© po * B"Eq, s
@e" FACULTAD

5 CIENCIAS EXACTAS 2
) YNATURALES .

Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales
Departamento de Computacién

Espacios de reduccion en sistemas de reescritura
no-secuenciales e infinitarios

Tesis presentada para optar por el titulo de Doctor de la Universidad de Buenos Aires,
en el drea Ciencias de la Computacion

Carlos Alberto Lombardi

Directores de tesis: Alejandro Norberto Rios
Delia Nora Kesner
Eduardo Augusto Bonelli

Consejero de estudios: Alejandro Norberto Rios

Buenos Aires, 2014

Fecha de defensa: 7 de noviembre de 2014

Reduction spaces in non-sequential and infinitary
rewriting systems

We study different aspects related to the reduction spaces of diverse rewriting sys-
tems. These systems include features which make the study of their reduction spaces
a far from trivial task. The main contributions of this thesis are: (1) we define a mul-
tistep reduction strategy for the Pure Pattern Calculus, a non-sequential higher-order
term rewriting system, and we prove that the defined strategy is normalising; (2) we
propose a formalisation of the concept of standard reduction for the Linear Substitution
Calculus, a calculus of explicit substitutions whose reductions are considered modulo an
equivalence relation defined on the set of terms, and we obtain a result of uniqueness of
standard reductions for this formalisation; and finally, (3) we characterise the equiva-
lence of reductions for the infinitary, first-order, left-linear term rewriting systems, and
we use this characterisation to develop an alternative proof of the compression result.

We remark that we use generic models of rewriting systems: a version of the notion
of Abstract Rewriting Systems is used for the study of the Pure Pattern Calculus and
the Linear Substitution Calculus, while a model based on the concept of proof terms is
used for the study of infinitary rewriting. We include extensions of both used generic
models; these extensions can be considered as additional contributions of this thesis.

Keywords:

Rewriting

Standardisation

Normalising reduction strategies
Equivalence of reductions
Pattern calculi

Calculi with explicit substitutions
Infinitary rewriting

Abstract Rewriting Systems
Proof terms

Espacios de reduccion en sistemas de reescritura
no-secuenciales e infinitarios

En esta tesis estudiamos distintos aspectos ligados al espacio de reduccion de diversos
sistemas de reescritura. Los sistemas abarcados presentan caracteristicas que hacen que
el estudio de sus espacios de reduccion diste de ser una tarea sencilla.

Las principales contribuciones son: (1) se define una estrategia de reduccién multi-
paso para el Pure Pattern Calculus, un calculo con patrones no-secuencial, y se demues-
tra que dicha estrategia es normalizante; (2) se propone un criterio para formalizar el
concepto de reduccion standard en el Linear Substitution Calculus, un calculo de susti-
tuciones explicitas cuyas reducciones se consideran moédulo una relacién de equivalencia
sobre su conjunto de términos, obteniéndose un resultado de unicidad de reducciones
standard para el criterio definido; y (3) se caracteriza la equivalencia entre reducciones
para los sistemas de reescritura de términos infinitarios de primer orden y lineales a
izquierda, utilizandose esta caracterizacién para desarrollar una demostracién alterna-
tiva del resultado de compresion.

Destacamos el uso de modelos genéricos de sistemas de reescritura: se utiliza una
formulacion de Sistemas Abstractos de Reescritura para estudiar el Pure Pattern Calcu-
lus y el Linear Substitution Calculus, y un modelo basado en proof terms para estudiar
la reescritura infinitaria. Esta tesis incluye asimismo extensiones de los dos modelos
genéricos utilizados, que pueden considerarse contribuciones adicionales de la misma.

Palabras clave:

Reescritura

Estandarizacién

Estrategias de reducciéon normalizantes
Equivalencia entre reducciones
Calculos con patrones

Calculos con sustituciones explicitas
Reescritura infinitaria

Sistemas abstractos de reescritura
Proof terms

Espaces de réductions dans les systemes de réécriture
non-séquentiels et les systemes de réécriture infinitaires

On aborde dans cette these certaines propriétés formelles de systemes de réécriture
relatives a leurs espaces des dérivations. Les calculs choisis présentent des caractéristiques
particulieres qui font 1’étude des propriétés choisies des défis intéressants. Les contri-
butions les plus importantes de ce travail sont: (1) nous définissons une stratégie de
réduction multiradicaux pour le Pure Pattern Calculus, un calcul d’ordre supérieur non-
séquentiel, et nous prouvons que cette stratégie est normalisante; (2) nous proposons
une maniere de formaliser le concept de réduction standard pour le Linear Substitution
Calculus, un calcul avec substitutions explicites agissant & distance, dont les réductions
sont considérés modulo une relation d’équivalence dans I’ensemble des termes, et nous
aboutissons a des résultats d’existence et d’unicité des réductions standards pour cette
formalisation; (3) nous donnons une caractérisation de I’équivalence entre les réductions
pour les systemes de réécriture des termes infinitaires du premier ordre linéaires a gauche,
et nous nous servons de cette caractérisation pour développer une preuve d’une version
renforcée du résultat de compression des réductions infinitaires.

Un aspect commun a ces trois sujets est l'utilisation de formalismes génériques de
systemes de réécriture. L’étude sur le Pure Pattern Calculus et celui concernant le
Linear Substitution Calculus reposent sur le concept de Systéme Abstrait de Réécriture.
D’autre part, pour le travail sur la réécriture infinitaire, on se sert d’un modele fondé
sur la notion de proof term. Des extensions a ces formalismes génériques sont des
contributions additionnelles de cette these.

Mots-clés:

Réécriture

Standardisation

Stratégies de réduction normalisantes
Equivalence entre réductions

Calculs avec motifs

Calculs avec substitutions explicites
Réécriture infinitaire

Systéemes Abstraits de Réécriture
Proof terms

Agradecimientos

Dentro de la enorme cantidad de personas que contribuyeron, en formas més o menos
indirectas, a que haya llegado a este punto, no puedo dejar de mencionar a Roel de
Vrijer. Sus clases, sus comentarios, nuestras charlas, durante los meses en que estuvo en
Buenos Aires en 2006, fueron un impulso importante para que me terminara de decidir
a orientarme a la investigacién. Después tuve la suerte de compartir con él muchos
otros momentos, alld en varias visitas mias a la VU Amsterdam, y acd en visitas suyas
a la UBA. El material que se incluye en esta tesis, tanto desde lo concreto (con él y
con Alejandro Rios desarrollamos el material sobre reescritura infinitaria que forma el
capitulo 5, a partir de una sugerencia original de Roel, y tomando varias de sus ideas e
intuiciones), como desde la forma de trabajo, le debe mucho a esos encuentros. Dank U
wel Roel.

Tal vez existan tesis sin directores; aseguro que este no es el caso.

Tuve la gran fortuna de haber encontrado directores muy presentes, que estuvieron
ahi para sostenerme, intercambiar pareceres, ayudarme en cuestiones del trabajo de tesis,
y también en otras cuestiones, ajenas al doctorado pero importantes para mi. También
para trabajar codo a codo, el “ahi” en el que los percibi esta lejos de la vanidad de la
“autoridad académica”, lo cual les agradezco muy en particular, a los tres.

Lo que pueda tener esta tesis de profundo, de preciso, de claro, de riguroso, se debe
en gran parte a sus intervenciones.

En principio, decidi embarcarme en este doctorado por una mezcla de ganas de
lanzarme a la experiencia de trabajar en investigacién, a ver cémo me resultaba, y
las exigencias de la carrera docente. Entendia nebulosamente que “un doctorado lleva
mucho tiempo”, un tiempo que se mide jen anos!, donde durante todo este tiempo se
interactiia con un director. Al darme cuenta de esto, tomé mi primer decisién: si voy a
trabajar tanto tiempo con una persona, que sea Alejandro Rios.

Habia trabajado con él durante la tesis de doctorado que compartimos con Enrique
Vetere y que él dirigié. Nos encontramos, Enrique y yo, con una persona con la que fue
un placer compartir ratos de trabajo, que propuso un trato cordial y cercano desde el
principio, que nos acompand muchisimo, nos fue llevando en la comprensién del tema
que nos propuso, y nos guié muy bien cuando pensamos en un momento haber fracasado.

Ahora creo que nos conocemos mucho més con Ale. De esta experiencia, mas amplia,
mas profunda, mas transformadora que la anterior, una de mis suertes es haber podido
disfrutar de estas caracteristicas suyas, mucho mas en extenso y en detalle.

Ale, gracias por haber contribuido a que estos anos me hayan resultado agradables.
Por la paciencia para ayudarme a desentranar ideas en momentos en que estaban muy
difusas en mi cabeza, en que sélo las podia balbucear, mas de una vez pudimos trans-
formar entre los dos tales maranas en hilos coherentes. Por la rigurosidad que aportas
y que exigis en todo lo que pase por tus manos. Por la capacidad de poder hablar con
vos sobre cuestiones en las que tenemos visiones parecidas, y también sobre otras que
nos encuentran en posturas muy distantes. Y entre muchas otras cosas ...

... por haberme presentado a Delia Kesner.

Trabajando con ella tuve la oportunidad de apreciar su visién abarcadora de los
distintos aspectos del “trabajo de cientifico”, en particular sobre cémo trazar y cémo
seguir una lina de trabajo. También de ver el aspecto de las personas que trabajan

(jtrabajamos!) en esto; la ciencia es, finalmente, lo que hacen los cientificos. Sus comen-
tarios y visiones contribuyeron mucho con mi formacion, maxime teniendo en cuenta
que yo venia de otro dmbito, habiendo trabajado en desarrollo de software durante 15
anos antes de volcarme a la investigacion en teoria.

También aproveché su lucidez para encontrar problemas y sugerir caminos para re-
solverlos, o para seguir pensando, en el terreno confuso y resbaladizo que configuran
ciertas demostraciones y definiciones complejas con las que trabajamos; asi como su
talento para organizar informacién, plantear la forma inicial de un articulo y después
encarar la redaccion de los pasajes més dificiles.

Gracias Delia por todo eso. Y muy especialmente, por haberme recibido mucho mejor
que bien en mis periodos en Paris, ayuddandome en todo, desde las llamadas telefonicas
en francés hasta prestarme un colchén, y ocupdndose de que los tramites necesarios
avanzaran. En particular, por la magia que hiciste que posibilité que pasara un periodo
all4 cuando lo necesité por razones personales.

En esta temética y en Buenos Aires, es inevitable interactuar con Eduardo Bonelli.
De Edu aprecié muchisimo la capacidad de conectar distintos trabajos, de armar marcos
conceptuales en los que se inscribe el problema que se estd estudiando, de recordar
(jprodigiosamente!) la cita del articulo donde se habla de algo parecido a lo que tenemos
entre manos. También la intuicién (supongo que conexa con lo anterior) para proponer
soluciones para los atolladeros con que nos encontramos. En particular, su sugerencia
(dicha con su deliciosa sencillez, como quien sugiere echarle un poco de orégano a la
salsa) de “probar con gripping” salvé lo que hoy es el capitulo 3.

Edu, gracias por el aporte. Y desde lo personal, por lo que aprendi sobre mantener
el gusto por el trabajo en teoria durante las tormentas interiores provocadas por los
otros millones de cosas de las que nos ocupamos en estos afios, apreciando tus ganas de
“hacer cuentas”, charlando con vos varias veces, muchas en la Universidad de Quilmes,
donde tengo la suerte de trabajar en la oficina al lado de la tuya.

Finalmente, quiero agradecerles a los tres la confianza que tuvieron en mi, que fue en
muchos momentos claramente mayor a la que yo me tenia, y que fue un punto de apoyo
constante, sobre todo cuando las cuentas no salen, los esquemas no cierran. Me hace
feliz pensar que esta tesis es digna de semejante (por quiénes y por cudnto) confianza.

Hay otra persona a la que el contenido de esta tesis le debe mucho. Varias ilumina-
ciones de Beniamino Accattoli, y su firmisimo propésito de estudiar los cédlculos de
sustituciones explicitas a distancia desde distintas perspectivas, son una parte primor-
dial del sustento sobre el que se basa el capitulo 4. También tuvo mucho que ver con
varios de los resultados que alli aparecen. Ti ringrazio tantissimo Beniamino.

Yendo para atras en el tiempo, antes de la decisién de emprender esta aventura
doctoral, hubo otra mas fundamental: la de orientar mis actividades al campo de la
docencia y la investigacién. En esa decisién tuvo mucho que ver la invitacién inicial
que me hizo Nicolas Passerini para participar en el dictado de una materia en la
UTN, hace ya 12 afios. A partir de la experiencia inicial de los primeros cursos que
compartimos, surgieron un grupo de personas y una serie de actividades que crecieron,
ambos, en proporciones y formas insospechadas, mas alld de lo que la imaginaciéon mas
delirante hubiera podido sugerir. Una de las consecuencias de ese movimiento es que
varios decidimos “pegar el salto a la academia”, y acéd estoy, en 2014, terminando un
doctorado.

Gracias Nico, por el impulso inicial, por haber hecho lugar al principio a ese tipo
“venido de afuera”. Por todas las cosas que compartimos en este tiempo, que ayudaron
a definir, y/o apuntalaron, muchos (realmente muchos) de los intereses y perspectivas
de la persona que soy ahora, donde este doctorado es una de ellas. Y por tus/nuestros
proyectos que son parte de la argamasa que forma el futuro, el mio y (sospecho) el de
unas cuantas personas mas.

Gracias también a todas/os las damas y los caballeros con los que compartimos
aulas, cursos, mesas de picadas y de comida en sus mads variadas formas, principios,
ideales, ideas, suenos, y un largo etcétera. Cualquier enumeracién seria pesada (por lo
larga) y al mismo tiempo injusta (por lo imperfecto de mi memoria); espero que estas
palabras les lleguen a unos cuantos de sus destinatarios, y que logren perdonarme por
no mencionarlos explicitamente.

Un paso mas atras estd la licenciatura, Exactas, mundo nuevo, gente distinta de la
que habia frecuentado hasta ese momento. Recién empezando, Elvio Nabot, companero
fantabuloso para aprender juntos a programar con objetos y avanzar en general en la
comprension de lo que se trata programar. También para compartir actividades e ideas
adentro y afuera de la facultad, asomarnos desde nuestros 20 afios a una Buenos Aires
en una crisis econémica feroz, pero todavia con el fermento cultural impulsado por la
vuelta a la democracia (anos 88 a 91, para quienes esta refrencia espaciotemporal les
signifique algo).

Después, una combinaciéon entre Elvio y la mas pura casualidad provocaron el co-
mienzo del encuentro con Enrique Vetere. Este encuentro lleva 20 anos, de excavar y
excavar para entendernos cada uno a si mismo y al otro, de tomar y generar y descartar
distintas formas de encontrarnos (haber sido “companeros de facultad” fue una de ellas),
de estar.

Enri y Elvio: el aliento, la confianza en mis capacidades, la escucha, y el purisimo
carifio que recibi de ustedes (y familia, Vivi, Ana, Sol, Wanda, Tomads) fueron y son
fundamentales (en el sentido literal ligado con “fundamento”) de cada cosa importante
que emprendo, entre ellas, el camino que termina en este manuscrito. Muchas muchas
gracias.

A su vez, no fue trivial que una tarde de marzo del 88 entrara a la primer clase de mi
Licenciatura en Computacién. En el camino hasta ahi, hay dos personas insoslayables
mucho més alld de su mera cercania. M4 (o sea Vicenta Puglia), gracias ppor inculcarme
el gusto por leer y conocer desde chico. Olimpia, gracias por ocuparte de tantisimo
mas de lo que le corresponde, o lo que pudiera esperarse de, una hermana, sobre todo
en tiempos complicados. Ni el paso del tiempo, ni los (tantos) cambios, hacen ni que me
olvide ni que deje de apreciar lo queNi hicieron por mi, y ¢cémo contribuy6 a que haya
llegado hasta acéd con los éxitos que pude disfrutar en el camino.

Termina el flashback, vuelvo al doctorado, que me lleva a Paris. J’ai été a Paris,
plus précisement au laboratoire PPS, & plusieurs reprises pendant mon doctorat.

Au PPS, ce n’est pas possible d’oublier Odile Ainardi, qui m’a aidé avec plein de
démarches, en trouvant toujours la maniere de les faire marcher, sans jamais perdre la
convivialité quand on parlait dans son bureau. Je te remercie Odile!

C’était tres jolie pour moi d’avoir partagé du temps, des déjeuners dans la cantine, et
méme quelques bieres et des diners, avec d’autres thesards du PPS. Particulierement, ces

interactions ont été fondamentales dans mon apprentisage de la langue francaise. Merci
Grégoire, Fabien, Barbara, Sévérine, Thibaut, et tant d’autres, vous avez été vraiment
gentiles.

Pendant mon séjour le plus long, j’ai fréquenté les lecons de ping chez I’ Association
du Patronage Sainte Mélanie. Heureusement, j’ai trouvé un groupe de personnes
tres sympa, avec lequels j’ai eu la chance de parler sur les sujets les plus diverses. Merci
a tou(te)s!

Al poco tiempo de empezar el doctorado, ocurrié la sorpresa de conocernos con Eve
(o sea, Evelina Maranzana). Decidir estar juntos fue rapidisimo. Siguieron unos anos
muy némades en los que a veces queddbamos cruzados de continente, desde hace un
tiempito ya que estamos juntos en continuo. Gracias amor por los mimos, por tantos
ratos y tantas experiencias, por armar una pareja en la que la experiencia de vida
nos permite partir con algunas cosas claras, por poner mis problemas en contexto, por
ampliar mi imaginario, por tu mirada, por tu sonrisa, por sacudirme, por permitir, por
alentar y por generar que este doctorado haya resultado una verdadera experiencia, con
todas las letras. Te amo.

A FEve, que le da sabor, profundidad y sentido a esto, y a cualquier cosa en la que me
embarque.

A FEnza, que literalmente, me puso en este mundo.

A Olimpia, que se encargd de mi muchisimo més de lo que corresponde a una hermana.

A Enri, porque esto es una etapa de algo que empezamos juntos, este gol es para vos.

y
A la Republica Argentina, en cuyo contexto estoy pudiendo presentar una tesis doctoral

con la que tal vez no podria ni estar sonando en circunstancias distintas.

Contents

1 Introduction 1
1.1 Rewriting 2
1.1.1 Some basic features of rewriting 2

1.1.2 Common rewriting terminology 3

1.1.3 Reduction spaces 4

1.1.4 The A-calculus and higher-order term rewriting systems 6

1.2 The rewriting systems studied in this thesis 7
1.2.1 Patterncalculi 7

1.2.2 A finer step granularity — Explicit Substitution calculi 9

1.2.3 Infinitary rewritingo 12

1.3 Generic models of rewriting systems 14
1.3.1 Abstract Rewriting Systems 14

1.3.2 Proofterms 19

1.4 Outline of the contributions 21
1.4.1 Normalising reduction strategies for non-sequential calculi 21

1.4.2 Standardisation for the linear substitution calculus 23

1.4.3 Equivalence of reductions for infinitary rewriting systems 23

1.4.4 Previous presentations of the results 25

2 Generic models of rewriting systems 27
2.1 Abstract Rewriting Systems Lo L 27
2.1.1 Basicelements 27
2.1.2 Reduction sequences and developments 30
2.1.3 Initial axiomso oL L 31
2.1.4 Finiteness of developments and semantic orthogonality 32
2.1.5 Embedding axioms Lo 34
2.1.6 Gripping axioms 37
2.1.7 Permutation equivalence in the ARS model 38
2.1.8 Standardisation in the ARS model 39
2.1.9 A remark on total-order embeddings 42

2.2 The proof term model 42
2.2.1 Preliminaries — first-order term rewriting system 43
222 Proofterms 43

2.2.3 Equivalence of reductions 46

ii

CONTENTS

3 Normalisation

3.1

3.2
3.3

3.4

3.5

Additional elements of the ARSmodel
3.1.1 Multistepso
3.1.2 Multireductions
3.1.3 Some relations on multisteps and multireductions
3.1.4 Amnewaxiom
Multistep strategies and required properties
Necessary normalisation for ARS
3.3.1 Relevance of gripping oL
3.3.2 Postponement of dominated multisteps
3.3.3 Mainresults.o
The Pure Pattern Calculus
3.4.1 Overview of PPC
3.4.2 Non-sequentiality in PPC
343 PPCasan ARS
The normalising reduction strategy & for PPC
3.5.1 Normalisation of § — preliminary notions and results
3.5.2 Normalisation of § — main proofs

4 Standardisation for the linear substitution calculus

4.1

4.2

4.3
4.4
4.5

4.6

The linear substitution calculus
4.1.1 Alabeled version
A first ARStomodel Aigup - - - - - o o o
4.2.1 Finite developments
4.2.2 Semantic orthogonality
4.2.3 Embedding axiomso oo
A first standardisation result
Working with equivalence classes,
The box order on steps
4.5.1 ARS based on the box order,
4.5.2 Some standardisation results stable by graphical equivalence

A novel proof for the uniqueness of s.r.s.

