdq alone also suffices to
yield a partial mismatch, between the constants s and d in this case. This observation
leads to the following reduction sequences:

pλpx m s.xqpp pIaq pIfq pIdqq Ñ pλpx m s.xqpp pIaq f pIdqq Ñ f

pλpx m s.xqpp pIaq pIfq pIdqq Ñ pλpx m s.xqpp pIaq pIfq dq Ñ f

The first reduction sequence does not contract Id, the second one does not contract
If, and neither contract Ia. Therefore the original term does not include any needed
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redexes. Moreover, notice that the set tId, Ifu is necessary: the contraction of at least
one of them is the requisite to trigger the error mechanism.

Contributions
We present a reduction strategy for PPC, which selects necessary sets of redexes. It is
based on the leftmost-outermost strategy for the λ-calculus. Indeed, it coincides with
leftmost-outermost if PPC is restricted to the λ-calculus; i.e., if only the translation to
PPC of terms in the λ-calculus are considered. Therefore, it is not outermost-fair.

The strategy focuses in the leftmost-outermost prestep, i.e. subterm of the form
pλp.squ , in a term. If this prestep is a step, then it is the only step selected. Otherwise,
as in pλpx m s.xq pp pIaq pIfq pIdqq, an analysis yields a set of steps inside the pattern
and/or the argument which could provoke the transformation of the outermost prestep
into a step. In this way, we obtain a judicious strategy for PPC, not being unnecessarily
liberal in the sets of redexes it selects.

The other contribution of this chapter is an abstract normalisation proof, described
in the ARS model. The proof states that systematic contraction of necessary and non-
gripping sets of redexes is normalising, for ARS verifying a number of axioms. The non-
gripping condition is, as the name suggests, defined in terms of the gripping relation,
and it is the reason for the inclusion of that relation in the present thesis.

The normalisation proof was first developed for PPC. This is the version described in
[BKLR12]. In spite of being described for one particular rewriting system, that proof
was based in properties about steps, multisteps, residuals, embedding and reduction
sequences, which could be described in an abstract way. This fact made it possible
to translate the structure of the PPC proof into the abstract setting given by the ARS
model. This is the proof we describe in the present chapter.

Due to the features of the defined strategy, and also to the goal of obtaining an
abstract result, we use [SR93] as the starting point for the development of our proof.

All the (fundamental, embedding and gripping) axioms of the ARS model described
in Section 2.1 are required in our abstract normalisation proof, with the exception of
Stability. Moreover, a new axiom, not included in the description of the ARS model in
[Mel96], is required as well.

The exclusion of Stability is relevant, since this axiom do not hold for non-sequential
systems. On the other hand, the novel axiom allows to complete the analysis of the
preservation of embedding in residuals, i.e. the analysis of the relative embeddings of b
and c compared to that of b1 and c1, where bvawb1 and cvawc1. The new axiom complements
the information conveyed by Linearity, Context-Freeness, and Enclave–Embedding.

Plan of the chapter
The material of the first part of this chapter, Sections 3.1 to 3.3, is of an abstract nature,
describing the abstract normalisation proof developed in the ARS model. In Section 3.1
we introduce the notions of multistep and multireduction, formalising them in the ARS
model. We also introduce some relations on multisteps and multireductions, and a novel
axiom. The material in this section complements the general description of the ARS
model given in Section 2.1. In Section 3.2 we define the multistep reduction strategies,
and the necessary and non-gripping properties, also in the framework given by the ARS
model. Section 3.3 is devoted to the development of the abstract normalisation proof,
including all the needed auxiliary results; cfr. Thm. 3.3.14.
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Sections 3.4 and 3.5 are focused on PPC. In Section 3.4, we present this calculus,
discuss its non-sequential nature, model it in the ARS model, and show that the resulting
ARS verifies all the axioms required by our abstract normalisation result. Section 3.5 is
devoted to the reduction strategy we propose for PPC: we present this strategy, discuss
about its features, and show that the multisteps it selects are necessary and non-gripping.
Thus, normalisation of the strategy can be obtained as a consequence of our abstract
normalisation result; cfr. Thm. 3.5.26.

3.1 Additional elements of the ARS model

The abstract normalisation proof we developed, requires the introduction of some no-
tions pertaining to the ARS model, which are not included in the description given in
Section 2.1. Several of these notions, e.g. those of multistep and multireduction, are
present in [Mel96], while others, as the free from and dominated by relations, do not
appear there. This section is devoted to describe these elements.

3.1.1 Multisteps

Simultaneous contraction of several redexes can be adequately described in the ARS
model.

Definition 3.1.1 (Multistep). A multistep is either an empty set indexed by an object
t, notation Ht, or a set of coinitial steps, i.e. a non-empty subset of ROptq for a certain
object t. We denote such sets by the letters A, A1, B, C, D, etc.; cfr. Dfn. 2.1.6. We

write t
A
ÝÑ� u to indicate that srcpAq � t and tgtpAq � u. We use M to denote the set

of multisteps of an ARS.

The definition of the residuals of a set of coinitial steps, after a step (cfr. Dfn. 2.1.9)
or after a reduction sequences (cfr. Dfn. 2.1.13), apply immediately to multisteps. The
extension to empty multisteps is straightforward: Hsrcpaqvaw � Htgtpaq, Hsrcpδqvδw �
Htgtpδq. Notice that for any a, b steps, bvaw is a multistep; the same happens with Bvaw
for any multistep B.

A precise definition of the simultaneous contraction of a multistep can be given by
resorting to complete developments, cfr. Dfn. 2.1.14, for ARS verifying the initial axioms,
FD and SO. As noted in Section 2.1.4, the axioms FD and SO imply that all the complete
developments of a multistep end in the same target term, and induce the same residual
relation. Therefore, some notions defined on steps, like source, target and residuals, can
be extended to multisteps.

Definition 3.1.2 (Source, target, residuals for multisteps). Let A � ROptq be a multi-
step, and b a step coinitial with A. If A � Ht, then we define srcpHtq :� tgtpHtq :� t
and bvAwb1 iff b1 � b. Otherwise, we define srcpAq :� t, tgtpAq :� tgtpδq, and bvAwb1 iff
bvδwb1 where δ is an arbitrary complete development of A; cfr. Dfn. 2.1.13.

Notation 3.1.3. We use the notations bvAw to denote tb1 { bvAwb1u, BvAwb1 iff bvAwb1
for some b P B, and BvAw for tb1 { BvAwb1u. Cfr. Notation 2.1.3 and Dfn. 2.1.9.

Notice that the residual relation is closed on multisteps: the residual of a multistep
after another is always a multistep. This is not the case for sets of pairwise disjoint steps
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in higher-order term rewriting systems. Recall the λ-calculus example used to introduce
gripping in Section 1.3.1

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

b1

qp

b2hkkikkj
I3 q

a
ÝÑ Dp

b12hkkikkj
I3 qloooomoooon
b11

considering the usual nesting on steps. If we define A :� tau and B :� tb1, b2u, we get
BvAw � tb11, b12u. The residual of a pairwise disjoint set after another (trivially) pairwise
disjoint set, is not in turn disjoint.

For first-order rewriting, residuals are closed for pairwise disjoint sets of steps. This
fact allows a normalisation proof such as the one presented in [SR93], restricted to the
first-order case, to be much simpler than the one, more general, to be presented in
Section 3.3.

3.1.2 Multireductions

Our normalisation result involves sequences of contractions from a given term to a
normal form, formed not by individual steps, but by multisteps. This fact requires a
precise meaning to be given to such sequences. Fortunately, the concept of reduction
sequence can be applied, in a natural way, to multisteps as well as to individual steps.

Definition 3.1.4 (Multireduction). A multireduction sequence, or just multire-
duction, is either nilt, an empty multireduction indexed by the object t, or a sequence
of multisteps A1; . . . ;An; . . .. We use ∆, Γ, Π, Ψ to denote multireductions and ∆rks
and ∆ri..js with the same meanings given for reduction sequences. Source and target of
multireductions are defined analogously as for reduction sequences; cfr. Dfn. 2.1.10. We

will write t
∆
Ý�� u to denote that srcp∆q � t and tgtp∆q � u. We use MRS to denote

the set of multireductions of an ARS.

Definition 3.1.5 (Length of a multireduction). The length of a multireduction ∆,
notation |∆|, is the number of multisteps it includes.

Definition 3.1.6 (Residuals after a multireduction). The residual relation is extended
from multisteps to multireductions, exactly as we have extended it from steps to reduction
sequences, cfr. Dfn. 2.1.13. We define bvniltwb for all b P ROptq, and bvA; ∆wb1 iff
bvAwb2 and b2v∆wb1 for some b2. We write bv∆w for tb1 { bv∆wb1u, Bv∆wb1 iff bv∆wb1 for
some b P B, and Bv∆w for tb1 { Bv∆wb1u.

A multireduction is thus a sequence whose elements are, in turn, sets of steps. Notice
that the length of a multireduction is is not connected to the sizes of the multisteps which
are its elements. An element of a multireduction can be an empty multistep, so that the
only corresponding complete development is the empty reduction sequence indexed by
its source. We notice that a multireduction consisting of one or more occurrences of Ht,
and nilt, are different multireductions. In particular, |Ht;Ht| � 2 while |nilt| � 0.

Definition 3.1.7 (Trivial multireduction). We say that a multireduction is trivial iff
all its elements are empty multisteps. Empty multireductions are trivial.
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Let A,B be two multisteps. Recall that BvAw is defined as tb1 { bvδwb1 where b P
B and δ , Au, cfr. Notation 3.1.3. Therefore, all the elements in BvAw are steps whose
source object is tgtpBq, cfr. Dfn. 3.1.1. Hence, BvAw is a set of coinitial steps, i.e., a
multistep. Put in other words, the residual relation is closed on M: the residuals of
a multistep after a multistep form, in turn, a multistep. Therefore, we can consider a
residual function on multisteps, i.e. v�w :M �M ÑM. This distinguishing feature of
multisteps leads to the following definition.

Definition 3.1.8 (Residual of a multireduction after a multistep). We define the resid-
ual of a multireduction after a multistep, for which we will (ab)use the nota-
tion v�w, as the following partial function MRS �M Ñ MRS: if srcpBq � t then
niltvBw :� niltgtpBq; if srcpBq � srcpAq then pA; ∆qvBw :� AvBw; p∆vBvAwwq. Observe
that we are defining a function, in spite of name “residual” and the notation v�w, which
correspond in general to ternary relations. Notice that |∆vBw| � |∆|.

The independence of order of contraction of steps, formalised in Prop. 2.1.16, extends
to multisteps [Mel96, Lem. 2.24] and to multireductions. The former is a consequence
of Prop. 2.1.16 and the latter then follows by induction on ∆.

Proposition 3.1.9. Consider an ARS enjoying the group of initial axioms, FD and SO;
cfr. Sections 2.1.3 and 2.1.4.

1. Let A,B � ROptq. The target and residual relation of A;BvAw and B;AvBw
coincide.

2. Let ∆ be a multireduction, and B � ROptq. The target and residual relation of
∆;Bv∆w and B; ∆vBw coincide.

Graphically:

t

�B
��

�
A
// s

�BvAw
��

u �
AvBw

// v

t

�B
��

�
∆

// // s

�Bv∆w

��
u �

∆vBw
// // v

3.1.3 Some relations on multisteps and multireductions

Two notions related with embedding and involving multisteps are crucial to define the
main elements of the abstract normalisation proof. Namely, a step a (resp. a multistep
A) is free from a multistep B iff a is not (resp. no step in A is) embedded by some
element of B; while a (resp. A) is dominated by B iff a is (resp. all the steps in A
are) embedded by some element of B. In turn, a multireduction ∆ is free from B, if
every element of ∆ is free from the respective residual of B. Formally:

Definition 3.1.10 (Free from). Let a,A,∆ be a step, multistep and multireduction, all
coinitial with B. We say that

• a is free from B, written a � B, iff a § b for all b P B.

• A is free from B, written A � B, iff a � B for all a P A.

• ∆ is free from B, written ∆ � B, iff either ∆ � nilsrcpBq or ∆ � A; ∆1, A � B
and ∆1 � BvAw.
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Definition 3.1.11 (Dominated by). Let a,A be a step and a multistep, both coinitial
with B. We say that

• a is dominated by B, written a� B, iff a R B and DDDb P B { a ¡ b.

• A is dominated by B, written A� B, iff a� B for all a P A.

Notice that being free from and dominated by B are complementary for a single
(coinitial) step a, unless a P B, i.e. exactly one of a P B, a � B and a � B holds. This
need not be the case for a multistep A: even if AXB � H, it could well be the case that
neither A � B nor A � B hold, if some elements of A are free from B while others are
dominated by it. However, any A verifying A X B � H can be split into a free subset
AF and a dominated subset AD w.r.t. B, i.e. A � AF ZAD, AF � B, and AD � B.

Consider the following multireduction in the λ-calculus:

dhkkkkkkkkkkkkkikkkkkkkkkkkkkj
pλx.xp I5loomoon

a

qqp I3loomoon
b

q p

ehkkkkikkkkj
Ip I4loomoon

c

q

teu
ÝÑ�

d1hkkkkkkkkkkkkkikkkkkkkkkkkkkj
pλx.xp I5loomoon

a1

qqp I3loomoon
b1

q p I4loomoon
c1

q
td1,c1u
ÝÑ� p I3loomoon

b2

qp I5loomoon
a2

q 4

In this case, we have tc, d, eu � ta, bu, ta, bu � tc, eu, ta, b, cu � td, eu. Moreover, if we
take the displayed multireduction, i.e. ∆ � teu; td1, c1u, we have ∆ � ta, bu, because
teu � ta, bu and td1, c1u � ta1, b1u.

If we define A � tb, c, eu and B � ta, du, we observe that neither A � B nor A � B
hold. The split of A w.r.t. B gives AF � tc, eu and AD � tbu.

Observe also that being free from a multistep extends to parts of a multireduction,
namely:

Lemma 3.1.12. Assume ∆1; ∆2; ∆3 � B. Then ∆2 � Bv∆1w.

Proof. We proceed by induction on x|∆1|, |∆2|y. Let ∆ be ∆1; ∆2; ∆3.
The base case is when ∆1 � ∆2 � nilsrcpBq. In this case Bv∆1w � B. Then the

definition of � suffices to conclude.
Suppose that ∆1 � nilsrcpBq and ∆2 � A; ∆1

2. In this case, ∆ � A; ∆1
2; ∆3, so

that ∆ � B implies A � B and ∆1
2; ∆3 � niltgtpAq; ∆1

2; ∆3 � BvAw. We observe
that x|niltgtpAq|, |∆

1
2|y   x|∆1|, |∆2|y, therefore we can apply IH, obtaining that ∆1

2 �
BvAwvniltgtpAqw � BvAw. Recalling that A � B, we get ∆2 � B � Bv∆1w.

If ∆1 � A; ∆1
1, then ∆ � B implies A � B and ∆1

1; ∆2; ∆3 � BvAw. Observe
x|∆1

1|, |∆2|y   x|∆1|, |∆2|y, then IH yields ∆2 � BvAwv∆1
1w � Bv∆1w.

Given a multireduction and some coinitial multistep, a further property the abstract
normalisation proof is interested in is whether the multistep is at least partially con-
tracted along the multireduction, or if it is otherwise completely ignored. We will say
that a multistep is used in a multireduction, iff at least one residual of the former is
included (i.e. contracted) in the latter. Formally:

Definition 3.1.13 (Uses). Let b be a step, A and B two multisteps, and ∆ a multire-
duction, such that all of them are coinitial.
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• A uses b iff b P A;

• ∆ uses b iff ∆rks X pbv∆r1..k � 1swq � H for at least one k; and

• A (resp. ∆) uses B iff it uses at least one b P B.

3.1.4 A new axiom

The abstract normalisation proof requires the concerned ARS to enjoy a property, related
to the preservation of embedding in residuals, which is not implied by the fundamental
and normalisation axioms given in Section 2.1, nor included as an additional axiom in
[Mel96], since it is not required for any result proven there. We encode this property as
a new axiom.

a
3

a
1

a
2

b

c

a
1

To motivate it, we illustrate an im-
portant property that we shall need to
prove for our normalisation result. We
assume three coinitial redexes a, b, c such
that b   c and a � b, and cvawc1 for some
c1 (cfr. shaded triangles in the figure). We
would like to deduce the existence of b1 s.t.
(i) bvawb1 and (ii) b1   c1. For that we pro-
ceed to consider all possible embedding re-
lations between a, on the one hand, and b
and c, on the other (see adjacent figure):

• a �  c. This is represented with the two occurrences of a subscripted with 1. We
conclude (i) and (ii) using Linearity and Context-Freeness.

• a   c.

– b   a (hence b   a   c). This is represented with the occurrence of a
subscripted with 2. We conclude (i) and (ii) using Linearity and Enclave–
Embedding.

– b �  a. This is represented with the occurrence of a subscripted with 3.3In
this case, the existence of a step b1 verifying the required conditions cannot
be concluded from the fundamental and normalisation axioms. Hence the
need of an additional axiom, to enforce (i) and (ii) in this situation.

The statement of the new axiom follows.

Pivot a   c, b   c, b ¦ a and cvawc1 ñ
Db1 { bvawb1 and b1   c1.

3.2 Multistep strategies and required properties

The notion of reduction strategy can be described in a simple way in the ARS model.
In turn, the notions of step used in a (multi)reduction, and gripping, allow to express
the conditions imposed to a reduction strategy in the abstract normalisation proof.

3Notice that in the general case, from a   c and b   c one cannot imply b   a or a ¤ b. Such a
condition is not implied by the ARS model. In the figure a3 is nesting b just for graphical simplicity.
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Definition 3.2.1 (Reduction strategy). A (multistep) reduction strategy for an
ARS A is any function S : pOzNF q Ñ PpRq such that Sptq � H and Sptq � ROptq for
all t; here NF stands for the set of normal forms of A; cfr. Dfn. 2.1.8. A single-step
reduction strategy is a reduction strategy S s.t. Sptq is a singleton for every t in the
domain of S.

A multistep reduction strategy determines, for each object, a multireduction: if t P
NF , then the associated multireduction is nilt, otherwise it is Spt0q;Spt1q; . . . ;Sptnq; . . .
where t0 :� t and tn�1 :� tgtpSptnqq. The multireduction sequence determined by S
is in fact a reduction sequence. These multireductions allow to formally characterise a
normalising reduction strategy ; cfr. Section 1.1.3.

Definition 3.2.2 (Normalising reduction strategy). A reduction strategy is normal-
ising iff for any object t, the determined multireduction ends in a normal form for all
normalising objects.

We formalise neededness, and the related notion of necessary set, in the ARS model.

Definition 3.2.3 (Needed, necessary). We say that a step a is needed iff for every

multireduction srcpaq
∆
Ý�� u such that u is a normal form, ∆ uses a. A multistep A is

necessary, iff for every multireduction srcpAq
∆
Ý�� u such that u is a normal form, ∆

uses A.

The notion of necessary set generalises that of needed redex; notice that any singleton
whose only element is a needed redex is, indeed, a necessary set. As mentioned in the
introduction, there is an important difference: while not all terms admit a needed redex,
any term admits at least one necessary set, i.e. the set of all its redexes.

The other condition to be imposed on reduction strategies is related with gripping.

Definition 3.2.4 (Gripping relation on multisteps, non-gripping). We extend the grip-
ping relation to multisteps as follows:

 B grips a, written a ! B, iff a ! b for some b P B.

 B grips A, written A ! B, iff a ! B for at least one a P A.

We declare B to be non-gripping iff for any finite multireduction Ψ such that srcpΨq �
srcpBq, ROptgtpΨqq �! BvΨw. Notice that B being non-gripping implies that all its resid-
uals are.

3.3 Necessary normalisation for ARS

We prove in this section that, for any ARS verifying all the fundamental axioms, all the
normalisation axioms except for stability, the gripping axioms, and also the new Pivot
introduced in Section 3.1.4, the systematic contraction of necessary and non-gripping
multisteps is normalising.

The general structure of this proof has been mainly inspired by the normalisa-
tion proof for first-order term rewriting systems, given in [SR93]. Assume that S is
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t0

�Spt0q
��

�
∆0 // // u

t1 �
∆1 // // u

tn

�Sptnq
��

�
∆n // // u

u
∆n�1

u

Figure 3.1: Proof idea

a reduction strategy selecting always neces-
sary and non-gripping multisteps. Consider

an initial multireduction t0
∆0
Ý�� u P NF, and

t1 the target term of the multistep selected by

S for t0, i.e. t0
Spt0q
ÝÑ� t1. We construct a multi-

reduction t1
∆1
Ý�� u, such that the multireduc-

tion ∆1 is strictly smaller than the original one
w.r.t. a convenient well-founded ordering  .

We have thus transformed the original t0
∆0
Ý�� u

in t0
Spt0q
ÝÑ� t1

∆1
Ý�� u. Given the well-foundedness

of the given ordering on multireductions, an it-
eration over this procedure allows to conclude
that repeated contraction of the multisteps selected by the strategy S yields the normal
form u. This is depicted in Fig. 3.1 where ∆k�1 is strictly smaller than ∆k for all k and
∆n�1 is a trivial multireduction. The original multireduction ∆0 is first transformed into
Spt0q; ∆1, then successively into Spt0q; . . . ;Sptkq; ∆k�1; and finally into Spt0q; . . . ;Sptnq.

Several notions contribute to this proof. We define a measure inspired from [SR93,
vO99], based on the depths of the multisteps composing a multireduction.

Definition 3.3.1. Let ∆ � ∆r1..ns be a multireduction. We define χp∆q as the n-
tuple xνp∆rnsq, . . . , νp∆r1sqy; the lexicographic order is used to compare (measures of)
multireductions.

Notice that the (well-founded) ordering defined allows only to compare multireduc-
tions having the same length; the minimal elements are the n-tuples of the form x0, . . . , 0y
which corresponds exactly to the trivial multireductions. Another observation is that
whenever χp∆q   χpΓq then for all multireductions Π, Ψ verifying tgtpΠq � srcp∆q,
tgtpΨq � srcpΓq, and |Π| � |Ψ|, χpΠ; ∆q   χpΨ; Γq holds. As remarked in [vO99],
the measure used in [SR93], based on sizes of multisteps rather than depths, is not
well-suited for a higher-order setting.

To build ∆k�1, we observe that the fact that Sptkq is a necessary set, implies that it
is used along ∆k at least once. Therefore, we can consider the last element of ∆k, say
A, including (some residual of) an element of Sptkq. We build the diagram shown in
Fig. 3.2, where ∆k � ∆1;A; ∆2, AX Sptkqv∆1w � H, and ∆2 does not use Sptkqv∆1;Aw.

tk �
∆1

// //

�Sptkq

��

�
A //

�Sptkqv∆1w

��

�
∆2

// // u

tk�1 �
∆1vSptkqw // //

Figure 3.2: Construction of ∆k�1

Let us call A1 � A X Sptkqv∆1w � H, and A2 � pAzA1qvA1w. Then we can refine the
previous diagram, obtaining Fig. 3.3, where B � Sptkqv∆1;A1w. Now A2; ∆2 does not
use B. Notice that A1 � H implies νpA2q   νpAq. Observe also that A1 � Sptkqv∆1w,
implying A1vSptkqv∆1ww � H.
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tk �
∆1

// //

�Sptkq

��

�
A1 //

�Sptkqv∆1w

��

s �
A2 //

� B

��

�
∆2

// // u

tk�1 �
∆1vSptkqw

// //
A1vSptkqv∆1ww�H

s1

Figure 3.3: Construction of ∆k�1, refined

It suffices to obtain some multireduction Γ1 such that s1
Γ1

Ý�� u and χpΓ1q ¤ χpA2; ∆2q  
χpA; ∆2q; taking the elements of a multireduction in reversed order in the measure
allows to conclude. We obtain the final diagram shown in Fig. 3.4.

tk �
∆1

// //

�Sptkq

��

�
A1 //

�Sptkqv∆1w

��

s �
A2 //

� B

��

�
∆2

// // u

tk�1 �
∆1vSptkqw

// //
A1vSptkqv∆1ww�H

s1 �
Γ1

// // u

Figure 3.4: Construction of ∆k�1, finished

The construction of Γ1 is the most demanding part of the proof. It is based on the
following observations:

• Each multistep comprising A2; ∆2 can be split in a free and a dominated part
w.r.t. B, as remarked in Section 3.1.3.

• Given that Sptkq is non-gripping, implying that also B is non-gripping, the depth
of the free part of each multistep can be proven greater or equal than that of
its residual after (the corresponding residual of) B. This is the reason for the
introduction of gripping.

• Given that B is not used, and that u P NF implies BvA2; ∆2w � H, we prove that
the dominated part of each multistep can be simply ignored when defining Γ1.

We describe the details in the remainder of this section.

3.3.1 Relevance of gripping

As described in the introduction, one of the effects of having a ! b is to change the
number of residuals of some step c after a. This implies an unwanted change on the
depth of certain multisteps. We recall the term involved in the examples on gripping
given in the introduction

ahkkkkkkkkkkkikkkkkkkkkkkj
pλx. Dxloomoon

b

qp I3loomoon
c

q
b
ÝÑ

a1hkkkkkkkkikkkkkkkkj
pλx.xxqp I3loomoon

c1

q

Let us call A � ta, cu and B � tbu. Then we have A � B and A ! B. Observe
that νpAvBwq � 3 ¡ 2 � νpAq. This increase in the depth of the residual multistep
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could cause the measure of the multireduction ∆k�1, described in the beginning of this
chapter, to be greater than that of ∆k, thus invalidating the inductive argument of the
normalisation proof. The role of gripping in the proof is to guarantee the following
property: A � B and A �! B imply νpAvBwq � νpAq. Cfr. Lem. 3.3.4.

Recall that for a set of steps to be non-gripping, any residual of that set of steps
must be non-gripping as well, cfr. Dfn. 3.2.4. This requirement in the definition of a
non-gripping set is needed to extend Lem. 3.3.4 to multireductions, cfr. Lem. 3.3.5. The
proof of these properties follows.

We remark that the requirement about residuals in the definition of a non-gripping
set is required also to extend the postponement property, again from multisteps to mul-
tireductions, cfr. Lem. 3.3.8, and later in Lem. 3.3.10.

Lemma 3.3.2. Consider A,B such that A � B, A �! B, and d P A. Then Avdw � Bvdw
and Avdw �! Bvdw.

Proof. If B � H, then the result holds trivially since also Bvdw � H. So assume b P B.
Next, we may assume some a P A s.t. a � d. Otherwise Avdw � H and the result also
holds trivially. For the same reason, avdwa1 for some a1. Similarly, we may assume there
exists b1 s.t. bvdwb1.

The hypotheses implies the following: b ¦ a, b ¦ d, a �! b, and d �! b.

Observe b1 � a1 would contradict Ancestor Uniqueness. On the other hand, b1   a1

would imply b   a _ pd ! b ^ d   aq by Grip–Instantiation, while a1 ! b1 would
imply a ! b _ a ! d ! b by Grip–Density. Therefore, either case would contradict the
hypotheses. Thus we conclude.

Lemma 3.3.3. Consider a,B such that a � B. Then avBw is a singleton.

Proof. By induction on νpBq. If B � H, then we conclude by observing that avHw �
tau. Otherwise assume some b P B. Then a � B implies b ¦ a, thus Linearity yields
avbw � ta1u. Let us show that a1 � Bvbw. Take b10 such that b0vbwb

1
0 for some b0 P B.

Assume b10   a1. Then b ¦ a and Context-Freeness imply b0   a thus contradicting
a � B. On the other hand, b10 � a1 would contradict Ancestor Uniqueness. Consequently,
a1 � Bvbw. The IH can then be applied to obtain that a1vBvbww is a singleton. We
conclude by observing that avBw � avbwvBvbww � a1vBvbww.

Lemma 3.3.4. Let A,B � ROptq such that A � B and A �! B. Then νpAq � νpAvBwq.

Proof. By induction on νpAq. If A � H then AvBw � H, thus we immediately conclude.
Otherwise we show νpAq ¤ νpAvBwq and νpAvBwq ¤ νpAq.

Consider δ � d; δ1 a complete development of A verifying |δ| � νpAq. Observe that
δ1 , Avdw and moreover νpAvdwq � |δ1|, since a development of Avdw longer than δ1

would imply νpAq ¡ |δ|. Therefore, νpAq � νpAvdwq � 1. Lem. 3.3.3 implies dvBw �
td1u for some step d1. Furthermore, Prop. 3.1.9:(1) implies B; dvBw � d;Bvdw, then
AvBwvdvBww � AvdwvBvdww. Cfr. the following figure:

t
d //

�B
��

�
Avdw //

� Bvdw
��

dvBw�td1u
// �

AvBwvdvBww � AvdwvBvdww
//
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• We verify νpAq ¤ νpAvBwq. Observe that for any complete development γ1 of
AvdwvBvdww, d1; γ1 , AvBw. Moreover, Lem. 3.3.2 implies Avdw � Bvdw and
Avdw �! Bvdw. Then the IH can be applied to Avdw and Bvdw, yielding νpAvdwq �
νpAvdwvBvdwwq. Therefore νpAq � νpAvdwq � 1 � νpAvdwvBvdwwq � 1 ¤ νpAvBwq.

• We verify νpAvBwq ¤ νpAq. Consider γ � d1; γ1 a complete development of
AvBw such that |γ| � νpAvBwq. Let d P A such that dvBwd1. Lem. 3.3.3 im-
plies dvBw � td1u, implying γ1 , AvBwvdvBww � AvdwvBvdww. Observe that
νpAvdwvBvdwwq � |γ1|; the contrary would contradict νpAvBwq � |γ|. Hence
νpAvBwq � νpAvdwvBvdwwq�1. An application of the IH similar to that performed
earlier yields νpAvdwq � νpAvdwvBvdwwq. Moreover, δ1 , Avdw implies d; δ1 , A.
Therefore, νpAvBwq � νpAvdwq � 1 ¤ νpAq.

Lem. 3.3.4 can be extended to multireductions.

Lemma 3.3.5. Let ∆ be a multireduction and B a multistep, such that srcp∆q � srcpBq,
B is non-gripping and ∆ � B. Then χp∆q � χp∆vBwq.

Proof. By induction on |∆|. If ∆ � nilsrcpBq, then ∆vBw � niltgtpBq, so we conclude
immediately. Assume, therefore, ∆ � A; ∆1, so that ∆vBw � AvBw; ∆1vBvAww. Observe
A � B, A �! B, ∆1 � BvAw and BvAw is non-gripping. Then Lem. 3.3.4 implies
νpAq � νpAvBwq, and the IH on ∆1 yields χp∆1q � χp∆1vBvAwwq. Thus we conclude.

3.3.2 Postponement of dominated multisteps

The next ingredient in the normalisation proof is the ability to postpone a dominated
multistep after a free multistep or multireduction. The situation is described in Fig-
ure 3.5.

t

�C�B
��

�
B

dd

�
A�B

//

� CvAw�BvAw
��

�
BvAw

::

s �
A1�BvCw

//

�
BvCwyy

u

A1�AvCw

t

�C�B
��

�
B

dd

�
∆�B

// //

� Cv∆w�Bv∆w
��

�
Bv∆w

::

s �
∆1�BvCw

// //

�
BvCwyy

u

∆1�∆vCw

Figure 3.5: Postponement of dominated multisteps: the one step and multiple step case

In the left-hand side diagram, we show the transformation of C;A1 into A; CvAw:
a dominated (by B) multistep is postponed after a free (from BvCw) one, yielding a
multireduction in which the free multistep precedes the dominated one. The right-
hand side diagram shows that a dominated multistep can be postponed after a free
multireduction as well.

We observe that the only role of the added Pivot axiom in the normalisation proof,
is to verify that CvAw� BvAw in the left-hand side diagram.

The corresponding proofs follow.
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Lemma 3.3.6. Let A,B, C � ROptq such that AXB � H and C�B. Then CvAw�BvAw.

Proof. We proceed by induction on νpAq. If A � H, then CvAw � C and BvAw � B, so
that we conclude immediately. Otherwise, consider a P A and c1 P Cvaw (if Cvaw � H,
then CvAw � H and CvAw � BvAw holds trivially). Let c P C such that c1 P cvaw. Note
that a � c for otherwise cvaw � H. We will verify the existence of some b1 P Bvaw such
that b1   c1, so that Cvaw � Bvaw. Let b P B be such that b   c, as follows from the
hypothesis. Observe that a � b or a � c would contradict, respectively, the hypotheses
of this lemma or our observation above on the existence of c1. Therefore a � b and
a � c. We consider two cases.

1. Case a �  c. Then b   c implies a �  b, so that Linearity implies bvaw � tb1u, and
then Context-Freeness applies to obtain b1   c1.

2. Case a   c. If b   a, i.e. b   a   c, then Linearity implies bvaw � tb1u (since
a �  b), and therefore Enclave–Embedding applies to obtain b1   c1. Otherwise, we
have a   c, b   c and b ¦ a, then Pivot applies to obtain bvawb1 and b1   c1 for
some b1.

Hence, we have verified Cvaw � Bvaw. Moreover, Ancestor Uniqueness yields Avaw X
Bvaw � H. Thus we can apply the IH, obtaining CvawvAvaww � BvawvAvaww . Thus we
conclude.

Lemma 3.3.7 (Postponement of dominated multisteps – One step case). Let B � ROptq
and t

C
ÝÑ� s

A1

ÝÑ� u, such that C � B, A1 � BvCw and B is non-gripping. Then there exists
A � ROptq s.t. A1 � AvCw, A � B and νpAq � νpA1q (cfr. Fig. 3.5 – left)

Proof. If A1 � Hs, then taking A � Ht suffices to conclude.

If A1 � Hs, then we proceed by induction on νpCq. If C � H, i.e. s � t, then we
conclude by taking A1 :� A; observe that in this case BvCw � B.

Consider c P C and t
c
ÝÑ t0

Cvcw
ÝÑ� s. Observing that c R B (since C � B), so that

tcuXB � H, we can apply Lem. 3.3.6 to obtain Cvcw�Bvcw. Moreover BvCw � BvcwvCvcww,
and B non-gripping implies Bvcw non-gripping. Therefore, the IH on Cvcw yields the
existence of some A2 � ROpt0q such that A1 � A2vCvcww, A2 � Bvcw and νpA2q � νpA1q.
Hence, to conclude the proof, it suffices to verify the existence of some A � ROptq
verifying (1) A2 � Avcw, (2) A � B and (3) νpAq � νpA2q. Observe that A1 � Hs and
νpA2q � νpA1q imply A2 � Ht0 .

1. Let b0 P B such that b0   c, so that Linearity implies b0vcw � tb
2
0u. Let a2 P A2.

Then a2 being created by c would imply b20   a2 by Enclave–Creation, contradicting
A2 � Bvcw. Therefore, avcwa2 for some a. Let A :� ta { D a2 P A2 . avcwa2u.
Observe that A2 � Avcw and let us show that also Avcw � A2.

Let a0 P Avcw, a P A such that avcwa0, a2 P A2 such that avcwa2. Observe that c  
a would imply b0   c   a, and then b20   a2 by Enclave–Embedding, contradicting
A2 � Bvcw. Moreover, c � a would contradict avcwa2, cfr. Self Reduction. Therefore
c ¦ a, so that Linearity applies yielding that avcw is a singleton, hence a0 � a2 P A2.
Consequently, Avcw � A2, and then Avcw � A2.
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2. Let a P A and b P B. If b is minimal in B w.r.t.  , then C � B implies bvcw � tb2u
by Linearity, since c ¦ b. Let a2 P A2 such that avcwa2. Observe that we have
already verified that c �  a. Then b   a would imply b2   a2 by Context-Freeness,
contradicting A2 � Bvcw. Otherwise, if b is not minimal in B w.r.t.  , then there
is some b0 such that b0   b and b0 is minimal in B w.r.t.  .4 Therefore, b0 �  a
implies b �  a. Consequently, A � B.

3. Consider b0 P B such that b0   c. Observe that a ! c would imply either a ! b0
or b0 ¤ a by Grip–Convexity, contradicting B being non-gripping and A � B
respectively. Therefore A �! c, and moreover A � c (recall c �  a for any a P A).
Hence we can apply Lem. 3.3.4 to obtain νpAq � νpA2q. Thus we conclude.

Lemma 3.3.8 (Postponement of dominated multisteps – Multireduction case). Let

t
C
ÝÑ� s

∆1

Ý�� u and B � ROptq such that B is non-gripping, C � B, and ∆1 � BvCw. Then

there exists some multireduction ∆ verifying ∆1 � ∆vCw, so that t
∆
Ý�� s1

Cv∆w
ÝÑ� u for some

object s1 (cfr. Prop. 3.1.9:(2)), and moreover ∆ � B, Cv∆w�Bv∆w, and χp∆q � χp∆1q.
The effect is that a multistep dominated by B is postponed after a multireduction free
from the same B, without affecting neither the free-from and domination relations w.r.t.
(the corresponding residual of) B, nor the measure of the “free” multireduction (cfr.
Fig. 3.5 – right).

Proof. We proceed by induction on |∆1|. If ∆1 � nils, i.e. u � s, then it suffices to take
∆ :� nilt, so that s1 � t.

Assume ∆1 � ∆1
0;A1, so that t

C
Ý�� s

∆1
0

Ý�� u1
A1

ÝÑ� u. Observe that Lem. 3.1.12 implies
∆1

0 � BvCw. Then we can apply the IH on ∆1
0 obtaining that ∆1

0 � ∆0vCw for some

multireduction ∆0, so that t
∆0
Ý�� s2

Cv∆0w
ÝÑ� u1 for some object s2, and moreover ∆0 � B,

Cv∆0w� Bv∆0w, and χp∆0q � χp∆1
0q. We can build the following diagram.

t �
∆0 // //

�C
��

s2

� Cv∆0w
��

s �
∆1

0

// // u1 �
A1

// u

On the other hand, ∆1 � BvCw implies A1 � BvC; ∆1
0w (cfr. again Lem. 3.1.12),

therefore Prop. 3.1.9:(2) yields A1 � Bv∆0; Cv∆0ww � Bv∆0wvCv∆0ww. Moreover, B non-

gripping implies Bv∆0w non-gripping. Hence we can apply Lem. 3.3.7 to s2
Cv∆0w
Ý�� u1,

obtaining that A1 � AvCv∆0ww for some A � ROps2q verifying A � Bv∆0w and νpAq �
νpA1q. Consequently, we can complete the previous diagram as follows.

t �
∆0 // //

�C
��

s2 �
A //

� Cv∆0w
��

s1

� Cv∆0;Aw
��

s �
∆1

0

// // u1 �
A1

// u

4The fact that   is a well-founded order, cfr. Dfn. 2.1.1, implies the existence, for any b P B, of a
minimal b0 P B w.r.t.   such that b0   b, unless b is itself  -minimal in B.
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We define ∆ :� ∆0;A. Given Cv∆0w�Bv∆0w and A � Bv∆0w, so that A X Bv∆0w �
H, Lem. 3.3.6 implies that Cv∆0wvAw � Bv∆0wvAw, that is, Cv∆w � Bv∆w. Moreover,
given ∆0 � B and A � Bv∆0w, a simple induction on |∆0| yields ∆ � B. Finally,
χp∆q � χp∆1q is immediate. Thus we conclude.

3.3.3 Main results

The postponement result is used to show that, whenever t
∆
Ý�� u, B � ROptq is non-

gripping and not used in ∆, and Bv∆w � H, all activity dominated by (the successive
residuals of) B is irrelevant, i.e. it can be omitted without compromising the target object
u, and moreover without increasing the measure. Therefore, the dominated part of each
multistep in A2; ∆2 can be just discarded in the construction of ∆k�1, cfr. Figure 3.4
on page 62.

Lemma 3.3.9. Let t
C
ÝÑ� s

∆1

Ý�� u and B � ROptq, such that B is non-gripping, C � B,
∆1 � BvCw, and BvC; ∆1w � H. Then there is a multireduction ∆ such that ∆1 � ∆vCw,
t

∆
Ý�� u, ∆ � B, Bv∆w � H and χp∆q � χp∆1q.

Proof. Lem. 3.3.8 implies the existence of ∆ such that ∆1 � ∆vCw, t
∆
Ý�� s1

Cv∆w
ÝÑ� u, ∆ � B,

Cv∆w � Bv∆w, and χp∆q � χp∆1q. Then Bv∆wvCv∆ww � Bv∆; Cv∆ww � BvC; ∆1w � H;
cfr. Prop. 3.1.9:(2).

Assume for contradiction the existence of some b P Bv∆w, and moreover that (wlog)
b is minimal in Bv∆w w.r.t.  . Then Cv∆w�Bv∆w implies b � Cv∆w, so that Lem. 3.3.3
yields bvCv∆ww � tb1u, contradicting pBv∆wqvCv∆ww � H. Therefore Bv∆w � H.

In turn, the existence of some c P Cv∆w would imply that of some b P Bv∆w such
that b   c, contradicting Bv∆w � H. Therefore Cv∆w � H, implying u � s1 so that

t
∆
Ý�� u. Thus we conclude.

Lemma 3.3.10. Let t
∆
Ý�� u and B � ROptq, such that B is non-gripping, ∆ does not

use B, and Bv∆w � H. Then there exists a multireduction Γ such that t
Γ
Ý�� u, Γ � B,

BvΓw � H and χpΓq ¤ χp∆q.

Proof. We proceed by induction on |∆|. If ∆ � nilt, then it suffices to take Γ :� ∆.

Assume ∆ � A; ∆0, so that t
A
ÝÑ� s

∆0
Ý�� u for some object s. Observe BvAw is non-

gripping. Then we can apply the IH on s
∆0
Ý�� u, thus obtaining s

Γ10
Ý�� u for some Γ10

verifying Γ10 � BvAw, BvAwvΓ10w � H and χpΓ10q ¤ χp∆0q.

We define AF :� ta P A { a � Bu and AD :� pAzAF qvAF w, so that t
AF
ÝÑ� t1

AD
ÝÑ� s

Γ10
Ý�� u

for some object t1. As mentioned in Section 3.1.3, it is easy to check AF � B and
pAzAF q � B; recall A does not use B, so that A X B � H. As moreover AF X B �
H, then Lem. 3.3.6 yields AD � BvAF w. Observe that B non-gripping implies BvAF w
non-gripping, Γ10 � BvAw � BvAF wvADw, and BvAF wvAD; Γ10w � BvAwvΓ10w � H; cfr.

Prop. 2.1.16. Therefore Lem. 3.3.9 applies to t1
AD
ÝÑ� s

Γ10
Ý�� u, implying the existence of

some Γ0 verifying t1
Γ0
Ý�� u, Γ0 � BvAF w, BvAF wvΓ0w � H and χpΓ0q � χpΓ10q ¤ χp∆0q.

Hence we conclude by taking Γ :� AF ; Γ0 since AF � A implies in particular that
νpAF q ¤ νpAq.



68 CHAPTER 3. NORMALISATION

We now conclude the normalisation proof, following the main lines given at the
beginning of this section.

Proposition 3.3.11. Let t
∆
Ý�� u and B � ROptq s.t. B is non-gripping, ∆ does not

use B, Bv∆w � H and t
B
ÝÑ� s. Then there exists a multireduction Γ s.t. s

Γ
Ý�� u and

χpΓq ¤ χp∆q.

Proof. Lem. 3.3.10 implies the existence of some Γ0 such that t
Γ0
Ý�� u, Γ0 � B, BvΓ0w � H

and χpΓ0q ¤ χp∆q. We define Γ :� Γ0vBw. Then we can build the following diagram;
cfr. Prop. 3.1.9(2).

t �
Γ0 //

�B
��

u

s �
Γ

// u

Lem. 3.3.5 implies χpΓq � χpΓ0q ¤ χp∆q. Thus we conclude.

Lemma 3.3.12. Let A,B � ROptq such that A � H and AXB � H. Then νpBvAwq  
νpAY Bq.

Proof. Let δ be a complete development of BvAw such that |δ| � νpBvAwq, and γ a
complete development of A. Observe that γ; δ is a complete development of AYB, and
|γ| ¡ 0 since A � H. Then νpBvAwq � |δ|   |γ; δ| ¤ νpAY Bq. Thus we conclude.

Proposition 3.3.13. Let t
∆
Ý�� u and B � ROptq, s.t. B is non-gripping, ∆ uses B,

Bv∆w � H and t
B
ÝÑ� s. Then there exists a multireduction Γ such that s

Γ
Ý�� u and

χpΓq   χp∆q.

Proof. The hypothesis indicates ∆ uses B, therefore the “last” multistep of ∆ which uses
the corresponding residual of B can be determined, i.e. ∆ can be written as ∆1;A; ∆2,
such that A uses Bv∆1w (i.e. AX Bv∆1w � H) and ∆2 does not use Bv∆1;Aw. Observe
|∆| � |∆1| � |∆2| � 1.

Let B1 :� Bv∆1w, A1 :� A X B1, and A2 :� pAzA1qvA1w. Observe that A1 � H,
so that Lem. 3.3.12 implies νpA2q   νpAq. Therefore χpA2; ∆2q   χpA; ∆2q. Moreover
A1vB1w � H. We can build the following diagram

t �
∆1 // //

�B
��

t0 �
A1 //

�B1
��

t1 �
A2 //

�B1vA1w

��

t2 �
∆2 // // u

s s0 s0

Suppose A2 uses B1vA1w. Notice that the existence of some b1 P A2 X B1vA1w would
in turn imply the existence of some b1 P B1 s.t. b1vA1wb

1 and also the existence of some
b2 P AzA1 s.t. b2vA1wb

1. Consider an arbitrary δ , A1. Then a simple induction on
|δ|, based on Ancestor Uniqueness, yields b1 � b2. Therefore b1 � b2 P B1 X pAzA1q.
But then, by definition of A1, b1 � b2 P A1, which is absurd. Therefore A2 does not
use B1vA1w and hence, since ∆2 does not use Bv∆1;Aw, A2; ∆2 does not use B1vA1w.
Moreover, B non-gripping implies B1vA1w non-gripping. Hence Prop.. 3.3.11 yields the
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existence of some Γ2 verifying s0
Γ2
Ý�� u and χpΓ2q ¤ χpA2; ∆2q   χpA; ∆2q. Observe

|Γ2| � |∆2| � 1.

t �
∆1 // //

�B
��

t0 �
A;∆2 // //

�B1
��

u

s �
∆1vBw // // s0 �

Γ2 // // u

Thus if we define Γ :� ∆1vBw; Γ2, then |Γ| � |∆1|�|∆2|�1 � |∆|, and χpΓ2q   χpA; ∆2q
implies χpΓq   χp∆q independently of the relative measures of ∆1vBw and ∆1, since the
multisteps of a multireduction are considered in reversed order when building measures.
Thus we conclude.

Returning to the general proof structure described at the beginning of the section,
Prop. 3.3.13 shows the existence of an adequate ∆k�1; consider tk, tk�1, Sptkq and ∆k

as t, s, B and ∆ respectively in the statement of that proposition.

Theorem 3.3.14. Let A � xO,R, src, tgt, v�w, ,!y be an ARS enjoying all the funda-
mental axioms, all the embedding axioms except for Stability, all the gripping axioms, and
Pivot. Repeated contraction of necessary and non-gripping multisteps on A normalises.

Proof. Let t0 P O be a normalising object in A. Then there exists some multireduction

∆0 such that t0
∆0
Ý�� u where u is a normal form. We proceed by induction on χp∆0q,

i.e. using the well-founded ordering defined in the beginning of this section. If χp∆0q is
minimal, i.e. either ∆0 � nilt0 or ∆0 � xHt0 , . . . ,Ht0y, then t0 is a normal form, and
therefore there is nothing to prove. Otherwise, let B be a necessary and non-gripping

multistep such that t0
B
ÝÑ� t1. Then ∆0 uses B, and u being a normal form implies

Bv∆0w � H. Therefore Prop. 3.3.13 implies the existence of a multireduction ∆1 such

that t1
∆1
Ý�� u and χp∆1q   χp∆0q. The IH on ∆1 suffices to conclude.

3.4 The Pure Pattern Calculus

As mentioned in the introduction, PPC is a pattern calculus allowing arbitrary terms
to be used as patterns, and supporting novel forms of polymorphism; cfr. [JK09] where
several examples are included. In this section, we present this calculus. We first present a
brief overview of PPC following [JK09]. Then, we show that PPC fits the ARS framework,
including all the axioms required by the abstract normalisation result.

The next section is devoted to the presentation of a normalising reduction strategy
for PPC.

3.4.1 Overview of PPC

Consider a countable set of symbols f, g, . . . , x, y, z. Sets of symbols are denoted by
meta-variables θ, φ, . . . . The syntax of PPC is summarised by the following grammar:

Terms pTq t ::� x | px | tt | λθ t.t
Data-Structures pDSq D ::� px | Dt
Abstractions pABSq A ::� λθ t.t
Matchable-forms pMFq F ::� D | A
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The term x is called a variable, px a matchable, tu an application (t is the
function and u the argument) and λθ p.u an abstraction (θ is the set of binding
symbols, p is the pattern and u is the body). Application (resp. abstraction) is
left (resp. right) associative. An abstraction with an empty set of binding symbols is
written λH p.u. A λ-abstraction λx.t can be defined by λtxu px.t. The identity function
λtxu px.x is abbreviated I. The notation |t| is used for the size of t, defined as expected.

A binding symbol x P θ of an abstraction λθ p.s binds matchable occurrences of
x in p and variable occurrences of x in s. The derived notions of free variables and
free matchables are respectively denoted by fvp q and fmp q. This is illustrated in Fig-
ure 3.6.

λtxu x px . x px
Figure 3.6: Binding in PPC

Formally, free variables and free matchables
of terms are defined by: fvpxq :� txu, fvppxq :� H,
fvptuq :� fvptq Y fvpuq, fvpλθ p.uq :� pfvpuqzθq Y
fvppq, fmpxq :� H, fmppxq :� txu, fmptuq :� fmptqY
fmpuq, fmpλθ p.uq :� pfmppqzθq Y fmpuq.

As usual, we consider terms up to alpha-
conversion, i.e. up to renaming of bound matchables and variables. A constructor
is a matchable occurring in a term, such that all its occurrences are free. To ease the
presentation, they are often denoted in typewriter fonts a, b, c, d, . . ., thus for example
λtx,yu px y a.y denotes λtx,yu px y pz.y. The distinction between matchables and variables
is unnecessary for standard (static) patterns which do not contain free variables.

A position is either ε (the empty position), or na, where n P t1, 2u and a is a
position. We use a, b, . . . (resp. A,B, . . . and δ, ρ, π, . . .) to denote positions (resp. sets
and sequences of positions) and bA to mean tba | a P Au. The set Posptq of positions
of t is defined as expected, provided that for abstractions λθ p.s positions inside both
p and s are considered. Formally, Pospxq � Posppxq � tεu, Posptuq � tεu Y t1a { a P
PosptquYt2a { a P Pospuqu, and Pospλθp.sq � tεuYt1a { a P PosppquYt2a { a P Pospsqu.
Here is an example Pospλtxu a b.a x xq � tε, 1, 2, 11, 12, 21, 22, 211, 212u.

We write t|a for the subterm of t at position a and trssa for the replacement
of the subterm at position a in t by s. Notice that replacement may capture variables.
An occurrence of a term s in a term t is any position p P Posptq verifying t |p� s.
Particularly, variable occurrences are defined this way.

We write a ¤ b (resp. a ‖ b) when the position a is a prefix of (resp. disjoint from)
the position b. Notice that a ‖ b and a ¤ c implies c ‖ b. All these notions are defined as
expected [BN98] and extended to sets of positions as well. Particularly, given a position
a and a set of positions B, we will say that a ¤ B iff a ¤ b for all b P B, and analogously
for  , ‖, etc.. Finally, we write s � t if s is a subterm of t (note in particular s � s).

A substitution σ is a mapping from variables to terms with finite domain dompσq.
We write tx1 Ñ t1, . . . , xn Ñ tnu for a substitution with domain tx1, . . . , xnu. The set
of free variables of a substitution σ are defined as follows: fvpσq �

�
xPdompσq fvpσxq.

Similarly for fmpσq. The symbols of σ are sympσq :� dompσq Y fvpσq Y fmpσq. A set of
symbols θ avoids a substitution σ, written θ#σ, iff θX sympσq � H. The application
of a substitution σ to a term is written and defined as usual on alpha-equivalence
classes; in particular σpλθ p.sq :� λθ σppq.σpsq, if θ#σ. Notice that data structures and
matchable forms are stable by substitution. The restriction of a substitution σ to a
set of variables tx1, . . . , xnu � dompσq is written σ|tx1,...,xnu. The composition σ � η of
two substitutions σ and η is defined by pσ � ηqx � σpηxq.

The following notation is useful to define the reduction strategy S, and later to prove
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properties about it, in Section 3.5.

Notation 3.4.1. If t and θ are a term and a set of symbols respectively, then bmpt, θq
denotes the predicate which is true iff t is a matchable bound by θ, i.e., if t � px for
some x P θ.

Matching and Semantics.
The definition of the rewrite rule of PPC resorts to the notions of match and matching
operation.

Definition 3.4.2. A match µ is either a substitution or a special constant in the set
tfail, waitu. A match is positive if it is a substitution; it is decided if it is either
positive or fail.

The notions of domain, free variables and free matchables extends to matches as fol-
lows: dompfailq � fvpfailq � fmpfailq � H, while dompwaitq, fvpwaitq and fmpwaitq
are undefined. The restriction to a set of variables is also extended to matches, by
defining wait|tx1,...,xnu � wait and fail|tx1,...,xnu � fail, for any set of variables
tx1, . . . , xnu. Furthermore, the composition is extended to matches, as follows. If µ1

and µ2 are matches of which at least one is fail, then µ2 � µ1 is defined to be fail.
Otherwise, if µ1 and µ2 are matches of which at least one is wait, then µ2 �µ1 is defined
to be wait. Thus, in particular, fail � wait is fail.

Definition 3.4.3. The application of a match µ to a term t, written µt, is defined
as follows: if µ is a substitution, then it is applied as explained above; if µ � wait, then
µt is undefined; if µ � fail, then µt is the identity function I.

Other closed terms in normal form could be taken to define the result of failptq. The
choice of I prevents computation after a matching failure to be blocked, and moreover
allows to encode pattern-matching definitions given by alternatives [JK09], without the
need of additional constructs.

The disjoint union of matches is a crucial operation in the definition of the meaning
of matching in PPC.

Definition 3.4.4. The disjoint union of two matches µ1 and µ2, notation µ1 Z µ2 is
defined as: their union if both µi are substitutions and dompµ1q X dompµ2q � H; wait if
either of the µi is wait and none is fail; fail otherwise.

This definition of disjoint union of matches validates the following equations which are
responsible for the non-sequential nature of PPC, as we will discuss in Section 3.4.2:

failZ wait � waitZ fail � fail

Now we define how the matching operation is modeled in PPC.

Definition 3.4.5. The compound matching operation takes a term, a set of bind-
ing symbols and a pattern and returns a match, it is defined by applying the following
equations in order:

ttpx�θ tuu :� tx :� tu if x P θ
ttpx�θ pxuu :� tu if x R θ
ttpq �θ tuuu :� ttp�θ tuu Z ttq �θ uuu if tu, pq P MF
ttp�θ tuu :� fail if p, t P MF
ttp�θ tuu :� wait otherwise
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The name “compound” given to this operation is related to the third clause, where
the matching of a compound argument w.r.t. a compound pattern is specified. The
use of disjoint union in that case of the previous definition restricts positive compound
matching to linear patterns;5 disjoint union of two substitutions fails whenever their
domains are not disjoint. Notice also the restriction to matchable forms in that clause
and in the following one. These features are necessary to guarantee confluence.

Definition 3.4.6. The result of the matching operation6 tp{θ tu is defined to be the
check of ttp�θ tuu on θ; where the check of a match µ on θ is fail if µ is a substitution
whose domain is not θ, µ otherwise.

Definition 3.4.7. A redex pλθp.squ where tp{θ uu � fail is called a matching failure.

The previous definitions allow to introduce the only rewrite rule of PPC.

Definition 3.4.8. The reduction relation of PPC is generated by the rule:

pλθp.squ Ñ tp{θ uus if tp{θ uu is decided

where tp{θ uu denotes the PPC matching operation, that is, the meaning in this calculus
of the matching of the argument u w.r.t. the pattern p.

In the just introduced rule, the matching of the argument u w.r.t. the pattern p is defined
by means of the matching operation tp{θ uu. The result of this operation, a match, is
applied to the argument s. In fact, a match is applied only if it is decided, i.e. if it is a
substitution or the constant fail. If the match is wait, then the rule does not apply.

We give some examples of matching and reduction steps, according to the just given
definitions. The match ta px py{tx,yu a b pIaqu yields the substitution tx Ñ b, y Ñ Iau.
In turn, ta px py{tx,yu c b pIaqu � fail, since a and c are different constructors, and
ta px py{tx,yu Ibu � wait, because the term Ib is not a matchable form. Therefore, the
following are valid reduction steps in PPC:

pλtx,yua px py.yxqpa b pIaqq ÝÑ I a b pλtx,yua px py.yxqpc b pIaqq ÝÑ I

while the rewrite rule does not apply to pλtx,yua px py.yxqpIbq. Notice that the following
reduction sequence can be constructed from the latter term:

pλtx,yua px py.yxqpIbq ÝÑ pλtx,yua px py.yxqb ÝÑ I

Other matching examples follow: tpxpx{txu uvu gives fail because pxpx is not linear;
tpxpy{tx,y,zu uvu gives fail because tx, y, zu � tx, yu, tpx{H uu gives fail because H �
txu; tpy{txu pyu gives fail because txu � H; tpxpy{txu upzu gives fail because ttpy �txu pzuu
is fail; tpxpy{H upzu gives fail for the same reason.

5A pattern p is linear w.r.t. θ if for every x in θ, the matchable px appears at most once in p.
6Note that our notation for (compound) matching differs from [JK06a] and [JK09]: the pattern and

argument appear in reversed order there.
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3.4.2 Non-sequentiality in PPC

Let us consider the term:

t � pλtxup px m s.xq pp pIaq pIfq pIdqq
corresponding to the non-sequentiality example in the introduction of this chapter. To
verify that the rewrite rule of PPC does not apply to this term as a whole, observe the
definition of compound matching yields:

ttp px m s�txu p pIaq pIfq pIdqquu

� ttp�txu puu Z ttpx�txu Iauu Z ttm�txu Ifuu Z tts�txu Iduu

� HZ txÑ Iau Z waitZ wait

� wait

Changing either of the occurrences of wait in H Z tx Ñ Iau Z wait Z wait to fail

would cause the result of the compound matching to fail. This is a consequence
of how disjoint union is defined on matches, and particularly of the equations
failZ wait � waitZ fail � fail.

In turn, the contraction of If or Id in t would imply the third, resp. fourth, com-
ponent of HZ tx Ñ Iau Z wait Z wait to change from wait to fail. We check this
assertion for the former case, the latter being analogous.

ttp px m s�txu p pIaq f pIdqquu

� ttp�txu puu Z ttpx�txu Iauu Z ttm�txu fuu Z tts�txu Iduu

� HZ txÑ Iau Z failZ wait

� fail

Hence the possibility of the two reduction sequences:

pλtxup px m s.xq pp pIaq pIfq pIdqq Ñ pλtxup px m s.xq pp pIaq f pIdqq Ñ I

pλtxup px m s.xq pp pIaq pIfq pIdqq Ñ pλtxup px m s.xq pp pIaq pIfq dq Ñ I

which testify that none of the steps in t is needed, and hence that PPC is non-sequential.

The example shows that the ability of handling dynamic patterns, i.e. to perform
reduction steps inside the pattern of an abstraction, is not crucial for the non-sequential
nature of PPC. Non-sequentiality stems from the error mechanism of the calculus, which
applies also to static, algebraic patterns.

Sequentiality of PPC can be recovered (see e.g. [Jay09, Bal10a, Bal10b]) by simpli-
fying the equations of disjoint union, however some meaningful terms will no longer be
normalising. E.g., if fail Z µ is defined to be fail, while wait Z fail � wait and
σZ fail � fail, then pλH a b b .pyq pa Ω cq, where Ω is a non-terminating term, would
never fail as expected.

Finally, we want to remark that the example developed in this section shows that
PPC does not enjoy the Stability axiom. The counterexample shown in Section 2.1.4,
based on the “parallel-or” rewriting system, can be rephrased as follows
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pλtxup px m s.xqpp pIaq p ahkkikkj
If qp

bhkkikkj
Id qq

b

))

a

uu
pλtxup px m s.xqpp pIaq f pIdqq

d11
�� b1 **

pλtxup px m s.xqpp pIaq pIfq dq
d12
��a1tt

I pλtxup px m s.xqpp pIaq f dq
d1

��

I

I

The contraction of either of the disjoint steps a and b suffices to create the external
matching failure; hence the counterexample to the Stability axiom.

3.4.3 PPC as an ARS

Let us define an ARS to describe PPC; we give some examples later on.

Definition 3.4.9. The ARS APPC � xO,R, src, tgt, v�w, ,!y is defined as follows.

Objects
The set O of objects is the set of terms of PPC.

Steps, source, target
A step is any pair xt, ay, such that t|a� pλθp.squ and tp{θ uu is decided. In this

case srcpxt, ayq :� t and tgtpxt, ayq :� trtp{θ uussa.

Residual relation
If ar � xt, ay, br � xt1, by and b1r � xu, b1y are steps, then brvarwb

1
r iff t1 � t,

u � tgtparq, and one of the following cases apply, where t|a� pλθp.squ:
 a ¦ b and b1 � b.
 b � a12n, b1 � an and tp{θ uu � fail.
 b � a2mn, b1 � akn, tp{θ uu � fail, and there is a variable x P θ

such that t|a11m� p|m� px and t|a12k� s|k� x.

Embedding
Let ar � xt, ay and br � xt, by be steps. We define ar   br iff a   b. Given
cr � xt, cy, notice that whenever ar   cr and br   cr, then ar and br are comparable
w.r.t. the embedding, i.e. either ar � br, ar   br or br   ar.

Gripping
Let ar � xt, ay and br � xt, by be steps and let t |a� pλθp.squ. Then ar ! br iff
tp{θ uu � fail, b � a12n, and θ X fvps|n q � H.

Notation 3.4.10. Given a step xt, ay we will often denote it ar; this notation shall prove
convenient when we address the compliance of PPC w.r.t. the axioms of an ARS. This
notational convention is extended to multisteps: if A is a set of redex positions in the
term t, we will use Ar to denote txt, ay { a P Au. This extension is used in Sections 3.5.1
and 3.5.2.
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Using positions to identify redexes yields the given, somewhat complicated, defini-
tions of the residual and gripping relations. The former aims to trace redexes from
source term to target term, while the latter characterises, by means of positions, the
idea of gripping described in Section 1.3.1. The use of one common notion, namely that
of positions, to define all the relations, eases the proofs of results where several of these
relations are involved. Hence the reason why we favor positions over other mechanisms,
such as labeling which is used for λ�lsub in Chapter 4 and also for λ-calculus in e.g.
[Bar84, Kri90].

To exemplify the definitions of residuals and gripping, consider the following step:

t � pλtx,yucpxpy.x pIxqq pcpdpIaqqpIbqq pIeq Ñ dpIaq pIpdpIaqqq pIeq � u

where the contracted redex is ar � xt, 1y. Let us analyse the residuals of each step in t:

• Take xt, 1122y, whose subterm is Ix. The second clause of the residual definition
applies, where n � 2. Therefore there is one residual, namely xu, 12y.

• Take xt, 12122y, whose subterm is Ia. The third clause applies, where m � 12 and
n � 2; observe cpxpy|12� px. There are two occurrences of x in xpIxq, at positions 1
and 22, these are the possible k in the definition of residuals. Hence there are two
residuals, xu, 112y and xu, 1222y.

• Take xt, 122y, whose subterm is Ib. The third clause applies, where m � 2 and
n � ε; observe cpxpy|2� py. There are no occurrences of y in xpIxq, hence there are
no residuals of this step after ar.

• Take xt, 2y, whose subterm is Ie. The first clause applies, then there is one residual:
xu, 2y.

The only pair in the gripping relation among the residuals of t is ar ! xt, 1122y.
W.r.t. the definition of gripping, we have n � 2 and x P tx, yu X fvpIxq.

Let us consider, as a second example, this step:

t � pλtx,yucpxpy.x pIxqq pdpIaqq pIeq Ñ I pIeq � u

and define ar � xt, 1y. Observe that there is no copy, in u, of any of the redexes
embedded by ar in t. This observation motivates the condition tp{θ uu � fail in the
second and third clauses in the definition of residuals.

For a more involved example about gripping, we consider this term:

t �
�
λtzupz. pλtx,yucpxpy.pIpaxqcrqpIpzyqdrqpIzqerq pcccqbr z�dar

where the redexes are underlined. We have br ! cr, since x P tx, yu X fvpIpaxqq.
Analogously, we have br ! dr. On the other hand, br �! er, because tx, yuXfvpIzq � H.
Moreover, observe that cr, dr and er are inside the body of ar as well. Observing the
occurrences of z, we obtain ar �! cr, ar ! dr and ar ! er. Finally, we remark that there
is another pair in the gripping relation for this term: ar ! br.

In the remainder of this section, we verify that the ARS modeling PPC verifies the
fundamental axioms, FD, SO, the embedding axioms except for Stability, the gripping
axioms, and also Pivot.
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Initial axioms.

Self Reduction is immediate from the definition of residuals for PPC: none of the cases
there applies for arvarw. Finite Residuals follows from the fact that terms are finite.
Axiom Ancestor Uniqueness is proved below.

Lemma 3.4.11 (Ancestor Uniqueness). Let br1 , br2 , ar, b
1
r be steps verifying br1varwb

1
r and

br2varwb
1
r. Then br1 � br2.

Proof. Let br1 � xt
1, b1y and br2 � xt

1, b2y where t1 � tgtparq. We prove that b1 � b2.
Let t|a� pλθp.squ. We consider three cases according to the definition of br1varwb

1
r.

• If a ¦ b1, then b1 � b1 so that a ¦ b1. A straightforward case analysis on the
definition of residuals yields a ¦ b2, therefore b1 � b2 � b1.

• If b1 � a2mn and b1 � akn, then s |k� x and p |m� px for some x P θ. Observe
that a   b1 implies a   b2. We consider two cases. If b2 � a12n1 and b1 � an1,
then kn � n1. This would imply t|b2� s|kn has the form pλθ1p

1.s1qu1, contradicting
s|k being a variable. Therefore, akn � b1 � ak1n1 and b2 � a2m1n1, where s|k1� y
and p|m1� py for some y P θ. Observe that k   k1, i.e. k1 � kc where c � ε, would
imply kc P Pospsq, contradicting the fact that s|k is a variable; so that k �  k1. We
obtain k1 �  k analogously. On the other hand, k ‖ k1 would contradict kn � k1n1.
Hence k � k1, implying n � n1 and also y � x. In turn, tp{θ uu being positive
implies that p is linear, and then m � m1. Thus we conclude.

• If b1 � a12n and b1 � an, then we have again that a   b1 implies a   b2. On
the other hand, assuming b2 � a2m1n1, so that an � b1 � akn1, would yield a
contradiction as already stated. Therefore b2 � a12n1 and an � b1 � an1, implying
n � n1 and consequently b1 � b2.

Finally, FD and SO are left for the end of this section.

The Enclave–Creation axiom.

To verify Enclave–Creation involves a rather long technical development, including some
preliminary lemmas, particularly a creation lemma indicating the creation cases for PPC.
One of these lemmas is used in the proof of subsequent axioms as well.

Lemma 3.4.12. Let p� p1 and u� u1. Then,

(i) ttp�θ uuu positive implies ttp1 �θ u
1uu positive,

(ii) ttp�θ uuu � fail implies ttp1 �θ u
1uu � fail.

(iii) tp{θ uu positive implies tp1{θ u
1u positive,

(iv) tp{θ uu � fail implies tp1{θ u
1u � fail.

Proof. We prove item (i). Given ttp�θ uuu is positive, a straightforward induction on p
yields that p is a normal form, implying p1 � p. If bmpp, θq, then ttp �θ u

1uu is positive
for any term u1. If p is a matchable and  bmpp, θq, then ttp �θ uuu positive implies
u � p, i.e. u is a normal form, and therefore u1 � u, which suffices to conclude. Assume
p � p1p2. Then the hypotheses imply p P MF, u � u1u2 P MF, and ttpi �θ uiuu positive
for i � 1, 2. In turn, u P MF implies u1 � u11u

1
2 and ui � u1i for i � 1, 2. Hence, the
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IH can be applied for each ui � u1i, which suffices to conclude. Finally, any other case
would contradict ttp�θ uuu positive.

We prove item (ii). Observe ttp �θ uuu � fail implies p, u P MF, and therefore
p1, u1 P MF. Therefore, p and p1 share their syntactic form (i.e. they are either both
matchables, both applications or both abstractions), and similarly for u and u1. If p
and u, and therefore p1 and u1, have different syntactic forms, or else if p, p1, u, u1 are
abstractions, then it suffices to observe that ttp1 �θ u

1uu � fail for any such p1 and u1.
If p, p1, u, u1 are matchables, then p � p1 and u � u1, thus we immediately conclude.
Assume p � p1p2, p1 � p11p

1
2, u � u1u2 and u1 � u11u

1
2. In this case, hypotheses imply

ttpi�θuiuu � fail for some i P t1, 2u, and moreover p, u P MF imply pi � p1i and ui � u1i.
Therefore, we conclude by applying the IH, and recalling that failZR � fail for any
possible R.

To prove items (iii) and (iv), we observe that a straightforward induction on p yields
that ttp �θ uuu � σ implies dompσq � fmppq , and therefore in this case tp{θ uu is
positive iff θ � fmppq, and tp{θ uu � fail otherwise. Recall also that ttp�θ uuu positive
implies p being a normal form, and then p1 � p. For item (iii): tp{θ uu positive implies
ttp�θ uuu � σ where θ � fmppq � fmpp1q. On the other hand, item (i) just proved implies
ttp1 �θ u

1uu � σ1, which suffices to conclude. For item (iv): assume tp{θ uu � fail. If
ttp�θ uuu � fail, then item (ii) just proved implies ttp1�θ u

1uu � fail, thus we conclude.
Otherwise, ttp �θ uuu � σ and σ � fmppq � fmpp1q, and item (i) just proved implies
ttp1 �θ u

1uu � σ1, which suffices to conclude.

Lemma 3.4.13 (Creation cases). Let t
arÝÑ t1, and Hvarwbr, i.e. br is created by (the

contraction of) ar. Say t|a� pλθp.squ and t1 |b� pλθ1p
1.s1qu1. Then one of the following

holds:

Case I. the contraction of ar contributes to the creation of br from below, i.e., b P
Posptq, a � b1 implying t|b� pλθp.squu

1, and either

(i) s � x where x P θ and px occurs in p, tp{θ uu � σ, σx � pλθ1p
1.s1q.

(ii) s � λθ1p
2.s2, tp{θ uu � σ, p1 � σp2, s1 � σs2.

(iii) tp{θ uu � fail, λθ1p
1.s1 � I.

Case II. the contraction of ar contributes to the creation of br from above, i.e., b � an,
s|n� xu2, tp{θ uu � σ, σx � pλθ1p

1.s1q, u1 � σu2.

Case III. The argument of a redex pattern becomes decided. We have three such situ-
ations:

(i) b � an, s |n� pλθ1p
2.s2qu2, tp2{θ u

2u � wait, tp{θ uu � σ, p1 � σp2,
u1 � σu2.

(ii) a � b2n, t|b� pλθ1p
1.s1qu2, tp2{θ u

2u � wait.

(iii) a � b11n, t|b� pλθ1p
2.s1qu1, tp2{θ u

2u � wait.

Proof. We proceed by comparing a with b.

• If a ‖ b, then t|b� t1|b so that xt, byvarwbr, contradicting the hypotheses.

• Assume a ¤ b, i.e. b � ac.

In this case, tp{θ uu � fail would imply t1 |a� I, contradicting t1 |b being a
redex. Then tp{θ uu � σ, implying t1 |b� σs |c . Observe that c � kn, s |k� x
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and t1 |b� σx |n for some variable x would imply xt, a2mnyvarwbr where p |m� px.
Therefore � s|c� t1u

2 and t1|b� pλθ1p
1.s1qu1 � pσt1qσu

2. If t1 is a variable, so that
σt1 � λθ1p

1.s1, then case II applies, otherwise case III.(i) applies.

• Assume b   a.

If a � b1, i.e. t|b� pλθp.squu
1, then observe tp{θ uus � t1|a� λθ1p

1.s1. If tp{θ uu �
fail, then case I.(iii) applies. If s is a variable, then case I.(i) applies. Otherwise,
s is an abstraction, so that case I.(ii) applies.

If b11 ¤ a, i.e. t|b� pλθ1p
2.s1qu1, then observe Hvarwbr implies tp2{θ1 u

1u � wait.
Then case III.(iii) applies. If b2 ¤ a, a similar argument yields that case III.(ii)
applies.

Finally, b12 ¤ a implies t|b� pλθ1p
1.s2qu1, and t1|b being a redex implies tp1{θ1 u

1u
decided so that xt, byvarwbr, contradicting the hypothesis.

Lemma 3.4.14. Let t
arÝÑ t1 such that t R MF and t1 P MF. Then ar is outermost.

Proof. By induction on t1.

If t1 is a variable or a matchable, then a � ε, thus we conclude.

If t1 is an abstraction, then a � ε implies t is an abstraction contradicting t R MF.
Thus a � ε and we conclude.

If t1 � t11t
1
2, then t1 P MF implies t11 P DS. We consider three cases. (i) If a � ε then

we immediately conclude. (ii) If 2 ¤ a, then we contradict t R MF. (iii) If 1 ¤ a, i.e.

a � 1a1, then t � t1t
1
2 and t1

a1rÝÑ t11. Observe that t1 P DS would contradict t R MF,
and t1 P ABS would imply t11 P ABS, contradicting t11 P DS. Therefore, t1 R MF, and
hence the IH yields that xt1, a

1y is outermost. We conclude by observing that t1 R MF
implies that xt, εy is not a step.

Lemma 3.4.15. Let t
arÝÑ t1 such that ttp �θ tuu � wait and ttp �θ t

1uu is decided for
some θ, p. Then ar is outermost.

Proof. We proceed by induction on t. Observe that ttp�θ tuu � wait implies  bmpp, θq.
In turn, ttp �θ t

1uu decided implies p P MF, and moreover  bmpp, θq implies t1 P MF.
If t R MF then Lem. 3.4.14 suffices to conclude. Therefore, assume t P MF. In
this case, ttp �θ tuu � wait implies p � p1p2, t � t1t2, and ttpi �θ tiuu � fail for
i � 1, 2. Furthermore, t P MF implies a � ε. Assume a � 1a1, implying t1 � t11t2 and

t1
a1rÝÑ t11. Notice ttp1 �θ t1uu positive would imply ttp1 �θ t

1
1uu positive, cfr. Lem. 3.4.12,

thus contradicting either ttp�θ tuu � wait (if ttp2�θ t2uu is positive) or ttp�θ t
1uu decided

(if ttp2 �θ t2uu � wait); while ttp1 �θ t
1
1uu � wait would contradict ttp �θ t

1uu decided.
Hence IH can be applied to obtain xt1, a

1y outermost, which suffices to conclude (given
xt, εy not being a step). The case a � 2a1 admits an analogous argument.

Lemma 3.4.16. Let p
arÝÑ p1 such that ttp �θ tuu � wait and ttp1 �θ tuu is decided for

some θ, t. Then ar is outermost.

Proof. We proceed by induction on p. Observe that ttp1 �θ tuu decided implies p1 P MF.
If p R MF then Lem. 3.4.14 suffices to conclude. Therefore, assume p P MF. This
implies p1 is not a matchable, and consequently ttp1 �θ tuu decided implies t P MF. In
turn, ttp�θ tuu � wait yields t � t1t2, p � p1p2, ttpi�θ tiuu � fail for i � 1, 2, and a � ε.
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Assume a � 1a1, implying p1 � p11p2 and p1
a1rÝÑ p11. In this case, ttp1 �θ t1uu positive

would imply p1 to be a normal form, while ttp11�θ t1uu � wait would contradict ttp1�θ tuu
decided. Therefore the IH can be applied to obtain xp1, a

1y outermost, which suffices to
conclude since xp, εy is not a step. The case a � 2a1 admits an analogous argument.

Lemma 3.4.17 (Enclave–Creation). Let ar, br be steps such that br   ar, brvarwb
1
r, and

Hvarwc
1
r. Then b1r   c1r.

Proof. Observe that a ¦ b implying b1 � b. Say t
arÝÑ t1, t |a� pλθp.squ, and t1 |c1�

pλθ1p
1.s1qu1. We proceed by case analysis w.r.t. Lem. 3.4.13.

Case I In this case c1 P Posptq and a � c11, so that t |c1� pλθp.squu
1. Therefore, it

suffices to observe that b � c1 would forbid br to be a step, then b   a implies
b   c1.

Cases II or III.(i) In either case c1 � an, thus b   a implies b   c1.

Case III.(ii) In this case a � c12n and t |c1� pλθ1p
1.s1qu2. Then, b   a implies either

b   c1, b � c1 or b � c12n1 where n1   n. We conclude by observing that the second
and third cases would contradict Hvarwc

1
r and Lem. 3.4.15 respectively.

Case III.(iii) In this case a � c111n and t|c1� pλθ1p
2.s1qu1. A similar analysis applies,

resorting to Lem. 3.4.16 instead of Lem. 3.4.15.

The other embedding and gripping axioms.

Linearity is immediate from the definition of residuals. The remaining embedding axioms,
and also Grip–Instantiation, are related with the invariance of embedding w.r.t. residuals.
The following lemma describes the exceptions to such invariance, so that several axioms
can be obtained as simple corollaries of its statement.

Lemma 3.4.18. Suppose brvarwb
1
r and crvarwc

1
r, such that  pbr   cr Ø b1r   c1rq. Then

par   brq ^ par   crq, and moreover

• either pbr ‖ crq ^ pb1r   c1rq ^ par ! brq ^ pa2 ¤ cq,

• or pbr   crq ^ pb
1
r ‖ c1rq.

Proof. Suppose t
a
ÝÑ u and t|a� pλθp.squ. If  ppar   brq ^ par   crqq, then we obtain

br   cr Ø b1r   c1r by the following case analysis:

• a � b or a � c: either case would contradict the existence of b1r and c1r.

• a ¦ b and a ¦ c: in this case b1 � b and c1 � c, which suffices to conclude.

• a ‖ b and a   c: implies b ‖ c and b1 � b ‖ a ¤ c1, hence br �  cr ^ b1r �  c1r.

• a   b and a ‖ c: analogous to the previous case.

• b   a   c: implies b   c and b1 � b   a ¤ c1, hence br   cr ^ b1r   c1r.

• c   a   b: we obtain analogously c   b and c1   b1, hence br �  cr ^ b1r �  c1r.

If a   b and a   c, then we analyse the possible cases w.r.t. the residual relation,
recalling that all cases suppose tp{θ uu � fail, and therefore that p is linear.

• b � a12n and c � a12n1. In this case b1 � an and c1 � an1, thus we conclude
immediately.
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• b � a12n and c � a2m1n1. In this case b1 � an and c1 � ak1n1, where p|m1� px and
s |k1� x for some x P θ. Observe b ‖ c. If b1 �  c1 then we conclude immediately,
so that assume b1   c1, implying n   k1n1. Notice that s |n is a redex while s |k1

is a variable, then n   k1n1 implies n   k1. Therefore x P θ X fvps |n q, implying
ar ! br. Thus we conclude.

• b � a2mn and c � a12n1. In this case, b1 � akn and c1 � an1, where p|m� px and
s|k� x for some x P θ. Observe b ‖ c. Moreover s|n1 being a redex while s|k is a
variable implies k �  n1, then kn �  n1, hence b1 �  c1. Thus we conclude.

• b � a2mn and c � a2m1n1. In this case b1 � akn and c1 � ak1n1, where p|m� px,
s|k� x, p|m1� py and s|k1� y for some x, y P θ. Both s|k and s|k1 being variable
occurrences implies k � k1 or k ‖ k1. An analogous argument yields m � m1 or
m ‖ m1.

If b �  c and c �  b, then we conclude immediately.

If b   c, then m � m1 implying x � y, and n   n1. If k � k1, then b1   c1,
otherwise, b1 ‖ c1. Thus we conclude.

Finally, if b1   c1, then k � k1 and n � n1. But k � k1 implies x � y, and then
m � m1 by linearity of p. Then b   c.

It is easy to obtain Context-Freeness, Enclave–Embedding and Grip–Instantiation as
corollaries of Lem. 3.4.18.

We verify Pivot; a previous lemma is needed first.

Lemma 3.4.19. Let p, t, b such that tp{θ tu is positive and t|b is a redex. Then there
exists some a ¤ b verifying p|a� px for some x P θ.

Proof. By induction on p, considering the cases in the definition of the compound match-
ing allowing tp{θ tu to be positive. If bmpp, θq then taking a � ε allows to conclude.
Otherwise, tp{θ tu positive implies p � p1p2, t � t1t2 P MF, and tpi{θ tiu positive for
i � 1, 2. In turn, t P MF and t|b being a redex imply b � ε, then b � ib1 where i P t1, 2u,
hence t|b� ti|b1 . IH yields pi|a1� px where x P θ, for some a1 ¤ b1. We conclude by taking
a � ia1.

Lemma 3.4.20 (Pivot). Let ar, br, cr, c
1
r steps verifying ar   cr, br   cr, br ¦ ar, and

crvarwc
1
r. Then there exists a step b1r such that brvarwb

1
r and b1r   c1r.

Proof. Observe that a   c, b   c and b ¦ a implies a   b   c. We proceed by case
analysis on the definition of residuals, considering ar   cr. Say t|a� pλθp.squ. Observe
that a   c and crvarwc

1
r imply that tp{θ uu is positive.

If c � a12n1, so that c1 � an1, then b   c implies b � a12n and n   n1 (recall
t|a1 P ABS). Hence, taking b1 � an suffices to conclude.

If c � a2mn, then b � a2b2 and b2   mn. Observe that p|m� px where x P θ, and
c1 � akn where s |k� x. Lem. 3.4.19 implies b2 � b1b2 where p |b1� py. Notice that
b1b2   mn, along with both p |b1 and p |m being matchable occurrences, imply that
b1 � m, then x � y, and also b2   n. Hence we conclude by taking b1 � akb2.

Finally, we verify the two remaining gripping axioms.
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Lemma 3.4.21. Let t � pλθp.squ
arÝÑ t1, crvarwc

1
r, and x P fvpt1 |c1 q. Then x P fvpt|c q,

or ar ! cr and x P fvpuq.

Proof. By case analysis on the definition of residuals. If a ¦ c or c � a2mn, then
t|c� t1|c1 , implying x P t|c . Otherwise, i.e. if c � a12n, c1 � an, and tp{θ uu � fail, let
us consider d such that t1 |c1d� ptp{θ uusq|nd� x. Given n P Pospsq, it is easy to obtain
ptp{θ uusq|nd� ptp{θ uups|n qq|d� ptp{θ uupt|c qq|d . In turn, x P fvptp{θ uupt |c qq yields
easily x P fvpt|c q or x P fvpuq ^ t|c X θ � H. We conclude by observing that the latter
case implies ar ! cr.

Lemma 3.4.22 (Grip–Density). Let ar, br, b
1
r, cr, c

1
r be steps verifying brvarwb

1
r, crvarwc

1
r,

and b1r ! c1r. Then br ! cr _ br ! ar ! cr.

Proof. Let t
arÝÑ t1, and say t |a� pλθp.squ, t1 |b1� pλθ1p

1.s1qu1, and t |b� pλθ1p
2.s2qu2;

notice that the the set θ1 is invariant w.r.t. the contraction of ar. Recall that b1r ! c1r
implies tp2{θ1 u

2u positive, b112 ¤ c1 and θ1 X fvpt1 |c1 q � H. Observe that tp2{θ1 u
2u

positive and tp1{θ1 u
1u decided imply tp1{θ1 u

1u positive; cfr. Lem. 3.4.12. Let x P
θ1 X fvpt1|c1 q. Then Lem. 3.4.21 implies x P fvpt|c q _ par ! cr ^ x P fvpuqq.

Given b1   c1, Lem. 3.4.18 implies b   c or pb ‖ c^ a2 ¤ cq. The latter case implies
ar �! cr and θ1 X fvpt|c q � H, contradicting x P fvpt|c q _ ar ! cr. Hence b   c. There
are three cases to analyse, depending on a.

1. a   b   c.

Assume b � a12n, c � a12n1 and n   n1, so that b1 � an and c1 � an1. Then
b112 ¤ c1 implies n12 ¤ n1, and therefore b12 ¤ c. Moreover, a12 ¤ b implies
θ1 X fvpuq � H, so that x P fvpt|c q. Consequently, br ! cr.

Assume b � a2mn, c � a2m1n1, mn   m1n1, p|m� py, p|m1� pz, and y, z P θ. In this
case, both p|m and p|m1 being variable occurrences, along with mn   m1n1, imply
m � m1, then y � z. Therefore b1 � akn and c1 � ak1n1, where s |k� s |k1� y.
In turn, the last assertion along b112 ¤ c1 imply k � k1, then n12 ¤ n1, therefore
b12 ¤ c. Moreover, in this case ar �! cr implying x P fvpt|c q. Thus br ! cr.

2. b   a   c.

In this case b12 � b112 ¤ c1 and a ¤ c1, therefore b   a implies b12 ¤ a   c. The
existence of c1r implies tp{θ uu � fail. If x P fvpt |c q, then br ! cr. Otherwise,
ar ! cr and x P fvpuq � fvpt|a q, implying br ! ar. Thus we conclude.

3. b   c   a.

In this case, b12 � b112   c1 � c, and ar �! cr implies x P fvpt |c q. Therefore
br ! cr.

Lemma 3.4.23 (Grip–Convexity). Let ar, br, cr P ROptq such that ar ! br and cr   br.
Then ar ! cr _ cr ¤ ar.

Proof. Observe that a   b and c   b implies that either c ¤ a or a   c. In the former
case we immediately conclude. Otherwise, it suffices to notice that a   c   b, a12 ¤ b
and t|c being a redex imply a12 ¤ c, and that c   b, along with the variable convention,
implies θ X fvpt |b q � θ X fvpt |c q, where t |a� pλθp.squ. Therefore H � θ X fvpt |c q so
that we conclude ar ! cr.
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The axioms FD and SO.

We prove the two remaining axioms.
FD is a consequence of the gripping axioms. Thm. 3.2. in [Mel96] states that an ARS

satisfying the gripping axioms along with Self Reduction, Finite Residuals and Linearity,
and whose embedding and gripping relations are acyclic, also enjoys FD. For the ARS
modeling PPC, we have verified all the required axioms. The embedding relation being
an order, and the gripping relation being included in the former, imply immediately
that both are acyclic. Hence we obtain FD.

Lemma 3.4.24 (SO). Let ar, br P ROptq. Then there exist δ, γ such that δ , arvbrw,
γ , brvarw, tgtpar; γq � tgtpbr; δq and the relations var; γw and vbr; δw coincide.

Proof. We consider arbitrary reduction sequences δ, γ verifying δ , arvbrw and γ ,

brvarw. Let t
arÝÑ t1

γ
Ý� t1, t

brÝÑ t2
δ
Ý� t2, and t|a� pλθp.squ.

If a ‖ b, then it is straightforward to obtain t1 � t2 � trt1 |a sart2 |b sb, and also that
crvar; γw � crvbr; δw for any cr.

If a   b and tp{θ uu � fail, then γ � nilt1 and t1 � t1 � trIsa. On the other hand,
t2 � trpλθp

1.s1qu1sa, Lem. 3.4.12 implies tp1{θ u
1u � fail, and δ � xxt2, ayy. Thus the

result follows easily.
If a   b and tp{θ uu is positive, a simple, yet tedious, analysis yields the result. This

analysis relies on the fact that replacement, residuals and reduction steps are compatible
with substitutions.

3.5 The normalising reduction strategy S for PPC

In this section, we formulate the multistep reduction strategy S for PPC, and we show that
S computes necessary and non-gripping multisteps. In view of the abstract normalisation
result stated in Section 3.3, these facts about S, along with the fact that PPC as an ARS
enjoys all the required axioms, imply that S is normalising. In the following, we use LO
as an acronym for “leftmost-outermost”.

We define formally the notion of prestep.