5 Permutation equivalence for infinitary rewriting

5.1

5.2

5.3

Infinitary rewriting and other preliminary material
5.1.1 Countable ordinals
5.1.2 Positions, terms, contexts oL,
5.1.3 Substitutions oL
5.1.4 Rewriting: TRS, step, reduction sequence
5.1.5 Patterns, patterndepth L.
5.1.6 Some properties about infinitary rewriting
Infinitary proof terms o
5.2.1 Infinitary multisteps oL
5.2.2 The whole set of proof terms
5.2.3 Soundness of the definitions
5.2.4 An alternative induction principle
5.2.5 Basic properties of proof terms
Permutation equivalence oL,

51
95
95
56
o7
59
99
60
62
64
67
69
69
73
74
82
84
90

95

98
100
101
104
108
110
112
113
120
122
126
127

CONTENTS iii

5.3.1 Motivating examples Lo 169
5.3.2 The formal definition L. 172
5.3.3 Some infinitary permutation equivalence judgements 175
5.3.4 Infinitary erasure 178
5.3.5 Basic properties of permutation equivalence 179

5.4 Denotation of reduction sequences 182
5.4.1 Stepwise proof terms 184

5.4.2 Denotation — formal definition and proof of existence 187

5.4.3 Uniqueness of denotation 189

5.5 Compression 195
5.5.1 Factorisation for infinitary multisteps 196
5.5.2 Fixed prefix of contraction activity 200
5.5.3 General factorisation result o000 207
5.5.4 Proof of the compression result 210

6 Conclusions 213
6.1 Rewriting systems: challenges, decisions and results 213
6.1.1 Normalisation for the Pure Pattern Calculus 214
6.1.2 Standardisation for the Linear Substitution Calculus 214
6.1.3 Equivalence of reductions in infinitary rewriting 215

6.2 Generic models in this thesis 217
6.2.1 Generic models give useful insights 217
6.2.2 Contributions to the generic models 219
6.2.3 Towards a comparison of generic models 221

6.3 Further worko 224
A Resumen en castellano 227
Al Introduccidn. 227
A.2 Modelos genéricos de sistemas de reescritura 232
A3 Normalizacién e 235
A.4 Estandarizacién para el linear substitution calculus 238
A.5 Equivalencia de reducciones para reescritura infinitaria 240
A.6 Conclusiones e 243
B Résumé en francgais 247
B.1 Imtroduction. 247
B.2 Modeles génériques de réécriture L. 248
B.3 Normalisation e 250
B.4 Standardisation pour le linear substitution calculus 253
B.5 Equivalence de réductions pour la réécriture infinitaire 255
B.6 Conclusions e 257
C Detailed proofs for the linear substitution calculus 259
C.1 Imvariance of the set Tyyr . . . o o o o 0 o 0 o e 259
C.2 Finite developments 263
C.3 Creationlemma e e 267
C.4 The box order preserves graphical equivalence 269

C.5 The box order enjoys Context-Freeness 273

v

CONTENTS

Chapter 1

Introduction

Rewriting is the study of stepwise, i.e. gradual and discrete, transformation of objects.
If the objects being transformed are terms, that is, well-formed strings of symbols, then
we speak of term rewriting.

Rewriting has a significant and continuous influence in different areas of computer
science. In this sense, the A-calculus, one of the most ancient rewriting systems, is
arguably the most influential one.

From a purely theoretical viewpoint, the A-calculus defines a model of computa-
tion, in equal terms with Turing machines and recursive functions. This fact yields the
relevance of rewriting for the theory of computer science.

On the other hand, maybe the most far-reaching contribution of rewriting in the
practice of programming is that the features and simplicity of A-calculus led to the
development of the functional programming model, which is enjoying an increasing in-
fluence into the global computer programming community.

Besides the existence of programming languages based mainly in the functional pro-
gramming model, as e.g. Lisp (www.lispworks.com/documentation/HyperSpec/Front/
index.htm), Erlang (www.erlang.com), OCaml (ocaml.org) and Haskell (www.haskell.
org); we remark that some features, concepts and techniques inspired by this model,
such as the inclusion of “A-expressions” (that is, anonymous functions), and the use of
generics in type systems, have been adopted in mainstream programming languages, in-
cluding Java (docs.oracle.com/javase/specs/), C# (msdn.microsoft.com/en-us/
library/618ayhy6.aspx), Python (www.python.org) and others. The recent (first ap-
peared in 2003) Scala language (www.scala-lang.org) combine several concepts com-
mon in functional programming with the main constructs of object-oriented program-
ming; its rapidly growing popularity contributes to foster functional-related constructs
and practices inside the programming community.

We also mention that some concepts coming from the functional programming lan-
guages and style, like the emphasis on the control of the effect/mutability generated
by the different parts of a program, the use of higher-order functions, and the use of
continuations, permeate into other programming communities.

On another front, rewriting systems offer a formal framework for the study of differ-
ent aspects of programs, such as their evaluation and their type disciplines. Related to
the latter, a plethora of typed rewriting systems have been proposed.

In this thesis, we study formal properties of rewriting systems focused on different
concerns related to functional-based programming languages, including: pattern calculi,

2 CHAPTER 1. INTRODUCTION

which model the phenomenon of pattern matching; explicit substitution calculi, oriented
to the detailed study of the implementation of languages; and infinitary rewriting sys-
tems, which allow to study potentially infinite computations.

In the remainder of this introduction, we revisit the main concepts of rewriting,
then we describe briefly the studied rewriting systems, subsequently we introduce the
two models of reduction spaces being the main tools used in this work, and finally we
comment its main contributions.

1.1 Rewriting

The origins of rewriting, and particularly of term rewriting, predate its establishment
as a definite research area. Historically, the major source for the development of term
rewriting is the emergence in the 1930s of the A-calculus, together with its twin combi-
natory logic. Several formal properties, currently associated to the general framework of
rewriting, were originally analysed for these systems. Later, the notion of term rewrit-
ing system has been formalised, and their properties studied from a general perspective.
One early example is [KB70].

1.1.1 Some basic features of rewriting

A simple example of rewriting is the simplification of an arithmetic expression in order
to obtain its result. In this view, the computation of the result of the expression (1 x
1) x (0 x 0) can be described by either of the following stepwise transformations:

(Ix1)x(0x0) - 1x(0x0) > 1x0 — 0
(Ix1)x(0x0) - (I1x1)x0 - 1x0 — 0

The initial expression is simplified by means of a sequence of rewrite steps. The use
of a directed arrow (instead of e.g. some equality symbol) reflect that transformations,
as modeled in the theory of rewriting, have a definite direction from source to target.
A rewriting system specifies the objects being transformed and the allowed rewrite
steps; in this example, arithmetic expressions and sound simplification steps respectively.
The final expression of both exhibited sequences, namely 0, cannot be further rewritten
(i.e. simplified). Such objects are known as the normal forms of a rewriting system.
We use t - u to denote that the object u can be obtained from ¢ through a sequence
of rewrite steps.

As in this example, most applications of rewriting allow a multiplicity of rewrite
sequences from a common source. This fact leads to two of the most basic concerns of
rewriting:

Termination Do all possible rewrite sequences attain a normal form after a finite
number of steps, or can infinite rewrite sequences be built?

Uniqueness of normal forms If two rewrite sequences having the same source end
in normal forms, is it possible to assert that those normal forms coincide?

Let us analyse the consequence of not enjoying either of these properties in our
example about computing the result of arithmetic expressions. The lack of uniqueness

1.1. REWRITING 3

of normal forms would imply a basic inconsistency: different results could be obtained
from a common expression, depending on how the computation from that expression is
carried on. The lack of termination would imply that certain computations could run
indefinitely without yielding a result.

In many applications of rewriting, both termination and uniqueness of normal forms
are desired properties. There are important exceptions to this observation though. We
mention the examples of CCS [Mil99] and the m-calculus [SWO01], which are adequate
models of concurrent computations, despite the fact that they do not enjoy neither of
these two properties.

Another property referred repeatedly in the literature is the confluence or Church-
Rosser property. A rewriting system is confluent iff, whenever t — u; and t — wug,
there exists an object s verifying u; — s and us — s. That is: in a confluent rewriting
system, given two sequences of rewrite steps from a common source, a common target can
always be obtained by further rewriting them, thus “joining” the two original sequences.
Observe that in a confluent rewriting system, if ¢ —» wq, ¢ = wu9, and both u; and us
are normal forms, then necessarily u; = uo, because the only object verifying u; — s is
u1, and similarly for us. Hence confluence implies uniqueness of normal forms. In fact,
proving confluence is a way to obtain uniqueness of normal forms for a rewriting system.

We end this brief informal description of the field of rewriting, by noticing that
in many cases, the stepwise transformation of objects is specified by rewrite rules.
These rules encode the schemas of the allowed transformations: each rewrite step must
correspond to the application of a rule. A set of rewrite rules form the basis of
a rewriting system. In our example about simplification of arithmetic expressions,
taken from [vO94], the rules:

lxz - x rx0 — 0

suffice to justify each of the steps in both of the rewrite sequences exhibited. E.g. the
step (1x1)x(0x0) — 1x(0x0) corresponds to an application of 1 xz — x, where
x stands for the second occurrence of 1 from the left. Observe that the rule application
in this step does not involve all the source term, but only the subterm 1 x 1. Usually,
rules can be applied to either a complete object or only to a part of it.

Notice the use of variables in rules. If we allow variables to stand, not just for
numbers, but for arbitrary expressions, then the following rewrite sequences are also

allowed:
(Ix1)x(0x0) > 1x(0x0) - 0x0 —> 0

(Ix1)x(0x0) - (I1x1)x0 —> 0

1.1.2 Common rewriting terminology

In the rewriting literature, the terms reduction step and reduction sequence are
commonly used for “rewrite step” and “sequence of rewrite steps” respectively. Reduc-
tion steps are sometimes called just reductions. The underlying view is that suggested
in the given example. Rewriting is considered as the stepwise simplification, or reduction
of an initial expression. In many situations, the goal of rewriting is to attain normal
forms.

Another common term in rewriting is reducible expression, or redex. A redex is
usually defined as any part of a term, which makes the term to be subject of a reduction

4 CHAPTER 1. INTRODUCTION

step, together with the corresponding rewrite rule. Considering the rewriting system of
the previous section, the term (1 x 1) x 0 includes two redexes, one for the subterm 1 x 1
and the rule 1 x x — x, and the other for the whole term, and the rule x x 0 — 0.
The contractum is the term resulting of the contraction of a redex, e.g. the contractum
of 1 x 2 is 2. The expression ‘redex occurrence’ is used to distinguish different parts
of the same term being instances of the left-hand sides of rewrite rules, even when the
applicable rule, and possibly also the instance, coincide. E.g. the term (1 x 3) x (1 x 3)
includes two redex occurrences, both corresponding to instances of the left-hand side of
the rule 1 x z — 2 having the form 1 x 3.

There is an obvious correspondence between the concepts of redex, more precisely
redex occurrence and reduction step, the main difference being in their respective focus.
The word “redex”, and the expression “redex occurrence”, denote the fact that a trans-
formation step can be performed on a certain term, while “reduction step” stands for
the act of performing that step, or put in other words, of contracting a redex. We use
the terms “redex occurrence” and “step” interchangeably in this thesis.

Finally, we mention the notion of set of coinitial steps, which is simply a set of
steps which share their source object.

1.1.3 Reduction spaces

The transformations modeled by a rewriting system can be described by means of a
directed graph, whose nodes are the objects and whose edges are the reduction steps.
This graph is mentioned as the reduction space (or derivation space) of the system
in, e.g., [KG97], [HLI1] and [Mel96]. The reduction sequences are exactly the paths in
the reduction space. The normal forms correspond to the nodes with no outgoing edges.
The pairs of connected objects form the reduction relation of a rewriting system: the
pair {t,uy is in the relation iff ¢ — u. Hence, a reduction space is more detailed than
the corresponding reduction relation.

Complex reduction spaces can correspond to even simple rewriting systems. The
following figure depicts the portion of the reduction space of the rewriting system of our
example, including just the sequences having (1 x 1) x (0 x 0) as source term.

Some of the concepts and properties usually studied in rewriting are closely related
with reduction spaces. This is the case for the equivalence between reduction sequences,
the standardisation properties, and the study of reduction strategies. We describe briefly
these concepts in the following.

An analysis of the equivalence between reduction sequences is usually a good
guide to the understanding of complex reduction spaces. Two sequences are commonly

1.1. REWRITING)

considered equivalent if they represent the same reduction activity, performed in different
order. A simple example are the sequences (1 x 1) x (0 x 0) - 1 x (0 x0) —» 1x0
and (1 x1) x (0x0) > (1 x1)x0 — 1x0: they include the same steps, performed
in the two possible orders. This situation corresponds exactly to the upper diamond in
the previous figure.

It is not true in general that any two reductions sharing their source and target are
equivalent. A simple example can be given in the rewriting system about simplification
introduced earlier. Consider the term 1 x (1 x 1). This term includes two redexes,
both for the rule 1 x x — x; contracting either of them yields 1 x 1. The situation is
illustrated in the following figure, where each occurrence of 1 in the source term 1x (1x1)
is given a different label, and for each step, the corresponding subterm in its source term
is indicated with a brace, and the replacement for x is indicated by underlining

1% x (1% x 1°)

/_/% T
a b c a b c

1% x (1° x 1) 1% x (1° x 1)
10 x 1¢ 1% x 1°¢

Figure 1.1: Two confusing steps

The resulting reduction sequences, both consisting in just one step, are not equiva-
lent.

The aim of the study of standardisation is to find subsets of the set of reduc-
tion sequences of a rewriting system covering all the reduction relation. Namely, an
adequate characterisation of a class of standard reduction sequences, shorthand
s.r.s., should enjoy the following condition: whenever ¢ —» w, there is a s.r.s. hav-
ing t and u as source and target respectively. In terms of the reduction space, a class of
s.r.s. is a set of paths covering all the pairs of connected objects.

For any rewriting system, an obvious class of s.r.s., namely the one including all
the reduction sequences in the system, exists. The interesting classes of s.r.s. are those
as narrow as possible, the best being those enjoying a uniqueness condition: whenever
t — u, there is exactly one s.r.s. having t and u as source and target respectively. If
equivalence of reductions is considered, then the uniqueness condition can be rephrased
as the existence of exactly one s.r.s. for each class of equivalent reductions.

In the literature, e.g. [CF58, Klo80, GLM92, Mel96, BKdV03], standardisation is
related with the notion of external step: in a s.r.s., external steps should precede
internal ones. E.g., in the term 1 x (2 x 0), the step 1 x (2 x 0) — 2 x 0 should precede

S —

1x(2x0) — 1x0. Therefore, the reduction sequence 1 x (2 x 0) — 2 x 0 — 0 is
standard, while 1 x (2 x 0) - 1 x 0 — 0 is not.

A reduction strategy can be described as a “plan” indicating how reduction should
proceed from a given term. A strategy can be defined as a function: for any object ¢ not
in normal form, it indicates a reduction step, or in some cases a set of reduction steps,
having ¢ as source. A target object is obtained by following the indication given by the
strategy, i.e., by performing the selected step(s). In turn, applying the strategy to this

6 CHAPTER 1. INTRODUCTION

target object yields a step/a set of steps to be further performed; and so on.!

We name as multistep reduction strategies, those indicating more than one step for
at least one object. In such cases, some way of performing the selected steps simulta-
neously must be defined.? The notion of complete development of a set of coinitial
steps is usually involved with the task of simultaneous contraction.

The aim when defining a reduction strategy is to arrive at normal forms, whenever
it is possible, by its systematic application; that is, by following the “plan” given by the
strategy. More formally, a strategy S is normalising if, whenever ¢ — w and u is a
normal form, there is a reduction sequence t = tg —» t1 - ... —>» t,_1 — t, = u, where
for all 7, the reduction t; — t;4+1 is the result of applying the indication given by S for
t;.3 We use the term normalisation to refer to the study of how normal forms can
be computed, involving the definition of normalising reduction strategies, and also the
techniques to prove that a reduction strategy is normalising.

Standardisation and normalisation are among the subjects of this thesis.

1.1.4 The M-calculus and higher-order term rewriting systems

As noted in the beginning of this introduction, the A-calculus [Chu32, CR36, Chu4l,
Bar84] is arguably the most influential rewriting system. This calculus was developed
prior to, and greatly influenced, the emergence of the general study of rewriting. Several
of the main concepts, techniques and results studied in rewriting appeared previously
applied to the particular case of the A-calculus.

The A-calculus can be described as a minimalist formalisation of the mechanism
by which a function is applied to an argument. Its syntax includes just the elements
needed to describe function application: variables, the abstraction constructor to define
functions, and application to link a function definition with an argument. Numbers and
arithmetical operands will be used in the following as well, to favor a more intuitively
appealing description.

Let us consider the term
M.z + 2z +x)3

denoting the application of the function (Ax.z + = + z) to the argument 3. The oc-
currences of the variable x in the subterm z + = + 2 are bound by the abstraction
Az. Term rewriting systems including, like the A-calculus, some mechanism to bind
variable occurrences, are known as higher-order term rewrite systems. Conversely,
in first-order term rewrite systems, no such mechanisms are present.

A note about terminology: in the literature about rewriting, the name
“term rewriting system”, and specially the acronym “TRS”, refer usually to

Tn the more general case of non-deterministic reduction sequences, more than one indication can
be given for the same object, so that any of those indications may be followed. In this thesis, only
deterministic reduction sequences will be considered.

2We remark the difference between a multistep reduction strategy and a non-deterministic strategy.
In the former, a set of steps form a single indication, so that all these steps are supposed to be performed
simultaneously. In the latter, there can be several different indications, and only the step(s) in one of
them are supposed to be performed.

3In this characterisation of normalising reduction strategies, uniqueness of normal forms is assumed.
In the general case, it suffices to obtain one of the normal forms which can be reached from ¢, by
following the strategy.

1.2. THE REWRITING SYSTEMS STUDIED IN THIS THESIS 7

first-order systems. We will use the name “term rewriting system” to refer
to the set of all systems, either first- or higher-order, and the explicit form
“first-order term rewriting system” when needed.

Several general formats for higher-order term rewriting system have been proposed,
we mention CRS [Klo80], HRS [Nip91, MNO98| and ERS [GKKO05].

The A-calculus includes just one rewrite rule, the S-rule, namely
(M.s)u —> {z:=u}s

where {z := u} s stands for the substitution, in the term s, of the (non-bound) occur-
rences of x with the term u. An example of a rewrite step in the A-calculus follows:

Mz+z+2)3 — 3+3+3

Observe that this is an atomic step in the model given by A-calculus: the application of
the substitution {z := 3} in « + x + x is considered as an external operation. Ezplicit
substitution calculi, cfr. Section 1.2.2, arise as a way to model the substitution operation
within a rewriting system, providing specific rules to describe how a substitution is
applied to a term.

Results about standardisation and normalising reduction strategies for the A-calculus
are present in the literature since [CF58]. Afterwards, other works including standard-
isation studies for A-calculus have appeared, we mention [Bar84] Sec 11.4, [Tak95],
[Kas00] and [Cra09]. The notions of call-by-name, call-by-value and call-by-need reduc-
tion strategies, cfr. [Plo75], characterise different families of reduction strategies for the
A-calculus; these notions frame, in many cases, the way in which the evaluation of a
program should proceed, a relevant aspect in the design of a programming language.

Finally, we list some acronyms for A-calculus terms to be used in this manuscript:
I for A\z.z, K for Az.(Ay.z), D for (Az.zx), and Q for DD. Observe that 2 — €, this
being the only step having €) as source term.

1.2 The rewriting systems studied in this thesis

1.2.1 Pattern calculi

Let us revisit the rule of the A-calculus:
(M.s)u —> {z:=u}s

We notice that the rule applies to any abstraction and any argument: there is no way to
restrict, or filter, the set of arguments that are accepted by a given abstraction. More-
over, the abstractions have a unique body: the A-calculus does not include mechanisms
to define functions allowing different bodies for different kinds of arguments.

This situation does not coincide with the common practice of functional program-
ming languages. These languages include pattern matching features, allowing to
specify restrictions to the possible arguments of a function, and also to give different
definitions of the same function to arguments having different features. A simple exam-
ple is the following definition of the length of a list in Haskell:

8 CHAPTER 1. INTRODUCTION

length []
length (x:xs)

0
1 + length xs

The function length requires its argument to be a list, and moreover it has two defining
clauses, for empty (denoted []) and non-empty (denoted x:xs) lists respectively.

These observations lead to the development of pattern calculi; rewriting systems
aiming to provide explicit formalisations of different forms of pattern matching. Several
of these calculi provide some sort of “generalised abstraction”, say having the form

Ap.s

where p is a pattern. This is the case of the A-calculus with patterns [vO90, KvOdV0§],

the p-calculus [CK98, CKO01], the pattern calculus [Jay04, Jay09] and the Pure Pattern

Calculus [JK06a, JK09].* The set of the valid patterns includes all the variables, imply-

ing that the defined calculus can be considered as a generalisation of the A-calculus.
The rewrite rule is generalised accordingly to

(Ap.s)u —> {p/u}s

where {p/u} is the result of matching the argument u against the pattern p. E.g.,
if we represent pairs as a data structure whose constructor, a constant p, is applied
successively to the left and right components of a pair, as in p 34, then the following
should be a valid rewrite step for a pattern calculus:

(Apzy.y) (p34) — 4

If there is no possible matching, as in

(Apzy.y) 3

then the resulting term is not a redex, unless the calculus provides some error mech-
anism to deal with such cases.

The two main issues when devising a pattern calculus are the definition of the set of
valid patterns, and subsequently, that of the argument/pattern matching. A too liberal
choice of the set of patterns (as e.g. accepting any term as a valid pattern), combined
with a naive definition of matching, would break confluence, and thus uniqueness of
normal forms; cfr. [vO90, KvOdV08, CF07, JK09]. On the other hand, a too restrictive
choice of the pattern set would hinder the possibility of modeling interesting phenomena
related with pattern matching. This observation led to the definition of several different
pattern calculi.

The Pure Pattern Calculus, whose shorthand is PPC, is one of the rewriting
systems studied in this thesis. In PPC, any term can be a pattern. Particularly, a pattern
can include free variable occurrences, and reduction steps can occur inside patterns as
well. These features allow dynamic pattern building.

The PPC is described in Section 3.4.1. We give here some examples of its features,
using a simplified version of its syntax. To allow the pattern of an abstraction to include

4In other proposals, as in the A-calculus with constructors [AMRO6, AMRO09], the filter and the
possibility of multiple clauses are modeled by a case construct. The Basic Pattern Matching Calculus,
[Kah03, Kah04] combines both generalised abstraction and case.

1.2. THE REWRITING SYSTEMS STUDIED IN THIS THESIS 9

free variable occurrences, a set of bounded variables is attached to the abstractor A,
written below the A. E.g., the identity function can be defined in PPC by the term
Afzyx.x. Consider the following valid term in PPC:®

t= (-2 (v2).9)

In this term, both occurrences of x are bound by the outer abstractor, the one including
x in its set of bound variables.

By giving an appropriate argument to ¢, we produce a concrete function out of
the generic function specification (Mg, .yx(y2).y). E.g., if a is a constructor, then the
following reduction sequence

Mayz-(Mgy,232(y2)-y) 2 (a(34)) = (Agy,21a(y2)-y) (a(34)) — 3

shows that the application of ¢ to a constructor produces a function which accepts, as
arguments, only data structures on that constructor. Moreover, if the argument given
to t is in turn a function, that function is applied to the argument (yz) inside the pattern
of Ay 17(yz).y. Therefore, we obtain a further flexibility for the construction of the
pattern. Check the following reduction sequence:

(Mayrz-(Ay 12 (y2).y) Ao i 2y py'a’) (p34)
= Ay, Moy @'y py'2") (y2).y) (p34)
= (Afy,-1P2y-y) (p34) — 4

where the second reduction step is performed inside a pattern, as suggested previously.
As a consequence of these features, forms of polymorphism not present in programming
languages currently used in software development, can be expressed in PPC, cfr. [JK09]
where several examples are given. The just described examples show that patterns in
PPC can be dynamic.

We remark that a carefully defined matching operation allows PPC to handle patterns
like 'y, as shown in the previous examples. E.g., given the matching rules of PPC, in
the term

Az 2y-2) (A2 2.2)3)
S —

the only redex is the one indicated by the brace: a pattern like xy does neither match
nor fail w.r.t. an argument being a redex, thus preventing the loss of confluence, and
consequently of uniqueness of normal forms.

1.2.2 A finer step granularity — Explicit Substitution calculi

To motivate the introduction of explicit substitution calculi, let us revisit this A-calculus
rewrite step:
Moz+z+2)3 > 3+3+3

In the model of the rewrite space given by the A-calculus, the transformation of (Az.z +
x4+ x)3 to 3+ 3 + 3 is considered as a single, atomic rewrite step. On the other hand,
this transformation can be regarded as a complex operation, involving the replacement

5In fact, in the simplified variant used in this introduction. The actual PPC term corresponding to
this example involves the use of matchables, as described in Section 3.4.1

10 CHAPTER 1. INTRODUCTION

of each occurrence of x in the body = + x + = with the argument 3, and (depending of
the desired detail level) also the search for those occurrences inside the body.

The view of substitution as a complex operation is particularly appropriate for the
study of the implementation of functional programming languages. Indeed, it is not sur-
prising that substitution is deeply involved in the evaluation of a functional program,
since functional programming has its roots in the A-calculus. As a consequence, the im-
plementation of functional programming languages are faced with the task of computing
substitutions, a task revealed to be far from trivial in practice. Hence the need of formal
models reflecting explicitly the complexity of the substitution operation.

This situation motivated the emergence of variations of the A-calculus widely known
as explicit substitution calculi, shorthand ES calculi. We describe the main features
of these rewriting systems, using the Ax calculus, [Ros92, BR95] to illustrate them.

The syntax of the ES calculi includes a construct to explicitly denote substitutions.
If s and u are terms, then

s [x/u]

is a valid term as well in the Ax calculus.

A rule analogous to that of the A-calculus is present. The expression subject to
rewrite is the same: the application of an abstraction to an argument. But in this case,
the rule only generates the corresponding substitution, without executing it:

(Ar.s)u —> s|z/u]

Additional rewrite rules model how a substitution is performed. For the Ax calculus,

these rules are:%

(it2)[z/u] — (G [z/u])(t2[z/u])
My.t)[z/u] — Ay.t[z/u]
[z/u] —
[z/u] — ¥y ify#x
[z/u] — <

The first and second rule allow to propagate an explicit substitution through a term,
generating copies in the process. As a result, each copy is either applied or erased, by
virtue of the third or fourth rule respectively.

Assuming two constants p and s, the A-calculus reduction step (Az.pz(sz))3 —
p 3(s3) can be simulated in Ax as follows:

(Ax.px(sx))3

= (pz(sz))[z/3] = (pz)[2/3] ((sz)[z/3])

— plz/3]z[z/3] ((sv)[2/3]) — pla/3]x[z/3] (s[x/3]x]x/3])
— pzlz/3](s[z/3]x[z/3]) — p3(s[z/3]x[z/3])

— p3(szlz/3]) — p3(s3)

Figure 1.2: Simulation of a A-calculus step in the Ax calculus

5Tn fact, the syntax of Ax does not include constants; they are added to give the examples shown in
this section.

1.2. THE REWRITING SYSTEMS STUDIED IN THIS THESIS 11

Observe that this is just one of the many possible reduction sequences in Ax simu-
lating the given A-calculus step.

The possibility of having several explicit substitutions in the same term can further
complicate the reduction space of an ES calculus. Consider the following examples:

(Ay.(Az.pz(sy)) y) 3 (Ay.(Az.pz(sy)) y) 3
= ((Az.pz(sy))y) [v/3] ((Az.pz(sy))) [v/3]
= ((pz(sy)) [z/y]) [y/3] ((Az.pr(sy)) [y/3]) (v [y/3])
(Az. (pr(sy)) [y/3]) (v [y/3])
((pz(sy)) [y/3]) [=/y [v/3]]

Y
Y

Ll

Figure 1.3: Two reduction sequences from the same source in the Ax calculus

The reduction spaces of ES calculi turns out to be extremely complex, leading to
difficulties to obtain a calculus simultaneously satisfying a series of properties related
with confluence, termination, and simulation of the A-calculus (namely, the ability of
simulate in an ES calculus any reduction sequence ¢t — u in the A-calculus). This situ-
ation implied the development of many different ES calculi, including [HL89, ACCL9I1,
KR95, BBLRD96, DGO01, Kes07].

More recently, a different approach to ES calculi has been proposed. The ES calculi
at a distance, [Mil07a, AK10, Accl2] are based on the idea of avoiding the propagation
of explicit substitutions through a term, allowing a substitution to be applied to a distant
variable occurrence. These calculi include a rule of the shape:

Cle]z/u] — Clu][z/u] (1.1)

where C[] is an arbitrary context including a (free) occurrence of z. In these calculi,
explicit substitutions do not move: replacements are performed without any need to
propagate them. This fact leads, in principle, to simpler reduction spaces.

The linear substitution calculus, [ABKL14], an ES calculus at a distance, is one
of the rewriting systems studied in this thesis. We will use the shorthand AJy,, to refer
to this calculus. It is both a slight generalisation of a calculus by Robin Milner [Mil07a],
related to bigraphs, from which it inherits the substitution rule at a distance (1.1), and
a slight modification of the structural A-calculus presented in [AK10], related to proof-
nets. This calculus adds a rule to erase “useless” explicit substitutions, corresponding

to the idea of garbage collection:

~

tlz/u] — t if x ¢ fv(t)

The A-calculus reduction step (Az.pz(sz))3 — p3(s3) can be simulated in AJ;

1lsub as
follows:”

(Az.pr(sz))3 — (pz(sz))[z/3] — (p3(sx))[z/3]
— (p3(s3)[z/3] — (p3(s3))

Figure 1.4: Simulation of a A-calculus step in AJg,p

" As indicated above for the Ax, we added constants to the syntax of A5, described in Section 4.1,
for the examples shown in this section.

12 CHAPTER 1. INTRODUCTION

This simulation is indeed simpler that the one shown for the Ax calculus, cfr. Figure 1.2.2.
Moreover, the multiplication of different reduction sequences simulating the same A-
calculus step is more limited than in Ax.

~

On the other hand, to enhance the analogy between A, and proof-nets, the def-
inition of the calculus includes three equivalence equations, which model the fact that
substitution constructs must be considered as somewhat “floating” in a term, their ac-
tual positions in a term being irrelevant to a certain extent. E.g., the following equation

tlz/s]y/u] ~ tly/u]lz/s] if ¢ fv(u) and y ¢ £v(s)

models the idea that (in principle) the order of substitutions in a substitution chain is
irrelevant. Two terms related by the equivalence relation generated by these equations,
can be considered as different descriptions of an unique object being rewritten. This
fact poses a challenge for the study of the calculus.

1.2.3 Infinitary rewriting

Let us consider the rewriting systems 77 and T, defined as follows. The system T}
includes the number 1, the addition symbol, a unary functor symbol [, the list constructor
denoted by the colon, and the rule

() — x:l(z+1)
The system 75 includes two constants a and b, and the rules
a — b b — a

Both T3 and T5 are non-terminating rewriting systems, since both allow infinite rewrite
sequences. For T} we have

(1) > 1:1(2) - 1:2:0(3) > 1:2:3:1(4) — ...

where 2,3, ... are shorthand for 1 +1, 1+ 1 + 1, etc.. On the other hand, the following
is a rewrite sequence for T5:

a—>b—>a—>b—>a— ...

Even though both sequences can run indefinitely long without yielding a final result,
a relevant difference can be observed. Consider the sequences of partial results, which
are respectively

1:0(2),1:2:1(3),1:2:3:1(4),...) and (b,a,b,a,...
It is not difficult to grasp that while the former sequence converges to the infinite list
of natural numbers, namely 1:2:3:4:..., the latter is a divergent sequence.

Interestingly, the rules of both systems can be easily rendered in a functional pro-
gramming language. Using Haskell, we can define

natlist n = n : natlist (n+1)
diva divb
divb diva

1.2. THE REWRITING SYSTEMS STUDIED IN THIS THESIS 13

The evaluation of these functions behaves as suggested by analysing the corresponding
rewriting systems. While the evaluation of natlist 1 generates the list [1,2,3,4... |,
the evaluation of diva runs indefinitely without producing any partial result.®

These considerations motivate the study of infinitary (term) rewriting systems;
cfr. [KKSdV90, DKP91, KKSdV95], and [BKdV03] Ch. 12. In these systems, both the
terms being rewritten and the rewrite sequences can be infinite. Convergence is a central
concept in the study of infinitary rewriting: the study of properties of the reduction space
is mostly focused on convergent reductions.

Different convergence criteria have been proposed. In this thesis, strong conver-
gence, as defined in [KKSdV95], is used. For a reduction sequence to be strongly
convergent, it does not suffice to obtain ever-growing fixed prefixes, but it is also re-
quired that the sequence formed by the depth (i.e. distance to the root) of each step in
the sequence tends to infinity. If we consider the rule f(x) — f(g(z)), the sequence

fla) = f(g(a)) — f(g(g(a))) — ...

is mot strongly convergent, because all its steps are head steps.

The requirement about depths, added in the strong convergence criterion, is crucial
for the characterisation of equivalence of infinitary reductions we present in Section 5.3,
which is consequently valid for strongly convergent reductions only. Furthermore, other
interesting properties, as the compression result (see below), and the possibility of defin-
ing projections, also hold only for strongly convergent reduction sequences, as mentioned
in [KKSdV95, BKdV03, KdV05], where strong convergence is favored. These consider-
ations lead to the adoption, in this thesis, of the strong convergence criterion.

If an infinite rewrite sequence converges, via its sequence of partial results, to a
certain term, we consider that term as the (infinitary) target of that sequence. Following
some of the existent literature, we write

t—»u

to denote that the term w is the target of a convergent rewrite sequence having t as
source. Then the example for the system 77 can be described as follows

I(1) - 1:2:3:4:...

The concept of termination can be extended to infinitary rewriting as follows: a
rewrite sequence is infinitarily terminating iff it either yields a final result (as in
finitary rewriting), or it converges to an infinitary result. The infinite rewrite sequence
given for the system 7j is infinitarily terminating. The concepts of confluence
and uniqueness of normal forms can be extended to infinitary rewriting analogously.
Several results, both positive and negative, of the extension of well-known properties of
finitary rewriting into its infinitary counterpart are present in the literature, we mention
[Ken92, KKSAV95, KdV05, Zan08, EGH"10, EHK12].

Another well-known result about infinitary rewriting is compression, cfr. [KKSdV90,
KKSdV95, BKdV03, Ket12]. To motivate it, let us add the pair construct, denoted by
angle brackets, into 77, and consider the following rewrite sequence

AM), (1)) — 1:0(2), (1)) »> 1:2:1(3), (1)) — (1:2:3:1(4), (1)) — ...

8The div in the names diva and divb are for “divergent”.

14 CHAPTER 1. INTRODUCTION

This sequence converges to (1:2:3:4..., (1)) . On the other hand, this result is not
final, the reduction sequence can continue as follows:

1:2:3:4...,0(1)) - (1:2:3:4...,1:0(2)) —> (1:2:3:4...,1:2:1(3)) — ...

The infinitary final result (1:2:3:4...,1:2:3:4...) can be obtained by resorting again
to convergence.

This situation is modeled in infinitary rewriting, by considering reduction sequences
whose length go beyond the first infinite ordinal, w. In the example, the two reduction
sequences shown can be concatenated obtaining a rewrite sequence having length w x 2.
We obtain

AM),1(1)) =»(1:2:3:4..., (1)) =»{1:2:3:4...,1:2:3:4...)

The compression property states that the restriction of rewrite sequences to the first
infinite ordinal does not affect the power of infinitary rewriting. Formally, for any ¢, u
terms, if ¢ —» wu, then there is a reduction sequence whose length is at most w having
t and u as source and target respectively. The following reduction sequence, having
length w, coincides in source and target with that having length w x 2 just shown:

AM), (1)) —> :1(2), (1)) — :1(2), 1:1(2))
— (1:2:1(3),1:1(2)) — {1:2:1(3),1:2:1(3))
— (1:2:3:1(4),1:2:1(3)) — (1:2:3:0(4),1:2:3:1(4))
—» (1:2:3:4...,1:2:3:4...)

1.3 Generic models of rewriting systems

The features of the different rewriting systems introduced in Sec. 1.2 show the great
diversity of term rewriting systems present in the literature.

In spite of this diversity, there are some basic notions common to all of them: term,
reduction step, redex, reduction sequence, reduction space. There are also some prop-
erties whose study is interesting for many term rewriting systems, as equivalence of
reductions, standardisation, or normalising reduction strategies.

These similarities motivate the definition and study of generic models of rewriting
systems. A generic model allows for abstract definitions of notions, and for abstract
proofs of properties, about rewriting systems. The defined notions and the proved
properties are, thus, valid for any rewriting systems which fits into the model.

Two generic models, of different nature, are used in this thesis. They are described
in the following.

1.3.1 Abstract Rewriting Systems

Several abstract models of transformation, which apply to rewriting systems, have been
proposed in the literature; we mention those presented in [New42, Hin69], [Bar84] Chap-
ter 3, [BKAV03] Chapter 1, and [BKdV03] Chapter 8.2. We use in this thesis a model,
first presented in [GLM92], and later refined by Paul-André Mellies in [Mel96, Mel05].
In this proposal, a rewriting system is modeled as a structure named Abstract Rewrit-
ing System, shorthand ARS; we refer to this abstract model of rewriting as the ARS

1.3. GENERIC MODELS OF REWRITING SYSTEMS 15

model. In the following, we introduce the version described in [Mel96], the one used in
this thesis.

The definition of an ARS is based on two sets, that of the objects being rewritten,
notation O, and that of the rewriting steps, notation R.% In this model, no detail is
included about the structure, or any other intrinsic aspect, of objects. Each step is
modeled primarily as the link between a source object and a target object, defined by
means of two functions src,tgt : R — O.

In this way, any term rewriting system can be modeled as an ARS, by considering
terms and rewriting steps as the sets of objects and steps respectively.

The letters a,a’,aq,b,c, etc. will be used to denote steps, and we will sometimes

decorate the arrow denoting a step by the name given to that step, e.g. L

We notice that the identification of steps allows to describe adequately situations
like that shown in Fig. 1.1, page 5. Modeling that case by an ARS would yield two
a

. . . . T
different steps, sharing their source and target objects: 1 x (1 x1) — 1x 1. and
S~—~— S~——
b b

Additional information is modeled through a number of relations defined on steps.

The residual relation is a ternary relation; the notation a[b]a’ denotes that the
triple (a,b,a’) is in the residual relation. Residuals are related with the tracing of steps.
A triple a[b]a’ indicates that the step a’ is a direct correlate, in the target of b, of the
step a present in the source of b. We say in this case that a’ is a residual of a after b.

As an initial example, let us consider the step (1 x 1) x (0 x 0) 1 x (0 x 0)
in the rewriting system about arithmetic expressions. It is intuitively clear that the
step corresponding to 0 x 0 in the term 1 x (0 x 0) is a direct correlate of the step
corresponding to the same subterm in (1 x 1) x (0 x 0). If we name these redexes as o’
and a respectively, then we have a[[b]a’. The following figure depicts this situation

(1><1)><(0><O)—b>1><(0><0)

b a a’

Figure 1.5: A simple example of residuals

In Fig. 1.5, we identify a step a with its redez, i.e. the corresponding subterm in its
source term; cfr. Section 1.1.2. This convention is used subsequently throughout this
thesis. In Fig. 1.6, we show different cases in which the behavior of steps w.r.t. residuals
is less straightforward. The three examples included in this figure verify a[b]a’, in
Fig. 1.6:(b) we have a[b]a” as well.

Called redexes (in French “radicaux”) in [Mel96], hence the reason why we use the letter R.

16 CHAPTER 1. INTRODUCTION

’_L b - NI
a) (Ax-B)((Agﬁ)5) — 3 b) (Az.zz)(33{-2) — (Qgﬁ)) (@gﬁ)S)
a) a a’ a
¢) (. (Ayy)a)s LN (My-9)5

Figure 1.6: Examples of residuals in the A-calculus

A step a can have no, or several, residuals after another step b, as shown in Fig. 1.6:(a)
and (b). In turn, Fig. 1.6:(c) shows that the subterm corresponding to a step can differ
from that of a residual: the subterm of the step a, (Ay.y)z, is “transformed” into (Ay.y)5
by the contraction of b.

The set of objects, that of steps together with the source and target functions, and
the residual relation, form a minimal version of the definition of an ARS.

Noticeably, equivalence of reduction sequences can be studied in the obtained model.
In Fig. 1.7, we revisit the example of equivalence given previously, now decorated by
giving names to the participating terms and steps.

b a
/ \
s1=1x(0x0) sg=(1x1)x0
a’ by
N /
u=1x0

Figure 1.7: Equivalence of reductions

In the figure, a’ is the only residual of a after b, and analogously, b’ is the only
residual of b after a. The steps a and b do not interfere with each other in this example:
the effect of performing the residual of a after b (on the term s;) can be considered as
equivalent to that performing the original step a (on ¢).10 This observation indicates that
the steps a and b are orthogonal!!, and therefore, that the shown reduction sequences
are equivalent: they consist of a followed by the residual of b, and b followed by the
residual of a, respectively.

Observe that in the example of Fig. 1.7, permuting in either reduction depicted the

10The equivalence can be further verified by giving labels to suitable symbols in the terms, as done
when introducing equivalence of reduction sequences.