Definition 3.5.1. A prestep is a term of the form pλθ p.tqu, regardless of whether the
match tp{θ uu is decided or not.

The rationale behind the definition of S can be described through two observations.
First, it focuses on the LO prestep of t, entailing that when PPC is restricted to the
λ-calculus it behaves exactly as the LO strategy for the λ-calculus. Second, if the match
corresponding to the LO occurrence of a prestep is not decided, then the strategy selects
only the (outermost) step, or steps, in that subterm which should be contracted to get
it “closer” to a decided match.

E.g. consider the following term, where r1 and r2 are steps:

pλtx,yu a px pc pyq.y xq pa r1 r2q

Since we want to avoid lookahead, the strategy can only recognise the occurrences of
the prestep structure, and whether a prestep is in fact a step; it cannot distinguish
between different steps, in terms e.g. of their targets, or of the fact that a step could
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lead to an infinite reduction sequence. Therefore, the decision of S cannot depend on
particular features of r1 and r2, it just knows that they are steps: it selects the steps in
the same position (i.e., only r1, only r2, or both) for any term having this form. The
match ta px pc pyq{tx,yu a r1 r2u is not decided; the role played by r1 is different from
that of r2 in obtaining a decided match. Replacing r1 by an arbitrary term t1 does not
yield a decided match, i.e. ta px pc pyq{tx,yu a t1 r2u is not decided. However, replacing
r2 by c s2 (resp. by d s2) does: ta px pc pyq{tx,yu a r1 pc s2qu � tx Ñ r1, y Ñ s2u (resp.
ta px pc pyq{tx,yu a r1 pd s2qu � fail). Hence, contraction of r2 can contribute towards
obtaining a decided match, while contraction of r1 does not.

Let us now consider the non-sequential example pλtxup px m s.xq pp pIaq pIfq pIdqq.
Again, S only knows, about the subterms pIaq, pIfq and pIdq, that they are steps;
therefore, it makes similar selections for any term having the form:

pλtxup px m s.xq pp r1 r2 r3q

where each ri is a step. As in the previous example, contraction of r1 does not contribute
towards obtaining a decided match, therefore the candidates to be selected are r2 and r3.
Selecting only r2 could lead to non-normalisation, e.g. if r2 is a non-terminating term,
and r3 � Id. The situation is analogous for r3. Hence, a normalising reduction strategy
should select both steps in this case. This example shows the relevance of multistep
reduction strategies to cope with non-sequential systems.

We also notice that steps in the pattern and/or the argument of a prestep could be
selected. However, the steps in the body of the abstraction may be ignored, since no
such step can contribute to generate a decided match. E.g., take:

pλtx,yu a pb pxq r1.r2q pa r3 pd r4qq

where every ri is a step. The strategy selects r1 and r3; contraction of r4 is delayed
since r1 is not in matchable form (if the contractum of r1 were e.g. either d py or a, then
the match w.r.t. d r4 would be decided without the need of reducing r4).

We model a reduction step as in Dfn. 3.4.9, i.e. a pair xt, py, where p is the position
of a subterm of t having the form pλθp.squ. The definition of the reduction strategy S
for PPC follows.

Definition 3.5.2. The reduction strategy S is defined as Sptq :� txt, py { p P Sπptqu,
where the auxiliary functions Sπ (returning positions) and SM (returning pairs of sets
of positions) are defined as follows.

Sπpxq :�H
Sπppxq :�H

Sπpλθ p.tq :�1Sπppq if p R NF
Sπpλθ p.tq :�2Sπptq if p P NF

Sπppλθ p.tquq :�tεu if tp{θ uu decided
Sπppλθ p.tquq :�11GY 2D if tp{θ uu � wait,SMθpp, uq � xG,Dy � xH,Hy,
Sπppλθ p.tquq :�11Sπppq if tp{θ uu � wait,SMθpp, uq � xH,Hy, p R NF
Sπppλθ p.tquq :�12Sπptq if tp{θ uu � wait,SMθpp, uq � xH,Hy, p P NF, t R NF
Sπppλθ p.tquq :�2Sπpuq if tp{θ uu � wait,SMθpp, uq � xH,Hy, p P NF, t P NF

Sπptuq :�1Sπptq if t is not an abstraction and t R NF
Sπptuq :�2Sπpuq if t is not an abstraction and t P NF



84 CHAPTER 3. NORMALISATION

SMθppx, tq :�xH,Hy if x P θ
SMθppx, pxq :�xH,Hy if x R θ

SMθpp1p2, t1t2q :�x1G1 Y 2G2, 1D1 Y 2D2y if t1t2, p1p2 P MF,SMθppi, tiq � xGi, Diy
SMθpp, tq :�xSπppq,Hy if p R MF
SMθpp, tq :�xH,Sπptqy if p P MF & t R MF &  bmpp, θq

Recall Dfn. 2.1.8 for the definition of the set of normal forms, i.e. NF.

The function SM formalises the simultaneous structural analysis of pattern and
argument which is performed if the LO prestep is not decided. Its outcome is a pair of
sets of positions, corresponding to steps inside the pattern and argument respectively,
which could contribute to turning a non-decided match into a decided one. Notice the
similarities between the first three clauses in the definition of SM and those of the
definition of the matching operation (cfr. Section 3.4.1).

We also notice that whenever a non-decided match can be turned into a decided one,
the function SM chooses at least one (contributing) step. Formally, it can be proved
that, given p and u such that tp{θ uu � wait, if there exist p1 and u1 such that pÝ�� p1,
uÝ�� u1 and tp1{θ u

1u is decided, then SMθpp, uq � xH,Hy.

Let us analyse briefly the clauses in the definition of Sπ.
The focus on the LO prestep of a term is formalised in the first four and the last

two clauses. If the LO prestep is in fact a step, then the strategy selects exactly that
step; this is the meaning of the fifth clause. If the LO prestep is not a step, then SM
is used. If it returns some steps which could contribute towards a decided match, then
the strategy selects them (sixth clause). Otherwise, as we already remarked, the prestep
will never turn into a step, so that the strategy looks for the LO prestep inside the
components of the term (seventh, eighth and ninth clauses).

Notice that for the translation of any λ-calculus term into PPC, all the presteps are
in fact steps, particularly the LO one. Therefore the focus on the LO prestep, along
with the selection of exactly that prestep if it is a step, imply that S behaves exactly as
LO when PPC is restricted to the λ-calculus.

While the strategy focuses in obtaining a decided match for the LO prestep, it can
select more steps than needed. E.g., for the term pλtyu a b c py.yq pa pI cq pI bq pI aqq,
the set selected by the strategy S is tI c, I bu, even if the contraction of just one step
of the set suffices to make the head match decided.

The reduction strategy S is complete, i.e., if t is not a normal form, then Sptq � H.
Moreover, all steps in Sptq are outermost. On the other hand, notice that S is not
outermost fair [vR97]. Indeed, given pλ cx.sqΩ, where Ω is as in the λ-calculus, S
continuously contracts Ω, even when s contains a step.

3.5.1 Normalisation of S – preliminary notions and results

The remainder of this section is devoted to prove that S selects necessary and non-
gripping sets. We use the notational conventions ar and Ar, cfr. Notation 3.4.10 in
page 74, to relate (sets of) steps with the corresponding (sets of) positions.

The forthcoming proofs rely on the notion of projection of a multireduction w.r.t.
a position. We define this notion in the following. Afterwards, we prove that it is well
defined, and that moreover target, residuals and the uses relation are compatible with
projections. Several previous definitions are needed.
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Notation 3.5.3. Let B � ROptq and a P Posptq. We write a ¤ B iff a ¤ b for all
br P B. Analogously, for every reduction sequence δ and a P Pospsrcpδqq, we write a ¤ δ
iff for any i ¤ |δ|, a ¤ bi where δris � xti, biy.

Definition 3.5.4. Let B be a multistep, and a P PospsrcpBqq. We say that B preserves
a iff all br P B verify b �  a, or equivalently, a ¤ b or a ‖ b. In turn, a multireduction ∆
preserves a iff all its elements do.

Definition 3.5.5. If B preserves a, then we define the free part and the dominated
part of B w.r.t. a, written BFa and BDa respectively, as follows: BFa :� tbr P B { a ‖ bu
and BDa :� tbr P B { a ¤ bu.7 Observe B � BFa Z BDa , and b1r P BFa and b2r P BDa imply
b1 ‖ b2.

Definition 3.5.6. Let δ be a reduction sequence, and a P Posptq where t � srcpδq.
We define the projection of δ w.r.t. a, notation δ |a, as follows: if δ � nilt, then
δ |a � nilt|a, otherwise |δ|a | � |δ| and δ|a ris � δris|a for all i ¤ |δ|.

Definition 3.5.7. If B � ROptq preserves a P Posptq, then we define the projection of
B w.r.t. a, notation B |a, as txt|a , b

1y { ab1r P Bu; if this set is empty, then B |a � Ht|a.

Notice that B |a � BDa |a.

Definition 3.5.8. If a multireduction ∆ preserves a P Pospsrcp∆qq, then we define
projection of ∆ w.r.t. a, notation ∆ |a, as follows: nilt |a � nilt|a, and in any other
case, ∆ |a � x∆r1s |a; . . . ; ∆rns |a; . . .y.

We prove that δ |a is a well-defined reduction sequence (Lem. 3.5.9, along with a
straightforward induction on |δ|, suffices), and that targets (Lem. 3.5.10) and residuals
(Lem. 3.5.12) are compatible with the projection of reduction sequences.

Lemma 3.5.9. Let t
abrÝÑ t1. Then t|a

brÝÑ t1|a .

Proof. Let t |ab� pλθp.squ and s1 � tp{θ uus. Then t1 � trs1sab. Observe pt|a q|b� t |ab
and t1 � trpt|a qrs

1sbsa implying t1|a� pt|a qrs
1sb. Thus we conclude.

Lemma 3.5.10. Let a be a position and t
δ
Ý� t1, such that a ¤ δ. Then t|a

δ|a
Ý� t1|a .

Proof. We proceed by induction on |δ|. If δ � nilt, then t1 � t and δ |a� nilt|a , so we

conclude. Otherwise, a ¤ δ implies δ � abr; δ
1, say t

abrÝÑ t2
δ1

Ý� t1. Then Lem. 3.5.9 and

IH imply t|a
brÝÑ t2|a

δ1|a
Ý� t1|a . Thus we conclude.

Lemma 3.5.11. Let abr, acr P ROptq, so that br, cr P ROpt |a q. Then acrvabrwdr iff
d � ad1 and crvbrwd

1
r.

Proof. Let t |ab� pt|a q |b� pλθp.squ. In the analysis of acrvabrwdr and crvbrwd
1
r, cfr.

Dfn. 3.4.9, always the case applying is the same, and moreover with the same arguments.
E.g. if ab � ac2mn, then b � c2mn, the values for m and n coincide. In this case, the
subterms p and s also coincide. These observations suffice to conclude.

7A remark about the names “free” and “dominated” given to BFa and BDa follows. We recall that b
is free from a (that is, b � a) iff a ¦ b, i.e. b   a or b ‖ a. The former possibility cannot occur since
B preserves a, hence the name given to BFa . In turn, it is not true in general that b P BDa implies that
b is dominated by tau, the exception being the case b � a; hence, the name “dominated” is in fact
approximate.
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Lemma 3.5.12. Let a be a position, abr P ROptq, so that br P ROpt |a q, and δ a
reduction sequence verifying srcpδq � t and a ¤ δ. Then abrvδwdr iff d � ad1 and
brvδ|awd

1
r.

Proof. We proceed by induction on |δ|. If δ � nilt, so that δ |a� nilt|a , then abrvδwdr
implies d � ab, and brvδ|awd

1
r implies d1 � b, thus we conclude. Otherwise, a ¤ δ implies

δ � acr; δ
1, a ¤ δ1, and δ |a� cr; δ

1 |a . We proceed by double implication. Let us define
t1 � srcpδ1q.
ùñq abrvδwdr implies abrvacrwer and ervδ

1wdr for some er. Lem. 3.5.11 implies e � ae1

and brvcrwe
1
r. Observe that er � ae1r P ROpt1q. Therefore IH yields d � ad1 and

e1rvδ
1|awd

1
r, hence brvδ|awd

1
r.

ðùq brvδ|awd
1
r implies brvcrwe

1
r and e1rvδ

1 |awd
1
r for some e1r. Let us call e � ae1 and

d � ad1. Observe e1r P ROpt1|a q, cfr. Lem. 3.5.9, then er P ROpt1q. Lem. 3.5.11 implies
abrvacrwer. In turn, IH implies ervδ

1wdr. Thus we conclude.

We verify that if a ¤ B, then residuals (Lem. 3.5.15) and complete developments
(Lem. 3.5.16) are compatible with the projection B |a.

Lemma 3.5.13. Let a ¤ B and br P B. Then a ¤ Bvbrw.

Proof. Hypotheses imply b � ab1. For all cr P Bvab1rw, Lem. 3.5.11 implies c � ac1. Thus
we conclude.

Lemma 3.5.14. Let a ¤ B and δ , B. Then a ¤ δ.

Proof. We proceed by induction on νpBq. Let t
B
ÝÑ� t1. If B � Ht then δ � nilt and

we conclude immediately. Otherwise B � br; δ
1 where br P B, implying a ¤ b, and

δ1 , Bvbrw. Lem. 3.5.13 implies a ¤ Bvbrw. Hence IH yields a ¤ δ1, which suffices to
conclude.

Lemma 3.5.15. Let a ¤ B and abr P B. Then pBvabrwq|a� B|a vbrw.

Proof. By double inclusion.

�q Let cr P pBvabrwq |a , so that acr P Bvabrw. Let adr P B such that adrvabrwacr,
observe dr P B|a . Lem. 3.5.11 implies drvbrwcr. Hence cr P B|a vbrw.
�q Let cr P B|a vbrw, let dr P B|a such that drvbrwcr, observe that adr P B. Lem. 3.5.11
implies adrvabrwacr. Then acr P Bvabrw, implying cr P pBvabrwq|a .

Lemma 3.5.16. Let a ¤ B and δ , B. Then δ|a, B|a .

Proof. By induction on νpBq. Let t � srcpBq. If B � Ht then observing δ � nilt suffices
to conclude. Otherwise δ � abr; δ

1 where δ1 , Bvabrw. In this case, δ |a� br; δ
1 |a . IH

yields δ1 |a , pBvabrwq |a . In turn, Lem. 3.5.15 implies pBvabrwq |a� B |a vbrw. Hence
δ|a, B|a .

We verify that given a multistep t
B
ÝÑ� t1 s.t. B preserves a, it is only the dominated

part of B that actually modifies t|a ; cfr. Lem. 3.5.18.

Lemma 3.5.17. Let a,B such that B preserves a, and br P B. Then Bvbrw preserves a.
Moreover BvbrwFa � BFa vbrw and BvbrwDa � BDa vbrw.
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Proof. Take b11r P Bvbrw and let b1r P B such that b1rvbrwb
1
1r. Observe that either b ¤ b11

(if b   b1), or b11 � b1 (if b ¦ b1). We verify that b11 �  a. B preserves a implies a ¤ b or
a ‖ b, and analogously for b1.

• Assume a ¤ b. If a ‖ b1 then b11 � b1 implying a ‖ b11. If a ¤ b1, then either b11 � b1
or b ¤ b11 imply a ¤ b11.

• Assume a ‖ b. If a ‖ b1 then either b11 � b1 or b ¤ b11 imply a ‖ b11. If a ¤ b1, so
that b ‖ b1, then b11 � b1, implying a ¤ b11.

Consequently, Bvbrw preserves a. Furthermore, a ‖ b1 implies a ‖ b11 and a ¤ b1 implies
a ¤ b11. The former assertion implies BFa vbrw � BvbrwFa . Moreover, let b12r P BvbrwFa
and b2r P B such that b2rvbrwb

1
2r. Observe that a ¤ b2 would imply a ¤ b12, therefore

B preserves a implies a ‖ b2, i.e. b2r P BFa . Therefore BvbrwFa � BFa vbrw, so that we
obtain BvbrwFa � BFa vbrw. An analogous argument on the dominated parts allows to
conclude.

Lemma 3.5.18. Let B P ROptq and assume B preserves a and t
BDaÝÑ� t2

BFa vBDa wÝÑ� t1. Then
t1|a� t2|a .

Proof. A simple induction based on Lem. 3.5.17 yields that b ‖ a if br P BFa vBDa w.
Therefore, a straightforward analysis allows to conclude.

Lem. 3.5.18 allows to verify that targets and residuals are compatible with the pro-
jection B |a.

Lemma 3.5.19. Let t
B
ÝÑ� t1 and assume B preserves a. Then:

(i) t|a
B|a
ÝÑ� t1|a .

(ii) If acr P ROptq, so that cr P ROpt|a q, then acrvBwdr iff d � ad1 and crvB|awd1r.

Proof. Let t
BDaÝÑ� t2

BFa vBDa wÝÑ� t1. Let δ such that δ , BDa , and γ , BFa vBDa w. Observe

t
δ
Ý� t2

γ
Ý� t1. Moreover, a ¤ δ and δ|a, BDa |a� B|a , by Lem. 3.5.14 and Lem. 3.5.16

respectively. On the other hand, b ‖ a for all br P BFa vBDa w implies a ‖ γris for all i.
Notice that a ‖ b^ a ‖ c implies a ‖ d whenever brvcrwdr.

To prove item (i), it suffices to observe that Lem. 3.5.10 implies t|a
δ|a
Ý� t2 |a� t1 |a ;

cfr. Lem. 3.5.18.
We prove item (ii), by double implication.

ùñq Let acrvBwdr. Then acrvδwer and ervγwdr for some er. Lem. 3.5.12 implies e � ae1

and crvδ |awe
1
r. In turn, a ‖ γris for all i and a ¤ e imply d � e, i.e. d � ad1 where

d1 � e1, and crvδ|awd
1
r. We conclude by recalling that δ|a, B|a .

ðùq Let crvB |awd1r, and d � ad1. Then crvδ |awd
1
r. Lem. 3.5.12 implies acrvδwxt

2, dy.
In turn, a ‖ γris for all i and a ¤ d imply xt2, dyvγwxt1, dy. Hence acrvBwdr

Now consider a multireduction ∆ which preserves some position a. For any n   |∆|,
Lem. 3.5.19:(i) implies that srcp∆rn� 1s |a q � srcp∆rn� 1sq |a� tgtp∆rns |a q. This
implies that the definition of the projection of ∆ over a is well-defined.

We verify the expected properties for the projections of multireductions.

Lemma 3.5.20. Let t
∆
Ý�� t1 and assume ∆ preserves a. Then:
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(i) t|a
∆|a
Ý�� t1|a .

(ii) If acr P ROptq, then acrv∆wdr iff d � ad1 and crv∆|awd
1
r.

(iii) If acr P ROptq, then ∆ uses acr iff ∆|a uses cr.

Proof. To prove item (i) a simple induction on |∆|, resorting on Lem. 3.5.19:(i), suffices.
Item (ii) admits an argument similar to the one used to prove Lem. 3.5.12, resorting

on Lem. 3.5.19:(i) instead of Lem. 3.5.11.
We prove item (iii). Assume ∆|a uses cr, i.e. ∆ � ∆1;D; ∆2 and there exists some

dr P D |a X crv∆1 |aw. Item (ii) implies acrv∆1wadr, and moreover dr P D |a implies
adr P D. Hence ∆ uses acr.

Assume ∆ uses acr, i.e. ∆ � ∆1;D; ∆2 and there exists some dr P D X acrv∆1w.
Item (ii) implies d � ad1, so that d1r P D |a , and crv∆1 |awd

1
r. On the other hand,

∆|a� ∆1|a ;D|a ; ∆2|a . Hence ∆|a uses cr.

We conclude this section by introducing some results used to prove that S selects
necessary sets, and also to prove that S selects non-gripping sets. In the following
proofs, as well as in those of Section 3.5.2, we use Notation 3.4.10 in the following sense:
if SMθpp, tq � xG,Dy, then Gr and Dr are the sets of steps, in p and t respectively,
corresponding to the sets of positions G and D.

Lemma 3.5.21. If ttp�θ uuu is positive, then SMθpp, uq � xH,Hy.

Proof. Observe that ttp �θ uuu positive implies p P DS. Then a simple induction on p
suffices. In particular, if p � p1p2, then ttp �θ uuu positive implies u � u1u2 and both
ttpi �θ uiuu positive, so that the IH on each i allows to conclude.

Lemma 3.5.22. Let t, u be terms and p be a pattern.

(i) Let t
∆
Ý�� t1 where t R MF and t1 P MF. Then ∆ uses Sptq and Sptqv∆w � H.

(ii) Let p
Γ
Ý�� p1 and u

Π
Ý�� u1, where ttp �θ uuu � wait and ttp1 �θ u

1uu is decided. Let
xG,Dy � SMθpp, uq. Then Γ uses Gr or Π uses Dr. Moreover, ttp1�θ u

1uu positive
implies GrvΓw � DrvΠw � H.

(iii) Let p
Γ
Ý�� p1 and u

Π
Ý�� u1, where tp{θ uu � wait and tp1{θ u

1u is decided. Let
xG,Dy � SMθpp, uq. Then Γ uses Gr or Π uses Dr. Moreover, tp1{θ u

1u positive
implies GrvΓw � DrvΠw � H.

Proof. Item (iii) follows from item (ii) since tp{θ uu � wait implies ttp �θ uuu � wait,
and tp1{θ u

1u decided or positive implies ttp1 �θ u
1uu decided and positive respectively.

We prove items (i) and (ii), by simultaneous induction on |t| � |u| � |p|.

• Item (i). Observe that t R MF implies that t is either a variable or an application.
In the former case t1 � t R MF contradicting the hypothesis. So we consider the
latter one.

Assume t � pλθp.squ where tp{θ uu is decided, so that Sptq � txt, εyu. If there

is some i ¤ |∆| such that xti, εy P ∆ris, where ti
∆ris
ÝÑ� ti�1, taking the minimal

such i yields Sptqv∆r1..i � 1sw � txti, εyu, so that ∆ uses Sptq, and moreover
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Sptqv∆r1..isw � ε. Otherwise t1 � pλθp
1.s1qu1, contradicting t1 P MF. Thus we

conclude.

Assume t � pλθp.squ where tp{θ uu � wait. Then t1 P MF implies t
∆1

Ý�� t2
∆2

Ý�� t1

where t2 � pλθp
2.s2qu2 and tp2{θ u

2u is decided. Moreover ∆1 preserves 11 and 2,

implying p
∆1|11
Ý�� p2 and u

∆1|2
Ý�� u2 by Lem. 3.5.20:(i). Let SMθpp, uq � xG,Dy. The

IH:(iii) can be applied, yielding that ∆1 |11 uses Gr or ∆1 |2 uses Dr. Therefore
xG,Dy � xH,Hy, implying Sπptq � 11G Y 2D. In turn, Lem. 3.5.20:(iii) implies
that ∆1 uses Sptq. Furthermore, if tp2{θ u

2u is positive, then IH:(iii) also implies
Grv∆

1 |11w � Drv∆
1 |2w � H, and tp2{θ u

2u � fail, along with t1 P MF, implies
t1 � I. In both cases we obtain Sptqv∆w � H.

Assume t � su where s R MF. Then, t1 P MF implies t � su
∆1

Ý�� s1u1
∆2

Ý�� t1, where
∆1 preserves 1 and 2, and either s1 P DS or s1 is an abstraction, i.e. s1 P MF.

In turn, Lem. 3.5.20:(i) implies s
∆1|1
Ý�� s1. Therefore, the IH:(i) applies, yielding

that ∆1 |1 uses Spsq and Spsqv∆1 |1w � H. Observe that s R MF and s1 P MF
imply s � s1, then s R NF, hence Sπptq � 1Sπpsq. Hence Lem. 3.5.20:(iii) and
Lem. 3.5.20:(ii) implies that ∆1 uses Sptq and Sptqv∆1w � H respectively. Thus we
conclude.

Finally, the remaining case t � su where s P DS contradicts t R MF.

• Item (ii). Observe that ttp1 �θ u
1uu decided implies p1 P MF, and also u1 P MF

unless bmpp1, θq. We consider the following cases depending on whether p is in
MF or not and likewise for u.

Assume p R MF, so that G � Sπppq and D � H. In this case, p1 P MF implies that

the IH:(i) can be applied on p
Γ
Ý�� p1. We obtain that Γ uses Gr and GrvΓw � H,

which suffices to conclude.

Assume p P MF and u R MF, so that ttp �θ uuu � wait implies  bmpp, θq, and
therefore G � H and D � Sπpuq. Observe that p P MF, ttp �θ uuu � wait and

p
Γ
Ý�� p1 imply  bmpp1, θq, so that u1 P MF. Therefore, the IH:(i) can be applied

on u
Π
Ý�� u1. We conclude like in the previous case.

Assume p, u P MF, so that ttp�θ uuu � wait implies p � p1p2 and u � u1u2. Then
G � 1G1 Y 2G2 and D � 1D1 Y 2D2, where SMθppi, uiq � xGi, Diy for i � 1, 2.
Moreover, it is straightforward to verify that both Γ and Π preserve 1 and 2, so

that Lem. 3.5.20:(i) implies p1 � p11p
1
2, u1 � u11u

1
2, and pi

Γ|i
Ý�� p1i and ui

Π|i
Ý�� u1i for

i � 1, 2. On the other hand, the hypotheses imply the existence of some k P t1, 2u
verifying ttpk�θ ukuu � wait and ttp1k�θ u

1
kuu decided. Therefore, the IH:(ii) can be

applied yielding that Γ |k uses pGkqr or Π |k uses pDkqr. Hence, Lem. 3.5.20:(iii)
implies that Γ uses Gr or Π uses Dr.

Moreover, ttp1 �θ u
1uu positive implies ttp1i �θ u

1
iuu positive for i � 1, 2. For each i,

observe that ttp �θ uuu � wait implies ttpi �θ uiuu � fail. If ttpi �θ uiuu � wait,
then the IH:(ii) implies pGiqrvΓ |iw � pDiqrvΠ |iw � H; if ttpi �θ uiuu is positive,
then Lem. 3.5.21 implies Gi � Di � H. Hence Lem. 3.5.20:(ii) yields GrvΓw �
DrvΠw � H.
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3.5.2 Normalisation of S – main proofs

In this section we show that S always selects necessary and non-gripping sets of redexes.

Proposition 3.5.23. Let t
∆
Ý�� t1 where t R NF and t1 P NF. Then ∆ uses Sptq.

Proof. We prove the following three statements simultaneously, where t, u, p are terms.

(i) The statement of the proposition.

(ii) Let p
Γ
Ý�� p1 and u

Π
Ý�� u1 where p1, u1 P NF, xG,Dy � SMθpp, uq � xH,Hy, and

ttp�θ uuu � ttp
1 �θ u

1uu � wait. Then Γ uses Gr or Π uses Dr.

(iii) Let p
Γ
Ý�� p1 and u

Π
Ý�� u1 where p1, u1 P NF, xG,Dy � SMθpp, uq � xH,Hy, and

tp{θ uu � tp
1{θ u

1u � wait. Then Γ uses Gr, or Π uses Dr.

As in Lem. 3.5.22, item (iii) follows from item (ii). So we prove the others, by induction
on |t| � |u| � |p|.

• Item (i). If t is either a matchable or a variable, then t is a normal form contra-
dicting the hypotheses, so let us assume that t is an application or an abstraction.

Assume t � pλθp.squ and tp{θ uu decided, so that Sptq � txt, εyu. Suppose ∆ does
not use Sptq, so that t1 � pλθp

1.s1qu1, and ∆ preserves 11, 12 and 2. This implies
p Ý�� p1 and u Ý�� u1, cfr. Lem. 3.5.20:(i), so that Lem. 3.4.12 implies tp1{θ u

1u
decided, contradicting t1 being a normal form. Thus we conclude.

Assume t � pλθp.squ, tp{θ uu � wait and xG,Dy � SMθpp, uq � xH,Hy. We
define ∆1 as follows. If ∆ includes the contraction of, at least, one head step, i.e.
if there exists some n ¤ |∆| verifying xtgtp∆r1..n� 1sq, εy P ∆rns, we consider the
minimum such n and define ∆1 :� ∆r1..n � 1s. Otherwise, ∆1 :� ∆. In both

cases t
∆1

Ý�� pλθp
1.s1qu1 and ∆1 preserves 11 and 2, so that Lem. 3.5.20:(i) implies

p
∆1|11
Ý�� p1 and u

∆1|2
Ý�� u1. Notice that in the latter case, p1, u1 P NF. In both cases we

obtain that ∆1|11 uses Gr or ∆1|2 uses Dr, if tp1{θ u
1u decided by Lem. 3.5.22:(iii),

otherwise by the IH:(iii). Recalling that in this case, Sπptq � 11GY2D, we conclude
by applying Lem. 3.5.20:(iii).

Assume t � pλθp.squ, tp{θ uu � wait, and SMθpp, uq � xH,Hy. A simple
argument by contradiction based on Lem. 3.5.22:(iii) implies that t1 � pλθp

1.s1qu1

and ∆ preserves 11, 12 and 2. Therefore, Lem. 3.5.20:(i) implies p
∆|11
Ý�� p1 and

similarly for s and u. If p R NF, so that Sπptq � 11Sπppq, then the IH:(i) can be
applied to obtain that ∆|11 uses Sppq, so that Lem. 3.5.20:(iii) allows to conclude.
The remaining cases, i.e. p P NF, s R NF and p, s P NF respectively, can be
handled similarly.

Assume t � su and s R ABS. If there exists some n such that tgtp∆rnsq � s1u1

and s1 P ABS, then we consider the minimal such n, and let ∆1 � ∆r1..ns. It is

easy to deduce that ∆1 preserves 1 and 2, so that Lem. 3.5.20:(i) implies s
∆1|1
Ý�� s1.

Observe that s R NF, implying Sπptq � 1Sπpsq. Moreover, s P DS would imply
s1 P DS, so that s R MF. Hence, a projection argument similar to that used
in previous cases, based on Lem. 3.5.22:(i), allows us to conclude. Otherwise s
does not reduce to an abstraction, implying t � s1u1, ∆ preserves 1 and 2, and
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s1, u1 P NF. Again, a projection argument applies, to s
∆|1
Ý�� s1 if s R NF, to u

∆|2
Ý�� u1

otherwise, based on IH:(i).

Assume t � λθp.s. Then, t1 � pλθp
1.s1q, ∆ preserves 1 and 2, and p1, s1 P NF. A

projection argument based on IH:(i) applies to p
∆|1
Ý�� p1 or s

∆|2
Ý�� s1, depending on

whether p P NF or not.

• Item (ii). Assume p R MF, so that G � Sπppq and D � H. The hypotheses
imply Sπppq � H, and then p is not a normal form. Therefore, item (i) just proved

applies to p
Γ
Ý�� p1, which suffices to conclude.

Assume p P MF,  bmpp, θq, u R MF. In this case, G � H and D � Sπpuq. Hence,

an argument similar to that of the previous case applies on u
Π
Ý�� u1.

Assume p, u P MF. In this case, ttp�θ uuu � wait implies p � p1p2 and u � u1u2,
so that G � 1G1 Y 2G2 and D � 1D1 Y 2D2, where SMθppi, uiq � xGi, Diy
for i � 1, 2. The assumption p, u P MF also implies p1 � p11p

1
2, u1 � u11u

1
2,

and both Γ and Π preserve 1 and 2. Then Lem. 3.5.20:(i) implies pi
Γ|i
Ý�� p1i and

ui
Π|i
Ý�� u1i for i � 1, 2. Moreover, xG,Dy � xH,Hy implies xGk, Dky � xH,Hy for

some k P t1, 2u. Notice that ttpk �θ ukuu being positive (resp. fail) contradicts
Lem. 3.5.21 (resp. ttp �θ uuu � wait). Then ttpk �θ ukuu � wait, so that either
the IH (ii) or Lem. 3.5.22:(ii) applies, depending on whether ttp1k�θ u

1
kuu is wait or

positive. In either case, we obtain that Γ|k uses pGkqr, or Π|k uses pDkqr. Thus
Lem. 3.5.20:(iii) allows to conclude.

Lemma 3.5.24. Let t
∆
Ý�� t1, br P Sptqv∆w, and ar verifying ar   br. Then ar is a

matching failure.

Proof. We prove the following, more general statement.

(i) The lemma statement.

(ii) Let p
Γ
Ý�� p1 and u

Π
Ý�� u1 such that ttp�θuuu � wait, br P GrvΓw or br P DrvΠw where

SMθpp, uq � xG,Dy, and ar verifying ar   br. Then ar is a matching failure.

(iii) Let p
Γ
Ý�� p1 and u

Π
Ý�� u1 such that tp{θ uu � wait, br P GrvΓw or br P DrvΠw where

SMθpp, uq � xG,Dy, and ar verifying ar   br. Then ar is a matching failure.

As in Lem. 3.5.22, item (iii) follows from item (ii). So we prove the others, by
induction on |t| � |u| � |p|.

• We prove item (i). If t is either a variable or a matchable, then t is a normal form,
contradicting the existence of br.

Assume t � pλθp.squ and tp{θ uu decided, implying Sptq � txt, εyu. Then, a
straightforward inductive argument on |∆| yields that Sptqv∆w � H or br � xt

1, εy,
contradicting in both cases the existence of ar. Thus we conclude.

Assume t � pλθp.squ, tp{θ uu � wait, and xG,Dy � SMθpp, uq � xH,Hy. Then

Sπptq � 11GY2D. Consider ∆1,∆2 such that ∆ � ∆1; ∆2, t
∆1

Ý�� t2 � pλθp
1.s1qu1

∆2

Ý��



92 CHAPTER 3. NORMALISATION

t1, ∆1 preserves 11 and 2, and either ∆2 � nilt2 or xt2, εy P ∆2r1s. Lem. 3.5.20:(i)

implies p
∆1|11
Ý�� p1 and u

∆1|2
Ý�� u1. If tp1{θ u

1u is positive, then Lem. 3.5.22:(iii) implies
Grv∆

1|11w � Drv∆
1|2w � H, and therefore Lem. 3.5.20:(ii) yields Sptqv∆1w � H. If

tp1{θ u
1u � fail and ∆2 � nilt2 , then it is immediate to obtain t1 � I, a normal

form, contradicting the existence of br. Therefore, assume tp1{θ u
1u P twait, failu

and ∆2 � nilt2 , so that ∆ � ∆1 and t1 � pλθp
1.s1qu1. An analysis of the ancestor

of br, which is some b0r P Sptq, along with Lem. 3.5.20:(ii), yields that b � 11b1

where b1r P Grv∆ |11w or b � 2b1 where b1r P Drv∆ |2w, implying respectively
that b1r P ROpp1q or b1r P ROpu1q. Let ar verifying ar   br. If a � ε, then
tp1{θ u

1u � fail, i.e. ar is a matching failure. Otherwise, a � 11a1 or a � 2a1, so
that a1r P ROpp1q or a1r P ROpu1q respectively, and a1r   b1r. Therefore IH (iii)
implies that a1r is a matching failure, which suffices to conclude.

Assume t � pλθp.squ, tp{θ uu � wait, and SMθpp, uq � xH,Hy. Observe that

t
Γ
Ý�� pλθp

2.s2qu2 such that tp2{θ u
2u is decided would contradict SMθpp, uq �

xH,Hy; cfr. Lem. 3.5.20:(i) and Lem. 3.5.22:(iii) considering a minimal such Γ.
Therefore, t1 � pλθp

1.s1qu1, ∆ preserves 11, 12 and 2, and tp1{θ u
1u � wait. If

p R NF, so that Sπptq � 11Sπppq, then Lem. 3.5.20:(i) and Lem. 3.5.20:(ii) imply

p
∆|11
Ý�� p1 and b � 11b1 where b1r P Sppqv∆|11w respectively. Observe tp1{θ u

1u � wait

implies that xt1, εy R ROpt1q. Then ar   br implies a � 11a1, so that a1r P ROpp1q,
and a1r   b1r. Hence the IH:(i) applies, which suffices to conclude. The other cases
(p1 P NF and s1 R NF, and p1, s1 P NF) admit analogous arguments.

Assume t � su where s R ABS. Let ∆1,∆2 such that ∆ � ∆1; ∆2, t
∆1

Ý�� s1u1
∆2

Ý�� t1,
∆1 preserves 1 and 2, and either ∆2 � nilt1 or xs1u1, εy P ∆2r1s. Lem. 3.5.20:(i)

implies s
∆1|1
Ý�� s1 and u

∆1|2
Ý�� u1.

– If s1 P ABS, then s � s1 implying that s is not a normal form, and therefore
Sπptq � 1Sπpsq. Moreover, s R MF; notice that s P DS would imply s1 P DS.
Therefore, Lem. 3.5.22:(iii) implies Spsqv∆1 |1w � H, so that Lem. 3.5.20:(ii)
contradicts the existence of br. Thus we conclude.

– If s1 R ABS, then ∆2 � nils1u1 , so that ∆ � ∆1 and t1 � s1u1. Moreover,
xt1, εy R ROpt1q. If s is not a normal form, so that Sπptq � 1Sπpsq, then
Lem. 3.5.20:(ii) implies b � 1b1 where b1r P Spsqv∆ |1w. On the other hand,
ar   br implies a � 1a1 where a1r P ROps1q. Then the IH:(i) applies, which
suffices to conclude. If s is a normal form, so that Sπptq � 2Sπpuq, then a
similar argument applies.

Assume t � λθp.s. Then ∆ preserves 1 and 2, so that t1 � λθp
1.s1 and Lem. 3.5.20:(i)

implies p
∆|1
Ý�� p1 and s

∆|2
Ý�� s1. A projection argument based on IH (i) analogous to

those used in previous cases, on p
∆|1
Ý�� p1 or s

∆|2
Ý�� s1 depending whether p P NF,

allows to conclude.

• We prove item (ii). There are three cases to analyse, given ttp�θ uuu � wait.

If p R MF, then Gr � Sppq and Dr � H, so that br P GrvΓw � SppqvΓw. The

IH:(i) on p
Γ
Ý�� p1 suffices to conclude.
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If p P MF and u R MF, so that Gr � H and Dr � Spuq, then an analogous
argument applies.

If p � p1p2, u � u1u2, and p, u P MF, then G � 1G1 Y 2G2 and D � 1D1 Y 2D2,
where xGi, Diy � SMθppi, uiq for i � 1, 2. Moreover, p, u P MF implies that
Γ and Π preserve 1 and 2, p1 � p11p

1
2 and u1 � u11u

1
2. Lem. 3.5.20:(i) yields

pi
Γ|i
Ý�� p1i and ui

Π|i
Ý�� u1i for i � 1, 2. In turn, Lem. 3.5.20:(ii) implies b � kb1 where

b1r P GkrvΓ|k w or b1r P DkrvΠ|k w, for some k P t1, 2u. We consider that k. Observe
that ttpk�θukuu � fail would contradict ttp�θuuu � wait, and ttpk�θukuu positive
would imply Gk � Dk � H by Lem. 3.5.21. Therefore ttpk�θukuu � wait. Observe
that neither xp1, εy nor xu1, εy are steps, so that ar   br and b � kb1 imply a � ka1.

Hence the IH:(ii), applied on pk
Γ|k
Ý�� p1k and uk

Π|k
Ý�� u1k, allows to conclude.

Proposition 3.5.25. Let t be a term not in normal form. Then Sptq is a non-gripping
set.

Proof. Let t
Ψ
Ý�� u, ar P ROpuq, br P SptqvΨw; it suffices to deduce that br does not grip

ar. If ar �  br, then we immediately conclude. If ar   br, then Lem. 3.5.24 entails that
ar is a matching failure so br cannot grip ar.

Theorem 3.5.26. The reduction strategy S, cfr.Dfn. 3.5.2, is normalising.

Proof. The results in Section 3.4.3 yield that PPC enjoys all the required axioms.
Prop. 3.5.23 and Prop. 3.5.25 imply that the sets of steps selected by S are necessary
and non-gripping. Thus the statement is an immediate consequence of Thm. 3.3.14.
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Chapter 4

Standardisation for the linear
substitution calculus

As we described in the introduction, cfr. Section 1.2.2, the linear substitution cal-
culus, notation λ�lsub, is an explicit substitution (ES) calculus at a distance, in which
substitutions are not propagated along terms, thus yielding a simpler reduction space
than that of previously proposed ES calculi.

The linear substitution calculus enjoys several properties expected for ES calculi.
The proofs can be obtained as minor variations of the proofs given for other ES calculi
at a distance, cfr. [KÓC08, AK10].

The purpose of this chapter is to establish standardisation results for λ�lsub, through
the ARS model. To reach this goal, it suffices to model this calculus as an ARS, and show
that the resulting ARS satisfies all the axioms required by the abstract standardisation
theorems presented in [Mel96], which are included in this thesis as Thm. 2.1.23 and
Thm. 2.1.24, cfr.page 41. There are three aspects which make the characterisation of
λ�lsub as an ARS a non-trivial task.

Firstly, the identification of steps, and thus the definition of residual relation, is
not immediate, because different coinitial steps could correspond to the same subterm.
Recall the rule

Cvxwrx{us ÝÑ Cvuwrx{us (4.1)

introduced in page 11, and consider the two steps for this rule in the term pxxqrx{ys:
these steps can be distinguished only by the respective occurrence of x.

Secondly, the intent of the embedding relation in the ARS model, as described in
Section 1.3.1, is not coherent with the syntactic nesting of steps. We recall that, accord-
ing to the ARS model, a   b should indicate that the contraction of a could possibly
result in the erasure, or the duplication, of b. Cfr. the axiom Linearity, defined in Sec-
tion 2.1.5. As discussed in Section 2.1.1, for the λ-calculus, this criterion is coherent
with the nesting of steps: a necessary condition for a step a to erase or duplicate a step
b, is that (the subterm corresponding to) a nests (that) b in their common source term.

This coherence does not hold in λ�lsub. Recall the rule (4.1), and let us remark that
the explicit substitution construct srx{us binds the occurrences of x in s. Then term

t � pxzqrx{ysry{us

95
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includes two steps corresponding to the underlined occurrences of x and y. Let us call
these steps ax and ay respectively. Let us find out the subterms corresponding to ax
and ay. The scope of the substitution rx{ys is the subterm pxzq; therefore, the context
C indicated in (4.1) for ax is p2zq. In turn, the scope of the substitution ry{us is
the subterm pxzqrx{ys, notice that t is properly parsed as the added parentheses in
ppxzqrx{ysqry{us suggest. Hence, the context C for ay is pxzqrx{2s. Consequently, we
can mark the subterms corresponding to the steps ax and ay as follows:

t �

ayhkkkkkkkkkkikkkkkkkkkkj
p pxzqrx{ysloooomoooon

ax

q ry{us

The contraction of these steps yields

pxzqrx{ysry{us
axÝÑ pyzqrx{ysry{us � tx pxzqrx{ysry{us

ay
ÝÑ pxzqrx{usry{us � ty

Notice that ay has two residuals after ax, matching the two underlined occurrences of y
in tx.1 On the other hand ax has exactly one residual after ay. Therefore, any definition
of the embedding relation in an ARS modeling λ�lsub should establish ax   ay, whereas
the nesting between the corresponding subterms goes in the opposite direction.

The third aspect which makes modeling of λ�lsub as an ARS complex, is the corre-
spondence between the calculus and the linear logic proof-nets [Gir87].

Terms of λ�lsub and proof-nets are behaviorally equivalent in a strong sense: every
term t maps to a proof-net Pt, and every step on t or Pt maps to an evaluation step
on the other. Additionally, a bijection can be established between the steps in t and
those in Pt, so that concepts such as residuals transfer from terms to proof-nets and vice
versa. As expressed in Section 1.2.2, an equivalence relation, defined through equational
logic from three simple equations, turns the behavioral equivalence between terms and
proof-nets into a true isomorphism: each proof-net corresponds exactly to a class of
equivalent terms. From this perspective, we could consider equivalent terms as just
different representations of an unique object being rewritten.2 On the other hand, to
support this view, we should be able to define an ARS whose objects were not single
terms, but classes of equivalent terms. Therefore, all the elements participating in an
ARS, as steps, residuals and embedding, should be stable by this equivalence.

We define a first ARS for λ�lsub, using labels to identify and trace steps, leading to
the definition of the residual relation, and using a simple left-to-right embedding order
on coinitial steps. This ARS enjoy all the axioms required in Thm. 2.1.24, namely the
initial axioms, FD, SO, and all the embedding axioms. We remark that this calculus
enjoy semantical orthogonality, despite the fact that it fails to comply with a syntactic
orthogonality criterion: e.g., the two steps in pxxqrx{ys form a critical pair.3 We also
notice that the left-to-right embedding imposes a total order on coinitial steps, making
it easier to verify the embedding axioms. We obtain a strong standardisation result for
this ARS: each class of equivalent reduction sequences includes exactly one s.r.s..

1As in a previous example, these two steps correspond to the same subterm of tx, being distinguished
only by the contexts of the respective occurrences of y.

2as it is the case w.r.t. α-equivalence in the λ-calculus, cfr. [LV02].
3We discuss different perspectives about orthogonality in Section 6.2.3.
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W.r.t. the aspects making the characterisation of λ�lsub in the ARS model a challeng-
ing task, the two former ones are adequately addressed: labels lead to a sound definition
of residuals, and the left-to-right order is coherent with the intent of the embedding
relation. On the other hand, this is not the case for the last concern, i.e., stability
by equivalence on terms. Particularly, the left-to-right-order on coinitial labels is not
stable. Recall the equation described in Section 1.2.2:

trx{ssry{us � try{usrx{ss if x R fvpuq and y R fvpsq

and consider the following terms:

t � pyxqrx{s1sry{s2s � pyxqry{s2srx{s1s � t1

It is clear that the relative embedding between two steps, lying inside s1 and s2 respec-
tively, are different in t than in t1.

To deal with the equivalence defined on terms, we show that labels induce, for
any pair of equivalent terms, a bijection between their sets of steps such that targets
of related steps are again equivalent. Moreover, the label-based characterisation of
residuals preserves these bijections: residuals of related steps in equivalent terms, after
related steps, are again related. Furthermore, we define an order on coinitial steps,
the box order, which is stable by equivalence on terms, via the bijection on steps just
mentioned.

These elements allow to define a second ARS for λ�lsub, which satisfies the three
concerns identified for the characterisation of the calculus in the ARS model. This
ARS satisfies all the axioms required in Thm. 2.1.23, yielding the existence of a s.r.s.

equivalent to any reduction sequence. Unfortunately, this ARS fails two axioms required
for Thm. 2.1.24, so that uniqueness of s.r.s. in each class of equivalent reduction
sequences cannot be derived from this result. We nevertheless obtain uniqueness of
s.r.s. for this ARS, and hence for λ�lsub, by developing a novel abstract standardisation
proof in the ARS model. This proof makes use of the existence of two different ARS
modeling the same rewriting system.

Therefore, the material in this chapter makes a contribution to the study of explicit
substitution calculi at a distance, and also a contribution to the ARS model. These
results were presented in [ABKL14], along with other results about λ�lsub. We mention
a coinductive characterisation of the notion of external step, which allows to show that
the leftmost reduction strategy is normalising for this calculus. The linear head reduction
for λ�lsub is also studied in that work.

Plan of the chapter
In Section 4.1 we introduce λ�lsub, following [ABKL14]. The labels used to identify
and trace steps, and the graphical equivalence on terms which sets the isomorphism
with proof-nets, are presented as well. In Section 4.2 we describe the first model of
λ�lsub as an ARS, showing that it verifies all the axioms required in the standardisation
theorems stated in Section 2.1.8. Therefore, our first standardisation results are given
in Section 4.3, where we discuss also its limitations. Section 4.4 is devoted to show that
the label-based definition of steps and residuals is stable by the graphical equivalence.
In Section 4.5 we define the box order and use it to define the second ARS which models
λ�lsub; we verify the axioms needed to obtain the existence of an s.r.s. equivalent to
any given reduction sequence, and subsequently show why the stronger uniqueness result
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cannot be obtained through the abstract standardisation results presented in [Mel96].
Finally, in Section 4.6 we develop a novel abstract standardisation proof, and apply it
to λ�lsub.

4.1 The linear substitution calculus

Consider a countable set of variables x, y, z, x1, x1, . . .. The set of terms of the linear
substitution calculus, denoted by T , is generated by the following grammar:

t ::� x | tt | λx.t | trx{ts

A term x is called a variable, tu an application, λx.t an abstraction and trx{us an
explicit substitution. We will use L, L1, L1, . . . to denote (possibly empty) lists of
substitutions rx1{t1s . . . rxn{tns. Notice that the lists of substitutions are not terms.

In the terms λx.t and trx{us, the occurrences of x in t are bound by the abstraction
or the explicit substitution respectively. The derived notion of free variables of a term t is
denoted by fvptq. As usual, we consider terms up to α-conversion, i.e. up to renaming of
bound variables. When needed, we will assume that terms follow Barendregt’s variable
convention, cfr. [Bar84].

A context is a term having at least one occurrence of a designated symbol 2 called
the hole. In this chapter we use mostly contexts having exactly one occurrence of the
hole, i.e. one-hole contexts. We also use occasionally two- and three-hole contexts. The
meta-notation L � rx1{t1s . . . rxk{tks can also be seen as a context 2rx1{t1s . . . rxk{tks.
We write Crts for the term obtained by replacing the only hole of a one-hole context
C by the term t. We write Crruss when the free variables of u are not captured by
the context C, i.e. there are no abstractions or explicit substitutions in C that bind
the variables of fvpuq. We use Drt1, t2s (resp. Drt1, t2, t3s) analogously to Crts for a
two-hole (resp. three-hole) context D.

In the following, we give the definition of two variants of the linear substitution
calculus, which we call λlsub and λ�lsub respectively.

Definition 4.1.1 (λlsub-calculus). The λlsub-calculus is defined by the preceding syn-
tax, plus the semantics given by the reduction relation Ñλlsub. This relation is defined
as the union of Ñdb, Ñls, and Ñgc, which are the closure by contexts C of the following
rewriting rules:

pλx.tqLu ÞÑdb trx{usL
Crrxssrx{us ÞÑls Crrussrx{us
trx{us ÞÑgc t if x R fvptq

The names db, ls, and gc stand for distant beta, linear substitution, and garbage
collection, respectively.

Rule ÞÑdb (resp. ÞÑls) comes from the structural λ-calculus [AK10] (resp. Milner’s
calculus [Mil07b]), while ÞÑgc belongs to both calculi. In db we may assume w.l.o.g. that�k
i�1txiu X fvpuq � H and x R fvpuq Y

�k
i�1 fvptiq . The occurrence of L, considered

as a context, in the db-rule, the use of a context C in the ls-rule, and the global side
condition in the gc-rule, justify the idea of rewriting rules at a distance.

Fig. 4.1 shows a reduction sequence including applications of the three rules. We
remark the application at a distance of the db- and ls-rules in the second and third
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steps, respectively. In turn, the application of the gc-rule in the last step also act at a
distance: there is no need to propagate the substitution rx{as through the term prior
to garbage-collecting it. Cfr. the λx and the λ�lsub reduction sequence examples given in
Section 1.2.2, Figs. 1.2.2 and 1.4 respectively.

pλx.pλy.ypxyqqqab Ñdb pλy.ypxyqqrx{asb
Ñdb pypxyqqry{bsrx{as
Ñls pypayqqry{bsrx{as
Ñgc pypayqqry{bs

Figure 4.1: An example reduction sequence in λlsub

The list-of-substitutions context L in rule db is motivated by its encoding in proof-
nets, where substitutions are in fact unordered, except for occurrences of variables bound
by a substitution in the list. Moreover, in proof-nets substitutions are partially free
to float (i.e. to traverse some term constructors). These features of substitutions are
formalized as follows:

Definition 4.1.2 (Graphical equivalence). We define the graphical equivalence, no-
tation �, as the contextual, transitive, symmetric and reflexive closure of α-conversion
and the following axioms:

trx{usry{ss �CS try{ssrx{us x R fvpsq & y R fvpuq
pλy.tqrx{us �σ1 λy.trx{us y R fvpuq
ptsqrx{us �σ2 trx{uss x R fvpsq

This equivalence characterizes exactly the representation of terms as proof-nets, in
the sense that t � u iff t and u map to the same proof-net [Acc11]. We use � to denote

the union of �CS, �σ1 and �σ2 , and
1
� to denote the symmetrical and contextual closure

of the union of α-conversion and �. Therefore, � is the reflexive and transitive closure

of
1
�.

Definition 4.1.3 (λ�lsub-calculus). The λ�lsub-calculus is given by the set of terms T
modulo the graphical equivalence �, and by the reduction relation Ñλ�lsub

, defined as
follows: ttuÑλ�lsub

tuu iff there exist t1, u1 verifying t � t1 Ñλlsub u
1 � u, where ttu denotes

the �-equivalence class of terms associated to t. Thus in particular t Ñλlsub t
1 implies

ttuÑλ�lsub
tt1u.

Notice that the terms related by the graphical equivalence equations σ1 and σ2 are
syntactically different: the main construct in pλy.tqrx{us is the explicit substitution,
while it is the abstraction for λy.trx{us; a similar situation can be seen in σ2. In turn,
the terms related by the CS equation are also syntactically different in a remarkable
way: they are parsed as ptrx{usqry{ss and ptry{ssqrx{us respectively. We notice that
the list-of-substitutions meta-notation L is at odds with syntactic structure: if L �
rx1{t1s . . . rxn{tns and u is a term, then the term that we write informally as uL actually
parses as ppurx1{t1sq . . .qrxn{tns. The intuition given by the graphical equivalence and
the L meta-notation, corresponding with proof-nets, is in tension with the term syntax.
This tension motivates the careful study of the properties of λ�lsub that we perform in
Section 4.4. This study entails that λ�lsub behaves as expected.



100CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

4.1.1 A labeled version

In Sections 4.2 and 4.5.1, we introduce several ARSs to model λlsub and λ�lsub. Residuals
are defined in these ARSs by labeling redexes. In order to compute avbw, the redex a is
given a unique label, say α, obtaining a labeled term. This labeled term includes a step
corresponding to b; the residuals of a after b are exactly the redexes labeled with α in
the target of that step.

We formalise this idea by defining a labeled version of λ�lsub. Consider a countable
set of labels, i.e. special symbols denoted as α, β, γ, . . .. The set of labeled terms,
denoted by TL, is generated by the following grammar.

t ::� x | xα | tt | λx.t | λxα.t | trx{ts | trxα{ts

The notations xpαq, λxpαq.t and trxpαq{ts mean that x may or may not be labeled.
We write Labptq to denote the set of all the labels of t and t� to denote the term

obtained from t by removing all its labels. Thus for example ppxαyβqry{λzγ .zsq
�
�

pxyqry{λz.zs. A term t can be labeled in different ways, leading to different variants of
t. More precisely, we say that t is a variant of u iff t� � u�. Thus in particular, t is a
variant of itself.

We extend the meta-notation L to lists of possibly labeled substitutions, and C to
possibly labeled contexts. Similarly, the notions of free and bound variables are extended
to labeled terms as expected together with their corresponding notion of α-conversion.
We use flvptq to denote the subset of fvptq having at least one labeled occurrence, e.g.
flvppxαyβqry{zsq � txu.

Definition 4.1.4. Labeled reduction
α
Ñ on labeled terms is defined as the contextual

closure of the following rewriting rules, on labeled terms:

pλxα.tqLu
α
ÞÑdb trx{usL

Crrxαssrx{us
α
ÞÑls Crrussrx{us

trxα{us
α
ÞÑgc t x R fvptq

Definition 4.1.5. The labeled graphical equivalence4 � on labeled terms is given
by the contextual, transitive, symmetric and reflexive closure of α-conversion and the
following axioms:

trxpαq{usrypβq{ss �CS trypβq{ssrxpαq{us x R fvpsq & y R fvpuq

pλypβq.tqrxpαq{us �σ1 λypβq.trxpαq{us y R fvpuq

ptsqrxpαq{us �σ2 trxpαq{uss x R fvpsq

The axioms are to be understood in such a way that each label occurs either in both sides
of the axiom or in none of them.

Notice that the terms, lists of substitutions and contexts which occur in Dfns. 4.1.4
and 4.1.5 are labeled. In order to show that λ�lsub satisfies the SO axiom, we will work
with the following subset of labeled terms.

Definition 4.1.6. We define the set of well-labeled terms, notation TWL, as follows:

4By abuse of notation we use the same symbol both for the equivalence relation on labeled and
unlabeled terms.
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• x P TWL and xα P TWL

• If t P TWL and x R flvptq then λx.t P TWL

• If t, u P TWL, then tu P TWL

• If pλx.tqL, u P TWL, then pλxα.tqLu P TWL

• If t, u P TWL, then trx{us P TWL

• If t, u P TWL and x R fvptq, then trxα{us P TWL.

Note that λxα.x, λx.xα and xrxα{us are not in TWL. Note also that subterms of well-
labeled terms are not necessarily well-labeled (e.g. the abstraction of a labeled db-redex).
Well-labeled terms are stable by reduction and graphical equivalence:

Lemma 4.1.7. Let t P TWL. If t
α
Ñ u or t � u, then u P TWL.

Proof. See Appendix C, page 263.

4.2 A first ARS to model λlsub

In this section, we define an ARS AL to model the λlsub calculus. This ARS is a
first, approximate model of the reduction spaces of λlsub. It allows us to obtain some
preliminary standardisation results. These results, in turn, are used in the study of
more “accurate” models of the linear substitution calculus, given by the ARSs we define
in Section 4.5.1. For the relation between the ARS AL and those we define later, cfr.
Section 2.1.9.

Definition 4.2.1. We define the ARS AL � xO,R, src, tgt, v�w, Ly as follows.

Objects
The set O of objects is the set of terms of λlsub.

Steps, source, target
There are three kinds of steps, corresponding to the three rules of λlsub. Let D

be a context and r a term.

• A pair xD, ry is a db-step iff r � pλx.sqLu,

• a triple xD, r, Cy is a ls-step iff r � Crrxssrx{us, and

• a pair xD, ry is a gc-step iff r � srx{us and x R fvpsq.

The set R of steps is the union of the sets of db-, ls- and gc-steps.

For all kinds of steps, the source is the term Drrs. The target is Drsrx{usLs,
DrCrrussrx{uss, or Drss, for db-, ls- and gc-steps respectively.

The anchor of a step is the variable occurrence which would possibly carry a label
in a labeled variant of the corresponding term. It is the only occurrence of x for
db- and gc-steps, and the one inside the context C for ls-steps.
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Residual relation
Observe that the definition of steps applies also to labeled terms, exactly as it is

given for unlabeled terms, provided that D, r and C stand for labeled contexts and
terms. Let t be a labeled term, a P ROptq (where the anchor of a can be labeled or
not), and α R Labptq. If t is a labeled term, a is a step and α is a label, then we
say that a is an α-labeled step in t iff srcpaq � t and the anchor of a is labeled
with α. We define the a-α-lift of t, notation liftpt, a, αq, as the variant of t
obtained by assigning the label α to the anchor of a: if a � xD, pλxpβq.sqLuy, then
liftpt, a, αq � Drpλxα.sqLus, and analogously for the other kinds of steps.

Notice that t � Drrs and t1 being a variant of t imply that t1 � D1rr1s, where D1

and r1 are variants of D and r respectively. This observation yields the existence
of a natural bijection between the sets of steps of two variant terms.

Given a, b P ROptq, we define avbwa1 as follows. Let t
b
ÝÑ u and liftpt, a, αq

bLÝÑ
uL where bL is the step which corresponds to b in liftpt, a, αq. Then avbwa1 iff
a1 P ROpuq, and the anchor of the step corresponding to a1 in uL is labeled with α.

We remark that any variant of t could be used to compute avbw: the result is inde-
pendent of the variant, considering the natural bijection between steps in variants.

Embedding
Given a, b P ROptq, we define a  L b iff the anchor of a is to the left of the

anchor of b (considering t as a string of symbols). Clearly,  L is a total order so
that a ¢L b and a � b imply b  L a.

Observe that the quotient by the graphical equivalence � is not considered: if t � u and
t � u, then t and u are two different elements of O.

We define other notions associated with steps.

Definition 4.2.2 (Pattern, box, context of a step). Given a step a � xD, ry or a �
xD, r, Cy, the pattern of a is r; the box5 of a is the subterm of the pattern noted u in
the definition of each kind of step; and the context of a is D.

Fig. 4.2 depicts several concepts associated with steps, using as example a ls-step.
Notice that the pattern of two different coinitial steps can coincide. This is the case for
ls-steps, as in the two steps in the term pxxqrx{ys.

x Dloomoon
context

,

patternhkkkkkkkkkkkkkikkkkkkkkkkkkkj
Crr xloomoon

anchor

ssrx{ uloomoon
box

s, Cy

Figure 4.2: Notions associated with steps in λlsub

We already noticed, in the definition of the residual relation, that the definition of
steps extends naturally to labeled terms.

Notation 4.2.3. If t is a labeled term, then we write Redαptq for the set of steps in t
whose anchors are labeled with α.

5When terms are represented as linear logic proof-nets, what we call box corresponds exactly to the
exponential box.
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We give some examples of the preceding definitions. The term

t � pλx.xrz{bsqppwywqrw{asry{csq

is the source term of the following five AL steps:

• One db-step, whose pattern comprises all the term t. This step is described in AL

as x2, ty, and its anchor is the x appearing next to the only occurrence of λ.

• One gc-step, corresponding to the substitution rz{bs, whose description is
xpλx.2qppwywqrw{asry{csq, xrz{bsy, and whose anchor is z.

• Two ls-steps, corresponding to the two occurrences of w in the subterm wyw. The
description of the step corresponding of the leftmost occurrence is
xpλx.xrx{bsqp2ry{csq, pwywqrw{as,2ywy, and its anchor the corresponding oc-
currence of w. Notice that the pattern of these two steps, namely pwywqrw{as,
coincide.

• One ls-step, corresponding to the occurrence of y in the subterm wyw, whose
description is xpλx.xrx{bsq2, pwywqrw{asry{cs, pw2wqrw{asy.

The labeling of the anchors of these steps, using different labels for each, yields the
variant

t1 � pλxτ .xrzα{bsqppwβyγwδqrw{asry{csq

Let a, b, c, d, e be the steps in t labeled with α, β, γ, δ and τ respectively in t1. The relative
position of the anchors give the embeddings for these steps, namely
e  L a  L b  L c  L d. In turn, performing a labeled reduction from t1 allows to
compute their residuals. Consider

t1 � pλxτ .xrzα{bsqppwβyγwδqrw{asry{csq
Ñdb xrzα{bsrx{pwβyγwδqrw{asry{css � t11
Ñls pwβyγwδqrw{asry{csrzα{bsrx{pwβyγwδqrw{asry{css � t12

E.g., we observe that b has one residual after e, which is the β-labeled step in t11. In
turn, this step has two residuals after the ls-step contracted subsequently, i.e. the two
β-labeled steps in t12.

Two decisions were made in order to keep AL simple. Firstly, the quotient of the
set of terms by the graphical equivalence � is not considered ; each term of λ�lsub is a
separate object. Secondly, the embedding relation  L is a total order, being larger than
what the intuition of embedding (as described in Section 1.3.1) would suggest: a  L b
does not imply that a can have some power on b. E.g. in pxrx{ssqpyry{usq, we have
a  L b for any a and b inside s and u respectively. The converse does hold: whenever a
can have some power on b, a  L b is verified.

In the remainder of this section, we prove that AL verifies the initial axioms, FD,
SO, and all the embedding axioms.

It is immediate to verify that Self Reduction and Finite Residuals hold.

Lemma 4.2.4 (Ancestor Uniqueness). Let b1vawb
1 and b2vawb

1. Then b1 � b2.
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Proof. Let us define t as the source of a, b1 and b2. Let t1 be the variant of t which
results of lifting it successively w.r.t. each of its redexes, i.e. the anchor of each redex in
t carries a unique label in t1. Let t1

a
ÝÑ u1. Independence of the variant used to compute

residuals implies that the residuals of all the steps in t can be obtained by looking for
the corresponding label in u1. Therefore, b1vawb

1 implies that b1 has, in t1, the same label
as b1 in u1; and b2vawb

1 yields that also b2 has in t1 the same label as b1 in u1. Hence, b1
and b2 have the same label in t1. Consequently, each redex carrying a unique label in t1

implies b1 � b2.

We organise the proofs of the other axioms in different subsections.

4.2.1 Finite developments

We define the notion of labeled multiplicities, and then use it to define the measure
(called number of potential labeled redexes) proving finiteness of developments.

Definition 4.2.5. The number of labeled multiplicities of well-labeled terms is defined
as follows:

LMxpzq :� 0 (for all zq
LMxpx

αq :� 1
LMxpy

γq :� 0 (for x � yq
LMxpλy.tq :� LMxptq
LMxptuq :� LMxptq � LMxpuq if t P TWL
LMxppλy

γ .tqLuq :� LMxppλy.tqLq � LMxpuq
LMxptry

γ{usq :� LMxptq � LMxpuq
LMxptry{usq :� LMxptq � LMxpuq � LMyptq � LMxpuq
LMxptrx{usq :� 0

Note that LMxptq � 0 if x R flvptq.

Definition 4.2.6. The number of potential labeled redexes of well-labeled terms is
defined as follows:

PLRpxq � PLRpxαq :� 0
PLRpλx.tq :� PLRptq
PLRptuq :� PLRptq � PLRpuq if t P TWL
PLRppλxα.vqLuq :� 1� PLRppλx.vqLq � PLRpuq
PLRptrx{usq :� PLRptq � PLRpuq � LMxptq � PLRpuq � LMxptq
PLRptrxα{usq :� 1� PLRptq � PLRpuq

Remark that for every t P TWL containing at least one redex we have PLRptq ¡ 0.

Several lemmas are needed to prove that the PLR measure decreases with each step
of labeled reduction. The proof of some of these auxiliary lemmas can be found in
Appendix C.2.

Lemma 4.2.7. Let Crrxpαqss P TWL and t P TWL such that fvptq X bvpCq � H. Then
Crrtss P TWL.

Proof. See Appendix C.1, page 260.
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Lemma 4.2.8. Let t, x be such that x R flvptq. Then LMxptq � 0.

Proof. Straightforward induction on t.

Lemma 4.2.9. Let Crrxαss, u P TWL and a variable y such that x � y, fvpuqX bvpCq �
H, and x, y R fvpuq. Then: (i) LMxpCrrx

αssq ¡ LMxpCrrussq, and (ii) LMypCrrx
αssq �

LMypCrrussq.

Proof. See Appendix C.2, page 263.

Lemma 4.2.10. Let Crryγss P TWL, u P TWL and x variable, such that x � y, y R fvpuq
and x R bvpCq. Then LMxpCrry

γssq � LMypCrry
γssq � LMxpuq � LMxpCrrussq � LMypCrrussq �

LMxpuq.

Proof. See Appendix C.2, page 264.

Lemma 4.2.11. Let Crrxαss P TWL and u P TWL such that x R fvpuq. Then PLRpCrrxαssq�
LMxpCrrx

αssq � PLRpuq � PLRpCrrussq � LMxpCrrussq � PLRpuq.

Proof. See Appendix C.2, page 265.

Lemma 4.2.12. Let t, u P TWL such that t � u, and x R bvptq. Then (i) LMxptq �
LMxpuq, and (ii) PLRptq � PLRpuq

Proof. By case analysis on the equation used in t � u.

• Assume t �CS u. Recall that z R fvps2q and y R fvps3q.

If t � s1 ry
α{s2srz

β{s3s and u � s1 rz
β{s3sry

α{s2s, then

LMxptq � LMxpuq � LMxps1q � LMxps2q � LMxps3q, and analogously for PLR.

If t � s1 ry
α{s2srz{s3s and u � s1 rz{s3sry

α{s2s, then

LMxptq � LMxpuq � LMxps1q � LMxps2q � LMxps3q � LMzps1q � LMxps3q, and

PLRptq � PLRpuq � 1� PLRps1q � PLRps2q � PLRps3q � LMzps1q � PLRps3q � LMzps1q.

If t � s1 ry{s2srz{s3s and u � s1 rz{s3sry{s2s, then

LMxptq � LMxpuq � LMxps1q�LMxps2q�LMyps1q�LMxps2q�LMxps3q�LMzps1q�LMxps3q,
and

PLRptq � PLRpuq � PLRps1q � PLRps2q � LMyps1q � PLRps2q � LMyps1q � PLRps3q �
LMzps1q � PLRps3q � LMzps1q.

• Assume t �σ1 u, so that t � pλy.s1qrz
pαq{s2s and u � λy.s1 rz

pαq{s2s, and y R
fvps2q. Notice that t P TWL implies that the y is not labeled. It is straightforward
to verify the result, whether z is labeled or not.

• Assume t �σ2 u, so that t � ps1s2qry
pαq{s3s, u � s1 ry

pαq{s3ss2, and y R fvps2q.
Consider s11 � s1 if s1 P TWL, and s11 � pλz.s4qL if s1 � pλz

β.s4qL.

If t � ps1s2qry
α{s3s and u � s1 ry

α{s3ss2, and s1 P TWL, then

LMxptq � LMxpuq � LMxps
1
1q � LMxps2q � LMxps3q, and analogously for PLR.

If t � ps1s2qry{s3s and u � s1 ry{s3ss2, and s1 P TWL, then

LMxptq � LMxpuq � LMxps
1
1q � LMxps2q � LMxps3q � LMyps

1
1q � LMxps3q, and

PLRptq � PLRpuq � k � PLRps11q � PLRps2q � PLRps3q � LMyps
1
1q � PLRps3q � LMyps

1
1q.
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Lemma 4.2.13. Let t, u P TWL such that t � u, and x R bvptq. Then (i) LMxptq �
LMxpuq, and (ii) PLRptq � PLRpuq

Proof. By induction on the characterisation of � as the reflexive-transitive closure of
1
�.

The interesting case is t
1
� u. We verify this case by induction on |C| where t � Crt1s,

u � Cru1s and t1 � u1. If C � 2 then we conclude by Lem. 4.2.12.

If C � C1s and C1rt
1s � pλyβ.sqL, then there are several cases to consider.

• If C1 � 2, so that t1 � pλyβ.sqL, then let us define t2 � pλy.sqL. Case analysis
yields u1 � pλyβ.s1qL1, and also t2 � u2 where u2 � pλy.s1qL1. Observe that

LMxpCrt
1sq � LMxpt

2q � LMxpsq, PLRpCrt
1sq � 1� PLRpt2q � PLRpsq,

LMxpCru
1sq � LMxpu

2q � LMxpsq, PLRpCru
1sq � 1� PLRpu2q � PLRpsq.

Hence Lem. 4.2.12 allows to conclude.

• If C1 � 2L, so that t1 � λyβ.s, then let us define t2 � λy.s. Case analysis yields
u1 � pλyβ.s1qL and t2 � u2 where u2 � pλy.s1qL. Observe that

LMxpCrt
1sq � LMxpC1rt

2sq � LMxpsq, PLRpCrt
1sq � 1� PLRpC1rt

2sq � PLRpsq

LMxpCru
1sq � LMxpC1ru

2sq � LMxpsq, PLRpCru
1sq � 1� PLRpC1ru

2sq � PLRpsq.

Hence IH on C1rt
2s

1
� C1ru

2s allows to conclude.

• If C1 � pλy
β.C2qL, or C1 � pλy

β.sqL1 rz{C2sL2, then let C 1
1 be the result of replac-

ing yβ by y in C1. We have

LMxpCrt
1sq � LMxpC

1
1rt

1sq � LMxpsq, PLRpCrt
1sq � 1� PLRpC 1

1rt
1sq � PLRpsq

and analogously for Cru1s. Hence IH suffices to conclude.

If C � C1 ry{ss, so that C1rt
1s, s P TWL, then variable convention implies y R fvpt1q.

For (i) we have

LMxpCrt
1sq � LMxpC1rt

1sq � LMxpsq � LMypC1rt
1sq � LMxpsq , and

LMxpCru
1sq � LMxpC1ru

1sq � LMxpsq � LMypC1ru
1sq � LMxpsq. Then applying IH twice, for

LMx and LMy, allows to conclude. For (ii) we have

PLRpCrt1sq � PLRpC1rt
1sq � PLRpsq � LMypC1rt

1sq � PLRpsq � LMypC1rt
1sq , and

PLRpCru1sq � PLRpC1ru
1sq � PLRpsq� LMypC1ru

1sq � PLRpsq� LMypC1rt
1sq. Therefore IH:(i)

for LMy and IH:(ii) allow to conclude.

For the remaining cases, a simple inductive argument applies.

Lemma 4.2.14. Let t, u P TWL such that t
α
ÞÑ u, and x R bvptq. Then (i) LMxptq ¥

LMxpuq, and (ii) PLRptq ¡ PLRpuq.

Proof. By case analysis on the used rule.

• If t � pλyα.s1qLs2
α
ÞÑdb s1 ry{s2sL � u, then let us define L � rx1{t1s . . . rxn{tns.

Variable convention on t implies y R fvptiq for all i, y R fvps2q, and also xi R fvps2q
for all i. Therefore pλy.s1qL � λy.s1L and u � sry{s2sL � s1Lry{s2s. Hence
Lem. 4.2.13 implies LMxppλy.s1qLq � LMxpλy.s1Lq, LMxpuq � LMxps1Lry{s2sq, and
analogously for PLR.

Moreover, t P TWL implies λy.s1 P TWL, then y R flvps1q, so that y R fvptiq for
all i implies LMyps1Lq � 0; cfr. Lem. 4.2.8.

For (i), is enough to observe
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LMxptq � LMxppλy.s1qLq � LMxps2q � LMxpλy.s1Lq � LMxps2q � LMxps1Lq � LMxps2q

and

LMxpuq � LMxps1Lry{s2sq � LMxps1Lq � LMxps2q � LMyps1Lq � LMxps2q � LMxps1Lq �
LMxps2q.

For (ii), it suffices to observe

PLRptq � 1�PLRppλy.s1qLq�PLRps2q � 1�PLRpλy.s1Lq�PLRps2q � 1�PLRps1Lq�
PLRps2q

and

PLRpuq � PLRps1Lry{s2sq � PLRps1Lq � PLRps2q � LMyps1Lq � PLRps2q � LMyps1Lq �
PLRps1Lq � PLRps2q.

• If t � Crryαssry{ss
α
ÞÑls Crrsssry{ss � u, then variable convention implies y R

fvpsq.

For (i) we have

LMxptq � LMxpCrry
αssq � LMxpsq � LMypCrry

αssq � LMxpsq , and

LMxpuq � LMxpCrrsssq � LMxpsq � LMypCrrsssq � LMxpsq

Therefore Lem. 4.2.10 suffices to conclude.

For (ii) we have

PLRptq � PLRpCrryαssq � PLRpsq � LMypCrry
αssq � PLRpsq � LMypCrry

αssq

and

PLRpuq � PLRpCrrsssq � PLRpsq � LMypsq � PLRpsq � LMypsq

Moreover, Lem. 4.2.11 and Lem. 4.2.9:(i) imply PLRpCrryαssq�LMypCrry
αssq�PLRpsq �

PLRpCrrsssq� LMypsq � PLRpsq, and LMypCrry
αssq ¡ LMypsq respectively. Thus we con-

clude.

• If t � s1 ry
α{s2s

α
ÞÑgc s1 � u, then LMxptq � LMxps1q�LMxps2q ¥ LMxps1q � LMxpuq,

and PLRptq � 1� PLRps1q � PLRps2q ¡ PLRps1q � PLRpuq.

Lemma 4.2.15. Let t, u P TWL such that t
α
Ñ u, and x R bvptq. Then (i) LMxptq ¥

LMxpuq, and (ii) PLRptq ¡ PLRpuq.

Proof. By induction on |C| where t � Crt1s, u � Cru1s and t1
α
ÞÑ u1. If C � 2 then we

conclude by Lem. 4.2.14.
For the inductive cases, an argument similar to that described in the proof of

Lem. 4.2.13 applies, changing references to � by
α
ÞÑ, and the reference to Lem. 4.2.12

by Lem. 4.2.14. The straightforward cases are the same, those detailed admit similar
arguments. The case C � C1s, subcase C1 � 2L does not apply to this lemma, because
t1 � λyβ.s implies that there is no u1 satisfying t1

α
ÞÑ u1.

Proposition 4.2.16. Let t P TWL and let L be the set of all the labels of the redexes in
t. Then the reduction relation ÑL is terminating.

Proof. Immediate corollary of Lem. 4.2.15.

Proposition 4.2.17. The ARS AL enjoys the axiom FD.

Proof. Let t be a term and A � ROptq. We consider the term t1 which results of applying
successively the lift operation, to assign a label to the anchor of each step in A. Let L
be the set of the labels used to lift t. Given that residuals are defined in AL in terms of
labels, Prop. 4.2.16 entails the result.
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4.2.2 Semantic orthogonality

The definition of residuals in terms of labels allows to prove the axiom SO, cfr. Sec-
tion 2.1.4, for AL by a level-based argument.

Let a, b, c P ROptq. We lift t to assign the labels α, β and γ to a, b and c respectively,
let us call t1 the labeled term obtained. A different rewrite relation corresponds to each

label, consider the relations
α
Ñ and

β
Ñ. The term t1 includes exactly one

α
Ñ-step and

exactly one
β
Ñ-step. Let t1

α
Ñ t1 and t1

β
Ñ t2. Observe that a complete development of

bvaw corresponds to a
β
Ñ reduction sequence from t1 to a

β
Ñ-normal form, and similarly

for avbw. Therefore, to prove SO, it suffices to verify that the
β
Ñ-normal form of t1 and

the
α
Ñ-normal form of t2 coincide as labeled terms. In such case, the (unlabeled) targets

of a; bvaw and b; avbw coincide, and also the residuals of the coinitial step c, which are
exactly the γ-labeled steps in the common labeled target.

In turn, the equality of the normal forms coincides with the local commutativity

of the relations
α
Ñ and

β
Ñ. Assume that t1

β
� t2 and t2

α
� t3. Observe that t1 does

not include α labels, and therefore neither does t2. Analogously, t3 does not include β
labels. Hence, t2 � t3 implies that term not to include neither α nor β labels, i.e., to

be a
α
Ñ- and a

β
Ñ-normal form.

These considerations motivate the following statement:

Lemma 4.2.18. The reduction relations
α
Ñ and

β
Ñ locally commute, i.e. if t, u1, u2 P

TWL, t
α
Ñ u1 and t

β
Ñ u2 then there exists s s.t. u1

β
� s and u2

α
� s.

Proof. Let a and b the steps contracted in t
α
Ñ u1 and t

β
Ñ u2 respectively. Let D1, r1

be the context and pattern of a, and D2, r2 those of b, so that t � D1rr1s � D2rr2s.

If a � b, or there exists a context E verifying D1 � Er2, r2s and D2 � Err1,2s,
then a straightforward argument allows to conclude. Therefore, we assume wlog that

D1 � D2 or D2 � D1rD
1s for some context D1. Let us define r2

β
Ñ r12. We analyse the

possible cases on a.

Assume that a is a ls-step, i.e. r1 � pλx
α.sqLu.

• If r2 is inside s, i.e. if D1 � pλxα.EqLu, then

D1rpλx
α.Err2sqLus

α //

β

��

D1rErr2srx{usLs

β

��
D1rpλx

α.Err12sqLus α
// D1rErr

1
2srx{usLs

A brief remark on notation: from now on we omit the outer context D1, which is
common to all the forthcoming diagrams.

• If r2 is inside L, or if it is inside u, then a similar argument applies.

• If s � Erryβss and L � L1 ry{s
1sL2, then

pλxα.ErryβssqLu
α //

β

��

Erryβssrx{usL

β

��
pλxα.Ers1sqLu α

// Ers1srx{usL
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Assume that a is a ls-step, i.e. r1 � Crrxαssrx{us.

• If C � C 1rr2,2s, so that D1 � C 1r2, xαsrx{us, then a simple argument suffices to
conclude.

• If xα is inside r2, i.e. D1 � C1 rx{us and r2 � C2rrx
αss, then we have to analyse the

rule for b.

– Assume that b is a db-step, i.e. r2 � pλy
β.s1qLu1.

If xα is inside s1, that is C2 � pλy
β.EqLu1, then

C1rpλy
β.ErrxαssqLu1srx{us

α //

β

��

C1rpλy
β.ErusqLu1srx{us

β

��
C1rErrx

αssry{u1sLsrx{us α
// C1rErusry{u

1sLsrx{us

If xα is inside either L or u1, then a similar argument applies.

– Assume that b is a ls-step, so that r2 � Erryβssry{u1s.

If xα is inside Erryβss, i.e. C2 � E1r2, yβsry{u1s where E � E1rxα,2s, then

C1rE
1rxα, yβsry{u1ssrx{us

α //

β

��

C1rE
1ru, yβsry{u1ssrx{us

β

��
C1rE

1rxα, u1sry{u1ssrx{us α
// C1rE

1ru, u1sry{u1ssrx{us

If xα is inside u1, that is C2 � Erryβssry{E1s, then

C1rErry
βssry{E1rrxαssssrx{us

α //

β

��

C1rErry
βssry{E1russsrx{us

β

��

C1rErE
1rrxαsssry{E1rrxαssssrx{us

α

��
C1rErE

1russry{E1rrxαssssrx{us α
// C1rErE

1russry{E1russsrx{us

– Assume that b is a gc-step, so that r2 � s1 ryβ{u1s.

If xα is inside s1, i.e. C2 � E ryβ{u1s, then

C1rErrx
αssryβ{u1ssrx{us

α //

β

��

C1rErusry
β{u1ssrx{us

β

��
C1rErrx

αsssrx{us α
// C1rErussrx{us

If xα is inside u1, that is C2 � s1 ryβ{Es, then

C1rs
1 ryβ{Errxαssssrx{us

α //

β

��

C1rs
1 ryβ{Erusssrx{us

β
ss

C1rs
1srx{us

• If D1 � Crrxαssrx{Es, then
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Crrxαssrx{Err2ss
α //

β

��

CrErr2ssrx{Err2ss

β

��
CrErr12ssrx{Err2ss

β

��
Crrxαssrx{Err12ss α

// CrErr12ssrx{Err
1
2ss

Assume that a is a gc-step, i.e. r1 � srxα{us.

• If r2 is inside s, i.e. D1 � E rxα{us, then a simple argument suffices.

• If r2 is inside u, that is D1 � srxα{Es, then

srxα{Err2ss
α //

β

��

s

srxα{Err12ss

α

77

Proposition 4.2.19. The ARS AL enjoys the axiom SO.

Proof. Given the argument described at the beginning of this section, Lem. 4.2.18 suffices
to conclude: local commutativity of the relations generated by different labels implies
semantic orthogonality.

4.2.3 Embedding axioms

Recall that the embedding relation of AL is a total order. This fact allows to simplify
the analysis of the relative embedding of steps, and of its residuals, to a great extent.
Moreover, a simple analysis of the rules of λlsub yields that a step a only has the power
to erase, duplicate or change the relative embeddings, on steps whose anchor is on the
right of that of a. Therefore, if a affects another step b in any of the described way, then
a  L b. Some examples are given in Fig. 4.3, observe that a  L b in all the cases.

These considerations lead to simple proofs of most of the embedding axioms. The
exception is Enclave–Creation: a result stating the step creation cases for λlsub is needed
to prove this axiom.

duplication xα rx{pλyβ.yqzs
a
ÝÑ ppλyβ

1
.yqzqrx{pλyβ

2
.yqzs

erasure w rxα{pλyβ.yqzs
a
ÝÑ w

change of relative embeddings

pλwα.xwqrx{pλyβ.yqzspxγ1 rx1{y1sq
a
ÝÑ pxwqrw{xγ

1

1 rx1{y1ssrx{pλy
β1 .yqzs

a, the α-labeled step, exercises the indicated power over b, the β-labeled one.

Figure 4.3: Different forms of the power of a step over another.

Lemma 4.2.20 (Linearity for AL). Let a, b P ROptq such that a ªL b. Then there is
exactly one step b1 verifying bvawb1.
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Proof. By totality of  L, we have to show that if b  L a in t then D!b1 { bvawb1. Now,
if a is a db-step this is obvious, as no step is duplicated/erased by a db-step. If a is a
tgc, lsu-step then it can only erase or duplicate steps whose anchor is in its box, i.e. on
steps on its right, and thus this cannot be the case for b.

Lemma 4.2.21 (Context-Freeness for AL). Let a, b, c, a1, b1 be steps such that bvawb1 and
cvawc1. Then the following assertion holds: a  L c_ pb  L c ô b1  L c

1q.

Proof. If a ¢L c then c  L a. Assume b  L c (and so b  L c  L a). Then, a is on the
right of both b and c. It is easily seen that a can only change the order between steps
on its right; consequently b1  L c

1. The other direction is by contraposition. Assume
b ¢L c, that is c  L b. We have to prove that b1 ¢L c

1, i.e. c1  L b
1. There are two cases.

If c  L b  L a then we reason as in the previous direction, getting c1  L b
1. Otherwise,

we have c  L a  L b. Now, the only case that is not immediate is when a is a ls-step.
It is enough to observe that a ls-step can only move the steps in its box at most where
the step itself was; hence, b1 can at most be where a was (while the position of c is left
unchanged), and so c1  L b

1.

Lemma 4.2.22 (Creation lemma for λlsub). Let t
a
ÝÑ t1, and b P ROpt1q such that

Hvawb. Then one of the following conditions holds (where, for readability, β is used to
label the created step)

1. (db creates a db-step)

t � Crppλxα.pλy.sqL1qL2 uq L3vs Ñdb Crpλy
β.sqL1rx{usL2L3 vs � t1

2. (db creates a ls-step)

t � Crpλxα.DrrxssqLus Ñdb CrDrrx
βssrx{usLs � t1

3. (db creates a gc-step)

t � Crpλxα.sqLus Ñdb Crsrx
β{usLs � t1 , where x R fvpsq

4. (ls downward creates a db-step)

t � CrDrxαL2 usrx{pλy.sqL1ss Ñls CrDrpλy
β.sqL1L2usrx{pλy.sqL1ss � t1

5. (ls upward creates a db-step)

t � CrxαL2 rx{pλy.sqL1sL3 us Ñls Crpλy
β.sqL1L2 rx{pλy.sqL1sL3us � t1

6. (ls creates a gc-step)

t � CrDrrxαssrx{uss Ñls CrDrrussrx
β{uss � t1 , where x R fvpDrrussq

7. (gc creates a gc-step)

t � CrDrsryα{Errxssssrx{uss Ñgc CrDrssrx
β{uss � t1 , where y R fvpsq and x R

fvpDrssq.

Proof. See Appendix C.3, page 267.

Lemma 4.2.23 (Enclave–Creation for AL). Let a, b, b1, c1 be steps such that bvawb1, Hvawc1,
and b  L a. Then b1  L c

1.
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Proof. A simple inspection of the cases of creation, cfr. Lem. 4.2.22, shows that a step
a can create a step c1 only on its right or at most where it was, so that c1 cannot be on
the left of any step that was, in turn, on the left of a. Thus we conclude.

Lemma 4.2.24 (Enclave–Embedding for AL). Let a, b, c, b1, c1 be steps such that bvawb1,
cvawc1, and b  L a  L c. Then b1  L c

1.

Proof. It suffices to recall that a step can move other steps only up to the point where
its anchor was. Therefore the contraction of a cannot provoke the anchor of a residual
of c to be on the left of that of b1.

Lemma 4.2.25 (Stability for AL). The ARS AL enjoys the axiom Stability.

Proof. The hypothesis of the axiom assumes the existence of two steps a and b verifying
a ‖ b. This case cannot happen when considering  L, which is a total order. Thus we
conclude.

4.3 A first standardisation result

As we have verified in the previous section, the ARS AL verifies the initial axioms, the
axioms FD and SO, and all the embedding axioms. Therefore, our first standardisation
result for the linear substitution calculus follows directly from the results for ARS given
in [Mel96], and described in Section 2.1.8.

Theorem 4.3.1. Let γ be a reduction sequence in the λlsub calculus. Then there exists
a unique AL-s.r.s. δ such that δ is permutation equivalent to γ.

Proof. Immediate corollary of Thm. 2.1.24, page 42.
Observe that the embedding  L is a total order, implying the non-existence of steps

a and b verifying a � b and a ‖ b. Therefore, the relation 3 generated by AL coincides
with identity. Hence, the existence of a unique δ, instead of just uniqueness of δ modulo
3 , can be stated.

This standardisation result, while interesting, is not entirely satisfactory, because it
does not respect the close relation between λlsub and proof nets.