HYWe remark that this characterisation of orthogonality, based on the behavior of steps and residuals,
differs from that resulting of a more syntactic approach, based on the form of rewrite rules. Notably,
orthogonality of rewrite steps, and in general of rewriting systems, can be studied without making
reference to set of rules of the latter.

1.3. GENERIC MODELS OF REWRITING SYSTEMS 17

order in which the steps a and b are performed, yields the other one.'? In the ARS model,
the notion of step permutation leads to the formal definition of the equivalence of
reductions: two reduction sequences are considered equivalent if either of them can be
obtained from the other by means of a sequence of step permutations.

We remark that the definition of an ARS involves only the identity of objects and
steps. No syntactic information is included in this model. Considering the example
shown in Fig. 1.7, an ARS modeling the arithmetic simplification rewriting system would
include four objects and four steps, which can be given the names ¢, s1, so, v and a, b, a’, b’
for this description, which satisfy the following: src(a) = src(b) = t, tgt(b) = src(a’) = s1,
tgt(a) = src(b') = s9, tgt(a’) = tgt(V/) = u, a[b]d’, and b[a]b’.

In spite of the expressive features of the residual relation, the binary embedding
relation on steps, notation <, must be considered as well for most interesting uses of the
ARS model. Embedding provides a partial order between steps having the same source.

The intent of the pair b < a is to denote that b has some direct power over a,
which is reflected in the residuals of a after b. A possible form of this power would
be that b can erase or duplicate a, i.e. to make a have no, or several, residuals after
b. As the A-calculus examples shown in Fig. 1.6 suggest, this power is, in many cases,
related with the fact that b actually nests a, namely, that the subterm corresponding
to b encompasses that of a, as in Fig. 1.6. Indeed, when modeling the A-calculus as an

ARS, a possible definition of the embedding coincides exactly with nesting as it was just
defined.'3

The concepts of step, residual and embedding yield a model focused on the study of
the reduction space of the modeled rewriting system. Cfr. [Mel96], pg. 70:

The abstract approach allows to study a (rewriting) system through the
derivation space it induces.'*

ARS equipped with the residual and embedding relations are rich enough to develop
fully abstract proofs, notably about standardisation (cfr. Section 2.1.8) and normal-
ising reduction strategies. In an abstract proof, only the information pertaining to the
ARS model is used in order to prove some statement. In turn, the statement subject of
an abstract proof usually correspond to the following pattern:

any ARS, provided that it verifies some axioms, enjoys a certain property.

Some of the axioms describe basic properties of the residual relation, while others de-
scribe comparisons between the embedding of some steps and that of their corresponding
residuals. The axioms can be said to provide an abstract characterisation of the residual
and embedding relations.

An example of axiom regarding residuals follows:

121f 4 has more than one residual after b, or vice versa, then the permutation of @ and b is not as
simple as shown in Fig. 1.7. Cfr. Section 2.1.7 for details.

130bserve that, in fact, the step (Az.s)u — {x := u}s can only erase or duplicate steps lying in-
side u. This observation leads to a second possible model of the A-calculus as an ARS, considering
a restricted embedding relation. The properties of (the ARS yielding from) both “full-nesting” and
restricted embeddings are studied in [Mel96].

141n the French original: “L’approche abstraite permet de traiter un systéme & partir de I’espace des
dérivations qu’il induit.”

18 CHAPTER 1. INTRODUCTION

Ancestor Uniqueness bi[a]b’ and bea]d) = by = bo.

This axiom expresses the condition that the step ¥’ cannot be residual of two different
steps at once, after the contraction of a.

The following axiom express a condition involving residuals and embedding;:
Context freeness bla]b' A cla]ld = a<ecv (b<cel <)

This axiom indicates a necessary condition, namely a < ¢, to allow a to break the
invariance in the embedding relation between two redexes b and ¢, w.r.t. their respective
residuals, that is, to “dissolve” the embedding between b and c¢ in their residuals, or to
“create”, between the residuals of b and ¢, an embedding which did not exist before.

Regarding the use of ARS in this work, modeling the linear substitution calculus
as an ARS equipped with the residual and embedding relations suffices to obtain the
standardisation results we aim at.

On the other hand, the work on Pure Pattern Calculus requires an extended version
of the ARS model, involving a third relation on steps. We introduce the gripping
relation by means of an example in A-calculus. Let us consider the following step, where
we tag other steps and their residuals

a
A
- ™~ /

/—/C% a /—L
(M. Dz)(I3) — D(I3)
b b/

In the situation depicted, b[a]d’ and c[a]¢’. Observe that b’ < ¢/, while neither of their
origins, b and c respectively, embed the other one. Besides a embedding both b and ¢ in
the original term (Az.Dz)(I3), there is another factor crucial for this change in relative
embeddings: the subexpression corresponding to b, Dz, includes an occurrence of the
variable x, bound by the abstraction Az.Dx. The replacement of this occurrence of z
by I3 provokes the appearance of a new embedding on the residuals.

There is another consequence, particularly harmful for the work on the Pure Pattern
Calculus, of this relation between b and a. Observe the following diagram

a ai
- /_/%
- Y

c c1

(Az. Dz)13) 2> (wax)(13)

ai ail

D(I3) (13)(I3)
——

Observe that ¢ has one residual after a. This situation changes for the respective
residuals after b: now there are two residuals of ¢; after a;. This change in the number
of residuals affects, in a critical way, a measure used in one of the main proofs of this
work.

Thus the need to consider the gripping relation. In the example, we say that the
step b grips the step a. We will avoid the use of gripping steps, in the situations where

1.3. GENERIC MODELS OF REWRITING SYSTEMS 19

invariance of a measure related to numbers of residuals is required. We give some details
when describing the results of this work, at the end of this Section.

1.3.2 Proof terms

The concept of proof term provides another generic model of reduction spaces. It is a
model less abstract than that given by ARS: the structure of the objects being rewritten
is involved, and the rules play a fundamental role. On the other hand, it keeps more
information about the modeled reduction sequences.

Several versions of the proof term model have been developed for A-calculus in [Hil96],
for first-order term rewriting systems in [BKdV03], and for a generic formalism of higher-
order term rewriting systems in [Bru08]. The brief description which follows is based in
the first-order term rewriting version.

A proof term is the representation of a reduction sequence as a term, using an
enlarged set of symbols. Indeed, the language of the proof terms for a given term
rewriting system includes all the symbols in that system, plus the rule symbols, which
indicate the application of rules in a reduction sequence. There is one rule symbol for
each rule, its arguments corresponding to the variables occurring in the rule.

The two rules given for the arithmetic simplification rewriting system would therefore
correspond to two rule symbols, let us name them p and v. The relation between each
rule symbol and its corresponding rule can be described as follows

plx):1xz - =z viz):xx0 — 0

We introduce the notion of proof term by means of some examples. We show three proof
terms denoting single rewriting steps in the arithmetic simplification rewriting system,
along with the step corresponding to each one. In each case, the subterm being affected
by the step is indicated with an upper brace, and the subterm corresponding to the
argument of the rule symbol is underlined.

—
w3y : 1x3 — 3
(1) x (0x0) @ (1x1)x(0x0) - 1x(0x0)
—
Ixpr(lx1l) : Ix((1x1)x0) - 1x0

In order to denote reduction sequences, the binary (infix) symbol -, denoting con-
catenation, or composition, of steps, is added. A proof term of the form A-B denotes
the reduction sequence represented by A, followed by that represented by B. We show
some proof terms along with the reduction sequences they denote. Concatenation being
associative, we omit brackets in the last example.

Ixv(2x1) - v(3) : 3x((2x1)x0) - 3x0 — 0
(1) x (0x0) - I1xv(0) : (I1x1)x(0x0) - 1x(0x0) — 1x0
w(l) x (0x0) - I1xv(0) - w0) : (Ix1)x(0x0) —» 1x(0x0) - 1x0 — 0

Moreover, rule symbols and concatenation can be combined in different ways, allowing
to denote specifically that several steps are performed simultaneously, and/or that some

20 CHAPTER 1. INTRODUCTION

sequence of steps is localised in some part of a term. Some examples follow:

p(1) xv(0) : (Ix1)x(0x0) —o> 1x0

u(r(2)) @ 1x(2x0) —> 0

(2><(()) v(2) @ 1x(2x(3x0)) > 2x0 — 0
2><((1) (3)) D 2x((Ix1)x3) - 2x(1x3) - 2x3

where the symbol —e» denotes that a number of steps are simultaneously performed.

Observe that the proof term p(1) x v(0), which describe the simultaneous application
of the two steps in the term (1 x 1) x (0 x 0), is different from either p(1) x (0x0) - v(0)
or (1x1)xv(0) - (1) x 0, which describe the reduction sequences comprising the same
steps in any of the two possible orderings. In general, proof terms denoting simultaneous
or localised reduction, as the ones just described, are different from those denoting the
reduction sequences comprising exactly the same steps, in any possible sequential order.
This fact indicates that the proof term model allows to distinguish subtle differences in
the way in which rewriting steps are applied.

In this document, we will use the name contraction activity to denote the whole
set of possibilities in which reduction steps can be combined. As we have just seen,
the proof term model allows to describe many different forms of contraction activity,
including but not limited to reduction sequences.

Equivalence of reductions is defined in this model by means of equational reasoning
on proof terms: two reduction sequences are equivalent if the proof terms denoting them
can be proven equivalent in the congruence generated by some equation schemas.

By means of the obtained equational logic, cfr. Section 2.2.3,'® (a proof term de-
noting) the concatenation of two orthogonal steps can be “packed”, obtaining (another
proof term denoting) their simultaneous contraction. Reciprocally, a simultaneous con-
traction can be “unpacked”, obtaining the sequential concatenation of its component
steps. The permutation of two adjacent steps can be modeled by “packing” them, and
subsequently “unpacking” them in reverse order.

Let us illustrate this idea by means of an example. The reduction sequences

1 2 2
(I1x3)x(2x0) - 3x(2x0) — 3x0

—
(Ix3)x(2x0) — (1x3)x0 — 3x0
S~—— S~——

are equivalent: the same two steps are contracted, in a different order. These reduction
sequences are denoted by the proof terms

((3) x 2x0) - Bxw(2) and ((1x3)xu(2) - (u(3) x 0)

respectively. The equivalence of these proof terms is obtained by means of the following
abridged (i.e. not all the details are included) judgement:

(W3 x 2x0) - Bxv2) ~ @ xu@) ~ (1x3)xv(2) - (uB3)x0)

Notice that the concatenation of the two steps is “packed”, obtaining u(3) x v(2), and
subsequently this simultaneous contraction is “unpacked” in the other order, yielding

5The characterisation of the equivalence of reductions through equational reasoning on proof terms
is extended in this thesis to infinitary rewriting, cfr. Section 5.3.

1.4. OUTLINE OF THE CONTRIBUTIONS 21

(Ix3)xv(2) - u(3)x0. Observe that we can establish, not only the equivalence of the
two reduction sequences, but also that both reduction sequences are equivalent to the
simultaneous contraction of its two steps.

On the other hand, the equivalence of the following reduction sequences:

1x(2%x0) - 1x0 — 0 1x(2x0) - 2x0 — 0
~— [

which involve two nested steps, can be verified analogously, as follows:
Lxv(2) - p0) ~ p(2) ~ p@x0) - v(2)

We end this brief description of the proof term model by indicating that in [BKdV03]
a second characterisation of equivalence for the proof term model, based on the concept
of the residuals of one proof term after another, is described. A third characterisation,
based on tracing, uses proof terms as one of its ingredients. The three characterisations
are proven equivalent for first-order term rewriting systems.

1.4 Outline of the contributions

Three directions of work were pursued in this thesis, regarding respectively the Pure
Pattern Calculus, the linear substitution calculus, and the class of first-order infinitary
rewriting systems.

In all cases, the rewriting systems are analysed by means of a generic model: the
ARS model for the Pure Pattern Calculus and the linear substitution calculus, the
proof term model for infinitary rewriting systems. Also in all cases, the work includes
adaptations to the model and/or the development of new abstract proofs, needed to
obtain the desired results. These adaptations and proofs are also contributions of this
thesis in their own merit.

Hence this thesis can be regarded as a work about the use of generic models, to
study rewriting systems whose features make the analysis of their reduction spaces a
challenging task.

We describe the contributions obtained in each of the three directions.

1.4.1 Normalising reduction strategies for non-sequential calculi

The first aim of the work in this direction is to obtain a normalising reduction strategy
for the Pure Pattern Calculus, or PPC. The challenge lies in PPC being a non-sequential
rewriting system: there exist terms, not being normal forms, and not having any needed
redex.!6

A redex in a term ¢ is said needed if its contraction cannot be avoided when computing
a normal form for ¢t. That is, if for any reduction ¢ - u where u is a normal form,
either the redex, or at least one of its residuals, is included in the reduction. Several
results about normalisation of reduction strategies present in the literature are based on
systematic contraction of needed redexes, assuming that each term not being a normal
form includes at least one needed redex. This is the case of the leftmost-outermost

16For a brief discussion about the notion of (non-)sequential rewriting systems, cfr. the introduction
to Chapter 3.

22 CHAPTER 1. INTRODUCTION

reduction strategy for the A-calculus, first studied in [CF58], and also of the theory of
neededness developed in [HL91] for first-order term rewriting.

The study of the literature about non-sequential systems suggests to consider mul-
tistep reduction strategies; cfr. [SR93, vR97, vO99] and the study of external strategies
in [Mel96]. On the other hand, we aimed at being not too liberal in the sets of redexes
selected.

The first contribution of the work in this direction is the definition of a multistep
reduction strategy for PPC. This strategy selects a single redex in many situations.
Particularly, it coincides with leftmost-outermost if PPC is restricted to the A-calculus.

Of course, a proof stating that the defined strategy is normalising must be developed.
We favored a proof having an abstract flavor, ideally described in some generic model of
rewriting systems. By pursuing this approach, we aim to obtain a proof which could be
applied to other strategies and systems. Moreover, in the author’s opinion, the devel-
opment of a proof relying in abstract properties contributes to a deeper understanding
of the notions participating in that proof.

An additional contribution of the work in this direction is an abstract normalisa-
tion proof, described in the ARS model. As indicated in Section 1.3.1, the residual,
embedding and gripping relations are considered. The proof, cfr. Section 3.3, states that
systematic contraction of necessary and non-gripping sets of redexes is normalising, for
ARS verifying a number of axioms.

This proof was originally developed only for PPC ([BKLR12]). The proof we present
in this thesis is the result of translating the structure of that proof to the abstract setting
given by the ARS model.

The notion of necessary set of steps is a generalisation of that of needed step. A set
of steps in a term t is necessary if for any reduction ¢ — u where « is a normal form, at
least one step in the set, or one of its residuals, is contracted. Systematic contraction
of necessary sets of steps is proved normalising for first-order term rewriting systems in
[SR93]. Our abstract normalisation proof takes the main ideas of that proof, and re-
elaborates them in the broader setting given by the ARS model, in which higher-order
systems can be described as well. The non-gripping condition is, as the name suggests,
defined in terms of the gripping relation, and it is the culprit for the inclusion of that
relation in the present thesis.

The abstract normalisation proof relies in all the basic, embedding and gripping
axioms pertaining to the ARS model, described in Sections 2.1.3 to 2.1.6, except for one
of the embedding axioms. The axiom not considered in the proof, Stability, describes a
property related with residuals and embedding, which does not hold for non-sequential
rewriting systems. Therefore excluding this axiom allows to use the ARS model to
reason about such systems.

On the other hand, the abstract normalisation proof also relies in a novel axiom,
described in Section 3.1.4. This axiom allows to complete the analysis of the preservation
of embedding in residuals, by targeting a case complementary with those covered by the
axioms included in the ARS model presentation.

As a side effect, the proof shows that some notions about (sets of) redexes and their
relation with reduction sequences, can be adequately defined and handled in the ARS
model.

1.4. OUTLINE OF THE CONTRIBUTIONS 23

1.4.2 Standardisation for the linear substitution calculus

Some years after the appearance of the first ES calculi, standardisation results for one of
them, namely Ao [ACCL91], were presented in [Mel96]. Interestingly, the ARS model is
used to study Aco. Indeed, this system is one of the main examples given as applications
of the ARS model in [Mel96]. In spite of the many ES calculi proposed afterwards, the
author is aware of no other standardisation results for any of them.

We present in this thesis results of existence and uniqueness of standard re-
ductions for the linear substitution calculus, Aj,,. We use the ARS model to
study this system. In the author’s opinion, the existence of these results suggests that
the reduction spaces of ES calculi at a distance are indeed more manageable than those
of previous ES calculi.

The ARS modeling AJ;,, verifies all the axioms required for the standardisation
existence result in [Mel96]. Therefore, this result applies immediately to Aj5,,. On the
other hand, two of the axioms required for the standardisation uniqueness result given
in [Mel96] do not hold for AJ;,,. We overcome this difficulty by developing a novel proof
of the standardisation uniqueness result, which does apply to Ay, despite the fact that
it does not satisfy some of the conditions required by the statement in [Mel96]. This
abstract standardisation proof, described in Section 4.6, is the second contribution
of this direction of work.

Given an original ARS, the proof is based on the construction of a second ARS, coin-
ciding in objects, steps and residuals with the original one, and whose embedding relation
is a total order including the embedding of the original ARS. The proof states that stan-
dardisation existence for the original ARS, together with standardisation uniqueness for
the second ARS, imply standardisation uniqueness for the original ARS.

We also remark that the definition of an ARS modeling A7, imposes two challenges.

Firstly, to define the embedding relation describing the power of a step to dupli-
cate or erase others, since such embedding does not coincide with nesting between the
corresponding redexes.

Secondly, to obtain definitions of steps, residuals and embedding being stable by the
equivalence relation on terms, generated by the equations commented in Section 1.2.2.
We obtain stable definitions by labeling each redex in a term, analogously as the use of
labels in Fig. 1.1. We subsequently adapt the equivalence equations to labeled terms,
and equate redexes conveying the same label in equivalent labeled terms. Stability is
proved by observing some invariants about labels w.r.t. application of the equivalence
equations on labeled terms.

1.4.3 Equivalence of reductions for infinitary rewriting systems

As we mentioned, various results about some basic properties (as termination, conflu-
ence, or uniqueness of normal forms) for infinitary term rewriting systems are present in
the literature, cfr. [Ken92, KKSdV95, BKAV03, KdV05, Zan08, EGH*10, EHK12]. On
the other hand, the only characterisation of equivalence of reductions for such systems
known by the author is the definition of equivalence given in [KKSdV95], based on that
presented in [HLI1].

The first contribution in this direction is a new characterisation of equivalence
for strongly convergent reductions in infinitary, left-linear, first-order term

24 CHAPTER 1. INTRODUCTION

rewriting systems. It is based on the notion of step permutation: for any pair of
orthogonal rewrite steps, say a and b, perform a followed by b (more precisely, by the
residuals of b after a), is equivalent to perform b followed by (the residuals of) a (after
b).

This characterisation allows to verify the equivalence of infinite reduction sequences,
operating on infinite terms, in several examples we analysed. Particularly, it allows to
model the permutation of a step w.r.t. an infinite number of steps. Consider the rules
f(z) — g(z) and m(z) — n(x), and let us use f¥ to denote the term f(f(f(.... In
order to verify the equivalence between the following two reductions:

m(f“) — m(g(f*)) — m(g(g(f*))) - m(g*) — n(g*)
m(f) — n(f*) = n(g(f*)) — nlg(g(f*))) - n(g”)

the last step in the former reduction must be permuted with an infinite number of
steps, since it corresponds with the first step in the latter reduction. The obtained
characterisation also allows to model an infinite number of step permutations.

The obtained equivalence characterisation also allows to describe adequately the
phenomenon, unique to infinitary rewriting, of infinitary erasing.

We use the proof term model to study infinitary rewriting. We give in this thesis an
extension of the proof term model, as it is presented in [BKdV03] Sec. 8.2 and 8.5
for finitary, left-linear, first-order term rewriting, to infinitary term rewriting. This
is a second contribution of the work in this direction. This extension is also limited to
left-linear rewriting systems.

The obtained model is complete: we prove that any infinitary reduction sequence
can be represented by a proof term. Moreover, the representation is proven unique up
to (an infinitary extension of) rebracketing.

We remark that the definition of the set of proof terms is given by inductive, rather
than coinductive, means. Transfinite induction is used to reason on proof terms, the
limit case being infinite concatenation chains.

The starting point to model infinitary reduction equivalence through proof terms,
is the congruence generated by six basic equations, which is proposed in [BKdV03] to
chraracterise finitary reduction equivalence. We extended this definition in two ways:
besides adding a new basic equation, we propose two novel congruence rules. One of
the new rules incorporates the notion of limit into the equivalence judgements: if the
difference between two reductions can be made as less relevant as desired, then the two
reductions can be considered as equivalent. Relevance of a reduction is measured by
the (inverse of the depth of the) unaffected prefix. E.g., a reduction including a head
step!” has the greatest relevance, since there is no unaffected prefix in this case. Such a
relevance criterion is in line with the notion of strong convergence.