The linear substitution calculus has been designed to mimic the representation of
λ-calculus in linear logic proof-nets [Gir87], where β-reduction is decomposed into small
steps. The relationship between the two formalisms occurs at the static and the dynamic
levels: every term can be mapped to a proof-net, and every proof-net can be mapped
to a graphical-equivalence class of terms, as this equivalence defined in Section 4.1 by
means of the relation �. Moreover, there is a bijection φ between the steps of a term
t and the steps of its corresponding proof-net PNt which induces a strong bisimulation
between terms and proof-nets: if tÑλlsub u by reducing a step a, then PNt ÑPN PNu by
reducing φpaq, and if PNt ÑPN R then there exists a term u s.t. tÑ u and R � PNu.

Therefore, one expects that any reasonable notion of standardisation valid in λlsub
can also be applied to proof-nets. There are two reasons which prevent the standardis-
ation result obtained for AL to meet this requirement.

First, the objects of AL are not �-equivalence classes of λlsub terms, but rather each
term is a different object in that model. Consequently, steps and residuals are defined
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for terms. In order to obtain standardisation results applicable to �-equivalence classes,
we should obtain definitions of steps and residuals which preserve this equivalence.
Particularly for residuals, notice that if t

a
ÝÑ t1 and b is a step in t, then bvaw is a set of

steps in t1. It is not immediately clear how to relate these steps in t1 with steps in some
term t2 verifying t1 � t2.

Second, the total left-to-right order  L is not preserved by the �-equivalence classes.
A simple example follows: consider

t1 � z ryβ{wsrα � pzrαqryβ{ws � t2

where rα stands for pattern of a step whose anchor is labeled with α. Let us call a1 and
a2 the α-labeled step in t1 and t2 respectively, and b, b1 the gc-steps labeled with β in
those terms. We have b1  L a

1 and a2  L b
2, while it is intuitively clear that a2 is the

step in t2 corresponding to a in t1, and analogously for b2 and b1.

We will address these issues in the following sections.
In Section 4.4 we show that steps and residuals are well-defined w.r.t. �-equivalent

classes, by proving the existence of a bijection between steps in equivalent terms. This
bijection preserves residuals: if two steps a and a1 in �-equivalent terms are related by
this bijection, and similarly for b and b1, then the residuals bvaw and b1va1w are again
related, one-to-one if there are several such residuals.

In Section 4.5, we define a different embedding relation for λlsub, the box order,
which is preserved by �-equivalence.

These elements allow to define other ARSs, whose standardisation results are appli-
cable to λ�lsub, and hence to proof-nets.

4.4 Working with equivalence classes

In this section we first define the notion of residual of a step along a �-equivalence
derivation, so that we will be able to trace steps along λ�lsub-reduction sequences. We
then show that the notions of step and residual defined in Section 4.2 is well-defined
w.r.t. equivalence classes, i.e. 1) residuals along equivalence derivations yield a unique
bijection between two steps in the same �-equivalence class, cfr. Lem. 4.4.9, and 2)
residuals of rewriting steps lift to �-equivalence classes, cfr. Lem. 4.4.10.

To trace a step along an equational derivation, we use labels, just like we do to define
residuals after Ñλlsub .

Definition 4.4.1. Given t � u, a P ROptq and α R Labptq, we consider the labeled
equation liftpt, a, αq � u. The set of residuals of a after t � u, is given by
avt � uw :� tRedαpuq { liftpt, a, αq � uu. Again, this definition is independent from
the variant used to lift the term t. We write avt � uwa1 iff a1 P avt � uw and we
extend this notion to sets of steps as expected, in which case we write Avt � uwA1, where
A � ROptq and A1 � ROpuq.

We illustrate this definition with the following example: given v � pxαxβqrx{ysrx1{y1s �
pzαrx1{y1szβqrz{ys � v1 and b � x2rx1{y1s, pxαxβqrx{ys,2xβy, we have bvv � v1w �
tx2, v1,2rx1{y1szβyu.

Note that our equations do not duplicate/erase/rename labels, so that any step has
a unique residual along the equivalence. Therefore, a bijection between the steps in
�-equivalent terms can be defined as follows:
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Definition 4.4.2. Let t � t1. We define the correspondence definitions between
ROptq and ROpt1q, notation φt, t1, as follows: φt, t1paq � a1 iff avt � t1wa1.

Although this is a quite natural way to relate steps in �-equivalent terms, its well-
definedness is not immediate, the reason being the existence of different ways to obtain
that two given terms are �-equivalent. Two examples of this phenomenon follow.

t0rx{t1sry{t2srz{t3s44

tt

jj

**
t0ry{t2srx{t1srz{t3sOO

��

t0rx{t1srz{t3sry{t2sOO

��
t0ry{t2srz{t3srx{t1sjj

**

t0rz{t3srx{t1sry{t2s44

tt
t0rz{t3sry{t2srx{t1s

t1rx{u1sry{u2st244

tt

jj

**
t1ry{u2srx{u1st2OO

��

pt1rx{u1st2qry{u2sOO

��
pt1ry{u2st2qrx{u1sjj

**

pt1t2qrx{u1sry{u2s44

tt
pt1t2qry{u2srx{u1s

Well-definedness of the bijection between steps could be shown, in principle, by in-
troducing proof-nets and showing that the proof nets corresponding to two �-equivalent
terms s and t are identical: thus there is a bijection between redexes in s and redexes in
t, since there is a bijection between redexes in s (resp t) and redexes in their proof-net
representation. We prefer, however, to avoid introducing proof-nets here: on the one
hand because they are only apparently simpler than terms, and on the other hand, to
resort to a unique formalism, namely terms, to develop our ideas.

Consider two unlabeled terms t and t1 such that t � t1, and t1 a variant of t. For
each different � derivation justifying t � t1, there is a corresponding labeled derivation
t1 � t11, where now � stands for the labeled graphical equivalence, Dfn. 4.1.5. We must
verify that all the possible derivations t � t1, when lifted to t1, attain the same labeled
term t11. Otherwise, the well-definedness of the bijection φt, t1 can be compromised.
Consider

t � Crpxxqry{xssrx{us � Crxry{xsxsrx{us � t1

and t1 � Crpxαxβqry{xγ ssrx{us, a variant of t. Let a be the step labeled with α in t1.
It is straightforward to verify that

t1 � Crpxαxβqry{xγ ssrx{us � Crxα ry{xγ sxβsrx{us � t11

Suppose that t11 were not uniquely determined, e.g. that we could somehow obtain:

t1 � Crpxαxβqry{xγ ssrx{us � Crxβ ry{xγ sxαsrx{us � t21

In this case, the definition of φt, t1paq would be ambiguous.
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Observe that in such case, transitivity of � would entail immediately
Crxα ry{xγ sxβsrx{us � Crxβ ry{xγ sxαsrx{us. This observation implies that the fol-
lowing statement is a sufficient condition for the well-definedness of φt, t1 :

Let t, t1 be labeled terms verifying t� � t1�. Then t � t1 implies t � t1.

To prove this statement, we introduce and verify three structural invariants of labeled
steps with respect to the equivalence �. These invariants are: being a well-named term,
substitution address of each label, and a partial order on labels.

Definition 4.4.3. A term t P TWL is well-named iff 1) all its bound variables have
pairwise distinct names and 2) all its labels are pairwise distinct.

The restriction to well-named terms is just given to reason about (the unique occurrence
of) each label in a term.

Definition 4.4.4. For each label α occurring in a well-named term t, we consider the
substitution address addpα, tq which is given by the sequence of all the names of the
successive substitutions we have to enter in t in order to find α (that is a well-defined
and unambiguous sequence because t is well-named).

For example, if t � pxαrx{yβrzγ{yµssyδqry{wsrxν1{ws, then the sequence for α and δ is ε
(i.e. empty), for β is x, for γ and µ is xz, and for ν is x1.

Definition 4.4.5. Given a well-named term t, the order  t on its labels is defined
as the left-to-right order (looking at t as a string of symbols) but only between labels
contained in exactly the same substitution, i.e. α  t β iff addpα, tq � addpβ, tq and α
appears to the left of β.

Lemma 4.4.6. Let t be well-named and t � u. Then:

1. u is well-named and Labptq � Labpuq.

2. addpα, tq � addpα, uq for any α P Labptq.

3.  t� u.

Proof. Easy induction on the equational derivation t � u.

These invariants are used to prove the following lemma, for which we also need to
introduce a new concept. Let t and u be s.t. t� � u�. We say that t and u are equally
labeled if they have labels on exactly the same symbols of t� (but not necessarily the
same label).

Lemma 4.4.7. Let t, u be well-named and equally labeled. If

1. Labptq � Labpuq,

2. addpα, tq � addpα, uq for any α P Labptq, and

3.  t� u

then t � u.

Proof. The proof is by induction on the number of labels occurring in t, and then by
structure of t.
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• If t � x or t � xα then we conclude immediately.

• Assume t � λx.t1. In this case hypotheses imply u � λx.u1, t1
� � u1

�, Labpt1q �
Labpu1q,  t1 � u1 , and addpα, t1q � addpα, u1q for all α P Labpt1q. Then we
conclude by the IH.

• Assume t � t1t2 and t1 P TWL. In this case hypotheses imply u � u1u2, and for
i � 1, 2, that ti and ui are well-named and equally labeled, and also ti

� � ui
�.

To verify that Labpt1q � Labpu1q, assume for contradiction the existence of some
α P Labpt1q � Labpu1q. This would imply α P Labpu2q, recall Labptq � Labpuq.
Hypotheses and definition of addp , q imply addpα, t1q � addpα, tq � addpα, uq �
addpα, u2q. In turn, addpα, t1q � addpα, u2q � x � k would imply both t1 and u2

include a substitution for the variable x, contradicting t� � u�. Then addpα, t1q �
addpα, u2q � ε. On the other hand, t1 and u1 being well-named and equally labeled,
and Labpt1q�Labpu1q � H would imply the existence of some β P Labpu1q�Labpt1q,
then β P Labpt2q. An argument analogous to that used for α entails addpβ, t2q �
addpβ, u1q � ε. But then α  t β and β  u α, contradicting  t� u.

The existence of some α P Labpu1q � Labpt1q can be contradicted by a similar
argument. Consequently Labpt1q � Labpu1q. Therefore, a simple argument on
the sets of labels entails Labpt2q � Labpu2q. Hence, observing the definitions
of substitution addresses and the order on labels is enough to obtain  ti � ui
and addpα, tiq � addpα, uiq for all α P Labptiq, for i � 1, 2, given  t� u and
addpα, tq � addpα, uq for all α P Labptq. Thus we conclude by applying the IH
twice.

• Assume t � pλxα.t1qLt2. In this case hypothesis imply u � pλxβ.u1qL
1u2 (recall t

and u are equally labeled). Assuming α � β would imply α P Labppλx.u1qL
1u2q,

β P Labppλx.t1qLt2q, and addpα, uq � addpβ, tq � ε, then α  t β and β  u α,
contradicting  t� u. Then α � β, implying Labppλx.t1qLt2q � Labppλx.u1qL

1u2q.
Moreover, it is straightforward to verify that pλx.t1qLt2 and pλx.u1qL

1u2 verify the
remaining hypotheses. Then the IH entails pλx.t1qLt2 � pλx.u1qL

1u2, thus we
conclude.

• If t � t1rx{t2s, then hypotheses imply that u � u1rx{u2s. The existence of some
α P Labpt1q � Labpu1q, then α P Labpu2q, would imply addpα, t1q � addpα, u2q,
since t1 does not include a substitution for the variable x. A similar argument
entails Labpu1q � Labpt1q � H, and consequently Labpt1q � Labpu1q. In turn, a
simple argument on sets of labels imply Labpt2q � Labpu2q. It is straightforward
to obtain that ti and ui verify the remaining hypotheses for i � 1, 2. Thus we
conclude by applying the IH twice.

• If t � t1rx
α{t2s. then hypotheses imply u � u1rx

β{u2s. We observe that addpα, tq �
addpβ, uq � x, then hypotheses entail addpβ, tq � addpα, uq � x. Then, assuming
α � β would imply α P Labpu2q, addpα, u2q � ε, β P Labpt2q, and addpβ, t2q � ε.
But then α  t β and β  u α, contradicting  t� u. Consequently, α � β, im-
plying Labpt1rx{t2sq � Labpu1rx{u2sq. Moreover, it is straightforward to verify
that t1rx{t2s and u1rx{u2s verify the remaining hypotheses. Then the IH entails
t1rx{t2s � u1rx{u2s, thus we conclude.
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The preceding lemmas allow to prove the desired condition on �-equivalent terms,
and hence the well-definedness of φt, u.

Lemma 4.4.8. Let t be a well-named term having labels exactly at the anchors of all
its steps. Let u such that t � u and t� � u�. Then t � u.

Proof. A simple induction on the equivalence derivation implies that exactly the anchors
of the steps in u are labeled, therefore t and u are equally labeled; recall t� � u�.
Moreover, Lem. 4.4.6:(1) implies that u is well-named, and the whole of Lem. 4.4.6
implies that the remaining requirements of Lem. 4.4.7. Hence we conclude by Lem. 4.4.7.

Lemma 4.4.9. Let t, u P TWL such that t � u. Then φt, u is well-defined.

Proof. Assume (by α-conversion) that bound variables in t have pairwise distinct names
and consider t1, the lift of t w.r.t. the (anchors of the) full set of steps ROptq, so that t1 is
well-named. Consider u1 such that t1 � u1. Then a simple induction on the equivalence
derivation implies that exactly the anchors of the steps in u are labeled, implying the
existence of exactly one residual of each step in t (which is uniquely labeled in t1).
Moreover, Lem. 4.4.8 implies that u1 is unique for t1 � u1 and u1

� � u. Thus we
conclude.

Lem. 4.4.9 allows to write t �φ u to denote φt, u: φ is a bijection uniquely determined
between the steps of t and of u. We prove that this bijection preserves targets and
residuals.

Lemma 4.4.10. Let t �φ u. Consider a, b P ROptq. If t
a
ÝÑ t1, then:

1. Simulation: u
φpaq
ÝÑ u1 with

2. Same equivalence target: t1 � u1, i.e. Dξ s.t. t1 �ξ u
1, and

3. Preservation of residuals: if bvawb1, then φpbqvφpaqwξpb1q.

Proof. The following diagram depicts the statement

b

vaw

φpbq

vφpaqw

t
�φ

a
��

u

φpaq
��

t1 �ξ
u1

b1 ξpb1q

We proceed by induction on the derivation t � u, considered as a sequence of appli-
cations of one equation in either way, inside a context. We consider the case when t and
u are one equation application away, i.e. t � Ert1s, u � Eru1s and t1 � u1.

In the following, we consider that the steps a and b are labeled in t by α and β
respectively. Let us call D1 and r the context and pattern of a respectively, and r1 the
term verifying t1 � D1rr1s. We analyse some cases for which the result can be established
independently of the nature of t1 and u1.

Assume that D1 � Dr2, t1s, so that E � Drr,2s. Therefore
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t � Drr, t1s
�φ

a

��

Drr, u1s � u

φpaq
��

t1 � Drr1, t1s �ξ
Drr1, u1s � u1

Items 1 and 2 hold immediately.

If the anchor of b is inside D, then bvaw � tb1u where b1 is the β-labeled step in t1,
and φpbq is the β-labeled step in u. In turn, ξpb1q is the β-labeled step in u1. Therefore,
it is straightforward to verify that φpbqvφpaqw � tξpb1qu. Hence item 3 holds for b.

If the anchor of b is inside r, then bvaw is the set of β-labeled steps in r1 inside t1,
and φpbq is the β-labeled step inside r in u. Therefore φpbqvφpaqw is the set of α-labeled
steps in r1 inside u1, where the labeled variants of r1 inside t1 and u1 coincide. On the
other hand, for any b1 P bvaw, ξpb1q is a β-labeled step in r1 inside u1. Hence item 3 holds
for b.

We observe that in any case, item 3 yield from an analysis similar to those just
described. Therefore we will check only items 1 and 2 in the following. In all cases
justifying diagrams, the result is immediate from the diagram, so we will not remark
this fact after each one.

Assume that a is a ls-step, so that t � D1rCrrxαssrx{sss, and that t1 is inside s.
Then we have

D1rCrrxαssrx{sss
�

a

��

D1rCrrxαssrx{s1ss

φpaq
��

D1rCrrsssrx{sss � D1rCrrs1ssrx{s1ss

A similar analysis applies if t1 is inside Crrxαss, so that Crrxαss � C 1rrxαss, here it is crucial
to observe that C 1rrxαss includes exactly one α-labeled occurrence of x. An analogous
reasoning applies also in analogous cases if a is a db-step or a gc-step.

We analyse the remaining cases.

• Assume that t1 �CS t2, i.e. t � Ers1 rx{s2sry{s3ss and u � Ers1 ry{s3srx{s2ss.

If a is inside some si, then a straightforward argument suffices.

If a is a ls-step on an occurrence of x inside s1, then we have

ErCrrxαssrx{s2sry{s3ss
�

a

��

ErCrrxαssry{s3srx{s2ss

φpaq
��

ErCrrs2ssrx{s2sry{s3ss � ErCrrs2ssry{s3srx{s2ss

If a is a is a ls-step on an occurrence of y inside s1, then a similar analysis applies.
There are no other internal ls-steps, since y R fvps2q and x R fvps3q.

If a is a gc-step on x, then we have

Ers1 rx
α{s2sry{s3ss

�

a

��

Ers1 ry{s3srx
α{s2ss

φpaq
��

Ers1 ry{s3ss � Ers1 ry{s3ss

If a is a gc-step on y, then a similar analysis applies.

If E � E1r2Ls4s and s1 � λzα.s11, then we have
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E1rpλzα.s11qrx{s2sry{s3sLs4s
�

a

��

E1rpλzα.s11qry{s3srx{s2sLs4s

φpaq
��

E1rs11 rz{s4srx{s2sry{s3sLs � E1rs11 rz{s4sry{s3srx{s2sLs

• Assume that t1 �σ1 t2, i.e. t � Erpλy.s1qrx{s2ss, u � Erλy.s1 rx{s2ss, and y R
fvps2q.

If a is inside some si, then a straightforward argument suffices.

If a is a ls-step on an occurrence of x in s1, or it is a gc-step on x, then diagrams
similar to those shown for the �CS case can be built.

If E � E1r2Ls3s and r � pλyα.s1qrx{s2sLs3, then we have

E1rpλyα.s1qrx{s2sLs3s
�

a

��

E1rpλyα.s1 rx{s2sqLs3s

φpaq
��

E1rs1 ry{s3srx{s2sLs3s � E1rs1 rx{s2sry{s3sLs3s

Notice that we can assume x R fvps3q by variable convention, and we have y R
fvps2q, hence s1 ry{s3srx{s2s �CS s1 rx{s2sry{s3s. This diagram applies only if
read right-to-left.

• Assume that t1 �σ2 t2, i.e. t � Erps1s2qrx{s3ss, u � Ers1 rx{s3s s2s, and x R
fvps2q.

If a is inside some si, then a straightforward argument suffices.

If a is a ls-step on an occurrence of x in s1, or it is a gc-step on x, then diagrams
similar to those shown for the �CS case can be built.

If s1 � pλy
α.s11qL, then we have

Erppλyα.s11qLs2qrx{s3ss
�

a

��

Erpλyα.s11qLrx{s3s s2s

φpaq
��

Ers11 ry{s2sLrx{s3ss � Ers11 ry{s2sLrx{s3ss

We get back to the induction on the derivation t � u. If t � u then we conclude
immediately; the bijections ψ and ξ are the identity on ROptq and ROpt1q respectively.
Otherwise, consider the following diagram:

b φpbq µpφpbqq

t
�φ

a

��

s
�µ

φpaq

��

u

µpφpaqq

��

one eqn. case IH

t1 �ξ
s1 �ν

u1

b1 ξpb1q νpξpb1qq

Let θ such that t �θ u. Uniqueness of θ, cfr. Lem. 4.4.9, implies that θ � µ � φ. Then
item 1 is immediate, and item 2 also: considering ψ � ν � ξ, we obtain t1 �ψ u

1. Item 3
follows from the one-equation case and the IH, given the definitions of θ and ψ.
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We conclude this section by noticing that we have just shown that the graphical
equivalence � is a strong bisimulation between λlsub and itself: t � u Ñ s implies the
existence of some r verifying tÑ r � s. Moreover, this bisimulation induces a bijection

of steps, so it is possible to mimic reduction sequences via � as follows: given t
δ
Ý� u

and t � t1, we can unambiguously refer to the simulation t1
δ1

Ý� u1 of δ, where u � u1.
This simulation also preserves residuals. Thus we can say that the reduction sequences
δ and δ1 essentially contract the same sequence of steps.

4.5 The box order on steps

Let us recall the drawbacks of the left-to-right embedding  L defined in Section 4.2,
page 102.

Firstly, it does not correspond to the idea of the embedding relation in the ARS
model: if   is the embedding for an ARS, then a   b should imply that the step a
possibly has some power over the step b, e.g. to erase or duplicate it. In the term

x s1 s2

which is in fact a head normal form, it is clear that no step inside s1 can have any power
over a step inside s2, and yet a  L b if a and b are inside s1 and s2 respectively. Another
example is

pyxqrx{s1sry{s2s

where again, a  L b if a and b are inside s1 and s2 respectively. In other words,  L

captures more than what the “power principle” suggests.
Secondly, the order  L is not preserved by the graphical equivalence. E.g., we have

t � pyxqrx{s1sry{s2s � pyxqry{s2srx{s1s � t1

where the relative  L-embedding of two steps, one inside s1 and another inside s2, is
different in t than in t1. Another example is described in page 113.

Then we introduce the box order  B, designed to overcome both shortcomings of
 L. It is based on the “power principle”: if a step a can erase or duplicate a step b, we
enforce a  B b. Several examples are given in Figure 4.4. In all the cases shown, the
downward a, whose anchor is labeled with an α, must precede the rightward b, whose
anchor is inside s for Fig. 4.4.a and Fig. 4.4.b, and it is labeled with a β in the remaining
two diagrams.

a) Crrxαssrx{ss
b //

a

��

Crrxαssrx{s1s

��
Crrsssrx{ss // // Crrs1ssrx{s1s

b) trxα{ss
b //

a

��

trxα{s1s

yy
t

c) xα rx{yβ sry{zs
b //

a
��

xα rx{zsry{zs

��
yβ rx{yβ sry{zs // // z rx{zsry{zs

d) xrx1α{yβ sry{zs
b //

a

��

xrx1α{zsry{zs

vv
xry{zs

Figure 4.4: Some standardisation diagrams for λlsub.
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Observe that the figure actually shows local confluence diagrams. A simple diagram-
matic intuition, due to [Klo80] and then explored in [Mel05], indicates that whenever a
step is duplicated (resp. erased), then the standard reduction sequence should be the
longest (resp. shortest) side of the diagram. In all the diagrams, the standard reduction
sequence is that going down and then right. This intuition, and also the Linearity axiom,
are in line with the “power principle” we use to define  B.

Observe that in Fig. 4.4.a and Fig. 4.4.b, the pattern of a syntactically nests that of
b; more precisely, it is the box of a what nests the pattern of b (cfr. the definition of the
box of a step in page 102). This is not the case for Fig. 4.4.c and Fig. 4.4.d. In these
cases, we have actually the pattern of b syntactically nesting that of a. Therefore, the
intuition indicating the coherence between semantic embedding and syntactic nesting is
not valid for the linear substitution calculus.

However, there is a syntactic indication common to all the examples in Fig. 4.4: the
anchor of the step b is inside the box of the step a. This observation allows to formalise
the definition of  B.

The formal definition of the box order  B follows.

Definition 4.5.1. Let a, b P ROptq. Then,

• a immediately boxes b, noted a  1
B b, if the anchor of b is in the box of a, i.e.

if the pattern of a is any of pλx.tqLu, Crrxssrx{us or trx{us, then the anchor of b
appears in u.

• a boxes b, noted a  B b if ap 1
Bq
�b (we use a ¨B b for ap 1

Bq
�b);

Observe that  B allows embedding to occur at a distance. Consider the term
pxαz rx{yβ syzqry{zs. The α-labeled step  B-embeds the β-labeled one, while the sub-
stitution corresponding to the latter is distant from the pattern of the former.

Notice also that a ‖ b (i.e. a � b, a ¢B b and b ¢B a) does not imply that a and b
are syntactically disjoint. Examples: the steps labeled with α and β are disjoint but 1)
syntactically superposed in pxα xβqrx{ys, and 2) syntactically nested in pλzα.xβ rx{zsqy.
However, disjoint steps always strongly locally commute in the following sense: if t0

α
Ñ t1

and t0
β
Ñ t2 then there exists t3 s.t. t1

β
Ñ t3 and t2

α
Ñ t3. Note that this is just a

particular case of SO where the diagram can be closed by using just one reduction step
from ti to t3. This observation shows the semantic adequacy of the box order.

A final remark about  B: the relation  B is not contained in  1
B, therefore the

definition of the former is not redundant. This phenomenon is caused by chains of
ls-steps where the anchor of each one is inside the box of the following, as in the
term xαy rx{yβ sry{zγ srz{x1y1s. If we call a, b and c the steps labeled with α, β and γ
respectively, then we have a  1

B b  
1
B c, implying a  B c, but not a  1

B c.

The box order preserves the graphical equivalence �, thus solving the second short-
coming mentioned at the beginning of this section. For example, for trx{usry{vs with
y R fvpuq the redexes in u and the redexes in v are not related by  B, so that  B is sta-
ble by the permuting axiom try{vsrx{us �CS trx{usry{vs (where y R fvpuq & x R fvpvq).
More precisely, given s � t, the bijection between ROpsq and ROptq defined in Sec-
tion 4.4 is order-preserving. Formally

Lemma 4.5.2. Let t, u be terms s.t. t �φ u, where φ is the bijection described in
page 114, cfr. Lem. 4.4.9. Then, φ commutes with  B, i.e. a  B b iff φpaq  B φpbq.
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Proof. It suffices to remark that symbols cannot go in/outside the box of a step, includ-
ing those of db-steps, by means of the � relation. See Appendix C.4, page 271, for the
technical details.

Consequently,  B can be thought as a relation on �-equivalence classes. This result,
along with those described in Section 4.4, cfr. Lem. 4.4.10, implies that the definition
of λ�lsub as a rewriting system on �-equivalence classes behaves as expected, despite the
reduction relation being defined on terms. That is: the set of steps of a �-equivalence
class, the target and residuals of a step, and how the steps are related by  B, do not
depend on the term used to compute them.

This observation leads to the possibility of defining an ARS to model λ�lsub, having
the box order  B as the embedding relation. For technical reasons to be discussed later,
we actually define two ARS.

4.5.1 ARS based on the box order

The box order  B leads to the definition of two ARS, for λlsub and λ�lsub respectively.

Definition 4.5.3. We define the ARS AB as follows: the objects, steps, source and target
functions, and residual relation, are as defined for AL, cfr. page 101. The embedding
relation is the box order  B, considered as a relation on terms.

Definition 4.5.4. We define the ARS A�
B as follows:

• the objects are the �-equivalence classes of the set of terms of λlsub, i.e., the objects
being rewritten in λ�lsub.

• the steps, source, target and residuals are the quotient, by �-equivalence, of those
defined for AL, given the bijection between steps in �-equivalent terms defined in
page 114. Lem. 4.4.10 implies that these elements are well-defined.

• the embedding relation is the quotient of the box order  B by �-equivalence; Lem. 4.5.2
implies its well-definedness.

We verify that AB and A�
B enjoy the initial axioms, FD, SO, Linearity and Context-

Freeness. The following definition allows to express more concisely, in the following
proofs, the possible locations of the pattern of a step within a term.

Definition 4.5.5. If t � Crss, then we say that a step a in t is inside s, notation
a � s, iff its context is D � CrD1s, so that its pattern is a subterm of s. We define
analogously the meaning of a step a being inside a substitution list L, and denote a � L.
We write a ' s iff the pattern of a is exactly the displayed occurrence of s, so that its
context is C. Notice that a ' s implies a � s.

We focus on AB first. The proofs of the initial axioms, FD and SO given for AL, are
immediately valid for AB, since these axioms are not related with the embedding relation
of an ARS.

The proof of Linearity follows; it is preceded by an auxiliary lemma.

Lemma 4.5.6. Let t � Crrxβss where the indicated is only the occurrence of the label
β in t, and t

a
ÝÑ u, such that xβ is not in the box of a. Then u contains exactly one

occurrence of xβ.
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Proof. By induction on the context of a. We label the anchor of a using α. For the base
case, namely a ' t, we consider each rule.

• If t � pλyα.s1qLs2, so that u � s1 ry{s2sL, then the result holds for any possible
location for xβ.

• If t � Dryαsry{s2s, so that u � Drs2sry{s2s, then xβ not being in the box of a
implies that it is inside D, hence we conclude immediately.

• If t � s1 ry
α{s2s, a similar, yet simpler, analysis applies.

If a �' t, then t � λy.t1, t � t1t2 or t � t1 ry{t2s, and a � ti for some i.
If the occurrence of xβ lies inside ti, then we conclude by IH. If this occurrence is

inside a different subterm, then we conclude immediately.

Proposition 4.5.7 (The ARS AB enjoys the axiom Linearity). Let a, b be two coinitial
steps, such that a ªB b. Then !Db1 { bvawb1.

Proof. By induction on n � minpna, nbq, where na is the length, defined as number of
symbols, of the context of a, and similarly, nb is the length of the context of b. We label
the anchors of a and b using α and β respectively, and define t

a
ÝÑ u.

The base case is when n � 0. We analyse the rules of Ñλlsub .

• If t � pλxα.s1qLs2, so that u � s1 rx{s2sL, then the result trivially holds for any
possible location of b verifying a ªB b, i.e.: b � s1, b � L, s1 � Crrzβss where
L � L1 rz{s3sL2, and L � L1 rz

β{s3sL2.

• If t � pλxβ.s1qLs2, so that u � pλxβ.s11qL
1s12, then we conclude immediately.

• If t � Crrxαssrx{s2s, so that u � Crrs2ssrx{s2s, then a ªB b implies b � Crrxαss or
C � Drxα, xβs. In both cases, we conclude immediately.

• If t � s1 rx
α{s2s, then we conclude immediately.

• If t � Crrxβssrx{s2s, then we analyse different cases separately:

– if α � s1 then: if the occurrence of xβ is in the box of the pattern of a then
we would contradict a ªB b, otherwise Lem. 4.5.6 allows to conclude;

– if α � s2 then we conclude immediately;

– if C � Drxα,2s, so that Crrxβss � Drxα, xβs, then u � Drs2, x
βsrx{s2s, and

this observation suffices to conclude.

• If t � s1 rx
β{s2s, so that a � s1 or a � s2, then the result holds trivially.

The inductive case is when a �' t and b �' t, that is, t � λx.t1, t � t1t2 or t � t1 rx{t2s,
and a � ti, b � tj for some i, j. In this case, if i � j then IH suffices to conclude, and if
i � j then the result is immediate. Thus we conclude.

The proof of Context-Freeness involves a case analysis on the possible positions of
steps, far more extensive than that just developed for Linearity. Several auxiliary lemmas
are needed.

Lemma 4.5.8. Let t � pλxα.t1qry1{s1s . . . ryn{snst2 and u � t1rx{t2sry1{s1s . . . ryn{sns,
so that t

a
ÝÑ u where a is the redex labeled by α, and b, c P ROptq, b1, c1 P ROpuq such

that bvawb1 and cvawc1. Then b  1
B c iff b1  1

B c
1.
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Proof. See Appendix C.5, page 273.

Lemma 4.5.9. Let t � Errxγssrx{ss, c the γ-labeled step in t, a, b � Errxγss, bvawb1, and
cvawc1. If a ¢B c, then b  1

B c iff b1  1
B c

1.

Proof. See Appendix C.5, page 273.

Lemma 4.5.10. Let a, b, c P ROptq. Assume a ¢B c, t
a
ÝÑ t1, bvawb1, cvawc1 and

b1  nB d
1  1

B c
1, where d1 is a created redex. Then b1  kB c

1 with k ¤ n.

Proof. See Appendix C.5, page 275.

Lemma 4.5.11. Let u be a term s.t. x R fvpuq and γ R Labpuq, and b P ROpuq. Let E
be a context s.t. c P ROpErrxssq has label γ. Then b ¢1

B c in Erruss.

Proof. We just conclude by observing that b  1
B c in Erruss would imply the label γ

occurs in the box of b, therefore in u.

Lemma 4.5.12. Let E be a context, u a term, and b, c P ROpErrxssq, where b and c are
labeled with β and γ respectively. Then b  1

B c iff b1  1
B c

1, where b1 and c1 are the β- and
γ-labeled steps in Erruss.

Proof. Straightforward induction on E.

Lemma 4.5.13. Let a, b P ROptq, where a and b are labeled with α and β respectively,
and E a context. Then a  1

B b iff a1  1
B b

1, where a1 and b1 are the α- and β-labeled steps
in Errtss.

Proof. Straightforward induction on E.

Proposition 4.5.14 (Context-Freeness for AB). Let a, b, c be coinitial redexes s.t. bvawb1

and cvawc1. If a ¢B c then pb  B cô b1  B c
1q.

Proof. Let us define t
a
ÝÑ u, and consider the variant of t in which a, b and c are given

the labels α, β and γ respectively. Notice that a P tb, cu would contradict the existence
of b1 or c1. Therefore we can assume a R tb, cu as well as a ¢B c.

We prove first that b  1
B c iff b1  1

B c
1. We proceed by induction on the context of a.

The base case is when that context is 2. We analyse the different rewrite rules.

Assume t � pλxα.t1q L t2
α
Ñ t1 rx{t2s L � u. We conclude by Lemma 4.5.8.

Assume t � t1rx
α{t2s

α
Ñ t1 � u. If b, c � t1, then we conclude immediately by

Lemma 4.5.13. Otherwise b � t2 or c � t2, contradicting the existence of b1 or c1.

Assume that t � Errxαssrx{t2s
α
Ñ Errt2ssrx{t2s � u. We analyse the possible locations

of γ and β. We start by observing that neither b nor c can be gc-steps on the variable
x. Moreover, c � t2 contradicts a ¢B c, hence we assume c � Errxαss or c ' t in the
following analysis.

• If b, c � Errxαss, then we conclude by Lemma 4.5.12.
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• If b � Errxαss but c ' t, then xγ occurs free in Errxαss.

Suppose b  1
B c. Then the box of b does not contain the whole pattern of c (which

is the whole term t), therefore xγ occurs free in the box of b in t. That is, Errxαss �
D1rD2rrx

γss, xαs or Errxαss � D3rD4rx
γ , xαss, where the pattern of b is D2rrx

γss or
D4rx

γ , xαs. Hence u � D1rD2rrx
γss, t2srx{t2s or u � D3rD4rx

γ , t2ssrx{t2s. It is
straightforward to observe that xγ also lies inside the box of b in u, therefore
b1  1

B c
1.

Suppose b1  1
B c

1. Then a similar analysis applies, observing that x R fvpt2q, to
conclude b  1

B c.

• If b ' t (xβ occurs free in Errxαss) and either c � Errxαss or c ' t, then b ¢1
B c and

b1 ¢1
B c

1 since the label γ does not occur in the box of the β-labeled step (which is
t2) in neither t nor u.

• If b � t2 and either c � Errxαss or c ' t, then t2 � Drrpss and u � ErrDrrpssssrx{Drrpsss
where p is the pattern of b. Let us call b0 (resp. b1) the step whose pattern is the
leftmost (resp. rightmost) occurrence of p in u. Then bvawb0 and bvawb1.

We first remark that b ¢1
B c and b1 ¢

1
B c

1 since the label γ neither occurs in the
box of b in t nor in that of b1 in u. Moreover, if c � Errxαss, then b0 ¢

1
B c

1 holds
by Lemma 4.5.11 observing that the γ label does not occur in t2; if c ' t, i.e. xγ

occurs free in Errxαss, then b0 ¢
1
B c

1 because the free occurrence of xγ in Errt2ss is
not inside t2. Thus we conclude.

Now we analyse the inductive cases.

• t � λx.t1
α
Ñ λx.u1 � u, where t1

α
ÝÑ u1. We conclude by the IH on t1 and

Lemma 4.5.13.

• t � t1t2
α
Ñ u1t2 � u or t � t1t2

α
Ñ t1u2 � u, where ti

α
ÝÑ ui for i P t1, 2u.

If b and c lie in different tjs, i.e. b � tj and c � t3�j for j P t1, 2u, then b ¢1
B c and

b1 ¢1
B c

1 since the box of b (resp. b1) does not contain the label γ.

If b, c � ti, then we conclude by the IH on ti.

If b, c � t3�i, then we conclude by Lemma 4.5.13.

If b ' t, i.e. t1 � pλx
β.t11q L, then b  1

B c iff b1  1
B c

1 iff c � t2.

If c ' t, i.e. t1 � pλx
γ .t11q L, then b ¢1

B c and b1 ¢1
B c

1.

• t � t1rx{t2s
α
Ñ u1rx{t2s � u or t � t1rx{t2s

α
Ñ t1rx{u2s � u, where ti

α
ÝÑ ui for

i P t1, 2u.

– If b, c � ti, then we conclude by the IH on ti.

– If b, c � t3�i, then we conclude by Lemma 4.5.13.

– If c � tj and b � t3�j for j � 1, 2, then b ¢1
B c and b1 ¢1

B c
1 since the box of b

(resp. b1) does not contain the label γ.

– If b ' t and c � t2, i.e. either xβ occurs free in t1 or rx{t2s is indeed rxβ{t2s,
then b  1

B c and b1  1
B c

1. If i � 1 and xβ occurs in t1, then observe that the
existence of b1 implies that xβ occurs in u1.

– If b ' t and c � t1, then b ¢1
B c and b1 ¢1

B c
1 since the box of b (resp. b1) does

not contain the label γ.



126CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

– If c ' t is the gc-step on x, so that x R fvpt1q, implying eventually x R fvpu1q,
then the box of no step in t or u contains the label γ, so that b ¢1

B c and
b1 ¢1

B c
1.

– If c ' t is a ls-step, i.e. xγ occurs free in t1, there are several cases:

If b � t1 and i � 2, then it suffices to observe that t1 remains unchanged.

If b � t1 and i � 1 so that u1 � Drrxγss (notice that Linearity and a ¢B c
imply xγ occurs free exactly once in u1) then we conclude by Lemma 4.5.9
by using the condition a ¢B c which is needed in order to apply that lemma.

Otherwise, b ¢1
B c and b1 ¢1

B c
1 since the box of b (resp. b1) does not contain

the label γ.

We now prove the statement of the lemma, i.e. that b  B c iff b1  B c
1. We prove

each side of the iff separately, proceeding by induction on n in b  nB c, resp. b1  nB c
1.

Assume b  n�1
B d  1

B c. Observing a  B d would imply a  B c, we obtain a ¢B d.
Linearity then gives the existence of exactly one d1 s.t. dvawd1. We apply IH on n � 1,
thus obtaining b1  B d

1. Moreover, d1  1
B c

1 holds by the proof we have just performed
for the  1

B case. Thus we conclude.

Assume b1  n�1
B d1  1

B c
1, where d1 P ROpuq and dvawd1 for some d P ROptq. By the

proof we have just performed for the  1
B case we obtain d  1

B c, so that again we get
a ¢B d. Then we proceed similarly to the previous case.

Assume b1  n�1
B d1  1

B c
1, where d1 P ROpuq is a created redex. Lemma 4.5.10 implies

b1  kB c
1 for some k ¤ n� 1, so that we conclude by the IH on k.

As we have already remarked, to analyse the steps, residuals and box embedding for
an object of A�

B , namely a �-equivalence class, it is enough to observe an arbitrary term
belonging to that class. Therefore, the proofs of the initial axioms, FD and SO given for
AL, and those of Linearity and Context-Freeness, given for AB, apply to A�

B as well. For
FD, we notice that the measures used in the proof, namely the functions LMx and PLR,
are stable by �; cfr. Lem. 4.2.13. Therefore, these measures can also be considered as
defined on �-equivalence classes.

4.5.2 Some standardisation results stable by graphical equivalence

As described in Section 2.1.8, holding the initial, FD, SO, Linearity and Context-Freeness
axioms, are a sufficient condition, for an ARS, to assert the existence of a s.r.s. being
permutation equivalent to a reduction sequence. Therefore, the latter result holds for
AB and A�

B . Namely:

Theorem 4.5.15. Let γ be a reduction sequence in AB. Then there exists a s.r.s. δ,
such that δ and γ are permutation equivalent.

Theorem 4.5.16. Let γ be a reduction sequence in A�
B . Then there exists a s.r.s. δ,

such that δ and γ are permutation equivalent.

Proof. Both theorems are immediate corollaries of Thm. 2.1.23, given the axiom proofs
presented in Section 4.2 and Section 4.5.1.
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On the other hand, the uniqueness of s.r.s. modulo square equivalence cannot
be proved for AB, and hence neither for A�

B , by resorting to Thm. 2.1.24, the unique-
ness result given in Section 2.1.8. The reason is that these ARS, contrarily to AL (cfr.
Thm. 4.3.1), do not enjoy the required axioms. A case analysis entailing a counterex-
ample for Enclave–Creation, and also one for Enclave–Embedding, follows.

Consider t � ppλxβ.xqpy rzα{z1sqqrz1{us
a
ÝÑ ppλxβ.xqyqrz1{us � t1, where a and b

are the steps in t whose anchors are labeled with α and β respectively, and d is a step
in t verifying d � u. Let us define c1 as the gc-step for z1, created by a, and b1, d1

the unique steps in t1 verifying bvawb1 and dvawd1. Then we have b  B a and b1 ¢B c
1,

and also b  B a  B d (more precisely, a  2
B d, since a  1

B e  
1
B d where e is the ls-

step on the occurrence of z1 in rzα{z1s) and b1 ¢B d
1. Thus both Enclave–Creation and

Enclave–Embedding are contradicted.

The preceding counterexample involves the gc-rule. We notice that the calculus gen-
erated only by the db- and ls-rules does not enjoy Enclave–Embedding either. Consider

t � ppλxβ.xqyαqry{wγ rw{zss
a
ÝÑ ppλxβ.xqwγ rw{zsqry{wγ rw{zss � t1

and let a, b, c be the steps in t labeled with α, β, γ respectively; notice b  B a  B c.
Then we have bvawb1, cvawc2 and b1 ¢B c

2, where b1 is the β-labeled step in t1, and c2 the
rightmost γ-labeled one.

W.r.t. Stability, we observe that there is a case in which a step can be created in
two different ways, but not being a counterexample for the axiom, since the two steps
involved are not disjoint. Consider

t � xryβ{zαsrz{ws

a

uu

b

((
t1 � xryβ{wsrz{ws

b1
// xrz{ws � t2

where again, the anchors of a and b are labeled with α and β respectively. In this case,
both a and b create the gc-step on z. On the other hand, b  B a, so that this case is not
a counterexample for Stability. Notice that there are no ambiguity about the standard
way to go from t1 to t2, in line with the discussion in page 121 preceding the definition
of the box order: b is a s.r.s., while a; b1 is not. We conjecture that the Stability axiom
is valid for AB and A�

B , we did not try to build a proof yet.

In the next section, we introduce a novel technique allowing to obtain standardisation
uniqueness results for AB and A�

B .

4.6 A novel proof for the uniqueness of s.r.s.

In this section, we develop an abstract proof of standardisation, which allows to obtain
the result of uniqueness of s.r.s., modulo square equivalence, for an ARS A. This proof
does not require A to verify any of the Enclave–Creation, Enclave–Embedding or Stability
axioms. The initial axioms, FD, SO, Linearity and Context-Freeness are the requirements
imposed on A.

The proof relies in the existence of a second ARS, let us call it A1, whose terms,
steps and residuals coincides with that of A, whose embedding relation is a total order
containing that of A, and which verifies all the standardisation axioms. Therefore, the
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uniqueness of s.r.s. for A1 can be obtained as a corollary of Thm. 2.1.24. On the other
hand, the existence of a s.r.s. equivalent to any reduction sequence in A yields from
Thm. 2.1.23. These facts are exploited to obtain the uniqueness of s.r.s. result for A.

This proof applies to AB, where the ARS AL, whose embedding is the total order  L,
plays the role of A1 in the abstract proof.

The following notion is referred to in the forthcoming statements and proofs: given

t
δ
Ý� t1 and a P ROptq, we say that a is contracted along δ iff δ � δ1; a1; δ2 where

avδ1wa
1.

Two auxiliary results are needed, namely:

Lemma 4.6.1. Let A be an ARS satisfying the initial axioms, FD, SO, and all the

embedding axioms. We note its embedding relation as  . Let t
δ
Ý� t1

c1
ÝÑ u, and

a P ROptq such that a   b for all b P ROptq contracted along δ; c1. Then there exists
a1 P ROpt1q such that avδw � ta1u and a1   c1.

Proof. We proceed by induction on |δ|.

If |δ| � 0, i.e. δ � nilt, then t1 � t, t
c1
ÝÑ u, and c1 P ROptq is obviously contracted

along itself, so that the hypothesis implies a   c1. We conclude by observing that
avδw � tau.

If δ � d; δ1, then t
d
ÝÑ t0

δ1

Ý� t1
c1
ÝÑ u. The hypothesis implies a   d, then Linearity

yields avdw � ta0u. Let b0 P ROpt0q contracted along δ1; c1.

• If bvdwb0 for some b P ROptq, then b is contracted along δ; c1, so that the hypothesis
implies a   b.

If d �  b, then Context-Freeness yields a0   b0.

If d   b, then a   d   b; in this case we obtain a0   b0 by Enclave–Embedding.

• If Hvdwb0, then Enclave–Creation implies a0   b0.

Hence the IH applies to |δ1|, which suffices to conclude.

Lemma 4.6.2. Let A be an ARS verifying the initial axioms, FD, SO, and all the

embedding axioms, whose embedding relation, noted  , is a total order. Let t
a
ÝÑ ta

δ
Ý�

t1, where δ is a s.r.s. for A, and a   b for any b P ROptq contracted along a; δ and
verifying b � a. Then a; δ is a s.r.s. for A.

Proof. If δ � nilt then we conclude immediately, therefore we assume δ � b0; δ1.
As the square equivalence of A is the identity, then a; δ not being A-standard would

imply the existence of an anti-standard pair in that reduction sequence. On the other
hand, standardness of δ implies that it does not include any anti-standard pair. Conse-
quently, verifying that a; b0 is not an anti-standard pair suffices to conclude.

If bvawb0, then the hypothesis implies a   b. Otherwise Hvawb0. In both cases, a; b0
is not anti-standard. Thus we conclude.

Theorem 4.6.3. Let A1, A2 be two ARS verifying the following conditions, where for
i � 1, 2,  i is the embedding relation of Ai:

• the sets of objects and steps, the source and target functions, and the residual
relation, coincide for A1 and A2.
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• The embedding relation  1 is a total order.

•  2� 1.

• A1 and A2 verify the initial axioms, FD, SO, Linearity and Context-Freeness.

• A1 verifies the rest of the embedding axioms as well.

Then the uniqueness of s.r.s. result stated in Thm. 2.1.24 holds for A2. Namely,
for any reduction sequence γ, there is a s.r.s. δ such that δ and γ are permutation
equivalent, and moreover δ is unique modulo square equivalence. That is, for any s.r.s.

δ1, δ1 being permutation equivalent with γ implies δ3δ1.

Proof. Observe that any reduction sequence for A1 is a reduction sequence for A2 and
vice versa. Moreover, permutation equivalence also coincide for both ARSs, since the
definition of permutation equivalence for ARS, cfr. Section 2.1.7, does not depend on
the embedding relation.

Let γ be a reduction sequence for both ARSs. Let δ1 and δ2 be two reduction
sequences, such that both are permutation equivalent with γ, δ1 is a s.r.s. for A1 and
δ2 is a s.r.s. for A2. The existence of δ1 and δ2 are a consequence of Thm. 2.1.23.
Moreover, δ1 is unique modulo 3 , by Thm. 2.1.24. Furthermore,  1 being a total order
implies that the square equivalence for A1 is the identity; cfr. the comment in the proof
of Thm. 4.3.1. Hence, δ1 is unique given that it is a s.r.s. for A1 and is permutation
equivalent with γ.

To conclude, it suffices to show δ13δ2: any reduction sequence δ12 being permutation
equivalent with γ and s.r.s. for A2, would verify δ13δ

1
2 as well, and therefore δ23δ

1
2

by transitivity of 3 .

We prove δ13δ2 by induction on |δ2|. Let us define t1 as the term verifying t
γ
Ý� t1,

t
δ1
Ý� t1 and t

δ2
Ý� t1.

If |δ2| � 0, i.e. δ2 � nilt, then δ1 � γ � δ2 since all of them are permutation
equivalent. Thus we conclude.

If δ2 � nilt, then we consider the minimal, w.r.t. 1, of the steps inROptq contracted
along δ2; let us call this step a. That is, a is contracted along δ2, and for any b P ROptq
contracted along δ2 such that b � a, a  1 b.

Let δ2 � δ1; a1; δ2 where avδ1wa1, so that t
δ1

Ý� t1
a1
ÝÑ ta

δ2

Ý� t1. We verify that
δ23a; δ1vaw; δ2 and |δ1vaw| � |δ1|, by induction on |δ1|.

• If δ1 � nilt, so that t1 � t and a P ROptq, then δ1vaw � nilta , and avδ1wa. In this
case, δ2 � a; δ2 � a; δ1vaw; δ2, hence we conclude.

• If δ1 � π; b, then let a1 be the step verifying avπwa1vbwa
1. In this case, δ2 �

π; b; a1; δ2. Observe that a  1 c for any c P ROptq contracted along π; b. Then
Lem. 4.6.1 applies, yielding avπw � ta1u and a1  1 b, and therefore b � 2 a1. On the
other hand, a1  2 b would contradict the A2-standardness of δ2. Consequently,
a1 ‖2 b, so that Linearity yields a1vbw � ta1u and bva1w � tb1u for some step b1.
Therefore, δ23π; a1; b1; δ2, implying that the latter is A2-standard.

Observe that the sets of steps in t contracted along the two equivalent reduction
sequences δ2 and π; a1; b1; δ2 coincide, so that a is the minimal, w.r.t.  1, step in
such a set for π; a1; b1; δ2. This observation implies that IH applies on π, yielding:

δ2 3 π; a1; b1; δ2 3 a;πvaw; b1; δ2
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and |πvaw| � |π|. We conclude by observing that δ1vaw � πvaw; b1.

We have thus obtained δ2 � δ1; a; δ2 3 a; δ1vaw; δ2, and |δ2| � |a; δ1vaw; δ2|. Then
a; δ1vaw; δ2 is standard for A2. It is straightforward to obtain that δ1vaw; δ2 is standard
for A2 as well.

Let θ be the unique A1-s.r.s. permutation equivalent to δ1vaw; δ2. Then the
IH on |δ2| applies, because |δ1vaw; δ2|   |δ2|. We obtain θ 3 δ1vaw; δ2, and therefore
a; θ 3 a; δ1vaw; δ2 3 δ2. As we already noticed, the set of steps in ROptq for δ2 and
a; θ coincide. Hence a is the  1-minimal such step for a; θ, so that Lem. 4.6.2 applies,
yielding that a; θ is A1-standard. Moreover, it is permutation equivalent with γ, and
therefore with δ1. Hence, uniqueness of s.r.s. for A1 yields δ1 � a; θ 3 δ2. Thus we
conclude.

This proof allows to obtain strong standardisation results for AB and, consequently,
for A�

B .

Theorem 4.6.4. Let γ be a reduction sequence in AB. Then there exists a s.r.s. δ
such that γ and δ are permutation equivalent. Moreover, δ is unique modulo 3. That
is, for any s.r.s.δ1, δ1 being permutation equivalent with γ implies δ 3 δ1.

Proof. This statement is a corollary of Thm. 4.6.3, where AL and AB play the roles of A1

and A2 respectively. The required axioms are verified in Section 4.2 and Section 4.5.1
respectively.

Theorem 4.6.5. Let γ be a reduction sequence in A�
B . Then there exists a s.r.s. δ

such that γ and δ are permutation equivalent. Moreover, δ is unique modulo 3. That
is, for any s.r.s.δ1, δ1 being permutation equivalent with γ implies δ 3 δ1.

Proof. Thm. 4.5.16 yields the existence of δ. Since reduction sequences, residuals and
embedding for a �-equivalence class can be observed on any term belonging to that
class, then two permutation equivalent s.r.s. δ and δ1 can be observed on the same
term, so that Thm. 4.6.4 implies δ3δ1. Thus we conclude.



Chapter 5

Permutation equivalence for
infinitary rewriting

As described in Section 2.2, proof terms are a representation of reduction sequences, and
more generally of different forms of contraction activity. Each rewriting rule is denoted
by an ad-hoc symbol, while the binary symbol � denotes concatenation. Equivalence
of contraction activities is characterised by equational logic based on proof terms: two
contraction activities are said permutation equivalent iff the proof terms representing
them can be proven equal by the contextual and equivalence closure of a set of basic
equations.

In this chapter, we generalise the notion of proof term to the realm of infinite reduc-
tion; more precisely, to first-order, left-linear infinitary term rewriting systems, adopting
the strong convergence criterion; cfr. Section 1.2.3. We define and study the notion of
permutation equivalence for transfinite reductions, by means of the so defined infinitary
proof terms.

Infinity arises in different ways in infinitary rewriting. Consider the rewriting rule
fpxq Ñ gpxq, and the reduction sequence

fω Ñ gpfωq Ñ gpgpfωqq�� gω

where fω is a concise description of the term fpfpfp. . .qqq, which can be also described
by the equation t � fptq. This reduction sequence comprises the application of the
given rewriting rule to each of the occurrences of f in the source term fω. This term
includes an infinite number of such occurrences, implying that the length of the given
reduction sequence is infinite. On the other hand, observe that all the steps included
in this sequence correspond to redexes present in the source term (put in other words,
no created redex is contracted); therefore, this reduction sequence is equivalent to the
simultaneous contraction of an infinite set of steps:

fω ÝÑ� gω

where ÝÑ� denotes the simultaneous contraction of a number of steps, in this case an
infinite number of them. The transformation of each of the f in fω into a g can be
organised in many other different ways, e.g.:

fω ÝÑ� gpgpfωqq ÝÑ� gpgpgpgpfωqqqq Ý��� gω

fω Ñ fpgpfωqq Ñ fpgpfpgpfωqqqq�� fpgpfpgpfpgp. . .qqqqqq
Ñ gpgpfpgpfpgp. . .qqqqqq Ñ gpgpgpgpfpgp. . .qqqqqq�� gω

131
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For each possible way to transform fω to gω through the given rule, an infinitary proof
term denoting precisely that contraction activity must exist. In turn, we should be able
to conclude that all the resulting proof terms are permutation equivalent.

This example shows that the extension of the notion of proof term to infinitary
rewriting should consider infinite concatenations of steps, or more generally of contrac-
tion activities, including the possibility of going beyond the ω-th component, as in the
last given reduction sequence, in which a concatenation of ω steps is followed by an-
other one of the same length. The simultaneous contraction of an infinite number of
steps must be taken into account as well.

In the permutation equivalence perspective of the equivalence between reductions,
two reduction sequences are considered equivalent iff each of them can be transformed
into the other by means of a number of permutations of adjacent steps. The character-
isation of equivalence in both the ARS and the proof term models we use in this thesis
reflect this view, cfr. Sections 2.1.7 and Section 2.2.1

Infinitary rewriting leads to the existence of infinite, equivalent reduction sequences,
where the transformation of one of them into the other one involves an infinite number of
step permutations. Recalling an example from Section 1.4.3, consider the rules fpxq Ñ
gpxq and mpxq Ñ npxq. In order to verify the equivalence between the following two
reductions:

mpfωq Ñ mpgpfωqq Ñ mpgpgpfωqqq �� mpgωq Ñ npgωq
mpfωq Ñ npfωq Ñ npgpfωqq Ñ npgpgpfωqqq �� npgωq

the last step in the former reduction must be permuted with an infinite number of steps,
since it corresponds with the first step in the latter reduction.

For a more complex example, we add the rule gpxq Ñ jpxq. Assume that we want
to prove the equivalence between the following reduction sequences:

fω Ñ gpfωq Ñ gpgpfωqq�� gω Ñ jpgωq Ñ jpjpgωqq�� jω (5.1)

fω Ñ gpfωq Ñ jpfωq Ñ jpgpfωqq Ñ jpjpfωqq�� jω (5.2)

If we successively permute the step gω Ñ jpgωq in (5.1) with each of the infinite preceding
steps except for the first one, we would obtain

fω Ñ gpfωq Ñ jpfωq Ñ jpgpfωqq Ñ jpgpgpfωqqq�� jpgωq Ñ jpjpgωqq�� jω

To transform this reduction sequence into (5.2), we would need to repeat this process
for each of the infinite steps corresponding to the rule gpxq Ñ jpxq.

The definitions we give in this chapter take into account the aforementioned consid-
erations. We remark that the equivalence of reduction sequences having different lengths
can be stated by means of these definitions; e.g., the lengths of the equivalent sequences
(5.1) and (5.2) are ω � 2 and ω respectively. The phenomenon of infinitary erasure is
adequately reflected as well, cfr. Section 5.3.4.

A finite reduction sequence δ � a1; a2; . . . ; an can be represented by a proof term
having the form ψ � ψ1 � ψ2 � . . . � ψn, where each ψi describes precisely the step ai.

1We recall that [BKdV03] includes other characterisations of equivalence as well, related with notions
different from permutation of steps.



133

Each ψi includes exactly one rule symbol, and does not contain occurrences of the dot.
Such representation of a given rewrite step ai is unique. We give an example in Fig. 5.1.

Rules: µ : fpxq Ñ gpxq τ : hpgpxq, yq Ñ kpy, xq π : aÑ b

hpfpcq, aq
a1ÝÑ hpgpcq, aq

a2ÝÑ hpgpcq, bq
a3ÝÑ kpb, cq

p hpµpcq, aq � hpgpcq, πq q � τpc, bq
p ψ1 � ψ2 q � ψ3

Figure 5.1: A reduction sequence, and a proof term representing it

On the other hand, the fact that the dot is a binary symbol implies that its occur-
rences can be associated in different ways. E.g., observe that the proof term
hpµpcq, aq � phpgpcq, πq � τpc, bq q also denotes the reduction sequence given in Fig. 5.1.
We say that the representation, in the described way, of a finite reduction sequence as
a proof term, is unique up to rebracketing, i.e., to the associativity of the dot. Observe
that the “equality-up-to-rebracketing” relation on finite proof terms corresponds exactly
to the equivalence relation generated solely by the pAssocq equation schema.

In this chapter, we extend this correspondence between reduction sequences and
proof terms to infinitary rewriting, and also formalise it. Namely, we formalise the notion
of infinitary stepwise proof terms, to wit, the proof terms which precisely denote reduc-
tion sequences. The idea of two stepwise proof terms being “equal-up-to-rebracketing”
is formalised by the introduction of the rebracketing equivalence relation, which is (anal-
ogously to the case for finitary rewriting) the infinitary equivalence relation on stepwise
proof terms generated by the pAssocq equation schema. We also formalise the idea of
denotation of a reduction sequence by means of a stepwise proof term. Subsequently,
we prove that any infinitary reduction sequence whose length is a countable ordinal is
denoted by a proof term, and that moreover this proof term is unique up to rebracket-
ing. This result applies particularly to all strong convergent reduction sequences, cfr.
[KdV05].

Besides the ability to faithfully represent any strongly convergent reduction sequence,
and to reason about the equivalence of reductions, we claim that the proof term model
provides a framework in which relevant properties of infinitary rewriting can be proved.
We give in this chapter a proof, based on proof terms, of the compression result for
infinitary rewriting, described in Section 1.2.3. Specifically, we prove that any infinitary
proof term is permutation equivalent to a stepwise proof term whose length is at most ω.
In this way, we provide a version of the compression result strengthened in two different
ways: it comprises not only reduction sequences but also other forms of contraction
activity, and it establishes that the original and the compressed reduction are equivalent,
besides coinciding in their source and target terms. Note that a compression statement
establishing the equivalence between the original and compressed reductions is proved
in [KKSdV95, BKdV03]; however, orthogonality of the rewriting system is assumed in
these results.

The main definitions we present in this chapter are given by inductive means, so
that inductive arguments can be used to reason about them. We notice the existence
of sound induction principles for fundamental concepts in infinitary rewriting. While
the number of occurrences in an infinite term are indeed infinite, the distance of any of
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them to the root of the term is finite, giving an induction principle to reason about the
set of occurrences of a term. On a different front, while an infinitary reduction sequence
can include an infinite number of steps, an (either finite or transfinite) ordinal can be
set as the length of any sequence, so that transfinite induction can be used to reason
on reduction sequences in infinitary rewriting. Strong convergence provides an added
element we can use for the limit case in such reasonings: the sequence of the depths of
the successive steps, up to any limit ordinal, tends to infinity in a strongly convergent
reduction sequence. By “depth of a step” we mean, in this chapter, the depth of the
corresponding redex, that is, the distance of the redex to the root of the source term of
the step.

We give an adequate, transfinite induction principle to reason on the set of infinitary
proof terms, by associating a countable ordinal to each one. This ordinal is related to the
occurrences of the concatenation symbol, i.e. the dot: the base case corresponds to the
proof terms in which the dot does not occur, and the limit case to the representation
of infinite concatenations. An analogous technique is used to reason by transfinite
induction on the set of permutation equivalence judgements: a countable ordinal is
associated to each judgement. The base case corresponds to the instances of the basic
equation schemas. The ordinal associated to the conclusion of a rule is always strictly
greater than that of any of its premises.

An alternative, co-inductive approach to the study of infinitary rewriting, was pro-
posed in [EHH�13]. Proof objects emerge there as witnesses in the co-inductive charac-
terisation of the reduction relation. Their focus, however, is on techniques for proving
properties of the reduction relation, rather than the fine structure of the space of trans-
finite reductions, which is our primary interest. Another coinductive study of infinitary
rewriting, also focused in the reduction relation, was recently presented in [Cza14].

We end this introduction with a remark about terminology: in this chapter, we use
the acronym “TRS” with the meaning of “first-order term rewriting system”; “iTRS”
denotes an infinitary, first-order term rewriting system.

Plan of the chapter

Section 5.1 includes the preliminary material needed for the development of the rest
of the chapter. Particularly, we give the definitions for the main concepts of infinitary
rewriting, including those of term, rewrite step and reduction sequence, we use later on.
Section 5.2 is devoted to the notion of proof term. We define the set of valid infinitary
proof terms. As this definition is involved, we describe extensively its organisation, and
we also provide several examples. In Section 5.3, we present a characterisation of the
equivalence of infinitary reductions based on proof terms, which formalises the notion of
permutation equivalence as already noted. We describe, by means of several examples,
the challenges imposed by infinite reductions to the formalisation of permutation equiv-
alence; subsequently, we show how the proposed characterisation deals adequately with
those examples. In this section we also introduce the phenomenon of infinitary erasure,
and show that it is accurately modeled by the proposed permutation equivalence charac-
terisation. In Section 5.4, we address the issue of the denotation of reduction sequences
by means of proof terms, along the lines described earlier in this introduction. Finally,
Section 5.5 is devoted to the proof of the compression result.



5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 135

5.1 Infinitary rewriting and other preliminary material

The work on infinitary rewriting we describe in this chapter resorts to several definitions
and properties. The present section describes this preliminary material.

The subject of Section 5.1.1 is the theory of countable ordinals; we present some
definitions and results which are particularly relevant to the extension of the proof term
model to infinitary rewriting.

In Sections 5.1.2 to 5.1.4, we give the definitions of the main concepts of infinitary
rewriting we use in the following. In Section 5.1.2, we deal with the definition of infinitary
term, and of the related notions of position and context. Some basic results are given as
well. In Section 5.1.3, we study the extension, to the infinitary setting, of the notion of
substitution, verifying that it enjoys some expected properties. Section 5.1.4 is devoted
to the definition of infinitary (first-order) term rewriting system, and to formalise the
notions of reduction step and reduction sequence.

Finally, in Section 5.1.5 we introduce the notion of pattern, and Section 5.1.6 includes
some results about infinitary rewriting which are needed in the following.

5.1.1 Countable ordinals

We do not give a general presentation of the theory of ordinals. The general references
we use for this subject are [Sup60, Sie65, For03].

In order to deal with infinitary composition, we will need to obtain the sum of
a sequence including ω ordinals. Thus we will resort to the following definition, cfr.
[Sup60] Dfn. 6 pg. 216.

Definition 5.1.1 (Ordinal infinitary sum). Let xαiyi ω be a sequence of ordinals. We
define the sum of xαiyi ω as follows:

Σ
i ω

αi :� supptα0 � α1 � . . .� αn�1 � αn { n   ωuq

The sum of ω ordinals, in the way it was just defined, enjoys the following important
property.

Lemma 5.1.2. Let xαiyi ω be a sequence of ordinals, and β an ordinal such that β  
Σ
i ω

αi. Then there exist a unique k   ω and an ordinal γ such that β � α0�. . .�αk�1�γ

and γ   αk.

Proof. This is an easy consequence of some properties of ordinals. Namely, β   Σ
i ω

αi

implies that the set tk   ω { β   α0� . . .�αku is nonempty; we take n as the minimum
of this set. Then α0�. . .�αn�1 ¤ β   pα0�. . .�αn�1q�αn. Basic properties of ordinals
entail the existence and uniqueness of an ordinal γ verifying pα0 � . . .� αn�1q � γ � β,
and also that γ   αn. Thus we conclude.

Finally, the property of ω-cofinality of countable ordinals, cfr. [For03] Remark 73
pg. 169, is needed in some proofs along this chapter. Specifically, we resort to the
following consequence of this property.

Proposition 5.1.3. Let α be a limit countable ordinal. Then there exists an increasing
sequence of ordinals xαiyi ω such that 0   αi   α for all i   ω, and α � Σ

i ω
αi.
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5.1.2 Positions, terms, contexts

We consider the usual definition of the notion of position.

Definition 5.1.4 (Position, depth of a position). A position is a finite sequence of N¡0.
The empty sequence is denoted by the symbol ε. The depth of a position p, notation |p|,
is defined as its length; observe that |ε| � 0.

Definition 5.1.5 (Concatenation of positions). Let p, q be positions. Then we define p�q,
the concatenation of p and q, as follows: ε �q :� q and pipq �q :� ipp �qq. Moreover, given
P,Q sets of positions, then we define also P �q :� tp�q { p P P u and p�Q :� tp�q { q P Qu.

We will omit the dot to denote concatenation, i.e. we will write pq, pQ, Pq instead
of p � q, p �Q,P � q wherever no confusion arises.

Following e.g. [Cou83], the definition of infinitary term is based on the notion of tree
domain. The notion of signature can be defined exactly as for finitary term rewriting,
cfr. Dfn. 2.2.1.

Definition 5.1.6 (Tree domain). A tree domain is any set of positions P satisfying the
following conditions (p, q positions; i, j P N¡0q: P � H; P is prefix closed, i.e. pq P P
implies p P P (particularly, ε P P ); if pj P P and 1 ¤ i   j, then pi P P .

Definition 5.1.7 (Term, positions of a term, symbol at a position, sets of finitary and
infinitary terms). A term over a signature Σ and a countable set of variables Var is any
pair xP, F y, such that P is a tree domain, F : P Ñ ΣYVar, and the following condition
holds: if p P P and F ppq � h, then pi P P iff i ¤ arphq, where we consider arpxq � 0 if
x P Var.2

If t � xP, F y is a term, we will denote P by Posptq, and F just by t; therefore, we
will write tppq to denote F ppq.

A term is finite iff its tree domain is, otherwise it is infinite.

Given a signature Σ and a countable set of variables Var, the set of finitary terms
over Σ, notation TerpΣ, Varq, is the set of finite terms over Σ; and the set of infinitary
terms over Σ, notation Ter8pΣ, Varq, is the set of finite or infinite terms over Σ.

We will often drop the set of variables, writing just TerpΣq or Ter8pΣq.

We will name head symbol of a term t the symbol tpεq. The name root symbol
will be used as well.

We give some examples of terms, according to Dfn. 5.1.7. We use the symbols
h{2, f{1, a{0, b{0. The term t1 � hpfpaq, bq is described formally as xP1, F1y, where
P1 � tε, 1, 11, 2u and F1 � tεÑ h, 1 Ñ f, 11 Ñ a, 2 Ñ bu. This is a finite term, because

2in some texts, e.g. [Cou83] and [Gal86], a term is defined just as a function from positions to symbols;
the set of positions is implicitly determined by being the domain of the function. We prefer to explicitly
include the set of positions in the definition.
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so is P1. We have e.g. t1p1q � f and t1p2q � b. We show graphically three infinite terms:

t2 t3 t4

f

f

f

...

h

h h

h h h h

��� ��� ��� ��� ��� ��� ��� ���

h

a h

a h

a
. . .

The term t2 corresponds to the idea described informally as fpfpfp. . .qqq. Formally, we
define t2 � xP2, F2y, where P2 � t1

n { n   ωu and F2p1
nq � f for all n   ω. In turn,

t3 � xP3, F3y, where P3 is the set of all finite sequences built using the numbers 1 and
2, and F3ppq � h for all p P P3. Finally, t4 � xP4, F4y, where P4 �

�
n ωt2

n, 2n1u, and
for all n   ω, F4p2

nq � h and F4p2
n1q � a.

Notation 5.1.8 (Intuitive notation for terms). An alternative notation will be often
used for terms in Ter8pΣ, Varq: if x P Var and f{n P Σ, then we will write
 x for xtεu, F y where F pεq � x, and
 fpt1, . . . , tnq for xP, F y, where P � tεu Y

�
1¤i¤ntip { p P Posptiqu, F pεq � f ,

and F pipq � tippq.
We will use t P Var as shorthand notation for t � xtεu, F y, F pεq � x, and x P Var.
If f{1 P Σ, then we will write fω for the term t � fpfpfp. . .qqq, whose formal definition
is described above.3

We observe that any term comprised in Dfn. 5.1.7 can be described using Nota-
tion 5.1.8.

Proposition 5.1.9. Let t P Ter8pΣ, Varq. Then either t � x or t � fpt1, . . . , tnq where
f{n P Σ and ti P Ter

8pΣ, Varq for all i ¤ n; cfr. Notation 5.1.8.

Proof. Dfn.. 5.1.6 implies that ε P Posptq.

Assume tpεq � x P Var. Moreover, assume for contradiction the existence of some
p P Posptq such that p � ε. In that case there should be some n P N being the minimum
of the depths of such positions, i.e. n � minp|p| { p P Posptq^p � εq. Observe that n � 1
would imply the existence of some i P N verifying i P Posptq, contradicting Dfn. 5.1.7
since we consider arpxq � 0. In turn, n ¡ 1 would entail p � p1i P Posptq for some p
verifying |p| � n and |p1| ¡ 0, implying p1 P Posptq by Dfn. 5.1.6, thus contradicting
minimality of n. Consequently, Posptq � tεu, hence t � x.

Assume tpεq � f P Σ. For each i P N we define Pi :� tp { ip P Posptqu, and
Fi : Pi Ñ Σ Y Var such that Fippq :� tpipq. If i ¤ arpfq, then Pi � H since ε P Pi.
Moreover, Posptq being a tree domain implies immediately that Pi enjoys the remaining

3This convention could generalise to any f{n P Σ, by defining fω � xP, F y where P is the set of all
the sequences that can be built using the numbers t1, 2, . . . , nu, and F ppq :� f for all p P P . Roughly
speaking, fω would be defined as the infinite tree all filled with f .
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conditions in Dfn. 5.1.6; and also the condition on Fi described in Dfn. 5.1.7 stems
immediately from the fact that t is a term. Therefore, ti :� xPi, Fiy is a term. On the
other hand, i ¡ arpfq implies that Pi � H, thus Posptq � tεuY

�
1¤i¤arpfqtip { p P Piu.

We conclude by observing that t � fpt1, . . . , tnq.

Some notions related to terms

A number of basic definitions pertaining to first-order term rewriting extend to the
infinitary setting; some expected properties are preserved. For the finitary counterparts
of these definitons and properties, cfr. e.g. [BN98], Section 3.1.

Definition 5.1.10 (Occurrence). Let t be a (either finite or infinite) term over Σ and
a P Σ Y Var. An occurrence of a in t is a position p P Posptq such that tppq � a. We
define Occaptq as the set of occurrences of a in t.

A symbol a P Σ Y Var occurs in a term t iff Occaptq � H, i.e. iff there is at least
one occurrence of a in t; a occurs exactly n P N times in t iff |Occaptq| � n, where |S|
denotes the cardinal of any set S.

Definition 5.1.11 (Closed term, linear term). A term t is said to be closed iff it includes
no occurrences of variables; it is said to be linear iff no variable occurs in it more than
once.

For example, the symbol f has two occurrences in the term t � hpfpaq, gpfpbqqq;
more precisely, Occf ptq � t1, 21u. The symbols h, a, b and g also occur in t, while e.g.
the symbol c does not. Obseve that no variable occurs in t, so that it is a closed term.

Definition 5.1.12 (Subterm at a position). Let t � xP, F y be a term, and p P P .
We define the subterm of t at position p, notation t |p , as xP |p , F |py, where P |p and
F |p are the projections of P and F over p respectively; i.e., P |p :� tq { pq P P u and
F |p : P |p Ñ ΣY Var such that F |p pqq :� F ppqq.

A simple example shows that Dfn. 5.1.12 extends the usual definition of subterm at a
position. Let t � hphpfpaq, gpbqq, gphpb, aqqq, so that t � xP, F y where P � tε, 1, 11, 111,
12, 121, 2, 21, 211, 212u and F � tε Ñ h, 1 Ñ h, 11 Ñ f, 111 Ñ a, 12 Ñ g, 121 Ñ b, 2 Ñ
g, 21 Ñ h, 211 Ñ b, 212 Ñ au. Then P |2� tε, 1, 11, 12u. In turn, F |2 p1q � F p21q � h.
Analogously, we obtain F |2 pεq � g, F |2 p11q � b and F |2 p12q � a. Hence, t |2�
xtε, 1, 11, 12u, tεÑ g, 1 Ñ h, 11 Ñ b, 12 Ñ auy, that is, the term gphpb, aqq.

An example involving infinitary terms follows. Let t1 and t2 be the following terms:

t1 � xP1, F1y t2 � xP2, F2y

h

a h

b h

a h

b
. . .

h

b h

a h

b h

a
. . .
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so that P1 � P2 �
�
n ωt2

n, 2n1u, F1p2
nq � F2p2

nq � h, F1p2
2n1q � F2p2

2n�11q � a
and F1p2

2n�11q � F2p2
2n1q � b. Then t1 |1� a and t2 |1� b, as expected. In turn, it is

not difficult to grasp that P1 |2� P1 � P2, F1 |2 p2
nq � F1p2

n�1q � h, F1 |2 p2
2n1q �

F1p2
2n�11q � b, and F1 |2 p2

2n�11q � F1p2
2n1q � a. Therefore, t1 |2� t2. Analogously,

we obtain t2 |2� t1. These results coincide with what can be easily observed in the
graphical description of t1 and t2.

Dfn. 5.1.12 allow a straightforward and direct (i.e. non-inductive) proof of a basic
result about subterms. Namely

Lemma 5.1.13. t|pq� pt|p q|q .

Proof. If we call xP, F y :� t|pq and xP 1, F 1y :� pt|p q|q , then Dfn. 5.1.12 yields

P � tr { pqr P Posptqu P 1 � tr { qr P Pospt|p qu
F prq � tppqrq F 1prq � t|p pqrq � tppqrq

We conclude by observing that pqr P Posptq iff qr P Pospt|p q.

Particularly, if t � fpt1, . . . , tnq, then t|ip� ti|p ; cfr. Notation 5.1.8.

Definition 5.1.14 (Replacement at a position). Let t and u be terms, and p P Posptq.
We define the replacement of t under position p with u, notation trusp, as xP 1, F 1y such
that P 1 :� tq P Posptq { p ¦ qu Y tpq { q P Pospuqu and

F 1pqq :�

"
tpqq iff p ¦ q
upq1q iff q � pq1

.

We state and prove some basic properties about replacement. It is worth mentioning
that the definition of infinitary term we give in Dfn. 5.1.7 is of a different nature from
the definitions of (finitary) term given in [BKdV03] (Dfn. 2.1.2, page 26) and [BN98]
(Dfn. 3.1.2, page 35), so that it is necessary to verify these properties.

Lemma 5.1.15. Let t � fpt1, . . . , tnq and u be terms, and p P Posptiq. Then trusip �
fpt1, . . . , tirusp, . . . , tnq.

Proof. Let us call t1 � xP 1, F 1y :� fpt1, . . . , tnqrusip and
t2 � xP 2, F 2y :� fpt1, . . . , tirusp, . . . , tnq.

By joining Notation 5.1.8 and Dfn. 5.1.14 we obtain P 1 � tεuYtjq { q P Posptjq^j �
iu Y tiq1 { q1 P Posptiq ^ p ¦ q1u Y tipq { q P Pospuqu. It is straightforward to verify that
P 1 � P 2; particularly, notice that Posptiruspq � tq

1 { q1 P Posptiq ^ p ¦ q1u Y tpq { q P
Pospuqu.

Let us compare F 1ppq and F 2ppq, for any p P P 1 � P 2. F 1pεq � F 2pεq � f . If j � i
then ip ¦ jq, then F 1pjqq � F 2pjqq � tjpqq. If p ¦ q1, then F 1piq1q � F piq1q � tipq

1q,
and F 2piq1q � tirusppq

1q � tipq
1q. Finally, if q � pq1, then F 1piqq � upq1q and F 2piqq �

tiruspppq
1q � upq1q. Thus we conclude.

Lemma 5.1.16. Let t and u be terms and pq P Posptq. Then truspq � trt|p rusqsp.

Proof. By induction on p.

If p � ε, then both truspq and trt|p rusqsp are equal to trusq.

Assume that p � ip1, in this case t � gpt1, . . . , tnq. Lem. 5.1.15 implies that truspq �
trusip1q � gpt1, . . . , tirusp1q, . . . tnq and also trt|p rusqsp � trt|ip1 rusqsip1 � gpt1, . . . , tirti|p1

rusqsp1 , . . . , tnq. We conclude by IH on p1, ti and u.
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Lemma 5.1.17. Let t, s be terms and p, q P Posptq such that p ‖ q. Then ptrssqq|p� t|p .

Proof. Say t � xP, F y, trssq � xP
1, F 1y, t|p� xPp, Fpy, and ptrssqq|p� xP

1
p, F

1
py. We prove

Pp � P 1
p by double inclusion.

�q Let p1 P Pp, so that pp1 P P . Observe that p ‖ q implies pp1 ‖ q, so that
q ¦ pp1, implying pp1 P P 1, and therefore p1 P P 1

p.

�q Let p1 P P 1
p, so that pp1 P P 1. We have already verified q ¦ pp1, so that the

only valid option w.r.t. Dfn. 5.1.14 is pp1 P P , implying p1 P Pp.

Let p1 P P 1
p � Pp, so that pp1 P P X P 1 and q ¦ pp1. Dfn. 5.1.12 implies F 1

ppp
1q �

F 1ppp1q and Fppp
1q � F ppp1q. In turn, Dfn. 5.1.14 yields F 1ppp1q � F ppp1q, since q ¦ pp1.

Consequently Fp � F 1
p. Thus we conclude.

Contexts

The notion of context also extends to infinitary terms as expected, provided that the
contexts we deal with in this chapter include only a finite number of holes. In some
situations, particularly in the definition of rewriting rules, variable occurrences play a
role similar to that of the holes in a context.

Definition 5.1.18 (Context, one-hole context). A context over Σ is a term (either
finite or infinite) over Σ Y t2{0u. A one-hole context is a context in which the symbol
2 occurs exactly once.

Definition 5.1.19 (Position of a variable (hole) occurrence in a term (context)). Let t
be a term. Then we define VOccsptq :� tp { tppq P Varu. Given a term t, if |VOccsptq| �
n P N, then for any i such that 1 ¤ i ¤ n we define Vpospt, iq, the i-th variable occurrence
in t, as the i-th element of the set VOccsptq, considering the order given by p   q iff
|p|   |q| or |p| � |q|, p � rip1, q � rjq1, i   j .

Analogously, if C is a context including a finite number of occurrences of the symbol
2, then we define BpospC, iq as the i-th element of Occ2pCq, considering the order just
described.

Definition 5.1.20 (Context replacement). Let C be a context including exactly n oc-
currences of the symbol 2, and t1, . . . , tn terms. We define the replacement of C using
t1, . . . , tn as Crt1, . . . , tns :� xP, F y, where
P :� tp P PospCq { Cppq � 2u Y

�
itBpospC, iq � p { p P Posptiqu,

and F 1ppq :�

"
Cppq iff Cppq � 2

tipqq iff p � BpospC, iq � q

It is easy to verify an expected result about context replacement, namely:

Lemma 5.1.21. Crt1, . . . , tns|BpospC,iq�p� ti|p

Proof. Immediate from Dfn. 5.1.20.

Distance between terms, equality, metric space of terms

The following notion of distance is used to ascertain the equality of terms.
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Definition 5.1.22 (Distance between terms, cfr. [BKdV03] p. 670). Let t, u be terms.
We define the distance between t and u, notation distpt, uq, as follows:
 0 iff t � u, and
 2�k otherwise, where k is the length of the shortest position at which the two

terms differ; i.e. k � |p| s.t. p is minimal for p P Posptq Y Pospuq and either
p R Posptq X Pospuq or tppq � uppq.

Remark 5.1.23 (Equality criterion for terms). Dfn. 5.1.22 implies that, given two terms
t and u, obtaining distpt, uq   2�k for all k   ω is a sufficient condition to conclude
t � u. In turn, to check distpt, uq   2�k it is enough to verify, for any position p, that
|p| ¤ k and p P Posptq Y Pospuq entails p P Posptq X Pospuq and tppq � tpuq.

We give some examples of Dfn. 5.1.22, involving the terms t1 � hpfpfpaqq, gpgpgpbqqqq,
t2 � hpfpfpaqq, gpbqq and t3 � hpfω, gωq. We obtain distpt1, t2q � 2�2, because
t1p21q � g � b � t2p21q, and for all p P Pospt1q Y Pospt2q such that |p|   2, that
is, for p � ε, 1, 2, we have t1ppq � t2ppq. Analogously, we obtain distpt1, t3q � 2�3, since
t1p111q � a � f � t3p111q, and distpt2, t3q � 2�2, since t2p21q � b � g � t3p21q.

The notion of distance given by Dfn. 5.1.22 allows to define the limit of an infinite
sequence of terms.

Definition 5.1.24 (Limit of a sequence of terms). Let   ti ¡i α a sequence of terms
where α is a countable limit ordinal. We say that the sequence   ti ¡ has the term t as
its limit (notation limiÑα ti � t) iff the following limit condition holds: for any p P N
there exists kp   α such that for all j satisfying kp   j   α, distptj , tq   2�p.

E.g., let ti � f ipaq. To conclude that limiÑω ti � fω, it suffices to observe that
distpti, f

ωq � 2�i, for all i   ω.

Dfn. 5.1.22 yields a metric, which can be applied to both TerpΣq and Ter8pΣq.
The set Ter8pΣq turns out to be isomorphic to the metric completion of TerpΣq w.r.t.
this metric, cfr. e.g. [AN80, KKSdV95] and [BKdV03] pp. 670/671; it is therefore
metric-complete on TerpΣq, and also on Ter8pΣq itself. Consequently, for any Cauchy-
convergent sequence of terms, a term exists which is the limit of that sequence.

The set Ter8pΣq forms, moreover, an ultrametric space along with the given metric.
Formally:

Lemma 5.1.25. Let t, u, w be terms. Then distpt, wq ¤ maxpdistpt, uq, distpu,wqq.

Proof. If t � u � w, then all distances are 0. Otherwise, we proceed by induction on k
where maxpdistpt, uq, distpu,wqq � 2�k. If k � 0 we conclude immediately since the
distance between any pair of terms cannot be greater than one. Assume k � k1 � 1.
Then distpt, uq   2�k

1
, implying that for any position p such that |p| ¤ k1, it is easy to

verify that p P Posptq iff p P Pospuq, and moreover, p P Posptq implies tppq � uppq. On
the other hand, the same properties hold for u w.r.t. w, since distpu,wq   2�k

1
. Hence

distpt, wq ¤ 2�k, thus we conclude.

The distance between a term and the result of a replacement on that term is limited
by the depth of the position corresponding to the replacement. Namely:

Lemma 5.1.26. Let t, s be terms and p P Posptq. Then distpt, trsspq ¤ 2�|p|.
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Proof. We proceed by induction on p. If p � ε then we conclude immediately since
distpt, uq ¤ 20 � 1 for any term u. Otherwise, i.e. if p � ip1, observe that ip1 P Posptq
implies t � fpt1, . . . , ti, . . . , tmq. Then trssp � fpt1, . . . , tirssp1 , . . . , tmq, cfr. Lem. 5.1.15,

implying distpt, trsspq �
1
2 � distpti, tirssp1q. In turn, IH yields distpti, tirssp1q ¤ 2�|p

1|.
Therefore, easy exponent arithmetics recalling |p| � |p1| � 1 suffices to conclude.

5.1.3 Substitutions

The definition of substitution extends, in a natural way, from finitary to infinitary terms.

Definition 5.1.27 (Substitution). Given a set of variables Var and a signature Σ, a
substitution is a function σ : Var Ñ Ter8pΣ, Varq where σpxq � x except for a finite
subset of Var.

Any substitution is extended into a function, bearing the same name σ, where σ :
Ter8pΣ, Varq Ñ Ter8pΣ, Varq, defined as follows: σt :� xP, F y where
P � tp P Posptq { tppq R Varu Y tpq { tppq � x P Var^ q P Pospσxqu and

F ppq �

"
tppq iff p P Posptq ^ tppq R Var

σxpq1q iff p � qq1 ^ tpqq � x P Var

For finitary terms, the extension of the domain of a substitution from variables to
terms can be defined by resorting to the concept of Σ-algebra; cfr. [BN98] Chapter 3.
Given a signature Σ, we can define a Σ-algebra whose carrier set is TerpΣ, Varq, which
we will denote by TerpΣ, Varq as well. For any f{n P Σ, the corresponding function is
defined simply as follows:

fTerpΣ,Varqpt1, . . . , tnq :� fpt1, . . . , tnq

This Σ-algebra is generated by Var. Then the result of uniqueness of homomorphisms
for a Σ-algebra generated by a set, given the values for the generator set, cfr. [BN98]
Lem. 3.3.1, allows to define the extension of the substitution σ to terms as the only
endomorphism on (the Σ-algebra whose carrier set is) TerpΣq coinciding with σ for all
the variables.

We can consider a Σ-algebra having as carrier set Ter8pΣq, defined as we just did
for TerpΣq; cfr. Notation 5.1.8. The extension of any substitution σ to Ter8pΣq, as
given in Dfn. 5.1.27, is an endomorphism on this Σ-algebra.

Lemma 5.1.28. Let σ be a substitution defined only on variables, and pσ the correspond-
ing extension to Ter8pΣq. Then pσ is an endomorphism on Ter8pΣ, Varq which extends
σ.

Proof. It is enough to show that pσpfpt1, . . . , tnqq � fppσpt1q, . . . , pσptnqqq; cfr. Prop. 5.1.9;
let us call these terms t1 � xP 1, F 1y and t2 � xP 2, F 2y respectively.

By applying notation 5.1.8 and Dfn. 5.1.27, we obtain

P 1 � tεu Y
�
i ptip { p P Posptiq ^ tippq R Varu Y
tipq { tippq � x P Var^ q P Pospσxquq

F 1pεq � f
F 1pipq � tippq if p P Posptiq ^ tippq R Var
F 1pipqq � σxpqq if tippq � x P Var^ q P Pospσxq

An analogous analysis for P 2 and F 2 is enough to conclude.
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Nonetheless, we cannot use the mentioned result on uniqueness of homomorphisms
on generated Σ-algebras, given the values for the generator set, to assert that pσ is the
only endomorphism on Ter8pΣ, Varq which extends σ. The reason is that Ter8pΣ, Varq
is not generated by Var: notice that the Σ-subalgebra generated by Var for Ter8pΣ, Varq
is exactly TerpΣ, Varq.

Fortunately, an analogous uniqueness result can be proved for endomorphisms on
Ter8pΣ, Varq.

Proposition 5.1.29. Let Σ be a signature, and φ, ψ two endomorphisms on the Σ-
algebra Ter8pΣ, Varq which coincide on Var. Then φ � ψ.

Proof. We will prove the following statement, which entails the desired result (i.e. that
for any term t, ψptq � φptq): for any k   ω, given a term t and a position p such that
|p| ¤ k and p P Pospψptqq Y Pospφptqq, then ψptqppq � φptqppq. Cfr. comment following
Dfn. 5.1.22.

We proceed by induction on k. There is one case which does not need to resort to
the inductive argument: if t P Var, then ψptq � φptq since hypotheses assert that these
functions coincide on Var.

Thus assume t � fpt1, . . . , tmq; cfr. Prop. 5.1.9. In this case hypotheses entail
ψptq � fpψpt1q, . . . , ψptmqq and φptq � fpφpt1q, . . . , φptmqq. If k � 0, then |p| ¤ k implies
p � ε, hence it is enough to observe that ψptqpεq � φptqpεq � f . Assume k � k1 � 1. If
|p| ¤ k1 then applying IH on k1 w.r.t. t and q suffices to conclude. If |p| � k, then p � iq
(recall k ¡ 0) where |q| � k1 and q P Pospψptiqq Y Pospφptiqq. Therefore we can apply
IH on k1 w.r.t. ti and q, obtaining ψptiqpqq � φptiqpqq. Thus we conclude by observing
ψptqppq � ψptiqpqq and analogously for φ.

Consequently, we can assert that pσ is the only endomorphism on Ter8pΣ, Varq which
extends σ, as desired.

5.1.4 Rewriting: TRS, step, reduction sequence

The definition of infinitary term rewriting system is the natural extension of its finitary
counterpart, cfr. Dfn. 2.2.2, provided that the left-hand side of rewriting rules is required
to be a finite term.

Definition 5.1.30 (Rewrite rule, term rewriting system). Assuming a set of variables
Var and given a signature Σ, a rewrite rule (just rule if no confusion arises) over Σ is
a pair of terms xl, ry satisfying the following conditions: l is a finite term, l R Var, and
each variable occurring in r occurs also in l. Notation for a rewrite rule: l Ñ r, also
µ : lÑ r if assigning explicit names to rules is desirable. The terms l and r, respectively,
are the left-hand side and right-hand side, lhs and rhs for short, of the rule lÑ r.

A term rewriting system (shorthand TRS) is a pair T � xΣ, Ry, where Σ is a
signature and R is a set of rules over Σ.

If the right-hand sides of all the rules are finite terms, then T can be considered as
a TRS over either TerpΣq or Ter8pΣq; otherwise, only the infinitary interpretation is
valid. In either case, a TRS over Ter8pΣq is known as a infinitary TRS, or iTRS for
short.

We say that a rewrite rule µ : lÑ r is collapsing iff r P Var.
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We define that a TRS is left-linear iff for any l left-hand side of a rule, and for any
x variable, x occurs in l at most once. In this chapter, we study left-linear iTRSs only.
A TRS T is orthogonal iff it is left-linear and there is no term t such that t � σ1l1 and
t |p� σ2l2, where l1 and l2 are left-hand sides of rules in T , l1ppq is a function symbol
(i.e. it is not a variable), and either p � ε or the rules corresponding to l1 and l2 do not
coincide.

Some examples of left-hand sides of rules leading to non-orthogonal TRSs follow.
No TRS including a rule whose left-hand side is fpgpxqq and another having as left-
hand side either gpxq or gphpxqq, is orthogonal: t � fpgphpaqqq is a counterexample for
the corresponding condition. Also, no TRS including rules whose left-hand sides are
hpfpxq, yq and hpx, gpyqq is orthogonal, a counterexample is t � hpfpaq, gpbqq. In this
case the position p mentioned in the definition is ε for the given counterexample. Finally,
no TRS including a rule whose left-hand side is fpfpxqq is orthogonal, a counterexample
is t � fpfpfpaqqq. In this case the same rule corresponds to l1 and l2.

Properties of first-order infinitary orthogonal TRSs are studied e.g. in [KKSdV95,
KdV05, EGH�10]. In this thesis, some auxiliary iTRSs we use to define notions per-
taining to proof terms, which are “companions” to the object iTRS, i.e. the iTRS whose
reductions are to be modeled by means of proof terms, happen to be orthogonal. We
therefore profit from some properties of orthogonal iTRSs; cfr. Section 5.1.6. This ob-
servation does not imply the scope of proof terms to be limited to orthogonal rewriting
systems; reductions in any left-linear system, either orthogonal or not, can be described
by proof terms. The mentioned “companion” iTRSs are orthogonal, even for non-
orthogonal object iTRSs.

Reduction steps

We formalise the notion of reduction step as follows.

Definition 5.1.31 (Reduction step, source, target, redex position, depth). Let T �
xΣ, Ry be a TRS, t P Ter8pΣq, p P Posptq, µ : lÑ r P R and σ a substitution, such that
t|p� σl. Then the 4-tuple a � xt, p, µ, σy is a reduction step. We use a, a1, a

1, b, c, etc.,
to denote reduction steps. We define srcpaq :� t, tgtpaq :� trσrsp, rpospaq :� p, and
dpaq :� |p|. They are, respectively, the source, target, redex position and depth of a.
We say that a is a step from srcpaq to tgtpaq; we use the notation t

a
ÝÑ u to indicate

that a is a step from t to u.

If the source term of a reduction step is clear from the context, it can be omitted
when describing the step. On the other hand, if the substitution is unimportant w.r.t.
the subject being discussed, it can be omitted as well. Therefore, we will sometimes
refer to a reduction step xt, p, µ, σy as xp, µ, σy, or even just xp, µy.

Notice that, given a term t, the reduction steps having t as source term are in an
obvious bijection with the occurrences of redexes (i.e. of subterms having the form σl
for some rule µ : l Ñ r) inside t. Namely, the reduction step xt, p, µ, σy correspond to
the occurrence, at position p, of a redex with rule µ and substitution σ. Therefore, we
take the convention of considering reduction steps from t and redex occurrences in t
as synonyms. Cfr. Section 1.1.2.

We also want to remark that the definition of a reduction step is given in terms of the
position of the corresponding redex occurrence, opposed to the context which surrounds
it (cfr. [BKdV03] dfn. 2.2.4). This decision is motivated by the fact that in infinitary
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rewriting reasonings, induction on terms (and therefore in contexts which are terms for
an extended signature) is not valid, whereas induction on positions is allowed.

Finally, notice that if t, p and µ are known in advance, then the specification of σ is
redundant. Nonetheless, we prefer to include the substitution in the definition because
it will permit to describe with precision a redex occurrence whose existence is asserted.
Notice also that the inclusion of the rule is redundant for orthogonal TRSs; it is included
in the characterisation of reduction steps because proof terms are intended to describe
reductions in any, maybe non-orthogonal, left-linear TRS.

Some examples of reduction steps follow: consider the TRS whose rules are µ :
fpxq Ñ gpxq and ν : hpipxq, yq Ñ jpy, xq, and the term t � g

�
hpipfpaqq, fpipbqqq

�
. Then

there are three reduction steps from t, namely:
xt, 1, ν, tx :� fpaq, y :� fpipbqquy, xt, 111, µ, tx :� auy, and xt, 12, µ, tx :� ipbquy.

We remark that Dfn. 5.1.30 does not pre-
clude rules having an infinite right-hand side.
Consider the term t shown to the right, which
can be defined by the recursive equation t �
hpx, tq. Then fpxq Ñ t is a valid rewriting rule,
allowing the step fpaq Ñ t1, where t1, shown
also to the right, is defined by the equation
t1 � hpa, t1q.

t

h

x h

x h

x
. . .

t1

h

a h

a h

a
. . .

Reduction sequences

In the following, we give a formal definition for the concept of reduction sequence. A
precise definition is needed in order to formally establish the relation between stepwise
proof terms and reduction sequences, cfr. Section 5.4.2. The formal definition of an
infinitary reduction sequence is an essential element of infinitary rewriting; it is discussed
in e.g. [KKSdV90, DKP91, KKSdV95, BKdV03, KdV05, Kah10].

A reduction sequence is a sequence of reduction steps, having any (finite or infinite)
ordinal as length. However, not all sequences of steps are reduction sequences; some
conditions must hold. Obviously, if a and b are consecutive steps in a sequence, then
tgtpaq must coincide with srcpbq. Cfr. the corresponding definition given in the ARS
model, Dfn. 2.1.10. For infinite sequences, the coherence condition must hold also for
steps at limit positions. E.g. in a sequence a0; a1; . . . ; an; . . . aω; aω�1; . . ., there must be
some relation between the step aω and the sequence of the steps previous to it. This
relation is commonly formalised in the literature by asking the sequence of targets of the
previous steps, i.e. the sequence tgtpa0q; tgtpa1q; . . . ; tgtpanq; . . . to have a limit, and that
limit to coincide with srcpaωq. This requirement is related with the characterisation of
weakly convergent infinitary rewriting, which is the favored criterion in [DKP91].

We give some examples, using the rules fpxq Ñ gpxq, gpxq Ñ kpxq and ipxq Ñ ipxq.
The successive transformation of each occurrence of f in the term fω to g by means of
the rule fpxq Ñ gpxq, proceeding outside-in, configure the following, weakly convergent
reduction sequence:

fω Ñ gpfωq Ñ gpgpfωqq Ñ . . .Ñ gpgp. . . gpfωq . . .qq Ñ gpgp. . . gpgpfωqq . . .qq Ñ . . .
(5.3)

It is not difficult to see that the sequence of the targets in this reduction is convergent,
and that its limit is gω. Moreover, a subsequent step can be appended to the given
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reduction sequence, in order to form a new sequence having length ω � 1, iff the source
of that step is gω. E.g., the concatenation of the sequence (5.3) with the step gω Ñ kpgωq
form a weakly convergent reduction sequence. In turn, if we concatenate (5.3) with an
analogously conceived outside-in transformation of each occurrence of g in gω to k, in this
case by means of the rule gpxq Ñ kpxq, then we obtain the following weakly convergent
reduction sequence

fω Ñ gpfωq Ñ gpgpfωqq Ñ . . . gω Ñ kpgωq Ñ kpkpgωqq Ñ . . . kω

whose length is ω � 2. We remark that the term gω is not the target of a step in this
sequence, but rather the limit of the targets of the first ω steps; hence the absence of
an arrow pointing to it. The situation is analogous for kω, which is the target of the
whole sequence. On a different front, the rule ipxq Ñ ipxq yields the following, weakly
convergent reduction sequence

ipaq Ñ ipaq Ñ ipaq Ñ . . .Ñ ipaq Ñ ipaq Ñ . . .

whose length is ω, and whose target is ipaq.

In order to obtain a notion of reduction sequence enjoying some desired properties,
a further condition is imposed. Namely, the depth of successive steps is required to tend
to infinity at each limit in the sequence, i.e. up to the ω-th step, up to the ω � 2-th step,
and so on, and also up to ω2, etc.. Reduction sequences satisfying this requirement,
and also the coherence requirements described before, are known as strongly convergent
in the literature.4 This is the criterion favored in e.g. [KKSdV95, KdV05, Ket12]. We
adopt the strong conve rgence criterion in this thesis as well. Therefore, in the following
definition of reduction sequence, we refer to just convergence of reduction sequences,
with the meaning of strong convergence.

We observe that the reduction sequence ipaq Ñ ipaq Ñ ipaq Ñ . . .Ñ ipaq Ñ ipaq Ñ
. . . described above, is not strongly convergent, because all of its steps are at depth
0. On the other hand, the reduction sequence fω Ñ gpfωq Ñ gpgpfωqq Ñ . . . gω Ñ
kpgωq Ñ kpkpgωqq Ñ . . . kω is strongly convergent: the sequence of the depths of its
first ω steps, and also the sequence of the depths of all its steps, tend to infinity.

These considerations motivate the following definitions.

Definition 5.1.32 (Reduction sequence, convergence). A (well-formed) reduction se-
quence is: either Idt, the empty reduction sequence for the term t, or else a non-empty
sequence of reduction steps δ :� xδrαsyα β, where β ¡ 0 and δ verifies all the following
conditions:

1. For all α such that α� 1   β, srcpδrα� 1sq � tgtpδrαsq.

2. For all limit ordinals β0   β:

(a) The sequence xtgtpδrαsqyα β0 has a limit.

(b) limαÑβ0 tgtpδrαsq � srcpδrβ0sq.

(c) For all n   ω, there exists β1   β0 such that dpδrαsq ¡ n if β1   α   β0.

4In [Kah10], different criteria to formalise the notion of infinitary reduction sequence, including
those of weak and strong convergence, are discussed. The notion of adherence is proposed there as an
alternative to convergence.
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We say that a reduction sequence δ is convergent iff either δ � Idt for some term t,
or else δ � xδrαsyα β, and either β is a successor ordinal, or else β is a limit ordinal
and conditions (2a) and (2c) hold for β as well. We use δ, δ1, δ

1, γ, π, etc., to denote
reduction sequences. We use the semicolon to concatenate reduction sequences.

Dfn. 5.1.32 coincides with the definitions of reduction sequence and convergent reduc-
tion sequence given in [KdV05]. Our definition of reduction sequence coincides with the
notion of strongly contiguous sequence of steps given in [KKSdV95, BKdV03]. In turn,
our definition of strongly convergent reduction sequence is the same as in [BKdV03]; in
[KKSdV95], a strongly convergent reduction sequence is a strongly continuous sequence
whose length is a successor ordinal.

Definition 5.1.33 (Source of a reduction sequence). Let δ be a reduction sequence. We
define the source term of δ, notation srcpδq, as follows: if δ � Idt, then srcpδq :� t, if
δ � xδrαsyα β, then srcpδq :� srcpδr0sq.

Definition 5.1.34 (Target of a reduction sequence). Let δ be a convergent reduction
sequence. We define the the target term of δ, notation tgtpδq, as follows: if δ � Idt,
then tgtpδq :� t; if δ � xδrαsyα β, then β � β1 � 1 implies tgtpδq :� tgtpδrβ1sq, and β
being a limit ordinal implies tgtpδq :� limαÑβ tgtpδrαsq.

Definition 5.1.35 (Length of a reduction sequence). Let δ be a reduction sequence. We
define the length of δ, notation lengthpδq, as follows: if δ � Idt, then lengthpδq :� 0, if
δ � xδrαsyα β, then lengthpδq :� β.

Remark 5.1.36. Any mention of tgtpδq implies that the target of the reduction sequence
δ is defined, i.e. that δ is a convergent reduction sequence.

Notation 5.1.37. We write t
δ
Ý�� u to denote that δ is a convergent reduction sequence,

srcpδq � t and tgtpδq � u. If lengthpδq   ω, then we write t
δ
Ý� u as well. We also use

the notation t �� u (t � u), to denote that t can be transformed into u by means of a
(finite) reduction sequence.

Definition 5.1.38 (Minimum activity depth of a reduction sequence). Let δ be a reduc-
tion sequence. We define the minimum activity depth of δ, notation mindpδq, as follows:
if δ � Idt, then mindpδq :� ω, if δ � xδrαsyα β, then mindpδq :� mintdpδrαsq { α   βu.

Definition 5.1.39 (Fragment of a reduction sequence). Let δ be a reduction sequence
and α, β ordinals verifying α   lengthpδq, β ¤ lengthpδq and α ¤ β. We define the
fragment of δ from α to β, notation δrα, βq, as follows: if α � β   lengthpδq, then
δrα, βq :� Idsrcpδrαsq, otherwise, i.e. if α   β, then δrα, βq :� xδrα� γsyγ { α�γ β.

We give some examples of infinite reduction sequences, using the following rules:
µ : fpxq Ñ gpxq, ν : gpxq Ñ kpxq, τ : a Ñ kpaq, ρ : ipxq Ñ ipxq, θ : b Ñ jpb, bq,
η : kpxq Ñ c.

A simple example of convergent reduction sequence is

fω Ñ gpfωq Ñ gpgpfωqq Ñ . . .Ñ gpgp. . . gpfωq . . .qq�� gω

The length of this reduction sequence is ω; its n-th step is xgnpfωq, 1n, µ, tx :� fωuy. For

any countable ordinal λ, it is easy to define a convergent reduction sequence fω
δλ
Ý�� gω
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such that lengthpδλq � λ: it suffices to consider a bijective function F : λ Ñ ω, and to
define, for all α   λ, δλrαs as the transformation of the occurrence of f at depth F pαq
into an occurrence of g, by means of the µ rule. E.g., if λ � ω � 2, F pnq � 2n � 1 if
n   ω, and F pω � nq � 2n, then we have the following reduction sequence:

fω Ñ fpgpfωqq Ñ fpgpfpgpfωqqqq�� t1 Ñ gpgpt1qq Ñ gpgpgpgpt1qqqq�� gω

where t1 is the term defined by the equation t1 � fpgpt1qq. Another convergent reduction
sequence whose length is ω � 2 is

fω Ñ gpfωq Ñ gpgpfωqq�� gω Ñ kpgωq Ñ kpkpgωqq�� kω

Notice that this reduction sequence is equivalent, in the sense that involves the same
steps, as the following

fω Ñ gpfωq Ñ kpfωq Ñ kpgpfωqq Ñ kpkpfωqq�� kω

so that equivalent infinite reductions can have different lengths, even when no erasure
is involved.

The reduction sequence

ipaq Ñ ipaq Ñ ipaq Ñ . . .

whose length is ω, is not convergent because the depth of all its steps is 0: all the steps in
this sequence have the form xipaq, ε, ρ, tx :� auy. On the other hand, infinite convergent
reduction sequences exist for which both their source and target are finite terms. An
example follows.

aÑ kpaq Ñ kpkpaqq�� kω Ñ c

The depth condition of strong convergence, along with the fact that the left-hand side of
any rewrite rule must be a finite term, imply that the target of any convergent reduction
sequence whose length is a limit ordinal, must be an infinite term.

Finally, we note that an infinite reduction sequence can involve rewrite rules in which
more than one variable appear, as in the following example:

bÑ jpb, bq Ñ jpjpb, bq, bq�� u

where u is the term defined by the equation u � jpu, bq.

It is worth remarking that the requirement about depths of successive steps, i.e.
condition (2c) in Dfn. 5.1.32, is not enough to guarantee the well-formedness of reduction
sequences. Let us discuss briefly this issue. Some examples will be given using the rules
fpxq Ñ gpxq, hpxq Ñ jpxq, and gpxq Ñ fpxq.

The depth requirement alone does not guarantee coherence at limit positions, as
discussed prior to Dfn. 5.1.32. E.g., the sequence of steps which results of the concate-
nation of fω Ñ gpfωq Ñ gpgpfωqq�� gω and hω Ñ jphωq Ñ jpjphωqq�� jω, which total
length is ω � 2, does not produce a well-formed reduction sequence, even when depths
tend to infinity at each limit ordinal in the sequence of steps; a target (namely gω) can
be determined for the prefix of the first ω steps, but it does not coincide with the source
of the ω-th step, i.e. hω.
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Moreover, the depth condition alone does not even guarantee the existence of a limit
for each limit ordinal prefix. E.g. consider the sequence of steps, having length ω2, in-
formally described as follows: fω �� gω; gω �� fω; gpfωq �� gω; fpgωq �� fω; g2pfωq �
� gω; f2pgωq �� fω; . . . gnpfωq �� gω; fnpgωq �� fω; . . . , where each fragment in-
cludes ω steps performed from the outside in, and the semicolon denotes concatenation
of sequences. This sequence of steps obeys the depth condition at each limit ordinal,
including ω2 itself, but however, a limit cannot be determined for it. Therefore, the
requirement about the existence of a limit, i.e. condition (2a), cannot be removed by
the mere fact of including the depth requirement.

It could possibly be proved, by means of a careful transfinite induction on limit
ordinals, that for any sequence of steps, and each limit ordinal β up to the length of
that sequence, the depth requirement on each limit ordinal ¤ β, plus coherence (i.e.
condition (2b)) at all limit ordinals   β, imply the existence of a limit in the sequence
of targets at ordinal β. Since this issue is not in the focus of the present work, we leave
it as subject of further investigation.

Other notions

The definition of reduction step leads immediately to that of normal form; cfr. Dfn. 2.1.8.

Definition 5.1.40 (Normal form). A normal form is a term having no redex occur-
rences, or equivalently, a term being the source of no reduction step.

Given a term t, we will refer to the reduction sequences having t as source term as
the reduction sequences from t. Moreover, if s is the only normal form verifying t�� s,
then we will say that s is the (infinitary) normal form of t.

We can define reduction steps and sequences which model applications of rules to
contexts rather than terms.

Remark 5.1.41. For any TRS T � xΣ, Ry we can think of an associated TRS T2 :�
xΣY t2{0u, Ry, which makes it possible to describe reductions on contexts. In the sequel
we will include references to reduction steps and reduction sequences whose source and
target are contexts; they must be understood as defined in T2.

5.1.5 Patterns, pattern depth

Given a rewrite rule µ : lÑ r and a reduction step a � xt, p, µ, σy, the role of the function
symbol occurrences in l differs from that of the variable occurrences: the former must
be present explicitly in srcpaq having the same structure as in l; while the latter are
included in the domain of σ.

We will sometimes need to refer to the positions of all the occurrences of function
symbols in (the lhs of) a rule, and also in (the source term of) a reduction step. E.g.
if µ � fpgpx, hpyqqq Ñ fpyq, then the occurrences of function symbols in (the lhs of) µ
are at positions ε, 1 and 12. The corresponding formal definitions follow.

Definition 5.1.42 (Pattern, pattern positions, pattern depth). Let t be a term. The
pattern of t, notation patptq, is the context which results of changing all the variable
occurrences in t with boxes; cfr. [BKdV03] dfn. 2.7.3, pg. 49. The set of pattern
positions of t, notation Pposptq is defined as tp { p P Posptq and tppq R Varu. The
pattern depth of t, notation Pdptq, is defined as maxpt|p| { p P Pposptquq; if x P Var

then Pdpxq is undefined.
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Let µ : lÑ r be a rewrite rule. The set of pattern positions and the pattern depth of
µ are defined as follows: Ppospµq :� Pposplq, Pdpµq :� Pdplq.

Let a � xt, p, µ, σy be a reduction step. The set of pattern positions of a is defined as
follows: Ppospaq :� p � Ppospµq.

For example, if µ : hpipxq, gpipyqq, cq Ñ hpx, x, yq, t � gphpipgpaqq, gpipbqq, cqq and
a � xt, 1, µ, tx :� gpaq, y :� buy, then Ppospµq � tε, 1, 2, 21, 3u, Pdpµq � 2, and Ppospaq �
1 � Ppospµq � t1, 11, 12, 121, 13u.

5.1.6 Some properties about infinitary rewriting

We include in this section the statement and proof of some properties on infinitary
rewriting which are needed in following sections. In turn, these properties require some
definitions to be given.

We say that a term t is infinitary weakly normalising, shorthand notation WN8,

iff there exists at least one reduction sequence δ such that t
δ
Ý�� u and u is a normal

form. We say that a term t is strongly normalising, shorthand notation SN8, iff there
is no divergent reduction sequence whose source term is t. A term t has the unique
normal-form property, shorthand notation UN8, iff whenever t�� u1, t�� u2 and both
u1 and u2 are normal forms, then u1 � u2. A TRS is WN8 (SN8, UN8) iff all its
terms are. Cfr. [KdV05] for a study of normalisation for infinitary rewriting.

A TRS T is disjoint iff the set of all the function symbols occurring in the left-hand
sides of the rules of T is disjoint from the set of all the function symbols occurring in
the right-hand sides of the rules of T .

The results to be given in this section are particularly needed for the study of the class
of proof terms corresponding to coinitial sets of redexes, which involves the definition of
TRSs which are ‘companions’ to the TRS under study. Cfr. the concept of 2-rewriting
system, notation 8.2.12 in [BKdV03].

The ‘companion’ TRSs enjoy some desirable properties. First of all, they are all
orthogonal, and therefore they enjoy the property UN8; cfr. [KdV05] Section 5. Some
of them are Recursive Program Schemes (cfr. [BKdV03] dfn. 3.4.7), i.e., they are or-
thogonal and all their rules have the form fp. . . , xi, . . .q Ñ t, so that we can distinguish
the subset F :� tf { fp. . . , xi, . . .q Ñ t P Ru within their signature.

Notice that for Recursive Program Schemes, the disjointness condition amounts to
assert that no symbol in F appears in the right-hand side of any rule.

Fragments of reduction sequences, cfr. Dfn. 5.1.39, enjoy some basic properties.

Lemma 5.1.43. Let δ be a reduction sequence, and α   lengthpδq. Then δr0, αq is
convergent.

Proof. It is immediate to verify that δr0, αq is a well-formed reduction sequence. If α � 0,
i.e. δr0, αq � Idsrcpδq, or if α is a successor ordinal, then it is immediately convergent. If
α is a limit ordinal, the fact that δ is well-formed implies that conditions (2a) and (2c)
hold for α   lengthpδq, hence δr0, αq is convergent.

Lemma 5.1.44. Let δ be a reduction sequence and α   lengthpδq. Then srcpδrαsq �
tgtpδr0, αqq.
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Proof. Notice that Lem. 5.1.43 implies that δr0, αq is convergent, so that its limit is
defined. If α � 0, i.e. δr0, αq � Idsrcpδr0sq, then we conclude immediately. Otherwise, α �
α1� 1 implies srcpδrαsq � tgtpδrα1sq, and α limit implies srcpδrαsq � limα1Ñα tgtpδrα

1sq,
cfr. conditions (1) and (2b) resp. in Dfn. 5.1.32. In either case, this coincides with
tgtpδr0, αqq, cfr. Dfn. 5.1.34. Thus we conclude.

We prove some expected properties of targets of convergent reduction sequences.

Lemma 5.1.45. Let δ be a convergent reduction sequence and n   ω such that mindpδq ¡
n. Then distpsrcpδq, tgtpδqq   2�n.

Proof. We proceed by induction on lengthpδq. If lengthpδq � 0, i.e. δ � Idt for some term
t, then tgtpδq � srcpδq � t, so that we conclude immediately.

Assume that lengthpδq is a successor ordinal, so that δ � δ1; a where lengthpδ1q  
lengthpδq. Then IH can be applied to obtain distpsrcpδ1q, tgtpδ1qq � distpsrcpδq, srcpaqq  
2�n. In turn, tgtpδq � tgtpaq � srcpaqrssp for some term s, where p � rpospaq, so that
hypotheses imply mindpaq ¡ n. Then Lem. 5.1.26 implies distpsrcpaq, tgtpδqq ¤ 2�|p|  
2�n. Hence Lem. 5.1.25 allows to conclude.

Assume that α :� lengthpδq is a limit ordinal. In this case tgtpδq � limα1Ñα tgtpδrα
1sq.

Let αn   α such that distptgtpδrα1sq, tgtpδqq   2�n if αn   α1   α. Then particu-
larly distptgtpδrαn � 1sq, tgtpδqq � distptgtpδr0, αn � 2qq, tgtpδqq   2�n; recall αn   α
limit implies αn � 2   α. In turn, IH can be applied on δr0, αn � 2q to obtain
distpsrcpδr0, αn � 2qq, tgtpδr0, αn � 2qqq   2�n. Hence we conclude by Lem. 5.1.25.

Lemma 5.1.46. Let t
δ
Ý�� u and p P Posptq such that rpospδrαsq ‖ p for all α  

lengthpδq. Then t|p� u|p .

Proof. We proceed by induction on lengthpδq. If lengthpδq � 0, i.e. δ � Idt, then we
conclude immediately since u � t.

Assume that lengthpδq is a successor ordinal, so that t
δ1

Ý�� u1
a
ÝÑ u. In this case,

IH applies to δ1, yielding t |p� u1 |p . In turn, u � u1rssq for some term s, where
q � rpospaq ‖ p. Then Lem. 5.1.17 implies u1|p� u|p . Thus we conclude.

Assume that α :� lengthpδq is a limit ordinal. In this case we have u � tgtpδq �
limα1Ñα tgtpδrα

1sq. Let n   ω, and αn   α such that distptgtpδrα1sq, uq   2�pn�|p|q,
implying distptgtpδrα1sq|p , u|p q   2�n, if αn   α1   α. Recall that αn   α limit
implies αn � i   α if i   ω. Then distptgtpδrαn � 1sq|p , u|p q   2�n. Moreover, IH
can be applied to δr0, αn � 2q, yielding srcpδr0, αn � 2qq|p� tgtpδr0, αn � 2qq|p , so that
t |p� tgtpδrαn � 1sq |p . Hence distpt|p , u|p q   2�n for all n   ω. Consequently, we
conclude.

The properties just introduced allow to define the projection of a reduction sequence
not including head steps over an index. We verify that the definition yields a well-formed
reduction sequence; in the infinitary setting, this verification involves a fair amount of
work. The following definition involves the use of a sequence of non-contiguous ordinals
which we will call A. We use ordpAq and Arαs to denote the order type of A and its
α-th element respectively, where α   ordpAq. In turn, this sequence is built from a set
of ordinals S as follows. If S � H, then A is the empty sequence, so that ordpAq � 0.
Otherwise, we define Ar0s as the minimal element of S. Let α ¡ 0 such that Arα1s is
defined for all α1   α. If α � α1 � 1 then we consider the set tβ P S { β ¡ Arα1su, and
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if α is a limit ordinal then we consider tβ P S { β ¥ supptArα1s { α1   αuqu. In either
case, if the considered set is empty then we state that Arα1s as undefined for all α1 ¥ α,
so that ordpAq � α. Otherwise, we define Arαs as the minimum of the considered set.

Definition 5.1.47. Let δ be a reduction sequence such that mindpδq ¡ 0, and i such
that 1 ¤ i ¤ m where srcpδq � fpt1, . . . , tmq. We define the projection of δ over i,
notation δ |i, as the reduction sequence whose specification follows.

Let A be the sequence built from the set tα { α   lengthpδq ^ i ¤ rpospδrαsqu, w.r.t.
the usual order of ordinals. If A is empty, then δ |i :� Idti. Otherwise lengthpδ |iq :�
ordpAq, and pδ |iqrαs :� xsi, p, µy where δrArαss � xfps1, . . . , si, . . . , smq, ip, µy. Ob-
serve that Lem. 5.1.43 implies δr0, Arαsq to be convergent, and in turn Lem. 5.1.45
implies tgtpδr0, Arαsqqpεq � srcpδqpεq � f ; therefore, tgtpδr0, Arαsqq � srcpδrArαssq �
fps1, . . . , si, . . . , smq. Cfr. also Lem. 5.1.44.

Lemma 5.1.48. Let δ be a reduction sequence such that mindpδq ¡ 0, and i such that
1 ¤ i ¤ m where srcpδqpεq � f{m. Then δ |i is a well-formed reduction sequence and
srcpδ |iq � srcpδq |i . Moreover, if δ is convergent, then δ |i is convergent as well, and
tgtpδ |iq � tgtpδq|i .

Proof. Let A be the sequence of positions of steps in δ at or below position i. We proceed
by induction on lengthpδ |iq � ordpAq.

Assume A is empty, so that δ |i � Idsrcpδq|i . Then just Dfn. 5.1.32 implies imme-
diately that δ |i is a well-formed and convergent reduction sequence, and Dfn. 5.1.33
that srcpδ |iq � srcpδq |i . If δ is convergent, then observe that A being empty implies
rpospδrαsq ‖ i for all α   lengthpδq; recall mindpδq ¡ 0. Then Lem 5.1.46 implies
tgtpδq|i� srcpδq|i� tgtpδ |iq. Thus we conclude.

Assume that ordpAq � α � 1, i.e., ordpAq is a successor ordinal. Observe that
pδ |iqr0, αq � δr0, Arαsq |i, and that Lem. 5.1.43 implies that δr0, Arαsq is convergent.
Then IH on δr0, Arαsq yields that pδ |iqr0, αq is a well-formed and convergent reduc-
tion sequence, that srcpδ |iq � srcppδ |iqr0, αqq � srcpδq |i , and that tgtppδ |iqr0, αqq �
tgtpδr0, Arαsqq|i� srcpδrArαssq|i , cfr. Lem. 5.1.44. On the other hand, srcppδ |iqrαsq �
srcpδrArαssq|i .

We verify that the conditions in Dfn. 5.1.32 hold for δ |i. The analysis depends on
α.

 If α � 0, then δ |ir0, αq � Idsrcpδq|i . In this case, conditions (1) and (2) hold
immediately.

 If α � α1 � 1, then pδ |iqr0, αq being a well-formed reduction sequence implies
that condition (1) holds for all α0 such that α0 � 1   α; i.e. for all needed
indexes but α1. In turn, tgtppδ |iqrα

1sq � tgtppδ |iqr0, αqq � srcpδrArαssq |i�
srcppδ |iqrαsq � srcppδ |iqrα

1 � 1sq. On the other hand, pδ |iqr0, αq being well-
formed implies also that condition (2) holds for δ |i; indeed, α0   pα

1 � 1q � 1
and α0 limit implies α0   α1 � 1.

 If α is a limit ordinal, then pδ |iqr0, αq being a well-formed reduction sequence
implies that condition (1) holds for δ |i; notice α0 � 1   α� 1 implies α0   α,
so that α limit implies in turn α0 � 1   α. Furthermore, pδ |iqr0, αq being
convergent implies that conditions (2a) and (2c) hold for all α0 limit ordinals
verifying α0   α�1, particularly for α; and also that condition (2b) holds for all
limit α0   α. In turn, limα1Ñα tgtppδ |iqrα

1sq � tgtppδ |iqr0, αqq � srcpδrArαssq|i
� srcppδ |iqrαsq, so that condition (2b) to hold also for α
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Hence, in either case, we have verified that δ |i is a well-formed reduction sequence.
In turn, lengthpδ |iq � ordpAq being a successor ordinal implies immediately that δ |i is
convergent.

If δ is convergent, then we must verify tgtpδ |iq � tgtpδq|i . Let pδ |iqrαs � xti, p, µy
where δrArαss � xfpt1, . . . , ti, . . . , tmq, ip, µy. Then tgtpδ |iq � tgtppδ |iqrαsq � tirssp
for some term s, and tgtpδrArαssq � fpt1, . . . , ti, . . . , tmqrssip � fpt1, . . . , tirssp, . . . , tmq,
cfr. Lem. 5.1.15, therefore tgtpδ |iq � tgtpδrArαssq |i . If lengthpδq � Arαs � 1, then
tgtpδq � tgtpδrArαssq. Otherwise, for all α1 verifying Arαs   α1   lengthpδq, it is
immediate that rpospδrα1sq ‖ i. Then Lem. 5.1.46 implies tgtpδrArαs � 1, lengthpδqqq|i
� srcpδrArαs � 1, lengthpδqqq|i . In either case, tgtpδq|i� tgtpδrArαssq|i� tgtpδ |iq. Thus
we conclude.

Assume that α :� ordpAq is a limit ordinal.
Let α1 such that α1 � 1   α, then α limit implies α1 � 2   α. Therefore IH can be

applied to obtain that pδ |iqr0, α
1�2q is a well-formed reduction sequence, implying that

srcppδ |iqrα
1�1sq � tgtppδ |iqrα

1sq. Consequently, δ |i verifies condition (1) in Dfn. 5.1.32.
Let α0 be a limit ordinal verifying α0   α. Observe that Arα0s   lengthpδq,

then Lem. 5.1.43 implies that δr0, Arα0sq is convergent. We apply IH to obtain that
pδ |iqr0, α0q is a well-formed and convergent reduction sequence. Therefore conditions (2a)
and (2c) hold for δ |i w.r.t. α0. Moreover limα1Ñα0 tgtppδ |iqrα

1sq � tgtppδ |iqr0, α0qq �
srcppδ |iqrα0s, cfr. Dfn. 5.1.34 and Lem. 5.1.44 resp.. Hence δ |i enjoys condition (2b)
w.r.t. α0 as well.

Consequently, δ |i is a well-formed reduction sequence. Observe that srcpδ |iq �
srcppδ |iqr0sq � srcpδr0, Ar1sq |iq. Since obviously 1   α, we can use IH to obtain
srcpδ |iq � srcpδr0, Ar1sqq|i� srcpδq|i .

Assume that δ is convergent. Let B :� tβ1 { β1   lengthpδq ^ Arα1s   β1 for all α1  
αu. We define β as follows: β :� lengthpδq if B is empty, and β :� minpBq otherwise.
Assume for contradiction that β � β1� 1 for some β1. If B is empty, so that lengthpδq �
β1 � 1, then β1 R B implies the existence of some α1   α such that β1 ¤ Arα1s and then
β1   Arα1 � 1s, contradicting Arα1 � 1s   lengthpδq. Otherwise β � minpBq, implying
that β1 ¤ Arα1s for some α1   α. But this would imply β ¤ Arα1 � 1s, contradicting
β P B. Consequently, β is a limit ordinal.

We verify conditions (2a) and (2c) for δ |i w.r.t. α.

 To verify condition (2a), it is enough to show that limα1Ñα tgtppδ |iqrα
1sq � u|i ,

where u � limβ1Ñβ tgtpδrβ
1sq � tgtpδr0, βqq. Let n   ω, and βn   β such

that distptgtpδrβ1sq, uq   2�pn�1q, implying distptgtpδrβ1sq|i , u|i q   2�n, if
βn   β1   β. Then βn   β implies that βn ¤ Arαns for some αn   α, then αn  
α1   α implies distptgtppδ |iqrα

1sq, u|i q   2�n, recalling that tgtppδ |iqrα
1sq �

tgtpδrArαssq |i . Consequently, limα1Ñα tgtppδ |iqrα
1sq � tgtpδr0, βqq |i , and then

δ |i verifies condition (2a) w.r.t. α.

 Let n   ω, let βn   β such that dpδrβ1sq ¡ n � 1 if βn   β1   β. By an
argument similar to that used for condition (2a), we obtain the existence of
some αn   α such that dpδrArα1ssq ¡ n � 1, implying dppδ |iqrα

1sq ¡ n, if
αn   α1   α. Consequently, δ |i verifies condition (2c) for α.

Hence, δ |i is a convergent reduction sequence. In turn, Dfn. 5.1.34 yields tgtpδ |iq �
limα1Ñα tgtppδ |iqrα

1sq, then we have already verified that tgtpδ |iq � tgtpδr0, βqq |i . If
β � lengthpδq, then immediately tgtpδ |iq � tgtpδq |i . Otherwise, it is immediate to
observe that rpospδrβ1sq ‖ i if β ¤ β1   lengthpδq. Hence tgtpδ |iq � tgtpδr0, βqq |i
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� srcpδrβ, lengthpδqqq |i� tgtpδrβ, lengthpδqqq |i� tgtpδq |i ; by already obtained result,
Lem. 5.1.44 (recall srcpδrβ, lengthpδqqq � srcpδrβsq, Lem. 5.1.46, and simple analysis of
Dfn. 5.1.34 resp.. Thus we conclude.

The following result extends the idea of a projection of a reduction sequence from
arguments of function symbols to arguments of contexts.

Lemma 5.1.49. Let C a context having exactly m holes, and Crt1, . . . , tms
δ
Ý�� u, such

that for all α   lengthpδq, there exists some i verifying 1 ¤ i ¤ m and BpospC, iq ¤
rpospδrαsq. Then u � Cru1, . . . , ums and for all i such that 1 ¤ i ¤ m, there is a

reduction sequence δi verifying ti
δi
Ý�� ui.

Proof. Straightforward induction on maxt|BpospC, iq| { 1 ¤ i ¤ mu, resorting on
Lem. 5.1.48 for the inductive case.

We illustrate Lem. 5.1.49 by means of an example, using the rules fpxq Ñ gpxq and
kpxq Ñ jpxq. Let us consider the sequence δ defined as follows:

t � hpmpfωq,mpkωqq Ñ hpmpgpfωqq,mpkωqq Ñ hpmpgpfωqq,mpjpkωqqq
Ñ hpmpgpgpfωqqq,mpjpkωqqq Ñ hpmpgpgpfωqqq,mpjpjpkωqqqq
�� hpmpgωq,mpjωqq � u

and the context C � hpmp2q,mp2qq, so that BpospC, 1q � 11, BpospC, 2q � 21, and
t � Crt1, t2s where t1 � fω and t2 � kω. Notice that 11 ¤ rpospδrnsq if n is odd,
and 21 ¤ rpospδrnsq if n is even. Therefore, δ verifies the lemma hypotheses. Observe

that u � Crgω, jωs, fω
δ1
Ý�� gω and kω

δ2
Ý�� jω, where δ1 is exactly the sequence

obtained by projecting the steps in δ having odd indexes on the position 11, namely
fω Ñ gpfωq Ñ gpgpfωqq Ñ . . ., and analogously for δ2.

Two properties about normalisation follow.

Lemma 5.1.50. Let T an orthogonal TRS, and t, s, u terms such that t
π
Ý�� u, t

δ
Ý� s,

u is a normal form, and dpδrisq � 0 for all i   lengthpδq. Then s
π1

Ý�� u for some
reduction sequence π1.

Proof. We proceed by induction on lengthpδq; observe that δ is finite, so that non-
transfinite induction suffices. If lengthpδq � 0, i.e. δ is the empty reduction for t, then
s � t so that we conclude by taking π1 :� π.

Assume lengthpδq � n � 1, so that t
a
ÝÑ s0

δ1

Ý� s where a � xt, ε, µy for some rule
µ : lrx1, . . . , xms Ñ h, and lengthpδ1q � n.

We will resort to a result presented and proved in e.g. [KKSdV95] and [BKdV03],

where it is called Strip Lemma.5 This result implies that whenever t
γ
Ý�� t1 and t

b
ÝÑ s0,

then t1
br
Ý�� s1 and s0

γr
Ý�� s1, where br is the residual of b after γ.6 The result of the

lemma can be described graphically as follows:

5In [KKSdV90], a preliminary version of [KKSdV95], the same property is called Parallel Moves
Lemma

6The statement in [BKdV03], and also in [KKSdV90], describes also the nature of γr. We will not
give the details here since they are not needed for this proof.
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t
γ

¡¡¡

b

��

t1

br¡¡¡

s0 γr
¡¡¡ s1

While we will not include here the formal definition of residual, we mention a feature
valid for orthogonal TRSs which is crucial for this proof. Assume b � xt, ε, µy such that
µ : l Ñ h, and c � xt, p, νy where p � ε and t

c
ÝÑ v. Then t � lrt1, . . . , tms, q ¤ p for

some q such that lpqq P Var, and therefore v � lrt11, . . . , t
1
ms. In this case, there is exactly

one residual of b after c, namely xv, ε, µy. This property carries on for the residual of b
after a reduction θ where mindpθq ¡ 0, even if lengthpθq is a limit ordinal. Graphically:

t
c�xt,p, νy //

b�xt,ε, µy

��

v

xv,ε, µy

��
t1 w1

t
θ

¡¡¡

b�xt,ε, µy

��

v

xv,ε, µy

��
t1 w1

We return to the proof. Observe that t � lrv1, . . . , vms since xt, ε, µy is a redex.
Then a simple transfinite induction yields that π not including any root step would
imply u � lrv11, . . . , v

1
ms, contradicting that u is a normal form. Let α be the minimum

index corresponding to a root step in π. Then the described property of residuals implies
that a has exactly one residual after πr0, αq, which is a1 :� xtα, ε, µy where tα is the target
term of πr0, αq. Moreover, πrαs being a root step implies that the rule used in that step
is also µ, i.e. πrαs � xtα, ε, µy � a1. Therefore we can build the following graphic:

t
πr0,αq

¡¡¡

a�xt, ε, µy

��

tα
πrαs� xtα, ε, µy //

a1�xtα, ε, µy

��

tα�1
πrα�1,lengthpπqq

¡¡¡u

s0 π1
¡¡¡ tα�1 tα�1

πrα�1,lengthpπqq
¡¡¡u

Hence IH on s0
δ1

Ý� s suffices to conclude.

Proposition 5.1.51. Let T be a disjoint TRS which does not include collapsing rules.
Then T has the property SN8.7

Proof. First we prove the following auxiliary result: for any reduction sequence δ, limit
ordinal β such that β ¤ lengthpδq, and n   ω,

if Dβ1   β { @i pβ1   i   β implies dpδrisq ¥ nq
then Dβ1   β { @i pβ1   i1   β implies dpδri1sq ¡ nq

(5.4)

Assume for any δ, β and n that the premise holds. The term srcpδrβsq � tgtpδrβ1, βqq
can include only a finite number of redexes at depth n. Additionally, the hypothesis
yields that any reduction step included in δrβ1, βq, say δrjs, satisfies dpδrjsq ¥ n, and
moreover leaves at its redex position (cfr. Dfn. 5.1.31) a symbol not being the head

7We conjecture that this property can be generalised to any TRS in which the sets of head symbols
of lhss and rhss are disjoint, with exactly the same proof. The statement restricted to disjoint TRS we
give here suffices for this thesis.
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symbol of a left-hand side, since T is disjoint and it does not include collapsing rules.
Therefore, no redex occurrence can be created at depth n, implying that any reduction
step at depth exactly n included in δrβ1, βq must correspond to a redex occurrence
already included in srcpδrβ1sq and being at the same position. Consequently, if we call
k the number of steps at depth exactly n included in δrβ1, βq, we obtain k   ω. Thus
we conclude the proof of the auxiliary result by taking β1 to be the ordinal such that
δrβ1s is the last of such steps if k ¡ 0, and β1 :� β1 if k � 0.

Now we prove, for any reduction sequence δ in T , that δ is convergent; i.e. that for
any n   ω and β limit ordinal such that β ¤ lengthpδq,

Dβ1   β { @i pβ1   i   β implies dpδrisq ¡ nq (5.5)

We conclude the proof of the proposition by proving (5.5) by induction on n. If n � 0,
then the premise of (5.4) holds taking β1 � 0, then we conclude by (5.4). If n ¡ 0, then
the premise of (5.4) holds for some β1 by IH of (5.5) considering n�1 instead of n, then
we conclude again by (5.4).

5.2 Infinitary proof terms

This section is devoted to define the set of infinitary proof terms for a left-linear iTRS
T , and to give some of the basic properties of proof terms. Proof terms for finitary,
left-linear TRS are introduced in Section 2.2.2.

The signature for infinitary proof terms is the same as for the finitary ones, cfr.
Dfn. 2.2.4; it is the result of adding the rule symbols and the concatenation symbol,
i.e. the dot, to the signature of the object TRS.8 Also analogously to the finitary case,
not all the infinitary terms in the extended signature are valid proof terms, and the
restrictions derive from conditions imposed to the occurrences of the dot. Besides the
coherence condition described for finitary proof terms (cfr. Dfn. 2.2.5), which also applies
to infinitary ones, an additional condition is needed: left components of concatenations
must denote convergent reductions. This added condition reflects the convergence con-
dition in the definition of infinitary reduction sequences, cfr. Dfn. 5.1.32. Similarly as
the coherence condition implies that proof terms must be defined simultaneously with
their source and target terms, the added convergence condition forces other notions to
be defined simultaneously as well, resulting in the extensive definition we give in the
following.

The definition of the set of proof terms is given in two separate stages. First, the
proof terms without occurrences of the dot are introduced, along with all the needed aux-
iliary notions, in Section 5.2.1. We call these proof terms infinitary multisteps, because
they denote the simultaneous contraction of coinitial sets of steps, called multisteps in
[BKdV03], Dfn. 4.5.11.9 Notice that infinite sets of coinitial steps must be considered.
Subsequently, we define the whole set of valid proof terms in Section 5.2.2, by specify-
ing the conditions which apply to the occurrences of the dot. The concatenation of an
infinite number of reductions is dealt with by an ad-hoc formation rule; this allows to
give a definition of the set of infinitary proof terms based on transfinite induction. We
verify the soundness of the given definition in Section 5.2.3, and provide an alternative

8Recall Notation 2.2.7 for the meaning of “object TRS”.
9We also describe the notion of multistep using the ARS model, cfr. Section 3.1.1.
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principle to reason by induction on the set of proof terms in Section 5.2.4. Finally, we
give some basic properties of proof terms in Section 5.2.5.

5.2.1 Infinitary multisteps

In this section, we define the set of infinitary multisteps, along with some basic features
of a multistep, namely: how to determine its source and target terms, whether it is con-
vergent or not, and its minimum activity depth. These concepts are needed to properly
define the restrictions to be imposed to occurrences of the dot in the general definition
of the set of proof terms. We give all the indicated definitions, and afterwards, some
examples illustrating them.

Definition 5.2.1 (Signature for multisteps). Let T � xΣ, Ry be a (either finitary or
infinitary) TRS. We define the signature for the infinitary multisteps over T as follows:
ΣR :� ΣY tµ{n { µ : lÑ r P R^ |FV plq| � nu .

Analogously to the case of finitary proof terms (cfr. Dfn. 2.2.5), all terms not includ-
ing occurrences of the dot are valid proof terms.

Definition 5.2.2 (Infinitary multisteps). The set of infinitary multisteps for an iTRS
T xΣ, Ry is exactly the set of the closed (cfr. Dfn.5.1.11) terms10 in Ter8pΣRq.

To define the source and target terms of a multistep, we define ‘companion’ ad-hoc
iTRSs; cfr. the beginning of Section 5.1.6.

Definition 5.2.3 (srcT , tgtT ). Let T � xΣ, Ry be a (either finitary or infinitary) TRS.
We define the TRSs srcT and tgtT as follows. The signature of both srcT and tgtT is
ΣR. The rules of srcT are tµpx1, . . . , xnq Ñ lrx1, . . . , xns { µ : lÑ r P Ru. The rules of
tgtT are tµpx1, . . . , xnq Ñ rrx1, . . . , xns { µ : lÑ r P Ru.

We remark that for any object TRS T , both srcT and tgtT are orthogonal and
disjoint; moreover, srcT does not include collapsing rules, since the lhs of a rewrite
rule cannot be a variable (cfr. Dfn. 5.1.30). Therefore, both srcT and tgtT enjoy the
property UN8 (cfr. the comment about UN8 at the beginning of Section 5.1.6) and
srcT enjoys also SN8 (cfr. Prop. 5.1.51). Moreover, given an infinitary multistep ψ,
each rule symbol occurrence in ψ implies the existence of a reduction step w.r.t. each
of srcT and tgtT having ψ as source, so that ψ can be the source of one, or several,
reduction sequences for each of these TRSs. Consequently, any infinitary multistep has
exactly one srcT -normal form, and at most one tgtT -normal form. These observations
entail the soundness of the following definition.

Definition 5.2.4 (Source and target of an infinitary multistep). Let ψ be an infinitary
multistep. We define srcpψq to be the srcT -normal form of ψ. Moreover, if ψ is weakly
normalising w.r.t. tgtT , then we define tgtpψq to be the corresponding normal form;
otherwise, tgtpψq is undefined.

For the kind of contraction activity we intend to denote with infinitary multisteps,
it is correct to identify convergence with existence of target. Formally:

10By restricting infinitary multisteps, and later proof terms (cfr. Sec. 5.2) to be closed terms, we follow
the idea expressed in [BKdV03], Remark 8.2.21 (pg. 324): “Since here we are interested in permutation
equivalence, we may simply assume that reductions/proof terms are closed.”. This decision simplifies,
indeed, our treatment of permutation equivalence given in Sec. 5.3.
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Definition 5.2.5 (Convergent infinitary multisteps). An infinitary multistep ψ is con-
vergent iff tgtT pψq is defined.

Definition 5.2.6 (Minimum activity depth of an infinitary multistep). Let ψ be an
infinitary multistep. We define the minimum activity depth of ψ, notation mindpψq, as
follows.
If ψ does not include occurrences of rule symbols, i.e. if it is a term in Ter8pΣq, then
mindpψq :� ω.
Otherwise mindpψq is the minimum n such that exists at least one position p verifying
ψppq � µ where µ is a rule symbol, and n � |p|. This case admits an equivalent inductive
definition based on Notation 5.1.8:

mindpfpψ1 . . . ψnqq :� 1�minpmindpψ1q . . .mindpψnqq
mindpµpψ1 . . . ψnqq :� 0

In the following, we will give some examples of infinitary multisteps. We will consider
the following object rules: ρ : hpgpxq, yq Ñ kpyq, τ : ipxq Ñ x, π : a Ñ b, µ : fpxq Ñ
gpxq, κ : mpxq Ñ hpx, xq. Then the rules of the companion iTRSs are
srcT : ρpx, yq Ñ hpgpxq, yq τpxq Ñ ipxq π Ñ a µpxq Ñ fpxq κpxq Ñ mpxq
tgtT : ρpx, yq Ñ kpyq τpxq Ñ x π Ñ b µpxq Ñ gpxq κpxq Ñ hpx, xq

For each example, we show the source term, underlining the head symbols of some
of its redexes, and the infinitary multistep denoting contraction of underlined redexes.
Then we develop the computation of the source and target terms, according to Dfn. 5.2.4.
To keep notation compact, we omit some parenthesis for unary symbols.

• The infinitary multistep corresponding to jphpga, nfbqq is ψ1 :� jpρpπ, nµbqq.
Computations of srcpψ1q and tgtpψ1q follow:
ψ1 � jpρpπ, nµbqq ÝÑ

srcT
jphpgπ, nµbqq ÝÑ

srcT
jphpga, nµbqq ÝÑ

srcT
jphpga, nfbqq

ψ1 � jpρpπ, nµbqq ÝÑ
tgtT

jknµb ÝÑ
tgtT

jkngb.

• ψ2 :� κpµpaqq corresponds to mpfpaqq. We compute the source and target terms:
ψ2 � κpµpaqq ÝÑ

srcT
mpµpaqq ÝÑ

srcT
mpfpaqq

ψ2 � κpµpaqq ÝÑ
tgtT

hpµpaq, µpaqq ÝÑ
tgtT

hpgpaq, µpaqq ÝÑ
tgtT

hpgpaq, gpaqq.

• ψ3 :� µω corresponds to fω. Let us compute source and target:
ψ3 � µω ÝÑ

srcT
fpµωq ÝÑ

srcT
fpfpµωqq Ý��

srcT
fω

ψ3 � µω ÝÑ
tgtT

gpµωq ÝÑ
tgtT

gpgpµωqq Ý��
tgtT

gω.

• ψ4 :� τω corresponds to iω.
The computation of source runs as in the previous case: ψ4 � τω Ý��

srcT
iω. On the

other hand, the target of all tgtT redex occurrences in τω (namely, x1i, τpxq Ñ
x, txÑ τωuy) is again τω. Therefore tgtpψ4q is undefined.

• Finally, ψ5 � jpρpτω, πqq corresponds to jphpgiω, aqq.
Computation of source follows:
ψ5 � jpρpτω, πqq ÝÑ

srcT
jphpgτω, πqq ÝÑ

srcT
jphpgτω, aqq Ý��

srcT
jphpgiω, aqqq.

Many tgtT reduction sequences from ψ5 are possible, e.g.:
ψ5 � jpρpτω, πqq ÝÑ

tgtT
jkπ ÝÑ

tgtT
jkb
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ψ5 � jpρpτω, πqq ÝÑ
tgtT

jpρpτω, bqq Ý��
tgtT

jpρpτω, bqq ÝÑ
tgtT

jkb where the i-th step for

1 ¤ i   ω is xjpρpτω, bqq, 11 � 1i, τpxq Ñ x, tx :� τωuy
ψ5 � jpρpτω, bqq Ý��

tgtT
jpρpτω, bqq where all steps are xψ5, 11, τpxq Ñ x, tx :� τωuy,

a divergent tgtT reduction sequence.
Then ψ5 admit both convergent and divergent reduction sequences in tgtT . As ψ5

is tgtT -weakly normalising, we get tgtpψ5q � jkb.

5.2.2 The whole set of proof terms

In this section we give the definition of the set of all valid infinitary proof terms, by
providing precise rules for the inclusion of the occurrences of the concatenation symbol,
that is, the dot. The foundation for this definition is given by the set of infinitary
multisteps, defined in the previous section.

As pointed out in the introduction to Section 5.2, two conditions apply for ψ � φ
to be a valid proof term. First, the activity denoted by ψ must be convergent, i.e., it
should exist at least one way to render such activity as a convergent reduction sequence;
this condition implies particularly that the target term of ψ can be uniquely determined.
Second, the activity denoted by ψ must be coherent with that of φ in the following sense:
the target term of (the activity denoted by) ψ must coincide with the source term of
(that corresponding to) φ.

The need of imposing such conditions on the occurrences of the dot implies that
the set of proof terms must be defined along with the source, target and convergence
condition for each proof term, in a joint definition. Convergence depends in turn of the
depth of the contraction activity being denoted by a proof term; therefore, minimum
activity depth of proof terms must be merged within the same, extensive definition.

The set of infinitary proof terms is defined by an inductive construction, where the
base case is given by the infinitary multisteps, and inductive rules govern the addition
of dots. A binary concatenation rule allows proof terms of the form ψ � φ, given that
ψ and φ are proof terms. Note that some mechanism must be provided to denote the
concatenation of an infinite series of reduction sequences, or more generally of contrac-
tion activities. The definition to be presented in the following admits terms including
an infinite number of occurrences of the dot. These infinite concatenations are defined
by a separate rule, different than that allowing to define binary concatenations. In
the infinite concatenation rule, special care is taken to guarantee that no component is
“lost”, i.e., that the root of any component is at a finite distance from the root in the
corresponding proof term.

The separate rules for binary and infinite concatenation give rise to potential ambi-
guities in the construction of a proof term. To avoid the possibility of such ambiguities,
the definition of the set of proof terms is layered, such that the proof terms included in
a layer can be built taking as components proof terms in previous layers only. Count-
able ordinals are used as layers for proof terms, and each proof term belongs to exactly
one layer. The separation of proof terms in layers yields also a transfinite induction
principle to reason about the set of infinitary proof terms. The base layer corresponds
to infinitary multisteps, and the layers for limit ordinals correspond exactly to infinite
concatenations. A second, alternative induction principle for the set of proof terms is
introduced in Section 5.2.4.

The aforementioned considerations lead to the following definitions.
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Definition 5.2.7 (Signature for proof terms). Let T � xΣ, Ry be a (either finitary or
infinitary) TRS. We define the signature for the proof terms over T as follows: ΣPT :�
ΣR Y t � {2u . Recall the definition of ΣR, cfr. Dfn. 5.2.1.

Note that the signature for infinitary proof terms coincide with that of finitary ones,
cfr. Dfn. 2.2.4.

Definition 5.2.8 (PTα, set of proof terms at layer α). Let T be a TRS, and α a
countable ordinal. We define PTα, the α-th layer in the construction of the set of proof
terms for T , along with the source, target, convergence condition, and minimum activity
depth of any proof term in PTα. If ψ P PTα, we will write srcpψq, tgtpψq and mindpψq
for the source, target and minimum activity depth of ψ respectively.

If α � 0, then PTα :� H. Otherwise, we proceed inductively on α, defining PTα to
be the smallest set in Ter8pΣPT q verifying the following conditions.

1. If α � 1 and ψ is an infinitary multistep for T , then ψ P PTα. The source,
target, convergence condition and minimum activity depth of ψ coincide with the
definitions given for infinitary multisteps in Sec. 5.2.1.

2. Assume that for any i   ω, ψi P PTαi, such that α � Σ
i ω

αi; cfr. Dfn. 5.1.1.

Moreover, assume that for all n, ψn is convergent, and tgtpψnq � srcpψn�1q.

Then ψ :� xP, F y P PTα, where
P :� t2n { n   wu Y p

�
n ω

2n1 � Pospψnqq,

F p2nq :� � , and F p2n1pq :� ψnppq.
A concise term notation for ψ is �i ω ψi;
being in fact an abbreviation for
ψ1 � pψ2 � pψ3 � . . .qq.

A graphical representation is
�

|| ""
ψ1 �

~~ ��
ψ2 �

�� ��

ψ3
. . .

We define the source, target and minimum activity depth of ψ as follows: srcpψq :�
srcpψ0q, tgtpψq :� limiÑω tgtpψiq and mindpψq :� minpmindpψiqi ωq; notice that
tgtpψq can be undefined. We define that ψ is convergent iff for all k   ω, there is
some n   ω such that mindpψjq ¡ k if j ¡ n.

3. Assume that ψ1 P PTα1, ψ2 P PTα2, α2 is a successor ordinal, ψ1 is convergent,
tgtpψ1q � srcpψ2q, and α � α1 � α2 � 1. Then ψ :� xP, F y P PTα, where
P :� tεuY p1 � Pospψ1qqY p2 � Pospψ2qq, F pεq :� � , and F pipq :� ψippq for i � 1, 2.

A concise term notation for ψ is ψ1 � ψ2. A graphical notation is �

�� ��
ψ1 ψ2

If ψ � ψ1 � ψ2, then we define srcpψq :� srcpψ1q, tgtpψq :� tgtpψ2q and mindpψq �
minpmindpψ1q,mindpψ2qq; ψ is convergent iff ψ2 is.

4. Assume that ψi P PTαi for i � 1, 2, . . . , n, that αi ¡ 1 for at least one i, f{n P Σ
(resp. µ{n is a rule symbol), and α � α1� . . .�αn� 1. Then ψ :� xP, F y P PTα,
where P :� tεuYp

�
1¤i¤n

i�Pospψiqq, F pεq :� f (resp. F pεq :� µ), and F pipq :� ψippq

for i � 1, 2, . . . , n.

A concise term notation for ψ is fpψ1, . . . , ψnq (resp. µpψ1, . . . , ψnq).
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If f P Σ, i.e. it is an object symbol, we define srcpψq � fpsrcpψ1q, . . . , srcpψnqq,
tgtpψq � fptgtpψ1q, . . . , tgtpψnqq, mindpψq :� 1 �minpmindpψ1q, . . . ,mindpψnqq.
In this case, ψ is convergent iff all ψi are. We observe that tgtpψq is undefined if
at least one tgtpψiq is.

If µ is a rule symbol such that µ : lÑ r, we define srcpψq � lrsrcpψ1q, . . . , srcpψnqs,
tgtpψq � rrtgtpψ1q, . . . , tgtpψnqs, and mindpψq :� 0. In this case, ψ is convergent
iff all ψi corresponding to some xi occurring in r are. We observe that tgtpψq
is undefined if at least one tgtpψiq is, for the ψi already mentioned.

Definition 5.2.9 (PT, the set of proof terms). We define the set of proof terms as
follows: PT :�

�
α ω1

PTα.

We notice that all proof terms are closed terms in Ter8pΣPT q. This fact is a con-
sequence of the definition of the set of infinitary multisteps, which are the base layer in
the definition of PT. Cfr. the footnote on Dfn. 5.2.2.

We will say that a proof term ψ is an infinite concatenation iff ψp2nq � � for
all n   ω. Observe that all infinite concatenations admit the concise term notation
ψ � �i ω ψi, where ψn � ψ |2n1 . Furthermore, ψ not being an infinite concatenation
implies the existence of some n   ω such that 2n P Pospψq and ψp2nq � � .

We define as trivial proof terms those which denote no activity.

Definition 5.2.10. Let ψ be a proof term. We will say that ψ is a trivial proof term
iff it does not include any rule symbol occurrences.

We remark that the structure of trivial proof terms can be arbitrarily complex, i.e.
�j ω p �i ω aq is a trivial proof term. The following property of trivial proof terms is
used later on in this chapter.

Lemma 5.2.11. Let ψ be a proof term. Then ψ is trivial iff mindpψq � ω.

Proof. For the ñq direction, a straightforward induction on ψ (i.e. on α such that
ψ P PTα) suffices. For the base case, i.e. when ψ is an infinitary multistep, we just refer
to Dfn. 5.2.6.

For the ðq direction, a similar induction on ψ yields the contrapositive, i.e. that if
ψ includes at least one rule symbol occurrence, then mindpψq   ω. If ψ is an infinitary
multistep, then we define n to be the least depth of a rule symbol occurrence in ψ. An
easy induction on n yields mindpψq � n. If ψ � µpψ1, . . . , ψmq, then mindpψq � 0. For
the other cases, IH suffices to conclude.

We observe that all the finitary proof terms are comprised in Dfn. 5.2.9, and moreover
that they are convergent and correspond to finite layers. This can be verified by means
of a simple inductive argument over Dfn. 2.2.5. Therefore, all the examples given in
Section 2.2.2 correspond to infinitary proof terms, with the same source and target
terms. The set of infinitary multisteps is included in PT, hence the examples given
at the end of Section 5.2.1 are infinitary proof terms as well. We give some additional
examples of infinitary proof terms, using the rules µ : fpxq Ñ gpxq and ν : gpxq Ñ kpxq.
We refer to the formation rules in Dfn. 5.2.8.
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Consider the reduction sequence fω Ñ gpfωq Ñ gpgpfωqq �� gω having length ω.
The i-th step of this sequence, namely gipfωq Ñ gi�1pfωq, can be described by the proof
term gipµpfωqq. It is straightforward to check that the sequence formed by these proof
terms verifies the conditions of the infinitary composition rule, and that the depth of
the denoted activity tends to infinity. Therefore �i ω gipµpfωqq is a valid proof term,
by means of rule 2; the indicated condition about depths implies that it is moreover a
convergent proof term. We observe that srcp �i ω gipµpfωqqq � srcpµpfωqq � fω. In
order to obtain tgtp �i ω g

ipµpfωqqq � gω, it is enough to observe that the sequence of
targets of each gipµpfωqq, namely gpfωq, g2pfωq, . . ., converges to that term.

Analogously, the reduction sequence fω Ñ gpfωq Ñ kpfωq Ñ kpgpfωqq Ñ k2pfωq��
kω can be denoted by either �i ω pk

ipµpfωqq � kipνpfωqqq or �i ω pk
ipµpfωq � νpfωqqq,

again by means of rule 2. In the latter case, for any n   ω, we obtain that µpfωq � νpfωq is
a valid proof term by rule 3; therefore, applying n times rule 4 we get knpµpfωq � νpfωqq.

In turn, the reduction sequence fω Ñ gpfωq Ñ gpgpfωqq �� gω Ñ kpgωq can
be denoted by the proof term p �i ω gipµpfωqqq � νpgωq by means of rule 3, because
�i ω g

ipµpfωqq is a convergent proof term, and tgtp �i ω g
ipµpfωqqq � srcpνpgωqq � gω.

We obtain srcpp �i ω gipµpfωqqq � νpgωqq � srcp �i ω gipµpfωqqq � fω, and
tgtpp �i ω g

ipµpfωqqq � νpgωqq � tgtpνpgωqq � kpgωq.

As observed for finitary proof terms in Section 2.2.2, the rules defining the set of
proof terms can be combined in different ways. A simple example follows: rule 4 implies
that kp �i ω gipµpfωqqq is a valid proof term, given that �i ω gipµpfωqq is, as we have
already verified. We get srcpkp �i ω g

ipµpfωqqqq � kpsrcp �i ω g
ipµpfωqqqq � kpfωq, and

analogously for the target term. The reduction fω �� gω �� kω, can be denoted by
either �i ω g

ipµpfωqq � �i ω k
ipνpgωqq (if taken as a sequence having length ω � 2) or

µω � νω (if considered as the composition of two infinite simultaneous reductions), in both
cases by means of rule 3, since both �i ω g

ipµpfωqq and µω are convergent. Specifically,
�i ω g

ipµpfωqq � �i ω k
ipνpgωqq P PTω�2�1, and µω � νω P PT3. The reduction fω Ñ

fpgpfωqq Ñ fpkpfωqq Ñ fpkpgpfωqqq Ñ fpk2pfωqq �� fpkωq Ñ gpkωq can be denoted
by �i ω fpk

ipµpfωq � νpfωqqq � µpkωq, and also by fp �i ω k
ipµpfωq � νpfωqqq � µpkωq.

We give some examples involving non-convergent proof terms; we use the rules τ :
ipxq Ñ ipxq and ρ : hpx, yq Ñ mpxq. The proof term τpaq is convergent; ipaq is both its
source and target term. Therefore, rule 2 implies that �i ω τpaq is a valid proof term. In
turn, the minimum activity depth of all the components of �i ω τpaq is mindpτpaqq � 0,
so that �i ω τpaq is not convergent. Notice that srcp �i ω τpaqq is well defined, namely,
it is srcpτpaqq � ipaq.

Non-convergence of �i ω τpaq implies that neither νp �i ω τpaqq nor ρp �i ω τpaq, µpbqq
are convergent. On the other hand, ρpµpbq, �i ω τpaqq is a convergent proof term; observe
that the variable replaced by the non-convergent subterm �i ω τpaq in the left-hand side
of ρ, namely y, does not occur in the corresponding right-hand side. Computation of the
source and target terms yields srcpρpµpbq, �i ω τpaqqq � hpsrcpµpbq, srcp �i ω τpaqqq �
hpfpbq, ipaqq, and tgtpρpµpbq, �i ω τpaqqq � mptgtpµpbqqq � mpgpbqq.

Finally, we remark that infinite composition can be combined with itself. Let us
consider a reduction sequence having length ω2, and φij be a proof term denoting its
ω � i � j-th step, so that for each i   ω, �j ω φij denotes the subsequence including
the steps from the ω � i-th up to the ω � pi� 1q-th. Then �i ω �j ω φij is a proof term
denoting the entire reduction sequence. By iteration of this pattern, proof terms can be
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built denoting reduction sequences of any countable ordinal length. This claim is proved
in Sec. 5.4.

5.2.3 Soundness of the definitions

In this section, we study the definition of the set of valid proof terms in some detail,
stating and proving properties related to its soundness.

Lemma 5.2.12. Let ψ, α such that ψ P PTα. Then ψ is an infinite concatenation iff
α is a limit ordinal iff ψ is generated by case 2 in Dfn. 5.2.8.

Proof. We proceed by induction on α, analysing the rules in Dfn. 5.2.8.

Case 1: in this case ψ is an infinitary multistep, so that ψp20q � ψpεq � � .

Case 2: in this case ψ � �i ω ψi, that is, an infinite concatenation. It is enough to
observe that PT0 � H, and that αi ¡ 0 for all i implies that

°
i ω αi is a limit ordinal.

Case 3: in this case ψ � ψ1 � ψ2 where ψi P PTαi , α2 is a successor ordinal, and
α � α1 � α2 � 1, i.e. a successor ordinal. IH on ψ2 implies that ψ2p2

nq � � for some
n   ω. We conclude by observing that ψp2n�1q � ψ2p2

nq.

Case 4: in this case it is immediate that ψp20q � ψpεq � � , and that α is a successor
ordinal.

Lemma 5.2.13. Let ψ, α such that ψ P PTα. Then ψ is an infinitary multistep iff
α � 1 iff ψ is generated by case 1 in Dfn. 5.2.8.

Proof. We proceed by induction on α, analysing the rules in Dfn. 5.2.8.

Case 1: we conclude immediately.

Case 2: in this case ψ is not an infinitary multistep, observe e.g. that ψpεq � � , and α
is a limit ordinal, cfr. Lem. 5.2.12. Thus we conclude.

Case 3: in this case ψ is not an infinitary multistep, observe e.g. that ψpεq � � , and
α ¡ α1 � 1 ¡ 1, recall PT0 � H. Thus we conclude.

Case 4: in this case ψ � fpψ1, . . . , ψnq where ψi P PTαi for all i, and exists some k such
that αk ¡ 1. Observe that α ¡ αk ¡ 1, then we can apply IH to obtain that ψk is not
an infinitary multistep, hence ψ is neither. Thus we conclude.

The set PT is closed by operations, formally:

Proposition 5.2.14 (Completeness of PT).

1. If ψ is an infinite multistep, then ψ P PT.

2. If ψ1, ψ2 P PT, ψ1 is convergent, and srcpψ2q � tgtpψ1q, then ψ1 � ψ2 P PT.

3. Given a sequence xψiyi ω such that for all i, ψi P PT, ψi are convergent, and
tgtpψiq � srcpψi�1q, then �i ω ψi P PT.

4. If ψ1, . . . , ψn P PT and f P Σ, then fpψ1, . . . , ψnq P PT.

5. If ψ1, . . . , ψn P PT and µ is a rule symbol, then µpψ1, . . . , ψnq P PT.
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Proof. We prove each item separately, referring to cases in Dfn. 5.2.8.

Item 1: in this case ψ P PT1, this is immediate from case 1.

Item 2: Let α1, α2 such that ψi P PTαi for i � 1, 2. If α2 is a successor ordinal,
then ψ1 � ψ2 P PTα1�α2�1 � PT. If α2 is a limit ordinal, then Lem. 5.2.12 implies that
ψ2 � �i ω φi, where for all i, φi is convergent and tgtpφiq � srcpφi�1q; cfr. case 2. On the
other hand, hypotheses imply that ψ1 is convergent and tgtpψ1q � srcpψ2q � srcpφ0q.
Then ψ1 � ψ2 P PTα1�α2 , again by case 2. Observe that ψ1 � ψ2 � ψ1 � p �i ω φiq � �i ω φ

1
i

where φ10 :� ψ1 and φ1i�1 :� φi for all i   ω.

Item 3: we conclude just by observing that case 2 implies that �i ω ψi P PTβ, where
ψi P PTαi for all i   ω and β :�

°
i ω αi.

Item 4 and Item 5: it is enough to observe that case 4 applies.

Now we prove uniqueness of formation, w.r.t. the layered definition, for any valid
proof term.

Lemma 5.2.15. Let ψ P PT. Then there exists a unique α such that ψ P PTα, and
moreover there is exactly one case in Dfn. 5.2.8 justifying ψ P PTα.

Proof. We will prove the following statement, which is equivalent to the desired result.

Let ψ P PT, α minimal for ψ P PTα, and β such that ψ P PTβ. Then
β � α, and there is exactly one case in Dfn. 5.2.8 justifying ψ P PTα.

We proceed by induction on α, analysing which case in Dfn. 5.2.8 could justify ψ P PTα.

Case 1. In this case α � 1 and ψ is an infinitary multistep. We conclude by Lem. 5.2.13.

Case 2. In this case ψ � �i ω ψi such that ψi P PTαi and α �
°
i ω αi. Observe that

α ¡ αi for all i, recall PT0 � H. Assume ψ P PTβ. Lem. 5.2.12 implies that this
assertion is generated by case 2, implying that β �

°
i ω βi and ψi P PTβi . Let i   ω

and γi minimal for ψi P PTγi . Then γi ¤ αi   α, and therefore IH can be applied twice
on each ψi obtaining βi � αi � γi. Thus we conclude.

Case 3. In this case ψ � ψ1 � ψ2, α � α1 � α2 � 1, α2 is a successor ordinal, and
ψi P PTαi for i � 1, 2. Then Lem. 5.2.12 applied to ψ2 implies that it is not an infinite
concatenation, thus neither is ψ. On the other hand, observe that α is a successor ordinal
verifying α ¡ αi for i � 1, 2. Assume ψ P PTβ. Then applying again Lem. 5.2.12 yields
that this assertion is not justified by case 2 (since ψ is not an infinite concatenation);
therefore, the shape of ψ (recall ψpεq � � ) leaves case 3 as the only valid option. Hence
β � β1 � β2 � 1 where ψi P PTβi for i � 1, 2. An argument analogous to that used in
the previous case, i.e. resorting to the IH on each ψi, yields βi � αi. Thus we conclude.

Case 4. In this case ψ � fpψ1, . . . , ψmq and α � α1 � . . . � αm � 1, where ψi P PTαi

for all i, and exists some k verifying αk ¡ 1. Then Lem. 5.2.13 implies that ψk is not
an infinitary multistep, so that neither is ψ. Therefore, the shape of ψ (recall ψpεq � � )
leaves case 4 as the only valid option, implying that β � β1 � . . . � βm � 1 where
ψi P PTβi for all i. We conclude by obtaining βi � αi through an argument resorting
to the IH, like in the previous cases.

We remark that Lem. 5.2.15 ensures that transfinite induction on the layer attached
to each proof term, combined with rule analysis w.r.t. Dfn. 5.2.8, is a sound principle to
reason about the set of proof terms.
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5.2.4 An alternative induction principle

As noted in Section 5.2.2, the principle given by the layered definition of PT allows to
perform reasonings by transfinite induction over the set of infinitary proof terms. In
this section we introduce a second sound induction principle for proof terms, based in
their concise notation. This induction principle is equivalent to that given by layers.
Some of the forthcoming proofs about proof terms resort to this alternative, equivalent
induction principle, while other proceed by transfinite induction on the layer attached
to each proof term. The intent is to obtain proofs as intuitively simple as possible, with-
out compromising their validity. The following proposition introduces the alternative
induction principle, and shows that it is equivalent to that given by layers.

Proposition 5.2.16 (Alternative, equivalent induction principle for PT). Let P a
unary predicate satisfying all the following conditions:

1. If ψ is an infinitary multistep, then P pψq holds.
2. For all ψ1, ψ2 such that ψ1 � ψ2 P PT, P pψ1q and P pψ2q imply P pψ1 � ψ2q.
3. Given xψiyi ω such that �i ω ψi P PT, P pψiq for all i imply P p �i ω ψiq.
4. For all ψ1, . . . , ψn P PT and for all f P Σ, P pψ1q, . . . , P pψnq imply

P pfpψ1, . . . , ψnqq.
5. For all ψ1, . . . , ψn P PT and for any rule symbol µ, P pψ1q, . . . , P pψnq imply

P pµpψ1, . . . , ψnqq.
Then P pψq holds for all ψ P PT.

Proof. We proceed by induction on α where ψ P PTα, referring to the conditions in the
lemma statement.
If α � 1, then Lem. 5.2.13 implies ψ to be an infinitary multistep, so that we conclude
by condition 1.
Assume that α is a successor ordinal. If ψpεq � � , then Lem 5.2.12 implies that ψ �
ψ1 � ψ2, such that for i � 1, 2, ψi P PTαi for some αi satisfying α ¡ αi. Then IH can
be applied on each ψi yielding P pψ1q and P pψ2q to hold. We conclude by condition 2.
Otherwise, i.e. if ψ � fpψ1, . . . , ψmq or ψ � µpψ1, . . . , ψmq, then Lem. 5.2.13 implies
that ψ is not an infinitary multistep, therefore for all i, ψi P PTαi where α ¡ αi. Then
IH on each i yield P pψiq to hold for all i. We conclude by condition 4.
Assume that α is a limit ordinal. In this case, Lem 5.2.12 implies that ψ � �i ω ψi, such
that for all i   ω, ψi P PTαi where αi   α. Then we can apply IH on each ψi obtaining
that P pψiq holds for all i   ω. We conclude by condition 3.

In the proofs resorting to Prop. 5.2.16, we indicate as induction hypotheses the
hypotheses of each case in the Proposition. E.g. when proving a property for proof
terms having the form ψ1 � ψ2, we will refer to the hypotheses of case 2 in Prop. 5.2.16,
namely that the property holds for ψ1 and ψ2, as induction hypothesis in the proof.

5.2.5 Basic properties of proof terms

The following lemma shows that the target of a convergent proof term is always defined,
and also a correspondence between mindpψq and the existence of a fixed prefix for the
activity denoted by ψ. These two results are merged in the same lemma because they
need to be proved simultaneously.

Lemma 5.2.17. Let ψ be a convergent proof. Then
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(a) tgtpψq is defined.

(b) For all n   ω, mindpψq ¡ n implies distpsrcpψq, tgtpψqq   2�n.

Proof. We proceed by induction on α where ψ P PTα, analysing the case in Dfn. 5.2.8
corresponding to ψ. If ψ is an infinitary multistep, then item (a) is immediate from
Dfn. 5.2.5, and for item (b) an easy induction on n suffices.

Assume ψ � ψ1 � ψ2. Item (a) can be proved by just applying IH on ψ2. To obtain
item (b), observe that IH applies to ψi for i � 1, 2, since mindpψiq ¥ mindpψq ¡ n, yield-
ing distpsrcpψiq, tgtpψiqq   2�n. Moreover Lemma 5.1.25 implies distpsrcpψq, tgtpψqq ¤
maxpdistpsrcpψq, srcpψ2qq, distpsrcpψ2q, tgtpψqq. Thus we conclude by observing that
srcpψq � srcpψ1q, srcpψ2q � tgtpψ1q, and tgtpψq � tgtpψ2q.

Assume ψ � �i ω ψi.
We prove item (a). For any i   ω, ψi being convergent implies that IH applies to

obtain that tgtpψiq is defined. Let n   ω, and kn such that mindpψiq ¡ n if kn  
i   ω. Let j such that kn   j. Then IH:(b) applies on ψkn�1 � . . . � ψj , implying
distptgtpψkn�1q, tgtpψjqq   2�n.11 Therefore, for any position p and j ¥ k|p| � 1, p P
Posptgtpψjqq iff p P Posptgtpψk|p|�1qq, and in such case, tgtpψjqppq � tgtpψk|p|�1qppq. We
define t � xP, F y as follows: p P P iff p P Posptgtpψk|p|�1qq, and F ppq :� tgtpψk|p|�1qppq
for all p P P . To conclude this part of the proof, it is enough to verify that tgtpψq �
limiÑω tgtpψiq � t.

• We verify that P is a tree domain, cfr. Dfn. 5.1.6. Let pq P P , then
pq P Posptgtpψk|pq|�1qq, implying that p P Posptgtpψk|pq|�1qq, and therefore that
p P Posptgtpψk|p|�1

qq. Hence, p P P . Let pj P P and i such that 1 ¤ i ¤ j.
Observing |pj| � |pi|, a straightforward argument based on ψk|pj|�1 yields pi P P .

• We verify that t is a well-defined term, cfr. Dfn. 5.1.7. Let p P P , f{m :� F ppq, and
i   ω. Observe f � ψk|p|�1ppq � ψk|p|�1�1ppq. Then pi P P iff pi P Pospψk|pi|�1q iff
i ¤ m.

• We verify that t � limiÑω tgtpψiq. Let n   ω, j ¡ kn, and p a position verifying
|p| ¤ n, so that k|p| ¤ kn, implying in turn k|p| � 1 ¤ j. Then p P Posptq iff
p P Posptgtpψk|p|�1qq iff p P Posptgtpψjqq, and in such case, tppq � tgtpψk|p|�1qppq �

tgtpψjqppq. Hence distptgtpψjq, tq   2�n. Consequently, t � limiÑω tgtpψiq.

We prove item (b). For all i   ω, mindpψiq ¥ mindpψq ¡ n, so that an easy induc-
tion on i using an argument similar to that just described for binary composition yields
distpsrcpψq, tgtpψiqq   2�n. Recall that tgtpψq � limiÑω tgtpψiq, then there exists some
k such that distptgtpψjq, tgtpψqq   2�n if j ¡ k. Then distpsrcpψq, tgtpψk�1qq   2�n

and distptgtpψk�1q, tgtpψqq   2�n. We conclude by Lemma 5.1.25.
Assume ψ � fpψ1, . . . , ψmq and that it is not an infinitary multistep. Then ψ being

convergent implies that all ψi are. Therefore a straightforward argument based on IH
implies item (a) to hold. Moreover, the way in which src, tgt and mind for this case,
implies that a natural inductive argument yields also item (b).

Assume ψ � µpψ1, . . . , ψmq, and that it is not an infinitary multistep. Then ψ being
convergent implies that ψi is if xi occurs in the right-hand side of µ, thus IH:(a) implies
that tgtpψiq is defined for those ψi. Hence, definition of tgt for this case yields item (a).

11A possible shortcut from here is observing that the sequence xtgtpψiqyi ω is Cauchy-convergent, and
therefore has a limit. We can refer to Thm. 12.2.1 in [BKdV03], or its proof.
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On the other hand, mindpψq � 0 contradicting the hypotheses of item (b). Thus we
conclude.

Lemma 5.2.18. Let C be a context in TerpΣq having k holes, and ψ1, . . . , ψk proof
terms. Then mindpCrψ1, . . . , ψksq � mintmindpψiq � |BpospC, iq| { 1 ¤ i ¤ ku.

Proof. An easy, although somewhat cumbersome, induction on maxt|BpospC, iq|u suf-
fices. If C � 2, then both sides of the equation in the lemma conclusion equates to ψ,
thus we conclude.

Assume C � fpC1, . . . , Cmq.
Observe that Crψ1, . . . , ψks � fpC1rψ11 , . . . , ψ1q1s, . . . , Cmrψm1 , . . . , ψmqmsq, where
tψjiu � tψ1, . . . , ψku. Consequently, for any i such that 1 ¤ i ¤ k, BpospC, iq � e p
for some e verifying 1 ¤ e ¤ m, and therefore p � BpospCe, lq for some l. In turn, this
implies |BpospC, iq| � 1 � |BpospCe, lq|. Conversely, for any e such that 1 ¤ e ¤ m,
and for any BpospCe, iq, there is an index j such that BpospC, jq � e � BpospCe, iq.
Furthermore, mindpCrψ1, . . . , ψksq � 1�mintmindpCjrψj1 , . . . , ψjqj sq { 1 ¤ j ¤ mu.

Let j minimal for mindpψjq � |BpospC, jq|, so that showing mindpCrψ1, . . . , ψksq �
mindpψjq � |BpospC, jq| is enough to conclude. Let e, i such that BpospC, jq � e �
BpospCe, iq. The existence of some j1, i1 such BpospC, j1q � e�BpospCe, i

1q andmindpψ1jq�
|BpospCe, i

1q|   mindpψjq � |BpospCe, iq| would contradict minimality of ψj w.r.t. C, so
that j, i are minimal for mindpψjq � |BpospCe, iq|. Therefore, applying IH on Cj , yields
that mindpCerψe1 , . . . , ψeqesq � mindpψjq � |BpospCe, iq|.

Assume for contradiction the existence of some m,h such that
mindpChrψh1 , . . . , ψhqhsq   mindpCerψe1 , . . . , ψhehsq. Applying IH on Ch we obtain
mindpChrψh1 , . . . , ψhqhsq � mindpψgq � |BpospCh, fq| for some f and g such that
BpospC, gq � h � BpospCh, fq. But then our assumption would imply mindpψgq �
|BpospC, gq| � mindpψgq�|BpospCh, fq|�1   mindpψjq�|BpospCe, iq|�1 � mindpψjq�
|BpospC, jq|, contradicting minimality of j w.r.t. C.

Hence, mindpCrψ1, . . . , ψksq � 1�mindpCerψe1 , . . . , ψeqesq � mindpψjq�|BpospC, jq|.
Thus we conclude.

Some properties related with convergence follow.

Lemma 5.2.19. Let ψ � fpψ1, . . . , ψmq be a convergent infinitary multistep, and i such
that 1 ¤ i ¤ m. Then ψi is a convergent infinitary multistep.

Proof. Dfn. 5.2.2 yields immediately that ψi is an infinitary multistep. Moreover,
fpψ1, . . . , ψmq being convergent means the existence of a convergent tgtT -reduction se-

quence δ such that fpψ1, . . . , ψmq
δ
Ý��
tgtT

t and t is a tgtT -normal form, i.e. t P Ter8pΣq.

Observe that mindpδq ¡ 0, since f does not occur in any left-hand side of a rule in tgtT .

Then Lem. 5.1.45 implies t � fpt1, . . . , tmq. In turn, Lem. 5.1.48 implies ψi
δ |i
Ý��
tgtT

ti.

Thus we conclude.

Lemma 5.2.20. Let ψ � fpψ1, . . . , ψmq be a proof term. Then ψ is convergent iff ψi is
convergent for all i such that 1 ¤ i ¤ m.

Proof. If ψ is an infinitary multistep, then the ñq direction is an immediate corollary of
Lem. 5.2.19. For the ðq direction, recall that for any i, ψi being convergent means the
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existence of a tgtT -reduction sequence δi verifying ψi
δi
Ý��
tgtT

ti where ti P Ter
8pΣq. Then

fpψ1, . . . , ψmq
δ
Ý��
tgtT

fpt1, . . . , tmq, where δ :� p1 � δ1q; . . . ; pm � δmq, and i � δi is defined as

follows: lengthpi�δiq :� lengthpδiq and i�δirαs :� xfpt1, . . . , φ, . . . ψmq, ip, µy where δirαs �

xφ, p, µy. A simple transfinite induction yields fpt1, . . . , ti�1, ψi, ψi�1, . . . , ψmq
i�δi
Ý��
tgtT

fpt1, . . . , ti�1, ti, ψi�1, . . . , ψmq.

If ψ is not an infinitary multistep, then the result is an immediate consequence of
Dfn. 5.2.8, case (4). Thus we conclude.

Lemma 5.2.21. Let C be a context in Ter8pΣq having exactly m holes, and ψ1, . . . , ψm
proof terms. Then Crψ1, . . . , ψms is convergent iff ψi is convergent for all suitable i.

Proof. A straightforward induction on maxt|BpospC, iq| { 1 ¤ i ¤ mu, resorting to
Lem. 5.2.20 in the inductive case, suffices to conclude.