We also present a novel proof of the compression result, which is the third
contribution in this direction. The proof is based on the equivalence of infinitary re-
ductions, using our definition. We remark that it is the first proof, at the extent of
the author’s knowledge, which applies to both orthogonal and non-orthogonal rewriting

"that is, a step which involves the head symbol of a term. If we consider the rule f(z) — g(z), then
the step f(f(a)) — g(f(a)) is a head step, while this is not the case for f(f(a)) — f(g(a)). In the latter
example, the unaffected prefix corresponds to the outer occurrence of f, which is the head symbol of

both f(f(a)) and f(g(a)).

1.4. OUTLINE OF THE CONTRIBUTIONS 25

systems, and at the same time asserts that the compressed reduction is equivalent to
the original one.

1.4.4 Previous presentations of the results

Material included in this thesis has been presented in different conferences, as we detail
in the following:

1. The strategy defined for PPC, and the normalisation proof in the version valid for
PPC only, was presented in RTA 2012, cfr. [BKLR12]. This work was developed in
collaboration with Delia Kesner, Eduardo Bonelli and Alejandro Rios.

2. The abstract normalisation proof described in Section 3.3, which was developed
in collaboration with Delia Kesner, Eduardo Bonelli and Alejandro Rios, is the
subject of an article in preparation.

3. The results about A5, were presented in POPL 2014, cfr. [ABKL14]. This work
was developed in collaboration with Delia Kesner, Beniamino Accattoli and Ed-
uardo Bonelli.

4. The results about infinitary rewriting were presented in RTA 2014, cfr. [LRdAV14].

Work in this direction was firstly presented at the first Workshop on Infinitary
Rewriting held in 2013, cfr. http://joerg.endrullis.de/wir.html.

This work was developed in collaboration with Alejandro Rios and Roel de Vrijer.

26

CHAPTER 1.

INTRODUCTION

Chapter 2

Preliminaries — generic models of
rewriting systems

We describe in this chapter the generic models of rewriting systems we use in this thesis:
the Abstract Rewriting Systems, in the formulation of [Mel96], and the proof term model,
as presented for first-order term rewriting systems in [BKdV03]. In the introduction,
these models are presented in Sections 1.3.1 and 1.3.2 respectively.

2.1 Abstract Rewriting Systems

The main elements and features of the ARS model, as well as the ideas shaping this
model, are described in Section 1.3.1. In the following, we formalise the definition of
an ARS, recall some notations presented in Section 1.3.1, introduce some new notations
and notions, and give additional examples. Afterwards, we present the axioms which
formalise the features of a rewriting system, when modeled as an ARS. A short descrip-
tion of the intent of each axiom is included. Subsequently, we describe how equivalence
of reductions and standardisation are captured in the ARS model. A brief comment
about total embeddings closes this presentation.
We follow the presentation of the ARS model given in [Mel96].

2.1.1 Basic elements

The basic definition of an ARS follows.

Definition 2.1.1 (ARS with embedding). An ARS with embedding is defined as a
tuple (O, R, src, tgt, [-], <) where O and R are the sets of objects and steps respectively,
src, tgt : R — O are the source and target functions, [-] € R x R x R is the residual
relation, and < € R x R is the embedding relation. The embedding relation must be a
well-founded order.

All these elements are described in Section 1.3.1. The work about normalisation de-
veloped in Chapter 3 uses an extension of the ARS model, which includes the gripping
relation.

Definition 2.1.2 (ARS with embedding and gripping). An ARS with embedding
and gripping is a tuple (O, R, src, tgt, [-], <, <), where « € R x R is the gripping
relation; cfr. Section 1.3.1 and Section 3.3.1.

27

28 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

Some notational conventions and basic definitions about the ARS model follow.

Notation 2.1.3 (ARS, elements of an ARS). We use 2, 2’2y, etc., to denote an ARS.
We usually use in this thesis the symbols a,a’,a1,b,c,... for steps, and t,t',u,s,v,r,...
for objects. Another usual notation is t —— u, which denotes that src(a) = t and
tgt(a) = u. Recall from Section 1.3.1 that we use bla]b’ for (b,a,V) € [-], and that
we adopt the infix notation for < and <. Moreover, we use b[a] to denote the set

{v" / bla]b}.

Notation 2.1.4 (Steps of an object). Given an object t, we write RO(t) to denote the
set {a / src(a) = t}.

If t = u and &' € RO(u), then it could be the case that b’ is not the residual of any
step in ¢. In this case, we say that b is created by a.

Definition 2.1.5 (created step). Let t —— u and V' € RO(u), such that there is no
b € RO(t) verifying bla]b'. In this case, we say that V' is created by a, and we write

la]b’.

Definition 2.1.6 (Coinitial steps). Two steps a and b are said coinitial iff src(a) =
src(b); the notion of coinitial set of steps is defined analogously. We use A, A',B,C, ...
to denote sets of coinitial steps.

Definition 2.1.7 (Disjoint steps). If a and b are coinitial, and none of a = b, a < b
and b < a hold, then we say that a and b are disjoint steps, notation a || b.

Definition 2.1.8 (Normal form). Let ¢t be an object. If RO(t) = &, then we say that t
is a normal form. We denote the set of normal forms of an ARS by NF.

The notion of residual can be extended to sets of coinitial steps.

Definition 2.1.9. Let B be a set of coinitial steps, a a step, coinitial in turn with B,
and V' € RO(tgt(a)). We say that b’ is a residual of the set of coinitial steps B
after a, notation Bla]', iff b[a]b’ for some b € B. We also use the notation Bla], to
denote {b' | B[a]b'}.

Notice that for any a and b, bJa] is a set of coinitial steps; the same happens with B[a]
for any B.

The residual, embedding and gripping relations must verify the following condition:
whenever b[a]b/, a < b or a « b, a and b must be coinitial; for the residual relation,
src(b') = tgt(a) is also required.

Recall that the intent of the residual relation is to trace a step b, after the contraction
of a step a, so that b[a]b’ indicates that &’ is (perhaps part of) what is left of b, after
a has been performed. Hence the restrictions src(b) = src(a) and src(d’) = tgt(a) make
sense. Cfr. Fig. 2.1.

src(a) —> tgt(a)
—— ——r
b is here b’ is here

b [a] b

Figure 2.1: Schema of the residual relation

2.1. ABSTRACT REWRITING SYSTEMS 29

Let us describe how the A-calculus can be modeled as an ARS.

The set O of objects is the set of terms of the A-calculus. A step corresponds to any
subterm of the form (Az.s)u, lying inside a term. The formal definition of the set of steps
can be given by resorting to the concept of position, as done for PPC in Section 3.4.3, or
alternatively by using contexts, as described for Ajy,, in Section 4.2.

W.r.t. the residual relation, b[a]b’ holds iff b’ is a “copy” of the (subterm correspond-
ing to) the step b, in the target term of a. A graphical way of computing the residuals
of b is to underline, in the common source term of @ and b, the A symbol of the subterm
(Az.s)u corresponding to b, and perform the step a on the underlined term. Then b[a]b’
holds iff the A symbol of (the subterm corresponding to) b’ has an underline, in the
underlined version of tgt(a). A similar technique, based on labels, is used for AJg,, in
Chapter 4. Cfr. Section 4.1.1. !

Fig. 2.2 includes several cases of steps and residuals. We use underlining to trace
residuals. Cfr. also Fig. 1.6, on page 16.

a

—— a
D Ceod) Qe S 3w
b 4
K_L
b) (Ay.()\a:.x)?)—i—y)il 4 (Dy.3+y)4
az ;
O e Oyrtrtpdl -5 Qgd+d+y)3
b 14
Q) Daarotr DQwnd -5 (Qw)3)+((Ayy)3) +4
vy T
r—L
e) ()\1:4)(@yy)3)) 4, 4
e
N e+ D00y -5 (Owy)3) +4

Figure 2.2: Examples of steps, residuals, and a created step, in the A-calculus

In Fig. 2.2:a) to d), we have b[a]d’, and moreover b[a]b” in d). The example c¢) shows
that the subterm corresponding to a residual can be different from that of the original
step. The example d) shows a case of duplication: there is more than one residual
of b after a. The example e) shows a case of erasure: there is no residual of b after
a. Finally, the example f) shows a case of step creation: the step in the target term,
whose corresponding subterm is (Ay.y)3, is not the residual of any step in the source
term.

The embedding relation can be defined as follows: a < b if the subterm corresponding
to b is nested inside that of a in their common source term. That is, a step corresponding

!The definition of the residual relation for PPC given in Chapter 3 is based on computations performed
on the positions of steps. Cfr. Section 3.4.3.

30 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

to some subterm (Az.s)u inside a term, embeds those steps whose subterm is inside s
or u. E.g., in Fig. 2.2:¢), d), e), we have a < b, while in b) we have b < a.

As commented in Section 1.3.1, this is not the only possible definition of the em-
bedding relation for A-calculus. A meaningful alternative is to consider that the step
whose subterm is (Az.s)u embeds only the steps whose subterms are inside u. Using the
alternative definition, we have a < b in Fig. 2.2:d) and e), but not in c).

Following the idea described in Section 1.3.1, we define the gripping relation for the
ARS modeling the A-calculus as follows: if the subterm for a step a is (Az.s)u, then we
have a « b iff the subterm for b is inside s and x occurs free in that subterm. E.g., in
Fig. 2.2:c) we have a « b, because = occurs free in (Ay.z + z + y)3. On the other hand,
in b) we have b < a but not b « a, since y does not occur free in (Az.x)3.

2.1.2 Reduction sequences and developments

Sequences of rewriting steps admit a natural description in the ARS model.

Definition 2.1.10 (Reduction sequence, source, target, length). A reduction se-
quence is either nily, an empty sequence indexed by the object t, or a (possibly in-
finite) sequence aj;ag,...;an;... of steps verifying tgt(ay) = src(agy1) for all k = 1.
In the former case, we define the source as t and in the latter case as the source of
the first step in the sequence. We define the target of a reduction sequence as follows:
tgt(nily) :=t, tgt(a;...;ay) := tgt(ay,). The length of a reduction sequence, denoted
by |- |, is defined as follows: |nily| := 0, |ai;...;an| :=n. The target and length of an
infinite sequence are undefined.

Some notations about reduction sequences follow.

Notation 2.1.11. We write RS for the set of reduction sequences. In the following,

reduction sequences are given the names 8, &', 61, v, w, etc. We write t —6» u to indicate
that src(d) =t and tgt(d) = u. Also, if 6 = ai1;...;a,, we denote with §[k] the step ay,
and write 6[i..j]| for the subsequence aj;...;a;, if i < j, and nilgc(q,), if i > j. We use
the symbol ; to denote the concatenation of reduction sequences, allowing to concatenate
steps and sequences freely, e.g. a;6 or a;b or &;a or §;7, as long as the concatenation
yields a valid reduction sequence.

The concept of normalising object is crucial for Chapter 3.

Definition 2.1.12 (Normalising object). An object t is normalising iff there exists a

é
reduction sequence § such that t — u and w is a normal form.

The notion of residuals can be extended to reduction sequences as follows.

Definition 2.1.13 (Residuals after a reduction sequence). The relation of residuals
of a step after a reduction sequence, [-] € R x RS x R, is defined as follows:
b[nils]b for all b € RO(t), and bla;d]b whenever bla]b” and b"[0]b" for some V. We
use the notation b[d], to denote {b' / b[6]0'}. We extend the definition of residuals
after a reduction sequence to sets of coinitial steps, as follows: we say that B[5]b" iff
b[o]b" for some b € B, and define B[d] as {b' / B[o]v'}; cfr. Dfn. 2.1.9. Observe that
Bla; 5] = Bla][4].

2.1. ABSTRACT REWRITING SYSTEMS 31

The central role that residuals play in the ARS model yields a natural way to describe
developments.

Definition 2.1.14 (Development, complete development). Let A € RO(t) for some
object t. The reduction sequence ¢ is a development of A iff src(6) = t and §[i] €
A[S[1..i—1]] for all i < |8| (the condition src(8) = t is in fact redundant unless A =).
A development ¢ of A is complete, written § |+ A, iff § is finite and A[d] = &.

E.g. let us consider the set A = {a, b} € RO(t) given by

a
A

-

t=Ar.(A\23+2)x)(14)
b

The reduction sequence (Az.(\z.3 + 2)z)(I4) — (A\2.3 + 2)(I4) LN (Az.3+2)dis a
development of A: observe that a € A = A[nil,], and b[a]d’ implies ¥’ € AJa]. The

reduction sequence (A\z.(Az.3 + z)z)([4) LN (Ax.(A\z.3 + z)x)4 -, (Az.3 + 2)4, where
a[b]a’, is also a development of A. Note also that the reduction sequence consisting
solely of the step a is a development of A too, and analogously for the step b. On the
other hand, (Az.(A2.3 + 2)z)(I4) = (A\2.3 + 2)(I4) — 3 + (I4) is not a development of
A, because the second step is not in Afa].

Developments yield a useful measure on sets of coinitial steps.

Definition 2.1.15 (Depth of a set of coinitial steps). The depth of a set of coinitial
steps A, written v(.A), is the length of its longest complete development.

Note that it is not a priori clear that a development terminates, nor that the residual
relation is finitely branching. Moreover, since there may be more than one develop-
ment of a given set of coinitial steps, it is natural to wonder whether they all have the
same target and induce the same residual relation. These topics are discussed when
introducing the finite residuals, finite developments and semantic orthogonality axioms.

2.1.3 Initial axioms

The ARS model allows to state and prove properties in an abstract fashion. The results
thus obtained are valid for any ARS (and therefore, for any rewriting system which can
be modeled as an ARS), provided that it verifies some properties. These requirements
are encoded in the ARS model as axioms, stated in an abstract way.

Several of the axioms introduced in [Mel96] are used in this thesis. They are de-
scribed in this and the following sections. In this section we describe three initial axioms.
Later sections deal with the finite developments and the semantic orthogonality axioms,
the group of embedding axioms, concerning the interaction between residuals and em-
bedding, and finally the group of gripping axioms, which express basic properties of
the gripping relation. We remark that the material in Chapter 3 requires an additional
axiom, not present in [Mel96]; cfr. Section 3.1.4.

A note about notation: in what follows, free variables in the statement of an axiom
are implicitly assumed as universally quantified. For example, “afa] = &7 should be
read as “For all a € R, afa] = &”. Bear in mind also that in an expression such as
“ab]a’”, steps a and b are assumed coinitial.

32 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

The three initial axioms have to do with the properties of the residual relation. The
embedding and gripping relations do not participate in these axioms. The first is Self
Reduction and states, quite reasonably, that nothing is left of a step a if it is contracted.

Self Reduction afa] = .

The second is Finite Residuals and states that the residuals of a step b after con-
traction of a coinitial (and possibly the same) one a is a finite set. In other words, a
step may erase (b[a] = &) or copy other coinitial steps, however only a finite number
of copies can be produced.

Finite Residuals bla] is a finite set.

The third one, namely Ancestor Uniqueness, states that a step a cannot “fuse” two
different steps b; and bs, coinitial with a, into one, by allowing some step b to be residual
of both b; and by simultaneously. In other words, if we use the term “ancestor” to refer
to the inverse of the residual relation, then any step can have at most one ancestor
(recall that created steps have no ancestor).

Ancestor Uniqueness bi[a]b’ and bo[a]d = by = bs.

2.1.4 Finiteness of developments and semantic orthogonality

Asindicated at the end of Section 2.1.2, it is not clear, in principle, whether developments
enjoy certain desired properties. In this section we address this problem by introducing
two axioms which guarantee the expected behavior of developments.

The finite developments axiom, acronym FD, asserts that no development can run
indefinitely.

Finite developments (FD) All developments of A are finite.

This axiom, together with Finite Residuals, imply that the notion of depth of a set of
coinitial steps, cfr. Section 2.1.2, is well-defined.?

In turn, an additional axiom, called PERM in [Mel96] and semantic orthogonality,
acronym SO, in this thesis, guarantees, for any pair of coinitial steps A = {a, b}, the
existence of two complete developments of A, one starting with a and the other with b,
which are confluent and induce the same residual relation. Cfr. Fig. 2.3.

Semantic orthogonality (SO) 36,7. 6 I+ a[b] and v I bfa] and
tgt(a;y) = tgt(h;0) and the relations
la;~v] and [[b; 6] coincide.

2If we render the developments of a set of coinitial steps A as a tree, whose root is the source term
of A and each edge is a step, then the Finite Residuals axiom implies that such tree is finitely branching,
and FD entails the nonexistence of infinite branches. Therefore Konig’s Lemma yields that the described
tree is finite, hence the well-definedness of the depth of A.

2.1. ABSTRACT REWRITING SYSTEMS 33

t e Ul
bL l’y I bla]
U s

0 I a[b]

Figure 2.3: The semantic orthogonality axiom

The axioms FD and SO, together with Self Reduction and Finite Residuals, suffice
to guarantee that complete developments of arbitrary multisteps of an ARS are also
confluent and induce the same residual relation. This is reflected in the following result
(Lem. 2.18 and Lem. 2.19 in [Mel96]):

Proposition 2.1.16. Consider an ARS enjoying the Self Reduction, Finite Residuals,
FD and SO azioms. Suppose § - A and v I+ A. Then tgt(d) = tgt(y) and the relations
[6] and [v] coincide.

The properties expressed by the axioms FD and SO have long been present in the
formal study of rewriting systems, allowing to obtain relevant results.

We mention the proof of confluence (property described in Section 1.1.1) given for
a variant of the A-calculus in [CR36], where FD is explicitly stated and proved. Early
proofs of this axiom for A-calculus can be found in [Sch65, Hin78].

In turn, orthogonality is a regularity criterion which simplifies the analysis of rewrit-
ing systems. The study of the so-called orthogonal rewriting systems can be traced,
at least, to [HL91|, which is in fact a revised version of a technical report from 1979.
This work, whose subject is first-order term rewriting, takes a syntactic approach to
orthogonality, based on the notion of ambiguity.> We describe this notion by means of
an example. The inclusion, in a first-order term rewriting system, of the rules

h(f(z),y) — z h(z,9(y)) — ¥y

provokes an ambiguity w.r.t. all the terms having the form h(f(t1),g(t2)) where ¢; and
to are arbitrary terms, since both rules apply to any such term. Taking as example
the term h(f(c),g(d)), we have two steps a; and ag, where h(f(c),g(d)) — ¢ and
h(f(c),g(d)) 2> d. The absence of ambiguities is a requirement for a rewriting system
to be orthogonal.?

As the example suggests, lack of orthogonality can break confluence, and thus unique-
ness of normal forms. In the syntactic view of orthogonality, the statement of the SO
axiom is in fact a property, which is proved for any (syntactically) orthogonal rewriting
system, cfr. Prop. 4.2.8 and Prop. 4.2.10 in [BKdV03], page 96.° Besides Chapter 4
in [BKdV03], the syntactic approach of orthogonality is also described in [BN98], Sec-
tion 6.3.

The ARS model takes a different, more semantically-oriented perspective on orthog-
onality. In this view, a rewriting system is defined as orthogonal iff it satisfies the
criterion about the meeting of developments expressed by the SO axiom.

3The notions of overlapping [Ros73], and of critical pair [KB70], refer to the same phenomenon.

4There is another requirement, i.e., a rewriting system must be also left-linear to be considered
orthogonal. Cfr. [HL91] p. 398, [BKdV03] p. 88.

®The statement of the SO axiom a stronger version of the local confluence, or WCR, property, which
states that whenever t — u; and t — w2, there exists an object s verifying u; — s and uzs — s.

34 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

We remark the existence of term rewriting systems which verifies the semantic or-
thogonality criterion described by the SO axiom, despite the fact that they admit syn-
tactic ambiguities. Let us consider the first-order term rewriting system whose only
rules are

h(f(x),y) — e Wz, g(y)) — e

Again, any term having the form h(f(¢1),g(t2)) is ambiguous for this system. But in
this case, the possible steps are h(f(t1),g(t2)) —» e and h(f(t1),g(t2)) = e, for any
such term. Moreover, none of these steps has any residual after the other one. Hence
semantic orthogonality is not compromised: the diagram in Fig. 2.3 closes trivially as
up = us = § = e. In fact, we can identify the steps a; and ao in this case, considering
the existence of just one step h(f(t1),g(t2)) — e.

Another ambiguous system, non-orthogonal from a syntactic perspective, which en-
joys the SO axiom, is the parallel-or first-order term rewriting system, referenced in
the literature at least since [Plo77] in relation with denotational semantics, and [Ken89)]
specifically in relation with the existence of normalising reduction strategies. It includes
the following rules

or(z,tt) — tt or(tt,z) — tt

Both rules apply to or(tt,tt), giving rise to two different steps, and therefore to an
ambiguity. On the other hand, the target of both steps, namely tt, coincide. Therefore,
the behavior of this system is analogous to the previous example, so that again we can
identify the two ambiguous steps.