Lemma 5.2.22. Let µ : lrx1, . . . , xms Ñ hrx1, . . . , xms be a rule included in a certain
TRS; and ψ1, . . . , ψm proof terms. Then ψ � µpψ1, . . . , ψmq is convergent iff ψi is
convergent for all i such that xi occurs in hrx1, . . . , xms.

Proof. Assume that ψ is an infinitary multistep. We verify ñq. Convergence of ψ

implies ψ
δ
Ý��
tgtT

t for some reduction sequence δ, where t P Ter8pΣq. Notice that

mindpδq ¡ 0 would imply tpεq � µ (cfr. Lem. 5.1.45), contradicting t P Ter8pΣq.
Therefore mindpδq � 0, implying δ � δ1; xχ, ε, νy, δ2 where mindpδ1q ¡ 0. In turn,

mindpδ1q ¡ 0 implies that tgtpδ1q � χ � µpχ1, . . . , χmq where ψi
δ |i
Ý��
tgtT

χi, cfr. Lem. 5.1.45

and Lem 5.1.48. Hence ν � µ : µpx1, . . . , xmq Ñ hrx1, . . . , xms, implying srcpδ2q �
hrχ1, . . . , χms. Observe that χi occurs in srcpδ2q iff xi occurs in h. We analyse two
cases:

 hrx1, . . . , xms � xj , so that srcpδ2q � χj . In this case ψj
δ |j
Ý�� χj

δ2
Ý�� t. We

conclude by observing that only convergence of ψj is required in this case.

 h R Var. In this case hrχ1, . . . , χms
δ2
Ý�� t. Observe that all the steps in δ2 lies

“below” (an argument of) h. Then Lem. 5.1.49 implies t � hrt1, . . . , tms and,

moreover, that a reduction sequence δ1i exists which verifies χi
δ1i
Ý�� ti for all i

such that xi occurs in hrx1, . . . xms. Therefore, for any of those indices, say i,

ψi
δ1 |i
Ý�� χi

δ1i
Ý�� ti. Thus we conclude.

To verify the ðq direction, observe that all the ψi corresponding to variables oc-

curring in h being convergent implies ψ Ñ hrψ1, . . . ψms
δ1
Ý�� hrt1, . . . , ψms . . .

δm
Ý��

hrt1, . . . , tms, where eventually some δi are performed more than once, if the corre-
sponding xi occurs more than once in hrx1, . . . , xms. Hence ψ is tgtT -WN8, i.e. it is a
convergent infinitary multistep.

Finally, if ψ is not an infinitary multistep, then Dfn. 5.2.8, case (4), allows to conclude
immediately.
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5.3 Permutation equivalence

In this section, we present a characterisation of the equivalence of reductions, more
precisely of contraction activities, for convergent infinitary rewriting. A study of equiv-
alence comprising non-convergent, as well as convergent, reductions, is left for further
investigation.

As described for the finitary case in Section 2.2.3, equivalence is formally charac-
terised by defining an equivalence relation on the set of proof terms. In fact, the def-
inition we present in the following extends its finitary counterpart, namely Dfn. 2.2.8,
preserving its basic features. Equivalence of reductions is formalised by resorting to the
notion of permutation equivalence. Moreover, the definition of the permutation equiva-
lence relation on the set of infinitary proof terms is based on equational logic, similarly
to Dfn. 2.2.8, and additionally, the set of basic schemas for infinitary permutation equiv-
alence is the result of adding an additional schema to those presented in the finitary
definition.

We remark that this characterisation of the equivalence of infinitary reductions in-
volves equational logic to be performed on infinitary objects, namely the proof terms.
On the other hand, the mere extension of Dfn. 2.2.8, as it is presented, in the sense
of allowing infinitary proof terms to be included in equational judgements, does not
suffice to obtain an adequate characterisation of infinitary permutation equivalence.
There are several challenges, related specifically to infinite concatenation, which must
be addressed. We discuss these challenging issues by presenting some examples in the
following.

5.3.1 Motivating examples

Consider the rules µ : fpxq Ñ gpxq and ρ : mpxq Ñ jpxq, and the reduction sequences:

mpfωq
µ
ÝÑ mpgpfωqq

µ
ÝÑ mpg2pfωqq

µ
Ý�� mpgωq

ρ
ÝÑ jpgωq (5.6)

mpfωq
ρ
ÝÑ jpfωq

µ
ÝÑ jpgpfωqq

µ
ÝÑ jpg2pfωqq

µ
Ý�� jpgωq

where we annotate the arrows with the rule used in each step or sequence. These
reduction sequences involve exactly the same steps, namely a µ step for each occurrence
of f in mpfωq, plus a ρ step for the external m. Therefore, we should be able to
consider these reduction sequences as equivalent. Independently of the representation of
these reduction sequences by proof terms, let us try to apply the notion of permutation
equivalence to justify our assertion about their equivalence. To this effect, we should
obtain either of these reduction sequences from the other, as the result of a series of
permutations of contiguous steps.

The problem here is that the ρ step must be permuted with an infinite number of µ
steps. If we try to transform the former equation into the latter one, there is not even
a first definite µ step with which the ρ step can be permuted. If we go the opposite
direction, for any n   ω, the leading ρ step can be permuted with the leading n µ steps,
resulting in

mpfωq
µ
ÝÑ mpgpfωqq

µ
ÝÑ . . .

µ
ÝÑ mpgnpfωqq

ρ
ÝÑ jpgnpfωqq

µ
Ý�� jpgωq

In any case, an infinite number of µ steps remain past the ρ step, preventing us to
conclude the equivalence of the original reduction sequences.



170CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

This situation is reflected if we try to justify the equivalence of the proof terms
denoting the given reduction sequences, namely

p �i ω mpg
ipµpfωqqqq � ρpgωq and ρpfωq � p �i ω jpg

ipµpfωqqqq (5.7)

by means of Dfn. 2.2.8. On one hand, there is no “last” element in the infinite concate-
nation �i ω mpg

ipµpfωqqq, having the form mp. . .q, which could be joined, by applying
a number of times the pAssocq schema, with ρpgωq, to subsequently apply the pInOutq
schema. Cfr. the second example of finitary permutation equivalence judgement given
in Section 2.2.3, where this idea is used to permute the last step of a finitary sequential
proof term with the preceding one. On the other hand, for any n   ω, the ρ step can
be postponed after the n leading µ steps. The following remark is useful here, as well
as in later examples.

Remark 5.3.1. We recall from Dfn. 5.2.8 that �i ω ψi is just a concise notation for
ψ0 � pψ1 � pψ2 � . . .qq. Therefore, ψ0 � p �i ω ψ1�iq is a different concise notation for the
same proof term.

Having this observation in mind, consider this permutation equivalence judgement:

ρpfωq � p �i ω jpg
ipµpfωqqqq

� pρpfωq � jpµpfωqqq � p �i ω jpg
1�ipµpfωqqqq

� ρpµpfωqq � p �i ω jpg
1�ipµpfωqqqq

� pmpµpfωqq � ρpgpfωqqq � p �i ω jpg
1�ipµpfωqqqq

� mpµpfωqq � pρpgpfωqq � jpgpµpfωqqqq � p �i ω jpg
2�ipµpfωqqqq

� mpµpfωqq � ρpgpµpfωqqq � p �i ω jpg
2�ipµpfωqqqq

� mpµpfωqq � pmpgpµpfωqqq � ρpg2pfωqqq � p �i ω jpg
2�ipµpfωqqqq

� mpµpfωqq �
�
mpgpµpfωqqq �

�
ρpg2pfωqq � jpg2pµpfωqqq

�	
�

p �i ω jpg
3�ipµpfωqqqq

...
� mpµpfωqq � mpgpµpfωqqq � mpg2pµpfωqqq � . . . � mpgn�1pµpfωqqq �

ρpgnpfωqq � p �i ω jpg
n�ipµpfωqqqq

which repeats a pattern formed by the application of pAssocq to join the ρ step with the
following µ step, then pOutInq to obtain a simultaneous contraction of these steps, and
subsequently pInOutq to get their sequential contraction where the µ step precedes the
ρ step. This pattern is similar to that described in the second example in Section 2.2.3,
with pOutInq and pInOutq applied in reverse order. Note that disregarding the value of
n, an infinite concatenation comes after the ρ step. Hence, there is no way to justify, as
desired, the equivalence of the two given proof terms, using just the finitary definition
on infinitary proof terms.

Moreover, observe that all the steps involved in the reduction sequences in (5.6)
can be performed simultaneously from the term mpfωq; the infinitary multistep ρpµωq
denotes such infinite simultaneous contraction. The involved steps can be contracted in
many other different forms, such as those denoted by the proof term ρp �i ω g

ipµpfωqqq
or ρpfωq � jpµωq. A sound characterisation of permutation equivalence for infinitary
rewriting must state that all these proof terms are equivalent among themselves, and
also to any of the sequential proof terms given in (5.7). Let us take

ρpfωq � p �i ω jpg
ipµpfωqqqq and ρpµωq (5.8)
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To prove the equivalence between these proof terms, all the µ steps must be “packed”
(cfr. Section 1.3.2 and Section 2.2.3) from �i ω jpgipµpfωqqq into an infinitary multi-
step, or conversely, “unpacked” from jpµωq to form an infinite concatenation. Again,
Dfn. 2.2.8 allows to obtain the desired result only for a finite number of µ steps. Consider
e.g. the following permutation equivalence judgement.

ρpfωq � p �i ω jpg
ipµpfωqqqq

�
�
ρpfωq �

�
jpµpfωqq � pjpgpµpfωqqq � jpgpgpµpfωqqqqq

�	
� p �i ω jpg

3�ipµpfωqqqq

(5.9)

�
�
ρpfωq �

�
jpµpfωqq � jpgpµpfωqq � gpgpµpfωqqqq

�	
� p �i ω jpg

3�ipµpfωqqqq

�
�
ρpfωq �

�
jpµpfωqq � jpgpµpfωq � gpµpfωqqqq

�	
� p �i ω jpg

3�ipµpfωqqqq

�
�
ρpfωq �

�
jpµpfωqq � jpgpµ2pfωqqq

�	
� p �i ω jpg

3�ipµpfωqqqq (5.10)

�
�
ρpfωq � jpµpfωq � gpµ2pfωqqq

�
� p �i ω jpg

3�ipµpfωqqqq

� pρpfωq � jpµ3pfωqqq � p �i ω jpg
3�ipµpfωqqqq (5.11)

� ρpµ3pfωqq � p �i ω jpg
3�ipµpfωqqqq

In this judgement, many applications of pAssocq yield (5.9), preparing the structure
where the successive “packing” of steps can take place. pStructq is applied twice from
jpgpµpfωqqq � jpgpgpµpfωqqqq, this is needed to apply pOutInq resulting in (5.10). pStructq
is again followed by pOutInq to obtain (5.11), and a last application of pOutInq yields the
final result. By repeating the “pStructq-and-then-pOutInq” pattern, a judgement can be
built to justify

ρpfωq � p �i ω jpg
ipµpfωqqqq � ρpµnpfωqq � p �i ω jpg

n�ipµpfωqqqq

for any n   ω, so that an infinite concatenation comes after the leading infinitary
multistep including the ρ step and the n external µ steps. Therefore, just applying
Dfn. 2.2.8, the equivalence of the proof terms in (5.8) cannot be attained.

Let us analyse a different case, using the rules µ : fpxq Ñ gpxq and ν : gpxq Ñ kpxq.
Consider the reduction sequences

fω Ñ gpfωq Ñ g2pfωq�� gω Ñ kpgωq Ñ k2pgωq�� kω (5.12)

fω Ñ gpfωq Ñ kpfωq Ñ kpgpfωqq Ñ k2pfωq�� kω (5.13)

These reduction sequences comprise the contraction of exactly the same steps: a µ step
for any occurrence of f in fω, plus a ν step for any of the created occurrences of g.
They are different only by the order in which these steps are contracted. Therefore, we
should be able to conclude that the proof terms

p �i ω g
ipµpfωqqq � p �i ω k

ipνpgωqqq (5.14)

�i ω pk
ipµpfωqq � kipνpgωqqq

which denote respectively the just introduced reduction sequences, are equivalent.
As in the previous examples, the permutation equivalence of these proof terms cannot

be justified by resorting to Dfn. 2.2.8. The situation is even more complex in this case,
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than in the example given by (5.6) and (5.7). To transform (5.12) into (5.13), we should
permute an infinite number of ν steps; in turn, each of these ν steps must be permuted
with an infinite number of µ steps. That is, infinity is involved in the permutation
equivalence reasoning of this case, in two different dimensions. The need to cope with
this phenomenon has a great influence on the design of the formal definition of the
permutation equivalence relation for infinitary proof terms.

5.3.2 The formal definition

In order to obtain an adequate characterisation of infinitary permutation equivalence,
we add three elements to Dfn. 2.2.8.

Two of these added elements are a basic equation schema and a contextual equational
logic rule, which allow to extend to infinite concatenations, respectively, the pStructq
scheme and the closure by operations, which the finitary permutation equivalence defi-
nition provide for binary concatenation only. Namely, the characterisation of infinitary
permutation equivalence includes the equation schema:

pInfStructq �i ω fpψ
1
i , . . . , ψ

m
i q � fp �i ω ψ

1
i , . . . , �i ω ψ

m
i q

and the equational rule:

ψi � φi for all i   ω

�i ω ψi � �i ω φi
InfComp

The third added element is an equational rule which allows to incorporate the notion
of limit into the permutation equivalence judgements. The form of this rule is:

for all k   ω
exists χk, ψ

1
k, φ

1
k

"
ψ �B χk � ψ

1
k mindpψ1kq ¡ k

φ �B χk � φ
1
k mindpφ1kq ¡ k

ψ � φ

Lim

where �B denotes a restriction of the � relation, which we discuss later on. The Lim
rule can be described as follows: if ψ and φ can be proven permutation equivalent,
respectively, to two arbitrarily “similar” proof terms, then we can conclude that ψ and
φ are, themselves, permutation equivalent.

The notion of “similarity” between proof terms we use in this rule, reflect the similar-
ity of the denoted contraction activities. It is based on two elements: the concatenation
symbol, i.e. the dot, and the notion of minimum activity depth. By resorting to the dot,
we can separate a prefix of any contraction activity, not only of reduction sequences. In
any proof term having the form ξ � θ, the activity denoted by ξ precedes that denoted
by θ. The use of the dot allows to define the degree of “similarity” between two proof
terms, in relation to what follows a common prefix. Namely, given two proof terms ξ � θ1

and ξ � θ2, the less significant θ1 and θ2 are, the more “similar” we consider ξ � θ1 and
ξ � θ2. In turn, the “significance” of a proof term is considered to be the inverse of its
minimum activity depth. A proof term ξ verifying mindpξq � 0 includes root activity;
we consider that such proof terms have the greatest significance. A greater value of
mindpξq indicates a greater context which is not affected by (the activity denoted by)
ξ, and hence a smaller significance.

We want to remark another aspect related to the Lim rule: we consider that the
“stacking” of uses of this rule, i.e. to use Lim in the derivation leading to a premise of
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another Lim application, should not be necessary to obtain an adequate characterisation
of infinitary permutation equivalence. Therefore, we resort to a separate relation �B ,
which we call base permutation equivalence, and which is the closure of the equation
schema instances by all the rules except for Lim, in the premises of the Lim rule.

We note that the added rules InfComp and Lim have an infinite number of premises.
In order to obtain a proper definition, and also to have a way to reason about the
permutation equivalence relation by transfinite induction, we organise the following
definition in layers, similarly as the definition of the set of infinitary proof terms in
Section 5.2, cfr. Dfn. 5.2.8 and Dfn. 5.2.9.

The formal definition of the permutation equivalence relation on the set of infinitary
proof terms follows.

Definition 5.3.2 (Layer of base permutation equivalence). Let α be a countable ordinal.

We define the α-th level of base permutation equivalence, notation
α
�B , as follows: given

ψ and φ proof terms, ψ
α
�B φ iff the equation ψ

α
� φ can be obtained by means of the

equational logic system whose basic equations are the valid instances of the following
schemas:

pIdLeftq srcpψq � ψ � ψ
pIdRightq ψ � tgtpψq � ψ
pAssocq ψ � pφ � χq � pψ � φq � χ
pStructq fpψ1, . . . , ψmq � fpφ1, . . . , φmq � fpψ1 � φ1, . . . , ψm � φmq
pInfStructq �i ω fpψ

1
i , . . . , ψ

m
i q � fp �i ω ψ

1
i , . . . , �i ω ψ

m
i q

pOutInq µpψ1, . . . , ψmq � µps1, . . . , smq � rrψ1, . . . , ψms
pInOutq µpψ1, . . . , ψmq � lrψ1, . . . , ψms � µpt1, . . . , tmq

where µ : l Ñ r, si � srcpψiq, ti � tgtpψiq, and an instance of an equation is valid
iff both the lhs and rhs are convergent proof terms, cfr. Dfn. 5.2.9. For pInOutq, notice
that the target of each of the ψi must be defined, since all the ti occur in the right-hand
side of the equation schema; therefore, all the ψi must be convergent proof terms for an
instance of this schema to be valid.

Equational logic rules are defined by transfinite recursion on α as follows

ψ
1
� ψ

Refl
ψ � φ is a basic equation

ψ
1
� φ

Eqn

ψ
α1� φ

φ
α1�1
� ψ

Symm
ψ
α1� φ φ

α2� ξ

ψ
α1�α2�1
� ξ

Trans

ψ1
α1� φ1 . . . ψn

αn� φn f{n P Σ

fpψ1, . . . , ψnq
α1�...�αn�1

� fpφ1, . . . , φnq
Fun

ψ1
α1� φ1 . . . ψn

αn� φn µ{n is a rule symbol

µpψ1, . . . , ψnq
α1�...�αn�1

� µpφ1, . . . , φnq
Rule

ψ1
α1� φ1 ψ2

α2� φ2

ψ1 � ψ2
α1�α2�1
� φ1 � φ2

Comp
ψi

αi� φi for all i   ω

�i ω ψi
Σi ωαi� �i ω φi

InfComp
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Definition 5.3.3 (Base permutation equivalence). Let ψ, φ be proof terms. We say

that ψ and φ are base-permutation equivalent, notation ψ �B φ, iff ψ
α
�B φ for some

α   ω1.

Definition 5.3.4 (Layer of permutation equivalence). Let α be a countable ordinal. We

define the α-th level of permutation equivalence, notation
α
�, as follows: given ψ and φ

proof terms, ψ
α
� φ iff the equation ψ

α
� φ can be obtained by means of the equational

logic system whose basic equations are those described in Dfn. 5.3.2, and the set of
equational logic rules is the result of adding the rule Lim defined as follows

for all k   ω
exists χk, ψ

1
k, φ

1
k

#
ψ
αk
�B χk � ψ

1
k mindpψ1kq ¡ k

φ
βk
�B χk � φ

1
k mindpφ1kq ¡ k

ψ
α
� φ where α �

°
i ω αi �

°
i ω βi

Lim

to the rules introduced in Dfn. 5.3.2.

Definition 5.3.5 (Permutation equivalence). Let ψ, φ be proof terms. We say that ψ

and φ are permutation equivalent, notation ψ � φ, iff ψ
α
� φ for some α   ω1.

Observe that for any countable ordinal α,
α
�B �

α
�, and therefore �B � � .

As indicated prior to the definitions, the use of �B instead of � in the premises
of the Lim rule prevents the use of Lim in the judgements leading to the premises of a
Lim application. On the other hand, this definition does allow permutation equivalence
judgements including several applications of the Lim rule. E.g., the following:

. . .
ψ1 �B ξk � ψ

1
1

φ1 �B ξk � φ
1
1

. . .

Lim
ψ1 � φ1

. . .
ψ2 �B χk � ψ

1
2

φ2 �B χk � φ
1
2

. . .

Lim
ψ2 � φ2

Comp
ψ1 � ψ2 � φ1 � φ2

is a valid permutation equivalence derivation. The Lim rule is discussed, including
possible variations, in the conclusions of this thesis, cfr. Sections 6.1.3 and 6.3.

Finally, we want to point out a subtle point in Dfn. 5.3.2, regarding the notion of
valid instance of an equation schema, particularly in relation to the schemas pOutInq
and pInOutq. For an instance of either of this schemas to be valid, the corresponding
instance of µpψ1, . . . , ψmq must be a convergent proof term. Note that this condition
does not entail that all the ψi must be convergent as well. We recall that Dfn. 5.2.8
requires convergence only for the ψi occurring in rrψ1, . . . , ψms, where r is the right-hand
side of µ. Let us give an example, using the rules µ : fpxq Ñ gpxq, ν : gpxq Ñ kpxq,
ρ : hpx, yq Ñ jpyq, and τ : ipxq Ñ x. The instances of pOutInq and pInOutq regarding the
rule ρ have this shape:

pOutInq ρpψ1, ψ2q � ρpsrcpψ1q, srcpψ2qq � jpψ2q
pInOutq ρpψ1, ψ2q � hpψ1, ψ2q � ρptgtpψ1q, tgtpψ2qq

The following instance of pOutInq:

ρpτω, µpaq � νpaqq � ρpiω, fpaqq � jpµpaq � νpaqq

is valid, even when the proof term standing for ψ1, namely τω, is not convergent. Observe
that the source term of any proof term, either convergent or not, can be computed; cfr.
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the comment preceding Dfn. 5.2.4. On the other hand, the target of τω is undefined.
Therefore, there is no instance of pInOutq whose left-hand side is ρpτω, µpaq � νpaqq,
because the target of the proof term standing for ψ1 cannot be computed, whereas it is
needed to build the instance of this schema. Hence the condition about convergence of
each ψi for instances of the pInOutq schema, detailed in Dfn. 5.3.2.

5.3.3 Some infinitary permutation equivalence judgements

It is straightforward to observe that the relation given by Dfn. 5.3.5 includes the finitary
permutation equivalence relation formalised by Dfn. 2.2.8. Therefore, the examples given
in Section 2.2.3 are valid infinitary permutation equivalence judgements as well.

To illustrate the application of the three elements added to obtain the character-
isation of infinitary permutation equivalence, we go back to the motivation examples
described in Section 5.3.1, and a variation of one of them. We use the following rules:

µ : fpxq Ñ gpxq ν : gpxq Ñ kpxq ρ : mpxq Ñ jpxq τ : kpxq Ñ mpxq

As a first example, we recall the proof terms given in (5.7), page 170:

p �i ω mpg
ipµpfωqqqq � ρpgωq and ρpfωq � p �i ω jpg

ipµpfωqqqq

We can prove the equivalence of these proof terms easily, by resorting to the pInfStructq
equation schema, as follows:

p �i ω mpg
ipµpfωqqqq � ρpgωq

� mp �i ω g
ipµpfωqqq � ρpgωq

� ρp �i ω g
ipµpfωqqq (5.15)

� ρpfωq � jp �i ω g
ipµpfωqqq

� ρpfωq � p �i ω jpg
ipµpfωqqqq

Application of pInfStructq allows to use pInOutq afterwards to obtain (5.15), where the
infinite concatenation of the µ steps is enclosed in the ρ step. Subsequently, pOutInq
allows the reorder the contraction activity as desired, and a final application of pInfStructq
yields the expected result.

Now let us recall the proof terms presented in (5.8), namely

ρpfωq � p �i ω jpg
ipµpfωqqqq and ρpµωq

We prove that these proof terms are permutation equivalent by resorting to the Lim
rule. Consider the following derivation

ρpµωq � ρpfωq � jpµωq pOutInq
� ρpfωq � jpµpfωq � gpµωqq pOutInq
� ρpfωq � pjpµpfωqq � jpgpµωqqq pStructq
� pρpfωq � jpµpfωqqq � jpgpµωqq pAssocq
� pρpfωq � jpµpfωqqq � jpgpµpfωq � gpµωqqq pOutInq
� pρpfωq � jpµpfωqqq � pjpgpµpfωqqq � jpg2pµωqqq pStructq � 2
� ppρpfωq � jpµpfωqqq � jpgpµpfωqqqq � jpg2pµωqq pAssocq
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where the used equation schema is indicated next to each line; the legend pStructq � 2
in the next-to-last line indicates the two successive applications of that schema from
jpgpµpfωq � gpµωqqq needed to obtain the final result.

Let n   ω. By iterating over the shown pattern of pOutInq followed by (an ever-
increasing number of applications of) pStructq and then pAssocq, we can obtain:

ρpµωq �
�
ρpfωq � jpµpfωqq � jpgpµpfωqqq � . . . � jpgn�1pµpfωqqq

�
� jpgnpµωqq (5.16)

where some parenthesis are omitted. On the other hand, repeated application of pAssocq
suffices to obtain

ρpfωq � p �i ω jpg
ipµpfωqqqq

�
�
ρpfωq � jpµpfωqq � jpgpµpfωqqq � . . . � jpgn�1pµpfωqqq

�
� p �i ω jpg

n�ipµpfωqqqq
(5.17)

Moreover, mindpjpgnpµωqqq � mindp �i ω jpg
n�ipµpfωqqqq � n � 1 ¡ n. For the latter,

observe that for all i   ω, we have mindpjpgn�ipµpfωqqqq � n � i � 1 ¥ n � 1. Note
also that Lim is not used to obtain (5.16) and (5.17). Hence, Lim can be applied, where
χn � ρpfωq � jpµpfωqq � jpgpµpfωqqq � . . . � jpgn�1pµpfωqqq, to obtain the expected result.

We go back to the last example discussed in Section 5.3.1, cfr. (5.14), involving the
proof terms

ψ � p �i ω g
ipµpfωqqq � p �i ω k

ipνpgωqqq φ � �i ω pk
ipµpfωqq � kipνpfωqqq

We prove that ψ � φ, again resorting to the Lim rule. Observe the following derivation:

ψ � p �i ω g
ipµpfωqqq � p �i ω k

ipνpgωqqq

� µpfωq � pp �i ω gpg
ipµpfωqqqq � νpgωqq � p �i ω kpk

ipνpgωqqqq

� µpfωq � pgp �i ω g
ipµpfωqqq � νpgωqq � p �i ω kpk

ipνpgωqqqq (5.18)

� µpfωq � pνpfωq � kp �i ω g
ipµpfωqqqq � kp �i ω k

ipνpgωqqq (5.19)

� µpfωq � νpfωq � kpψq (5.20)

� µpfωq � νpfωq � kpµpfωq � νpfωq � kpψqq

� µpfωq � νpfωq � kpµpfωqq � kpνpfωqq � k2pψq (5.21)

We apply pAssocq many times, taking into account Remark 5.3.1, and then pInfStructq on
�i ω gpgipµpfωqqq, to obtain (5.18). The successive application of pInOutq and pOutInq
models the permutation of the first ν step with the infinite µ steps in this infinite
concatenation, yielding (5.19). From this proof term, pAssocq following by pStructq
results in (5.20). Repeating the whole argument, and then applying pStructq, leads to
(5.21).

Let n   ω. By iterating the just described reasoning, we can obtain

ψ � µpfωq � νpfωq � kpµpfωqq � kpνpfωqq � . . . � knpµpfωqq � knpνpfωqq � kn�1pψq

observe mindpkn�1pψqq � n � 1. On the other hand, repeated application of pAssocq
suffices to obtain

φ � µpfωq � νpfωq � kpµpfωqq � kpνpfωqq � . . . � knpµpfωqq � knpνpfωqq � φ1
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where φ1 � �i ω pk
n�1�ipµpfωqq � kn�1�ipνpfωqqq. so thatmindpφ1q � mindpkn�1pµpfωqq �

kn�1pνpfωqqq � n� 1. Hence we can apply Lim to obtain ψ � φ, as expected.
We remark the use of Lim to make it possible to build this permutation equivalence

argument, in which infinity appears in two different dimensions, as described in Sec-
tion 5.3.1. An argument not resorting to Lim suffices to model the permutation of one ν
step with an infinite number of µ steps; observe the role of pInfStructq to this effect. In
turn, the permutation of the infinite ν steps is modeled by means of a limit argument,
formalised by the Lim rule.

The last example in this section shows the role of the InfComp rule in a permutation
equivalence judgement. Let us consider the following proof terms

ψ � p �i ω pk
ipµpfωqq � kipνpfωqqqq � p �i ω m

ipτpkωqqq

φ � �i ω pm
ipµpfωqq � mipνpfωqq � mipτpfωqqq

This case is similar to the previous one: in order to prove the equivalence of ψ and φ,
an infinite number of τ steps must be permuted, each of them with an infinite number
of µ and ν steps. We would like to apply an argument similar to that described for
the previous example. Namely, to show that for any n   ω, a prefix similar to that
of φ can be obtained by permuting each of the first n τ steps in ψ w.r.t. an infinite
number of µ steps and ν steps. In turn, the permutation of each τ step must involve the
transformation of ψ1 � �i ω pkpk

ipµpfωqqq � kpkipνpfωqqqq into a proof term having the
form kpψ1q, so that pInOutq can be applied, followed by pOutInq, as in the steps leading
to (5.18) and (5.19) in the previous derivation.

But in this case, ψ1 does not have the form �i ω kpξq, so that pInfStructq does not
apply to this proof term. On the other hand, the pStructq equation schema can be
applied to each component in ψ1, as follows:

kpkipµpfωqqq � kpkipνpfωqqq � kpkipµpfωqq � kipνpfωqqq

Taking each of this one-step derivations as premises, the InfComp rule yields

ψ1 � �i ω kpk
ipµpfωqq � kipνpfωqqq

This observation enables the following judgement

ψ � p �i ω pk
ipµpfωqq � kipνpfωqqqq � p �i ω m

ipτpkωqqq

� µpfωq � νpfωq � pψ1 � τpk
ωqq � p �i ω mpm

ipτpkωqqqq (5.22)

� µpfωq � νpfωq � p �i ω kpk
ipµpfωqq � kipνpfωqqq � τpkωqq � p �i ω mpm

ipτpkωqqqq
(5.23)

� µpfωq � νpfωq � pkp �i ω k
ipµpfωqq � kipνpfωqqq � τpkωqq � p �i ω mpm

ipτpkωqqqq

� µpfωq � νpfωq � pτpfωq � mp �i ω k
ipµpfωqq � kipνpfωqqqq � mp �i ω m

ipτpkωqqq
(5.24)

� µpfωq � νpfωq � τpfωq � mpψq (5.25)

This derivation is similar to that of the previous example, with the addition of the
argument based on InfComp previously described. pAssocq yields (5.22); in turn, the
just referred argument leads to (5.23). pInfStructq can be applied on this proof term,
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allowing in turn to permute the τ step; we obtain (5.24). Finally, pAssocq and pStructq
lead to (5.25).

Hence, the general argument given for the previous example allows to conclude ψ �
φ, as expected.

5.3.4 Infinitary erasure

As described in Section 2.2.3, the characterisation of permutation equivalence obtained
by applying equational logic on proof terms models adequately the phenomenon of
erasure of some contraction activity by step permutation. This feature is common to
the finitary and infinitary versions given in that section and Section 5.3.2 respectively.

Infinitary rewriting, and particularly the behavior of reduction sequences at limit
ordinals, provoke a different form of erasure of contraction activity, which we call infini-
tary erasure. Let us describe this phenomenon by means of an example, using the rules
κ : fpxq Ñ gpfpxqq and π : aÑ b. Consider the reduction sequence

fpaq
π
ÝÑ fpbq

κ
ÝÑ gpfpbqq

κ
ÝÑ g2pfpbqq

κ
Ý�� gω (5.26)

where we decorate the arrows with the rule used in each step or sequence. We can
permute the π step with each of the κ steps in turn. After the permutation of n steps
we get

fpaq
κ
ÝÑ gpfpaqq

κ
ÝÑ . . .

κ
ÝÑ gnpfpaqq

π
ÝÑ gnpfpbqq

κ
Ý�� gω

If we resort to the notion of limit to model the permutation of the π step with all the
κ steps, then we obtain

fpaq
κ
ÝÑ gpfpaqq

κ
ÝÑ . . .

κ
ÝÑ gnpfpaqq

κ
ÝÑ gn�1pfpaqq

κ
Ý�� gω (5.27)

After the contraction of all the κ steps, there is no trace of the source of the π step. The
latter is erased as a result of taking the limit of an infinite number of step permutations.
Therefore, we consider (5.26) and (5.27) as equivalent reductions.

The characterisation of permutation equivalence for infinitary rewriting we present
in this chapter models adequately the phenomenon of infinitary erasure. To verify this
assertion, let us work out the just given example. The reduction sequences (5.26) and
(5.27) can be denoted, respectively, by the proof terms

ψ � fpπq � p �i ω g
ipκpbqqq φ � �i ω g

ipκpaqq

We can prove that these terms are permutation equivalent by resorting to the Lim rule.
Consider the following derivation

ψ � fpπq � p �i ω g
ipκpbqqq

� pfpπq � κpbqq � p �i ω gpg
ipκpbqqqq

� κpaq � gpfpπqq � gp �i ω g
ipκpbqqq

� κpaq � gpψq (5.28)

� κpaq � gpκpaq � gpψqq

� κpaq � gpκpaqq � g2pψq (5.29)
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The permutation of the π step with the first κ step is achieved by applying pAssocq and
then pInOutq and pOutInq. By applying pInfStructq on �i ω gpg

ipκpbqqq, and then pAssocq
and pStructq, we obtain (5.28). Repeating the whole argument and then applying pStructq
yields (5.29). For any n   ω, iterating over this reasoning results in

ψ �
�
κpaq � gpκpaqq � . . . � gnpκpaqq

�
� gn�1pfpπqq � p �i ω g

n�1�ipκpbqqq

On the other hand, a straightforward argument implies

φ �
�
κpaq � gpκpaqq � . . . � gnpκpaqq

�
� p �i ω g

n�1�ipκpaqqq

so that the Lim rule can be applied to obtain ψ � φ.

5.3.5 Basic properties of permutation equivalence

Lemma 5.3.6. Let ψ, φ be convergent proof terms such that ψ � φ. Then srcpψq �
srcpφq, tgtpψq � tgtpφq and mindpψq � mindpφq.

Proof. We proceed by induction on α where ψ
α
� φ, analysing the equational logic rule

used in the final step of that judgement. Observe particularly that Lem 5.2.17:(a) implies
both tgtpψq and tgtpφq to be defined. If the rule is Eqn, then we analyse the equation of
which the pair xψ, φy is an instance. It turns out that the only non-trivial cases are those
corresponding to the pInfStructq equation and the InfComp and Lim rules. We prove the
result for each of these cases.

Assume that xψ, φy is an instance of the pInfStructq equation, i.e., that
ψ � �i ω fpψ

1
i , . . . , ψ

m
i q and φ � fp �i ω ψ

1
i , . . . , �i ω ψ

m
i q.

• We verify mindpψq � mindpφq.
Observe thatmindpψq � mini ωpmindpfpψ

1
i , . . . , ψ

m
i qqq � mindpfpψ1

a, . . . , ψ
m
a qq �

1�minpmindpψ1
aq, . . . ,mindpψ

m
a qq � 1�mindpψbaq where

mindpfpψ1
a, . . . , ψ

m
a qq ¤ mindpfpψ1

i , . . . , ψ
m
i qq for all i   ω (5.30)

mindpψbaq ¤ mindpψjaq if 1 ¤ j ¤ m (5.31)

On the other hand, mindpφq � 1 � minpmindp �i ω ψ1
i q, . . . ,mindp �i ω ψmi qq �

1�mindp �i ω ψ
b1
i q � 1�mindpψb

1

a1q where

mindp �i ω ψ
b1

i q ¤ mindp �i ω ψ
j
i q if 1 ¤ j ¤ m (5.32)

mindpψb
1

a1q ¤ mindpψb
1

i q for all i   ω (5.33)

Assume for contradiction mindpψbaq   mindpψb
1

a1q. Then b � b1 would imply
mindp �i ω ψ

b
i q ¤ mindpψbaq   mindpψb

1

a1q � mindp �i ω ψ
b1
i q, contradicting (5.32),

and b � b1 would immediately contradict (5.33). Analogously, if we assume
mindpψb

1

a1q   mindpψbaq, then a � a1 would imply mindpfpψ1
a1 , . . . , ψ

m
a1 qq ¤ 1 �

mindpψb
1

a1q   1 � mindpψbaq � mindpfpψ1
a, . . . , ψ

m
a qq, contradicting (5.30), and

a � a1 would immediately contradict (5.31). Hence we conclude.

• To verify the condition about source terms, it is enough to observe that srcpψq �
srcpφq � fpsrcpψ1

0q, . . . , srcpψ
m
0 qq.



180CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

• We verify tgtpψq � tgtpφq. Observe that tgtpψq � limiÑω fptgtpψ
1
i q, . . . , tgtpψ

m
i qq

and tgtpφq � fplimiÑω tgtpψ
1
i q, . . . , limiÑω tgtpψ

m
i qq.

Let tj :� limiÑω tgtpψ
j
i q, so that tgtpφq � fpt1, . . . , tmq. Then it is enough to prove

that distptgtpψq, fpt1, . . . , tmqq � 0.
Let n   ω. Let k such that for all j, i ¡ k implies distptgtpψji q, tjq   2�pn�1q and
also distpfptgtpψ1

i q, . . . , tgtpψ
m
i qq, tgtpψqq   2�n.

Let i :� k � 1. Then distpfptgtpψ1
i q, . . . , tgtpψ

m
i qq, fpt1, . . . , tmqq �

1
2 �maxpdistptgtpψ

1
i q, t1q, . . . , distptgtpψ

1
mq, tmqq   2�n. Hence Lem. 5.1.25 yields

distptgtpψq, fpt1, . . . , tmqq   2�n. Thus we conclude.

Assume that the rule justifying ψ
α
� φ is InfComp, so that ψ � �i ω ψi, φ � �i ω φi,

and for all i   ω, ψi
αi
� φi where αi   α.

Source terms: it is enough to apply IH on ψ0
α0
� φ0 obtaining srcpψq � srcpψ0q �

srcpφ0q � srcpφq.

Target terms and mind: Observe that IH can be applied on each ψi
αi
� φi, yielding

tgtpψiq � tgtpφiq and mindpψiq � mindpφiq. Then recalling the definitions of target
and mind on ψ and φ suffices to conclude.

Assume that the rule used in the last step of the judgement ψ
α
� φ is Lim, so that

for all n   ω, ψ
αn
�B χn � ψ

1
n and φ

αn
�B χn � φ

1
n, where mindpψ1nq ¡ n, mindpφ1nq ¡ n,

αn   α and βn   α. Observe that
α
�B �

α
� for any ordinal α, so that IH can be applied

to any premise of the Lim rule.

Source terms: applying IH on ψ
α0
� χ0 � ψ

1
0 and φ

α0
� χ0 � φ

1
0, we obtain srcpψq � srcpφq �

srcpχ0q.

Target terms: we prove distptgtpψq, tgtpφqq � 0. Let n   ω. Then IH on ψ
αn
� χn � ψ

1
n

and φ
αn
� χn � φ

1
n yields tgtpψq � tgtpψ1nq and tgtpφq � tgtpφ1nq. Moreover, it is

immediate to obtain srcpψ1nq � srcpφ1nq � tgtpχnq. Recalling that mindpψ1nq ¡ n
and mindpφ1nq ¡ n, Lem. 5.2.17 can be applied to obtain distptgtpχnq, tgtpψqq �
distpsrcpψ1nq, tgtpψ

1
nqq   2�n and analogously distptgtpχnq, tgtpφqq � distpsrcpφ1nq, tgtpφ

1
nqq  

2�n. Therefore Lem. 5.1.25 yields distptgtpψq, tgtpφqq   2�n. Thus we conclude.

Minimum activity depth: Assume for contradiction n :� mindpψq   mindpφq. Observe
ψ � χn � ψ

1
n and φ � χn � φ

1
n, where mindpψ1nq ¡ n and mindpφ1nq ¡ n. Then

mindpψq � n implies mindpχnq � n, and therefore mindpφq � n, contradicting the
assumption. The assertion mindpφq   mindpψq can be contradicted analogously. Thus
we conclude.

The result about mind and src allows to prove that �B is closed w.r.t. the set of
convergent proof terms.

Lemma 5.3.7. Let ψ and φ proof terms such that ψ �B φ. Then ψ is a well-formed
and convergent proof term iff φ is.

Proof. We proceed by induction on α where ψ
α
�B φ, analysing the equational rule used

in the last step in the corresponding �B derivation.

If the rule is Eqn, then we analyse the basic equation used.

• pIdLeftq, i.e. ψ � srcpφq � φ. It is immediate to verify the desired result.
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• pIdRightq, i.e. ψ � φ � tgtpφq. Observe that φ must be a convergent proof term.
Thus we conclude immediately.

• pAssocq, i.e. ψ � χ � pξ � γq and φ � pχ � ξq � γ. In this case, ψ is well-formed iff φ
is well-formed iff χ, ξ and γ are well formed, and moreover χ and ξ are convergent.
Moreover, ψ is convergent iff φ is convergent iff γ is convergent. Thus we conclude.

• pStructq, i.e. ψ � fpχ1, . . . , χmq � fpξ1, . . . , ξmq and φ � fpχ1 � ξ1, . . . , χm � ξmq.
In this case, ψ is well formed iff φ is well-formed iff all χi and ξi are well-formed,
all the χi are also convergent (cfr. Lem. 5.2.20 for ψ), and tgtpχiq � srcpξiq for all
i. Moreover, ψ is convergent iff all the ξi are convergent (cfr. again Lem. 5.2.20)
iff all the χi � ξi are convergent iff φ is convergent. Thus we conclude.

• pInfStructq, i.e. ψ � �i ω fpχ
1
i , . . . , χ

m
i q and φ � fp �i ω χ

1
i , . . . , �i ω χ

m
i q.

ñq Assume that ψ is well-formed and convergent. Given n   ω, let kn   ω
be an index verifying mindpfpχ1

i , . . . χ
m
i qq ¡ n if kn   i. Let j such that 1 ¤

j ¤ m. Then for all i   ω, fpχ1
i , . . . χ

m
i q convergent implies χji convergent, cfr.

Lem 5.2.20. In turn srcpfpχ1
i�1, . . . χ

m
i�1qq � tgtpfpχ1

i , . . . χ
m
i qq implies immediately

srcpχji�1q � tgtpχji q. Finally, if i ¡ kn�1, then mindpfpχ1
i , . . . χ

m
i qq ¡ n�1 implies

mindpχji q ¡ n. Hence �i ω χ
j
i is well-formed and convergent. Consequently, so is

φ.

ðq Assume that φ is well-formed and convergent. Given j such that 1 ¤ j ¤ m
and n   ω, let kpn,jq be an index verifying mindpψji q ¡ n if kpn,jq   i. Let i   ω.

Then χji convergent and srcpψji�1q � tgtpψji q for all j implies fpχ1
i , . . . , χ

m
i q con-

vergent and srcpfpχ1
i�1, . . . χ

m
i�1qq � tgtpfpχ1

i , . . . χ
m
i qq. Then ψ is a well-formed

proof term. Moreover, for all n   ω, if i ¡ maxtkpn,jq { 1 ¤ j ¤ mu, then
mindpfpχ1

i , . . . , χ
m
i qq ¡ n. Consequently, ψ is convergent.

• pInOutq, i.e. ψ � µpχ1, . . . , χmq and φ � lrχ1, . . . , χms � µpt1, . . . , tmq. In this case,
all χi are convergent proof terms, as it is explicitly noted in Dfn. 5.3.2. Then both
ψ and φ are well-formed and convergent.

• pOutInq, i.e. ψ � µpχ1, . . . , χmq and φ � µps1, . . . , smq � rrχ1, . . . , χms. In this
case ψ is well-formed iff φ is well-formed iff χi are well-formed. Moreover, ψ
is convergent iff φ is convergent iff all χi corresponding to variables occurring
in the right-hand side r, which are exactly those occurring in rrχ1, . . . , χms, are
convergent; cfr. Lem. 5.2.22 and Lem. 5.2.21 respectively.

If the equational rule used in the last step of the derivation ending in ψ
α
�B φ is Refl,

Symm or Trans, then a straightforward argument suffices to conclude.
If the rule is Fun, Rule or Comp, then a simple argument based on Lem. 5.2.20,

Lem 5.2.22 or just Dfn. 5.2.8 case (3) respectively, and IH, suffices to conclude.
Assume that the rule used in the last step of the derivation is InfComp. As the rule is

symmetric, then it suffices to prove one side of the biconditional in the lemma statement.
Then assume that ψ � �i ω ψi is a well-formed and convergent proof term. Let i   ω.
Then ψi is convergent and srcpψi�1q � tgtpψiq. Therefore IH implies convergence of φi,
and Lem. 5.3.6 yields srcpφi�1q � tgtpφiq. Hence φ is well-formed. Let n   ω. Then
convergence of ψ implies the existence of some kn   ω verifying mindpψiq ¡ n if kn   i.
In turn, Lem. 5.3.6 implies mindpφiq ¡ n if kn   i. Consequently, ψ is convergent.
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The following lemma shows that permutation equivalence is compatible with infini-
tary contexts.

Lemma 5.3.8. Let C be a context having k   ω holes, and xψiyi¤k and xφyi¤k two se-
quences of proof terms verifying ψi �B φi for all i. Then Crψ1, . . . , ψks �B Crφ1, . . . , φks.

Proof. An easy induction on maxt|BpospC, iq|u suffices. Resort to the Fun equational
rule for the inductive case.

The following lemma shows that the pStructq equation can be extended to contexts
having a finite number of holes.

Lemma 5.3.9. Let C be a context in Σ (i.e. built from function symbols only) having
exactly n   ω occurrences of the box; and ψ1, . . . , ψn, φ1, . . . , φn proof terms. Then
Crψ1, . . . , ψns � Crφ1, . . . , φns �B Crψ1 � φ1, . . . , ψn � φns.

Proof. We proceed by induction on maxpt|BpospC, iq|uq.

If C � 2, then we conclude immediately, notice that in this case n � 1.

Otherwise C � fpC1, . . . , Cmq. In this case
Crψ1, . . . , ψns � Crφ1, . . . , φns �

fpC1rψ1, . . . , ψk1s, . . . , Cmrψkpm�1q�1, . . . , ψnsq �
fpC1rφ1, . . . , φk1s, . . . , Cmrφkpm�1q�1, . . . , φnsq, and

Crψ1 � φ1, . . . , ψn � φns �
fpC1rψ1 � φ1, . . . , ψk1 � φk1s, . . . , Cmrψkpm�1q�1 � φkpm�1q�1, . . . , ψn � φnsq. We

conclude by IH on each Ci, and then by the Fun equational rule.

Lemma 5.3.10. Let ψ be a trivial proof term. Then ψ � srcpψq.

Proof. Observe ψ �B srcpψq � ψ by pIdLeftq. On the other hand, srcpψq �B srcpsrcpψqq �
srcpψq � srcpψq � srcpψq, by pIdLeftq and Dfn. 5.2.4 respectively; recall that srcpψq is a
trivial infinitary multistep. Moreover, for any n   ω, mindpψq � mindpsrcpψqq � ω ¡
n, cfr. Lem. 5.2.11. Therefore the rule Lim can be applied to obtain ψ � srcpψq.

5.4 Denotation of reduction sequences

Proof terms are a means to describe different forms of contraction activity, comprising
reduction sequences. A basic question, which is particularly relevant regarding the
extension of the proof term model to infinitary rewriting we present in this chapter,
arises: can any reduction sequence be faithfully described by means of a proof term?

To answer this question, we focus on proof terms which denote reduction sequences
in a precise way, that is, reflecting the sequential nature of the activity denoted; we are
not interested, in this section, in proof terms denoting simultaneous and/or localised
contraction; cfr. Section 2.2.2. Formally, we define a proper subset of the set of valid
proof terms, which we call stepwise proof terms, which include only (denotation of)
single reduction steps and dots. A single reduction step is represented by a proof term
including exactly one occurrence of a rule symbol and no occurrences of the dot; cfr.
[BKdV03] Prop. 8.2.22:(i). We prove that any reduction sequence whose length is a
countable ordinal can be denoted by means of a stepwise proof term. Observe that this
result applies particularly to all convergent reduction sequences, cfr. Thm. 2 in [KdV05].
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Once the possibility of denoting all countable-length reduction sequences is stated,
the issue of uniqueness of stepwise denotation arises. As we discussed in the introduc-
tion to this chapter, cfr. Fig. 5.1 and the subsequent text, the fact that the dot is a
binary symbol implies that different ways to associate a sequence of dots lead to dif-
ferent stepwise proof terms representing the same reduction sequence. Schematically,
for a reduction sequence including three steps, say δ � a1; a2; a3, if ψi is a proof term
representing ai for i � 1, 2, 3, then pψ1 � ψ2q � ψ3 and ψ1 � pψ2 � ψ3q are different stepwise
representations of δ. Note that these proof terms are permutation equivalent. More-
over, they are related by the equivalence relation generated by the pAssocq equation
schema alone. This relation formalises the idea of “rebracketing”, to wit, of changing
the associativity of a sequence of dots. Let us give the name rebracketing equiva-
lence to this relation. On the other hand, let us say that two stepwise proof terms are
denotationally equivalent iff they denote the same reduction sequence.

These concepts allow to state the question about the uniqueness of denotation in a
more precise way: do denotational and rebracketing equivalences coincide?

For the finitary case, a simple argument allows to verify that the answer to this ques-
tion is positive. Note that the representation of a single step described above is unique.
Therefore, by orienting the pAssocq equation in either direction, standard denotations of
reduction sequences can be obtained. These standard stepwise proof terms correspond
with the result of coherently associating dots to the left or to the right.

�i ω g
ipµpfωqq �i ω pg

2�ipµpfωqq � g2�i�1pµpfωqqq

�

µpfωq �

gpµpfωqq �

g2pµpfωqq �

g3pµpfωqq
. . .

�

�

µpfωq gpµpfωqq �

�

g2pµpfωqq g3pµpfωqq
. . .

Figure 5.2: Two stepwise proof terms for the same infinite reduction sequence

For stepwise proof terms denoting infinite reduction sequences, the question seems
less obvious. E.g. consider the rule µ : fpxq Ñ gpxq, and the reduction sequence δ �
fω Ñ gpfωq Ñ gpgpfωqq�� gω. A simple way of organising the dots in a stepwise proof
term denoting this sequence is considering the dot as right-associative; this criterion
yields the proof term ψ � µpfωq � pgpµpfωqq � pg2pµpfωqq � p. . .qqq, which can be noted
concisely as �i ω gipµpfωqq. On the other hand, there may be other different ways
to organise the same sequence of dots; one of them leads to the stepwise proof term
φ � �i ω pg

2�ipµpfωqq � g2�i�1pµpfωqqq, where the steps are first grouped in pairs, and
then right-associativity is applied to the set of pairs of steps. These proof terms are
depicted in Fig. 5.2. We observe that for any n   ω, it is easy to obtain, resorting to
the pAssocq equation schema only, that ψ �B pµpf

ωq � . . . � g2�n�1pµpfωqqq � g2�pn�1qpψq
and φ �B pµpf

ωq � . . . � g2�n�1pµpfωqqq � g2�pn�1qpφq. Then we can obtain ψ � φ by
resorting to a limit argument, i.e. by applying the Lim rule. We remark that we
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did not find a way to justify the permutation equivalence of these stepwise proof terms
which do not involve the use of Lim.

In this section we prove that, provided the characterisation of permutation equiv-
alence given in Sec. 5.3, denotational and rebracketing equivalences do coincide for
infinitary term rewriting. The corresponding proofs make evident the role of the Lim
rule in order to verify this assertion.

5.4.1 Stepwise proof terms

In the following, we introduce the set of stepwise proof terms, give some additional
related definitions and state some basic properties of this subset of the set of valid proof
terms.

Definition 5.4.1 (One-step). A one-step is an infinitary multistep including exactly
one occurrence of a rule symbol. If ψ is a one-step, then we define the redex position
of ψ, notation rpospψq, as the position of the unique rule symbol occurrence in ψ, and
the depth of ψ, notation dpψq, as |rpospψq|; cfr. Dfn. 5.1.31 for the analogy with the
corresponding notions as defined for a reduction step.

Definition 5.4.2 (Stepwise proof term, Stepwise-or-nil proof term). A stepwise proof
term is any proof term ψ whose formation satisfies any of the following conditions, where
we refer to cases in Dfn. 5.2.8:

• ψ is a one-step, so it is built by case 1,

• ψ is built by case 2, so that ψ � �i ω ψi, and all of the ψi are stepwise proof terms,
or

• ψ is built by case 3, so that ψ � ψ1 � ψ2, and both ψ1 and ψ2 are stepwise proof
terms.

A stepwise-or-nil proof term is any proof term ψ such that either ψ is a stepwise proof
term or ψ P Ter8pΣq.

Definition 5.4.3 (Steps of a stepwise-or-nil proof term). For any ψ stepwise-or-nil
proof term, we define the number of steps of ψ, notation stepspψq, as the countable
ordinal defined as follows:

if ψ P Ter8pΣq, then stepspψq :� 0.
if ψ is a one-step, then stepspψq :� 1.
if ψ � �i ω ψi then stepspψq :�

°
i ω stepspψiq; cfr.Dfn. 5.1.1.

if ψ � ψ1 � ψ2 then stepspψq :� stepspψ1q � stepspψ2q.

Lemma 5.4.4. Let ψ be a stepwise proof term, and let α the ordinal such that ψ P PTα.
Then stepspψq is a limit ordinal iff α is.

Proof. Easy induction on α where ψ P PTα.

Definition 5.4.5 (α-th component of a stepwise proof term). Let ψ be a stepwise proof
term and α an ordinal such that α   stepspψq. We define the α-th component of ψ,
notation ψrαs, as the one-step defined as follows:

if ψ is a one-step, then ψr0s :� ψ.
if ψ � �i ω ψi, then there are unique k and γ such that α � stepspψ0q � . . . �
stepspψk�1q � γ and γ   stepspψkq; cfr. Lem. 5.1.2. We define ψrαs :� ψkrγs.
if ψ � ψ1 � ψ2 and α   stepspψ1q then ψrαs :� ψ1rαs.
if ψ � ψ1 � ψ2 and stepspψ1q ¤ α, then ψrαs :� ψ2rβs such that stepspψ1q � β � α.
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Definition 5.4.6. Let ψ be a stepwise proof term such that stepspψq   ω. Then we
define the maximal depth activity of ψ as maxdpψq :� maxpdpψrnsq { n   stepspψqq.
We also define the maximal step depth of ψ as maxsdpψq :� maxpPdpµq { µ P Rq where
R is the set of all the rule symbols occurring in ψ.

We show some expected properties of the components of a stepwise proof term. These
properties particularly entail that a stepwise proof term can be seen as the concatenation
of its components, so that the particular way in which they are associated is irrelevant.

Lemma 5.4.7. Let ψ be a stepwise proof term, α an ordinal and n   ω, such that
mindpψq ¡ n and α   stepspψq. Then

1. dpψrαsq ¡ n.

2. distpsrcpψrαsq, tgtpψrαsqq   2�n.

3. distpsrcpψq, tgtpψrαsqq   2�n.

Proof. We proceed by induction on ψ, cfr. Prop. 5.2.16. If ψ is a one-step then α � 0
and ψrαs � ψ. Then we conclude immediately; cfr. Lemma 5.2.17 for (2) and (3).

Assume ψ � ψ1 � ψ2. If α   stepspψ1q, so that ψrαs � ψ1rαs, then we conclude by
IH on ψ1. Otherwise α � stepspψ1q � β, so that ψrαs � ψ2rβs. Then by applying IH on
ψ2 we obtain (1) and (2) immediately, and also distpsrcpψ2q, tgtpψrαsqq   2�n. On the
other hand we can apply Lemma 5.2.17 to ψ1, obtaining distpsrcpψq, tgtpψ1qq   2�n.
Thus we conclude by Lemma 5.1.25 since tgtpψ1q � srcpψ2q.

Assume ψ � �i ω ψi. Let k, β such that ψrαs � ψkrβs, so that β   stepspψkq.
Then IH on ψk yields immediately (1) and (2), and also distpsrcpψkq, tgtpψrαsqq   2�n.
On the other hand, for each i   k it is immediate that mindpψiq ¥ mindpψq ¡ n, then an
easy induction on k using Lemma 5.2.17 and Lemma 5.1.25 yields distpsrcpψq, srcpψkqq  
2�n. Thus we conclude by Lemma 5.1.25.

Lemma 5.4.8. Let ψ be a convergent stepwise proof term such that mindpψq ¡ p, and
α   stepspψq. Then distptgtpψrαsq, tgtpψqq   2�p.

Proof. We proceed by induction on ψ. If ψ is a one-step then α � 0 and it suffices to
observe that ψr0s � ψ.

Assume ψ � ψ1 �ψ2. If α   stepspψ1q, then IH on ψ1 yields distptgtpψrαsq, tgtpψ1qq  
2�p. On the other hand, Lemma 5.2.17 implies distpsrcpψ2q, tgtpψqq   2�p. We con-
clude by Lemma 5.1.25 since tgtpψ1q � srcpψ2q. Otherwise, α � stepspψ1q � β, then
ψrαs � ψ2rβs. In this case we can apply IH on ψ2 obtaining distptgtpψ2rβsq, tgtpψ2qq  
2�p, thus we conclude.

Assume ψ � �i ω ψi and let k, γ such that ψrαs � ψkrγs. Then IH on ψk
yields distptgtpψrαsq, tgtpψkqq   2�p. Moreover, Lemma 5.2.17 on �i ω ψk�1�i implies
distpsrcpψk�1q, tgtpψqq   2�p. Thus we conclude by Lemma 5.1.25.

Lemma 5.4.9. Let ψ be a stepwise proof term. Then srcpψr0sq � srcpψq.

Proof. Easy induction on ψ.

Lemma 5.4.10. Let ψ be a stepwise proof term such that stepspψq � α � 1. Then
tgtpψq � tgtpψrαsq.
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Proof. We proceed by induction on ψ. If ψ is a one-step then α � 0 and we conclude
immediately.

Assume ψ � ψ1 � ψ2. Then α   stepspψ1q would imply α�1 � stepspψq ¤ stepspψ1q,
which is not possible since stepspψ2q ¡ 0. Then let β be the ordinal verifying stepspψ1q�
β � α, so that ψrαs � ψ2rβs. We observe that stepspψ1q � β � 1 � α � 1 � stepspψq,
then stepspψ2q � β � 1. We conclude by IH on ψ2.

Finally, ψ � �i ω ψi contradicts stepspψq to be a successor ordinal. Thus we con-
clude.

Lemma 5.4.11. Let ψ be a convergent stepwise proof term such that stepspψq is a limit
ordinal. Then tgtpψq � limαÑstepspψq tgtpψrαsq.

Proof. Observe stepspψq being a limit ordinal implies ψ � �i ω ψi (cfr. Lem. 5.4.4 and
Lem. 5.2.12), so that tgtpψq is defined to be equal to limiÑω tgtpψiq. Observe that
Lem 5.2.17:(a) implies this limit to be defined. Let p P N, let k1 such that k1   j   ω
implies distptgtpψjq, tgtpψqq   2�p, k2 such that mindpψjq ¡ p if j ¡ k2, and k :�
maxpk1, k2q.

Let β � stepspψ0q�. . .�stepspψkq and γ ¡ β. Then γ � stepspψ0q�. . .�stepspψjq�
γ1 where γ1   stepspψj�1q and j ¥ k, so that ψrγs � ψj�1rγ

1s. Then j � 1 ¡ k ¥ k2,
so that Lemma 5.4.8 implies distptgtpψrγsq, tgtpψj�1qq   2�p. On the other hand,
j � 1 ¡ k ¥ k1 implies distptgtpψj�1q, tgtpψqq   2�p. Hence Lemma 5.1.25 yields
distptgtpψrγsq, tgtpψqq   2�p. Consequently, we conclude.

Lemma 5.4.12. Let ψ be a stepwise proof term and α   stepspψq such that α � α1�1.
Then srcpψrαsq � tgtpψrα1sq.

Proof. We proceed by induction on ψ. Observe ψ is a one-step would imply α � 0,
contradicting α � α1 � 1.

Assume ψ � ψ1 � ψ2. We consider three cases

• If α   stepspψ1q then we conclude just by IH on ψ1.

• If α � stepspψ1q, then ψrαs � ψ2r0s and ψrα1s � ψ1rα
1s where α1 � 1 � α �

stepspψ1q. Then tgtpψrα1sq � tgtpψ1q and srcpψrαsq � srcpψ2q, by Lemma 5.4.10
and Lemma 5.4.9 respectively. Thus we conclude.

• If α ¡ stepspψ1q, then α1 � stepspψ1q � β
1 and α � stepspψ1q � pβ

1� 1q, therefore
ψrαs � ψ2rβ

1� 1s and ψrα1s � ψ2rβ
1s. Observe that α   stepspψq implies β1� 1  

stepspψ2q. Hence we conclude by IH on ψ2.

Assume ψ � �i ω ψi. Let k, γ such that α � stepspψ0q � . . .� stepspψk�1q � γ and
γ   stepspψkq, so that ψrαs � ψkrγs. If γ � 0, then stepspψk�1q � β � 1 for some
β, and α1 � stepspψ0q � . . . � stepspψk�2q � β, so that ψrα1s � ψk�1rβs. Therefore
srcpψrαsq � srcpψkq and tgtpψrα1sq � tgtpψk�1q, by Lemma 5.4.9 and Lemma 5.4.10
respectively. Thus we conclude. Otherwise γ � γ1�1; notice that γ being a limit ordinal
would contradict α being a successor one. In this case ψrα1s � ψkrγ

1s, thus we conclude
by IH on ψk.

Lemma 5.4.13. Let ψ be a stepwise proof term. Then
mindpψq � minpdpψrαsq { α   stepspψqq

� minpmindpψrαsq { α   stepspψqq
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Proof. We prove that mindpψq � minpmindpψrαsq { α   stepspψqq. The rest of the
statement follows immediately since it is trivial to verify dpψrαsq � mindpψrαsq for any
α; cfr. Dfn. 5.2.6.

We proceed by induction on ψ; cfr. Prop. 5.2.16. We define mind1pψq :�
minpmindpψrαsq { α   stepspψqq, so we must verify mindpψq � mind1pψq. If ψ is
a one-step then the result holds immediately.

Assume ψ � ψ1 � ψ2. In this case, IH on ψi yields mindpψiq � mind1pψiq for each
i � 1, 2, and Dfn. 5.2.8 impliesmindpψq � minpmindpψ1q,mindpψ2qq. Then it suffices to
verify mind1pψq � minpmind1pψ1q,mind

1pψ2qq. From the definition of mind1, it is imme-
diate that mind1pψq ¤ mind1pψiq for i � 1, 2. Assume mind1pψ1q ¤ mind1pψ2q. Notice
mind1pψq   mind1pψ1q would imply the existence of some γ verifying mind1pψrγsq  
mind1pψ1q, contradicting either the definition of mind1pψ1q (if γ   stepspψ1q) or the
assertion mind1pψ1q ¤ mind1pψ2q (otherwise). Hence mind1pψq � mind1pψ1q. A similar
argument for the case mind1pψ2q   mind1pψ1q is enough to conclude.

If ψ � �i ω ψi, then an argument similar to that used for binary composition applies.
To verify that mind1pψq � mini ωpmind

1pψiqq, observe that mind1pψq ¤ mind1pψiq for
all i, and consider n such that mind1pψnq ¤ mind1pψiq for all i. Then we can contradict
mind1pψq   mind1pψnq proceeding as in the previous case, hence mind1pψq � mind1pψnq.
Thus we conclude.

5.4.2 Denotation – formal definition and proof of existence

In this section, we formalise the notion of a stepwise-or-nil proof term denoting a reduc-
tion sequence, resorting to the definitions of length and α-th component of stepwise-or-nil
proof terms, given in the presentation of such terms. Then we prove the existence, for
any reduction sequence having a countable ordinal length, of a stepwise-or-nil proof term
which denotes it.

As we have discussed in the introduction to Section 5.4, denotation of a reduction
sequence is not unique. In the next section, we will investigate how to characterise the
proof terms denoting the same reduction sequence.

Definition 5.4.14 (Denotation for reduction steps). Let a � xt, p, µy be a reduction
step, and ψ a one-step. Then ψ denotes a iff all the following apply: srcpψq � t,
tgtpψq � tgtpaq, and ψppq � µ, therefore dpaq � mindpψq.

Definition 5.4.15 (Mapping from one-steps to reduction steps). Let T be a TRS. We
define the mapping sden from the set of one-steps for T to the set of reduction steps for
T , as follows: sdenpψq :� xsrcpψq, rpospψq, ψprpospψqqy.

Lemma 5.4.16. Let ψ be a one-step and a a reduction step. Then ψ denotes a iff
a � sdenpψq.

Proof. We prove each direction of the biconditional.

ñq: Let us say a � xt, p, µy. Hypotheses imply immediately t � srcpψq, and also
ψppq � µ, so that p � rpospψq and µ � ψprpospψqq. Thus we conclude. ðq: Let
us say sdenpψq � xt, p, µy and µ : l Ñ h. Then it is immediate from Dfn. 5.4.15 to
verify srcpψq � t and ψppq � µ. In turn, observe that tgtpψq � ψrhrt1, . . . , tmssp where
ψ |p� µpt1, . . . , tmq, and t � srcpψq � ψrlrt1, . . . , tmssp, so that it is straightforward to
verify tgtpsdenpψqq � tgtpψq. Thus we conclude.
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Definition 5.4.17 (Denotation for reduction sequences). Let δ be a reduction sequence,
and ψ a stepwise-or-nil proof term. We will say that ψ denotes δ iff stepspψq � lengthpδq,
srcpψq � srcpδq and ψrαs denotes δrαs for all α   lengthpδq.

Lemma 5.4.18. Let δ be a reduction sequence, and ψ a stepwise-or-nil proof term, such
that ψ denotes δ. Then mindpψq � mindpδq, ψ is convergent iff δ is, and in that case,
tgtpψq � tgtpδq.

Proof. If ψ P Ter8pΣq, then the result holds immediately.
Otherwise, the result about mind stems immediately from Lem. 5.4.13.
We prove the result about convergence. Assume that stepspψq is a limit ordinal,

then ψ � �i ω ψi; cfr. Lem. 5.4.4 and Lem. 5.2.12. Assume δ convergent, consider
some k   ω, and α such that dpδrβsq ¡ k if β ¡ α. Lem. 5.1.2 implies that α �°
i n stepspψiq�γ and γ   stepspψnq for some n; so that α  

°
i¤n stepspψiq. Consider

j ¡ n, and γ   stepspψjq. Observe ψjrγs � ψrβs where β �
°
i j stepspψiq � γ, so that

β ¥
°
i¤n stepspψiq ¡ α. Therefore mindpψjrγsq � mindpψrβsq � dpδrβsq ¡ k. Hence

Lem. 5.4.13 implies that mindpψjq ¡ k. Consequently, ψ is convergent.
Conversely, assume ψ convergent, let k   ω, consider n   ω such that mindpψjq ¡ k

if j ¡ n. Let α :�
°
i¤n stepspψiq, and take β such that α   β   lengthpδq. Then

Lem. 5.1.2 implies β �
°
i j stepspψiq � γ and γ   stepspψjq, moreover, β ¡ α implies

j ¡ n. Hence dpδrβsq � mindpψjrγsq ¡ k by Lem. 5.4.13. Consequently, the require-
ment about depths in the characterisation of convergent reduction sequences, i.e. con-
dition (2c) in Dfn. 5.1.32, holds for δ. To prove the existence of limαÑlengthpδq tgtpδrαsq,
i.e. condition (2a) in Dfn. 5.1.32, it suffices to observe that Lem. 5.2.17:(a) implies that
tgtpψq is defined, and in turn Lem. 5.4.11 implies the desired limit to equal tgtpψq.
Hence δ is convergent.

If stepspψq is a successor ordinal, then assuming δ is convergent, a straightforward
induction on ψ suffices to prove that ψ is convergent as well; observe that Lem. 5.4.4
and Lem 5.2.12 imply that only one-step and binary concatenation must be considered.
For the other direction, it is enough to observe that lengthpδq being a successor ordinal
implies immediately convergence of δ.

Finally, the result about targets stems immediately from Lem. 5.4.11 and Lem. 5.4.10.

Proposition 5.4.19. Let δ be a reduction sequence having a countable length. Then
there exists a stepwise-or-nil proof term ψ such that ψ denotes δ.

Proof. We proceed by induction on lengthpδq.
If lengthpδq � 0, i.e. δ � Idt, then it suffices to take ψ :� t.
Assume that lengthpδq � 1. Let us say δr0s � xt, p, µy where µ : l Ñ h, implying

that t |p� lrt1, . . . , tms. Take ψ :� trµpt1, . . . , tmqsp. It is immediate to verify that ψ
is a stepwise proof term verifying stepspψq � 1. Moreover, a simple analysis yields
srcpψq � srcpδr0sq � srcpδq � t. Furthermore, ψppq � µ, and tgtpψq � tgtpδr0sq �
trhrt1, . . . , tmssp; therefore ψr0s � ψ denotes δr0s. Hence ψ denotes δ.

Assume lengthpδq � α � 1 and α ¡ 0. In this case, applying twice IH yields the
existence of ψ1, ψ2 such that ψ1 denotes δr0, αq and ψ2 denotes δrα, α � 1q. Then a
straightforward analysis allows to obtain that ψ :� ψ1 � ψ2 denotes δ.

Assume α :� lengthpδq is a limit ordinal; recall that α is countable. Then Prop. 5.1.3
implies α �

°
i ω αi where αi   α for all i   ω. Therefore, for any n   ω, IH can be

applied to obtain some ψn denoting δr
°
i n αi,

°
i¤n αiq. We take ψ :� �i ω ψi.
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Let n   ω. It is easy to verify that δr
°
i n αi,

°
i¤n αiq is convergent, then Lem. 5.4.18

implies tgtpψnq � tgtpδr
°
i n αi,

°
i¤n αiqq � srcpδr

°
i¤n αi,

°
i¤n�1 αiq � srcpψn�1q;

cfr. conditions about sources and targets in Dfn. 5.1.32. Hence ψ is a well-formed proof
term. Recalling that lengthpδr

°
i n αi,

°
i¤n αiqq � αn, it is straightforward to obtain

stepspψq � lengthpδq � α. Moreover, srcpψq � srcpψ0q � srcpδr0, α0qq � srcpδq, re-
call that ψ0 denotes δr0, α0q. Let β   α. Then Lem. 5.1.2 implies the existence of
unique k and γ such that β �

°
i k αi � γ and γ   αk. Therefore ψrβs � ψkrγs

and δrβs � δr
°
i k αi,

°
i¤k αiqrγs, cfr. Dfn. 5.4.5 and Dfn. 5.1.39. Hence ψk denoting

δr
°
i k αi,

°
i¤k αiq implies that ψrβs denotes δrβs. Consequently, we conclude.

We remark that Prop. 5.4.19 gives a positive answer to the question put at the be-
ginning of Section 5.4: any reduction sequence whose length is a countable ordinal, thus
including particularly all the strongly convergent reduction sequences, can be faithfully
denoted in the model of infinitary rewriting based on proof terms we propose in this
chapter.

5.4.3 Uniqueness of denotation

In this section we will prove the claim we made at the beginning of Section 5.4: rebrack-
eting equivalence, which is the result of restricting the permutation equivalence relation
introduced in Section 5.3 by allowing only the instances of the pAssocq schema as basic
equations, is an adequate syntactic counterpart of the relation of “denoting the same
reduction sequence”, i.e. denotational equivalence, between stepwise proof terms.

In the following we will give formal definitions for the concepts of denotational and
rebracketing equivalence, and subsequently prove that the defined relations coincide.

Definition 5.4.20 (Denotational equivalence). Let ψ, φ be stepwise-or-nil proof terms.
We say that ψ and φ are denotationally equivalent, notation ψ � φ, iff either stepspψq �
stepspφq � 0 and ψ � φ, or stepspψq � stepspφq ¡ 0 and ψrαs � φrαs for all α  
stepspψq.

Definition 5.4.21 (Layer of rebracketing equivalence). Let α be a countable ordinal.

We define the α-th level of base rebracketing equivalence relation, notation
α
�pBq, on

the set of stepwise-or-nil proof terms, as follows. Given ψ and φ stepwise-or-nil proof

terms, ψ
α
�pBq φ iff the equation ψ

α
� φ can be obtained by means of the equational logic

system whose basic equations are the valid instances of the pAssocq equation schema
described in Dfn. 5.3.2, and whose equational rules are Refl, Eqn, Symm, Trans, Comp
and InfComp, described also in Dfn. 5.3.2.

We also define the α-th level of rebracketing equivalence relation, notation
α
�pq, on

the set of stepwise-or-nil proof terms, analogously, the only difference being that a rule is
added, namely the version of the Lim rule which results from changing, in the premises,

the references to the
αk
�B and

βk
�B relations, to

αk
�pBq and

βn
�pBq respectively.

Definition 5.4.22 (Rebracketing equivalence). Let ψ, φ be stepwise-or-nil proof terms.
We say that ψ and φ are (base) rebracketing equivalent, notation (ψ �pBq φ) ψ �pq φ,

iff (ψ
α
�pBq φ) ψ

α
�pq φ for some α   ω1.

Observe that all the following inclusions hold where α is any countable ordinal:
α
�pBq�

α
�pq,

α
�pBq�

α
�B ,

α
�pq�

α
�, and consequently �pBq��pq, �pBq��B and �pq�� .
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Therefore, several results stated for permutation equivalence hold also for rebracket-
ing equivalence. Particularly, properties proved for the �B relation also apply to �pBq.

Lemma 5.4.23. Let ψ a stepwise proof term, and α such that ψ P PTα. Then there
exists n   ω such that α � stepspψq � n. Moreover, if α is a limit ordinal, then n � 0,
i.e. α � stepspψq.

Proof. We proceed by induction on α. If α � 1 then ψ is a one-step, and then stepspψq �
1 � α.

Assume α is a successor ordinal and α ¡ 1. In this case, Lem. 5.2.12 and Lem. 5.2.13
imply that ψ � ψ1 � ψ2, ψi P PTαi for i � 1.2, α2 is successor, and α � α1 � α2 � 1.
IH implies α1 � stepspψ1q � n1 and α2 � stepspψ2q � n2. If stepspψ2q   ω, then
α � stepspψq � n1 � n2 � 1, otherwise α � stepspψq � n2 � 1. In either case the
conclusion holds, thus we conclude.

Assume that α is a limit ordinal, so that Lem. 5.2.12 implies ψ � �i ω ψi and
α �

°
i ω αi where ψi P PTαi for all i   ω. Observe αi   α for all i. Then we can

apply IH on each i obtaining αi � stepspψiq�ni, so that proving
°
i ω stepspψiq�ni �°

i ω stepspψiq suffices to conclude.
Let k   ω. Observe

°
i k stepspψiq�ni ¤

°
i k stepspψiq�

°
i k ni  

°
i k stepspψiq�

ω. On the other hand,
°
i ω stepspψiq �

°
i k stepspψiq �

°
i ω stepspψk�iq ¥°

i k stepspψiq � ω. Then
°
i k stepspψiq � ni  

°
i ω stepspψiq. Consequently,°

i ω stepspψiq � ni ¤
°
i ω stepspψiq. We conclude by observing that it is straight-

forward to obtain
°
i ω stepspψiq ¤

°
i ω stepspψiq � ni.

Lemma 5.4.24. Let ψ be a stepwise proof term. Then stepspψq is a limit ordinal iff ψ
is an infinite concatenation.

Proof. We proceed by induction on α where ψ P PTα; cfr. Dfn. 5.3.2. If ψ is a one-step,
then we conclude immediately. If ψ � ψ1 � ψ2 and it is not an infinite concatenation, then
ψ2 is neither. Therefore we can apply IH on ψ2 obtaining that stepspψ2q is a successor
ordinal. We conclude by recalling that stepspψq � stepspψ1q � stepspψ2q. Finally, if ψ
is an infinite concatenation, then Lem. 5.2.12 implies that ψ P PTα where α is a limit
ordinal. In turn, Lem. 5.4.23 implies that stepspψq � α.

Lemma 5.4.25. Let ψ be a stepwise proof term, α an ordinal verifying 0   α  
stepspψq, and β such that ψ P PTβ. Then there exist φ, χ such that ψ �pBq φ � χ and
stepspφq � α. Moreover, if φ P PTγ and χ P PTδ, then γ   β and δ ¤ β.

Proof. We proceed by induction on ψ.
If ψ P Ter8pΣq or ψ is a one-step, then no α verifies the hypotheses.

Assume ψ � ψ1 � ψ2, so that β � β1 � β2 � 1 where ψi P PTβi for i � 1, 2.

• If stepspψ1q   α, so that α � stepspψ1q � α1, then IH on ψ2 yields the existence
of φ2, χ2 satisfying ψ2 �pBq φ2 � χ2, stepspφ2q � α1, γ2   β2 and δ ¤ β2, where
φ2 P PTγ2 and χ2 P PTδ.

Therefore, ψ �pBq ψ1 � pφ2 � χ2q �pBq pψ1 � φ2q � χ2 and stepspψ1 � φ2q � stepspψ1q�
α1 � α. Moreover, ψ1 � φ2 P PTγ where γ � β1 � γ2 � 1   β1 � β2 � 1 � β, and
δ ¤ β2   β.

• If stepspψ1q � α then the result holds trivially.
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• If stepspψ1q ¡ α, then IH on ψ1 yields ψ1 �pBq φ1 � χ1, stepspφ1q � α, γ   β1 and
δ1 ¤ β1, where φ1 P PTγ and χ1 P PTδ1 .

Therefore ψ �pBq pφ1 � χ1q � ψ2 �pBq φ1 � pχ1 � ψ2q. Moreover, γ   β1   β, and
χ1 � ψ2 P PTδ where δ � δ1 � β2 � 1 ¤ β1 � β2 � 1 � β.

Assume ψ � �i ω ψi, so that stepspψq �
°
i ω stepspψiq. In this case, Lem 5.2.12

and Lem 5.4.23 imply that β is a limit ordinal, and therefore β � stepspψq. Moreover,
Lem 5.1.2 implies α �

°
i n stepspψiq � α1 where α1   stepspψnq, for some n and α1.

IH on ψn yields ψn �pBq φn � χn such that stepspφnq � α1; observe that stepspχnq ¤
stepspψnq. Therefore
ψ �pBq ppψ0 � . . . � ψn�1q � ψnq � �i ω ψn�1�i

�pBq ppψ0 � . . . � ψn�1q � pφn � χnqq � �i ω ψn�1�i

�pBq ppψ0 � . . . � ψn�1 � φnq � χnq � �i ω ψn�1�i

�pBq pψ0 � . . . � ψn�1 � φnq � pχn � �i ω ψn�1�iq
where stepspψ0 � . . . � ψn�1 � φnq �

°
i n stepspψiq � α

1 � α.

Moreover, if ψ0 � . . . � ψn�1 � φn P PTγ , then Lem. 5.4.23 implies the existence
of some k   ω such that γ � stepspψ0q � . . . � stepspψn�1q � α1 � k   stepspψ0q �
. . . � stepspψn�1q � stepspψnq � ω ¤ stepspψq � β. On the other hand, notice that
χn � �i ω ψn�1�i is an infinitary concatenation, so that χn � �i ω ψn�1�i P PTδ im-
plies δ to be a limit ordinal; cfr. Lem. 5.2.12. Therefore, recalling that stepspχnq ¤
stepspψnq, Lem. 5.4.23 yields δ � stepspχnq�

°
i ω stepspψn�1�iq ¤

°
i ω stepspψn�iq ¤

stepspψq � β.

Lemma 5.4.26. Let ψ � φ, such that both are convergent. Then tgtpψq � tgtpφq.

Proof. Easy, cfr. Lem. 5.4.10 and Lem 5.4.11.

Lemma 5.4.27. Let ψ � φ � ψ1 � φ1 and ψ � ψ1. Then φ � φ1.

Proof. Observe that definition of stepwise proof terms implies that stepspφq ¡ 0 and
stepspφ1q ¡ 0. Given stepspψ � φq � stepspψ1 � φ1q and stepspψq � stepspψ1q, properties
of ordinals yield stepspφq � stepspφ1q. We conclude by observing that for any suitable
α, φrαs � pψ � φqrstepspψq � αs � pψ1 � φ1qrstepspψ1q � αs � φ1rαs.

Proposition 5.4.28. Let ψ, φ be stepwise-or-nil proof terms such that ψ �pq φ. Then
ψ � φ.

Proof. We proceed by induction on α where ψ
α
�pq φ. We analyse the rule used in the

last step of the rebracketing equivalence derivation.

For the rules Refl, Symm and Trans, the result holds immediately.

Assume that the last used rule in the derivation is Eqn, so that ψ � pψ1 � ψ2q � ψ3

and φ � ψ1 � pψ2 � ψ3q. In this case we can obtain stepspψq � stepspφq ¡ 0 immediately.
Let γ   stepspψq. If γ   stepspψ1q, then ψrγs � pψ1 � ψ2qrγs � ψ1rγs � φrγs. The
other cases, i.e. stepspψ1q ¤ γ   stepspψ1q � stepspψ2q and stepspψ1q � stepspψ2q ¤ γ,
admit analogous arguments.

Assume that the last used rule is InfComp, so that ψ � �i ω ψi, φ � �i ω φi, and

ψn
βn
�pq φn where βn   α, for all n   ω. Then IH on each βn implies ψn � φn. Therefore

we obtain stepspψq � stepspφq ¡ 0 immediately. To conclude it is enough to observe, for
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any γ   stepspψq, that Lem. 5.1.2 implies γ �
°
i n stepspψiq�γ0 where γ0   stepspψnq,

then (given IH on each ψi
βi
�pq φi) ψrγs � ψnrγ0s � φnrγ0s � φrγs.

If the last used rule is Comp, then a similar argument applies.

Assume that the rule used in the last derivation step is Lim. Assume for con-
tradiction stepspφq ¡ stepspψq, so that the step φrstepspψqs exists. Consider k :�

maxpmindpφr0sq,mindpφrstepspψqsqq. Then there exist χk, φ
1
k, ψ

1
k verifying φ

αk
�pBq

χk � φ
1
k, ψ

βk
�pBq χk �ψ

1
k, mindpφ

1
kq ¡ k ¥ mindpφrstepspψqsq, mindpψ1kq ¡ k, α ¡ αk, and

α ¡ βk. Recalling that
γ
�pBq�

γ
�pq for any γ, we can apply IH to αk obtaining φ � χk � φ

1
k,

so that φrstepspψqs � pχk � φ
1
kqrstepspψqs. Therefore, assuming stepspψq � stepspχkq�γ

would imply φ1krγs � φrstepspψqs contradicting mindpφ1kq ¡ mindpφrstepspψqsq; cfr.
Lem. 5.4.13. Then stepspψq   stepspχkq. On the other hand, IH can be applied also to
βk, yielding ψ � χk � ψ

1
k, and therefore stepspψq ¥ stepspχkq, i.e. a contradiction. Con-

sequently stepspφq ¤ stepspψq. A similar argument yields stepspψq ¤ stepspφq. Thus
stepspψq � stepspφq.

Let γ   stepspψq. Then there exists χ, ψ1, φ1 such that ψ
α0
�pBq χ � ψ

1, φ
β0
�pBq χ � φ

1,
mindpψ1q ¡ mindpψrγsq, mindpφ1q ¡ mindpψrγsq, α0   α and β0   α. Then IH
on α0 and β0 yields ψ � χ � ψ1 and φ � χ � φ1, so that ψrγs � pχ � ψ1qrγs and
φrγs � pχ � φ1qrγs. Observing that γ � stepspχq � γ0 would imply ψrγs � ψ1rγ0s,
and then mindpψ1q ¤ mindpψrγsq (cfr. Lem. 5.4.13) thus producing a contradiction, we
obtain γ   stepspχq. Then ψrγs � χrγs, and also φrγs � χrγs. Hence ψrγs � φrγs.

Proposition 5.4.29. Let ψ, φ such that ψ � φ. Then ψ �pq φ.

Proof. We proceed by induction on xα, βy such that ψ P PTα and φ P PTβ.
If ψ P Ter8pΣq, so that stepspψq � 0, then ψ � φ implies ψ � φ, hence we conclude

immediately.
If ψ is a one-step, so that stepspψq � 1, then ψ � φ implies ψ � ψr0s � φr0s � φ.

Assume ψ � ψ1 � ψ2 and that it is not an infinite concatenation. In this case,
stepspψq � stepspφq ¡ 1 is a successor ordinal, so that φ � φ1 � φ2 and it is neither an
infinite concatenation; cfr. Lem. 5.4.24. Observe that α � α1�α2�1 and β � β1�β2�1,
where ψi P PTαi and φi P PTβi for i � 1, 2. We analyse the different cases arising from
the comparison between stepspψ1q and stepspφ1q.

• Assume stepspψ1q   stepspφ1q. In this case we apply Lem. 5.4.25, obtaining that
φ1 �pq χ1 � χ2 and stepspχ1q � stepspψ1q for some stepwise proof terms χ1 P PTγ1

and χ2 P PTγ2 , and moreover, that γ1   β1 and γ2 ¤ β1.

Therefore φ �pq pχ1 � χ2q � φ2 �pq χ1 � pχ2 � φ2q, and hence Prop. 5.4.28
and hypotheses yield ψ � ψ1 � ψ2 � χ1 � pχ2 � φ2q � φ. Observe that for any
β   stepspψ1q, ψ1rβs � ψrβs � φrβs � pχ1 � pχ2 � φ2qqrβs � χ1rβs; consequently,
ψ1 � χ1. In turn, Lem. 5.4.27 yields ψ2 � χ2 � φ2.

Observing that αi   α for i � 1, 2 suffices to enable the application of IH to both
ψ1 � χ1 and ψ2 � χ2 � φ2. Therefore, we conclude by Comp, Symm and Trans.

• Assume stepspψ1q ¡ stepspφ1q. In this case, an analysis similar to that of the
previous case yields ψ1 �pBq χ1 � χ2 such that stepspχ1q � stepspφ1q, γ1   α1 and
γ2 ¤ α1 where χi P PTγi for i � 1, 2; therefore χ1 � pχ2 � ψ2q � ψ � φ � φ1 � φ2;
and consequently χ1 � φ1 and χ2 � ψ2 � φ2.
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Observe γ1   α1   α. On the other hand, χ2 � ψ2 P PTδ where δ � γ2�α2� 1 ¤
α1 � α2 � 1 � α, and β2   β. Therefore, IH can be applied to both χ1 � φ1 and
χ2 � ψ2 � φ2, so that we conclude as in the previous case.

• Assume stepspψ1q � stepspφ1q. Then a simple analysis of the components of ψ1

and φ1 yields ψ1 � φ1. In turn, this assertion allows to apply Lem. 5.4.27 to obtain
ψ2 � φ2. Applying IH to both ψi we obtain ψ1 �pq φ1 and ψ2 �pq φ2. Hence we
conclude by Comp.

Assume ψ � �i ω ψi. In this case, a simple argument based on Lem. 5.4.24 yields
φ � �i ω φi.

As the verification for this case involves a great number of technical details, we
describe the idea first. We define a stepwise proof term χ � �i ω χi enjoying the
following properties: ψ �pq χ, and χn � φn for all n   ω. The Lim rule is used in the
last step of the derivation ψ �pq χ, verifying that the corresponding premises are valid
w.r.t. �pBq. In turn, Lem. 5.4.23 allows to apply IH on any χn, since χ P PTδ implies
δ � stepspχq � stepspψq � α (cfr. Prop. 5.4.28). Therefore we obtain χn �pq φn for all
n   ω, implying χ �pq φ. Then Trans yields ψ �pq φ. A very schematic derivation tree
follows:

. . .
ψ �pBq ξk � ψ

1

χ �pBq ξk � χ
1 . . .

Lim
ψ �pq χ

. . .

Bn

χn �pq φn . . .
InfComp

χ �pq φ
Trans

ψ �pq φ

where we can observe the soundness of the derivation, even if Lim is applied in some of
the Bn derivations.

We define χk, by induction on k, for all k   ω. We observe that
°
i k stepspφiq  

stepspφq � stepspψq. Then we define, along with χk, two values pk and βk as follows:
p0 :� 0, β0 :� 0, and if k ¡ 0, then pk and βk are the unique (cfr. Lem. 5.1.2) values
verifying

°
i k stepspφiq �

°
i pk

stepspψiq � βk and βk   stepspψpkq. We also define
p1 :� pk�1 � 1. Simultaneously with the definition of χk, we will verify the following
auxiliary assertion:

 χ0 � . . . � χk �pBq ψ0 � . . . � ψp1 if βk�1 � 0; and

 there exist χ1, ξ such that ψpk�1
�pBq χ

1 � ξ, stepspχ1q � βk�1 and χ0 � . . . � χk �pBq

ψ0 � . . . � ψp1 � χ
1 (or χ0 � . . . � χk �pBq χ

1 if pk�1 � 0), if βk�1 ¡ 0.

Therefore, when defining χn for a given n, we can consider this assertion to be valid for
all n1   n.

Let n   ω. Several cases must be analysed to define χn.

• Assume that either n � 0, i.e. the base case, or n ¡ 0 and βn � 0.

– Assume pn � pn�1, implying stepspφnq � βn�1 ¡ 0, so that stepspφnq  
stepspψpnq. In this case we define χn to be some term verifying ψpn �pBq χn � ξ
and stepspχnq � stepspφnq; cfr. Lem. 5.4.25.

– Assume pn   pn�1 and βn�1 � 0, so that stepspφnq � stepspψpnq � . . . �
stepspψp1q. In this case we define χn :� ψpn � . . . � ψp1 .

– Assume pn   pn�1 and βn�1 ¡ 0, implying stepspφnq � stepspψpnq � . . . �
stepspψp1q � βn�1. We consider some χ1, ξ verifying ψpn�1 �pBq χ

1 � ξ and
stepspχ1q � βn�1; cfr. Lem. 5.4.25. Then we define χn :� ψpn � . . . � ψp1 � χ

1.
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In any case, if n � 0 then the auxiliary assertion holds immediately; otherwise,
it suffices to apply the same assertion on n � 1 obtaining χ0 � . . . � χn�1 �pBq

ψ0 � . . . � ψpn�1, and then Refl and Comp.

• Assume βn ¡ 0. In this case n ¡ 0, then the auxiliary assertion on n�1 implies the
existence of χ1, ξ verifying ψpn �pBq χ

1 � ξ, stepspχ1q � βn and χ0 � . . . � χn�1 �pBq

ψ0 � . . . � ψpn�1 � χ
1 (or χ0 � . . . � χn�1 �pBq χ

1 if pn � 0).

– Assume pn�1 � pn, implying βn�1 � βn � stepspφnq   stepspψpnq � βn �
stepspξq, implying stepspφnq   stepspξq. In this case we define χn to be some
term verifying ξ �pBq χn � ξ

1 and stepspχnq � stepspφnq; cfr. Lem. 5.4.25.
Observe ψpn �pBq pχ

1 � χnq � ξ
1, stepspχ1 � χnq � βn � stepspφnq � βn�1 and

χ0 � . . . � χn �pBq ψ0 � . . . � ψpn�1 � pχ
1 � χnq, then the auxiliary statement

holds for n; recall βn�1 ¡ βn ¥ 0.

– Assume pn�1 � pn � 1 and βn�1 � 0, implying stepspψpnq � βn � stepspφnq.
Observe stepspξq � stepspφnq. We define χn :� ξ. Then χ0 � . . . χn �pBq

ψ0 � . . . � ψpn�1 � χ
1 � ξ �pBq ψ0 � . . . � ψpn�1 � ψpn , then the auxiliary

statement holds for n.

– Assume pn�1 ¡ pn�1 and βn�1 � 0, implying stepspφnq � β1�stepspψpn�1q�
. . .�stepspψp1q, where stepspψpnq � βn�β

1. Observe stepspξq � β1. We define
χn :� ξ � ψpn�1 � . . . � ψp1 . We verify the auxiliary statement for n similarly
to the previous case.

– Assume pn�1 ¡ pn and βn�1 ¡ 0, implying stepspφnq � β1 � stepspψpn�1q �
. . .�stepspψp1q�βn�1 (or just β1�βn�1 if pn�1 � pn�1), where stepspψpnq �
βn � β1. Observe stepspξq � β1. Let χ2, ξ1 such that ψpn�1 �pBq χ

2 � ξ1 and
stepspχ2q � βn�1. We define χn :� ξ � ψpn�1 � . . . � ψp1 � χ

2 (or just ξ � χ2

if pn�1 � pn � 1). We verify the auxiliary statement for n similarly to the
previous cases.

In turn, a simple analysis of each case yields stepspχnq � stepspφnq for each n   ω.

We verify ψ � χ, since this assertion is used when obtaining ψ �pq χ. Given
stepspχnq � stepspφnq for all n   ω, we obtain immediately stepspχq � stepspφq �
stepspψq (recall the hypothesis ψ � φ). Let β   stepspχq, let n be a natural number
verifying β  

°
i¤n stepspχiq (cfr. Lem 5.1.2). Then χrβs � pχ0 � . . . � χnqrβs. Observe

χ0 � . . . � χn �pBq ψ
1 for some ψ1 verifying ψ �pBq ψ

1 � ψ2, cfr. the auxiliary assertion
in the definition of χn, so that stepspψ1q �

°
i¤n stepspχiq ¡ β. Therefore χrβs �

pχ0 � . . . � χnqrβs � ψ1rβs � ψrβs, cfr. Prop. 5.4.28. Hence ψ � χ.

We verify ψ �pq χ. Let k   ω, let p such that p ¡ 0 and mindpψiq ¡ k if i ¡ p.
Let n be a natural number verifying

°
i¤n stepspφiq ¡

°
i¤p stepspψiq. Observe that

pn�1 ¡ p. We analyse the two possible cases of the auxiliary statement in the definition
of χn; again, p1 :� pn�1 � 1.

If βn�1 � 0, then χ0 � . . . � χn �pBq ψ0 � . . . � ψp1 ; observe that also χ �pBq χ0 � . . . �
χn � p �i ω χn�1�iq and ψ �pBq ψ0 � . . . � ψp1 � p �i ω ψpn�1�iq. We obtain immediately
χ �pBq ψ0 � . . . � ψp1 � p �i ω χn�1�iq and mindp �i ω ψpn�1�iq ¡ k, since pn�1 ¡ p.
Prop. 5.4.28 yields χ0 � . . . �χn � ψ0 � . . . �ψp1 , so that Lem. 5.4.27 can be applied to obtain
�i ω χn�1�i � �i ω ψpn�1�i, and therefore mindp �i ω χn�1�iq ¡ k, cfr. Lem. 5.4.13.

Otherwise, there exist some χ1, ξ such that χ0 � . . . � χn �pBq ψ0 � . . . � ψp1 � χ
1 and

ψpn�1 �pBq χ
1 � ξ. By an argument analogous to that of the previous case, we obtain
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ψ �pBq ψ0 � . . . � ψp1 � χ
1 � pξ � �i ω ψpn�1�1�iq, χ �pBq ψ0 � . . . � ψp1 � χ

1 � p �i ω χn�1�iq,
and mindpξ � �i ω ψpn�1�1�iq � mindp �i ω χn�1�iq ¡ k.

Consequently we can apply Lim to obtain ψ �pq χ. Observe that the premises of the
Lim application correspond to the �pBq relation, so that the derivation is sound.

The only element needed to complete the idea described earlier, and then to conclude
the proof, is to obtain χn � φn for all n. We have already obtained ψ � χ, so that
the hypothesis ψ � φ implies χ � φ. On the other hand, we have also obtained
stepspχnq � stepspφnq for all n. Then a simple induction on n yields χn � φn for all n.
Thus we conclude.

Theorem 5.4.30. Let ψ, φ be stepwise-or-nil proof terms. Then ψ �pq φ iff ψ � φ.

Proof. Immediate corollary of Prop. 5.4.28 and Prop. 5.4.29.

5.5 Compression

The compression lemma, [KKSdV90, KKSdV95, BKdV03, Ket12], establishes that the
full power of left-linear, strongly convergent reduction can be achieved considering only
reduction sequences having length at most ω, i.e. the first infinite ordinal. Formally, the

lemma states that for any strongly convergent reduction sequence t
δ
Ý�� u in a left-linear

TRS, there exists another strongly convergent reduction sequence t
γ
Ý�� u such that

lengthpγq ¤ ω. In [KKSdV95] a more precise statement is given: for orthogonal TRSs,
the reduction sequence γ can be chosen such that it is Lévy-equivalent (cfr. [HL91]) to δ.
Cfr. Section 1.2.3, where a reduction sequence which length is ω�2, and its compressed
version having length ω, are presented. We point out that the compression result is
not valid in general, if we consider the weak convergence criterion for the definition of
infinitary reduction sequences, instead of the strong convergence criterion we use in this
thesis; cfr. [KKSdV95] p. 22.12 The compression result is also invalid, in the general
case, for non-left-linear, first-order term rewriting systems; an analysis of compression
for those systems can be found in [Ket12].

The aim of this section is to present a novel proof of the property of compression
for convergent, left-linear, first-order term rewriting, based on the characterisation of
permutation equivalence given in Section 5.3. Given that any convergent reduction se-
quence can be described by means of a proof term, cfr. Prop. 5.4.19, compression can
be studied within the framework given by proof terms. In this setting, the compression
result can be stated as follows: for any convergent proof term ψ, there exists a stepwise-
or-nil proof term (cfr. Dfn. 5.4.2) φ such that ψ � φ and stepspφq ¤ ω. As observed in
the introduction to this chapter, the obtained result is more general than the statements
present in the referenced literature, in two ways. First, the result applies to orthogo-
nal reduction sequences, even for non-orthogonal TRSs, while at the same time, the
equivalence between the original and the compressed contraction activities is asserted.
Secondly, the result applies to (the description of) arbitrary contraction activities, that
is, it is not limited to reduction sequences. Put in this way, the compression result indi-
cates that any orthogonal contraction activity can be performed in a sequential fashion,
involving at most ω steps.

12The weak and strong convergence approaches to infinitary rewriting are discussed in Section 5.1.4,
prior to the definition of reduction sequence, Dfn. 5.1.32.
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This proof resorts to a key technical result, namely the ability of factorising (more
precisely, obtaining a factorised version of) any proof term, in a leading part denoting fi-
nite contraction activity, followed by a tail denoting activity at arbitrary depths; cfr. the
notion of minimum activity depth, formalised in Dfn. 5.1.38, Dfn. 5.2.6 and Dfn. 5.2.8.
The characterisation of permutation equivalence shows that the original proof term and
its factorised version denote the contraction of the same steps, while the concatenation
symbol allows to separate the leading part from the tail in the factorised version. For-
mally, the main auxiliary result for the compression proof is the existence, for any proof
term ψ and n   ω, of two proof terms χ and φ, such that ψ �B χ � φ, χ is a finite
stepwise-or-nil proof term, and mindpφq ¡ n.

In the following, we develop the technical work leading to the factorisation result.
Subsequently, we give a statement of the compression lemma based in proof terms and
permutation equivalence, and prove it by resorting to factorisation.

5.5.1 Factorisation for infinitary multisteps

In this section, a factorisation result for the particular case of infinitary multisteps
is stated an proved. The proof is based on the concept of collapsing sequence of
positions for an infinitary multistep. Such a sequence indicates that the contraction
activity denoted by the infinitary multistep includes a series of reduction steps which
can be performed consecutively and at the same position, so that all of these steps,
except possibly the last one, correspond to collapsing rules.

I.e., considering the rules µ : fpxq Ñ gpxq, ρ : ipxq Ñ x and ρ1 : jpxq Ñ x, the proof
term hpρpρ1pµpaqqq, µpbqq includes a finite collapsing sequence formed by the occurrences
of ρ and ρ1 plus the leftmost occurrence of µ. This collapsing sequence indicates that
a sequentialisation of the activity denoted by this proof term can include up to three
consecutive collapsing steps at the same position.

On the other hand, the proof term ρω includes an infinite collapsing sequence. Ob-
serve that this proof term is not convergent. In the following, a relation between infinite
collapsing sequences and non-convergence is shown 13, and later exploited in the proof
of the factorisation result for infinitary multisteps.

Definition 5.5.1. Let ψ be an infinitary multistep. A sequence xpiyi¤n (resp. xpiyi ω)
is a finite (resp. infinite) collapsing sequence for ψ iff for all i   n (resp. i   ω),
ψppiq � µ where µ : lrx1, . . . , xms Ñ xj and pi�1 � pi j.

Observe that the length of xpiyi¤n is n� 1. Moreover, for any xpiyi¤n or xpiyi ω, an
easy induction (on k � j) yields that j   k   ω implies pj   pk.

13We conjecture that, in fact, non-convergence of infinitary multisteps, and therefore non-termination
of developments of orthogonal sets of redex occurrences in first-order rewriting, can be fully characterised
by means of collapsing sequences. This observation suggests that infinitary multisteps could be used as a
technical tool to study termination of developments in infinitary rewriting, leading to an approach being
alternative to e.g. that described in [BKdV03], Sec. 12.5. In this work, only the material needed for the
factorisation result is developed. Some conjectures follow; further investigation about this subject is left
as future work.

Observe that infinitary multisteps exist being tgtT -WN8 and including infinite collapsing sequences.
E.g., if we add the rule τ : hpx, yq Ñ y, then τpρω, aq has a as tgtT -normal form. Intuitively, including
a collapsing sequence implies that an infinitary multistep is not tgtT -WN8, only if that collapsing
sequence cannot be erased. Then we state the following conjecture: an infinitary multistep is tgtT -
WN8 iff it does not include any infinite collapsing sequence at a non-erasable position, where a position
p is erasable for ψ iff p � p1ip2, ψpp1q � µ, and the i-th variable in the left-hand side of µ does not
occur in the corresponding right-hand side.
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Lemma 5.5.2. Let ψ be a proof term, xpiyi¤n (resp. xpiyi ω) a collapsing sequence for
ψ, and j, k such that j � k ¤ n (resp j, k   ω). Then xpj�iyi¤k is a collapsing sequence
for ψ.

Proof. Easy consequence of Dfn. 5.5.1.

Notice that Lem. 5.5.2 implies particularly that xpiyi¤k is a collapsing sequence if
k ¤ n (resp. k   ω).

For any ψ infinitary multistep and p P Pospψq, we observe that xpy is a collapsing
sequence for ψ whose length is 1. This is an easy existence result. A uniqueness result
for collapsing sequences holds as well, namely:

Lemma 5.5.3. Let ψ be an infinitary multistep, p P Pospψq, and n such that 0   n   ω.
Then there is at most one collapsing sequence for ψ starting at p and having length n.

Proof. We proceed by induction on n. If n � 1 then the result holds immediately since
the only suitable sequence is xpy.

Let n � n1�1. Let xpiyi¤n1 and xqiyi¤n1 two collapsing sequences for ψ, both starting
with p. Lem. 5.5.2 implies that both xpiyi¤pn1�1q and xqiyi¤pn1�1q are collapsing sequences
for ψ. Then IH on n1 implies pi � qi if i   n1, so that particularly pn1�1 � qn1�1.
Applying Dfn. 5.5.1 on xpiyi¤n1 and xqiyi¤n1 yields ψppn1�1q � ψpqn1�1q � µ such that
µ : lrx1, . . . , xms Ñ xj and pn1 � qn1 � pn1�1 j. Thus we conclude.

Lemma 5.5.4. Let ψ be an infinitary multistep, p P Pospψq, and n, k   ω (resp n   ω),
such that both xpiyi¤n and xqiyi¤n�k (resp., and xqiyi ω) are collapsing sequences for ψ
starting with p. Then i ¤ n implies qi � pi.

Proof. Easy consequence of Lem. 5.5.2 and Lem. 5.5.3.

We already remarked that any prefix of an infinite collapsing sequence is a collapsing
sequence as well. Conversely, a sequence of growing collapsing sequences starting at the
same position indicates the presence of an infinite collapsing sequence. The following
lemma formalises this idea.

Lemma 5.5.5. Let ψ be an infinitary multistep and p P Pospψq, such that for any
n   ω, there is a collapsing sequence for ψ starting at p and having length n. Then
there is an infinite collapsing sequence for ψ starting at p.

Proof. We define the sequence xpiyi ω as follows: for all k   ω, pk :� qk where xqiyi¤k is
the only (cfr. Lem. 5.5.3) collapsing sequence for ψ starting at p and having length k�1.
Let j   ω, and xqiyi¤j and xq1iyi¤pj�1q the collapsing sequences for ψ starting at p and
having lengths j�1 and j�2 respectively. Observe that Lem. 5.5.4 implies pj � qj � q1j ;
on the other hand, pj�1 � q1j�1. Then xq1iyi¤pj�1q being a collapsing sequence implies
that ψppjq � ψpq1jq � µ where µ : lrx1, . . . , xms Ñ xi and pj�1 � q1j�1 � q1j i � pj i.
Consequently, xpiyi ω is a collapsing sequence. Thus we conclude.

After this general presentation of collapsing sequences, we will focus on collapsing
sequences starting with ε. The existence of an infinite collapsing sequence starting with
ε is invariant w.r.t. partial computation of the target of an infinitary multistep. This
implies that an infinitary multistep including such a sequence is non-convergent, i.e. its
target cannot be computed, cfr. Dfn. 5.2.4 and Dfn. 5.2.5.
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Lemma 5.5.6. Let ψ be an infinitary multistep, xpiyi ω a collapsing sequence for ψ

starting at ε, and ψ
δ
Ý��
tgtT

φ. Then there exists some xqiyi ω being a collapsing sequence

for φ starting at ε.

Proof. We proceed by transfinite induction on lengthpδq. If lengthpδq � 0, so that φ � ψ,
then we conclude immediately.

Assume lengthpδq � α � 1, so that ψ
δ1

Ý��
tgtT

χ
a
ÝÑ
tgtT

φ where lengthpδ1q � α; let us say

a � xχ, r, µ, σy, and define d :� dpaq � |r|, where µ is the rule in tgtT corresponding
to a rule µ in the object TRS. IH can be applied on δ1, obtaining the existence of
xp1iyi ω, a collapsing sequence for χ starting at ε. Observe that φ � χrσhsr where
µ : lrx1, . . . , xms Ñ h, so that µ : µpx1, . . . , xmq Ñ h, implying σ � txi :� χ|r iu. Notice
also that |p1n| � n for all n   ω, implying |p1d| � |r|. We consider two cases.

• Assume p1d ‖ r. Let n   ω. Observe that n   d, resp. n ¡ d, implies p1n   p1d,
resp. p1d   p1n. In either case, r ¤ p1n would contradict p1d ‖ r, in the former
case by transitivity of  , in the latter since all prefixes of p1n form a total order
in a tree domain. Hence r ¦ p1n. Consequently, for all n   ω, p1n P Pospφq and
φpp1nq � χpp1nq. Thus xp1nyn ω is a collapsing sequence for φ.

• Assume p1d � r. In this case, µ : lrx1, . . . , xms Ñ xj and p1d�1 � p1d j, so that
φ � χrχ|p1d�1

sp1d . Observe that for any position p2, φ|p1d p2� χ|p1d�1 p
2 .

Let xqiyi ω be the sequence defined as follows:

qn :�

"
p1n if n ¤ d

p1dp
2 where p1n�1 � p1d�1p

2 if n ¡ d

Let n   ω. If n   d, then qn � p1n   p1d, so that φpqnq � φpp1nq � χpp1nq � ν where
ν : lry1, . . . , yms Ñ yi and qn�1 � p1n�1 � p1n i � qn i. Now assume n ¥ d. Let p2

such that p1n�1 � p1d�1p
2, observe that n � d implies p2 � ε. Observe χpp1n�1q � ν,

ν : lry1, . . . , yms Ñ yi and p1n�2 � p1n�1 i � p1d�1p
2 i. On the other hand, qn � p1dp

2

(if n � d, then qn � p1d � p1dp
2 since in this case p2 � ε), qn�1 � p1dp

2 i � qn i, and
in turn φpqnq � φpp1dp

2q � χpp1d�1p
2q � χpp1n�1q � ν.

Hence xqiyi ω is a collapsing sequence for φ. Thus we conclude by observing that
q0 � p10 � ε.

Assume that lengthpδq is a limit ordinal. For any n   ω, we define βn, χn, xpni yi ω
and qn as follows: βn is an ordinal such that βn   lengthpδq and dpδrγsq ¡ n if βn ¤ γ  

lengthpδq; and χn is the infinitary multistep verifying ψ
δr0,βnq
Ý��
tgtT

χn
δrβn,lengthpδqq

Ý��
tgtT

φ. Observe

that we can assume wlog that βn ¤ βn�1. In turn, IH on δr0, βnq and Lem. 5.5.3 imply
the existence of a unique collapsing sequence for χn starting at ε; we define xpni yi ω to
be that sequence, and qn :� pnn.

Let n   ω. Then Lem. 5.5.2 implies that xpni yi¤n is a collapsing sequence for χn.

Moreover, βn � βn�1 implies χn � χn�1, and otherwise βn   βn�1, so that ψ
δr0,βnq
Ý��
tgtT

χn
δrβn,βn�1q
Ý��
tgtT

χn�1 where mindpδrβn, βn�1qq ¡ n. Furthermore, χn�1

δrβn�1,lengthpδqq
Ý��
tgtT

φ

and mindpδrβn�1, lengthpδqqq ¡ n. Therefore distpχn, χn�1q   2�n and
distpχn�1, φq   2�pn�1q by Lem. 5.1.45; in turn Lem. 5.1.25 implies distpχn, φq   2�n.
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Then for any j ¤ n, χnpp
n
j q � χn�1pp

n
j q � φppnj q since |pnj | � j. Therefore xpni yi¤n

is a collapsing sequence for χn�1, so that Lem. 5.5.3 implies pnj � pn�1
j if j ¤ n.

Hence qn � pn�1
n , so that φpqnq � χn�1pqnq � ν where ν : lrx1, . . . , xms Ñ xi and

qn�1 � pn�1
n�1 � pn�1

n i � qn i. Consequently, xqiyi ω is a collapsing sequence for φ. Thus
we conclude by observing q0 � ε.

Lemma 5.5.7. Let ψ be an infinitary multistep such that an infinite collapsing sequence
for ψ starting at ε exists. Then ψ is not tgtT -weakly normalising.

Proof. Let ψ Ý��
tgtT

φ. Then Lem. 5.5.6 implies that an infinite collapsing sequence for φ

starting at ε exists, so that φ is not a tgtT -normal form. Thus we conclude.

On the other hand, the nonexistence of arbitrarily large collapsing sequences starting
at ε allows a finite tgtT -reduction sequence ending in a proof term having a function sym-
bol at the root. In turn, for any finite tgtT -reduction sequence there is a corresponding
finite stepwise-or-nil proof term.

Lemma 5.5.8. Let ψ be an infinitary multistep and n verifying 1   n   ω, such that
there is no collapsing sequence for ψ starting at ε and having length n. Then there

exists a tgtT -reduction sequence δ verifying ψ
δ
Ý�
tgtT

φ, lengthpδq   n, dpδrisq � 0 for all

i   lengthpδq, and φpεq P Σ.

Proof. We proceed by induction on n.

Assume n � 2. If ψpεq P Σ then we conclude immediately. Otherwise ψpεq � µ
where µ : lÑ fpt1, . . . , tkq, so that the corresponding rule in tgtT is µ : µpx1, . . . , xmq Ñ

fpt1, . . . , tkq, and therefore ψ
pε,µq
ÝÑ
tgtT

fpt11, . . . , t
1
kq; thus we conclude by taking δ :� xpε, µqy.

Assume n � n1 � 1 and 1   n1   ω. If ψpεq P Σ or ψpεq � µ, µ : l Ñ h and h R Var,
then the argument of the previous case allows to conclude. Otherwise, i.e. if ψpεq � µ and
µ : lrx1, . . . , xms Ñ xk, then the corresponding rule in tgtT is µ : µpx1, . . . , xmq Ñ xk,

implying that ψ
pε,µq
ÝÑ
tgtT

ψ |k. Observe that xpiyi¤n1 being a collapsing sequence for ψ |k

starting at ε would imply pxεy; xk piyi¤n1q to be a collapsing sequence for ψ having length
n, thus contradicting the lemma hypotheses. Indeed, if we define xqiyi¤n as the given
sequence for ψ, then q0 � ε and q1 � k, so that the condition on collapsing sequences
holds for j � 0. If 0   j   n, then qj � k pj�1, so that ψpqjq � ψ |k ppj�1q � ν where
ν : lry1, . . . , yms Ñ yi and pj � pj�1 i, implying qj�1 � k pj � k pj�1 i � qj i.

Therefore IH can be applied to ψ|k, yielding the existence of a reduction sequence

δ1 verifying ψ|k
δ1

Ý�
tgtT

φ, lengthpδ1q   n1, dpδ1risq � 0 for all i   n1, and φpεq P Σ. Thus we

conclude by taking δ :� pε, µq; δ1.

Lemma 5.5.9. Let ψ be an infinitary multistep, and ψ
a
ÝÑ
tgtT

φ. Then there exists a

one-step χ such that ψ �B χ � φ and dpχq � dpaq.

Proof. We proceed by induction on dpaq.

Assume a � pε, µq, say µ : lrx1, . . . , xms Ñ hrx1, . . . , xms so that the corresponding
rule in tgtT is µ : µpx1, . . . , xmq Ñ hrx1, . . . , xms. Therefore ψ � µpψ1, . . . , ψmq and
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φ � hrψ1, . . . , ψms. We take χ :� µpsrcpψ1q, . . . , srcpψmqq. Then pOutInq yields exactly
ψ �B χ � φ. Thus we conclude.

Assume a � pip, µq, so that ψ � fpψ1, . . . , ψi, . . . , ψmq, φ � fpψ1, . . . , φi, . . . , ψmq,

and ψi
pp,µq
ÝÑ
tgtT

φi. Then IH on pp, µq implies ψi �B χi � φi where χi is a one-step verifying

dpχiq � |p|. We take χ :� fpsrcpψ1q, . . . , χi, . . . , srcpψmqq. Observe that for any j � i,
pIdLeftq implies ψj �B srcpψjq � ψj , so that

ψ �B fpsrcpψ1q � ψ1, . . . , χi � φi, . . . , srcpψmq � φmq
�B fpsrcpψ1q, . . . , χi, . . . , srcpψmqq � fpψ1, . . . , φi, . . . , ψmq
� χ � φ

Thus we conclude by noticing that dpχq � |p| � 1 � dpaq.

Lemma 5.5.10. Let ψ be an infinitary multistep and ψ
δ
Ý�
tgtT

φ. Then there exists a

finite stepwise-or-nil proof term χ such that ψ �B χ � φ, stepspχq � lengthpδq, and
dpχrisq � dpδrisq for all i   stepspχq.

Proof. Easy induction on lengthpδq. If δ is an empty reduction sequence, then we con-
clude just by taking χ :� srcpψq.

Assume δ � a; δ1, so that ψ
a
ÝÑ
tgtT

ψ0
δ1

Ý�
tgtT

φ. Then Lem. 5.5.9 implies that ψ �B χ0 � ψ0

where χ0 is a one-step verifying dpχ0q � dpaq, and IH on δ1 yields ψ0 �B χ1 � φ where
χ1 is a finite stepwise-or-nil proof term verifying stepspχ1q � lengthpδ1q � lengthpδq � 1,
and dpχ1risq � dpδ1risq � dpδri� 1sq if i   stepspχ1q.

We take χ :� χ0 � χ
1. It is straightforward to verify that χ satisfies the conditions

about length and step depth. Moreover, ψ0 �B χ1 � φ implies χ0 � ψ0 �B χ0 � pχ
1 � φq �B

χ � φ, so that Trans yields ψ �B χ � φ (recall ψ �B χ0 � ψ0). Thus we conclude.

The previous auxiliary results allow to prove the main result of this section, i.e.
factorisation for infinitary multisteps.

Lemma 5.5.11. Let ψ be a convergent infinitary multistep. Then there exist χ, φ such
that ψ �B χ � φ , χ is a finite stepwise-or-nil proof term verifying dpχrisq � 0 for all
i   stepspχq, and φ is a convergent infinitary multistep verifying mindpφq ¡ 0.

Proof. We define A :� tn { 0   n   ω and there is no collapsing sequence for ψ starting
at ε and having length nu. Dfn. 5.2.5 implies that ψ is tgtT -weakly normalising. Then
Lem. 5.5.7 implies that there is no infinite collapsing sequence for ψ starting at ε, so

that Lem. 5.5.5 implies A � H. Let n P A. Then Lem. 5.5.8 implies ψ
δ
Ý�
tgtT

φ, where

lengthpδq   ω, dpδrisq � 0 for all suitable i, and φ is an infinitary multistep (since it is the
target of a tgtT -reduction sequence) verifying mindpφq ¡ 0 (since φpεq P Σq. Moreover,
ψ being convergent means that ψ is tgtT -WN8, and tgtT is a convergent iTRS, so that
Lem. 5.1.50 implies that φ is also tgtT -WN8, i.e. convergent. We conclude by applying

Lem. 5.5.10 on ψ
δ
Ý�
tgtT

φ.

5.5.2 Fixed prefix of contraction activity

This section introduces a technical tool, in which the extension of the factorisation result
from infinitary multisteps to arbitrary proof terms is based on. This tool formalises a
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simple observation: the contraction activity denoted by a proof term can lie below some
fixed prefix. Let us precise this idea, by means of an example using the rules µ : fpxq Ñ
gpxq, ν : gpxq Ñ kpxq, and π : a Ñ b. The contraction activity corresponding to either
of the equivalent proof terms hpµpaq � νpaq, πq and hpµpaq, aq � hpνpaq, aq � hpkpaq, πq
leaves the context hp2,2q fixed, so we say that hp2,2q is a fixed prefix for these proof
terms. For proof terms involving root activity, the only possible fixed prefix is 2. Note
that the notion of “fixed prefix” is considered here in a strong sense, consistent with the
strong convergence criterion we consider in this thesis, cfr. Section 5.1.4: a fixed prefix
does not only coincide for the source and target of the involved contraction activity, it is
furthermore not affected by that activity. In the sequel, we establish that fixed prefixes
are invariant w.r.t. permutation equivalence.

Obtaining a condensed-to-fixed-prefix-form equivalent to a given proof term ψ allows
to permute a step performed on tgtpψq, whose redex lies in the fixed prefix of ψ, by means
of the pInOutq and pOutInq equation schemas, as we do in the examples of permutation
equivalence derivations described in Section 5.3.3. This observation is crucial in order
to prove a general factorisation result, since it allows to obtain a proof term in which
the (denotation of the) activity near to the root “shifts to the left as much as possible”,
i.e. lies in the lesser possible positions w.r.t. the order given by the sequence of dot
occurrences in a proof term.

The following definitions and results characterise the common prefix of a proof term
in a way allowing to manipulate it. The positions mentioned in the statements must be
understood as being relative to the contraction activity denoted by a proof term, rather
than as positions in the proof term. E.g. in the proof term phpµpaq, aq � hpνpaq, aqq �
hpkpaq, πq, the three occurrences of h, which are at the positions 11, 12 and 2 in the
proof term, correspond to the position ε in the denoted contraction activity; in turn, the
occurrence of µ, at position 111 in the proof term, corresponds to the position 1 in the
denoted activity. This assertion can be checked by observing the symbols corresponding,
in the successive terms involved in the reduction sequence denoted by this proof term,
namely hpfpaq, aq Ñ hpgpaq, aq Ñ hpkpaq, aq Ñ hpkpaq, bq, to the referred proof term
occurrences.

We formalise the concept of (the activity denoted by) a proof term having a fixed
prefix by defining a relation between proof terms and finite, prefix-closed sets of posi-
tions, which we call respect. Therefore, if ψ respects a set of positions P , then ψ has a
fixed prefix corresponding to the positions in P .

Definition 5.5.12. Let P be a set of positions, and i P N. Then we define the projection
of P on i as P |i :� tp { ip P P u.

Definition 5.5.13. Let t be a term, and P a finite and prefix-closed set of positions
such that P � Posptq. Then we define t |P , the prefix of t w.r.t. P , as follows.
If P � H, then t |P :� 2.
If P � H and t P Var, so that P � tεu, then t |P :� t.
If P � H and t � fpt1, . . . , tmq, so that P � tεu Y

�
1¤i¤mpi � P |iq, then t |P :�

fpt1 |
P |1 , . . . , tm |

P |mq.

Notice that C � t |P iff t � Crt1, . . . , tks and P � tp { p P PospCq ^ Cppq � 2u, this
can be verified by a simple induction on the cardinal of P .
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Definition 5.5.14. Let ψ be a proof term, and P a set of positions. We say that ψ
respects P iff P is finite and prefix-closed, and any of the following applies:
 ψ is an infinitary multistep, P � Pospψq and ψppq P Σ for all p P P .
 ψ � ψ1 � ψ2 and both ψ1 and ψ2 respect P .
 ψ � �i ω ψi and all ψi respect P .
 ψ � fpψ1, . . . , ψmq, at least one of the ψi is not an infinitary multistep, and

either P � H or ψi respects P |i for all i ¤ m.
 ψ � µpψ1, . . . , ψmq, at least one of the ψi is not an infinitary multistep, and
P � H.

The relation just defined enjoys some simple properties.

Lemma 5.5.15. Let ψ be a proof term and P such that ψ respects P . Then P �
Pospsrcpψqq.

Proof. An easy induction on ψ suffices; cfr. Prop. 5.2.16.

Lemma 5.5.16. Let ψ be a convergent proof term and P such that ψ respects P . Then
P � Posptgtpψqq.

Proof. An easy induction on ψ suffices; cfr. Prop. 5.2.16. If ψ � �i ω ψi and P �
Posptgtpψiqq for all i   ω, given p P P , we consider n such that distptgtpψiq, tgtpψqq  
2�|p| if i ¡ n, so that p P Posptgtpψn�1qq implies p P Posptgtpψqq.

Lemma 5.5.17. Let ψ � fpψ1, . . . , ψmq, and P a set of positions. Then ψ respects P
iff either P � H or ψi respects P |i for all i ¤ m.

Proof. If ψ is an infinitary multistep, then a straightforward analysis yields the de-
sired result. If at least one of the ψi is not an infinitary multistep, then we conclude
immediately. Any other case in Dfn. 5.5.14 contradicts the stated form of ψ.

Lemma 5.5.18. Let ψ be a proof term. Then ψ respects H.

Proof. A straightforward induction on ψ, cfr. Prop. 5.2.16, suffices to conclude.

The respects relation can be obtained from conditions on the target and the minimum
activity depth of a proof term.

Lemma 5.5.19. Let ψ be a convergent proof term and P a finite, prefix-closed set of
positions, such that mindpψq ¡ n, |p| ¤ n for all p P P , and P � Posptgtpψqq. Then ψ
respects P .

Proof. We proceed by induction on ψ, cfr. Prop. 5.2.16.
Assume that ψ is an infinitary multistep. If P � H then Lem. 5.5.18 allows to

conclude immediately. Otherwise, ε P P , implying ψ � fpψ1, . . . , ψmq. We proceed by
induction on n. If n � 0, then the only set of positions compatible with the lemma
hypotheses is P � tεu, so that we conclude immediately. Assume n � n1 � 1, and let i
such that 1 ¤ i ¤ m. It is straightforward to verify that mindpψiq ¡ n1, that |p| ¤ n1 for
all p P P |i, and also that P |i � Posptgtpψiqq (recall tgtpψq � fptgtpψ1q, . . . tgtpψmqq ).
Therefore, we can apply IH on ψi, obtaining that ψi respects P |i, so that P |i � Pospψiq,
and moreover for any p P P |i, ψpipq � ψippq P Σ. Hence the desired result holds
immediately.



5.5. COMPRESSION 203

Assume ψ � ψ1 � ψ2. In this case, mindpψiq ¡ n for i � 1, 2, and P � Posptgtpψqq �
Posptgtpψ2qq. Then IH applies to ψ2 yielding that ψ2 respects P . In turn, Lem. 5.5.15
implies P � Pospsrcpψ2qq � Posptgtpψ1qq. Then IH applies to ψ1 as well, implying that
ψ1 respects P . Thus we conclude.

Assume ψ � �i ω ψi. Observe that mindpψq ¡ n implies mindpψiq ¡ n for all
i   ω. Let k such that distptgtpψiq, tgtpψqq   2�k for all i ¡ k. Let j ¡ k. Then
P � Posptgtpψqq implies P � Posptgtpψjqq. Then IH can be applied to ψj obtaining
that ψj respects P . In turn, ψk�1 respecting P implies that P � Pospsrcpψk�1qq �
Posptgtpψkqq. Therefore IH applies also to ψk, yielding that ψk respects P , and then
Lem. 5.5.15 implies P � Pospsrcpψkqq � Posptgtpψk�1qq. Successive application of an
analogous argument yields that ψi respects P for all i ¤ k. Thus we conclude.

If ψ � fpψ1, . . . , ψmq, then an argument analogous to that given for infinitary mul-
tisteps applies.

Finally, ψ � µpψ1, . . . , ψmq contradicts mindpψq ¡ n for any n   ω.

The respects relation is invariant w.r.t. base permutation equivalence.

Lemma 5.5.20. Let ψ, φ be convergent proof terms and P a set of positions, such that
ψ �B φ. Then ψ respects P iff φ respects P .

Proof. We proceed by induction on α where ψ
α
�B φ, analysing the rule used in the last

step of that judgement.
If the rule is Refl, then we conclude immediately.
If the rule is Eqn, then we analyse the equation used.

• pIdLeftq or pIdRightq, i.e. ψ � srcpφq � φ or ψ � φ � tgtpφq. The ñq direction is
immediate. For the ðq direction, observe that Lem. 5.5.15 and Lem. 5.5.16 imply
P � Pospsrcpφqq and P � Posptgtpφqq respectively. Then Dfn. 5.5.14 for infinitary
multisteps implies immediately that both srcpφq and tgtpφq respect P . Thus we
conclude.

• pAssocq, i.e. ψ � χ1 � pχ2 � χ3q and φ � pχ1 � χ2q � χ3. In this case either ψ or φ
respects P iff χ1, χ2 and χ3 do. Thus we conclude.

• pStructq, i.e. ψ � fpχ1, . . . , χmq � fpξ1, . . . , ξmq and φ � fpχ1 � ξ1, . . . , χm � ξmq.
If P � H, then both ψ and φ respect P ; cfr. Lem. 5.5.18. Otherwise
ψ respects P

iff both fpχ1, . . . , χmq and fpξ1, . . . , ξmq do
iff for all j such that 1 ¤ j ¤ m, both χj and ξj respect P |j
iff for all j such that 1 ¤ j ¤ m, χj � ξj respects P |j
iff φ respects P .

Thus we conclude.

• pInfStructq. This case admits an argument analogous to the one used for pStructq.

• pOutInq and pInOutq. In this case, it is immediate that either ψ or φ respects P iff
P � H.

If the rule used in the last step of the judgement ψ
α
�B φ is Symm, Trans, Fun, Comp

or InfComp, then a straightforward inductive arguments suffices to obtain the desired
result.
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Finally, if the rule is Rule, then it is immediate to verify that either ψ or φ respect
P iff P � H.

Observe that proof terms whose minimum activity depth is greater than 0 are exactly
those which respect tεu. Lem. 5.3.6 implies that this condition is stable by permutation
equivalence. For such proof terms, we define their condensed-to-fixed-prefix-symbol form,
which is a proof term denoting the same activity as the original proof term, and having a
function symbol at the root. E.g. the condensed-to-fixed-prefix-symbol form of fpµpaqq �
fpνpaqq is fpµpaq � νpaqq. The condensed-to-fixed-prefix-symbol form of a condensed
proof term is the same proof term, implying that this notion is idempotent.

Lemma 5.5.21. Let ψ a convergent proof term which respects tεu. Then srcpψqpεq �
tgtpψqpεq.

Proof. We proceed by induction on ψ, cfr. Prop. 5.2.16. If ψ � fpψ1, . . . , ψmq then the
result holds immediately, while ψ � µpψ1, . . . , ψmq contradicts the lemma hypotheses.

If ψ � ψ1 � ψ2 and the result holds for both components, then lemma hypotheses
imply that both ψ1 and ψ2 respect tεu, so that srcpψjqpεq � tgtpψjqpεq for j � 1, 2.
Observe srcpψq � srcpψ1q, tgtpψq � tgtpψ2q, and moreover tgtpψ1q � srcpψ2q (by the
coherence condition on the definition of ψ). Thus we conclude immediately.

Assume ψ � �i ω ψi and the result holds for each ψi. For any i   ω, lemma
hypotheses imply that ψi respects tεu, and therefore srcpψiqpεq � tgtpψiqpεq. Given
tgtpψiq � srcpψi�1q for all i   ω, an easy inductive argument yields srcpψqpεq �
srcpψ0qpεq � tgtpψiqpεq for any i   ω. Let n such that distptgtpψkq, tgtpψqq   1 if
k ¡ n; recall tgtpψq � limiÑωptgtpψiqq. Then tgtpψqpεq � tgtpψn�1qpεq � srcpψqpεq.
Thus we conclude.

Definition 5.5.22. Let ψ be a proof term which respects tεu. We define cfpspψq, i.e.
the condensed to fixed prefix symbol form of ψ, as follows.

 if ψ � fpψ1, . . . , ψnq then cfpspψq :� ψ.
 if ψ � ψ1 � ψ2 then cfpspψq :� fpψ11 � ψ21, . . . , ψ1m � ψ2mq

where cfpspψiq � fpψi1, . . . , ψimq for i � 1, 2
 if ψ � �i ω ψi then cfpspψq :� fp �i ω ψi1, . . . , �i ω ψimq

where cfpspψiq � fpψi1, . . . , ψimq for all i   ω.
 ψ � µpψ1, . . . , ψmq contradicts ψ respecting tεu.

Lem. 5.5.21 implies the soundness of the clauses corresponding to both binary and infinite
concatenation.

Condensed-to-fixed-prefix-symbol forms enjoy some properties related with base per-
mutation equivalence and the respects relation. In turn, these properties allow a simple
proof of the extension of Lem. 5.5.21 to arbitrary finite and prefix-closed sets of positions.

Lemma 5.5.23. Let ψ be a proof term which respects tεu. Then ψ �B cfpspψq.

Proof. Easy induction on ψ. For the infinitary composition case, resort to the InfComp
rule and the pInfStructq equation, cfr. Dfn. 5.3.3.

Lemma 5.5.24. Let ψ, φ be proof terms such that ψ �B φ and ψ, φ respect tεu. Let
cfpspψq � fpψ1, . . . , ψmq and cfpspφq � f 1pφ1, . . . , φm1q. Then f � f 1 � srcpψqpεq, so
that m � m1, and ψi �B φi for each i between 1 and m.
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Proof. Lem. 5.5.23 and the hypotheses imply ψ �B cfpspψq �B cfpspφq, then Lem. 5.3.6
yields f � f 1 � srcpψqpεq, and therefore m � m1. We prove ψi �B φi for all i by

induction on α where ψ
α
�B φ, analysing the rule used in the last step of that judgement.

• Refl: we conclude immediately.

• Eqn: we analyse each of the equations.

– pIdLeftq: let srcpφq � fpt1, . . . , tmq where ti � srcpφiq for all i; cfr. Lem. 5.5.23
and Lem. 5.3.6. Then ψ � fpt1, . . . , tmq � φ, so that cfpspψq � fpt1 �
φ1, . . . , tm � φmq. Thus we conclude.

– pIdRightq: an analogous argument applies.

– pAssocq: in this case ψ � ξ � pγ � χq and φ � pξ � γq � χ. Let cfpspξq �
fpξ1, . . . , ξmq, cfpspγq � fpγ1, . . . , γmq and cfpspχq � fpχ1, . . . , χmq; cfr.
Lem. 5.5.23 (implying f � srcpψqpεq � srcpξqpεq � srcpcfpspξqqpεq) and
Lem. 5.5.21. Then for any i ¤ m, ψi � ξi � pγi � ξiq and φi � pξi � γiq � χi.
Thus we conclude immediately.

– pStructq and pInfStructq: in either of these cases Dfn. 5.5.22 allows to conclude
immediately.

– pOutInq and pInOutq: either of these cases contradict ψ, φ to respect tεu.

• Symm or Trans: a simple inductive argument applies.

• Fun: the hypotheses of the Fun rule are enough to conclude immediately.

• Rule: this case would imply that neither ψ nor φ respect tεu, thus contradicting
lemma hypotheses.

• Comp: in this case, ψ � χ � ξ, φ � γ � δ, χ
α1
�B γ, ξ

α2
�B δ, α1   α and α2   α.

Let cfpspχq � fpχ1, . . . , χmq, cfpspξq � fpξ1, . . . , ξmq, cfpspγq � fpγ1, . . . , γmq and
cfpspδq � fpδ1, . . . , δmq. Let i such that 1 ¤ i ¤ m. Observe ψi � χi � ξi and
φi � γi � δi. On the other hand, IH implies χi �B γi and ξi �B δi. Thus we
conclude.

• InfComp: an analogous argument applies. In this case, ψ � �i ω ψi, φ � �i ω φi,

and for any i   ω, ψi
αi
�B φi where αi   α. Let cfpspψiq � fpψ1

i , . . . , ψ
m
i q and

cfpspφiq � fpφ1
i , . . . , φ

m
i q. Let j such that 1 ¤ j ¤ m. Then ψj � �i ω ψji and

φj � �i ω φ
j
i . IH on each ψi

αi
�B φi yields ψji �B φji . Thus we conclude.

Lemma 5.5.25. Let ψ be a proof term such that ψ respects tεu. Then cfpspψqpεq �
srcpψqpεq � tgtpψqpεq.

Proof. Immediate consequence of Lem. 5.5.24 and Lem. 5.5.21.

Lemma 5.5.26. Let ψ be a proof term and P a set of positions such that P � H and
ψ respects P . Then ψi respects P |i for all i ¤ m, where cfpspψq � fpψ1, . . . , ψmq.

Proof. Lem. 5.5.23 implies ψ �B cfpspψq, then Lem. 5.5.20 implies cfpspψq respects P .
Therefore Lem. 5.5.17 allows to conclude.
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Lemma 5.5.27. Let ψ be a convergent proof term and P a set of positions such that ψ
respects P . Then tgtpψq |P � srcpψq |P .

Proof. We proceed by induction on the cardinal of P . If P � H, then tgtpψq |P �
srcpψq |P � 2. Otherwise, P � tεu Y p

�
1¤i¤m i � P |iq where cfpspψq � fpψ1, . . . , ψmq.

In this case, Lem. 5.5.23 and Lem. 5.3.6 imply srcpψq � fpsrcpψ1q, . . . , srcpψmqq and
tgtpψq � fptgtpψ1q, . . . , tgtpψmqq, so that srcpψq |P � fpsrcpψ1q |

P |1 , . . . , srcpψmq |
P |mq,

and tgtpψq |P � fptgtpψ1q |
P |1 , . . . , tgtpψmq |

P |mq. On the other hand, Lem. 5.5.26 im-
plies that ψi respects P |i for all i, so that IH can be applied to obtain srcpψiq |

P |i �
tgtpψiq |

P |i . Thus we conclude.

Assume that some proof term, say ψ, respects not only the root, but a finite, prefix-
closed set of positions P . Then we can define the condensed-to-fixed-prefix-context
form of ψ w.r.t. P , analogously as we have just done with the condensed-to-fixed-prefix-
symbol form. The activity denoted by a condensed-to-fixed-prefix-context form w.r.t.
the set of positions P will lie inside a fixed context, i.e. a context in TerpΣq, whose
set of (non-hole) positions is exactly P . E.g., the proof term hpfpgpµpaqqq, µpbqq �
hpfpgpgpπqqq, νpbqq respects P :� tε, 1, 11u. The corresponding condensed-to-fixed-
prefix-context is hpfpgpµpaq � gpπqqq, µpbq � νpbqq. Observe that the activity of the latter
term lies inside the holes of the context hpfpgp2qq,2q, whose set of non-hole positions
is exactly P .

The condensed-to-fixed-prefix-context form of ψ w.r.t. P can be defined in two differ-
ent ways: either by induction on ψ analogously as the definition of cfps, or by induction
on P . The following definition uses the latter option for a pragmatic reason: it leads to
simpler proofs of the properties to be stated about these forms.

Definition 5.5.28. Let ψ be a proof term and P a prefix-closed set of positions, such
that ψ respects P . We define cfpcpψ, P q, the condensed to fixed prefix context form of
ψ w.r.t. P , as follows.
If P � H, then cfpcpψ, P q :� ψ.
Otherwise, P � tεuY p

�
1¤i¤m i�P |iq, where srcpψqpεq � f{m. In this case cfpcpψ, P q :�

fpcfpcpψ1, P |1q, . . . cfpcpψm, P |mqq, where cfpspψq � fpψ1, . . . , ψmq.

Lemma 5.5.29. Let ψ, P such that ψ respects P . Then ψ �B cfpcpψ, P q.

Proof. We proceed by induction on the cardinal of P . If P � H then we conclude
immediately. Otherwise, P � tεu Y p

�
1¤i¤m i�P |iq where cfpspψq � fpψ1, . . . , ψmq, and

cfpcpψ, P q � fpcfpcpψ1, P |1q, . . . , cfpcpψm, P |mqq. Lem. 5.5.26 implies that ψi respects
P |i for all i ¤ m. Therefore IH can be applied on each P |i to obtain ψi �B cfpcpψi, P |iq,
so that Fun rule yields cfpspψq �B cfpcpψ, P q. On the other hand, Lem. 5.5.23 implies
ψ � cfpspψq. Thus we conclude by Trans.

Lemma 5.5.30. Let ψ, φ, P such that ψ and φ are convergent, ψ �B φ and ψ, φ
respect P . Then cfpcpψ, P q � Crψ1, . . . , ψks, cfpcpφ, P q � Crφ1, . . . , φks and ψi �B φi
for all i, where C � srcpψq |P .

Proof. We proceed by induction on the cardinal of P . If P � H then we conclude
immediately. Otherwise P � tεu Y p

�
1¤i¤m i � P |iq, cfpcpψ, P q � fpcfpcpψ11, P |1q, . . . ,

cfpcpψ1m, P |mqq, and cfpcpφ, P q � fpcfpcpφ11, P |1q, . . . , cfpcpφ1m, P |mqq, where cfpspψq �
fpψ11, . . . , ψ

1
mq and cfpspφq � fpφ11, . . . , φ

1
mq. Lem. 5.5.23 and Lem. 5.3.6 imply that
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srcpψq � fpsrcpψ11q, . . . , srcpψ
1
mqq and analogously for φ, so that particularly the root

symbols of cfpspψq and cfpspφq coincide since ψ �B φ.

Let j such that 1 ¤ j ¤ m. Lem. 5.5.24 implies that ψ1j �B φ1j , and Lem. 5.5.26
implies that both ψ1j and φ1j respect P |j . Then we can apply IH on P |j obtaining that

cfpcpψ1j , P |jq � Cjrψ
j
1, . . . , ψ

j
qj s, cfpcpφ1j , P |jq � Cjrφ

j
1, . . . , φ

j
qj s and ψji �B φji for all i,

where srcpψ1jq |
P |j � Cj .

We define C :� fpC1, . . . , Cmq. It is straightforward to verify that srcpψq |P �
C. Moreover, cfpcpψ, P q � Crψ1, . . . , ψks and cfpcpφ, P q � Crφ1 . . . , φks, where k �°

1¤i¤m qi, and for any i ¤ k, ψi � ψjl and φi � φjl for some j ¤ m and l ¤ qj , implying
ψi �B φi. Thus we conclude.

Lemma 5.5.31. Let ψ, P such that ψ respects P . Then cfpcpψ, P q |P � srcpψq |P �
tgtpψq |P .

Proof. Straightforward corollary of Lem. 5.5.30 and Lem. 5.5.27.

5.5.3 General factorisation result

In this section we will extend the factorisation result obtained for infinitary multisteps in
Sec. 5.5.1, to the set of all proof terms. As we have already mentioned, the condensed-
to-proof-term forms introduced in Sec. 5.5.2 lead to the proof of the main remaining
auxiliary result, namely, the ability of obtain proof terms in which activity at lower
depths is in low positions w.r.t. the sequentialisation order given by dot occurrences.

Lemma 5.5.32. Let ψ be a one-step. Then there exist two numbers n, n1   ω such
that, for any convergent proof term ξ verifying tgtpξq � srcpψq and mindpξq ¥ n�n1, a
one-step ψ1 and a convergent proof term ξ1 can be found, which verify all the following:
ξ � ψ �B ψ1 � ξ1, dpψ1q � dpψq, and mindpξ1q ¥ mindpξq � n1.

Proof. We take n :� dpψq and n1 � Pdpµq � 1 where µ :� ψprpospψqq. We consider a
convergent proof term ξ verifying mindpξq ¥ n� n1 and tgtpξq � srcpψq.

Let P0 :� tp { p P srcpψq ^ |p|   dpψqu, P :� P0 Y prpospψq � Ppospµqq, and
k :� maxt|p| { p P P u. Observe that p P P implies |p| ¤ dpψq � Pdpµq, so that
k ¤ dpψq � Pdpµq   mindpξq. Moreover, it is straightforward to verify that P �
Pospsrcpψqq � Posptgtpξqq. Therefore Lem. 5.5.19 applies w.r.t. ξ, P and k, implying
that ξ respects P . Then ξF :� cfpcpξ, P q can be defined. In turn, Lem. 5.5.29 implies
that ξ �B ξF , so that ξ � ψ �B ξF � ψ, and Lem. 5.5.31 implies ξF |

P � tgtpξq |P �
srcpψq |P .

Let C :� srcpψq |P0 . An easy induction on dpψq yields that ψ |P0 � C, so that the
comment following Dfn. 5.5.13 implies ψ � Crt1, . . . , tj�1, µpu1, . . . , umq, tj�1, . . . , tks
and tp { p P PospCq ^ Cppq � 2u � P0. Observe that |BpospC, iq| � dpψq for all i, and
that particularly BpospC, jq � rpospψq for some j. In turn, the given form of ψ implies
that srcpψq � tgtpξq � Crt1, . . . , tj�1, lru1, . . . , ums, tj�1, . . . , tks where µ : l Ñ h. Ob-
serve that the set of non-hole positions of the context Cr2, . . . ,2, lr2, . . . ,2s,2, . . . ,2s
is exactly P , implying that C � tgtpξq |P � ξF |

P , and therefore ξF � Crξ1, . . . , ξj�1,
lrφ1, . . . , φms, ξj�1, . . . , ξks; cfr. the comment following Dfn. 5.5.13. Notice that ξF is
convergent, implying that all the ξi and also the φi are; cfr. Lem. 5.3.7 and Lem. 5.2.21.
Moreover, ti � tgtpξiq for any suitable i, and also ui � tgtpφiq for all suitable i. Hence
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ξF � ψ
�B Crξ1 � t1, . . . , ξj�1 � tj�1, lrφ1 . . . φms � µpu1, . . . , umq, ξj�1 � tj�1, . . . , ξk � tks
�B Crξ1, . . . , ξj�1, µpφ1, . . . , φmq, ξj�1, . . . , ξks
�B Crs1 � ξ1, . . . , sj�1 � ξj�1, µpw1, . . . , wmq � hrφ1, . . . , φms, sj�1 � ξj�1, . . . , sk � ξks
�B Crs1, . . . , sj�1, µpw1, . . . , wmq, sj�1, . . . , sks �

Crξ1, . . . , ξj�1, hrφ1, . . . , φms, ξj�1, . . . , ξks

where si :� srcpξiq and wi :� srcpφiq, in both cases for all suitable i. To justify the
equivalences; cfr. Lem. 5.3.9; pIdRightq, pInOutq and Lem. 5.3.8; pIdLeftq, pOutInq and
Lem. 5.3.8 again; and finally Lem. 5.3.9 again; respectively.

We take ψ1 :� Crs1, . . . , sj�1, µpw1, . . . , wmq, sj�1, . . . , sks and
ξ1 :� Crξ1, . . . , ξj�1, hrφ1, . . . , φms, ξj�1, . . . , ξks. Observe that convergence of all ξi and
φi imply convergence of ξ1, cfr. Lem. 5.2.21.

In order to conclude, we must verify that mindpξ1q ¥ mindpξq � n1 � mindpξF q �
pPdpµq � 1q; cfr. Lem. 5.3.6. Let a such that mindpξaq ¤ mindpξiq for all i such that
1 ¤ i ¤ k and i � j, b such that mindpφbq � |Bpospl, bq| ¤ mindpφiq � |Bpospl, iq| for all
i such that 1 ¤ i ¤ m, and c, k such that mindpφcq � |Bposph, kq| ¤ mindpφiq �
|Bposph, jq| if 1 ¤ i ¤ m and hpBposph, jqq � xi. In these definitions, l and h
are considered as contexts as when we write e.g. lrφ1, . . . , φms. Lem. 5.2.18 implies
mindpξF q � dpψq � minpmindpξaq,mindpφbq � |Bpospl, bq|q and mindpξ1q � dpψq �
minpmindpξaq,mindpφcq � |Bposph, kq|q. Observe that |Bpospl, iq| ¤ Pdpµq � 1 for all i.
We show mindpξF q � pPdpµq � 1q ¤ mindpξ1q.

If mindpξaq ¤ mindpφcq�|Bposph, kq|, then mindpξF q ¤ dpψq�mindpξaq � mindpξ1q
in either case w.r.t. the characterisation of mindpξF q. Otherwise, i.e. if mindpφcq �
|Bposph, kq|   mindpξaq, observe that mindpξF q ¤ dpψq �mindpφbq � |Bpospl, bq| holds
in any case. Therefore
mindpξF q ¤ dpψq �mindpφbq � |Bpospl, bq|

¤ dpψq �mindpφcq � |Bpospl, cq|
¤ dpψq �mindpφcq � pPdpµq � 1q

Therefore mindpξF q�pPdpµq�1q ¤ dpψq�mindpφcq ¤ dpψq�mindpφcq�|Bposph, kq| �
mindpξ1q.

Lemma 5.5.33. Let ψ be a finite stepwise-or-nil proof term. Then there exist two
numbers n, n1   ω such that, for any convergent proof term ξ verifying tgtpξq � srcpψq
and mindpξq ¥ n�n1, a finite stepwise-or-nil proof term ψ1 and a convergent proof term
ξ1 can be found, which verify all the following: ξ � ψ �B ψ1 � ξ1, stepspψ1q � stepspψq,
dpψ1risq � dpψrisq for all i, and mindpξ1q ¥ mindpξq � n1 ¥ n.

Proof. We proceed by induction on stepspψq. If stepspψq � 0, i.e. ψ P Ter8pΣq, then
srcpψq � ψ. Therefore we can take n � n1 � 0, since for any ξ verifying tgtpξq � ψ, it is
straightforward to obtain ξ � ψ �B srcpξq � ξ, and to verify the required properties for
ψ1 :� srcpξq and ξ1 :� ξ .

Assume stepspψq � n� 1, i.e. ψ � χ � φ, where χ is a one-step and φ is a stepwise-
or-nil proof term verifying stepspφq � n. In this case, IH can be applied on φ; let m
and m1 be the corresponding numbers. Moreover, Lem. 5.5.32 applies to χ; let p and
p1 be the numbers whose existence is stated by that lemma. Let n :� maxpm, pq and
n1 :� m1� p1. Let ξ a convergent proof term verifying mindpξq ¥ n�n1 � n�m1� p1 ¥
p � p1, and tgtpξq � srcpψq � srcpχq. Then the conclusion of Lem. 5.5.32 implies that
ξ � ψ � ξ � χ � φ �B χ1 � ξ2 � φ, where χ1 is a one-step verifying dpχ1q � dpχq and ξ2

is a convergent proof term such that mindpξ2q ¥ mindpξq � p1 ¥ n � m1 ¥ m � m1.
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In turn, the conclusion of the IH implies that χ1 � ξ2 � φ �B χ1 � φ1 � ξ1, where φ1 is a
stepwise-or-nil proof term verifying stepspφ1q � stepspφq and dpφ1risq � dpφrisq for all i,
and ξ1 is a convergent proof term such that mindpξ1q ¥ mindpξ2q �m1 ¥ n. We take
ψ1 :� χ1 � φ1, and we conclude by observing that Trans implies ξ � ψ �B ψ1 � ξ1.

The given auxiliary results allow to prove the statement being the aim of this Section.

Proposition 5.5.34. Let ψ be a convergent proof term and n   ω. Then there exist χ
and φ such that ψ �B χ � φ, χ is a finite stepwise-or-nil proof term, φ is convergent and
mindpφq ¡ n.

Proof. We proceed by induction on α where ψ P PTα, analysing the cases in the for-
mation of ψ w.r.t. Dfn. 5.2.8.

• Assume that ψ is an infinitary multistep. In this case we proceed by induction on
n. If n � 0 then Lem. 5.5.11 suffices to conclude.

Assume n � n1�1. Lem. 5.5.11 implies ψ �B χ0 � φ
1 where χ0 is a finite stepwise-

or-nil proof term, φ1 is a convergent infinitary multistep and mindpφ1q ¡ 0, so
that φ1 � fpφ11, . . . , φ

1
mq. Observe that φ1 convergent implies φ1i convergent for all

i, cfr. Lem. 5.2.19. Then IH can be applied on all φ1i w.r.t. n1, yielding φ1 �B
fpχ1 � φ1, . . . , χm � φmq where for all i, χi is a finite stepwise-or-nil proof term, φi
is convergent and mindpφiq ¡ n1. Hence ψ �B χ0 � fpχ1, . . . , χmq � fpφ1, . . . , φmq.

Assume that m � 3; observe that fpχ1, χ2, χ3q �B fpχ1 � t1, s2 � χ2, s3 � χ3q �B
fpχ1, s2, s3q � fpt1, χ2, χ3q �B fpχ1, s2, s3q � fpt1 � t1, χ2 � t2, s3 �χ3q �B fpχ1, s2, s3q �
fpt1, χ2, s3q � pt1, t2, χ3q. An analogous reasoning for any m yields that
fpχ1, χ2, . . . , χmq �B fpχ1, srcpχ2q, . . . , srcpχmqq � fptgtpχ1q, χ2, . . . , srcpχmqq �
fptgtpχ1q, tgtpχ2q, . . . , χmq. In turn, it is straightforward to obtain a stepwise
proof term χ1k �B fptgtpχ1q, . . . , χk, . . . , srcpχmqq, so that χ1 :� χ10 � . . . � χ

1
m is

a stepwise proof term verifying χ1 �B fpχ1, χ2, . . . , χmq. Thus we conclude by
taking χ :� χ0 � χ

1 and φ :� fpφ1, . . . , φmq.

• Assume ψ � ψ1 � ψ2 and ψ is not an infinite composition. In this case we can
apply IH on ψ2, obtaining ψ2 �B χ2 � φ2 where χ2 is a finite stepwise-or-nil proof
term, φ2 is convergent and mindpφ2q ¡ n. Lem. 5.5.33 applies to χ2, implying
the existence of two numbers, say m0 and m1, which enjoy some properties. Let
m :� maxpn,m0q. Applying IH on ψ1 w.r.t. m�m1, we obtain ψ1 �B χ1 � φ1,
where χ1 is a finite stepwise-or-nil proof term, φ1 is convergent and mindpφ1q ¡
m�m1 ¥ m0 �m

1. Observe ψ �B χ1 � φ1 � χ2 � φ2, so that tgtpφ1q � srcpχ2q.

Therefore, the conclusion of Lem. 5.5.33 implies φ1 � χ2 �B χ12 � φ
1
1, so that

ψ �B χ1 � χ
1
2 � φ

1
1 � φ2, where χ12 is a finite stepwise-or-nil proof term (since

stepspχ12q � stepspχ2q), φ
1
1 is convergent and mindpφ11q ¥ mindpφ1q�m

1 ¡ m ¥ n.
Thus we conclude by taking χ :� χ1 � χ

1
2 and φ :� φ11 � φ2.

• Assume ψ � �i ω ψi. Let k such that mindpψiq ¡ n if i ¡ k; convergence of
ψ entails the existence of such k. Then ψ �B ψ0 � . . . � ψk � p �i ω ψk�1�iq,
and mindp �i ω ψk�1�iq ¡ n; notice that convergence of ψ implies convergence of
�i ω ψk�1�i. Observe that ψ0 � . . . � ψk P PTα1 where α1   α. This observation
allows to use IH to obtain ψ0 � . . . � ψk �B χ � φ1 where χ is a finite stepwise-or-
nil proof term, φ1 is convergent and mindpφ1q ¡ n. Then we conclude by taking
φ :� φ1 � p �i ω ψk�1�iq.
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• Assume ψ � fpψ1, . . . , ψmq and ψ is not an infinitary multistep. In this case, we
can apply IH on each ψi obtaining ψi �B χi � φi, where χi is a finite stepwise-or-
nil proof term, φi is convergent, and mindpφiq ¡ n. Then ψ �B fpχ1, . . . , χmq �
fpφ1, . . . , φmq. Hence, an argument about fpχ1, . . . , χmq analogous to that used
in the infinitary multistep case allows to conclude.

• Assume ψ � µpψ1, . . . , ψmq and ψ is not an infinitary multistep. Let us define
µ : lrx1, . . . , xms Ñ h.

Assume h � fph1, . . . , hkq. In this case we have ψ �B µpsrcpψ1q, . . . , srcpψmqq �
fph1rψ1, . . . , ψms, . . . , hkrψ1, . . . , ψmsq. Applying IH on each ψi yields ψi �B
χi � φi, where χi is a finite stepwise-or-nil proof term, φi is convergent, and
mindpφiq ¡ n.
Therefore ψ �B µpsrcpψ1q, . . . , srcpψmqq � fph1rχ1, . . . , χms, . . . , hkrχ1, . . . , χmsq �
fph1rφ1, . . . , φms, . . . , hkrφ1, . . . , φmsq; cfr. Lem 5.3.9. Hence, an argument about
fph1rχ1, . . . , χms, . . . , hkrχ1, . . . , χmsq analogous to that used in the infinitary mul-
tistep case for fpχ1, . . . , χmq, cfr. Lem. 5.3.9, allows to conclude.

The other possible case is h � xj , implying ψ �B µpsrcpψ1q, . . . , srcpψmqq � ψj .
IH can be applied on ψj obtaining ψj �B χ1 � φ, where χ1 is a finite stepwise-or-
nil proof term, φ is convergent and mindpφq ¡ n. Thus we conclude by taking
χ :� µpsrcpψ1q, . . . , srcpψmqq � χ

1.

5.5.4 Proof of the compression result

Finally, we give the main result of this section.

Theorem 5.5.35. Let ψ be a convergent proof term. Then there exists some stepwise
proof term φ verifying ψ � φ and stepspφq ¤ ω.

Proof. We define the sequences of proof terms xψiyi ω and xφiyi ω as follows. We start
defining ψ0 :� ψ. Then, for each i   ω, we define φi and ψi�1 to be proof terms
verifying that ψi �B φi � ψi�1, φi is a finite stepwise-or-nil proof term and either
mindpψi�1q ¡ mindpψiq or mindpψi�1q � mindpψiq � ω; cfr. Prop. 5.5.34. Observe
that mindpψiq   ω implies mindpφiq � mindpψiq by 5.3.6, so in that case φi is a
stepwise proof term, i.e. it is not trivial. Moreover, an easy induction on n yields
ψ �B φ0 � . . . � φn � ψn�1 for all n.

We define T :� tn { ψn is a trivial proof termu. There are three cases to consider:

• If 0 P T , i.e. if ψ is a trivial proof term, then it is enough to take φ :� srcpψq and
refer to Lem. 5.3.10.

• Assume 0 R T and T � H, let n be the minimal element in T . In this case we take
φ :� φ0 � . . . � φn�1. For any k   ω, observe that ψ �B φ � ψn, φ �B φ � tgtpφq
(cfr. pIdRightq), and mindpψnq � mindptgtpφqq � ω ¡ k, cfr. Lem. 5.2.11. Then
Dfn. 5.3.3 allows to assert ψ � φ. Finally, observe that each φi being finite implies
that φ is also a finite stepwise proof term, i.e. it verifies stepspφq   ω.

• Assume T � H. In this case, for any i Lem. 5.2.11 implies that mindpψiq   ω, so
that φi is non-trivial. We take φ :� �i ω φi. Let n   ω. We have already verified
that ψ �B φ0 � . . . � φn � ψn�1, and φ �B φ0 � . . . � φn � �i ω φn�1�i. On the
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other hand, an easy induction on k implies mindpψkq � mindpφkq ¥ k for all k,
then mindpψn�1q ¡ n, and also mindp �i ω φn�1�iq ¡ n. Hence the rule Lim can
be applied to obtain ψ � φ. We conclude by observing that stepspφnq   ω for all
n implies that stepspφq ¤ ω.
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Chapter 6

Conclusions

6.1 Rewriting systems: challenges, decisions and results

We deal in this thesis with rewriting systems of different sorts. In turn, a different
subject is addressed in each case. The studied systems, and the main results presented
for each one, can be summarised as follows.

Pattern calculi

Subject: Normalisation.

Main result: Definition of a normalising reduction strategy for the Pure Pattern
Calculus (PPC).

Developed in: Chapter 3.

Explicit substitution calculi

Subject: Standardisation.

Main result: Uniqueness of s.r.s., modulo square equivalence, for the linear
substitution calculus (λ�lsub).

Developed in: Chapter 4.

Infinitary, first-order term rewriting systems

Subject: Equivalence of reductions.

Main result: Characterisation of permutation equivalence by equational reason-
ing on proof terms.

Developed in: Chapter 5.

We remark that pattern calculi, explicit substitution calculi, and infinitary rewriting,
all emerged around 1990. We mention some of the earlier references in each case: [vO90]
for pattern calculi, [HL89, ACCL91] for explicit substitution calculi, and [KKSdV90,
DKP91] for infinitary rewriting. Hence, all these systems are considerably younger than
the λ-calculus, and also than the study of generic properties and techniques for first-
order term rewriting systems. While each of these families of rewriting systems has
been a subject of considerable interest since its introduction, their features and formal
properties are still not as well understood as those of more “classical” rewriting systems.
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Moreover, in each case, there are features and peculiarities of the studied rewriting
systems, which make the study of the chosen subjects a challenging task. We summarise
these features, along with some choices made in this thesis.

6.1.1 Normalisation for the Pure Pattern Calculus

As described in Section 3.5, the failure mechanism of PPC implies that, to rewrite some
terms to a normal form, it is not possible for a reduction strategy to select a single
step, analysing only the term structure; that is, if for any set of terms having the same
structure, the strategy always selects the step in the same position. E.g., consider

t � pλtxua b cx.b dqpa r1r2r3q

where r1, r2 and r3 are redexes. If r1 rewrites to d, then performing that step in t yields

t1 � pλtxua b cx.b dqpa d r2r3q

which rewrites to I in one step, because the match of the pattern a b cx against the
argument a d r2r3 yields fail. A similar situation holds if r2 rewrites to d. On the other
hand, performing r3 does not affect the status of the mentioned match; it is wait for
any possible contractum. Consequently, in principle either of r1 or r2 could be selected
to yield a normal form from t. But choosing r1 would be a bad decision for a term
u having the same shape as t, that is u � pλtxua b cx.b dqpa r

1
1r

1
2r

1
3q, where r11 leads to

an infinite reduction, whilst r12 rewrites to d. An analogous reasoning invalidates the
selection of r2.

The reduction strategy defined in Section 3.5 chooses both steps in t. Therefore, it
is a multistep (cfr. Section 3.1.1) reduction strategy.

The described behavior of PPC is related with the notion of non-sequentiality, and
also with the fact that PPC does not enjoy the ARS Stability axiom; cfr. Section 1.4.1,
the introduction to Chapter 3, and Section 3.4.2.

6.1.2 Standardisation for the Linear Substitution Calculus

The reduction space of several of the explicit substitution calculi known by the author
are extremely complex, due to the multiplicity of possible interleavings between β-steps
and explicit substitutions, and to the interplay between different explicit substitutions.
While one of the aims for the introduction of explicit substitution calculi at a distance
is to obtain simpler reduction spaces, that of λ�lsub is still more complex than that of the
λ-calculus, as an unavoidable consequence of the inclusion of the substitution operation
inside the language.

Furthermore, a characterisation of standard reduction sequences based on the notion
of external steps, as described in Section 1.3.1 and Section 2.1.8, requires an order to
be defined on coinitial steps; this order is the embedding relation included in the ARS
model. In λ-calculus, the embedding is closely related with the syntactic nesting of
redexes. This is not the case for λ�lsub, implying a more complex definition of the em-
bedding. There are two reasons for this gap between semantic embedding and syntactic
nesting:
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1. The graphical equivalence introduced in Section 4.1 and noted �, which relates
different terms describing the same linear logic proof-net [Gir87]. While the em-
bedding between steps should be invariant w.r.t. �-equivalence, the latter equates
terms having different structure. E.g., consider the following equivalent terms

t1 t2 t3

pypxrqqrx{3sry{4s � pypxrqqry{4srx{3s � py ry{4spxrqqrx{3s

where r is a redex. Each of these terms includes three steps: two ls-steps, for
the occurrences of x and y bound by the explicit substitutions rx{3s and ry{4s
respectively, and the step whose pattern is r. Let us call these steps ax, ay and
b respectively. In t1, the subterm corresponding to ax is pypxrqqrx{3s, while ay
involves the whole term. Hence we have ay nesting ax in t1. A similar analysis
yields that ax nests ay in t2. In turn, in t2 we have ay nesting b, whilst these two
steps are disjoint in t3.

2. The fact that a step a can duplicate another step b, where a does not syntactically
nest b. E.g., let us consider

t � ppxrx{ysqpw rw{2sqqry{4s

and call again ax and ay the steps corresponding to the occurrences of x and y
bound by the corresponding explicit substitutions. Performing ax yields

t1 � ppy rx{ysqpw rw{2sqqry{4s

thus duplicating ay; observe the two occurrences of y bound by ry{4s in t1. But
ax does not nest ay; in fact, it is the other way around.

We introduce an embedding relation, the box order defined in Section 4.5, which
takes into account these considerations. The resulting ARS does not enjoy the Enclave–
Creation nor the Enclave–Embedding axioms, reflecting the subtle behavior of λ�lsub; cfr.
Section 4.5.2.

The desired standardisation results are obtained by developing a novel abstract proof
in the ARS model, described in Section 4.6.

6.1.3 Equivalence of reductions in infinitary rewriting

As described in Section 1.4.3, equivalence of reductions is defined as the set of equations
on proof terms deducible by equational logic from a set of basic equations. In turn, the
basic equations describe the permutation of adjacent steps. The result is the permutation
equivalence relation � on proof terms.

Infinity arises in the equivalence judgements of the defined equational theory in
several ways, besides the basic fact that proof terms can be infinite objects. We comment
some sources of infinity in these judgements, using the rules µ : fpxq Ñ gpxq and
ν : gpxq Ñ jpxq.

• Consider the reduction sequences:

fω Ñ gpfωq Ñ gpgpfωqq�� gω Ñ jpgωq Ñ jpjpgωqq�� jω

fω Ñ gpfωq Ñ jpfωq Ñ jpgpfωqq Ñ jpjpfωqq�� jω



216 CHAPTER 6. CONCLUSIONS

corresponding to the proof terms

�i ω g
ipµpfωqq � �i ω j

ipνpgωqq �i ω j
ipµpfωqq � jipνpfωqq

Both reduction sequences comprise exactly the transformation of each f into g,
and subsequently into j. The difference between them is the order in which the
steps are performed. Hence the reduction sequences are permutation equivalent,
so that the same should happen to the proof terms denoting them.

Observe that to transform the former reduction sequence, or equivalently the for-
mer proof term, into the latter one, an infinite number of ν-steps must be per-
muted, each one with an infinite number of µ-steps.

• Consider the terms described by the equations

t � hpfpfpaqq, tq t1 � hpgpgpaqq, t1q

and the following two reduction sequences which transform t into t1: one which
applies successively the two steps fpfpaqq Ñ fpgpaqq Ñ gpgpaqq in each occurrence
of fpfpaqq in t, and the other analogously for the steps fpfpaqq Ñ gpfpaqq Ñ
gpgpaqq. To verify the equivalence of these infinite reduction sequences, an infinite
number of disjoint step permutations must be considered. From a different point
of view, each of these reduction sequences is an infinite concatenation where each
component is the two-step sequence shown; a step permutation must be performed
on each of the infinite components to verify their equivalence.

Both issues suggest the need to define some kind of “getting to limits”, cfr. [Kah10],
in order to build equational reasonings of an infinite nature. Furthermore, some method
to reason about the set of valid judgements must be provided. Length, and also depth,
of judgements turn out to be inadequate in the infinitary setting. We remark that
equational reasoning on infinite objects is a subject of current research; cfr. [Kah10].

We handle these issues by adding the following features to the equational logic-based
definition of the permutation equivalence relation � .

1. We add a specific equational logic rule to handle step permutations in each com-
ponent of an infinite concatenation.

2. We add a rule to formalise the idea of “getting to limits”: given two reduction
sequences ψ and φ, if for any ε ¡ 0, ψ can be proved equivalent to some ψ1, and φ
equivalent to some φ1, such that the distance between ψ1 and φ1 is less than ε, then
we can conclude that ψ and φ are themselves equivalent. The distance between
two strongly convergent reduction sequences is inverse to the minimum depth of
their respective remaining parts following a maximal common prefix. We notice
that the “getting to limits” rule cannot be used, in turn, when proving ψ � ψ1

and φ � φ1.

3. We associate a countable ordinal to each judgement, so that the ordinal for the
conclusion of a rule is strictly greater than that of any of its premises. In this way,
transfinite induction can be used to reason about judgements, even in the presence
of rules having an infinite number of premises.
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6.2 Generic models in this thesis

The material and achievements of this thesis can be seen from a different perspective:
that of the generic models used to study the addressed rewriting systems. In the author’s
opinion, the material included in this thesis supports the utility and value of the generic
models as a tool to study rewriting systems.

We remark that, as discussed in Section 6.1, the study of the subjects (normalisation
for PPC, standardisation for λ�lsub, equivalence of reductions for infinitary rewriting) we
examine through the ARS and proof term models, is a far from trivial task. We also want
to point out that we were able to extend the presentations of the ARS and proof term
models taken as reference ([Mel96] and [BKdV03] Sections 8.2 and 8.3, respectively).
Such extensions are needed in order to obtain the desired results about the rewriting
systems concerned in this thesis, summarised in page 213. In all the cases, the extensions
preserve the basic ideas underlying the conception of each generic model.

In the rest of this section, we examine the conclusions we can draw from the use of
generic models in this thesis, in different aspects:

• the insights that the ARS and the proof term models can give to the understanding
of the behavior of a rewriting system,

• the contributions made in this thesis to the ARS and the proof term models,
related to the extensions to these models just commented, and

• some preliminary notes for a comparison between different generic tools to study
rewriting systems.

6.2.1 Generic models give useful insights

The ARS model

The Pure Pattern Calculus (PPC) and the Linear Substitution Calculus (λ�lsub) are mod-
eled in this thesis as Abstract Rewrite Systems (ARS).

As a result from this experience, we found that the ARS model gives useful insights
to the understanding of a rewriting system’s behavior. This seems to be particularly
the case for the embedding axioms, described in Section 2.1.5. The failure of a system
to uphold an axiom indicates peculiarities to be taken into account when assessing that
system’s properties. On the contrary, the axioms being verified by a rewriting system
indicate aspects in which the behavior of that system coincides with what is intuitively
expected.

The Linearity axiom expresses a basic condition a step must satisfy to have the power
to duplicate or erase other steps. It is a basic guide to shape the embedding relation, as
described for λ�lsub in Section 4.5. This axiom, together with Context-Freeness, form a
basic regularity requirement for the residual and embedding relations. All the rewriting
systems studied in this thesis (namely PPC, λ�lsub and the first-order, left-linear, infinitary
term rewriting systems) satisfy both axioms.

We notice the difference between the statement of the Context-Freeness axiom as it
appears in [Mel96] and in this thesis, and the following stronger variant, proposed in
[GLM92]:

Let a, b, c P ROptq, bvawb1, and cvawc1.
Then a   c, or pb   c Ø b1   c1q ^ pc   b Ø c1   b1q.
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This statement does not hold, neither for the λ-calculus if we consider the argument
order (i.e., that the α-labeled step in pλxα.squ embeds the steps inside u, and does not
embed those inside s), nor for λ�lsub if we consider the analogous box order. A simple
example for each of these rewriting systems follow:

pλxα.Iγxqrβ
a
ÝÑ Iγrβ pλxα.Iγxqrβ

a
ÝÑ Iγxrx{rβ s

where a, b and c are the steps labeled with α, β and γ respectively, in the term
pλxα.Iγxqrβ. In both cases, a �  c, c �  b and c1   b1.1 The weaker version of Context-
Freeness allows to use the box order for λ�lsub.

Besides Linearity and Context-Freeness, PPC enjoys the Enclave–Creation and Enclave–
Embedding axioms, and it does not satisfy Stability. The counterexamples for the latter
correspond to disjoint ways of creating a matching failure, which is precisely the charac-
teristic which must be particularly considered in order to define a normalising reduction
strategy for that calculus.

On the other hand, the fact that PPC enjoys both enclave axioms, as well as Context-
Freeness, yields a high degree of invariance in the embeddings of residuals. This obser-
vation is further reinforced by the addition of the novel axiom Pivot, which complements
Context-Freeness, Enclave–Embedding and Enclave–Creation; cfr. Section 3.1.4. The de-
gree of invariance stated by these axioms is required to verify that a certain kind of
multistep permutation is allowed (namely, that it is possible to permute a dominated
multireduction w.r.t. a free one, such that the dominated and free properties are unal-
tered), cfr. Section 3.3.2. In turn, the latter result is crucial in order to prove that the
defined strategy is normalising.

The situation for λ�lsub is somewhat inverse: besides Linearity and Context-Freeness,
while we conjecture that this calculus, equipped with the box order, enjoys Stability,
we show through counterexamples that it does not satisfy neither Enclave–Creation nor
Enclave–Embedding; cfr. Section 4.5.2. We also conjecture that λ�lsub enjoys the following
weakened forms of Enclave–Creation and Enclave–Embedding.

Enclave–Creation (–) Let b   a, bvawb1 and Hvawc1. Then c1 �  b1.

Enclave–Embedding (–) Let b   a   c, bvawb1 and cvawc1. Then c1 �  b1.

indicating that the irregular behavior of this calculus is bounded in some sense: if b   c,
then c1 can be free from (i.e. not embedded by) b1, but it cannot embed b1 in turn.

A note on Stability: as shown in Section 4.5.2, there is a case in which a step (again,
a gc-step) can be created by the contraction of either of two different steps. But Stability
is not compromised, since the creating steps are not disjoint.

The proof term model

Reduction sequences, or more generally any form of contraction activity (cfr. Sec-
tion 1.3.2), for infinitary first-order, left-linear term rewriting systems, and also the
equivalence on reduction sequences (in fact, on any form of contraction activity), are
described in the proof term model.

In our opinion, this representation contributes to the understanding of some aspects
in infinitary rewriting.

1In the λ�lsub example, c1  2
B b1, since c1  1

B d1  1
B b1 where d1 is the created ls-step on the free

occurrence of x in Iγx rx{rβ s.
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• The characterisation of permutation equivalence yields a clear view about the
nature of the permutations needed to prove the equivalence of two reduction se-
quences. It also helps to understand in which cases some contraction activity
exploiting parallelism, i.e. a simultaneous development, and a reduction sequence
(that is, a totally sequential form of contraction activity), are equivalent in the
infinitary setting.

• The obtained characterisation of permutation equivalence allows to shed some light
on the phenomenon of infinitary erasure, cfr. Section 5.3.4.

• Proof terms can also be a tool to analyse infinitary developments, which corre-
spond exactly to the base layer in the definition of infinitary proof terms given
in Sections 5.2.1 and 5.2.2. This direction is not pursued in the present thesis;
we describe some conjectures in Section 5.5.1, cfr. a footnote in page 196. In
the literature, cfr. [BKdV03], Section 12.5, fore a study of properties of infinitary
development using different tools.

6.2.2 Contributions to the generic models

The ARS model

We summarise the main results obtained by means of the ARS model in this thesis:
for PPC, we prove that the reduction strategy defined is indeed normalising; and w.r.t.
λ�lsub we prove, for every reduction sequence, the existence of an equivalent s.r.s., and
moreover that such s.r.s. is unique modulo square equivalence.

Similar results are present in [Mel96]. In that work, the normalisation of external
reduction strategies is proved in Section 5.2 (cfr. Thm. 5.2, page 137), and the existence
and uniqueness (modulo square equivalence) of s.r.s. for any class of equivalent reduc-
tions is stated in Section 4.3 (cfr. Thm. 4.2, page 81) and proved in Section 4.4. However,
both of these results require the ARS to satisfy all the embedding axioms, which is not
the case for neither PPC nor λ�lsub (endowed with the box order); cfr. Sections 3.4.2
and 4.5.2.

This thesis includes two novel proofs, which allow to obtain normalisation and stan-
dardisation results for ARS which fail to verify some of the embedding axioms.

1. The novel normalisation proof is described in Section 3.3, cfr. Thm. 3.3.14, and
applied to PPC in Section 3.5.2, cfr. Thm. 3.5.26.

2. The standardisation proof is described, and applied to λ�lsub, in Section 4.6, cfr.
Thm. 4.6.3 and Thm. 4.6.5.

We think that these proofs can be considered as a contribution to the ARS model,
and specifically to its capability to yield strong results for rewriting systems showing
peculiarities in their behavior.

We remark that the abstract normalisation proof included in this thesis involves the
use of the gripping relation and the concepts of multisteps and multireductions, elements
of the ARS model present in [Mel96], but applied there to other purposes. Namely, the
gripping relation is introduced as a means to state and prove an abstract proof of FD,2

2which we use to obtain FD for PPC, cfr. Section 3.4.3, page 82.
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while multisteps and multireductions are applied in an abstract proof of confluence; cfr.
Chapter 3 and Sections 2.3.2 to 2.3.6 in [Mel96], respectively.

On the other hand, the standardisation proof makes a subtle use of two ARS, differing
only in their embedding relation. The morale of this proof can be described as follows:

If an ARS AP , whose embedding relation is a partial order, verifies the initial
axioms, FD, SO, Linearity and Context-Freeness, and this partial order can be
completed to a total order, resulting in an ARS AT , such that AT verifies the
remaining embedding axioms (namely, Enclave–Creation, Enclave–Embedding
and Stability) as well, so that AP enjoys the existence of s.r.s. result and
AT satisfies the stronger uniqueness of s.r.s. result, then the uniqueness
result can also be obtained for AP .

We remark that this argument does not involve the Stability axiom. For the original
ARS, satisfying this axiom is not required. For the ARS whose embedding relation is
a total order, there are no a, b verifying a ‖ b, while the statement of Stability, cfr.
Section 2.1.5, has the form “Assume a ‖ b. Then . . . ”. Therefore, the axiom holds
immediately for such ARS.

One could wonder whether this statement applies to the ARS defined for PPC in
Section 3.4.3, obtaining in this way a result of uniqueness of s.r.s. for that rewriting
system. The answer is negative, because there is no way to complete the embedding
relation to a total order such that the resulting ARS verifies the Enclave–Creation axiom.
Let us consider the term

t � pλtxup px m s.xq pp p Ialoomoon
a

qp Ifloomoon
b

qp Idloomoon
c

qq

whose three steps are indicated. As described in Section 3.4.2, we have

t
b
ÝÑ

d1hkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
pλtxup px m s.xq pp p Ialoomoon

a1

q f p Idloomoon
c1

qq t
c
ÝÑ

d2hkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
pλtxup px m s.xq pp p Ialoomoon

a2

qp Ifloomoon
b2

q dq

where cvbwc1, bvcwb1, Hvbwd1, Hvcwd2, d1   c1 and d2   b2. Let  t be a total order
extending  , so that d1  t c

1 and d2  t b
2. Moreover, b and c must be comparable w.r.t.

 t. If b  t c, then d2  t b
2 contradicts Enclave–Creation. Otherwise c  t b, in this case

the axiom is contradicted by d1  t c
1.

The proof term model

The main, and obvious, contribution to the proof term model is its extension to infinitary
(first-order, left-linear) term rewriting. We remark that, as verified in Section 5.4, any
reduction sequence3 can be denoted by a proof term, and moreover that this denotation
is unique modulo rebracketing.