Observe that both of the just presented rewriting systems are almost orthogonal, cfr.
[VRO7], from a syntactic perspective. On the other hand, the linear substitution calculus
we study in Chapter 4, is syntactically not almost orthogonal: moreover, it is not even
weakly orthogonal, [vO94]; despite this fact, it verifies the SO axiom.

A further comment about the two perspectives on orthogonality is included in Sec-
tion 6.2.3.

In the following, we say that an ARS is orthogonal iff it satisfies the three initial
axioms, FD and SO.

2.1.5 Embedding axioms

The embedding axioms establish coherence conditions between the embedding relation
< and the residual relation [-]. In reading these axioms it helps to think about the
embedding relation as described for the A-calculus in Section 2.1.1: a < b if the subterm
corresponding to a nests that of b. Bear in mind however, that the ARS model does
not assume the existence of terms nor of syntactic nesting; this reading is solely for the
purposes of aiding the interpretation of the axioms.

The first axiom, Linearity, states that the only way in which a step a can either
erase or produce multiple (two or more) copies of a coinitial step, is if it embeds it.

Linearity a b= 30 /bla]b.

This axiom formalises the intent of the embedding relation as part of the ARS model,
described in Section 1.3.1: a pair a < b indicates that the step a has, potentially, the
power to erase or to duplicate b.

2.1. ABSTRACT REWRITING SYSTEMS 35

The second axiom pertains to the invariance of the embedding relation w.r.t. con-
traction of steps. Consider three coinitial steps a,b and c¢. Suppose that b[a]d’ and
c[a]d, for some steps b’ and ¢ (this implies a # ¢ and a # b). The only case in which
the contraction of a can add, to (the residual of) b, the feature of embedding (that
of) ¢, i.e. b € ¢ AV < ¢, or conversely, revoke this feature (in the residuals), that is
b<cAb £, is when the step a itself embeds ¢, that is, when a < c.

Context-Freeness bfa]V/ and c[a]d = a<c v (b<c <V <).

An example in A-calculus follows; recall that I, K and D are defined at the end of
Section 1.1.4:

7

: I L
Oz. Dz) I3 WK 14) =% D(I3 YK 14)
S~ NN —~— S~ N~

b C d / U

c d

b/

In this case, a < c¢. Therefore, the axiom allows to modify the relative embedding of b
and c after the contraction of a, as it is indeed the case: b € ¢ and ¥/ < ¢/. On the other
hand, a < d and a < e, hence the relative embeddings of any step with d and e must be
invariant w.r.t. the contraction of a. We observe e.g. b <« d and b’ « d’, and also d < e
and d' < €.

The next two axioms, Enclave—Creation and Enclave-Embedding, are used in con-
texts in which the axiom Linearity is assumed. Consider two coinitial steps a and b, such
that b < a, so that Linearity implies the existence of a unique V' verifying b[a]b’. The
Enclave axioms establish conditions which guarantee, given some ¢ coinitial with ¥,
that & < ¢. Two cases are considered, first when ¢ is created by a (Enclave-Creation),
and when it is a residual, after a, of some step ¢ (Enclave-Embedding).

Enclave—Creation b < a, bla]t) and Fa]d =V < .
Enclave-Embedding b[a]V/, c[a]d and b<a<c=b <.

Notice that Enclave-Embedding complements, in some sense, Context-Freeness: it en-
forces the invariance of the relative embedding between b and ¢, that is b < c A b < ¢/,
in a case where a < ¢, so that the case is not covered by Context-Freeness.

We illustrate the Enclave—Creation and Enclave-Embedding axioms by means of two
examples in A-calculus. Consider

b v
a) (. Dz) IK 3) -% (. Dz)(K3)
d a d o
b v
b) (\z. Dz)(I(K3)) -% (\z. Dz)(_K3)
d c d c

In a), the step ¢’ is created by the contraction of a. Moreover b < a, so that Enclave—
Creation enforces b’ < ¢/. On the other hand, d < a, so that this axiom does not assert
anything about the relative embeddings of d’ and ¢’. In b), we have b < a < ¢, so that
Enclave-Embedding implies b’ < /.

36 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

An additional axiom, which complements in turn Context-Freeness and Enclave—
Embedding, is introduced in Section 3.1.4.

The last embedding axiom in this presentation, Stability, assumes implicitly Linearity,
as well as Ancestor Uniqueness and SO, to hold. Suppose two coinitial steps, a and b,
such that a || b, and let a’,b" their unique mutual residuals, namely a[b]a’ and b[a]b’;
Linearity implies the existence, and also the uniqueness, of @’ and /. Then SO implies
that the target of a;b’ and b;a’ coincide. Let d’ be a step in this common target, such
that it is not created, neither by b’ nor by a’. That is, di1[b']d" and dy]a’]d’, for some
steps di and da, coinitial with o' and o’ respectively. Fig. 2.4:a) depicts this situation.

Assume the existence of a step d verifying d[a]d;, so that d[a;b']d’. In this case, SO
implies d[[b; a’]d’, that is, d[b]d" and d"[a’]d" for some d”. In turn, Ancestor Uniqueness

implies d” = da, so that d[b]dy. Cfr. Fig. 2.4:b).

TN Y
dlmt/ . dlmt/ .

Figure 2.4: The Stability axiom

Therefore, there are just two options: either dy and do are residuals of some common
step d, or dy and do are created by a and b respectively, so that both a and b have the
ability to create (an ancestor of) d’. The axiom Stability forbids the latter possibility:
it states that a step, in this case d’, cannot be created by different, disjoint steps.

Stability Assume a || b, a[b]d’, b[a]t/, and there exists some d’ such
that dq[b']d and ds]a’]d’. Then there exists d such that
d[a]dy, d[b]dz, and either a £ d or b £ d.

Therefore, in any case corresponding to Fig. 2.4:a), the situation in Fig. 2.4:b) must
hold. In the latter we distinguish the conclusion of the axiom, that is, the existence of
d, by a dashed line.

We point out that the condition a € d or b € d is superfluous for the A-calculus,
and also for all the ARS we introduce in Chapter 3 and Chapter 4, because for those
ARS, this condition holds for every set of three coinitial steps {a, b, d} such that a || b.
Notice that dfa]d; and d[b]de imply d # a and d # d, cfr. Self Reduction. Moreover,
given an object ¢, the embedding relation restricted to RO(t) has the shape of a tree,
so that a < d and b < d would imply a < b or b < a, contradicting a || b.

The parallel-or rewriting system, introduced in Section 2.1.4, does not enjoy Stability.
Consider the term
or(or(tt,ff) , or(tt,ff))

J

n'g n'g

a b

2.1. ABSTRACT REWRITING SYSTEMS 37

and the following diagram

(or(tt, ff) r(tt,ff)
r(tt, or(tt,ff) (or(tt,ff) ,tt)
r(tt, tt)
ldl
tt

If we identify the two possible steps or(tt,tt) — tt in the ARS interpretation of this
rewriting system, then both a and b can create (an ancestor of) this “unified” step.
Moreover a || b. Hence this is a counterexample for Stability. This is by no means
accidental: the explicit purpose of the Stability axiom is to avoid what is called in
[Mel96] (cfr. page 80) the “parallel-or behavior”.

2.1.6 Gripping axioms

The properties characterising the gripping relation in the ARS model, are described by
means of three axioms, provided in [Mel96] to extend to higher-order term rewriting an
abstract proof of finite developments, developed originally for first-order term rewriting
systems by O’Donnell, cfr. [O’D77].

The first one, Grip—Instantiation, states the role gripping plays in the creation of
new embeddings. Consider three coinitial steps a,b,c and steps b, such that b[a]d/
and c[a]c’. Suppose that b’ < ¢/, and moreover, that this embedding is generated by the
contraction of a, that is, b € ¢. Axiom Context-Freeness gives some information, since
it enforces a < ¢ in such case. This axiom may be seen to provide further information:
the only way in which a can place (the residual of) ¢ under the (residual of) b, is that b

grips a.
Grip—Instantiation bla]V/, c[a]d and b’ < = b<c v (a<b A a<c).
Recall the example for A-calculus given in Section 1.3.1 to introduce gripping:
a

- Y
c c

— a —

(M. Dz)(I3) — D(I3)

S~—— N

b b/
We have b ¢ ¢ and b’ < ¢. The new embedding is generated by the presence of a free
occurrence of x, the variable bound in the abstraction corresponding to a, inside the
subterm of b. This link between the steps a and b is exactly the phenomenon modeled
by the gripping relation.

The second axiom, Grip—Density, states a condition for the generation of a new
gripping. Consider again b[a]b’ and c[a]c’. The contraction of a can cause ¢’ to grip v’

38 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

when this is not the case for their respective ancestors, i.e. b « ¢ and ¥’ « ¢, only if a
links b and ¢ forming a “chain” of grippings, that is, b €« a « ¢: the contraction of a
makes b’ and ¢’ contiguous in this chain.

Grip—Density bla]d) A cla]d AV «d = bgev bga<e.

b/

b
A

a /_/%
An example in A-calculus follows: (Ay. (A\z. Iz)y)z — (A\y. Iy)z

C cl
| —
a
The third axiom, Grip—Converzity, establishes conditions to embed a gripping step:
if ¢ embeds b which in turn grips a, then c¢ either grips or embeds a.

Grip—Convexity ak<bArc<b=a<cvc<ga.

d

A
C

-~

—
Consider this example in A-calculus: I((Az.I(_Dx))3),
—
b

N—. —_—

a

where a €« b, ¢ < b, and also d < b. We have a « ¢ and d < a, so that both cases are
compatible with the statement of Grip—Convexity.

2.1.7 Permutation equivalence in the ARS model

Residuals lead to a simple description, in the ARS model, of the permutation of con-
tiguous steps. If a and b are coinitial steps, d I b[a], and v I a[b], then the reduction
sequence a; d corresponds to the contraction of a followed by (the residuals of) b, while
b; v corresponds to b followed by (the residuals of) a. Therefore, permuting a with b in
a; 0 yields b; v, and vice versa.

This is the case of the example about equivalence of reductions given in Section 1.3.1
for the arithmetic simplification rewriting system. An example in the A-calculus follows.

a

—_—

Ar.xx)(Ty D)
——’
b

()
/ \
/_L
Iy)(Iy)
—

(\z.xx)y
by
b’l\

y(Iy) ¢
——

/!
K N

yy

(

b

2.1. ABSTRACT REWRITING SYSTEMS 39

In this case, b has two residuals after a: b[a] = {V),b,}. Therefore, in this case, it takes
more than one step to develop b[a], i.e. |6] > 1. On the other hand, a[b] = {a'}. We
have § = b; b4 and v = a’.% Permuting a with b in a; b; b yields b;a’, and vice versa.

If we choose a and b such that a erases b, then we get a triangular diagram, e.g.:

a

——
D) Iy)

——
b
a \
a/
— =
z - (A\x.2)y

In all the examples given so far, we obtain closing diagrams: the target term of
a;0 and b;y coincide. This is always the case for orthogonal ARS, in a strong sense
involving residuals as well as target: for any orthogonal ARS, and for any ¢ I+ b[a] and
v Ik a[b], tgt(a;) = tgt(b;) and c[a; 0] = ¢[b;~] for any c coinitial with @ and b. This
is a consequence of Prop. 2.1.16, since both a;§ and b;y are complete developments of
{a,b}. Prop. 2.1.16 entails also that the choice of § and ~ is irrelevant, since target and
residuals coincide for any complete development of b[a], and analogously for a[b].

The aforementioned considerations lead to the characterisation of permutation equiv-
alence in the ARS model, for orthogonal ARS.

Definition 2.1.17. Two reduction sequences § and ~y are one permutation of steps
away if § = d1;a;m; 02, v = 01;b;0; 62, w |- b[a] and 0 I+ a[b]. The permutation can be
depicted graphically as follows.

N

Definition 2.1.18. Permutation equivalence is defined as the reflexive and transitive
closure of the “one-permutation-away” relation.”

Given Prop. 2.1.16, it is straightforward to verify that § and being permutation equiv-
alent implies tgt(d) = tgt(y) and [d] = [7].
2.1.8 Standardisation in the ARS model

Recall from Section 1.1.3 that in a standard reduction sequence, external steps should
precede (residuals of) internal ones. The embedding relation allows to describe the

SNotice that a has the power of duplicating b. Therefore, a model of the A-calculus as an ARS
should provide a < b; cfr. the Linearity axiom. This is the case for the three embedding relations for the
A-calculus proposed in [Mel96], Section 2.7.2.

"Recall that Self Reduction implies, for any step a, that afa] = @&. Therefore, if we consider
0 = d1;0;nilegq); 62 and b = a in Dfn. 2.1.17, it is easy to conclude that the relation of being “one
permutation of steps away” is already reflexive, except for empty reduction sequences. Therefore, taking
the reflexive closure in Dfn. 2.1.18 is needed for empty reduction sequences only. We could ask a # b in
Dfn. 2.1.17, in this case the reflexive closure in Dfn. 2.1.18 would be needed for any reduction sequence.

40 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

notion of “more external step” in the ARS model. Given two coinitial steps a and b,
the condition a < b indicates precisely that a is more external than b.

In this way, the external condition corresponds with the notion of a step having some
power over another, introduced in Section 1.3.1: a step a is more external than b if @ can
possibly erase or duplicate b. The Linearity axiom makes this correspondence explicit.

Therefore, the criterion for a reduction sequence to be standard can be rephrased as
follows: in a s.r.s., a step a should precede (any residual of) a coinitial step b if a has
some power on b.

In the following, assume an orthogonal ARS which enjoys also the Ancestor Unique-
ness and Linearity axioms.

Consider a reduction sequence v = d1; b; a’; 62 where a[b]a’ and a < b. The presence
of the anti-standard pair b; o’ indicates that v is not a s.r.s.. Moreover, performing a
permutation of the contiguous steps b and a on « allows to “reorder” the anti-standard
pair, obtaining d1;a;m;d where m |- b[a]. This observation leads to the following
definition:

Definition 2.1.19 (Standardising permutation). 0 is obtained from -y by means of a
standardising permutation (of contiguous steps), notation § L, iff v = d1;b;d’; 09,
d = 01;a;m; 02, a[b]d’, 7 I+ b[a], and a < b.

Recall that Linearity implies o’ I a[[b], hence a standardising permutation is indeed
a particular case of the permutation of contiguous steps. Standardising permutations
induce an order® on reduction sequences, as suggested by the symbol Z used to denote
them.

Notice that permutations of disjoint steps do not affect the “standardisation degree”
of a reduction sequence: they are neutral in that sense. On the other hand, perform-
ing such permutations can be required to unveil anti-standard pairs, and thus enable
standardising permutations. This implies the relevance of the following definitions.

Definition 2.1.20 (Square permutation, square equivalence). We say that § and =y
are one square permutation (of contiguous steps) away, notation 5g>'y, iff 6§ =
d1;a;0'502, v = d1;b;a'; 02, bla]b/, a[b]a’, and a || b. Linearity entails b' |+ bla] and
a' I+ a[[b], hence a square permutation is indeed a permutation. We define the square

equivalence, notation <, as the reflexive and transitive closure of 3> It is immediate
to verify that < is symmetric, and thus that it is indeed a equivalence relation.

We show how to standardise a reduction sequence J, i.e. obtain a s.r.s. permu-
tation equivalent to J, by performing square and standardising permutations. In the
following, we (ab)use the same name for a step and its residuals. Consider:

- b - c - a
d=Axlz)(12)(I3) — (Azlx)2(I3) — (Az.1z)23 — 123
T/ — —

Observe that ¢ is not standard because (the residual of) a comes after b, while a < b.
Nonetheless, § does not include any contiguous anti-standard pair, a square permutation

8 A preorder in the general case, an order in the rewriting systems studied in this thesis

2.1. ABSTRACT REWRITING SYSTEMS 41

is needed prior to perform a standardising permutation. Namely, ¢ is transformed first
to:

r b a c
§ = Dadz)(12) I3) -5 Dada)d(13) —% 12(13) -5 123
—) N — —
b c c c

a reduction sequence including the anti-standard pair b;a. Now we can perform a
standardising permutation, obtaining:

a

———
5 =adz)(12)(I3) - 1. 12 ((I3) -5 12(I3) -5 123
S—— N —~— S—— N —— S——
b c b c c

which is a s.r.s.. We can concisely describe the way ¢” is attained as follows:
0 = bcia & b:ase N\ a;b;e = &

Notice that there is another way to standardise J:
6 = bca S cha N cab = 8"

resulting in:

/_/% /_/%
§" = (A\a.lz)(12)(I3) =5 (zda)(12)3 =% 1(12)3 -5 123
S~ N S—— S~—
b c b b

where §”<$ 8", as ¢ is disjoint to both a and b. Notice that if a reduction sequence
is standard, then any other reduction sequence in its class of square equivalences is
standard as well.

We formalise the standardisation process by means of the following definitions.

1
Definition 2.1.21. We write § < v iff 6O~y or § Ly, use < to denote the reflexive-

1
transitive closure of <, and say that § is more standard than v, notation § < -, iff
0 <6 L~ Q. Notice that 6 <~ implies that 6 and v are permutation equivalent.

By the preorder <, we stratify the <-equivalence classes of reduction sequences
by their “standardness degree”: if 61 <Cdo and v Oye, then §; < v iff §o < 9. This
argument allows to obtain an order? <1/<.

Definition 2.1.22. A reduction sequence is standard iff it is contained in a < -
equivalence class minimal for /<.

Given this characterisation of s.r.s., in [Mel96] two results relating standardisation
with the ARS axioms are stated and proved. Namely:

Theorem 2.1.23. All ARS enjoying the initial axioms, FD, SO, Linearity and Context-
Freeness, verify the following proposition: for any reduction sequence -y, there exists a
s.7r.s. 0 such that 6 <+, and therefore § and v are permutation equivalent.

9Again, a preorder in the general case, an order in the rewriting systems studied in this thesis. Cfr.
[Mel96] Section 4.8.1.

42 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

Theorem 2.1.24. All ARS enjoying the initial axioms, FD, SO, and all the embedding
axioms, verify the following proposition: for any reduction sequence vy, there exists a
s.7r.s. 0 such that § <, and therefore § and v are permutation equivalent. Moreover,
0 is unique modulo <, i.e. for any s.r.s. & equivalent with v, we have §' 4.

These are among the main results obtained through the ARS model in [Mel96].

2.1.9 A remark on total-order embeddings

We end this section with a remark, which will be important for the study of the linear
substitution calculus in Chapter 4.

Assume an ARS whose embedding relation is a total order, i.e. there are no disjoint
steps. Such an embedding can simplify the proofs of the embedding axioms: in the case
analysis of the relative embeddings between two steps a and b, if a € b, the only possible
case left is b < a. Particularly, the Stability axiom becomes trivial, since its hypothesis
includes the disjointness of two steps.

On the other hand, for such ARS the < equivalence coincides with equality. No
square permutations are possible, all permutations are either standardising or anti-
standardising. Therefore, the conclusion of Thm. 2.1.24 is stronger: the existence of a
unique s.r.s. equivalent to a given reduction sequence is stated, thus uniqueness is
not “modulo <¢7.

Hence, an ARS equipped with a total order as its embedding relation leads to a
simpler standardisation theory. This fact will be exploited in Chapter 4 to obtain a
standardisation result for a rewriting system having a partial-order embedding relation,
in two steps. First, a simpler ARS with a total-order is defined. For this ARS, all the
axioms required in Thm. 2.1.24 are verified, and thus standardisation is obtained as
a corollary of that theorem. Afterwards, this result is used to prove standardisation
for the partial-order ARS, by a novel abstract argument. Uniqueness of s.r.s. (now
modulo square equivalence) is obtained, even though the partial-order ARS does not
satisfy all the embedding axioms.

2.2 The proof term model

As described in Section 1.3.2, the intent of the proof term model is to provide a tool
to formally denote, or witness, reductions in a given rewriting system. We introduce
in this section the main concepts, and some relevant features, of this model, as it is
presented for first-order, left-linear term rewriting in [BKdV03], Chapter 8. This is the
presentation we extend in Chapter 5 to the realm of infinitary rewriting.

We do not intend to give a complete presentation of the proof term model in this
section. The aims of the material we present here are: to give a first glimpse of this
generic model of rewriting, including several examples, and to introduce the definitions
of some basic notions as given originally for finitary rewriting, to enable the comparison
with the infinitary counterparts we introduce in Chapter 5.

In Section 2.2.1 we provide a few basic preliminary definitions, which are essential
in order to introduce the proof term model. In Section 2.2.2 we formalise the notion of
finitary proof term, providing several examples. In Section 2.2.3 we describe the charac-
terisation of the equivalence of reductions in the proof term model, given in [BKdV03|
Section 8.3, which resorts to the notion of permutation of contractions. The notion of

2.2. THE PROOF TERM MODEL 43

permutation is also used in the ARS model to describe the equivalence of reductions, cfr.
Section 2.1.7. As we pointed out in Section 1.3.2, several characterisations of the equiv-
alence of reductions are proposed in the presentation of the proof term model given in
[BKAV03]. We include here only that based in permutations, because it forms the foun-
dation for the characterisation of the equivalence of infinitary reductions we introduce
in Section 5.3.

2.2.1 Preliminaries — first-order term rewriting system

Prior to formally introducing proof terms, we must define the notion of first-order term
rewriting system. We give here just the definitions we need in Section 2.2.2. For a
general presentation of finitary first-order rewriting, cfr. e.g. [BN98], Sections 3.1 and
4.2; and also [BKdV03], Sections 2.1 to 2.3, 2.7 and 2.8. The main concepts of first-order
rewriting are defined for infinitary rewriting in this thesis, in Sections 5.1.2 to 5.1.4; cfr.
also [BKdAV03], Sections 12.1 to 12.3, or [KdVO05], Section 2.

Definition 2.2.1 (Signature, function symbol, constant). A signature is a finite set of
symbols along with a function from this set to Nxq, called arity and noted ar. The usual
notation is X := {fi/n;}ier, where each f; is a symbol and n; = ar(f;). We follow the
custom of writing f € ¥ as a shorthand notation for In.n € N>o A f/n e X.

A constant is a function symbol ¢ such that ar(c) = 0.

Definition 2.2.2 (Rewrite rule, term rewriting system). Assuming a set of variables
Var and given a signature ¥, a rewrite rule (just rule if no confusion arises) over %
is a pair of terms {l,r)y satisfying the following conditions: 1 ¢ Var, and each variable
occurring in r occurs also in l. Notation for a rewrite rule: | — 7, also u : 1 — r if
assigning explicit names to rules is desirable. The terms | and r, respectively, are the
left-hand side and right-hand side, lhs and rhs for short, of the rule | — r.

A first-order term rewriting system is a pair T' = (X, R), where 3 is a signature and
R is a set of rules over .

Definition 2.2.3 (Left-linear term rewriting system). A term rewriting system is left-
linear iff for any Il left-hand side of a rule, and for any x variable, x occurs in | at most
once.

The proof terms we present in the following, as well as the extension to infinitary
rewriting we introduce in Chapter 5, apply to left-linear term rewriting systems only.

2.2.2 Proof terms

Proof terms for a given term rewriting system 7' are terms, in a signature extending
that of T'. As described in Section 1.3.2, the signature for proof terms includes a rule
symbol for each rule in T', plus a single binary symbol to denote the concatenation, or
composition, of reductions. Formally:

Definition 2.2.4 (Signature for proof terms). Let T = (3, R) be a term rewriting
system. We define the signature for the proof terms for T as follows: XFT = ¥ U
{u/m /w:1l—->reRA|FV(I)| = n} u{-/2}, where FV(l) is the set of variables
occurring i l. The symbol -, called the dot, denotes the composition, or concatenation,
of reductions. It is written infix.

44 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS
The set of proof terms for a rewriting system 7', along with their source and target
terms, can be defined inductively as follows.

Definition 2.2.5 (Proof terms, source, target - [BKdV03], Dfn. 8.2.18). Let T = (X, R)
be a term rewriting system. We say that ¢ is a proof term for T, and that the termst
and u are the source and target terms of v, iff the conclusion

Yit>u

can be obtained inductively from the following rules:

Yr:s1>2t ... Ypisp =ty f/meX Repl
f(wlv"'vwn) : f(Sla"'78n) > f(t1>7tn)
Pr:s1>t ... Yp:isy,>t, p/nisarulesymbol p:l—n Rul
ule
P01,) tUS1, oy Sn] =Tt]
PYis>t ¢:t>u
Trans
PY-p:rs>u

In the Rule-rule, we employ the following notational convention.
Notation 2.2.6. In case p : | — r is a rule, l[s1,...,s,]| and r[s1,...,s,]| denote the

terms obtained by substituting s; in | and r, respectively, for the i-th variable of p. Here
we assume the variables to be ordered in some arbitrary but fired way depending on p.
Note that while s; occurs always exactly once in l[s1,...,sy], it may occur more than
once, or not occur at all, in r[si,...,sy], if the corresponding variable appears more
than once, or does not appear, in r.

A convention on terminology follows:

Notation 2.2.7 (Object rewriting system). When discussing about proof terms for a
rewriting system T', we refer to T as the object rewriting system. We use the expressions
“object signature”, “object term” and “object reductions” as well.

Notice the absence of rules for constants or variables in Dfn. 2.2.5. Constants are
just symbols in the object signature ¥ whose arity is 0; if a/0 € £, then a : a > a can be
obtained by just applying the Repl rule. On the other hand, the intent of this definition
of proof terms is to model only reductions involving closed terms; hence the absence of
a rule for variables. The restriction to closed terms does not hinder the study of the
concepts, particularly the equivalence of reductions, being the aim of the proof term
model; to these effects, variable occurrences in a term can be considered as constants.
Cfr. [BKdV03], Remark 8.2.21. As a consequence, the inclusion of at least one constant
in the signature is required in order to model reductions in a given term rewriting system
by using proof terms.

In the following we give several examples of proof terms. Based on these examples,
we discuss some features of the proof term model. We use these rules:

peflx) = g(@) vigle) > k(@) p:hk(z),y) - iy z)

2.2. THE PROOF TERM MODEL 45

As expected, we can denote the reduction sequence f(a) — g(a) — k(a) by the proof
term p(a) - v(a). The corresponding derivation w.r.t. Dfn. 2.2.5 is described in Fig. 2.5.

Repl —— Repl
a:a>a a:a=a

Rule Rule
u(a) : f(a) = g(a) v(a) : g(a) > k(a)
u(a) - v(a) : f(a) = k(a)

Figure 2.5: Derivation of a simple proof term

Trans

Proof terms can also denote the simultaneous contraction of steps. E.g. the term
h(g(a), f(b)) is the source of two steps, corresponding to the rules p and v respectively,
which can be contracted simultaneously, yielding h(k(a), g(b)) as result. We denote
the simultaneous contraction of steps by the decorated arrow —e—, so that we write
e.g. h(g(a), f(b)) —e> h(k(a),g(b)). Cfr. Section 3.1.1 for a discussion of simultaneous
contraction and their description in the ARS model. Simultaneous contraction can be
also composed with other reductions. Check Fig. 2.6; in this derivation, as well as in
those following, some details are omitted.

a>a b:b=b
(a) gla) = k(a) p(b) : f(b) = g(b) Repl
h(v(a), u(b)) = h(g(a), f(b)) = h(k(a),g(b pla,g(b)) = h(k(a),g(b)) = j(g(b),a
h(v(a), u(b)) - pla, g(b)) : h(g(a), f(b)) = j(g(b),a)

| —

(h(v(a), p(b)) - pla,g(b))) - (¥ (b),a) : hig(a), F(b)) = j(k(b),a)

Figure 2.6: Derivation of a proof term involving simultaneous contraction

We can say that the proof term (h(v(a), (b)) - p(a,g(b))) - j(v(b),a) denotes the
reduction h(g(a), f(b)) —> h(k(a),g(b)) — j(g(b),a) — j(k(b),a). The following figure
depicts the correspondence between (simultaneous) steps and components of the proof
term.

The example given in Fig. 2.7 shows that the steps involved in a simultaneous con-
traction can be nested.

Ta>a b:b>0
Rule

Rule
() fla) = g(a) p(b) = f(b) = g(b)
p(u(a), u(b)) = h(k(f(a)), f(b)) = j(g(b),g(a))

Figure 2.7: A proof term for simultaneous contraction of nested steps.

46 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

Finally, we remark that proof terms allow to denote contractions being performed
inside a particular subterm in a term, as the following example shows.

. cfr. Fig. 2.5 ...
pla) - via): fla) = k(a) b:b=D
h(p(a) - v(a),b) = h(f(a),b) = h(k(a),b) pla,b) : h(k(a),b) = j(b,a)
h(p(a) - v(a),b) - p(a,b) : h(f(a),b) = j(b,a)

Trans

The preceding examples show that proof terms denote not only reduction sequences,
but also different ways in which the contraction of reduction steps can be organised. We
use the term contraction activity to encompass these different forms of contraction.

We point out that different ways to organise the contraction of the same steps yield
different proof terms, implying that the proof term model allows to faithfully denote,
and distinguish between, subtly different forms of contraction activity. As an exam-
ple, let us recall the two steps in the term h(f(a),g(b)), cfr. the discussion preceding
Fig. 2.6. These steps can be performed sequentially in either order, and their simul-
taneous contraction is also possible, leading to three different ways to contract these
steps. A proof term corresponds to each option, namely: h(u(a),g(b)) - h(g(a), v (b)),
h(f(a),v(b)) - h(u(a), k(d)), and h(u(a),v(b)). Note that the source and target terms
of all these proof terms coincide. The characterisation of the equivalence of reductions
we introduce in the next section yields that these three proof terms are equivalent.

The set of proof terms is a proper subset of the set of terms over the proof term
signature. Any term over that signature not including occurrences of the concatenation
symbol, i.e. the dot, is a valid proof term, as it can be verified by a simple inductive
argument. These proof terms denote the simultaneous contraction of some set of coinitial
steps.!® Particularly, the contraction of a single step is naturally denoted by a proof
term with no occurrences of the dot, and with exactly one occurrence of a rule symbol,
e.g. u(a), p(f(a),g(b)) or hu(a),g(b)). We also remark that all the object terms are
valid proof terms, they denote the trivial reduction from a term to the same term, not
involving any reduction step.

The restrictions shaping the set of valid proof terms are related with the occurrences
of the dot, as reflected in the Trans-rule: for %) - ¢ to be a valid proof term, a coherence
condition applies: the target of 1) and the source of ¢ must coincide. E.g. the term
ula) - v(b) is not a valid proof term, because the target of p(a) and the source of v(b),
g(a) and g(b) respectively, are different terms.

2.2.3 Equivalence of reductions

Different ways to contract the same steps, regarding sequential versus simultaneous
contraction, and/or the sequential ordering in which coinitial steps are performed, yield
equivalent contraction activities; cfr. the simple example given in Section 1.1.3. As dis-
cussed in relation with the ARS model for the particular case of reduction sequences, cfr.
Section 2.1.7, the equivalence of reductions can be described in terms of the permutation

OMore precisely, the proof terms without concatenation occurrences denote the simultaneous contrac-
tion of coinitial and mutually orthogonal sets of steps. We remark that orthogonality of the subjacent
term rewriting system is not required.

2.2. THE PROOF TERM MODEL 47

of contiguous steps: two reduction sequences are considered equivalent iff each of them
is the result of a sequence of permutation of steps applied to the other one.

In [BKdV03], Section 8.3, the following equivalence relation on proof terms, which
formalises the notion of permutation equivalence for contraction activities, is presented.

Definition 2.2.8 (Permutation equivalence, cfr. [BKdV03] Dfn. 8.3.1). The permuta-
tion equivalence relation of proof terms, notation =, is the equivalence and contextual
closure of the set of valid instances of the following basic equation schemas:

(IdLeft) sre() ~ v ~

(IdRight) Y- tgt() ~

(Assoc) V(o x) ~ (¥-9)x

(StrUCt) f(,(l}lv?wm)) f(¢177¢m) ~ f(T/)l * ¢17~--,7/1m : Qbm)
(Outln) Wbty ooy thm) o~ Sty ..y Sm) - [, Um]
(InOut) Wl)~ L tm] - altrs)

where p 2 1 — 1, s; = src(Y;), t; = tgt(y;), and an instance of an equation is valid
iff both the left- and the right-hand sides in that instance are wvalid proof terms. Cfr.
Notation 2.2.6 for the meaning of l[11,...,¢¥n] and r[ih1, ..., n].

We remark that this characterisation of permutation equivalence resorts to equational
logic, applied to proof terms.

The basic equation schemas (Struct), (Outln) and (InOut) formalise the equivalence
of sequential and simultaneous contraction, for parallel steps in the case of (Struct), and
for nested steps regarding the latter two. The other equation schemas do not change the
organisation of the denoted contraction activity; they are sometimes needed in order to
enable the application of some of the other, more significant schemas. Cfr. the square
equivalence relation in the ARS model, Dfn. 2.1.20.

As a first example, let us consider the rule p : f(x) — g(z), and the proof terms
h(f(a),u(b)) - h(u(a),g(d)) and h(u(a), f(b)) - h(g(a), u(b)). These proof terms denote
the sequential contraction of the same two, coinitial and parallel, steps, in the two pos-
sible orders. Therefore, (the reduction sequences denoted by) these proof terms are
equivalent. An abridged permutation equivalence judgement, justifying the equivalence
of these proof terms by means of Dfn. 2.2.8, follows.

h(f(a), u(b)) - h(p(a), g(b))
h(f(a) - pla), p(b) - g(b))
h(p(a), u(b))
Z(ME@) g(a), f(b) - (b))

QN

9 ILL
(u(a), (b)) - h{g(a), u(b))
By applying (Struct) and then (ldLeft) and (IdRight), we obtain h(f(a), (b)) - h(u(a), g(b)) ~
h(p(a), u(b)), i.e., the equivalence of the sequential and simultaneous contraction of the
two involved steps. By means of a similar argument, using the equations in the opposite
direction, we obtain that h(u(a), u(b)) =~ h(u(a), f(b)) - h(g(a),n(b)). In turn, transi-
tivity yields the equivalence between the two sequential proof terms. We can draw some
observations from this example:

e The characterisation of the equivalence of reductions given by Dfn. 2.2.8 allows
to state not only the equivalence of the two reduction sequences denoted by the
original proof terms, but also of both of them with the simultaneous contraction
of the involved steps.

48 CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

e The role of the (IdLeft) and (IdRight) schemas to enable, or complement, the
applications of the (Struct) schema can be appreciated.

e In order to prove the equivalence of the two sequential proof terms, starting with
one of them, we “pack” the two contracted steps obtaining a proof term denoting
their simultaneous contraction, namely h(u(a), u(b)). Subsequently, we “unpack”
this simultaneous contraction to obtain the other sequential proof term. Cfr. the
description of permutation equivalence in Section 1.3.2.

Let us analyse a second example, involving nested steps. Let us consider the rule
v : g(x) — k(z), as well as the p rule used in the previous example. The proof terms
(F(1(0)) - F((@)) - uk(a)) and p(f(a)) - (9(u(a)) - g(v(a))) describe the contraction
of two nested p-steps, plus the v-step created by the contraction of the internal u-step.
The latter proof term can be considered as the result of permuting, in the former one,
the external u-step w.r.t. the two internal steps. The equivalence of these proof terms
can be justified by the following permutation equivalence judgement.

(f(u(a)) - f(v(a))) - p(k(a))

~ f(u(a)) - (f(v(a)) - p(k(a)))

~ f(u(a)) - p(v(a)) (2.1)
~ f(u(a)) - (u(g(a)) - g(v(a)))

~ (f(u(a)) - plg(a))) - g(v(a))

~ p(p(a)) - g(v(a))

~ (u(f(a)) - 9(u(a))) - g(v(a))

~ p(f(a) - (9(u(a)) - g(v(a)))

By applying (Assoc) and then (InOut), we obtain (2.1), which describes the contraction
of the inner p-step followed by the simultaneous contraction of the other two involved
steps. The application of (Outln) and then (Assoc) yields (2.2), in which the external
pu-step is permuted with the internal v-step w.r.t. the original proof term. Subsequently,
we apply again (InOut) to obtain (2.3), where the simultaneous contraction of the two
p-steps precedes the v-step. Finally, by applying again (Outln) and then (Assoc), we
obtain the desired result.

We present an example related with the phenomenon of erasure. Consider the rules
w1 and v as in the previous example, and ¢ : h(z,y) — j(y), and the reduction sequence

h(f(a),g(b)) = h(g(a), g(b)) = h(g(a), k(b)) = j(k(b)) (2.4)

where we decorate each arrow with the rule corresponding to each step. The ¢ step can
be permuted with the v step, resulting in

h(f(a),9(b)) = h(g(a), g(b)) == j(g(b)) = j(k(b))

In turn, the ¢ step can be permuted with the u step also. Applying ¢ first yields
h(f(a),g(b)) — 7(g(b)). The target of this step does not include traces of the source
of u step. The permutation of the ¢ step w.r.t. the p step implies the erasure of the

2.2. THE PROOF TERM MODEL 49

latter: after the step ¢ has been performed, there is no step p to perform. Therefore,
the complete result of the permutation is

h(f(a),g(b)) — j(g(b)) — j(k(b)) (2.5)

where the p step has been erased; it is not longer present. A description of the phe-
nomenon of erasure is included in the presentation of the ARS model in this thesis, cfr.
Section 2.1.1, particularly Fig. 2.2.

The characterisation of permutation equivalence described in this section, models
adequately the erasure of contraction activity. We verify this assertion by formalising the
just given example. The reduction sequences (2.4) and (2.5) can be denoted, respectively,
by the following proof terms:

(u(a), v(b))
(f(a)

(b)
,9(b)) - (v (b))

In this derivation, we first “pack” the p and v steps as in the first example given in this
section, by applying (Struct), (IdLeft) and (IdRight). In turn, this allows to apply (InOut),
obtaining the simultaneous contraction of the three involved steps. Subsequently, we
apply (Outln), yielding the final result.

We note that the instances of (Outln) corresponding to the p rule have the form

p(1,19) ~ p(src(yr), sre(ve)) - j(12). If we apply this equation from left to right, as
in the last derivation, then the activity denoted by 1, p(a) in the example, is erased.

f

0

a

20

CHAPTER 2. GENERIC MODELS OF REWRITING SYSTEMS

Chapter 3

Normalisation

The subject of this chapter is normalisation, that is the computing of normal forms in
a given rewriting system, particularly for non-sequential systems. The aim is to define
normalising reduction strategies, described in the introduction, for these systems, and
ways to prove that a given strategy is normalising.

The concept of needed step is closely related with normalisation. A step in a term
t is said to be needed if its contraction cannot be avoided when computing a normal
form for ¢. That is, if for any reduction sequence ¢ — u where u is a normal form, either
the redex, or at least one of its residuals, is included in the reduction.

A theory of needed redexes is developed in [HL91] for orthogonal first-order term
rewriting. For these systems, it is proved that any term not in normal form includes
at least one needed redex, and also that systematic reduction of needed redexes is
normalising.

Other approaches to normalisation can be subsumed in the concept of needed re-
dexes. Perhaps the first stated result about normalisation, given in [CF58], is that
systematic contraction of leftmost-outermost redexes is normalising. Consider the term
K 3€Q. Contracting the redex () yields exactly the same term. Therefore, continuous
contraction of (each successive copy of) €2 generates an infinite reduction sequence. On
the other hand, the normal form 3 is obtained by a reduction having just two steps if
we contract systematically leftmost-outermost redexes. Namely:

K3Q - (\y.3)Q — 3

Systematic contraction of leftmost-outermost redexes is also normalising for left-normal
rewriting systems,! as has been proved in [0’D77] and [Klo80] for the first-order and
higher-order cases respectively. It is not difficult to show that the leftmost-outermost
redex of any term (not in normal form) of any of these rewriting systems is a needed
redex.

On the other hand, it is clear that approaches to normalisation based on the concept
of needed redex do not apply to rewriting systems which admit terms, not being normal

La rewriting system is left-normal iff it is orthogonal and, moreover, for every rewrite rule t — w,
all the occurrences of function and constant symbols in the left-hand side ¢ precede (in the textual
rendering of the term) any variable occurrence. E.g. a rewriting system whose unique rule is f(a,z) — b
is left-normal, while if the rule is f(z,a) — b it is not, because the occurrence of a does not precede that
of x.

51

52 CHAPTER 3. NORMALISATION

forms, and not including any needed step. A simple example is the parallel-or first-order
term rewriting system, introduced in Section 2.1.4, cfr. page 34. We recall its rules:

or(x,tt) — tt or(tt,z) — tt

Consider the term or(or(tt,ff),or(ff,tt)). This term includes two redexes, namely
the occurrences of or(tt, ff) and or(ff, tt). The reduction sequences to normal form

or(or(tt,ff),or(ff,tt)) — or(or(tt,ff),tt) — tt
or(or(tt,ff),or(ff,tt)) — or(tt,or(ff,tt)) — tt

show that neither of the two redexes present in the original term is needed: the left
(resp. right) redex is not contracted in the first (resp. second) sequence.

This feature in the behavior of the parallel-or rewriting system can be associated
with the notions of sequentiality and strong sequentiality in term rewriting systems.
Roughly speaking, a term rewriting system is considered sequential iff given an external
and “fixed” term structure, say a context C not including redexes, a number ¢ exists such
that, for any term having the form C[ry,...,r,] where all r; are redexes, the redex r; is
needed. The number ¢ is called an index for the context C. In turn, strongly sequential
term rewriting systems satisfy a stronger condition, which implies that indexes can
be effectively computed. Moreover, it is decidable whether a first-order, orthogonal
term rewriting system is strongly sequential; cfr. e.g. [HL91]. Different formalisations
of the notion of (strongly) sequential term rewriting system have been proposed, cfr.
e.g. [HLI1, KM89, KM91, SR93]; it is clear that in any case, a rewriting system which
admits terms not being normal forms and not having needed redexes, as the parallel-or
system, is non-sequential.