The definition of the set of proof terms can be considered as an extension of that given
for the finitary case in [BKdV03], Section 8.2. The basic principles are the same: the
signatures coincide, the restrictions for a term in that signature to be a valid proof term
apply to the occurrences of the dot, i.e. the concatenation symbol. The main differences

3More precisely, any reduction sequence whose length is a countable ordinal, therefore including
particularly all convergent reduction sequences. Cfr. [KdV05].
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are the addition of a convergence condition to these restrictions, and a special formation
rule for infinite concatenations.4

Analogously, the characterisation of equivalence on reductions extends that given for
finitary proof terms. Again the basic idea, namely to model permutation equivalence by
resorting to equational logic, coincide. Moreover, the basic equations are the same. The
additions for infinitary rewriting are those detailed in Section 6.1.3: special care is taken
with infinite concatenation, a rule is added to model the “getting to limits” operation,
and transfinite induction is used to reason about equivalence judgements. We point out
that the characterisation of the equivalence of reductions given in [BKdV03] Section 8.3
fail to capture all the cases of reduction sequences which sanctioned as equivalent in
infinitary rewriting, particularly those involving infinite reduction sequences. The ex-
tension we introduce in Section 5.3 addresses these shortcomings; several examples are
given there.

In our opinion, the fact that the main definitions of the proof term model can be
extended to infinitary rewriting, preserving the ideas underlying those definitions, is an
argument in favor of the strength of this generic model of rewriting systems. We notice
that the compression proof presented in Section 5.5 shows the capability of the obtained
model of infinitary rewriting to develop proofs of relevant properties.

On another front, we want to stress that the characterisation of permutation equiv-
alence given in Section 5.3.2 is a successful case of equational logic applied to infinitary
objects. We hope this work contributes to the development of infinitary equational logic
on its own.

6.2.3 Towards a comparison of generic models

We want to remark some points about the nature, features and strengths of the two
generic models used in this thesis. Of course, the following comments reflect the author’s
personal view, obtained from the experience of the work which led to this thesis.

The strengths of each model stem, in the author’s opinion, from the principles shap-
ing each of them.

The ARS model has a highly abstract nature, as highlighted in its name. We recall
that all the information about the steps is given in the form of relations (such as the
residual, embedding and gripping relations described in this thesis); besides them, only
the identity of each step, and its source and target objects, are part of the model. The
axioms modeling the expected features of a rewriting system are defined in terms of
these abstract relations. In turn, the statement of the properties which can be proved
in this model refer to the relations and axioms just mentioned.

In the author’s view, the modeling of rewriting systems as ARS offers a remark-
able value, besides the possibility of profiting from the abstract proofs which can be
expressed in that model. The abstract nature of the elements comprising an ARS (cfr.
Section 2.1.1) and the description of the features of rewriting systems given by the ax-
ioms (cfr. Section 2.1.3 to 2.1.6), provide a framework which can give useful insights
for the better understanding of a system’s behavior, as described for PPC and λ�lsub in

4While the finitary and infinitary definitions of proof terms differ in one aspect, namely how the
source and target of a proof term are computed (cfr. Section 2.2.2 and Sections 5.2.1, 5.2.2 for finitary
and infinitary proof terms respectively), the infinitary definitions are perfectly adequate for the finitary
proof terms as well.
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Section 6.2.1, and which can also be valuable for the comparison of rewriting systems
having different conceptions.

The proof term model, in turn, is limited to term rewriting. In this model, the
structure of the terms being rewritten is preserved in the proof terms. A consequence
is that this model must be explicitly adapted in order to expand its scope to rewriting
systems differing in their basic features, as done in this thesis for infinitary rewriting,
and in [Bru08] for higher-order rewriting.

The proof term model is focused on individual proof terms, where each proof term
denotes a particular reduction. The identity of a step, which is a central concept in the
ARS model, is not present in the proof term model. The detailed description of a partic-
ular reduction in this model, allows to denote, distinguish, and also combine, sequential
and parallel contraction. Localised contraction can also be adequately described in the
proof term model; cfr. Section 1.3.2. Moreover, in the author’s opinion, the explicit
rendering given by proof terms yields a more descriptive view of how a reduction can be
transformed in another, equivalent one. Considering a first-order term rewriting system
including the rule µ : fpxq Ñ gpxq, the equivalence of the reduction sequences

fpfpaqq Ñ fpgpaqq Ñ gpgpaqq and fpfpaqq Ñ gpfpaqq Ñ gpgpaqq

can be justified in the proof term model by means of the following permutation equiva-
lence judgement

fpµpaqq � µpgpaqq � µpµpaqq � µpfpaqq � gpµpaqq

In the author’s opinion, this justification is a clear description of the permutation of steps
which allows to transform the first reduction sequence into the second, or vice versa;
furthermore, it also suggests that both steps could also be contracted simultaneously,
yielding a third option to organise the contraction of these steps.

The rendering of the same situation in the ARS model is somewhat less direct, in
the author’s view. We could have the steps

a : fpfpaqq Ñ gpfpaqq b : fpfpaqq Ñ fpgpaqq

a1 : fpgpaqq Ñ gpgpaqq b1 : gpfpaqq Ñ gpgpaqq

and avbwa1, bvawb1 in the residual relation, so that the definition of permutation equiva-
lence in the ARS model, cfr. Dfn. 2.1.18, yields b; a1 � a; b1.

The nature of each model is reflected in the way orthogonality is handled in each
of them. Recall that from a syntactic perspective, orthogonality is related with the
absence of critical pairs [KB70, Hue80]. Local confluence of orthogonal steps arises as
a consequence. This view leads to weak forms of orthogonality, such as the definition
of almost orthogonal and weakly orthogonal rewriting systems; cfr. [vO94, vR97, vO99].

The ARS model defines orthogonality from a different perspective: two steps are
defined as orthogonal iff the contraction of their respective residuals yields a local con-
fluence diagram. This is the Semantic Orthogonality, or SO, axiom, introduced in Sec-
tion 2.1.4. Taking into account this semantical perspective of orthogonality, we can con-
sider some almost orthogonal and weakly orthogonal rewriting systems in equal terms
with orthogonal ones.5

5However, this is not always the case. Consider the first-order term rewriting system whose only rule
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In this thesis, we have profited from the abstract view of orthogonality given by the
ARS model. The complex matching operation of PPC weakens the meaningfulness of
the concept of critical pair to understand this calculus. In turn, λ�lsub has critical pairs.
Nevertheless, we consider PPC and λ�lsub as semantically orthogonal systems.

We mention that systems which fail to satisfy the semantic characterisation of or-
thogonality, can also be studied in the ARS model. A compatibility relation is added
to identify the pairs of mutually orthogonal steps. We did not use this relation in the
present thesis.

On the other hand, a proof term denotes a particular reduction, in which for any
potential conflict due to a critical pair, a decision has already been taken. Proof terms
encode explicitly each decision taken: different decisions for the same critical pair give
rise to different, non equivalent, proof terms. E.g., if we consider the rules

µ : fpxq Ñ gpxq τ : fpjpxqq Ñ gpnpxqq π : jpxq Ñ npxq

then the proof terms µpπpaqq and τpaq are not equivalent, even when their source and
target terms coincide, fpjpaqq and gpnpaqq respectively. While the proof term µpπpaqq
can be proved to be equivalent to either sequentialisation of its two steps, i.e. µpjpaqq �
gpπpaqq and fpπpaqq � µpnpaqq, neither of these proof terms can be equated, by means
of the equations and rules described in Section 5.3.2, to τpaq.6

In the general case, assume two steps a and b, which form a critical pair. There is
no way to contract a, and subsequently a residual of b, in the same reduction sequence.
Analogously, it is not possible to contract b and later a residual of a. The reason for this
is straightforward: the contraction of a leaves no residuals of b, and vice versa. As proof
terms denote reduction sequences,7 no proof term can be built in which the contraction
of both a and b (or their residuals) is denoted. The focus that the proof term model
puts on individual reductions, implies that lack of orthogonality of a rewriting system
is simply not a concern.

Finally, we want to mention that the generic formalisms for the definition of
higher-order rewriting systems, such as CRS [Klo80], HRS [Nip91, MN98] and ERS
[GKK05], can be considered as generic models for the study of rewriting systems, just
as the ARS and proof term models used in this thesis.

If a given rewriting system, let us call it A, can be adequately modeled in one of these
formalisms, then (obviously) any statement proved for that formalism is automatically
valid for A (provided that the corresponding hypotheses hold). Such model can also give

is fpfpxqq Ñ x. Then the term fpfpfpfpaqqqq has three steps, according to the following diagram:
ahkkkkkkkkikkkkkkkkj

f pf

chkkkikkkj
pfpfpaqqqloooooomoooooon

b

q

In this case, there exist a1, c1 verifying avcwa1 and cvawc1. On the other hand, avbw � cvbw � bvaw � bvcw �
H. Therefore cva; bvawwc1 while cvb; avbww � H, thus breaking SO.

An analysis of such cases of redex overlapping could benefit from the notion of weakly orthogonal
projection, as defined in e.g. [KKvO04] Section 2.4, and also from the material given in [BKdV00]
Section 5, where the notion of cluster residual is introduced.

6This is also the case for the equivalence relation on proof terms which characterise permutation
equivalence for finitary rewriting, described in this thesis in Section 2.2.3

7In fact, proof terms can denote different forms of contraction activity, where reduction sequences
are one of these forms.
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valid insights for the understanding of the features of A, and for possible comparisons
with other systems.

As shown in Chapter 4 for λ�lsub, to render a rewriting system in the ARS model,
and to prove that some expected feature holds for the resulting ARS, can be a difficult
task. On the other hand, we remark that the situation is analogous for the generic
formalisms for higher-order calculi: to describe a given rewriting system in one of these
formalisms can be far from trivial as well. We notice that the Pure Pattern Calculus
has been recently [vOvR14] modeled using the generic HRS formalism [Nip91, MN98].

6.3 Further work

We briefly describe possible lines of further investigation for each of the three main
directions developed in this thesis.

Normalisation for pattern calculi

We recall the two main results obtained in this direction: the definition of the multistep
reduction strategy for PPC we called S, cfr. Section 3.5, and an abstract normalisation
proof developed in the ARS model, which we used to verify that the strategy S is
normalising, cfr. Section 3.3.

In our opinion, the scope of the work presented in this thesis can be expanded in
both aspects, i.e. the definition of reduction strategies and the normalisation proof.

To this effect, a possible research direction is to elucidate whether the ideas un-
derlying the definition of S can lead to the definition of strategies for other rewriting
systems, and whether the eventually obtained strategies can be proven normalising by
resorting to the abstract normalisation proof described in this thesis. Particularly, it
would be interesting to obtain families of calculi definable in some generic formalism for
higher-order term rewriting systems, such as HRS, CRS or ERS, cfr. Section 6.2.3, for
which positive results in this direction could be obtained.

In a different direction, possible extensions or variations of the normalisation proof
can be analysed, with the aim to broaden its scope. Particularly, we notice that the
proof is applied in this thesis to the strategy S, which selects always a subset of the set of
outermost steps, in a term. On the other hand, the proof does not apply, in its present
form, to the parallel-outermost reduction strategy, which indicates the simultaneous
reduction of all the outermost steps in any term. This unpleasant observation is due
to the fact that the non-gripping property of a set of steps is not necessarily preserved
in its supersets. Specifically, if we call Optq the set of outermost steps in the term t,
then the set Optq does not satisfies the non-gripping property in the general case. E.g.,
consider the term

t � pλtxuax. Dxloomoon
b

qpIpa bqloomoon
a

q

whose only steps are a and b. As both steps are outermost, we have Optq � ta, bu.
Contracting a results in

c1hkkkkkkkkkkkkikkkkkkkkkkkkj
pλtxuax. Dxloomoon

b1

qpa bq

where bvawb1 and c1 ! b1. Hence Optq does not enjoy the non-gripping property. On the
other hand, Sptq � tau, this set is indeed non-gripping; observe Sptq � Optq.
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We conjecture that some variation of the given proof could apply to the parallel-
outermost strategy, e.g. for PPC. In this perspective, it could be possible that the property
of always selecting necessary sets of steps could suffice to guarantee that a reduction
strategy is normalising. A proof of this conjecture, or a counterexample falsifying it,
would be an interesting result in this direction.

Besides the proposed initiatives, which are of a theoretic nature, another avenue
for further work is to test the practical feasibility of the strategy S by developing an
interpreter of PPC based on it.

Standardisation for explicit substitution calculi

A possible direction of future work is the application of the ideas underlying the concep-
tion of the ES calculi at a distance, and the standardisation results for λ�lsub presented in
Chapter 4, to the study of the phenomenon of pattern matching, through the definition
of calculi with explicit matching for which standardisation results can be stated.

Several calculi with explicit matching, inspired from pattern calculi, have been pro-
posed; cfr. [For02, CK04, dCPdF11], and particularly [Bal10a] where a proposal based
on PPC is presented. While several properties, including confluence, simulation, preser-
vation of strong normalisation, and also properties of typed versions, have been stated
for these calculi, the author is aware of no result about standardisation for calculi with
explicit matching.

We conjecture that the application of the idea of distant substitution, expressed in
the ls-rule of the λ�lsub, namely Crrxssrx{us Ñ Crrussrx{us, can lead to the definition
of calculi with explicit matching having simpler reduction spaces, as described for λ�lsub
in Section 1.2.2.

Another interesting aspect derived from the material in Chapter 4 is the characterisa-
tion of s.r.s. given by the box order, defined in Section 4.5. Based on the isomorphism
between λ�lsub and linear logic proof-nets given by the graphical equivalence relation �
on λ�lsub terms, and the fact that the standardisation results described in Section 4.6
are stable by �, we conclude that the criterion described by the box order gives a sound
standardness notion for proof-nets. The possible application of analogous criteria to
other graph rewriting systems can be a subject of further investigation. Moreover, we
mention the existence of a different notion of standardisation for proof-nets, namely the
standardisation by levels, or depths [dCPdF11]. While the respective orders on coinitial
steps are in general incomparable, the study of possible relations between them could
shed some additional light about the behavior of proof-nets and ES calculi.

Infinitary rewriting

Some of the ideas underlying the proof of the compression result described in Section 5.5,
can be extended in order to obtain standardisation results for infinitary rewriting. As
noted in [Ket12], a concept of standard reduction being adequate for infinitary rewriting
should be used, since leftmost-outermost reduction does not fit in this setting. In terms
of the ARS model, an adequate embedding relation is needed. In our opinion, it is
possible to prove the existence of a unique standard reduction in each permutation
equivalence class, using depth-leftmost standardness as defined in [Ket12].

In turn, we hope that the eventual standardisation proof obtained can be applied
to the finitary case as well, thus yielding a standardisation proof, based on proof terms,
for first-order, left-linear finitary term rewriting. This proof would be an alternative to
that presented in [BKdV03], Section 8.5.
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Another avenue of further research on infinitary rewriting, for which the proof term
model can be adequate, is the comparison of permutation equivalence, as defined in
Section 5.3, with other notions of equivalence of reductions. We notice that in [BKdV03]
Chapter 8, and also in [vOdV02], the equivalence of several such notions is established
for finitary rewriting. We observe also that equivalence of infinitary reductions is defined
in [KKSdV95] and [BKdV03] Chapter 12, by extending the Lévy equivalence criterion
[HL91], based on the projection of reductions.

We also mention the possibility of using proof terms (more precisely, infinitary mul-
tisteps) to study properties of infinitary developments, as suggested in Section 6.2.1.

With respect to the extension of the proof term model to infinitary rewriting, a
variant of the equational logic defined to model permutation equivalence, in which the
Lim-rule can be used at most once in a derivation, and only as its last step, is worth
considering. We notice that the derivations of permutation equivalence in our examples
in Sections 5.3.3 and 5.3.4 are all of this form. We conjecture that a proof-theoretic
analysis could yield the equivalence between this restricted variant and the more general
version defined in this thesis.



Appendix A

Resumen en castellano

A.1 Introducción

La teoŕıa de la reescritura es el estudio de la transformaciones discretas y paulatinas
de cualesquiera objetos. Si los objetos de las transformaciones estudiadas son términos,
es decir, cadenas bien formadas de śımbolos, entonces se habla de reescritura de
términos.

La teoŕıa de la reescritura influye, en forma significativa y sostenida en el tiempo,
en diferentes áreas dentro de la ciencia de la computación. Respecto de la teoŕıa de la
computación, destacamos que el cálculo-lambda, uno de los sistemas de reescritura más
antiguos y más extensamente estudiados, conforma un modelo de cómputo equivalente
a los basados en máquinas de Turing y en funciones recursivas. En relación con la pro-
gramación informática, probablemente la contribución más relevante de la teoŕıa de la
reescritura es el rol preponderante que tuvo el cálculo-lambda para el surgimiento del
modelo funcional de la programación. La influencia del modelo funcional en la comu-
nidad global de programación está en rápido aumento, lo que se manifiesta tanto por
la popularidad creciente de lenguajes funcionales, basados preponderantemente en este
modelo, como por la adopción de técnicas y conceptos surgidos en el modelo funcional,
en otros lenguajes de programación, aśı como en la práctica de profesionales que no
necesariamente utilizan los lenguajes funcionales recién mencionados.

Un ejemplo sencillo de reescritura es la simplificación de expresiones aritméticas. El
cálculo del resultado de la epresión p1� 1q � p0� 0q puede ser descripto por cualquiera
de las siguientes transformaciones graduales:

p1� 1q � p0� 0q Ñ 1� p0� 0q Ñ 1� 0 Ñ 0 (A.1)

p1� 1q � p0� 0q Ñ p1� 1q � 0 Ñ 1� 0 Ñ 0

Observamos que la simplificación procede por medio de una secuencia de pasos de
reescritura. Cada paso tiene una dirección definida, de una expresión origen a otra
destino; de aqúı el uso de flechas, y no el de un śımbolo de igualdad o similar, para
denotar cada paso. Las expresiones paso de reducción y secuencia de reducción se
usan comúnmente en la bibliograf́ıa para denotar los pasos de reescritura y las secuencias
formadas por los mismos. Las secuencias de reducción también son conocidas como
reducciones o derivaciones. En esta tesis notamos t � u si existe, al menos, una
reducción con origen en el objeto t y destino en el objeto u. A la aplicación, o ejecución,
de un paso, también se la conoce como contracción. Una forma normal es un objeto
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que no es origen de ningún paso. Por ejemplo, la expresión 0 es una forma normal para
la simplificación de expresiones aritméticas. Cuando se utiliza la teoŕıa de la reescritura
para modelar una clase de cómputos, las formas normales suelen estar asociadas a los
resultados finales de dichos cómputos. Un objeto t se dice normalizante si existe una
forma normal u que verifica t� u.

En la mayor parte de los casos, se utilizan reglas de reescritura para especificar
las transformaciones válidas: cada paso debe corresponder a la aplicación de una regla.
Un conjunto de reglas de reescritura forma la base de la definición de un sistema de
reescritura. En nuestro ejemplo sobre simplificación de expresiones aritméticas, las
reglas:

1� xÑ x x� 0 Ñ 0

alcanzan para justificar cada uno de los pasos en las secuencias detalladas en (A.1). Al
aplicar una regla, cada variable que aparece en la misma puede ser reemplazada por
cualquier expresión. P.ej., el paso p1 � 1q � p0 � 0q Ñ 1 � p0 � 0q corresponde a una
aplicación de la regla 1 � x Ñ x, donde la variable x es reemplazada por la segunda
ocurrencia de 1 desde la izquierda, en la expresión origen del paso. El reemplazo de una
variable por una expresión más compleja al aplicar una regla de reescritura da lugar,
p.ej., a la siguiente secuencia:

p1� 1q � p0� 0q Ñ p1� 1q � 0 Ñ 0

cuyo segundo paso corresponde a la regla x � 0 Ñ 0, donde x se reemplaza por la
expresión p1� 1q.

Un rápido repaso de algunos conceptos del cálculo-lambda permite introducir al-
gunas nociones que se utilizan en esta tesis. El cálculo-lambda puede describirse como
una formalización minimalista de la aplicación de una función a un argumento. La sin-
taxis básica provee únicamente un conjunto de variables, un constructor de abstracción
que permite definir una función, y un segundo constructor para denotar la aplicación
de una función a un argumento. P.ej. el término

pλx.x� x� xq 3

denota la aplicación de la función pλx.x� x� xq al argumento 3. Las ocurrencias de la
variable x en el subtérmino x�x�x están ligadas por la abstracción λx. Los sistemas
de reescritura de términos que, como el cálculo-lambda, incluyen mecanismos para ligar
ocurrencias de variables, son conocidos como sistemas de reescritura de términos
de alto orden. Los sistemas de reescritura de términos de primer orden son
aquellos que no incluyen tales mecanismos.

El cálculo-lambda incluye una única regla de reescritura:

pλx.squ ÝÑ tx :� uus

conocida como regla β. Aqúı, tx :� uus denota la sustitución, en el término s, de las
ocurrencias (no ligadas) de x por u. Un ejemplo de paso de reducción es

pλx.x� x� xq 3 ÝÑ 3� 3� 3

Notar que este es un paso atómico en el modelo del cálculo-lambda: la aplicación de
la sustitución tx :� 3u a x � x � x se considera una operación externa al cálculo. Por
otro lado, la sintaxis del cálculo-lambda no provee ningún mecanismo para filtrar los
argumentos que puede aceptar una función.
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El conjunto de transformaciones posibles en un sistema de reescritura puede descri-
birse como un grafo, cuyos vértices son los objetos y cuyos ejes se corresponden con los
pasos de reducción. Este grafo es conocido como el espacio de reducciones, o espacio
de derivaciones, asociado al sistema de reescritura. Las secuencias de reducción se co-
rresponden, exactamente, con los caminos del espacio de reducción. Los pares de objetos
conectados forman la relación de reducción: el par xt, uy está en dicha relación si,
y sólo si, t � u, o sea, si existe una secuencia de reducción que tiene a t y a u como
origen y destino respectivamente. Nótese que el espacio de reducción de un sistema de
reescritura brinda un modelo más rico del mismo que su relación de reducción.

Los espacios de reducción suelen ser complejos, incluso los correspondientes a sis-
temas de reescritura sencillos. La Figura A.1 describe la fracción del sistema que modela
la simplificación de expresiones aritméticas, formada por las distintas maneras de sim-
plificar la expresión p1� 1q � p0� 0q.

p1� 1q � p0� 0q

vv ((
1� p0� 0q

zz ))

p1� 1q � 0

uu

{{

0� 0

++

1� 0

��
0

Figure A.1: Fracción de un espacio de reducción

Los conceptos y propiedades de sistemas de reescritura abordados en esta tesis están
estrechamente relacionados con los espacios de reducciones.

La noción de equivalencia entre reducciones puede servir como gúıa para el
estudio de espacios de reducciones. Dos reducciones se consideran equivalentes si com-
prenden, esencialmente, los mismos pasos de reducción, realizados en distinto orden.
Es el caso de las reducciones p1 � 1q � p0 � 0q Ñ 1 � p0 � 0q Ñ 1 � 0 y
p1 � 1q � p0 � 0q Ñ p1 � 1q � 0 Ñ 1 � 0, que se corresponden exactamente con el
rombo superior en la Figura A.1. Destacamos que la coincidencia de origen y destino no
es suficiente para que dos reducciones sean consideradas equivalentes. Por ejemplo, hay
dos formas distintas, no equivalentes, de transformar 1� p1� 1q en 1� 1, que consisten
en dos aplicaciones distintas de la regla 1 � x Ñ x, donde se reemplaza la variable x,
respectivamente, por p1 � 1q y por 1 (en el segundo caso, la regla aplica al subtérmino
p1� 1q).

Los llamados estudios de estandarización buscan definir subconjuntos minimales
del conjunto de reducciones de un sistema de reescritura, que cubran completamente la
relación de reducción. Una clase de reducciones standard debeŕıa incluir, al menos,
una reducción de t a u, para cada par de objetos que verifiquen t� u; este es el llamado
criterio de existencia de reducciones standard. Idealmente, una clase de reducciones
standard debeŕıa incluir exactamente una reducción de t a u por cada par que verifique
t� u; este es el llamado criterio de unicidad de reducciones standard.

Los trabajos sobre estandarización están ligados, en muchos casos, a la noción de
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paso de reducción externo, caracterizándose como standard las reducciones en las que
los pasos externos preceden a los internos. Según este criterio, en nuestro ejemplo sobre
simplificaciones aritméticas, el paso 1� p2� 0qlooooomooooonÑ 2�0 debe preceder, en una reducción

standard, al paso 1�p 2� 0loomoonq Ñ 1�0; por lo tanto, la reducción 1�p2�0q Ñ 2�0 Ñ 0

es standard, mientras que 1� p2� 0q Ñ 1� 0 Ñ 0 no lo es.

Una estrategia de reducción puede pensarse como un “plan” para llevar a cabo
una reducción partiendo de un determinado objeto. Formalmente, una estrategia puede
definirse como una función, que dado un objeto t, indica un paso de reducción sobre
t. Realizar este paso resulta en un nuevo objeto, el destino del paso elegido; llamemos
a este objeto u. La estrategia se aplica a su vez sobre u, obteniéndose un nevo paso a
aplicar, y aśı sucesivamente. Una estrategia también puede elegir, en lugar de un solo
paso, un conjunto (no vaćıo) de pasos de reducción a aplicar sobre el objeto t. En tal
caso, hablamos de estrategias multipaso. Los pasos elegidos sobre un objeto en una
estrategia multipaso deben aplicarse simultáneamente, para lo cual puede apelarse a la
noción de desarrollo completo1 de un conjunto de pasos.

El objetivo, al definir estrategias de reducción, es obtener una forma normal a partir
de cualquier término normalizante, mediante la aplicación sistemática de la estrategia.
Formalmente, se dice que una estrategia de reducción es normalizante si, y sólo si,
para todo objeto normalizante t, existe una secuencia t0, t1, . . . , tn, tal que t � t0, tn es
una forma normal, y ti�i es el objeto resultante de aplicar el, o los, paso/s de reducción
indicados por la estrategia para ti, para todo i   n. Se conoce como normalización
al estudio de estrategias de reducción, incluyendo el desarrollo de técnicas para definir
estrategias que resulten normalizantes, y de otras que permitan demostrar que una dada
estrategia es normalizante.

El marco general descripto nos permite enunciar las contribuciones principales de esta
tesis. Abordamos un estudio de caracteŕısticas del espacio de reducción para distintos
sistemas de reescritura de términos, según se detalla a continuación.

El Caṕıtulo 3 es un estudio sobre normalización, enfocado particularmente en es-
trategias multipaso. Se presenta una demostración abstracta de normalización para
estrategias multipaso, que da un conjunto de condiciones que resultan suficientes para
garantizar que una estrategia es normalizante. Estas condiciones se refieren, algunas
al sistema de reescritura para el que se define la estrategia, y otras a la estrategia en
śı. También se define una estrategia multipaso para el Pure Pattern Calculus (PPC), y
se demuestra que la estrategia definida es normalizante aplicando la demostración ab-
stracta recién introducida. El PPC pertenece a la familia de los cálculos con patrones,
que se focalizan en la formalización de la capacidad de pattern matching presente en los
lenguajes de programación funcionales. Las caracteŕısticas de este sistema de reescritura
hacen que sea particularmente pertinente el uso de estrategias multipaso.

El Caṕıtulo 4 es un estudio de estandarización para el linear substitution calculus.
Definimos dos criterios distintos para considerar una reducción como standard en este
sistema de reescritura; para ambos mostramos que cumplen el criterio de existencia, y
para el segundo de ellos mostramos que también cumple con el criterio de unicidad, uti-
lizando en este último caso una técnica de demostración novedosa. El linear substitution

1Usamos “desarrollo (completo)” como traducción al castellano de la locución inglesa “(complete)
development”.
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calculus pertenece a la familia de los cálculo con sustituciones expĺıcitas, cuyo foco es la
formalización detallada de los distintos pasos que conlleva la sustitución, partiendo de
un término t, de todas las ocurrencias de una variable x por otro término u. Destacamos
que la bibliograf́ıa conocida por este autor incluye sólo un estudio de estandarización
para un cálculo con sustituciones expĺıcitas, a pesar de la proliferación de propuestas de
definición de distintos sistemas de reescritura en esta familia, y de estudios concernientes
a sus propiedades formales.

En el Caṕıtulo 5, presentamos una caracterización de la equivalencia de reducciones
para sistemas de reescritura de términos infinitaria de primer orden. La reescritura in-
finitaria de términos estudia los sistemas que admiten reducciones en las que intervienen
términos infinitos, aśı como también reducciones que involucran una cantidad infinita
de pasos, de las cuales puede determinarse un término destino, apelando a la noción de
ĺımite. La longitud de una reducción infinita puede, incluso, superar estrictamente el
primer ordinal infinito, o sea ω: se admiten reducciones cuya longitud es ω � 1, ω � 2,
ω2, etc..

A partir de esta propuesta para modelar la equivalencia de reducciones, presentamos
una demostración alternativa del resultado de compresión de reducciones convergentes
para sistemas de reescritura lineales a izquierda, en el que se establece que toda reducción
convergente es equivalente a otra cuya longitud es, a lo sumo, el ordinal ω.

Finalizamos esta introducción destacando un rasgo común de las tres ĺıneas de tra-
bajo incluidas en esta tesis: se trata del uso de modelos genéricos de reescritura.
Un modelo genérico brinda un marco para el estudio de propiedades de sistemas de re-
escritura, brindando definiciones abstractas de conceptos comunes tales como secuencia
de reducción, espacio de reducciones, equivalencia de reducciones, etc.. A partir del
marco que provee un modelo genérico, se pueden desarrollar demostraciones abstractas
de propiedades, p.ej. vinculadas con la estandarización o la normalización. Los con-
ceptos definidos y las demostraciones desarrolladas en un modelo genérico, resultan en
consecuencia válidos para cualquier sistema de reescritura que pueda encuadrarse dentro
del marco que provee dicho modelo.

El material incluido en los Caṕıtulos 3 y 4 está basado en el modelo de los llamados
sistemas abstractos de reescritura, ARS por sus siglas en inglés, utilizando la formu-
lación desarrollada en [Mel96]. Por otra parte, el estudio sobre reescritura infinitaria
del Caṕıtulo 5 utiliza el modelo basado en la noción de proof term, tomando como
punto de partida la formulación para reescritura finita de primer orden desarrollada en
[BKdV03], Secciones 8.2 y 8.3. El Caṕıtulo 2 de esta tesis es una descripción de las
nociones fundamentales de estos dos modelos genéricos.

Destacamos que la presente tesis incluye contribuciones al desarrollo de los modelos
genéricos utilizados, como ser la demostración abstracta de normalización incluida en
el caṕıtulo 3, desarrollada en el modelo de los sistemas abstractos de reescritura, y la
extensión del modelo de proof terms para abarcar sistemas de reescritura infinitaria, que
introducimos en el Caṕıtulo 5.

Esta tesis puede ser considerada como un trabajo sobre el uso de modelos genéricos,
para estudiar sistemas de reescritura cuyas caracteŕısticas hacen particularmente desa-
fiante el estudio de sus espacios de reducción.
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A.2 Modelos genéricos de sistemas de reescritura

En este caṕıtulo se introducen los dos modelos genéricos usados en esta tesis, a saber:
el de los Sistemas Abstractos de Reescritura, o ARS por sus siglas en inglés, y el de los
proof terms.

Un Sistema Abstracto de Reescritura, o ARS, es una estructura que modela a
un sistema de reescritura. Los elementos básicos de un ARS son dos conjuntos, el de los
objetos que se reescriben, notación O, y el de los pasos de reducción, notación R. La
idea de “paso de reducción” en este modelo es similar al rol que tienen los pasos en un
un espacio de reducción: un paso es un eje que liga un objeto fuente con uno destino.
Esta idea se formaliza por medio de dos funciones: src, tgt : R Ñ O. Destacamos que
en este modelo un objeto, aśı como un paso, son meramente elementos en un conjunto;
no se incluye ninguna información sintáctica, acerca de la estructura de los términos, o
del subtérmino correspondiente a un paso. Tampoco se incluye información sobre qué
regla de reducción genera cada paso. Toda la información que se incluye en un ARS,
por fuera de los conjuntos de objetos y pasos, y de las funciones que describen fuente
y destino de cada paso, se produce por medio de relaciones definidas en el conjunto de
pasos.

La principal de estas relaciones es la de residuo, notación v�w; es una relación
ternaria. Se usa la notación avbwa1 para indicar pa, b, a1q P v�w. En tal caso, decimos
que a1 es un residuo de a después de b. La idea es que, siendo el origen de a el mismo
que el de b (o sea, srcpaq � srcpbq), a1 es un paso, cuyo origen es el destino de b (esto es,
srcpa1q � tgtpbq), y que “proviene” de a. Dicho de otra forma, a1 es (parte de) “lo que
queda” de a en el objeto destino de b. Veamos un ejemplo en el sistema de simplificación
de expresiones aritméticas; llamemos b al paso t � p1� 1q � p0� 0q Ñ 1� p0� 0q � u.
Notamos que el paso correspondiente al subtérmino 0� 0 en u, proviene del correspon-
diente al mismo subtérmino en t. Si llamamos a y a1 a los pasos correspondientes a 0�0
en t y u respectivamente, entonces tenemos avbwa1. Gráficamente:

t � p1� 1q � p0� 0q
b //

a

��

1� p0� 0q � u

a1

��

avbwa1

p1� 1q � 0 1� 0

En otros sistemas de reescritura, la relación de residuo es menos sencilla. Si consideramos
los siguientes ejemplos en el cálculo-lambda:

1)

bhkkkkkkkkikkkkkkkkj
pλx.3qppλy.yq5loomoon

a

q
b
ÝÑ 3 2)

bhkkkkkkkkkikkkkkkkkkj
pλx.xxqppλy.yq5loomoon

a

q
b
ÝÑ ppλy.yq5loomoon

a1

q ppλy.yq5loomoon
a2

q

3)

bhkkkkkkkikkkkkkkj
pλx. pλy.yqxloomoon

a

q5
b
ÝÑ pλy.yq5loomoon

a1

notamos que en 1), a no tiene ningún residuo después de b, mientras que en 2), atiene
dos residuos; en 3), el subtérmino correspondiente al paso a, que es pλy.yqx, es “trans-
formado” en pλy.yq5, el subtérmino correspondiente al residuo de a después de b.
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La mayor parte de los resultados que pueden obtenerse mediante el modelo ARS
apelan también a la relación de embedding entre pasos. Es una relación binaria que
notamos mediante el śımbolo  , usado en forma infija. Un par b   a en esta relación
indica que b tiene, al menos potencialmente, la potestad de multiplicar, o bien de borrar,
a; o sea, hacer que a tenga más de un residuo, o bien no tenga residuos, después de b.
De acuerdo a esta idea, cualquier ARS que modele el cálculo-lambda debe incluir b   a
para los casos 1) y 2) de los ejemplos recién descriptos. Estos ejemplos sugieren una
correlación entre la noción, semántica, de embedding, y el anidamiento sintáctico entre
(los subtérminos correspondientes a los respectivos) pasos de reducción, en sistemas de
reescritura de términos. En los modelos del cálculo-lambda como ARS descriptos en
[Mel96], y también en la representación de otros sistemas de reescritura, en particular
el Pure Pattern Calculus que estudiamos en el Caṕıtulo 3, una condición necesaria para
b   a es que el paso b anide sintácticamente al paso a. En el Caṕıtulo 4 mostramos una
excepción a esta correlación entre embedding y anidamiento.

Destacamos que la visión de un sistema de reescritura que presenta el modelo ARS
está orientada al espacio de reducciones del mismo.

Los elementos incluidos en un ARS, según lo descripto hasta el momento, permiten
describir en forma abstracta varias nociones y propiedades relevantes de sistemas de
reescritura. Dos pasos a y b cuyo origen coincide son ortogonales en este modelo, si
aplicar a, y luego los residuos de) b después de a, produce el mismo efecto (esto es,
tiene el mismo destino, y define la misma relación de residuos que) aplicar b, y luego los
residuos de a después de b. El siguiente gráfico muestra un caso sencillo:

t � p 1� 1loomoon
b

q � p 0� 0loomoon
a

q

b

ww

a

''
s1 � 1� p 0� 0loomoon

a1

q

a1

((

s2 � p 1� 1loomoon
b1

q � 0

b1

vv
u � 1� 0

Aqúı, a1 es el único residuo de a después de b, y análogamente, b1 es el único residuo
de b después de a. En este ejemplo podemos notar, asimismo, que la secuencia a; b1

puede obtenerse permutando los dos pasos que forman la secuencia b; a1. A partir de
la noción de permutación de pasos, se caracteriza la equivalencia entre reducciones
en el modelo ARS: dos reducciones son equivalentes si, y sólo si, cada una de ellaas
puede obtenerse como el resultado de una serie de permutaciones de pasos a partir de
la otra. La relación de embedding da lugar a una noción de paso externo, a partir de la
cual se deriva una caracterización abstracta de reducción standard.

El modelo ARS, incluyendo las relaciones de residuo y de embedding, tiene la riqueza
suficiente para desarrollar demostraciones abstractas de propiedades relevantes. En
[Mel96] se incluyen propiedades sobre estandarización y normalización, entre otros as-
pectos. En esta tesis se desarrollan una nueva demostración abstracta de normalización,
y otra de estandarización, en este modelo.

En las demostraciones abstractas se establecen condiciones que debe verificar un
sistema de reescritura para poder afirmar, para dicho sistema, la propiedad demostrada.
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Estas condiciones se especifican en la forma de axiomas, cuyos enunciados se basan
en las relaciones de residuo y de embedding. Estos axiomas permiten caracterizar, en
forma abstracta, distintas caracteŕısticas de un sistema de reeescritura, que resultan
pertinentes para su estudio.

Finalmente, mencionamos que para el estudio de normalización en sistemas no-
secuenciales desarrollado en el Caṕıtulo 3 requiere del agregado, en la definición de
un ARS, de una tercer relación entre pasos de reducción, llamada relación de gripping.

La noción de proof term es la base del otro modelo genérico de sistemas de reescritura
usado en esta tesis. Como veremos, este modelo resulta menos abstracto que el basado
en ARS. Existen varias formulaciones de este modelo, que apuntan a distintas familias
de sistemas de reescritura; en esta tesis nos basamos en la que se presenta en [BKdV03]
para reescritura de términos de primer order, cuyos conceptos principales presentamos
a continuación.

Un proof term para un sistema de reescritura de términos T , es un término en
una signatura que extiende la de T . Para cada regla se agrega un śımbolo que denotará
los pasos de reducción correspondientes a dicha regla. También se agrega un śımbolo
binario de concatenación, que se nota mediante el śımbolo � usado en forma infija.
Veamos algunos ejemplos de proof terms para el sistema de simplificaciones aritméticas,
dándole a las reglas estos nombres: µ : 1� y Ñ y, ν : y � 0 Ñ 0.

µp3q :
hkkikkj
1� 3 Ñ 3

1� νp1� 1q : 1� p

hkkkkkikkkkkj
p1� 1q � 0q Ñ 1� 0

3�νp2�1q � νp3q : 3�p

hkkkkikkkkj
p2�1q�0q Ñ

hkkikkj
3�0 Ñ 0

µp1q�p2�0q � 1�νp2q � µp0q : p
hkkikkj
1�1 q�p2�0q Ñ 1�p

hkkikkj
2�0 q Ñ

hkkikkj
1�0 Ñ 0

En estos ejemplos, se indica el subtérmino correspondiente a cada paso con una llave,
y el reemplazo de la variable y en la regla utilizada mediante subrayado. En el último
caso, se aprovecha que la concatenación es asociativa para omitir un par de paréntesis.

Una caracteŕıstica destacable de este modelo es que los śımbolos de regla, y también
el de concatenación, pueden combinarse de distintas formas. Esto permite denotar la
contracción simultánea y/o localizada de pasos de reducción, como se aprecia en los
siguientes ejemplos:

µp1q�νp2q : p1�1q�p2�0q ÝÑ� 1�0

µpνp2qq : 1�p2�0q ÝÑ� 0

2�
�
µp1q�3 � µp3q

�
: 2�pp1�1q�3q Ñ 2�p1�3q Ñ 2�3

donde ÝÑ� denota la aplicación simultánea de pasos de reducción. Observamos que
µp1q�νp2q , µp1q� p2� 0q � 1� νp2q y p1� 1q� νp2q � µp1q� 0 son tres proof terms
distintos, de forma tal que este modelo permite diferenciar la contracción simultánea de
pasos, de su contrapartida secuencial. En esta tesis usamos la locución actividad de
contracción para referirnos a las distintas formas de combinar pasos de reducción que
pueden ser distinguidas en el modelo de proof terms.

La equivalencia de reducciones puede describirse en el modelo de proof terms
a partir de la noción de permutación de pasos. Se define un conjunto de ecuaciones
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que formaliza una permutación de pasos; dos reducciones (o más generalmente, dos
actividades de contracción) se consideran equivalentes si, y sólo si, la equivalencia entre
los proof terms que las representan puede concluirse mediante lógica ecuacional a partir
de dichas ecuaciones. Las ecuaciones describen que tanto la sucesión formada por un
paso a seguido de (los residuos de) b, como la formada de b seguido por (los residuos
de) a, son equivalentes a la contracción simultánea de los dos pasos. La equivalencia
entre las dos secuencias se establece mediante la equivalencia de cada una de ellas con
la versión simultánea. P.ej., se establece que: p1� 1q� νp2q � µp1q� 0 � µp1q�νp2q �
µp1q � p2 � 0q � 1 � νp2q, formalizándose de esta forma la permutación entre los dos
pasos de la secuencia p1� 1q � p2� 0q Ñ p1� 1q � 0 Ñ 1� 0.

A partir de esta caracterización de la equivalencia de reducciones, en [BKdV03]
se obtienen resultados de estandarización para sistemas de reescritura de términos de
primer orden.

Finalmente, mencionamos que una segunda caracterización de la equivalencia entre
reducciones usando proof terms, basada en la noción de proyecciones, también aparece
en [BKdV03], en donde se establece la equivalencia entre estas dos caracterizaciones, y
también con otras que también se describen alĺı. Se introduce aqúı la caracterización
de la equivalencia mediante permutaciones sucesivas, porque es la que se extiende en el
Caṕıtulo 5 de esta tesis a sistemas de reescritura infinitarios.

A.3 Normalización

La noción de paso necesario está estrechamente relacionada con el estudio de la nor-
malización de sistemas de reescritura, que es el tema general de este caṕıtulo. Un paso
con origen en un objeto t se dice necesario si su contracción resulta ineludible para
obtener una forma normal a partir de t; o sea, si cualquier reducción con origen es t
y cuyo destino es una forma normal, incluye a ese paso, o bien a al menos uno de sus
residuos. Varios estudios de normalización están basados en la noción de paso necesario.
En particular, en [HL91] se demuestra que la contraccón sistemática de pasos necesarios
es normalizante.

Por otro lado, los enfoques basados en la noción de paso necesario no son aplicables
en sistemas de reescritura que admiten términos, que no son formas normales, y para
los cuales ninguno de sus pasos resulta necesario. Un ejemplo profusamente mencionado
en la literatura es el llamado disyunción paralela, que incluye las siguientes reglas:

orpx, ttq Ñ tt orptt, xq Ñ tt

El término orporptt, ffq, orpff, ttqq incluye dos pasos, correspondientes a los subtérminos
orptt, ffq y orpff, ttq. Las siguientes secuencias de reducción

orporptt, ffq, orpff, ttqq Ñ orporptt, ffq, ttq Ñ tt

orporptt, ffq, orpff, ttqq Ñ orptt, orpff, ttqq Ñ tt

cuyo destino es una forma normal, muestran que ninguno de los dos pasos del término
origen son necesarios: el paso de la izquierda (respect., de la derecha) no es utilizado en la
primer (respect., en la segunda) secuencia. Incluir términos, que no son formas normales,
y que no incluyen ningún paso necesario, es condición suficiente para considerar a un
sistema de reescritura como no secuencial; la definición precisa de esta noción escapa
al presente resumen.
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Varios trabajos coinciden en señalar la pertiencia de considerar estrategias multipaso
para obtener estrategias normalizantes en sistemas no-secuenciales. En particular, en
[SR93] se demuestra que la contracción sistemática de conjuntos necesarios de pasos es
normalizante para sistemas de reescritura de términos no-secuenciales de primer orden,
como es el caso de la disyunción paralela. La noción de conjunto necesario de pasos
generaliza la de paso necesario: un conjunto de pasos A con origen en un objeto t es
necesario si cualquier reducción con origen en t cuyo destino es una forma normal incluye
al menos un paso en A, o alguno de sus residuos.

En esta tesis se utiliza el modelo de los ARS para desarrollar una demostración
abstracta de normalización. Esta demostración se basa en la estructura de la que
aparece en [SR93], utilizando también algunas ideas que se proponen en [vO99]. Nuestra
prueba extiende la de [SR93], dado que el modelo ARS puede aplicarse a sistemas de
reescritura de alto orden. Por otro lado, se debe requerir una condición adicional sobre
los conjuntos de pasos: además de ser conjuntos necesarios, deben ser non-gripping,
condición surgida en el estudio abstacto de desarrollos completos incluido en [Mel96].

En la introducción se mencionó que la sintaxis del cálculo-lambda no incluye mecan-
ismos para filtrar los posibles argumentos de una función; una abstracción de la forma
λx.s puede ser aplicada a cualquier término. Esta situación contrasta con la práctica
habitual de los lenguajes de programación funcionales. Estos lenguajes incluyen una
caracteŕıstica conocida como pattern matching, por la que al definirse una función,
pueden especificarse restricciones sobre la forma de sus argumentos. Tomemos esta
definición en Haskell:

length [] = 0

length (x:xs) = 1 + length xs

La función length aśı definida sólo puede ser aplicada a listas; si se aplica esta función a,
p.ej., un número, se produce un error de matching. Además, presenta dos definiciones
distintas, para listas vaćıas (notación []) y no vaćıas (notación x:xs) respectivamente.

Los cálculos con patrones tienen como objetivo modelar formalmente el fenómeno
del pattern matching. El Pure Pattern Calculus, o PPC, pertenece a esta familia de
sistemas de reescritura. Varios cálculos con patrones, entre ellos el PPC, incluyen un
constructor de abstracción generalizada, de la forma λp.s, donde p es un patrón. Dichos
cálculos incluyen una generalización de la regla β, de la forma

pλp.squ Ñ tp{uus

donde tp{uus es el resultado del matching del argumento u respecto del patrón p. La
definición del matching de argumento contra patrón es uno de los aspectos principales
en la definición de un cálculo con patrones.

En estos cálculos con patrones, si p es un constructor de datos, entonces el siguiente
es un paso de reducción válido

pλpx y. yq pp 3 4q Ñ 4

mientras que la aplicación pλpx y. yq 3 desencadena un mecanismo de error especi-
ficado en la definición del cálculo, dado que el matching del argumento 3 respecto del
patrón px y es imposible. En el PPC, los errores de matching reducen en un paso a un
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término que representa a la función identidad, que notaremos como I. Por lo tanto, en
PPC tenemos

pλpx y. yq 3 Ñ I

Esta defnición del PPC permite modelar las alternativas en la definición de una función;
cfr. [JK09].

La sintaxis del PPC se describe en la Sección 3.4.1, y en [JK09]; los ejemplos que
brindamos a continuación usan una versión simplificada de dicha sintaxis. Una carac-
teŕıstica saliente del PPC es que cualquier término puede ser un patrón. En particular, un
patrón puede incluir ocurrencias libres de variables, para lo cual se indica expĺıcitamente,
para cada abstracción, cuáles son las variables que liga. P.ej. la función identidad puede
definirse en PPC mediante el término λtxux.x.

En el término

t � pλtxux.pλty,zuxpyzq.yqq

las dos ocurrencias de x están ligadas por el abstractor exterior. Esto permite generar
un patrón concreto a partir de la especificación genérica λty,zuxpyzq, aplicando t a un
término adecuado. En esta reducción

pλtxux.pλty,zuxpyzq.yqq a pap34qq Ñ pλty,zuapyzq.yq pap34qq Ñ 3

se aplica t al constructor de datos a; como consecuencia, se obtiene una función que
sólo acepta, como argumentos, estructuras de datos sobre ese constructor. Si aplicamos
t a una función, el patrón concreto será el resultado de un cómputo que se lleva a cabo
dentro del patrón, como en este caso:

pλtxux.pλty,zuxpyzq.yqqpλtx1,y1ux
1y1.py1x1qpp34q

Ñ pλty,zupλtx1,y1ux
1y1.py1x1qpyzq.yq pp34q

Ñ pλty,zupzy.yq pp34q Ñ 4

Estos ejemplos muestran la naturaleza dinámica de los patrones en PPC, que permiten
modelar formas de polimorfismo no presentes en los lenguajes funcionales utilizados
actualmente en el ámbito del desarrollo de software; cfr. [JK06b, JK09] al respecto.

Destacamos que la defnición del matching de PPC evita los problemas respecto de la
estabilidad del cálculo que podŕıan provenir de aceptar patrones como, p.ej., x y. P.ej.
en el término pλtx,yuxy.xqppλtzuz.zq3q, el matching del argumento pλtzuz.zq3 respecto del
patrón λtx,yuxy no es exitoso y tampoco produce un error de matching; el único paso
de reducción con origen en este término es el que corresponde al subtérmino pλtzuz.zq3.

Consideremos ahora la estructura de datos e xnombrey xgéneroy xfacultady, que
representa a un estudiante. La función λtxuex v i . x permite recuperar el nombre de
un estudiante varón que estudia ingenieŕıa. El término

pλtxuex v i . xqpepIaqpImqpIdqq

incluye tres pasos de reducción, correspondientes a pIaq, pImq y pIdq respectivamente.
Las secuencias de reducción

pλtxuex v i . xqpepIaqpImqpIdqq Ñ pλtxuex v i . xqpepIaqmpIdqq Ñ I

pλtxuex v i . xqpepIaqpImqpIdqq Ñ pλtxuex v i . xqpepIaqpImqdq Ñ I
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muestran que ninguno de estos pasos es necesario, y que por lo tanto, el PPC es un
sistema de reescritura no-secuencial. Por otro lado, destacamos que tpImq, pIdqu es un
conjunto necesario de pasos. El segundo paso de la primer reducción puede explicarse
como sigue: los segundos argumentos de la estructura encabezada por e en arguemto y
patrón son dos constantes distintas, m y v respectivamente. Esta falla en un argumento
alcanza para disparar el mecanismo de error de matching. En la segunda reducción, un
argumento análogo aplica al tercer argumento.

En este caṕıtulo definimos una estrategia multipaso para el PPC, y demostramos
que esta estrategia es normalizante, apelando a la demostración abstracta mencionada
anteriormente. Para esto mostramos que el PPC puede modelarse adecuadamente como
un ARS, verificándose todas las condiciones impuestas por la demostración abstracta. La
estrategia definida elige conjuntos necesarios y non-gripping de pasos. Destacamos que
esta estrategia se comporta exactamente como la leftmost-outermost para los términos
del PPC que tienen correspondencia inmediata en el cálculo-lambda, resultando “monopaso”
para dichos términos.

A.4 Estandarización para el linear substitution calculus

Como se indica en la introducción, la sustitución es considerada como una operación
externa en el cálculo-lambda. Por ejemplo, el siguiente:

pλx.x� x� xq Ñ 3� 3� 3

es un paso de reducción atómico. Por otro lado, el cómputo de sustituciones es un
elemento relevante en la evaluación de programas en los lenguajes funcionales, lo que
genera interés por modelos formales detallados de esta operación. El objetivo de los
cálculos con sustituciones expĺıcitas, o cálculos ES, es modelar detalladamente
la aplicación de una sustitución a un término. Brindamos una pequeña descripción de
algunas facetas de los cálculos ES, tomando como ejemplo una variación del cálculo λx,
[Ros92, BR95], en la que incluimos constantes.

Los cálculos ES proveen una construcción para denotar, expĺıcitamente, la aplicación
de una sustitución a un término. Aśı, si s y u son términos, entonces srx{us es un
término bien formado. Se incluye una regla de reescritura análoga a la regla β del
cálculo-lambda, de la forma:

pλx.squ Ñ srx{us

A diferencia de la regla β, la sustitución rx{us sólo se genera, no se evalúa. Se de-
finen reglas de reescritura adicionales para modelar detalladamente la evaluación de una
sustitución a un término. En el cálculo que usamos como ejemplo, estas reglas son:

pt1t2qrx{us Ñ pt1 rx{usqpt2 rx{usq pλy.tqrx{us Ñ λy.trx{us
xrx{us Ñ u crx{us Ñ c y rx{us Ñ y if y � x

Una sustitución se propaga (reglas en la primer ĺınea), generándose copias; cada copia
o bien se aplica, o bien se elimina (reglas en la segunda ĺınea).

La propagación de sustituciones implica que los espacios de reducción de los cálculos
ES tienden a ser extremadamente complejos. P.ej. para simular el paso de reducción del
cálculo-lambda pλx.pxpsxqq 3 Ñ p 3ps 3q hacen falta ocho pasos de reducción en λx, que
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pueden ordenarse en formas distintas, dando lugar a una gran diversidad de distintas
reducciones. Una de estas reducciones es:

pλx.pxpsxqq 3 Ñ ppxpsxqqrx{3s Ñ ppxqrx{3s ppsxqrx{3sq

Ñ prx{3sxrx{3s ppsxqrx{3sq Ñ prx{3sxrx{3s psrx{3sxrx{3sq

Ñ pxrx{3s psrx{3sxrx{3sq Ñ p 3 psrx{3sxrx{3sq

Ñ p 3 psxrx{3sq Ñ p 3 ps 3q

Los cálculos ES a distancia han sido propuestos recientemente. Estos cálculos ES
evitan la propagación y copia de las sustituciones, permitiendo que una sustitución se
aplique a una ocurrencia distante de la variable involucrada. Estos cálculos incluyen
una regla de la forma

Crrxssrx{us Ñ Crrussrx{us (A.2)

donde C es un contexto arbitrario que no liga la ocurrencia de x en Crrxss. De esta
forma, se obtienen cálculos cuyos espacios de reducciones tienen un menor grado de
complejidad. Este caṕıtulo estudia el linear substitution calculus, o λ�lsub, un cálculo
ES a distancia, que agrega la siguiente regla para eliminar sustituciones superfluas, de
acuerdo a la idea de garbage collection:

trx{us Ñ t if x R fvptq (A.3)

El paso de reducción pλx.pxpsxqq 3 Ñ p 3ps 3q puede emularse en λ�lsub como sigue:

pλx.pxpsxqq 3 Ñ ppxpsxqqrx{3s Ñ pp 3 psxqqrx{3s

Ñ pp 3 ps 3qqrx{3s Ñ pp 3 ps 3qq

Esta reducción resulta más sencilla que la correspondiente a un cálculo ES con propa-
gación, como la desarrollada anteriormente para λx.

En este caṕıtulo se realiza un estudio de estandarización para el cálculo λ�lsub, basado
en el modelo ARS. Dos caracteŕısticas de este sistema de reescritura hacen que modelarlo
como un ARS resulte una tarea no trivial. Una de ellas es la existencia de distintos pasos
de reducción con origen en el mismo término, que corresponden exactamente al mismo
subtérmino. Es el caso de dos ocurrencias de la misma variable, que se corresponden con
dos pasos distintos generados por la regla (A.2). P.ej. el subtérmino correspondiente a
los dos pasos en el término pxxry{zsqy es xxry{zs. Esto provoca que para identificar un
paso de reducción, no alcanza con el subtérmino correspondiente. Para pasos generados
por la regla (A.2), el contexto C debe tenerse en cuenta. El otro aspecto problemático de
λ�lsub es que la relación de embedding no se corresponde con el anidamiento sintáctico de
pasos de reducción. Recordemos que si a y b son pasos con origen en el mismo término,
entonces a   b indica que la contracción de a podŕıa duplicar, o bien eliminar, b. Si
consideramos el término t � xrx{ysry{zs y llamamos ax y ay a los pasos generados por
la regla (A.2) correspondientes a las ocurrencias de x e y respectivamente, notamos que
ay anida sintácticamente a ax, como se aprecia en la siguiente figura:

ayhkkkkkkikkkkkkj
xrx{ysloomoon

ax

ry{zs
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Por otro lado, la contracción de estos pasos resulta en:

xrx{ysry{zs
axÝÑ y rx{ysry{zs � t1 xrx{ysry{zs

ay
ÝÑ xrx{zsry{zs � t2

Se observa que la contracción de ax duplica ay; nótense las dos ocurrencias de y en t1.
Por lo tanto, en cualquier modelo de λ�lsub como un ARS, la relación de embedding debe
incluir el par ax   ay, lo que se contradice con el anidamiento sintáctico.

Un primer ARS que describe λ�lsub, definido teniendo en cuenta las peculiaridades
recién descriptas, permite obtener resultados de existencia y unicidad de reducciones
standard para este cálculo, apelando a demostraciones abstractas desarrolladas en [Mel96].

Sin embargo, estos resultados no resultan satisfactorios, debido a la estrecha relación
que existe entre λ�lsub y las proof nets de la lógica lineal. Se puede establecer una
equivalencia operacional fuerte entre términos de λ�lsub y proof nets, que se convierte en
un isomorfismo si se considera, en lugar del conjunto de términos de λ�lsub, su cociente
por la relación de equivalencia generada por tres ecuaciones. Estas ecuaciones reflejan
que la ubicación precisa de una sustitución dentro de un término es, en muchos casos,
irrelevante; una de ellas es:

trx{usry{ss � try{ssrx{us if x R fvpsq ^ y R fvpuq

En este isomorfismo, una proof net se corresponde, exactamente, con una clase de equi-
valencia de términos. Por lo tanto, los resultados que se obtengan a partir de un modelo
de λ�lsub como ARS, cuyos objetos sean las clases de equivalencia del conjunto cociente
recién mencionado, serán válidos también para proof nets.

Para obtener un ARS con estas caracteŕısticas, establecemos una biyección entre los
conjuntos de pasos de reducción de términos equivalentes, valiéndonos de la técnica de
etiquetado (labeling en inglés), mostrando que la relación de residuos es una bisimulación
respecto de esta biyección. Como la relación de embedding del primer ARS definido no
es invariante respecto de la biyección entre pasos de reducción, definimos una nueva
relación de embedding, que es una restricción de la anterior, y que śı resulta invariante.

De esta forma obtenemos un segundo ARS, que modela λ�lsub considerando que el
conjunto de objetos que se reescriben es el cociente definido en el conjunto de términos,
resultando cada término individual un mero representante de su clase de equivalencia.
Este ARS cumple con las condiciones exigidas para el resultado de existencia de reduc-
ciones standard enunciado en [Mel96], pero no con aquellas requeridas para el resultado
correspondiente de unicidad. A pesar de esto, obtenemos un resultado de unicidad de
reducciones standard para λ�lsub considerado como un sistema de reescritura de clases de
equivalencia de términos, por medio del desarrollo de una nueva demostración abstracta
de estandarización en el modelo ARS.

A.5 Equivalencia de reducciones para reescritura infini-
taria

Consideremos los sistemas de reescritura de términos T1 y T2, que definimos a continua-
ción. El sistema T1 incluye al número 1, el śımbolo de la suma, un śımbolo unario l, el
constructor de listas que denotamos mediante el śımbolo :, “dos puntos”, y la regla de
reescritura

lpxq Ñ x : lpx� 1q
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El sistema T2 incluye las constantes a y b, y las reglas

a Ñ b b Ñ a

Podemos construir reducciones infinitas tanto en T1 como en T2. Para T1, consideremos

lp1q Ñ 1 : lp2q Ñ 1 : 2 : lp3q Ñ . . .

donde 2, 3, . . . abrevian 1� 1, p1� 1q � 1, etc.. Para T2, tenemos esta secuencia

aÑ bÑ aÑ bÑ aÑ . . .

Podemos apreciar una diferencia importante entre estas dos reduccciones, observando
las secuencias de términos de destino parciales de cada una, que son respectivamente:

x1 : lp2q, 1 : 2 : lp3q, 1 : 2 : 3 : lp4q . . .y y xb, a, b, a . . .y

No es dif́ıcil aprehender que la secuencia de la izquierda converge, con ĺımite en el término
infinito 1 : 2 : 3 : 4 : . . ., mientras que la secuencia de la derecha diverge. Notamos que
los dos sistemas de reescritura presentados pueden describirse fácilmente en lenguajes
de programación funcionales; consideremos p.ej. estas definiciones en Haskell:

natlist n = n : natlist (n+1)

diva = divb

divb = diva

Observamos que mientras la evaluación de natlist 1 genera la lista [1,2,3,4 ...],
la de la expresión diva continúa indefinidamente, sin entregar ningún resultado parcial.

Estas consideraciones motivan el estudio de sistemas de reescritura de términos
infinitarios. La noción de convergencia es particularmente relevante en este ámbito.
Varios criterios de convergencia han sido propuestos en la literatura. En esta tesis,
adoptamos el criterio de convergencia fuerte, según el cual una secuencia de reducción
infinita2 es convergente si, y sólo si, la secuencia formada por la profundidad de cada paso
tiende a infinito. P.ej. la secuencia lp1q Ñ 1 : lp2q Ñ 1 : 2 : lp3q Ñ . . . es fuertemente
convergente, pues el i-ésimo paso se realiza a profundidad i�1, más precisamente, debajo
de i� 1 ocurrencias anidadas del constructor de lista. Para las secuencias convergentes
infinitas3 , se puede establecer como término destino el ĺımite de los destinos de los
prefijos de dicha secuencia. Notamos t�� u para indicar la existencia de una reducción,
ya sea finita o infinita, con origen en t y destino en u.

En los sistemas de reescritura infinitarios, la infinitud se manifiesta de diversas
formas. Veamos algunos ejemplos utilizando las reglas de reescritura fpxq Ñ gpxq y
gpxq Ñ kpxq. En un sistema de reescritura infinitario, cada paso de reducción puede
involucrar términos infinitos. Si abreviamos como fω el término infinito fpfpf . . .qq,
que consta de una cantidad infinita de ocurrencias, todas del śımbolo f , entonces el
siguiente es un paso de reducción válido: fω � fpfωq Ñ gpfωq. Además, las secuen-
cias de reducción pueden tener una longitud infinita. Un ejemplo es fω Ñ gpfωq Ñ
gpgpfωqq Ñ . . . Ñ gp. . . gpfpfωqq . . .q Ñ gp. . . gpgpfωqq . . .q Ñ . . . Esta secuencia es con-
vergente, siendo gω su término destino. En lo sucesivo, denotaremos una secuencia de

2más precisamente, una secuencia cuya longitud es un ordinal ĺımite.
3otra vez, nos referimos a secuencias cuya longitud es un ordinal ĺımite.
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esta forma como fω Ñ gpfωq Ñ gpgpfωqq �� gω. A partir de este último término, la
secuencia puede continuar, p.ej. con el paso gω Ñ kpgωq, generándose una secuencia
cuya longitud es ω � 1, donde ω es el primer ordinal infinito. A su vez, la secuencia
fω Ñ gpfωq Ñ gpgpfωqq �� gω Ñ kpgωq Ñ kpkpgωqq �� kω es de longitud ω � 2.
Puede demostrarse la existencia, para cualquier ordinal numerable α, de una reducción
fuertemente convergente cuya longitud es exactamente α.

Este caṕıtulo es un estudio de la equivalencia de reducciones en sistemas de
reescritura de primer orden infinitarios, basado en el modelo de proof terms. Se toma
como punto de partida la definición de proof terms y la caracterización de la equivalencia
entre reducciones por permutaciones sucesivas utilizando proof terms, que aparecen en
[BKdV03], Secciones 8.2 y 8.3. Para ello, se extiende a la reescritura infinitaria la noción
de proof term, permitiendo denotar reducciones infinitas y/o sobre términos infinitos,
mediante proof terms. Se pone especial cuidado en la denotación de la concatenación
de una secuencia infinita de reducciones. También se extiende la caracterización de la
equivalencia entre reducciones por permutaciones sucesivas, utilizando lógica ecuacional
sobre proof terms: dos reducciones resultan equivalentes si, y sólo si, la ecuación ψ � φ
puede concluirse, utilizando lógica ecuacional, a partir de un conjunto básico de ecua-
ciones, donde ψ y φ son proof terms que representan las dos reducciones en cuestión.
Destacamos que esta forma de caracterizar la equivalencia de reducciones infinitarias es
una aplicación de lógica ecuacional en un contexto infinitario.

Para obtener la caracterización mencionada de la equivalencia entre reducciones
infinitarias se agrega, a las reglas que definen la clausura por equivalencia y por opera-
ciones, una regla que permite apelar al concepto de ĺımite en un razonamiento ecuacional:
dos proof terms se consideran equivalentes, si son, cada uno de ellos, el ĺımite de una
secuencia de proof terms, tal que las distancias entre los elementos sucesivos de las dos
secuencias tiende a cero. El concepto de profundidad mı́nima es utilizado para definir la
distancia entre dos proof terms: separando la actividad que denotan dos proof terms en
una parte común y otra que refleja la diferencia entre ellos, la distancia entre los proof
terms es inversamente proporcional a la profundidad mı́nima de la parte en que difieren.

Destacamos que la caracterización obtenida modela adecuadamente casos en los
cuales debe permutarse un paso respecto de una cantidad infinita de pasos, y/o re-
alizar una cantidad infinita de permutaciones, para obtener la equivalencia entre dos
reducciones. Damos algunos ejemplos, utilizando las reglas fpxq Ñ gpxq, gpxq Ñ kpxq y
mpxq Ñ npxq. Para transformar la secuencia

mpfωq Ñ mpgpfωqq Ñ mpgpgpfωqqq�� mpgωq Ñ npgωq

en la equivalente

mpfωq Ñ npfωq Ñ npgpfωqq Ñ npgpgpfωqqq�� npgωq

el último paso de la primer reducción debe permutarse con una cantidad infinita de pa-
sos, pues se corresponde con el primer paso de la segunda reducción. Para transformar

fω Ñ gpfωq Ñ gpgpfωqq�� gω Ñ kpgωq Ñ kpkpgωqq�� kω

en la secuencia equivalente

fω Ñ gpfωq Ñ kpfωq Ñ kpgpfωqq Ñ kpkpfωqq�� kω

cada uno de los infinitos pasos correspondientes a la regla gpxq Ñ kpxq debe permutarse
con infinitos pasos correspondientes a fpxq Ñ gpxq.
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Demostramos que la representación de reducciones mediante proof terms es com-
pleta: para cada secuencia de reducción cuya longitud es un ordinal numerable, existe
un proof term que la denota. Adicionalmente, mostramos que este proof term es único,
salvo por la asociatividad del śımbolo que representa la concatenación. Para demostrar
esta afirmación de unicidad, se extiende la noción de “expresiones iguales salvo asocia-
tividad de un operador binario” al términos infinitarios.

Finalmente, utilizamos la formalización de la equivalencia entre reducciones mediante
proof terms, para desarrollar una demostración alternativa del resultado de compresión
de reducciones infinitarias. Concretamente, demostramos que cualquier reducción4 es
equivalente a otra, cuya longitud es a lo sumo ω. P.ej., ya mencionamos que la secuencia
fω Ñ gpfωq Ñ gpgpfωqq �� gω Ñ kpgωq Ñ kpkpgωqq �� kω, cuya longitud es ω � 2,
es equivalente a fω Ñ gpfωq Ñ kpfωq Ñ kpgpfωqq Ñ kpkpfωqq �� kω, secuencia
de longitud ω. Destacamos que el resultado demostrado representa una versión del
resultado de compresión más fuerte que las que aparecen en la literatura conocida por
el autor.

A.6 Conclusiones

Reseñamos las principales contribuciones realizadas en esta tesis.

Respecto de la normalización, presentamos una nueva demostración abstracta en
el modelo ARS, que puede utilizarse para estrategias multipaso, y para sistemas de rees-
critura de términos tanto de primer orden como de alto orden. Definimos una estrategia
multipaso para el Pure Pattern Calculus, un cálculo con patrones no-secuencial, y de-
mostramos que dicha estrategia es normalizante, por medio de la demostración abstracta
mencionada más arriba.

Respecto de la estandarización, obtenemos varios resultados para el linear substi-
tution calculus, un cálculo ES a distancia. En particular, demostramos la unicidad de
reducciones standard considerando al conjunto de los términos de este cálculo módulo
una relación de equivalencia. Para obtener este resultado, desarrollamos una nueva de-
mostración abstracta de estandarización en el modelo ARS, y demostramos que todas las
nociones que intervienen en la representación de un sistema de reescitura en el modelo
ARS, tales como paso de reducción, residuo, etc., son invariantes respecto de la relación
de equivalencia mencionada.

Respecto de la equivalencia entre reducciones, presentamos una caracterización
de la equivalencia por permutaciones sucesivas, para los sistemas de reescritura infini-
tarios lineales a izquierda de primer orden, mostrando que permite analizar distintos
casos en los que resulta necesaria una cantidad infinita de permutaciones para mostrar
la equivalencia entre dos reducciones. Para obtener esta caracterización, se extiende el
modelo de proof terms, en la formulación para reescritura de términos de primer orden
descripta en [BKdV03], al ámbito de la reescritura infinitaria. Demostramos que toda se-
cuencia de reducción fuertemente convergente puede ser representada por un proof term,
y además, que dicho proof term es único, módulo la asociatividad del operador binario
de concatenación. Utilizamos el modelo de reescritura infinitaria mediante proof terms
para presentar una demostración alternativa del resultado de compresión de reducciones
fuertemente convergentes.

4En rigor el resultado obtenido es más general, aplica a cualquier actividad de contracción.
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Como posibles ĺıneas de trabajo futuro, mencionamos las siguientes.

Respecto del trabajo sobre normalización, estudiar si las ideas que subyacen a la
definición de la estrategia de reducción para el Pure Pattern Calculus que presentamos en
esta tesis, pudieran dar lugar a la definición de estrategias multipaso para otros sistemas
de reescritura de alto orden, o mejor aún, para familias de dichos sistemas. Por otro
lado, creemos que resulta interesante estudiar la posibilidad de extender la demostración
abstracta de normalización que presentamos en esta tesis. Aunque no hemos logrado
demostrar que la selección sistemática de conjuntos de pasos necesarios sea suficiente
para demostrar que una estrategia de reducción es normalizante, prescindiendo aśı de la
noción adicional de conjunto de pasos non-gripping, tampoco hemos encontrado ningún
contraejemplo; en la opinión del autor, dilucidar esta cuestión implicaŕıa avanzar un
paso en la comprensión de las estrategias multipaso.

Respecto del trabajo sobre estandarización, evaluar la aplicabilidad de la idea de la
aplicación de una operación a distancia, en el estudio del fenómeno de pattern matching,
mediante la definición de cálculos de matching expĺıcito a distancia. Aunque varios
cálculos de matching expĺıcito, basados en cálculos con patrones, han sido propuestos
y estudiados en la literatura, el autor no conoce ningún estudio de estandarización que
aplique a cálculos de matching expĺıcito. Conjeturamos que un cálculo de matching
expĺıcito a distancia podŕıa tener asociado un espacio de reducciones menos complejo,
posibilitando de esta forma el estudio de resultados de estandarización para el mismo.

Respecto de la equivalencia de reducciones para reescritura infinitaria, cree-
mos que algunas de las ideas subyacentes a la demostración del resultado de compresión
que se presenta en esta tesis, pueden dar lugar al desarrollo de demostraciones genéricas
de resultados de estandarización para reescritura infinitaria, utilizando el modelo de
proof terms. Tal como se indica en [Ket12], se requiere una noción de paso externo que
resulte adecuada a la reescritura infinitaria. Conjeturamos que utilizando la noción
propuesta en ese trabajo, pueden obtenerse resultados de unicidad de reducciones
standard. Otra dirección posible de trabajo futuro es la comparación de la caracte-
rización de la equivalencia por permutaciones sucesivas que presentamos en esta tesis,
con otras posibles caracterizaciones de la equivalencia entre reducciones infinitarias. Al
respecto, destacamos que en [KKSdV95], y también en [BKdV03], Caṕıtulo 12, se pre-
senta una definición de equivalencia basada en proyecciones, que extiende la llamada
“Lévy-equivalencia”, cfr. [HL91]. Por otra parte, en [BKdV03], Caṕıtulo 8, aśı como en
[vOdV02], se demuestra la equivalencia entre varias caracterizaciones de la equivalencia
entre reducciones, para reescritura finitaria.

Finalmente, mencionamos que en este caṕıtulo, además de la reseña de los resultados
obtenidos y la descripción de posibles direcciones de trabajo futuro, presentamos algunas
notas relacionadas con el uso, en esta tesis, de los modelos genéricos de los sistemas
abstractos de reescritura (ARS) y de proof terms. Estas notas ponen en relevancia los
indicios que pueden proporcionar estos modelos genéricos para la comprensión de las
caracteŕısticas de distintos sistemas de reescritura, y brindan algunos elementos que
comparan los dos modelos utilizados.

Destacamos cómo se refleja, en cada modelo, la noción de ortogonalidad en sistemas
de reescritura de términos. El modelo ARS da una caracterización semántica de la
ortogonalidad que permite tratar como ortogonales algunos sistemas de reescritura que
no resultan tales de acuerdo a un criterio sintáctico, como es el caso del linear substitution
calculus, o para los cuales resulta dif́ıcil analizar su ortogonalidad desde un punto de vista
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sintáctico, debido a la forma en que están definidos, como es el caso del Pure Pattern
Calculus. Por su parte, el modelo de proof terms está enfocado en la descripción detallada
de reducciones individuales. Notamos que para cualquier situación en la que la falta de
ortogonalidad implica una elección entre opciones mutuamente incompatibles, en una
reducción particular se elige, a lo sumo, una de estas opciones, pudiéndose establecer
cuál es la opción elegida. Esta observación implica que la problemática de la falta de
ortogonalidad pierde relevancia en el modelo de proof terms. Por lo tanto, en este modelo
pueden obtenerse resultados que, en otros enfoques, quedaŕıan restringidos a sistemas
ortogonales, de forma tal que resulten válidos para familias de sistemas de reescritura
que incluyan tanto sistemas ortogonales como no ortogonales.
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Appendix B

Résumé en français

B.1 Introduction

On aborde dans cette thèse certaines propriétés formelles de systèmes de réécriture qui
concernent leurs espaces des dérivations. Les systèmes de réécriture choisis présentent
des caractéristiques particulières qui font l’étude des propriétés choisies des défis intéressants.

Dans la suite, on présente les systèmes étudiés dans cette thèse.

• Le chapitre 3 est dédié au Pure Pattern Calculus, PPC dans la suite. Il s’agit d’un
calcul avec motifs. Un attribut clé de ce calcul est que l’ensemble des motifs est
le même que celui des termes. Notamment, des pas de réduction peuvent être
effectués à l’intérieur d’un motif; c’est à dire, les motifs sont dynamiques. Une
opération de matching soigneusement définie permet de préserver la confluence
dans le PPC.

On étudie la question de l’existence de stratégies de calcul normalisantes pour le
PPC. On remarque que le dispositif pour gérer les erreurs de matching implique
son caractère non-séquentiel. Par conséquent, les résultats dérivés de la notion de
radical nécessaire ne peuvent être appliqués pour le PPC.

• Le sujet du chapitre 4 est le Linear Substitution Calculus, λ�lsub dans la suite,
un calcul appartenant à la famille des calculs avec substitutions explicites. La
caractéristique la plus importante de ce calcul est qu’on peut appliquer une sub-
stitution explicite concernant une certaine variable, à une occurrence distante de
cette variable, c’est à dire, une occurrence non juxtaposée à la substitution. Il
existe une forte corrélation entre le λ�lsub et les réseaux de preuves utilisés dans
la logique linéaire. Une relation d’équivalence � dans l’ensemble des termes de
λ�lsub, entrâınée par trois équations, permet d’établir un vrai isomorphisme: le
comportement d’un réseau de preuve correspond exactement à celui de n’importe
quel terme dans une certaine classe de �-équivalence.

On établit des critères et des résultats de standardisation pour le Linear Substitu-
tion Calculus. Certains d’entre eux sont définis sur l’ensemble des termes modulo
la relation � mentionnée ci dessus.

• Dans le chapitre 5, on étudie les systèmes de réécriture infinitaire du premier
ordre, linéaires à gauche. On adopte dans cette thèse le critère de convergence
forte pour la définition des dérivations.

247
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Plus précisément, on propose une caractérisation de l’équivalence entre dérivations
infinitaires. On montre l’adéquation de notre définition dans plusieurs exemples.
Notamment, on discute un phénomène que l’on trouve seulement dans la réécriture
infinitaire: l’existence d’un type particulier d’effacement de sous-termes.

On utilise la notion de équivalence définie pour développer une preuve d’une ver-
sion renforcée du résultat de compression des dérivations infinitaires.

Un trait commun aux trois sujets abordés dans ce travail est l’utilisation de formal-
ismes génériques de systèmes de réécriture. Le matériel des chapitres 3 et 4 repose sur
les Systèmes Abstraits de Réécriture, tels qu’ils sont décrits dans [Mel96]. De son côté,
le chapitre 5 est fondé sur la notion de proof term. On étend à la réécriture infinitaire la
formulation pour les systèmes de réécriture du premier ordre introduite dans [BKdV03],
où les dérivations sont modélisés comme des proof terms. Une introduction aux deux
modèles génériques utilisés fait le sujet du chapitre 2.

Dans cette thèse, on décrit chaque calcul abordé dans le cadre de l’un de ces deux
modèles génériques. On se sert de la possibilité de développer des preuves abstraites
dans ces modèles pour aboutir aux résultats désirés.

B.2 Modèles génériques de réécriture

On décrit dans ce chapitre les modèles génériques de réécriture qu’on utilisera dans la
suite de cette thèse.

Le premier de ces modèles est celui qui repose sur la notion de Système Abstrait de
Réécriture, dans la suite ARS, dû à la sigle en anglais.

Un ARS est défini comme une structure ayant la forme xO,R, src, tgt, v�w, y, où O et
R désignent deux ensembles de termes (ou objets) et radicaux respectivement; src, tgt :
RÑ O modélisent les termes de départ et d’arrivée de chaque radical, v�w � R�R�R
est la relation de résidus, et  � R�R est la relation d’embôıtement.

La preuve abstraite de normalisation développée dans le chapitre 3 se sert d’une
version étendue de la définition de ARS, qui inclut une relation additionnelle !� R�R
dit d’agrippement.

Diverses caractéristiques d’un calcul peuvent être modélisés dans le cadre des ARS
sous la forme d’axiomes.

À titre d’exemple, la finitude des développements et l’orthogonalité sont décrits par
des axiomes. À propos du dernier, nous soulignons que l’orthogonalité est définie sur la
base de la relation abstraite de résidus, produisant une description ayant un caractère
plus sémantique que celle fondée sur la notion de paire critique.

Les traits les plus marquants de la relation d’embôıtement se modélisent également
comme des axiomes. Nous évoquons l’axiome dit de linéarité:

a �  b ô D!b1.bvawb1

qui définit une condition, liée à l’embôıtement, qui doit satisfaire un radical a pour avoir
la capacité de multiplier, ou bien d’effacer, un autre radical b.

Dans ce modèle de réécriture, une réduction est définie simplement comme une
séquence de radicaux r0, r1, . . . qui vérifie tgtpriq � srcpri�1q pour tout i. Étant donné
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un ensemble de radicaux co-initiaux A, un développement de A est n’importe quelle
réduction r0, r1, . . . telle que pour tout i, ri P Avr0wvr1w . . . vri�1w, où Avrw est défini
comme

�
aPAtb { avrwbu. Un développement r0, r1, . . . , rn est complet siAvr0wvr1w . . . vrnw �

H. On peut montrer de manière abstraite que pour n’importe quel ARS qui vérifie
les axiomes d’orthogonalité et de finitude des développements, en même temps que
d’autres axiomes basiques, tous les développements complets d’un ensemble de radicaux
co-initiaux terminent sur le même terme et induisent la même relation de résidus.

Ce résultat permet de décrire, de manière simple, la notion d’équivalence de réductions
par permutation de pas dans le cadre abstrait fourni par les ARS. Si d1 et d2 sont des
réductions, alors d1; a; f ; d2 et d1; b; e; d2 sont équivalentes à une permutation près lorsque
e et f sont des développements complets de avbw et bvaw respectivement. L’équivalence
entre réductions se définit comme la clôture reflexive-transitive de cet relation. On peut
définir un ordre de standardisation entre réductions équivalentes, en ayant recours à la
relation d’embôıtement: on dit que d1; a; f ; d2 est plus standard que d1; b; e; d2 si a   b
lorsque a   b.

La notion de réduction standard est precisée dans [Mel96] sur la base de cet ordre de
standardisation. En outre, plusieurs résultats de standardisation, concernant l’existence
ou l’unicité des réductions standards dans chaque classe de réductions équivalentes, sont
énoncés et prouvés. Les conditions requises sur un ARS pour assurer ces résultats, sont
décrits sous la forme d’axiomes.

L’idée de se servir des termes pour répresenter des réductions, donne lieu au deuxième
modèle générique de réécriture qu’on utilise dans cette thèse. On appelle proof terms les
termes qui répresentent des réductions. Dans la suite, nous décrivons le modèle fondé sur
la notion de proof term, tel qu’introduit dans [BKdV03] pour les systèmes de réécriture
des termes du premier ordre (TRS) linéaires à gauche. Ladite version du modèle est la
base pour le materiel du chapitre 5 de cette thèse.

Un proof term pour un TRS T est un terme sur une signature qui étend celle de T .
Pour chaque règle en T , on ajoute un symbole dont l’arité est le nombre de variables qui
apparaissent dans la règle. Par exemple, les règles fpxq Ñ gpxq et gpxq Ñ kpxq donnent
lieu à deux symboles unaires, disons µ et ν respectivement, dans la signature des proof
terms pour tout TRS incluant ces règles. La signature des proof terms se complète par
un symbole binaire, noté par le point, qui désigne la concaténation. Ainsi, la réduction
fpaq Ñ gpaq Ñ kpaq est dénoté par le proof term µpaq � νpaq.

Nous soulignons que la notion de proof term donne des désignations particuliers
pour les réductions simultanées de ensembles de radicaux. C’est à dire, la réduction
simultanée d’un certain ensemble de radicaux est désignée par un proof term, qui est
différent de ceux qui désignent n’importe quel autre option pour la réduction séquentielle
des mêmes radicaux. Par exemple, le proof term µpµpaqq, qui désigne la réduction
simultanée des deux radicaux dans le terme fpfpaqq, est différente soit de µpfpaqq �
gpµpaqq soit de fpµpaqq � µpgpaqq, qui dénotent les deux possibilités pour réduire les
mêmes radicaux de façon séquentiel.

Dans ce modèle de réécriture, un schèma de logique equationelle, opérant sur des
proof terms, permet de répresenter la notion de permutation de pas de réduction, et
par conséquent, l’équivalence entre réductions. La base pour cette répresentation se
compose des six schèmas d’équation suivantes
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pIdLeftq srcpψq � ψ � ψ
pIdRightq ψ � tgtpψq � ψ
pAssocq ψ � pφ � χq � pψ � φq � χ
pStructq fpψ1, . . . , ψmq � fpφ1, . . . , φmq � fpψ1 � φ1, . . . , ψm � φmq
pOutInq µpψ1, . . . , ψmq � µps1, . . . , smq � rrψ1, . . . , ψms
pInOutq µpψ1, . . . , ψmq � lrψ1, . . . , ψms � µpt1, . . . , tmq

où si et ti désignent les termes de départ et d’arrivée, respectivement, du proof term
ψi; tandis que la règle désignée par µ a la forme lrx1, . . . , xms Ñ rrx1, . . . , xms. Par
exemple, l’équivalence entre les réductions hpfpaq, fpaqq Ñ hpfpaq, gpaqq Ñ hpgpaq, gpaqq
et hpfpaq, fpaqq Ñ hpgpaq, fpaqq Ñ hpgpaq, gpaqq, où chacune de ces réductions est le
résultat d’une permutation de pas parallèles sur l’autre, peut être établie moyennant
leur répresentation comme proof terms comme suit:

hpfpaq, µpaqq � hpµpaq, gpaqq � hpfpaq � µpaq, µpaq � gpaqq pStructq
� hpµpaq, µpaqq pIdRightq, pIdLeftq
� hpµpaq � gpaq, fpaq � µpaqq pIdLeftq, pIdRightq
� hpµpaq, fpaqq � hpgpaq, µpaqq pStructq

L’équivalence entre réductions concernant la permutation de pas embôıtés peut
être établie à l’aide des équations pOutInq et pInOutq. Par exemple, nous obtenons
l’équivalence des réductions fpfpaqq Ñ fpgpaqq Ñ gpgpaqq et fpfpaqq Ñ gpfpaqq Ñ
gpgpaqq comme suit:

fpµpaqq � µpgpaqq � µpµpaqq � µpfpaqq � gpµpaqq

où l’on fait appel d’abord à pInOutq, et après à pOutInq.

B.3 Normalisation

Le but général du chapitre 3 est d’atteindre des stratégies de réduction normalisantes
et effectives pour le Pure Pattern Calculus en particulier, et pour des calculs non-
séquentiels en général. Dans ce cadre, nous nous penchons sur des stratégies “multi-
radicaux”, c’est à dire, celles qui permettent la sélection de plusieurs radicaux dans le
même terme. Le terme suivant dans la dérivation donnée par une stratégie “multiradi-
caux” est le résultat de la réduction simultanée des radicaux choisis.

On peut distinguer deux parties dans ce chapitre.
Le matériel dans la première de ces parties est de nature abstraite. On travaille avec

les Systèmes Abstraites de Réécriture, bref ARS, comme indiqué dans l’introduction.
Dans ce cadre, nous présentons une preuve abstraite de normalisation inédite, orientée
vers les stratégies “multiradicaux”. Pour développer cette preuve, on se sert de la
capacité des ARS pour modéliser les dérivations dans lesquelles chaque pas, ou chaque
étape, correspond à la réduction simultanée d’un ensemble de radicaux co-initiaux.

Plus précisément, nous prouvons que, pour tout calcul satisfaisant un certain ensem-
ble de conditions, la réduction d’ensembles de radicaux nécessaires et non-agrippants
est normalisante.

Les conditions imposées sur le calcul incluent tous les axiomes requis dans les preuves
de standardisation présentées dans le chapitre 4 de [Mel96], sauf pour l’un d’entre eux.
L’axiome omis est celui dénommé Stabilité, qui décrit une condition liée au caractère
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séquentiel d’un calcul. Par conséquent, l’exclusion de cet axiome permet d’utiliser le
cadre des ARS pour aboutir à des résultats que l’on peut appliquer sur des calculs non-
séquentiels. D’autre part, la preuve que nous présentons fait recours à un nouvel axiome,
que nous introduisons dans cette thèse. Cet axiome, qui nous appelons Pivot, complète
l’analyse de la préservation de l’embôıtement dans les résidus, décrit par les axiomes de
non-contextualité et d’enclave.

La notion d’ensemble nécessaire de radicaux co-initiaux étend celui de radical nécessaire.
Un ensemble A de radicaux dans un terme t est dit nécessaire si toute dérivation de t
vers une forme normale inclus la contraction de, au minimum, un radical dans A, ou
bien, d’un de ses résidus. Une preuve de normalisation présentée dans [SR93] établit
que pour les systèmes de réécriture de termes du premier ordre, la réduction des ensem-
bles nécessaires de radicaux est normalisante. Les idées principales de ce travail sont
revisitées dans la preuve que nous développons. La généralisation de ces idées au cadre
abstrait des ARS, dans lequel on peut modéliser des calculs d’ordre supérieur, requiert
l’introduction des notions additionnelles.

Entre ces notions, on remarque que la preuve abstraite de normalisation décrite
dans cette thèse fait appel à une version étendue du formalisme des ARS, incluant la
relation d’agrippement entre radicaux. Cette relation est introduite dans [Mel96] pour
donner une preuve abstraite de la finitude des développements. La condition d’être non-
agrippante, qui exige des ensembles de radicaux réduits, est fondée sur cette relation.
On doit également ajouter trois axiomes additionnelles, qui décrivent l’agrippement de
forme abstraite, aux conditions imposées aux calcul.

Dans la deuxième partie de ce chapitre, nous appliquons au Pure Pattern Calculus,
PPC dans la suite, le résultat abstrait de normalisation déjà décrit. Comme indiqué dans
l’introduction, le PPC est un calcul avec motifs non-séquentiel, dans lequel les motifs sont
dynamiques. Nous définissons une stratégie de réduction multiradicaux pour ce calcul,
et nous prouvons que cette stratégie est normalisante, en faisant recours à la preuve
abstraite développée dans le cadre des ARS.

On utilisera dans ce résumé la version simplifiée de la syntaxe du PPC qui suit:

t ::� x | c | λθt.t | tt

où c désigne un élément d’un ensemble de constants, et θ est l’ensemble de variables liées
par la construction d’abstaction. Par exemple, les trois occurrences de la variable z dans
le terme λtz,wuzw.pλtx,yuzxy.zyxqw sont liées par l’abstraction extérieure, même celles
incluses dans l’abstraction interne. On désignera la fonction identité, i.e. pλtxux.xq, avec
la lettre I.

La sémantique opérationnelle du PPC est définie par la règle suivante, qui généralise
la règle β du λ-calcul classique:

pλθp.squÑ tp{θ uus si tp{θ uu est décidé

La notation tp{θ uu désigne l’opération de filtrage du motif p avec l’argument u, en
relation à l’ensemble de variables θ. Étant donnés deux termes p et u, et un ensemble
θ, il y a trois issues possibles pour l’opération de filtrage:

1. filtrage positif : l’argument se conforme au motif. Dans ce cas, le résultat du
filtrage est une substitution dont le domaine est θ. Par exemple, tax{txu apIcqu �
tx :� Icu.
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2. filtrage négatif : la forme de l’argument est différente de celle du motif. Dans
ce cas, on obtient la valeur bien connue fail comme résultat du filtrage. Par
exemple, tax{txu bpIcqu � fail.

3. filtrage non décidé: l’application de pas de réduction internes au motif, á l’argument,
ou aux deux, est nécessaire pour aboutir á des termes pour lesquels on peut
décider si le filtrage est positif ou négatif; la décision n’est pas possible pour
les termes donnés. Dans ce cas, le résultat est la valeur bien connue wait.
Par exemple, tax{txu Ipacqu � tax{txu Ipbcqu � wait. Dans l’un ou l’autre
cas, un pas de réduction dans l’argument permet d’obtenir un résultat décidé:
tax{txu acu � tx :� cu, tax{txu bcu � fail.

Un filtrage est dit décidé s’il est positif ou négatif.

Nous remarquons qu’un terme ayant la forme pλθp.squ dont le filtrage tp{θ uu est
non décidé, ne correspond pas à un radical du PPC. Par exemple, le seul radical dans le
terme pλtxuax.xqpIpabqq est celui correspondant au sous-terme Ipabq. On désigne comme
pré-radical chaque sous-terme ayant la forme pλθp.squ dans un terme, qu’il s’agisse d’un
radical ou pas.

On complète la définition du PPC en indiquant que l’application de la valeur fail

à n’importe quel terme rapporte le terme I, c’est-à-dire, la fonction identité I. Par
conséquent, on a pλtxuax.dxqpacq Ñ dc et pλtxuax.dxqpbcq Ñ I.

À propos du filtrage, on souligne que dans le cas où soit le motif soit l’argument sont
des termes composés, l’échec de filtrage (c’est-à-dire, la constatation d’une différence
entre le motif et l’argument) dans n’importe quel composante, entrâıne que le filtrage
composé est négatif. Par exemple, tabcx{txu adceu � tabcx{txu abdeu � fail. Le

caractère non-séquentiel du PPC provient de cette particularité. À titre d’exemple, on
considère le terme t � pλtxuabcx.xqpapIdqpIdqeq. Aucun des deux radicaux de ce terme
est nécessaire, comme indiqué par les réductions t Ñ pλtxuabcx.xqpadpIdqeq Ñ I et
tÑ pλtxuabcx.xqpapIdqdeq Ñ I. Le fait qu’il suffit de réduire n’importe lequel des deux
radicaux de t pour atteindre la forme normale I, est dû au fait que la différence entre
b et d, ou celle entre c et d, suffit pour obtenir un filtrage négatif, et par conséquent
décidé, avec le motif abcx.

La stratégie de réduction que nous définissons dans ce chapitre se concentre sur le
pré-radical plus extérieure – plus à gauche (dans la suite LO, dû à l’acronyme anglais
pour “leftmost-outermost”). Si le filtrage qui correspond à ce pré-radical est décidé,
c’est-à-dire, si ce pré-radical est en fait un radical, alors le choix se porte sur ce radical
uniquement. Autrement dit, le choix se porte sur des radicaux internes au motif et/ou
à l’argument du pré-radical LO. Dans ce cas, on cherche particulièrement des radicaux
que peuvent contribuer á l’obtention d’un terme dans lequel le radical LO soit décidé.

Le point concernant le filtrage qui rend le PPC non-séquentiel, détermine aussi l’exis-
tence des termes pour lequels la stratégie doit choisir la réduction simultané de plusieurs
radicaux coinitiaux, et par conséquent, le caractère multiradicaux de cette stratégie.
Par exemple, pour n’importe lequel des termes suivantes: pλtxuabcx.xqpapIbqpIdqeq,
pλtxuabcx.xqpaΩpIdqeq, pλtxuabcx.xqpapIdqpIcqeq, et pλtxuabcx.xqpapIdqΩeq, où Ω dé-
signe un terme non-normalisant, la stratégie doit choisir la réduction simultané des deux
radicaux internes à l’argument. Ce choix est nécessaire pour atteindre, dans tous les
cas, un terme dont le filtrage du pré-radical exterieur est décidé.
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La concentration sur le pré-radical LO et, en plus, la façon dont les radicaux à réduire
son choisis si ce pré-radical est non décidé, portent sur une stratégie judicieuse, dans
le sens de limiter le nombre des cas dans lesquels plus d’un radical est choisi, et plus
en général, le nombre de radicaux choisis pour chaque terme. Nous remarquons que,
notamment, cette stratégie s’accorde avec la stratégie “plus extérieur – plus à gauche”,
choisissant exactement un radical pour chaque terme, si on considère la restriction du
PPC à l’ensemble des termes avec correspondance immédiate avec le λ-calcul classique.

Pour vérifier que la stratégie décrite est normalisante, nous définissons un ARS qui
modèle le PPC. Notamment, la définition de cet ARS inclut la relation d’agrippement.
Nous prouvons que cet ARS vérifie tous les axiomes requis dans la preuve abstraite
de normalisation développée dans la première partie de ce chapitre, et également, que
cette stratégie aboutit toujours à la réduction d’ensembles de radicaux nécessaires et
non-agrippantes.

B.4 Standardisation pour le linear substitution calculus

L’objectif de ce chapitre est d’obtenir des résultats de standardisation pour le linear
substitution calculus, λ�lsub dans la suite, en utilisant le modèle de réécriture défini par
la notion de ARS.

Comme nous avons signalé dans l’introduction, λ�lsub est un calcul avec substitutions
explicites (ES), ayant la capacité d’agir à distance. Une brève description du calcul
permet d’observer cette caractéristique.

La syntaxe de λ�lsub est définie ainsi:

t ::� x | λx.t | tt | trx{ts

On utilisera L, L1, etc., pour désigner des listes de substitutions ayant la forme
rx1{t1s . . . rxn{tns. Nous soulignons qu’une liste de substitutions, toute seule, n’est pas
un terme.

La sémantique de λ�lsub est donnée par les trois règles de réduction suivantes:

pλx.tqLu Ñdb trx{usL béta-à-distance
Crrxssrx{us Ñls Crrussrx{us substitution linéaire
trx{us Ñgc t if x R fvptq ramasse-miettes

où rrxss dénote une occurrence libre de x dans le contexte C. La forme de la règle de sub-
stitution linéaire permet, comme nous avons remarqué dans l’introduction, d’appliquer
une substitution à une occurrence de variable qui n’est pas adjacente à la substitution
en question. Par exemple, dans

ppxyqpxzqqrx{ws Ñ pwyqpxzqrx{ws Ñ pwyqpwzqrx{ws

deux pas de réduction, correspondant aux deux occurrences libres de x dans pxyqpxzq,
suffisent pour appliquer la substitution. D’ailleurs, la règle béta-à-distance permet
d’appliquer une abstraction à un argument dont elle est séparée par une liste de substitu-
tions. De cette manière, on évite la nécessité de multiplier et de déplacer les substitutions
explicites dans le terme, en obtenant ainsi un espace de réductions plus simple que celui
d’autres calculs avec ES.
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Le caractère “à distance” du calcul λ�lsub fait que l’emplacement précis d’une sub-
stitution explicite soit parfois négligeable. Cette remarque témoigne l’analogie entre les
calculs ES à distance et les réseaux de preuve introduites dans le cadre de la logique
linéaire. La relation d’équivalence dans l’ensemble de termes définie par les équations
suivantes

trx{usry{ss �CS try{ssrx{us x R fvpsq & y R fvpuq
pλy.tqrx{us �σ1 λy.trx{us y R fvpuq
ptsqrx{us �σ2 trx{uss x R fvpsq

permet d’établir un isomorphisme entre les classes d’équivalence de termes et les réseaux
de preuve. On appelle � cette relation.

Une première définition d’un ARS qui modélise λ�lsub permet d’obtenir des premiers
résultats de standardisation pour ce calcul.

On signale que ce modèle permet d’établir une distinction entre des radicaux différentes,
déterminés par la règle de substitution linéaire, qui correspondent au même sous-terme
d’un terme donné, comme c’est le cas des deux radicaux du terme pxxqrx{ys.

La relation d’embôıtement pour cet ARS est un ordre “gauche vers droite”, dénoté
par  L et défini comme suit: étant donnés deux radicaux co-initiaux r1 et r2, on définit
r1  L r2 si l’ancre de r1 est, textuellement, à gauche de celle de r2, où l’ancre d’un radical
est l’expression soulignée comme suit pour chaque règle: pλx.sqLu, Crrxssrx{us, trx{us.
Cet définition produit un ordre total, ce qui simplifie la vérification de certains ax-
iomes requis dans les résultats de standardisation présentés dans [Mel96]. L’application
d’étiquettes sur l’ancre de chaque radical, et l’observation du comportement de cettes
étiquettes, permettent de définir la relation de résidus du ARS qui modèlisent λ�lsub.

L’ARS ainsi défini permet d’arriver à une caractérisation forte de la notion de reduc-
tion standard pour λ�lsub: chaque classe de reductions équivalentes inclut, exactement,
une reduction standard.

D’autre part on remarque que l’ordre  L n’est pas invariant par rapport à la relation
d’équivalence � mentionée plus haut. Par exemple, si l’on considère les termes

t1 � pxyqrx{w rw{zssry{y
1s � pxrx{w rw{zssq py ry{y1sq � t2

on voit que le radical correspondant à l’occurrence soulignée de y précède, dans t1, celui
de l’occurrence soulignée de w, tandis que cet ordre devient inverse dans t2.

Pour décrire λ�lsub comme un calcul de réécriture opérant sur des classes d’équivalence
de termes par rapport à la relation �, on définit d’abord une bijection entre les ensembles
de radicaux de termes équivalents, fondée sur l’étiquetage décrit auparavant. Nous
montrons que cette bijection établit une bisimulation entre les radicaux, par rapport à
la relation de résidus.

Par ailleurs, pour resoudre le problème mentionné concernant l’embôıtement gauche-
vers-droite, on définit un deuxième ARS, dont la relation d’embôıtement, que nous
baptisons “ordre de boite”, et notée  B, est un sous-ordre strict de  L.

Tandis que ce deuxième ARS capture de manière adéquate la notion de réduction
modulo, d’après ce qu’on vient de dire, il ne satisfait pas tous les axiomes requis dans
[Mel96] pour obtenir un résultat fort de standardisation. Pour arriver à un tel résultat,
nous développons une nouvelle preuve abstraite de standardisation dans le cadre des
ARS, laquelle s’applique, en effet, au deuxième modèle obtenu de λ�lsub.
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Il est important de signaler que le fait de resortir au cadre abstrait pourvu par la
notion de ARS permet d’obtenir des résultats intéressants pour un calcul, tel le λ�lsub,
dont l’espace de réductions doit être considéré modulo une relation d’équivalence sur
l’ensemble de termes.

B.5 Équivalence de réductions pour la réécriture infini-
taire

Le but de ce chapitre est de transférer la description de l’espace des réductions des
calculs fondée sur le concept de proof term, telle qu’elle est définie dans [BKdV03]
pour les systèmes de réécriture des termes (TRS) linéaires à gauche, au cadre de la
réécriture infinitaire. La définition des réductions infinitaires tiendra compte du critère
de convergence forte.

On trouve deux défis par rapport à la tâche de modéliser les réductions infinitaires:
d’une part on doit décrire des réductions de termes infinis et, d’autre part, il faut décrire
(et raisonner sur) des réductions ayant une longueur infinie, notamment des réductions
dont la longueur dépasse le premier ordinal infini ω.

On est obligé donc de travailler avec des termes infinis, par exemple, si nous donnons
le nom µ à la règle fpxq Ñ gpxq, on peut considérer le proof term µpfωq, qui désigne le
pas de réduction fω � fpfωq Ñ gpfωq, où fω � fpfp. . .qq et le symbole f apparâıt ω
fois.

En outre, le deuxième des deux défis signalés pose le problème de trouver une manière
adéquate de modéliser la concaténation d’un nombre infini de pas de réduction ou bien,
des réductions en général.

Étant donnés ces remarques, nous définissons dans ce chapitre l’ensemble des proof
termes infinitaires, de même que leurs termes de départ (source) et d’arrivée (target).
Nous caractérisons formellement la profondeur minimale de (la réduction décrite par)
un proof term.

La définition de l’ensemble des proof terms inclut deux règles différentes pour la
concaténation: l’une pour la concaténation binaire, servant à définir le proof term ψ � φ
où ψ et φ sont des proof terms, l’autre pour la concaténation infinie, notée �i ω ψi,
où chaque ψi est un proof term. Par exemple, en utilisant la règle µ définie plus haut,
on peut considérer le proof term �i ω f ipµpgωqq qui dénote la réduction infinie fω Ñ
gpfωq Ñ gpgpfωqq�� gω. La propriété de convergence d’une réduction infinitaire admet
une caractérisation simple dans le cadre des proof terms; celle-ci repose sur la notion de
profondeur minimale des proof terms.

La définition des proof terms est simultanée avec celle d’un ordinal dénombrable
associé de manière unique à chaque proof term. Cette association permet de faire appel
à l’induction transfinie pour donner une définition précise de l’ensemble des proof terms
et pour raisonner sur cet ensemble. Dans la dite association, les ordinaux limite se
correspondent exactement avec les concaténations infinies.

Nous étendons de même la caractérisation de l’équivalence entre réductions décrite
dans [BKdV03], Sec. 8.3, aux réductions infinitaires. Nous rappelons que cette car-
actérisation se base sur l’application de la logique équationelle aux proof terms, à partir
d’un ensemble de schémas d’équation basiques qui modélisent la permutation des pas
de réduction adjacents.
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Pour adapter cette caractérisation à la réécriture infinitaire, nous ajoutons une règle
qui permet de faire appel à la notion de limite dans un raissonement équationel. La
structure d’une telle règle est la suivante: étant donnés deux proof terms ψ et φ, si
l’on peut construire deux séquences xψiyi ω et xφiyi ω telles que ψ et φ peuvent être
montrés équivalents à ψi et φi, respectivement, pour tout i, et en plus, la limite des
distances entre ψi et φi est nulle quand i tend vers l’infini, alors on conclut que ψ et φ
sont, eux-mêmes, équivalents.

En ajoutant la règle que nous venons de décrire, en même temps qu’une règle de
congruence et un schéma d’équation basique en relation avec la concaténation infinie,
on obtient un système de logique équationelle adéquat pour raisonner sur l’équivalence
des (proof terms qui désignent des) réductions infinitaires. En utilisant ce système
on a pu vérifier l’équivalence des réductions dans plusieurs exemples impliquant des
réductions infinies. Notamment, cette caractérisation de l’équivalence offre un modèle
adéquat, à notre avis, du phénomène de l’effacement infinitaire, dans lequel une partie
d’un réduction est effacée suite à une châıne infinie de permutations de pas de réduction,
tandis que l’effacement ne se produit pas après n’importe quel préfixe fini de cet châıne.

La caractérisation des réductions infinitaires fournie par les proof terms est complète:
nous montrons que toute réduction infinitaire convergente peut être représentée d’une
manière précise par un proof term. On montre aussi que cette représentation est unique
modulo associativité de la concaténation, c’est à dire, en identifiant, par exemple, ψ �
pφ � χq et pψ � φq � χ.

Pour montrer la complétude et l’unicité de la représentation des réductions, on définit
le sous-ensemble des proof terms séquentiels (stepwise proof terms) qui décrivent des
réductions dont les pas sont réalisés en forme strictement séquentielle. Par exemple,
le proof term µpfpaqq � gpµpaqq est séquentiel, tandis que µpµpaqq ne l’est pas. Nous
précisons aussi la notion d’“égalité modulo associativité de la concaténation” dans le
contexte de la réécriture infinitaire, en utilisant le même schéma de logique équationelle
défini pour modéliser l’équivalence entre réductions, où l’on prend l’associativité de la
concaténation comme seul schéma d’équation basique.

Finalement, nous donnons une preuve du résultat connu sous le nom de compression,
c’est à dire, que si l’on se restreint à des réductions de longueur au plus ω, on ne perd
pas le pouvoir expressif de la réécriture infinitaire car, pour n’importe quelle réduction
convergente ψ, il existe une autre équivalente ψ1 de longueur finie ou ω. L’énoncé que
nous montrons est, en fait, plus fort que ceux que nous avons trouvés dans la littérature,
étant donné qu’on établit l’équivalence, et non seulement la coincidence des termes de
départ et d’arrivée, entre la réduction originale et sa “comprimée” correspondante. En
plus, on ne demande pas que le système de réécriture sous-jacent soit orthogonal, comme
c’est le cas de la preuve donnée en [KKSdV95].

La preuve que nous présentons est basée sur le fait suivant: étant donnée une
réduction dénotée par le proof term ψ, et un entier naturel n, on peut construire une
forme factorisée de ψ, c’est à dire, un proof term ψ1 � ψ1 � ψ2 de sorte que ψ est
équivalent à ψ1, ψ1 désigne une réduction finie, et en plus, la profondeur minimale de
ψ2 est supérieure à n.
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B.6 Conclusions

Comme indiqué dans l’introduction de ce résumé, on aborde dans cette thèse l’étude de
propriétés formelles de plusieurs calculs de réécriture. Plus précisément, on obtient des
résultats concernant la normalisation pour le Pure Pattern Calculus PPC; la standardis-
ation pour le Linear Substitution Calculus λ�lsub; et l’équivalence entre réductions pour
des systèmes de réécriture infinitaires du premier ordre.

Tous les calculs considérés présentent des caractéristiques qui rendent difficile l’étude
des propriétés traitées dans cette thèse. Dans la suite, nous donnons un bref aperçu de
ces caractéristiques.

• Par rapport au PPC, nous rappelons que l’échec de filtrage dans n’importe quel
composant d’un filtrage composé entrâıne le fait que ce filtrage soit négatif. Cela
détermine soit le caractère non-séquentiel du PPC, soit la nécessité de définir une
stratégie multiradicaux afin d’obtenir des résultats de normalisation.

• Dans le cas de λ�lsub, le manque d’adéquation de l’embôıtement syntaxique pour
pouvoir être considéré comme un ordre de standardisation entre radicaux co-
initiaux, est dû à deux facteurs.

L’un de ces facteurs est que l’embôıtement syntaxique ne vérifie pas la condition
exprimée par l’axiome de linéarité: il se peut que deux radicaux a et b soient tels
que a multiplie ou efface b, et a ne contient pas syntaxiquement b. Par exemple,
si l’on considère t � xrx{ysry{zs, et que l’on appelle ax et ay les radicaux corre-
spondant aux occurrences sur-lignés de x et de y respectivement, on observe que
la réduction de ax résulte en t1 � y rx{ysry{zs, et donc, provoque une duplication
du radical ay, tandis que c’est le radical ay celui qui contient ax dans le terme t.

L’autre facteur est que l’embôıtement syntaxique n’est pas invariant par rapport
à la relation d’équivalence qui permet d’etablir un isomorphisme avec les réseaux
de preuve.

• Par rapport à la réécriture infinitaire nous soulignons que, afin de définir l’équivalence
entre réductions sur la base de la notion de permutation, on doit tenir compte du
fait que, dans certains cas, un nombre infini de permutations est nécessaire pour
obtenir l’équivalence entre deux réductions. Notamment, c’est possible qu’il soit
nécessaire de permuter un ensemble infini de pas, et chacun d’entre eux, par rap-
port à un autre ensemble infini de pas.

Par exemple, si l’on considère les règles fpxq Ñ gpxq et gpxq Ñ kpxq, pour obtenir
que la réduction fω Ñ gpfωq Ñ gpgpfωq �� gω Ñ kpgωq Ñ kpkpgωqq �� kω

est équivalente à fω Ñ gpfωq Ñ kpfωq Ñ kpgpfωqq Ñ kpkpfωqq �� kω, on doit
permuter tous les pas correspondentes à la règle gpxq Ñ kpxq, c’est à dire, un
nombre infini de pas. D’ailleurs, chacun de ces pas doit être permuté avec un
nombre infini de pas qui correspondent à l’autre règle.

À notre avis, un autre point notable dans cette thèse concerne l’utilisation de modèles
génériques de réécriture. Nous avons souligné les développements inédites à cet égard,
telles que les preuves abstraites de normalisation et de standardisation développés dans
le cadre des ARS, et l’extension du modèle fondé sur la notion de proof term à des
systèmes de réécriture infinitaire. Nous estimons que, en général, le materiel dans cette
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thèse témoigne de la pertinence de l’utilisation de modèles génériques dans l’étude de
calculs dont l’analyse des espaces de réduction est une tâche difficile.



Appendix C

Detailed proofs for the linear
substitution calculus

The functions about free and bound variables are defined as expected. The only differ-
ence between fv and flv is fvpxq � txu, flvpxq � H. We will also refer to the set of
bound variables of a term t, bvptq, with the expected definitions. As the contexts are
terms, the definitions of fv, flv and bv apply to contexts as well as to terms.

We define the set of bound labeled variables of a list of substitutions
L � rx

pα1q
1 {t1s . . . rx

pαnq
n {tns, as blvpLq � txi { x

pαiq
i � xαii u, i.e., the subset of vari-

ables carrying a label in tx
pαiq
i u.

We say that a list of substitutions rx
pα1q
1 {t1s . . . rx

pαnq
n {tns is well-labeled, if for all

i, ti P TWL, and fvptiq X blvprx
pαi�1q
i�1 {ti�1s . . . rx

pαnq
n {tnsq � H. We denote the set of

well-labeled lists of substitutions as LWL.

We assume α-conversion preserves free variables and well-labeling, i.e.:

Lemma C.0.1. Let t, u terms such that t and u are α-convertible. Then fvptq � fvpuq,
flvptq � flvpuq, and t P TWL iff u P TWL.

C.1 Invariance of the set TWL
We prove that well-labeling is invariant w.r.t. reduction and graphical equivalence, i.e.,
Lem. 4.1.7, stated in page 101. We obtain also Lem. 4.2.7, stated in page 104, as an
intermediate result.

Lemma C.1.1. Let t, u be terms and C a context. Then (i) fvpuq � fvptq implies
fvpCrusq � fvpCrtsq, (ii) flvpuq � flvptq implies flvpCrusq � flvpCrtsq.

Proof. Straightforward induction on C.

Lemma C.1.2. Let t L P TWL. Then t P TWL, L P LWL, and fvptq X blvpLq � H.

Proof. Easy induction on |L|. Notice that L � L1 rx
pαnq
n {tns implies t L � pt L1qrx

pαnq
n {tns.

Lemma C.1.3. Let t P TWL and L P LWL such that fvptq X blvpLq � H. Then
t L P TWL.

259
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Proof. Easy induction on |L|.

Lemma C.1.4. Let t be a term and C a context. Then:

(i) fvptqzbvpCq � fvpCrtsq ^ fvpCq � fvpCrtsq � fvpCq Y fvptq,

(ii) flvptqzbvpCq � flvpCrtsq ^ flvpCq � flvpCrtsq � flvpCq Y flvptq

Proof. Easy induction on C.

Lemma C.1.5. Let t, u be terms. Then (i) t
α
ÞÑ u implies fvptq � fvpuq, and (ii) t � u

implies fvptq � fvpuq.

Proof. Straightforward case analysis.

Based on the previous basic properties, we can prove the results leading to Lem. 4.1.7.
The first of these results is actually Lem. 4.2.7.

The following proofs use extensively Lem. C.1.4. We will not mention explicitly this
fact in each occurrence, to make the text less cumbersome.

Proof of Lem. 4.2.7.
We proceed by induction on C.

• If C � 2 then we conclude immediately.

• Assume C � λy.C1. In this case Crrxpαqss P TWL implies C1rrx
pαqss P TWL and

y R flvpC1rrx
pαqssq, so that y R flvpC1q. Moreover bvpCq � bvpC1qYtyu, implying

fvptq X bvpC1q � H and y R fvptq. The former allows to apply IH, obtaining
C1rrtss P TWL, while the latter implies y R flvptq which, along with y R flvpC1q,
yield y R flvpC1rrtssq, cfr. Lem. C.1.4. Thus Crrtss � λy.C1rrtss P TWL.

• The case C � λyα.C1 would contradict Crrtss P TWL.

• Assume C � C1 u, C1rrx
pαqss P TWL and u P TWL. IH on C1 suffices to conclude.

• Assume C � C1 u, C1rrx
pαqss � pλyβ.sqL, pλy.sqL P TWL, and u P TWL. There are

two cases to consider.

If C1 � pλy
β.C2qL, so that C1rrx

pαqss � pλyβ.C2rrx
pαqssqL, then Lem. C.1.2 implies

λy.C2rrx
pαqss P TWL, L P LWL, and fvpλy.C2rrx

pαqssq X blvpLq � H. In turn,
λy.C2rrx

pαqss P TWL implies C2rrx
pαqss P TWL and y R flvpC2rrx

pαqssq, so that y R
flvpC2q. Noticing bvpC2qYtyu � bvpCq allows to apply IH to obtain C2rrtss P TWL,
and also implies y R flvptq, which along with y R flvpC2q yields y R flvpC2rrtssq.
Therefore λy.C2rrtss P TWL. On the other hand, fvpλy.C2rrx

pαqssq X blvpLq � H
implies fvpC2qztyu X blvpLq � H, and blvpLq � bvpCq implying fvptq X blvpLq �
H, so that fvpλy.C2rrtssq X blvpLq � H. Hence Lem. C.1.3 yields pλy.C2rrtssqL P
TWL. Thus Crrtss � pλyβ.C2rrtssqLu P TWL.

If C1 � pλy
β.sqL1 rz

pγq{C2sL2, then Lem. C.1.2 implies pλy.sqL1 P TWL, C2rrx
pαqss P

TWL, fvpC2rrx
pαqssqXblvpL2q � H, L2 P LWL, and fvppλy.sqL1qXblvprz

pγq{C2rrx
pαqsssL2q �

H. Observing bvpC2q � bvpCq, we obtain C2rrtss P TWL from C2rrx
pαqss P TWL by

IH. Moreover, blvpL2q � bvpCq, so that fvptqX blvpL2q � H, and fvpC2rrx
pαqssqX

blvpL2q � H implies fvpC2q X blvpL2q � H, so that fvpC2rrtssq X blvpL2q � H.
Therefore rzpγq{C2rrtsssL2 P LWL. Furthermore, fvppλy.sqL1qXblvprz

pγq{C2rrtsssL2q �
fvppλy.sqL1q X blvprzpγq{C2rrx

pαqsssL2q � H. Hence Lem. C.1.3 yields
pλy.sqL1 rz

pγq{C2rrtsssL2 P TWL. Thus Crrtss � pλyβ.sqL1 rz
pγq{C2rrtsssL2 u P TWL.



C.1. INVARIANCE OF THE SET TWL 261

• Assume C � uC2. Then Crrxpαqss P TWL implies C2rrx
pαqss P TWL, and either

u P TWL or u � pλyβ.sqL and pλy.sqL P TWL. In both cases, IH on C2 suffices to
conclude.

• If C � C1 ry{us, then IH on C1 suffices to conclude.

• If C � C1 ry
β{us, then Crrxpαqss P TWL implies C1rrx

pαqss P TWL, u P TWL, and
y R fvpC1rrx

pαqssq. Observing bvpC1q � bvpCq, we obtain C1rrtss P TWL from
C1rrx

pαqss P TWL by IH. Moreover, y R fvpC1rrx
pαqssq implies y R fvpC1q, and y P

bvpCq implies y R fvptq, so that y R fvpC1rrtssq. Thus Crrtss � C1rrtssry
β{us P TWL.

• If C � urypβq{C2s, then Crrxpαqss P TWL implies u P TWL, y R fvpuq if ypβq � yβ,
and C2rrx

pαqss P TWL. IH on C2 suffices to conclude.

Lemma C.1.6. Let t
α
ÞÑ u such that t P TWL. Then u P TWL.

Proof. There are three cases to consider.

If t
α
ÞÑdb u, i.e. t � pλxα.s1qLs2 and u � s1 rx{s2sL, then t P TWL implies pλx.s1qL P

TWL, so that Lem. C.1.2 implies λx.s1 P TWL, L P LWL, and fvpλx.s1q X blvpLq � H,
and also s2 P TWL. In turn λx.s1 P TWL implies s1 P TWL, and therefore s1 rx{s2s P TWL.
On the other hand, variable convention implies fvps2q X blvpLq � H, which along with
fvpλx.s1q X blvpLq � H yield fvps1 rx{s2sq X blvpLq � H. Hence Lem. C.1.3 implies
u � s1 rx{s2sL P TWL.

If t
α
ÞÑls u, i.e. t � Crrxαssrx{ss and u � Crrsssrx{ss, then Crrxαss P TWL and

s P TWL. Moreover, variable convention implies fvpsq X bvpCq � H, so that Lem. 4.2.7
yields Crrsss P TWL, which suffices to conclude.

If t � s1 rx
α{s2s and u � s1, then we conclude immediately.

Lemma C.1.7. Let t � u. Then t P TWL iff u P TWL.

Proof. There are three cases to consider.
Assume t �CS u, i.e. t � s1 rx

pαq{s2sry
pβq{s3s, u � s1 ry

pβq{s3srx
pαq{s2s, x R fvps3q

and y R fvps2q, so that variable convention implies x � y.
Then t P TWL implies s1, s2, s3 P TWL, x R fvps1q if xpαq � xα, and y R fvps1q if

ypβq � yβ. Then it is immediate to obtain s1 ry
pβq{s3s P TWL, and subsequently u P TWL.

On the other hand, if u P TWL, then we obtain t P TWL analogously.

Assume t �σ1 u, i.e. t � pλypβq.s1qrx
pαq{s2s, u � λypβq.s1 rx

pαq{s2s, and y R fvps2q.
In this case, variable convention implies x � y.

Then t P TWL implies ypβq � y, and therefore s1 P TWL, y R flvps1q, s2 P TWL, and
x R fvpλy.s1q if xpαq � xα. Moreover, x � y implies that x R fvps1q if xpαq � xα. Hence,
it is immediate to obtain s1 rx

pαq{s2s P TWL, and subsequently u P TWL, recalling that
y R fvps2q � flvps2q.

On the other hand, u P TWL implies ypβq � y, s1 rx
pαq{s2s P TWL, so that s1, s2 P TWL

and x R fvps1q if xpαq � xα, and also y R flvps1q, since x � y. Hence we obtain
immediately λy.s1 P TWL, and subsequently t P TWL.

Assume t �σ2 u, i.e. t � ps1s2qrx
pαq{s3s, u � s1 rx

pαq{s3ss2, and x R fvps2q.
Then t P TWL implies s1s2 P TWL, s3 P TWL and x R fvps1q if xpαq � xα. There are

two cases to consider for s1s2 P TWL. If s1, s2 P TWL, then we obtain immediately that
s1 rx

pαq{s3s, and subsequently u, are in TWL. If s1 � pλy
β.s11qL, and pλy.s11qL, s2 P TWL,
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then fvppλy.s11qLq � fvps1q, implying that x R fvppλy.s11qLq if xpαq � xα, and therefore
pλy.s11qLrx

pαq{s3s P TWL. Hence u � pλyβ.s11qLrx
pαq{s3ss2 P TWL.

On the other hand, there are two cases to consider for u P TWL. If s1 � pλy
β.s11qL,

and pλy.s11qLrx
pαq{s3s, s2 P TWL, then pλy.s11qL, s3 P TWL and x R fvppλy.s11qLq

if xpαq � xα. Therefore, s1s2 P TWL. Moreover, fvps1q � fvppλy.s12qLq, implying
x R fvps1q if xpαq � xα, which along with x R fvps2q and s3 P TWL, imply t P TWL.

Lemma C.1.8. Let t P TWL and u a term, so that t
α
Ñ u or t

1
� u. Then u P TWL.

Proof. The hypothesis implies t � Crt1s, u � Cru1s, and t1
α
ÞÑ u1, t1 � u1, u1 � t1, or u1

is the result of applying one step of α-conversion from t1 or vice versa. We proceed by
induction on C.

• If C � 2, we conclude immediately by Lem. C.1.6, Lem. C.1.7 or Lem. C.0.1.

• If C � λx.C1, then t P TWL implies C1rt
1s P TWL, so that IH yields C1ru

1s P TWL,
and x R flvpC1rt

1sq. As moreover variable convention implies x R bvpC1q, we can
obtain x R flvpt1q, and therefore x R flvpu1q by Lem. C.1.5 or Lem. C.0.1. Observe
that x R flvpC1rt

1sq implies also x R flvpC1q, which along with x R flvpu1q yields
x R flvpC1ru

1sq. Thus Cru1s � λx.C1ru
1s P TWL.

• The case C � λxα.C1 would contradict Crts P TWL.

• If C � C1 s and C1rt
1s, s P TWL, then IH suffices to conclude.

• Assume C � C1 s, C1rt
1s � pλxα.s1qL, and pλx.s1qL, s P TWL. There are several

cases to analyse.

– C1 � 2, t1 � pλxα.s1qL. A case analysis on
α
ÞÑ, � and α-conversion implies

that u1 � pλyα.s11qL
1 where pλx.s1qL

α
ÞÑ pλy.s11qL

1, pλx.s1qL � pλy.s
1
1qL

1 or vice
versa, or pλx.s1qL and pλy.s11qL

1 are one application of α-conversion away.
Therefore Lem. C.1.6, Lem. C.1.7 or Lem. C.0.1 yields pλy.s11qL

1 P TWL,
hence Cru1s � pλyα.s11qL

1s P TWL.

– C1 � 2L and t1 � λxα.s1. Observe that pλx.s1qL P TWL implies λx.s1 P
TWL, L P LWL and fvpλx.s1q X blvpLq � H, by Lem. C.1.2. Case analysis
yields u1 � pλyα.s11qL

1, and pλy.s11qL
1 �σ1 λx.s1, or λx.s1 and pλy.s11qL

1 are
one application of α-conversion away (in the latter case, L1 is the empty
list). Therefore, Lem. C.1.7 or Lem. C.0.1 implies pλy.s11qL

1 P TWL. In
turn, Lem. C.1.5 or Lem. C.0.1 implies fvppλy.s11qL

1q � fvpλx.s1q. Hence,
Lem. C.1.3 implies that pλy.s11qL

1L P TWL. Thus, Cru1s � pλyα.s11qL
1Ls P

TWL.

– C1 � pλx
α.C2qL, so that pλx.C2rt

1sqL P TWL. Lem. C.1.2 implies λx.C2rt
1s P

TWL, L P LWL, and fvpλx.C2rt
1sq X blvpLq � pfvpC2rt

1sqztxuq X blvpLq � H.
In turn, λx.C2rt

1s P TWL implies C2rt
1s P TWL, so that IH yields C2ru

1s P TWL,
and also x R flvpC2rt

1sq. On the other hand, Lem. C.1.5 and Lem. C.1.1
imply flvpC2ru

1sq � flvpC2rt
1sq and fvpC2ru

1sq � fvpC2rt
1sq, so that par-

ticularly x R flvpC2ru
1sq. Hence C2ru

1s P TWL implies λx.C2ru
1s P TWL.

Notice that fvpC2ru
1sq � fvpC2rt

1sq implies pfvpC2ru
1sqztxuq X blvpLq �

H. Consequently, Lem. C.1.3 yields pλx.C2ru
1sqL P TWL. Thus Cru1s �

pλxα.C2ru
1sqLs P TWL.
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– C1 � pλxα.s1qL1 ry
pβq{C2sL2, so that pλx.s1qL1 ry

pβq{C2rt
1ssL2 P TWL. In

this case, Lem. C.1.2 implies pλx.s1qL1 P TWL, rypβq{C2rt
1ssL2 P LWL, and

fvppλx.s1qL1qXblvpry
pβq{C2rt

1ssL2q � H. In turn, rypβq{C2rt
1ssL2 P LWL im-

plies C2rt
1s P TWL and fvpC2rt

1sqXblvpL2q � H. Therefore, IH yields C2ru
1s P

TWL. Moreover, fvpC2ru
1sq � fvpC2rt

1sq by Lem. C.1.1, implying fvpC2ru
1sqX

blvpL2q � H. Hence rypβq{C2ru
1ssL2 P LWL, so that Lem. C.1.3 implies

pλx.s1qL1 ry
pβq{C2ru

1ssL2 P TWL. Thus Cru1s � pλxα.s1qL1 ry
pβq{C2ru

1ssL2s P
TWL.

• If C � sC2, then C2rt
1s P TWL, and either s P TWL or s � pλxα.s1qL and pλx.s1qL P

TWL. In both cases, IH suffices to conclude.

• If C � C1 rx{ss, then C1rt
1s, s P TWL, hence IH suffices to conclude.

• If C � C1 rx
α{ss, then C1rt

1s, s P TWL and x R fvpC1rt
1sq. IH implies C1ru

1s P TWL.
On the other hand, Lem. C.1.5 and Lem. C.1.1 imply fvpC1ru

1sq � fvpC1rt
1sq,

therefore x R fvpC1ru
1sq. Hence Cru1s � C1ru

1srxα{ss P TWL.

• If C � srxpαq{C1s, then s, C1rt
1s P TWL and x R fvpsq if xpαq � xα. Therefore, IH

suffices to conclude.

Proof of Lem. 4.1.7.
Given t P TWL and t

α
Ñ u or t � u, we must show u P TWL. If t

α
Ñ u, then Lem. C.1.8

allows to conclude immediately. If t � u, then a straightforward induction on the

sequence t � t0
1
� t1

1
� . . .

1
� tn � u, based on Lem. C.1.8, is enough to conclude.

C.2 Finite developments

We give the proof of some lemmas stated, and used, in Section 4.2.1.

Proof of Lem. 4.2.9.
We recall the statement.
Let Crrxαss, u P TWL and a variable y such that x � y, fvpuq X bvpCq � H, and
x, y R fvpuq. Then: (i) LMxpCrrx

αssq ¡ LMxpCrrussq, and (ii) LMypCrrx
αssq � LMypCrrussq.

The proof proceeds by induction on |C|.

• If C � 2, then LMxpx
αq � 1 ¡ 0 � LMxpuq, and LMypx

αq � 0 � LMypuq.

• If C � λz.C1, then Crrxαss P TWL implies C1rrx
αss P TWL, therefore IH suffices to

conclude. Notice that z � x would contradict λz.C1rrx
αss P TWL.

• If C � C1s and C1rrx
αss, s P TWL, then a straightforward inductive argument

suffices to conclude.

• Assume C � C1s, C1rrx
αss � pλzβ.s1qL, pλz.s1qL P TWL, s P TWL. In this case,

C1rrx
αss � pλzβ.s1qL implies C1 � pλz

β.C2qL or C1 � pλz
β.s1qL1 rx

pγq
i {C2sL2. Let

C 1
1 be the result of replacing zβ by z in C1. Then |C 1

1| � |C1|   |C| and C 1
1rrx

αss �
pλz.s1qL P TWL, so that IH yields

LMxpC
1
1rrx

αssq ¡ LMxpC
1
1rrussq and LMypC

1
1rrx

αssq � LMypC
1
1rrussq

We conclude by observing that LMxpCrrx
αssq � LMxpC

1
1rrx

αssq � LMxpsq, analogously
for LMxpCrrussq, and analogously again for LMy.
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• Assume C � sC2, then C2rrx
αss P TWL. Let us define s1 as follows: s1 � s if

s P TWL, or s1 � pλz.s1qL if s � pλzβ.s1qL. Then LMxpCrrx
αssq � LMxps

1q �
LMxpC2rrx

αssq, an analogously for LMxpCrrussq and for LMy. Hence IH suffices to
conclude.

• If C � C1 rz{ss, so that C1rrx
αss, s P TWL, then the occurrences of z in Crts are

bound for any t, implying x � z and z R fvpuq. IH implies LMxpC1rrx
αssq ¡

LMxpC1rrussq, LMypC1rrx
αssq � LMypC1rrussq, and also LMzpC1rrx

αssq � LMzpC1rrussq.
Therefore, for (i) we have

LMxpCrrx
αssrz{ssq � LMxpC1rrx

αssq � LMxpsq � LMzpC1rrx
αssq � LMxpsq

¡ LMxpC1rrussq � LMxpsq � LMzpC1rrussq � LMxpsq
� LMxpCrrussq

For (ii), if z � y then immediately LMypCrrx
αssq � LMypCrrussq � 0, otherwise an

analysis similar to that used for (i) applies.

• If C � srz{C2s, so that s, C2rrx
αss P TWL, variable convention implies x � z. IH

implies LMxpC2rrx
αssq ¡ LMxpC2rrussq and LMypC2rrx

αssq � LMypC2rrussq. For (i) we
have

LMxpCrrx
αssrz{ssq � LMxpsq � LMxpC2rrx

αssq � LMzpsq � LMxpC2rrx
αssq

¡ LMxpsq � LMxpC2rrussq � LMzpsq � LMxpC2rrussq
� LMxpCrrussq

For (ii), if z � y then immediately LMypCrrx
αssq � LMypCrrussq � 0, otherwise an

analysis similar to that used for (i) applies.

• If C � C1 rz
β{ss, or C � srzβ{C2s, then we obtain x � z like in the previous

cases. A simple argument based on IH suffices to conclude, except for (ii) if z � y;
in this case immediately LMypCrrx

αssq � LMypCrrussq � 0.

Proof of Lem. 4.2.10.

We recall the statement.
Let Crryγss P TWL, u P TWL and x variable, such that x � y, y R fvpuq and x R bvpCq.
Then LMxpCrry

γssq � LMypCrry
γssq � LMxpuq � LMxpCrrussq � LMypCrrussq � LMxpuq.

The proof proceeds by induction on |C|.

• If C � 2, then LMxpCrry
γssq � LMypCrry

γssq � LMxpuq � LMxpCrrussq � LMypCrrussq �
LMxpuq � LMxpuq.

• If C � λz.C1, then Crryγss P TWL implies z � y. A straightforward inductive
argument suffices to conclude.

• If C � C1s and C1rry
γss, s P TWL, then we have

LMxpCrry
γssq � LMypCrry

γssq � LMxpuq
� LMxpC1rry

γssq � LMxpsq � pLMypC1rry
γssq � LMypsqq � LMxpuq

� LMxpC1rry
γssq � LMypC1rry

γssq � LMxpuq � LMxpsq � LMypsq � LMxpuq

Analogously we obtain

LMxpCrrussq � LMypCrrussq � LMxpuq
� LMxpC1rrussq � LMypC1rrussq � LMxpuq � LMxpsq � LMypsq � LMxpuq

Hence, IH suffices to conclude.
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• Assume C � C1s, C1rry
γss � pλzβ.s1qL, pλz.s1qL P TWL, s P TWL. Let us define

C 1
1 as in the analogous case in the proof of Lem. 4.2.9, so that C 1

1rry
γss � pλz.s1qL.

Observe that LMxpCrry
γssq � LMxpC

1
1rry

γssq � LMxpsq, analogously for LMxpCrrussq,
and also for LMy. Moreover, IH applies to C 1

1. Hence, an argument similar to that
used in the previous case applies.

• If C � sC2, so that C2rry
γss P TWL, then let us define s1 as in the analogous

case in the proof of Lem. 4.2.9, so that LMxpCrry
γssq � LMxps

1q � LMxpC2rry
γssq and

analogously for LMy. An argument similar to that of the third case in this proof,
considering s1, applies.

• If C � C1 rz{ss, so that C1rry
γss, s P TWL, then the occurrences of z in Crts are

bound for any t, implying y � z and z R fvpuq. Also, x R bvpCq implies x � z.
Let us call sx � LMxpsq, sy � LMypsq and ux � LMxpuq. Then

LMxpCrry
γssq � LMypCrry

γssq � LMxpuq
� LMxpC1rry

γssq � sx � LMzpC1rry
γssq � sx � pLMypC1rry

γssq � sy � LMzpC1rry
γssq � syq � ux

� LMxpC1rry
γssq � LMypC1rry

γssq � ux � LMzpC1rry
γssq � psx � sy � uxq � sx � sy � ux

Analogously we obtain

LMxpCrrussq � LMypCrrussq � LMxpuq
� LMxpC1rrussq � LMypC1rrussq � ux � LMzpC1rrussq � psx � sy � uxq � sx � sy � ux

Moreover, Lem. 4.2.9 implies LMzpC1rry
γssq � LMzpC1rrussq. Hence IH suffices to

conclude.

• If C � srz{C2s, so that s, C2rry
γss P TWL, variable convention implies y � z, and

x R bvpCq implies x � z. We add sz � LMzpsq to the acronyms used in the previous
case. Then

LMxpCrry
γssq � LMypCrry

γssq � LMxpuq
� sx � LMxpC2rry

γssq � sz � LMxpC2rry
γssq � psy � LMypC2rry

γssq � sz � LMypC2rry
γssqq � ux

� LMxpC2rry
γssq � LMypC2rry

γssq � ux � sz � LMxpC2rry
γssq � sz � LMypC2rry

γssq � ux � sx � sy � ux

� LMxpC2rry
γssq � LMypC2rry

γssq � ux � sz � pLMxpC2rry
γssq � LMypC2rry

γssq � uxq � sx � sy � ux

Analogously we obtain

LMxpCrrussq � LMypCrrussq � LMxpuq
� LMxpC2rrussq � LMypC2rrussq � ux � sz � pLMxpC2rrussq � LMypC2rrussq � uxq � sx � sy � ux

Hence IH suffices to conclude.

• If C � C1 rz
β{ss, or C � srzβ{C2s, then we obtain y � z and x � z like in the

previous cases. An inductive argument like in the third case allows to conclude.

Proof of Lem. 4.2.11.
We recall the statement.
Let Crrxαss P TWL and u P TWL such that x R fvpuq. Then PLRpCrrxαssq � LMxpCrrx

αssq �
PLRpuq � PLRpCrrussq � LMxpCrrussq � PLRpuq.

The proof proceeds by induction on |C|.

• If C � 2, then
PLRpCrrxαssq � LMxpCrrx

αssq � PLRpuq � PLRpCrrussq � LMxpCrrussq � PLRpuq � PLRpuq.

• If C � λy.C1, then Crrxαss P TWL implies y � x. A straightforward inductive
argument suffices to conclude.
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• If C � C1s and C1rrx
αss, s P TWL, then we have

PLRpCrrxαssq � LMxpCrrx
αssq � PLRpuq

� PLRpC1rrx
αssq � PLRpsq � pLMxpC1rrx

αssq � LMxpsqq � PLRpuq
� PLRpC1rrx

αssq � LMxpC1rrx
αssq � PLRpuq � PLRpsq � LMxpsq � PLRpuq

Analogously we obtain

PLRpCrrussq � LMxpCrrussq � PLRpuq
� PLRpC1rrussq � LMxpC1rrussq � PLRpuq � PLRpsq � LMxpsq � PLRpuq

Hence, IH suffices to conclude.

• Assume C � C1s, C1rrx
αss � pλzβ.s1qL, pλz.s1qL P TWL, s P TWL. Let us define C 1

1

as in the analogous case in the proof of Lem. 4.2.9, so that C 1
1rrx

αss � pλz.s1qL. Ob-
serve that PLRpCrrxαssq � 1�PLRpC 1

1rrx
αssq�PLRpsq, LMxpCrrx

αssq � LMxpC
1
1rrx

αssq�
LMxpsq, and analogously for Crruss. Moreover, IH applies to C 1

1. Hence, an argu-
ment similar to that used in the previous case applies.

• If C � sC2, so that C2rrx
αss P TWL, then let us define s1 as in the analogous case

in the proof of Lem. 4.2.9, so that PLRpCrrxαssq � 1� PLRps1q � PLRpC2rrx
αssq and

LMxpCrrx
αssq � LMxps

1q � LMxpC2rrx
αssq. An argument similar to that of the third

case in this proof, considering s1, applies.

• If C � C1 ry{ss, so that C1rrx
αss, s P TWL, then the occurrences of y in Crts are

bound for any t, implying x � y and y R fvpuq. Let us call sp � PLRpsq, sx � LMxpsq
and up � PLRpuq. Then

PLRpCrrxαssq � PLRpC1rrx
αssq � sp � LMypC1rrx

αssq � sp � LMypC1rrx
αssq

LMxpCrrx
αssq � up � pLMxpC1rrx

αssq � sx � LMypC1rrx
αssq � sxq � up

Therefore

PLRpCrrxαssq � LMxpCrrx
αssq � up

� PLRpC1rrx
αssq � LMxpC1rrx

αssq � up � LMypC1rrx
αssq � psx � up � sp � 1q � sp � sx � up

and analogously

PLRpCrrussq � LMxpCrrussq � up

� PLRpC1rrussq � LMxpC1rrussq � up � LMypC1rrussq � psx � up � sp � 1q � sp � sx � up

Moreover, Lem. 4.2.9 implies LMypC1rrx
αssq � LMypC1rrussq. Hence IH suffices to

conclude.

• If C � sry{C2s, so that s, C2rrx
αss P TWL, variable convention implies x � y. We

add sy � LMypsq to the acronyms used in the previous case. Then

PLRpCrrxαssq � sp � PLRpC2rrx
αssq � sy � PLRpC2rrx

αssq � sy
LMxpCrrx

αssq � up � psx � LMxpC2rrx
αssq � sy � LMxpC2rrx

αssqq � up

Therefore

PLRpCrrxαssq � LMxpCrrx
αssq � up

� PLRpC2rrx
αssq � LMxpC2rrx

αssq � up �
sy � PLRpC2rrx

αssq � sy � LMxpC2rrx
αssq � up � sp � sy � sx � up

� PLRpC2rrx
αssq � LMxpC2rrx

αssq � up �
sy � pPLRpC2rrx

αssq � LMxpC2rrx
αssq � upq � sp � sy � sx � up

and analogously

PLRpCrrussq � LMxpCrrussq � up

� PLRpC2rrussq � LMxpC2rrussq � up �
sy � pPLRpC2rrussq � LMxpC2rrussq � upq � sp � sy � sx � up



C.3. CREATION LEMMA 267

Hence IH suffices to conclude.

• If C � C1 ry
β{ss, or C � sryβ{C2s, then we obtain x � y like in the previous

cases. An inductive argument like in the third case allows to conclude.

C.3 Creation lemma

In this section we give the proof of Lem. 4.2.22, cfr. page 111. We need a previous result.

Lemma C.3.1. Let C be a context, u a term and x a variable. Let C 1 and u1 be variants
of C and u respectively, in which all steps in Crrxss, resp. u, are labeled. Let b be a
non-labeled step in C 1rru1ss. Then C � Dr2Lts, u � pλy.u1qL1, and b � xD, pλy.u1qL1Lty,
i.e. a db-step.

Proof. By induction on C. Notice that the hypotheses Crrxss and C 1rru1ss imply that
x R bvpCq and fvpuq X bvpCq � H.

• If C � 2 then C 1ru1s � u1 and therefore all the steps are labeled.

• If C � C1s, so that C 1 � C 1
1s

1, observe that if b is inside C 1
1ru

1s then IH suffices to
conclude, and if b is inside s1 then it is labeled in C1rrxss. The only other possible
case is b � x2, C 1

1rru
1sssy, a db-step, so that C 1

1rru
1ss � pλy.u11qL

1. In turn, b being
not labeled, and therefore not present in C 1rrxss, implies that C1 � 2 or C1 � 2L2,
hence u � pλy.u1qL1 (and L � L1L2). Thus we conclude by taking D � 2.

• If C � sC2, so that C 1 � s1C 1
2, then b being inside s1 implies that it is labeled,

and if b is inside C 1
2rru

1ss then IH suffices to conclude. The only case left, namely
s � pλy.s1qL and b � x2, sC 1

2u
1y, implies x2, sC 1

2xy to be a step as well, and thus
labeled (so that s1 � pλyβ.s1qL).

• If C 1 � C 1
1 ry{s

1s, then observe that y R fvpuq and x � y. Moreover, y not being
labeled implies y P flvpC 1

1q. If b is inside either C 1
1rruss or s1, then we conclude

immediately as in previous cases. Notice that no new y occurrences can appear
in C 1

1, nor the existing occurrences can be erased. Therefore, the only other steps
in C 1

1rruss are the ls-redex corresponding to the occurrences of y in C 1
1, which are

labeled. Thus we conclude.

• If C 1 � s1 ry{C 1
2s, so that y P flvps1q, then b being inside s1 or C 1

2rru
1ss allows a

straightforward argument like in previous cases. Moreover, s1 P flvps1q prevents
x2, s1 ry{C 1

2rru
1sssy to be a gc-step. Thus we conclude.

• If C 1 � C 1
1 ry

β{s1s, then b being inside C 1
1rru

1ss or s1 allows a straightforward argu-
ment like in previous cases. Moreover, observe that hypothesis entails y R fvpuq,
so that the only step for the substitution on y in C 1

1rru
1ss is the labeled gc-step.

Thus we conclude.

• The cases C 1 � s1 ryβ{C 1
2s and C 1 � λy.C 1

1 admit straightforward arguments.

Proof of Lem. 4.2.22.
We recall the statement.
Let t

a
ÝÑ t1, and b P ROpt1q such that Hvawb. Then one of the following conditions

holds (where, for readability, β is used to label the created step)



268APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

1. (db creates a db-step)

t � Crppλxα.pλy.sqL1qL2 uq L3vs Ñdb Crpλy
β.sqL1rx{usL2L3 vs � t1

2. (db creates a ls-step)

t � Crpλxα.DrrxssqLus Ñdb CrDrrx
βssrx{usLs � t1

3. (db creates a gc-step)

t � Crpλxα.sqLus Ñdb Crsrx
β{usLs � t1 , where x R fvpsq

4. (ls downward creates a db-step)

t � CrDrxαL2 usrx{pλy.sqL1ss Ñls CrDrpλy
β.sqL1L2usrx{pλy.sqL1ss � t1

5. (ls upward creates a db-step)

t � CrxαL2 rx{pλy.sqL1sL3 us Ñls Crpλy
β.sqL1L2 rx{pλy.sqL1sL3us � t1

6. (ls creates a gc-step)

t � CrDrrxαssrx{uss Ñls CrDrrussrx
β{uss � t1 , where x R fvpDrrussq

7. (gc creates a gc-step)

t � CrDrsryα{Errxssssrx{uss Ñgc CrDrssrx
β{uss � t1 , where y R fvpsq and x R

fvpDrssq.

We proceed by induction on the context D of a. Let us call r the pattern of a, and

define r
a1
ÝÑ r1, where a1 is the step corresponding to a in r. To improve readability, we

mark the anchors of a and b with the labels α and β respectively in the following.

If D � 2, then we perform a case analysis on a.

• If a is a db-step, so that t � pλxα.sqLu and t1 � srx{usL, then the only possible
cases for b are the following.

– If b is inside s, L or u, then it is not created.

– If s � Crrxβss, then case 2 applies.

– If the pattern of b is srxβ{us, so that x R fvpsq, then case 3 applies.

• If a is a ls-step, so that t � Crrxαssrx{us and t1 � Crrussrx{us, then observe that
variable convention implies x R fvpuq. We list the only possible cases for b.

– If b is inside Crruss, then Lem. C.3.1 implies that case 4 applies.

– If b is inside u, then it is not created.

– If b is a ls-step on an occurrence of x in Crruss, then x R fvpuq implies that
b is not created.

– If the pattern of b is Crrussrxβ{us, then case 6 applies.

• If a is a gc-step, so that t � srx{us and t1 � s, then we conclude immediately.

If D � D1s, so that t � D1rrss and t1 � D1rr
1ss, then the only possible cases for b are

the following.

• If b is inside D1rrs, then IH suffices to conclude.

• If b is inside s, then it is not created.
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• The only other possible case is t1 � pλxβ.s1qLs, so that D1rr
1s � pλxβ.s1qL. In this

case, b being created implies that D1 � 2 or D1 � 2L2, therefore r1 � pλx.s1qL1,
and also that r is not of the shape pλx.s11qL

1
1.

If a is a db-step, then case 1 applies.

If a is a ls-step, then case 5 applies.

Finally, a being a gc-step would contradict r1 � pλx.s1qL1 or r � pλx.s11qL
1
1.

If D � sD2, then b being internal to s or D2rr
1s implies that a b is not created, and that

IH suffices, respectively. The only other possible case is s � pλx.sqL, so that the pattern
of b is pλxβ.sqLD2rr

1s; in this case b is not created.

IfD � D1 rx{ss, then b being internal toD1rr
1s or to s admits straightforward arguments,

like in the previous case. Moreover, observe that an occurrence of x in D1rr
1s cannot

be created, therefore the only other possible case is the pattern of b being D1rr
1srxβ{ss,

implying that x occurs in D1rrs but not in D1rr
1s. Observing that neither a db-step nor

a ls-step can erase an occurrence of x, we conclude that a is a gc-step, and therefore
that case 7 applies.

Finally, the cases D � srx{D2s and D � λx.D1 admit straightforward arguments.

C.4 The box order preserves graphical equivalence

An auxiliary lemma is needed.

Lemma C.4.1. Let Crrxβss �φ C
1rrxβss and a P ROpCrrxβssq. Then xβ is in the box of

a iff it is in the box of φpaq.

Proof. By induction in the definition of � as the reflexive and transitive closure of
1
�.

The interesting case is when Crrxβss
1
�xβ C

1rrxβss. We prove this case by induction on
C. In the following, we label the anchor of a with α, and we mention the conditions for
a and φpaq to include the occurrence of xβ in its box.

• The case C � 2 would contradict Crrxβss
1
�φ C

1rrxβss.

• Assume C � C1 s.

If C1rrx
βss

1
� C 1

1rrx
βss or s

1
� s1, then a is inside C1rrx

βss, and similarly, φpaq is inside
C 1

1rrx
βss. Particularly, if C1rrx

βss � pλyα.s1qL, implying C 1
1rrx

βss � pλyα.s1qL
1, then

xβ is neither in the box of a nor in that of φpaq. Hence, if C1rrx
βss

1
� C 1

1rrx
βss we

conclude by IH, and if s
1
� s1 we conclude immediately.

If C1rrx
βss � C2rrx

βssry{s1s and C 1rrxβss � pC2rrx
βss sqry{s1s, then a is inside

C2rrx
βss, and similarly for φpaq. Therefore, we conclude immediately.

If C1rrx
βss � s1 ry{C2s, C

1rrxβss � ps1 sqry{C2rrx
βsss, and y R fvpsq, then a is a

ls-step for an occurrence of y inside s1, it is the gc-step on y if y R fvps1q, or it is
inside C2rrx

βss. To conclude, it suffices to notice that exactly the same conditions
hold for φpaq.

• Assume C � sC2.

If s
1
� s1 or C2rrx

βss
1
� C 1

2rrx
βss, then s � pλyα.s1qL or a is inside C2rrx

βss. Observe
that t � pλyα.s1qL implies t1 � pλyα.s11qL

1 and vice versa. Therefore exactly the
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same cases correspond to φpaq. Hence we conclude by IH if C2rrx
βss

1
� C 1

2rrx
βss and

a is inside C2rrx
βss, and immediately in the remaining cases.

If s � s1 ry{s2s, C
1rrxβss � ps1C2rrx

βssqry{s2s and y R fvpC2rrx
βssq, then s1 �

pλyα.s11qL or a is inside C2rrx
βss, and exactly the same cases hold for φpaq, thus we

conclude.

• Assume C � C1 ry{ss. Lemma hypothesis implies x � y.

If C1rrx
βss

1
� C 1

1rrx
βss or s

1
� s1, then a is inside C1rrx

βss, and φpaq is inside C 1
1rrx

βss.

Then we conclude by IH if C1rrx
βss

1
� C 1

1rrx
βss, and immediately if s

1
� s1.

If C1 � C2 rz{s1s and C 1rrxβss � C2rrx
βssry{ssrz{s1s, then both a and φpaq are

inside C2rrx
βss, thus we conclude.

If C1 � s1 rz{C2s, C
1rrxβss � s1 ry{ssrz{C2rrx

βsss, y R fvpC2rrx
βssq and z R fvpsq,

then a is a ls-step on a occurrence of z in s1, a gc-step on z if z R fvps1q, or a
step in C2rrx

βss. We conclude by observing that exactly the same cases hold for
φpaq.

If C1 � λz.C2 and C 1rrxβss � λz.C2rrx
βssry{ss, then both a and φpaq are inside

C2rrx
βss, thus we conclude immediately.

If C1 � s1C2, C 1rrxβss � s1 ry{ssC2rrx
βss and y R fvpC2rrx

βssq, then the possible
cases for a are s1 � pλz

α.s2qL or a inside C2rrx
βss. We conclude by observing that

the possible cases for φpaq are exactly the same.

• Assume that C � sry{C1s.

If s
1
� s1 or C1rrx

βss
1
� C 1

1rrx
βss, then the possible cases for both a and φpaq are: a

ls-step for an occurrence of y inside s and s1, a gc-step on y if y R fvpsq � fvps1q,
or a step inside C1rrx

βss and C 1
1rrx

βss. Then we conclude by IH if a is inside C1rrx
βss

and C1rrx
βss

1
� C 1

1rrx
βss, and immediately in the remaining cases.

If s � s1 rz{s2s, C
1rrxβss � s1 ry{C1rrx

βsssrz{s2s, y R fvps2q and z R fvpC1rrx
βssq,

then the possible cases for a are: a ls-step for an occurrence of y inside s1, a
gc-step on y if y R fvps1q, or a step inside C1rrx

βss. We conclude by observing that
the possible cases for φpaq are exactly the same.

If s � λz.s1 and C 1rrxβss � λz.s1 ry{C1rrx
βsss, then an analysis like that of the

previous case applies.

If s � s1s2, C 1rrxβss � s1 ry{C1rrx
βssss2 and y R fvps2q, then an analysis like that

of the previous cases applies. Notice that s1 � pλz
α.s11qL implies that xβ is neither

in a nor in φpaq.

• Assume C � λy.C1.

If C1rrx
βss

1
� C 1

1rrx
βss, then a and φpaq are inside C1rrx

βss and C 1
1rrx

βss respectively,
therefore IH suffices to conclude.

If C1 � C2 rz{ss and C 1rrxβss � pλy.C2rrx
βssqrz{ss, then both a and φpaq must be

inside C2rrx
βss, hence we conclude immediately.

If C1 � srz{C2s and C 1rrxβss � pλy.sqrz{C2rrx
βsss, then for both a and φpaq the

possible cases are: a ls-step on an occurrence of z in s, a gc-step on z if z R fvpsq,
or a step inside C2rrx

βss. Thus we conclude.
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Proof of Lem. 4.5.2. We recall the statement.
Let t, u be terms s.t. t �φ u, where φ is the bijection described in page 114, cfr.
Lem. 4.4.9. Then, φ commutes with  B, i.e. a  B b iff φpaq  B φpbq.

We prove the following, stronger statement: let t �φ u and n P N. Then a  nB b
iff φpaq  nB φb. We proceed by induction on xn,my where m is the transitivity degree

when considering � as the reflexive-transitive closure of
1
�. The interesting case is when

n � m � 1, i.e. to prove that a  1
B b iff φpaq  1

B φpbq, if t
1
�φ u. We prove this statement

by induction on t.

• The case t � x would contradict t
1
� u.

• Assume t � t1t2. There are several cases to analyse.

– Assume t1
1
� u1 and u � u1t2.

If a and b are inside t1, so that φpaq and φpbq are in u1, then IH suffices to
conclude.

If a and b are inside t2, then we conclude immediately.

If a is inside t1, so that φpaq is inside u1, and b is inside t2, then it is immediate
to conclude that a ¢1

B b and φpaq ¢1
B φpbq.

If a is inside t2 and b is inside t1, then a similar argument applies, yielding
a ¢1

B b and φpaq ¢1
B φpbq.

If t1 � pλx
α.sqL, implying u1 � pλx

α.s1qL1, then a  1
B b iff φpaq  1

B φpbq iff b
is inside t2.

If t1 � pλx
β.sqL, implying u1 � pλx

β.s1qL1, then a ¢1
B b and φpaq ¢1

B φpbq for
any a P ROptq.

A note for the rest of the proof: it is easy to observe that if a and b are inside
the same subterm, it is possible to conclude either by IH or immediately, and
if a and b are inside different subterms, then so are φpaq and φpbq, implying
a ¢B b and φpaq ¢B φpbq. Consequently, we will not mention such cases in
the following.

– Assume t2
1
� u2, so that u � t1u2.

If t1 � pλx
α.sqL, then a  1

B b iff b is inside t2 iff φpbq is inside u2 iff φpaq  1
B

φpbq.

If t1 � pλx
β.sqL, then a ¢1

B b and φpaq ¢1
B φpbq for any a P ROptq.

– Assume t1 � s1 rx{s2s, so that t � s1 rx{s2st2, u � ps1t2qrx{s2s, and x R
fvpt2q.

If s1 � pλyα.s11qL, then a  1
B b iff φpaq  1

B φpbq iff b is inside t2. Recall
x R fvpt2q.

If s1 � pλy
β.s11qL, then a ¢1

B b and φpaq ¢1
B φpbq for any a P ROptq.

If a is a ls-step for an occurrence of x in s1, or x R fvps1q and a is the gc-step
on x, then a  1

B b iff φpaq  1
B φpbq iff b is inside s2.

If b is a ls-step for an occurrence of x in s1, so that φpbq is the ls-step for
the same occurrence of x, then a  1

B b iff φpaq  1
B φpbq iff a is inside s1 and

that occurrence of x is in its box.

If x R fvps1q and b is the gc-step on x, then a ¢1
B b and φpaq ¢1

B φpbq for any
a P ROptq.
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• Assume that t � t1 rx{t2s. There are several cases to analyse.

– Assume t1
1
� u1 and u � u1 rx{t2s.

If a is a ls-step for an occurrence of x in t1, so that t1 � Crrxαss and u1 �
C 1rrxαss, or x R fvpt1q and a is the gc-step for x, then a  1

B b iff φpaq  1
B φpbq

iff b is inside t2.

If b is a ls-step for an occurrence of x in t1, so that t1 � Crrxβss and u1 �
C 1rrxβss, then a  1

B b iff a is inside Crrxβss and xβ is in the box of a, and
similarly, φpaq  1

B φpbq iff φpaq is inside C 1rrxβss and xβ is in the box of φpaq.
Hence Lem. C.4.1 allows to conclude.

If x R fvpt1q � fvpu1q and b is the gc-step for x, then a ¢1
B b and φpaq ¢1

B φpbq
for any a P ROptq.

– Assume t2
1
� u2 and u � t1 rx{u2s.

If a is a ls-step for an occurrence of x in t1, or x R fvpt1q and a is the gc-step
for x, then a  1

B b iff b is inside t2 iff φpbq is inside u2 iff φpaq  1
B φpbq.

If b is a ls-step for an occurrence of x in t1, then a  1
B b iff φpaq  1

B φpbq iff a
is inside t1 and its box contains that occurrence of x.

If x R fvpt1q and b is the gc-step for x, then a ¢1
B b and φpaq ¢1

B φpbq for any
a P ROptq.

– Assume t1 � s1 ry{s2s, so that t � s1 ry{s2srx{t2s, u � s1 rx{t2sry{s2s, x R
fvps2q and y R fvpt2q.

If a is a ls-step for an occurrence of y in s1, or y R fvps1q and a is the gc-step
for y (recall y R fvpt2q), then a  1

B b iff φpaq  1
B φpbq iff b is inside s2; notice

x R fvps2q.

The analysis is analogous if a is a ls-step for an occurrence of x in s1, or
x R fvps1q and a is the gc-step for x.

If b is a ls-step for an occurrence of x or y inside s1, then a  1
B b iff φpaq  1

B

φpbq iff a is inside s1 and its box contains that occurrence of x or y.

If x R fvps1q and b is the gc-step for x, or analogously for y, then a ¢1
B b and

φpaq ¢1
B φpbq for any a P ROptq.

– Assume t1 � λy.s1, so that t � pλy.s1qrx{t2s, and u � λy.s1 rx{t2s.

Then the interesting cases are where a or b is a ls-step for an occurrence of
x in s1, or the gc-step for x if x R fvps1q. A simpler version of the analysis
of the previous case applies.

– Assume t1 � s1s2, so that t � ps1s2qrx{t2s, u � s1 rx{t2ss2, and x R fvps2q.

If s1 � pλyα.s11qL, then a  1
B b iff φpaq  1

B φpbq iff b is inside s2. Recall
x R fvps2q.

If s1 � pλy
β.s11qL, then a ¢1

B b and φpaq ¢1
B φpbq for any a P ROptq.

The remaining cases for a and b coincide with those specified for the previous
case in the proof, and a similar analysis applies.

• Assume that t � λx.t1.

If t1
1
� u1 and u � λx.u1, then all the steps are inside t1 and u1, so that IH suffices

to conclude.
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If t1 � s1 ry{s2s and u � pλx.s1qry{s2s, then the interesting cases for a and b are
those involving ls-steps or gc-steps for y, similar to those described in previous
case. We conclude by observing that a similar analysis applies.

C.5 The box order enjoys Context-Freeness

Proof of Lem. 4.5.8, page 123.
We recall the statement: let t � pλxα.t1qry1{s1s . . . ryn{snst2 and u � t1rx{t2sry1{s1s . . . ryn{sns,
so that t

a
ÝÑ u where a is the redex labeled by α, and b, c P ROptq, b1, c1 P ROpuq such

that bvawb1 and cvawc1. Then b  1
B c iff b1  1

B c
1.

We proceed by a case analysis given b  1
B c, resp. b1  1

B c
1. Particularly, observe that

the steps in u consisting of either free occurrences of x in t1 or the eventual gc-step on
x, are not residuals of steps in t, therefore they contradict the hypotheses. Notice also
that a P tb, cu would contradict the existence of b1 or c1.

The list of possible cases of b  1
B c for each possible c P ROptq follows. We consider

a variant of t in which the anchors of b and c have the only occurrences of the labels β
and γ respectively.

• If the anchor of c is inside t1, i.e. c � t1 or yγk occurs free in t1, then the only
possibility is b � t1 and the label γ occurring in the box of b.

• If the anchor of c is inside t1, i.e. c � sj , or yγk occurs free in sj where j   k, then

there are three possibilities: ryj{sjs being in fact ryβj {sjs, y
β
j occurring free in t1

or in some si where i   j, or b � sj and the label γ occurring in the box of b.

• If ryj{sjs is in fact ryγj {sjs then there is no redex which nests γ.

• If c � t2, then the only possibility is b � t2 and the label γ occurring in the box
of b.

To conclude, it suffices to observe that in each case the conditions are preserved in u,
and moreover, that these are the only cases for b1  1

B c
1 if we consider only non-created

redexes. If the anchor of c is inside sj , then recall that variable convention implies
yj R fvpt2q.

Proof of Lem. 4.5.9, page 124.
We recall the statement: let t � Errxγssrx{ss, c the γ-labeled step in t, a, b � Errxγss,
bvawb1, and cvawc1. If a ¢B c, then b  1

B c iff b1  1
B c

1.

We consider a variant of t in which the anchors of a, b and c have the only occurrences
of the labels α, β and γ respectively.

Before proving the lemma, we give two examples which show that the condition
a ¢B c is needed in the statement.

1. yαyβry{xγsrx{ss
α
ÝÑ xγyβry{xγsrx{ss � u. In this case b  1

B c and b1 ¢B c
1, where

c1 is the residual of c whose anchor is on the left.

2. zrwβ{yαsry{xγsrx{ss
α
ÝÑ zrwβ{xγsry{xγsrx{ss � u. In this case b ¢1

B c, and
b1  1

B c
1, where c1 is the residual of c whose anchor is on the left. This case is

counterexample also if we change  1
B with  B in the conclusion, since b  B

2c and
b1 ¢B c

2, where c2 is the residual of c whose anchor is on the right.
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Now we develop the proof.
Let us consider t0 � Errxγss

a
ÝÑ u0. We assume a R tb, cu, otherwise a P tb, cu would

contradict the existence of b1 and c1. Moreover, b � c implies a ¢B b, and therefore, by
Linearity, we have b1 � c1, thus the statement of the lemma becomes trivial. Hence we
also assume b � c hereafter. We now proceed by induction on E by observing that the
nesting relations in Errxγssrx{ss mentioned in the hypothesis of the lemma coincide with
those of the smaller terms of the form Drrxγssrx{ss on which the IH is applied. Observe
that a ¢B c implies that xγ occurs exactly once in u0, by Linearity.

• E � 2 contradicts the existence of a, b � Errxγss.

• If E � λy.D, then a, b � Drrxγss so we conclude by the IH

• Assume E � D t2.

If b, a � Drrxγss, then we conclude by the IH.

If b � Drrxγss and a � t2, then we conclude by observing that u0 � Drrxγsst12,
where t2

a
ÝÑ t12.

If b � t2, then b ¢1
B c and b1 ¢1

B c
1 because the label γ does not occur in t2 in

neither t0 nor u0.

If a ' Errxγss, and b � Drrxγss, i.e. eitherD � pλyα.D1q L orD � pλyα.t11q L1 rz{D
1s L2,

then we just conclude by an analysis similar to that described in the proof of
Lem. 4.5.8, observing the form of u0 and noticing that z R fvpt2q.

If b ' Errxγss is a db-step, then b ¢1
B c and b1 ¢1

B c
1.

• Assume E � t1D.

If b, a � Drrxγss, then we conclude by the IH.

If a � t1 and b � Drrxγss, then u0 � t11Drrx
γss, where t1

α
Ñ t11 and we trivially

conclude.

If b � t1 and a �' Errxγss, then b ¢1
B c and b1 ¢1

B c
1.

If a ' Errxγss is a db-step, then we get a contradiction with a ¢B c.

If b ' Errxγss is a db-step, then b  1
B c and b1  1

B c
1 because the free occurrence of

xγ lies inside the box of b in both t0 and u0.

• Assume E � Dry{t2s.

If b � Drrxγss, then there are several cases to consider.

– If a � Drrxγss then we conclude by the IH

– If yα occurs free in Drrxγss, then an analysis of the relation between the
occurrences of xγ and yα, and the box of b, yields the following four cases for
Drrxγss : D1rD1rx

γ , yαss, D1rD1rrx
γss, yαs, D1rD1rry

αss, xγs, and D1rs, xγ , yαs.
The box of b is the subterm indicated with the context D1 in the three former
cases, and s in the last one. Notice that b  1

B c in the former two cases, while
b ¢1

B c for the first and fourth cases. We conclude by observing that a similar
analysis applies to u0, and that b1  1

B c
1 in the same cases.

– If either a ' t0 is a gc-step on y, or a � t2, then t0 � Drrxγssryα{t2s
a
ÝÑ

Drrxγss � u0 or t0 � Drrxγssry{t2s
a
ÝÑ Drrxγssry{t12s � u0 respectively, so that

it is trivial to conclude.
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In any other case, i.e. b ' t or b � t2, we get that b ¢1
B c and b1 ¢1

B c
1 because xγ

does not occur free in the box of b. If b � t2 and a is a ls-step on an occurrence
of y in Drrxγss, so that t0 � D1rxγ , yαsry{t2s, then u0 � D1rxγ , t2sry{t2s, hence
neither of the two residuals of b embeds c1.

• Assume E � t1ry{Ds.

If b, a � Drrxγss, then we conclude by the IH

If b � Drrxγss and a � t1, then t0 � t1ry{Drrx
γsss

a
ÝÑ t11ry{Drrx

γsss � u0, where
t1

a
ÝÑ t11 thus a trivial arguments allows to conclude.

If b � t1, and a � t1 or a � Drrxγss, then b ¢1
B c; notice that a free occurrence

of y being inside the box of b would imply b  2
B c but not b  1

B c. It is then
straightforward to verify that b1 ¢1

B c
1 given the assumptions made on a, even if

u0 includes two residuals of b.

If b ' Errxγss, and a � t1 or a � Drrxγss, then we first observe that a cannot erase
neither b nor c by the hypothesis bvawb1 and cvawc1. Therefore b  1

B c and b1  1
B c

1,
given the assumptions made on a.

The case a ' Errxγss implies that the label γ occurs in the box of a, which contra-
dicts a ¢B c.

Proof of Lem. 4.5.10, page 124.
We recall the statement: let a, b, c P ROptq. Assume a ¢B c, bvawb

1, cvawc1 and b1  nB
d1  1

B c
1, where d1 is a created redex. Then b1  kB c

1 with k ¤ n.

Let us define t
a
ÝÑ t1. In the following, we consider a variant of t in which the anchors

of a and c have the only occurrences of the labels α and γ respectively. Moreover, we
will sometimes mark the anchor of d1 in t1 with a δ, for improved readability.

This lemma is needed because it is not true that a, c P ROptq, a ¢B c, t
a
ÝÑ t1,

cvawc1 and d1  1
B c1 implies that d1 is not created, i.e., that dvawd1 for some d. A

counterexample follows: pyαxγqry{I srx{ts
a
ÝÑ pIxγqry{I srx{ts. The λ-calculus exhibits

an analogous behavior, e.g. pλyα.yppλxγ .tqsqqI
a
ÝÑ Ippλxγ .tqsq. On the other hand, the

case t � yα ry{xγ srx{ts
a
ÝÑ xγ ryδ{xγ srx{ts � t1, is not a counterexample because

a  B c.

Now we develop the proof. We analyse the possible cases for d1 being created, w.r.t.
Lem. 4.2.22.

If any of cases 1, 4, 5 or 7 apply, then we have:

t � Crppλxα.pλy.s1qL1qL2 s2q L3us
a
ÝÑ Crpλyδ.s1qL1rx{s2sL2L3 us � t1,

t � CrDrxαL2 usrx{pλy.sqL1ss
a
ÝÑ CrDrpλyδ.sqL1L2usrx{pλy.sqL1ss � t1,

t � CrxαL2 rx{pλy.sqL1sL3 us
a
ÝÑ Crpλyδ.sqL1L2 rx{pλy.sqL1sL3us � t1, or

t � CrDrsryα{Errxssssrx{uss
a
ÝÑ CrDrssrxδ{uss � t1.

In any of these cases, d1  1
B c

1 iff the anchor of c1 is inside u. We prove the lemma
statement by induction on n where b1  nB d1. If b1  1

B d
1, then the box of b1 contains

all the pattern of d1, notice that the latter is a db- or a gc-step. Therefore, the box of
b1 contains particularly the subterm u, implying b1  1

B c
1, so that the lemma statement

holds in this case. For the inductive case: b1  k�1
B d1 implies b1  kB e

1  1
B d

1 for some e1.
The case just verified implies e1  1

B c
1, which suffices to conclude.
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Otherwise, one of the cases 2, 3 or 6 apply, i.e.

t � Crpλxα.DrrxssqLus
a
ÝÑ CrDrrxδssrx{usLs � t1,

t � Crpλxα.sqLus
a
ÝÑ Crsrxδ{usLs � t1, or

t � CrDrrxαssrx{uss
a
ÝÑ CrDrrussrxδ{uss � t1.

In any of these cases, d1  1
B c1 iff the anchor of c1 is inside u. But then a  1

B c,
contradicting the hypothesis. Thus we conclude.
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[DG01] René David and Bruno Guillaume. A lambda-calculus with explicit weak-
ening and explicit substitution. Mathematical Structures in Computer Sci-
ence, 11(1):169–206, 2001.
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thesis, Université Paris VII, 1996.
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step, see linear substitution
calculus, step

needed, see needed

simultaneous contraction, 20

reduction strategy, 5, 54, 55, 60, 82, 224

for PPC, see PPC, reduction
strategy

multistep, 6, 22, 52, 54, 60, 82
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normalising, 6, 51, 52, 60, 82

replacement

in infinitary rewriting, see
infinitary rewriting,
replacement

residual, 38, 54, 55, 67

after a multireduction, 56

after a reduction sequence, 30

after a multistep, 55

after a set of coinitial steps, 28

in the ARS model, 15

of a multireduction after a
multistep, 57

relation, 27

residual relation

after a graphical equiv. derivation,
113

in PPC, see PPC, residual relation

in the linear substitution calculus

step, see linear substitution
calculus, residual relation

on equivalence classes, 113–120

respects, 201

rewrite rule, 3, 10

in finitary rewriting, 43

in infinitary rewriting, 143

in PPC, see PPC, rewrite rule

pattern, 149

rewrite step, see reduction step

sequence, 2, see reduction sequence

rewriting, 2

infinitary, see infinitary rewriting

system, see rewriting system

term, see term rewriting

rewriting system, 2

term, see term rewriting system

typed, 1

rule

rewrite, see rewrite rule

symbol, 19

sequentiality, 52

strong, 52

signature

for infinitary multisteps, 157

for proof terms

finitary, 43

infinitary, 160

source

in ARS, 27

of a multireduction, 56

of a reduction sequence, 30

infinitary, 147

of a multistep, 55

of a finitary proof term, 43

of an infinitary multistep, 157

of an infinitary proof term, 160

square equivalence, 40

square equivalence (3), 40–42, 112,
129, 130

standard reduction sequence (s.r.s.),
41

standard reduction sequence (s.r.s.),
5, 40–42, 96, 97, 112, 126–130,
213, 219, 220, 225

standardisation, 5, 22, 220

for infinitary rewriting, 225

for the linear subst. calculus, 112,
130, 214

in ARS, 39–42, 127–130

stepwise proof term, see proof term,
stepwise

strong convergence, 13, 145, 195

substitution, 7

in infinitary rewriting, see
infinitary rewriting,
substitution

subterm

in infinitary rewriting, see
infinitary rewriting, subterm

target

in ARS, 27

in infinitary rewriting, 13

of a multireduction, 56

of a reduction sequence, 30

infinitary, 147

of a multistep, 55

of a finitary proof term, 43

of an infinitary multistep, 157

of an infinitary proof term, 160

term

closed, see closed term

in infinitary rewriting, 136

linear, see linear term

term rewriting, 2
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term rewriting system
finitary, 43
first-order, 6
higher-order, 6
infinitary, 143
left-linear, 43, 195

termination, 2
infinitarily terminating, see

infinitary rewriting,
termination

non-terminating system, 12
tree domain, 136
trivial

multireduction, 56
trivial proof term, see proof term,

trivial

typed rewriting system, see rewriting
system, typed

uniqueness of normal forms, see normal
form, uniqueness

uses, 58, 61, 62, 67–69

variant

in linear substitution calculus, see
linear substitution calculus,
labeled term, variant

weak convergence, 145, 195

well-labeled term, see linear
substitution calculus,
well-labeled term



292 INDEX OF SUBJECTS



Index of notations – ARS

This index contains the notations defined for the ARS model, the Pure Pattern Calculus,
and the linear substitution calculus. Some acronyms related to the λ-calculus are also
included.

Ar, 74

AL, 101

AB, 122

A�
B , 122

A,B, C (multisteps), 55

ar, 74

A,B, C (Set of coinitial steps), 28

a, b, c (ARS step), 28

A (ARS), 28

ABS, 69

add, 115

B |a, 85

BDa , 85

BFa , 85

bm, 71

Crrtss, 98

D, 7

DS, 69

fail, 71

flv, 100

fm (in PPC), 70

fv (in PPC), 70

I, 7

K, 7

L, 98

L (as a context), 98

Lab, 100

lift, 102

LMx, 104

M, 55

MF, 69

MRS, 56

NF, 28

nilt (empty reduction sequence), 30

nilt (empty multireduction), 56

O (ARS objects), 27

PLR, 104

Pos (in PPC), 70

R (ARS steps), 27

RS, 30

RO, 28

S, 83

Sπ, 83

SM, 83

src, 27, 30, 55, 56

t�, 100

t, u, s (ARS object), 28

tgt, 27, 30, 55, 56

TWL, 100

wait, 71

δ, γ, π, θ (reduction sequence), 30

∆,Γ,Π,Ψ (multireduction), 56

xpαq, 100

λxpαq.t, 100

trxpαq{ts, 100

,, 31

; (concatenation of reduction
sequences), 30

ν, 31

‖, 28

�, 58

�, 99

�, 99

� (labeled), 100

�CS, 99

�CS (labeled), 100

293
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�σ1 , 99
�σ1 (labeled), 100
�σ2 , 99
�σ2 (labeled), 100
φt, t1 , 114
1
�, 99
ttu, 99
�, 57
!, 27
a ! B, A ! B, 60
� (step inside a subterm), 122
| � |, 30
a ¤ B, a ¤ δ (in PPC), 85
λ�lsub, 99
λlsub, 98
 1

B, 121
 B, 121
 L, 102
 t, 115
χ, 61
Ω, 7
= , 40
∆ |a, 85
δ |a, 85
3 , 40
1
3 , 40
δ
Ý�, 30
a
ÝÑ (ARS step), 28
1
� , 41
� , 41
� , 41
Z, 71
', 122
Ñλ�lsub

, 99
Ñλlsub , 98
α
Ñ, 100
A
ÝÑ� , 55

∆
Ý�� , 56
ÞÑdb, 98
α
ÞÑdb, 100
Ñdb, 98
ÞÑgc, 98
α
ÞÑgc, 100
Ñgc, 98
ÞÑls, 98
α
ÞÑls, 100
Ñls, 98
ttp�θ tuu, 71
tp{θ tu, 72
δrks, 30
∆rks, 56
δri..js, 30
∆ri..js, 56
bvawb1, 28
bvaw, 28
Bvawb1, 28
Bvaw, 28
bvδwb1, 30
bvδw, 30
Bvδwb1, 30
Bvδw, 30
Htvaw, 55
Htvδw, 55
bvAwb1, 55
bvAw, 55
BvAwb1, 55
BvAw, 55
bv∆wb1, 56
bv∆w, 56
Bv∆wb1, 56
Bv∆w, 56
∆vBw, 57
avt � uwa1, 113
avt � uw, 113
Avt � uwA1, 113



Index of notations – Proof terms

This index contains the notations defined for the proof term model and for infinitary
rewriting.

a, a1, a
1, b, c (reduction step), 144

BpospC, iq, 140

Crt1, . . . , tns, 140

cfpcpψ, P q, 206

cfpspψq, 204

dpaq, 144

distpt, uq, 141

iTRS, 134

lengthpδq (length of a reduction
sequence), 147

limiÑα ti, 141

maxdpψq, 185

maxsdpψq, 185

mindpδq, 147

mindpψq (minimum activity depth of
an infinitary multistep), 158

mindpψq (minimum activity depth of
an inf. proof term), 160

Occaptq, 138

patptq, 149

Pdptq, Pdpµq, 149

Posptq, 136

Pposptq, Ppospµq, Ppospaq, 149

PTα, 160

PT, 161

rpospaq, 144

sdenpψq, 187

srcpaq (source of red.step), 144

srcpδq (source of a reduction sequence),
147

srcpψq (source of an infinitary
multistep), 157

srcpψq (source of an inf. proof term),
160

srcT , 157

stepspψq, 184

tppq (symbol at a position), 136

TerpΣq, 136

Ter8pΣq, 136

TerpΣ, Varq, 136

Ter8pΣ, Varq, 136

tgtpaq (target of red.step), 144

tgtpδq (target of a reduction sequence),
147

tgtpψq (target of an infinitary
multistep), 157

tgtpψq (target of an inf. proof term),
160

tgtT , 157

TRS, 134

VOccsptq, 140

Vpospt, iq, 140

δ, δ1, δ
1, γ, π (reduction sequence), 146

ΣR, 157

; (concatenation of reduction
sequences), 146

δrαs (α-th step in a reduction sequence,
146

δrα, βq, 147

|p| (length of a position), 136

t |P (prefix of a term), 201

δ |i (projection of a reduction
sequence), 152

P |i (projection of a set of positions),
201

ψrαs (α-th step in a stepwise proof
term), 184

t|p , 138
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trusp, 139
�pq, 189
α
�pq, 189
�pBq, 189
α
�pBq, 189
�, 189
� (for finitary rewriting), 47
α
�, 174
α
�B , 173

� (for infinitary rewriting), 174

�B , 174
α
�, 173

��, 147
δ
Ý��, 147

�, 147
δ
Ý�, 147
a
ÝÑ, 144
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