The example shown for the parallel-or system seems to suggest that no sensible nor-
malising reduction strategy indicating, for a given term, just one step to be contracted,
could be built for non-sequential rewriting systems. Indeed, this argument is the moti-
vation to name such systems as non-sequential. It should be mentioned, however, that
any almost orthogonal first-order term rewriting system, such as the parallel-or exam-
ple, does admit a normalising one-redex strategy, cfr. [Ken89] and [AM96]. There is
a price to pay though, namely that such a strategy has to perform lookahead (in the
form of cycle detection within terms of a given size).? In this work, we are interested in
the definition of strategies avoiding such lookahead, as well as the need of keeping the
history of the previous steps in a reduction sequence. The only information available to
a strategy should be the structure and the set of steps of the term it analyses.

Some of the results about normalisation for non-sequential systems found in the
literature we are aware of, agree in the convenience of considering multistep strategies.
Recall from Section 1.1.3 that the “indication” given by a multistep strategy for a given
term is a set of its redexes, whose contraction is assumed to be performed simultaneously.

One of these results is given in [vO99], where normalisation is proved for any
outermost-fair multistep reduction strategy. This result, which extends a previous one

2The existence of such sequential and normalising reduction strategies for e.g. the parallel-or rewriting
system leads to the following comment included in [Ken89], page 32: “In view of this result, it is not
clear that the name ‘non-sequential’ is appropriate for such systems.” Nevertheless, we use the name
“non-sequential” with the meaning given above, implying that we consider the parallel-or rewriting
system, and also PPC as we will describe shortly, as non-sequential systems.

93

appeared in [vR97], applies to a large family of higher-order rewriting systems, includ-
ing non-sequential ones, and described in the generic formalism HRS, cfr. [Nip91]. The
proof is strongly based on two relations defined on the sets of positions of the terms
being rewritten. A reduction strategy is said outermost-fair iff any outermost step is
eventually selected. We observe that the leftmost-outermost reduction strategy for the
A-calculus is not outermost fair. Consider the term

Q (A\zr.x)3)

The leftmost-outermost strategy, given this term, would select the 2 redex, and therefore
cycle indefinitely without considering the (Az.z)3 redex.

On the other hand, systematic contraction of necessary sets of steps is proven nor-
malising in [SR93] for first-order term rewriting. This proof is based on the concepts of
residual and nesting between steps. The condition of being a necessary set is a general-
isation, to sets of redexes, of the concept of needed step. A set of redexes in a term ¢ is
necessary if for any reduction ¢ — u where v is a normal form, at least one redex in
the set, or one of its residuals, is contracted. Of course, the set of all redexes in a term
is indeed necessary; the point is to detect proper subsets being still necessary.

The motivation for the study of normalisation to be presented here is to obtain a
systematic way to compute normal forms for the Pure Pattern Calculus, PPC in the rest
of this chapter.

As mentioned in the introduction, PPC is a pattern calculus allowing any term to
be a pattern, and also admitting dynamic pattern formation. The error mechanism of
PPC makes it non-sequential. The phenomenon can be already observed in a simpler
pattern calculus, allowing only data structures to be patterns. Let us establish that the
error mechanism of this calculus consists in yielding the distinguished value f, which is a
normal form. E.g., the contraction of the term (Aax.z)(b c) produces the value f, that is
(Aaz.x)(bc) — f, because of the mismatch between the pattern ax and the argument
bec. Let p be a ternary data constructor representing a person including her/his name,
gender and marital status. For example, p jms represents a person name j (for, say,
“Jack”), who is male and single. A function such as A\p zms.z returns the name of any
person being male and single, triggering the error mechanism if any other value is given
to it. Consider the person a (for “Alice”) being female and divorced, and the following
term

(pms.a)(p (Ta) (I£) (12))

In this case, the contraction of (If) yields the argument p (/a)f (Id), which is to be
matched with the pattern pxms. There is a partial mismatch, between the constants m
and f in the pattern and argument respectively. In PPC, any partial mismatch suffices
to trigger the error mechanism. Observe that contraction of (Id) alone also suffices to
yield a partial mismatch, between the constants s and d in this case. This observation
leads to the following reduction sequences:

(Apzms.z)(p(la) (If) (Id))
(prms.a)(p (Ta) (77) (1a))

The first reduction sequence does not contract Id, the second one does not contract
If, and neither contract Ia. Therefore the original term does not include any needed

(Apzms.z)(p(la)f (Id))
(Apzms.z)(p ([a) (If)d)

— —
— —

f
f

54 CHAPTER 3. NORMALISATION

redexes. Moreover, notice that the set {Id, [f} is necessary: the contraction of at least
one of them is the requisite to trigger the error mechanism.

Contributions

We present a reduction strategy for PPC, which selects necessary sets of redexes. It is
based on the leftmost-outermost strategy for the A-calculus. Indeed, it coincides with
leftmost-outermost if PPC is restricted to the A-calculus; i.e., if only the translation to
PPC of terms in the A-calculus are considered. Therefore, it is not outermost-fair.

The strategy focuses in the leftmost-outermost prestep, i.e. subterm of the form
(Ap.s)u, in a term. If this prestep is a step, then it is the only step selected. Otherwise,
as in (A\pxms.z) (p(la)([f)([d)), an analysis yields a set of steps inside the pattern
and/or the argument which could provoke the transformation of the outermost prestep
into a step. In this way, we obtain a judicious strategy for PPC, not being unnecessarily
liberal in the sets of redexes it selects.

The other contribution of this chapter is an abstract normalisation proof, described
in the ARS model. The proof states that systematic contraction of necessary and non-
gripping sets of redexes is normalising, for ARS verifying a number of axioms. The non-
gripping condition is, as the name suggests, defined in terms of the gripping relation,
and it is the reason for the inclusion of that relation in the present thesis.

The normalisation proof was first developed for PPC. This is the version described in
[BKLR12]. In spite of being described for one particular rewriting system, that proof
was based in properties about steps, multisteps, residuals, embedding and reduction
sequences, which could be described in an abstract way. This fact made it possible
to translate the structure of the PPC proof into the abstract setting given by the ARS
model. This is the proof we describe in the present chapter.

Due to the features of the defined strategy, and also to the goal of obtaining an
abstract result, we use [SR93] as the starting point for the development of our proof.

All the (fundamental, embedding and gripping) axioms of the ARS model described
in Section 2.1 are required in our abstract normalisation proof, with the exception of
Stability. Moreover, a new axiom, not included in the description of the ARS model in
[Mel96], is required as well.

The exclusion of Stability is relevant, since this axiom do not hold for non-sequential
systems. On the other hand, the novel axiom allows to complete the analysis of the
preservation of embedding in residuals, i.e. the analysis of the relative embeddings of b
and ¢ compared to that of b’ and ¢/, where b[a]d’ and c¢[a]¢’. The new axiom complements
the information conveyed by Linearity, Context-Freeness, and Enclave—-Embedding.

Plan of the chapter

The material of the first part of this chapter, Sections 3.1 to 3.3, is of an abstract nature,
describing the abstract normalisation proof developed in the ARS model. In Section 3.1
we introduce the notions of multistep and multireduction, formalising them in the ARS
model. We also introduce some relations on multisteps and multireductions, and a novel
axiom. The material in this section complements the general description of the ARS
model given in Section 2.1. In Section 3.2 we define the multistep reduction strategies,
and the necessary and non-gripping properties, also in the framework given by the ARS
model. Section 3.3 is devoted to the development of the abstract normalisation proof,
including all the needed auxiliary results; cfr. Thm. 3.3.14.

3.1. ADDITIONAL ELEMENTS OF THE ARS MODEL 95

Sections 3.4 and 3.5 are focused on PPC. In Section 3.4, we present this calculus,
discuss its non-sequential nature, model it in the ARS model, and show that the resulting
ARS verifies all the axioms required by our abstract normalisation result. Section 3.5 is
devoted to the reduction strategy we propose for PPC: we present this strategy, discuss
about its features, and show that the multisteps it selects are necessary and non-gripping.
Thus, normalisation of the strategy can be obtained as a consequence of our abstract
normalisation result; cfr. Thm. 3.5.26.

3.1 Additional elements of the ARS model

The abstract normalisation proof we developed, requires the introduction of some no-
tions pertaining to the ARS model, which are not included in the description given in
Section 2.1. Several of these notions, e.g. those of multistep and multireduction, are
present in [Mel96], while others, as the free from and dominated by relations, do not
appear there. This section is devoted to describe these elements.

3.1.1 Multisteps

Simultaneous contraction of several redexes can be adequately described in the ARS
model.

Definition 3.1.1 (Multistep). A multistep is either an empty set indexed by an object
t, notation ;, or a set of coinitial steps, i.e. a non-empty subset of RO(t) for a certain
object t. We denote such sets by the letters A, A', B, C, D, etc.; cfr. Dfn. 2.1.6. We

write t 5> u to indicate that src(A) =t and tgt(A) = u. We use M to denote the set
of multisteps of an ARS.

The definition of the residuals of a set of coinitial steps, after a step (cfr. Dfn. 2.1.9)
or after a reduction sequences (cfr. Dfn. 2.1.13), apply immediately to multisteps. The
extension to empty multisteps is straightforward: eco)[a] = Digr(a)r Deres)[0] =
Digr(s)- Notice that for any a,b steps, b[a] is a multistep; the same happens with B[a]
for any multistep B.

A precise definition of the simultaneous contraction of a multistep can be given by
resorting to complete developments, cfr. Dfn. 2.1.14, for ARS verifying the initial axioms,
FD and SO. As noted in Section 2.1.4, the axioms FD and SO imply that all the complete
developments of a multistep end in the same target term, and induce the same residual
relation. Therefore, some notions defined on steps, like source, target and residuals, can
be extended to multisteps.

Definition 3.1.2 (Source, target, residuals for multisteps). Let A € RO(t) be a multi-
step, and b a step coinitial with A. If A = &y, then we define src(Jy) := tgt(Fy) =t
and b[AJY iff b’ = b. Otherwise, we define src(A) := t, tgt(A) := tgt(d), and b[AJY iff
b[6]V" where § is an arbitrary complete development of A; cfr. Dfn. 2.1.183.

Notation 3.1.3. We use the notations b[.A] to denote {b' / b[A]b'}, B[A]JY iff b[.AJb
for some b e B, and B[A] for {V/ | B[A]V'}. Cfr. Notation 2.1.3 and Dfn. 2.1.9.

Notice that the residual relation is closed on multisteps: the residual of a multistep
after another is always a multistep. This is not the case for sets of pairwise disjoint steps

o6 CHAPTER 3. NORMALISATION

in higher-order term rewriting systems. Recall the A-calculus example used to introduce
gripping in Section 1.3.1

a
by by
— —~
(MAx. Dz)(I3) % D(I3)
by
by

considering the usual nesting on steps. If we define A := {a} and B := {b1, b2}, we get
B[A] = {V),b5}. The residual of a pairwise disjoint set after another (trivially) pairwise
disjoint set, is not in turn disjoint.

For first-order rewriting, residuals are closed for pairwise disjoint sets of steps. This
fact allows a normalisation proof such as the one presented in [SR93], restricted to the
first-order case, to be much simpler than the one, more general, to be presented in
Section 3.3.

3.1.2 Multireductions

Our normalisation result involves sequences of contractions from a given term to a
normal form, formed not by individual steps, but by multisteps. This fact requires a
precise meaning to be given to such sequences. Fortunately, the concept of reduction
sequence can be applied, in a natural way, to multisteps as well as to individual steps.

Definition 3.1.4 (Multireduction). A multireduction sequence, or just multire-
duction, is either nil;, an empty multireduction indexed by the object t, or a sequence
of multisteps Ay;...; Ap;.... Weuse A, T', II, ¥ to denote multireductions and Alk|
and Ali..j] with the same meanings given for reduction sequences. Source and target of
multireductions are defined analogously as for reduction sequences; cfr. Dfn. 2.1.10. We

A
will write t —e» u to denote that src(A) =t and tgt(A) = u. We use MRS to denote
the set of multireductions of an ARS.

Definition 3.1.5 (Length of a multireduction). The length of a multireduction A,
notation |A|, is the number of multisteps it includes.

Definition 3.1.6 (Residuals after a multireduction). The residual relation is extended
from multisteps to multireductions, exactly as we have extended it from steps to reduction
sequences, cfr. Dfn. 2.1.13. We define b[nil.b for all b € RO(t), and b[A; AJY iff
b[AJY" and b"[A]Y for some b". We write b[A] for {b' / b[A]b'}, B[A]Y iff b[AY for
some b e B, and B[A] for {t/ | B[A]b'}.

A multireduction is thus a sequence whose elements are, in turn, sets of steps. Notice
that the length of a multireduction is is not connected to the sizes of the multisteps which
are its elements. An element of a multireduction can be an empty multistep, so that the
only corresponding complete development is the empty reduction sequence indexed by
its source. We notice that a multireduction consisting of one or more occurrences of ¢,
and nily, are different multireductions. In particular, |f;; | = 2 while |nils| = 0.

Definition 3.1.7 (Trivial multireduction). We say that a multireduction is trivial iff
all its elements are empty multisteps. Empty multireductions are trivial.

3.1. ADDITIONAL ELEMENTS OF THE ARS MODEL o7

Let A, B be two multisteps. Recall that B[A] is defined as {0’ / b[d]b’ where b €
B and § I A}, cfr. Notation 3.1.3. Therefore, all the elements in B[.A] are steps whose
source object is tgt(B), cfr. Din. 3.1.1. Hence, B[A] is a set of coinitial steps, i.e., a
multistep. Put in other words, the residual relation is closed on M: the residuals of
a multistep after a multistep form, in turn, a multistep. Therefore, we can consider a
residual function on multisteps, i.e. [-] : M x M — M. This distinguishing feature of
multisteps leads to the following definition.

Definition 3.1.8 (Residual of a multireduction after a multistep). We define the resid-
ual of a multireduction after a multistep, for which we will (ab)use the nota-
tion [-], as the following partial function MRS x M — MRS: if src(B) = t then
nily[B] := nilyyg); if sre(B) = src(A) then (A; A)[B] := A[B]; (A[B[A]]). Observe
that we are defining a function, in spite of name “residual” and the notation (-], which
correspond in general to ternary relations. Notice that |A[B]| = |A|.

The independence of order of contraction of steps, formalised in Prop. 2.1.16, extends
to multisteps [Mel96, Lem. 2.24] and to multireductions. The former is a consequence
of Prop. 2.1.16 and the latter then follows by induction on A.

Proposition 3.1.9. Consider an ARS enjoying the group of initial axioms, FD and SO;
cfr. Sections 2.1.3 and 2.1.4.

1. Let A,B < RO(t). The target and residual relation of A;B[A] and B; A[B]
coincide.

2. Let A be a multireduction, and B € RO(t). The target and residual relation of
A; B[A] and B; A[B] coincide.

Graphically:
t — S t —x
B% %B[[.A]] B% %B[[A]]
U —=>7v U ————o—>
A[B] A[B]

3.1.3 Some relations on multisteps and multireductions

Two notions related with embedding and involving multisteps are crucial to define the
main elements of the abstract normalisation proof. Namely, a step a (resp. a multistep
A) is free from a multistep B iff a is not (resp. no step in A is) embedded by some
element of B; while a (resp. A) is dominated by B iff a is (resp. all the steps in A
are) embedded by some element of B. In turn, a multireduction A is free from B, if
every element of A is free from the respective residual of B. Formally:

Definition 3.1.10 (Free from). Let a, A, A be a step, multistep and multireduction, all
cownitial with B. We say that

e a is free from B, written a 21 B, iff a 2 b for all be B.
o A is free from B, written A G B, iff a 1 B for all a € A.

e A is free from B, written A F B, iff either A = nilgp or A= A A, ADH B
and A" 51 B[A].

o8 CHAPTER 3. NORMALISATION

Definition 3.1.11 (Dominated by). Let a, A be a step and a multistep, both coinitial
with B. We say that

e a is dominated by B, written a > B, iff a¢ B and3be B / a > b.
o A is dominated by B, written A> B, iff a> B for all a € A.

Notice that being free from and dominated by B are complementary for a single
(coinitial) step a, unless a € B, i.e. exactly one of a € B, a 31 B and a > B holds. This
need not be the case for a multistep A: even if An B = ¢, it could well be the case that
neither A 3 B nor A > B hold, if some elements of A are free from B while others are
dominated by it. However, any A verifying A n B = ¢& can be split into a free subset
AP and a dominated subset AP w.r.t. B, ie. A= A" v AP, AF 41 B, and AP > B.

Consider the following multireduction in the A-calculus:

d e

(5 N 13) (I(_ 12
(Az.z(15))(I3) (I()

a b c

dl
1 D 15 D13) (14) 9 (13) 15)4
AW N N~ — 7
a/ b/ C/ b// a//

In this case, we have {c,d,e} 5 {a,b}, {a,b} F1 {c, e}, {a,b,c} > {d,e}. Moreover, if we
take the displayed multireduction, i.e. A = {e};{d’, '}, we have A F {a,b}, because
{e} $ {a,b} and {d', '} {d,V'}.

If we define A = {b,c,e} and B = {a,d}, we observe that neither A $1 B nor A> B
hold. The split of A w.r.t. B gives A" = {c, e} and AP = {b}.

Observe also that being free from a multistep extends to parts of a multireduction,
namely:

Lemma 3.1.12. Assume Ay1;Ag; As 51 B. Then Ag 1 B[Aq].

Proof. We proceed by induction on {|A1], |Az|). Let A be Ay;Ag; As.

The base case is when A; = Ay = nilg). In this case B[A;] = B. Then the
definition of $1 suffices to conclude.

Suppose that Ay = nilgcs) and Ay = A; AL, In this case, A = A;Ay; As, so
that A $ B implies A 33 B and A); Az = nilyyq); A5 Az 1 B[A]. We observe
that (|nilegayl, [A5]) < (JA1],[Az]), therefore we can apply IH, obtaining that A} $
B[A][niliga)] = B[A]. Recalling that A 3 B, we get Ay 3 B = B[Aq].

If Ay = A; A}, then A 4 B implies A 51 B and Al;Ag; Az 51 B[A]. Observe
(] 180l < (A, |As]y, then TH yields Ay b BLA][AL] = B[AL]. 0

Given a multireduction and some coinitial multistep, a further property the abstract
normalisation proof is interested in is whether the multistep is at least partially con-
tracted along the multireduction, or if it is otherwise completely ignored. We will say
that a multistep is used in a multireduction, iff at least one residual of the former is
included (i.e. contracted) in the latter. Formally:

Definition 3.1.13 (Uses). Let b be a step, A and B two multisteps, and A a multire-
duction, such that all of them are coinitial.

3.2. MULTISTEP STRATEGIES AND REQUIRED PROPERTIES 29

o Ausesbiffbe A;
o A uses b iff Alk] n (b]A[Ll..k — 1]])) # & for at least one k; and

o A (resp. A) uses B iff it uses at least one b e B.

3.1.4 A new axiom

The abstract normalisation proof requires the concerned ARS to enjoy a property, related
to the preservation of embedding in residuals, which is not implied by the fundamental
and normalisation axioms given in Section 2.1, nor included as an additional axiom in
[Mel96], since it is not required for any result proven there. We encode this property as
a new axiom.

To motivate it, we illustrate an im-
portant property that we shall need to
prove for our normalisation result. We
assume three coinitial redexes a, b, ¢ such
that b < ¢ and a # b, and c[a] for some a
¢’ (cfr. shaded triangles in the figure). We
would like to deduce the existence of V' s.t.
(i) b[a]d’ and (ii) ¥' < ¢. For that we pro-
ceed to consider all possible embedding re-
lations between a, on the one hand, and b
and ¢, on the other (see adjacent figure):

e a € c. This is represented with the two occurrences of a subscripted with 1. We
conclude (i) and (ii) using Linearity and Context-Freeness.

o a<c.

— b < a (hence b < a < ¢). This is represented with the occurrence of a
subscripted with 2. We conclude (i) and (ii) using Linearity and Enclave-
Embedding.

— b & a. This is represented with the occurrence of a subscripted with 3.%In
this case, the existence of a step b’ verifying the required conditions cannot
be concluded from the fundamental and normalisation axioms. Hence the
need of an additional axiom, to enforce (i) and (ii) in this situation.

The statement of the new axiom follows.
Pivot a < ¢ b < ¢ b £ a and cfa]d =
'/ bla]b’ and V' < (.

3.2 Multistep strategies and required properties

The notion of reduction strategy can be described in a simple way in the ARS model.
In turn, the notions of step used in a (multi)reduction, and gripping, allow to express
the conditions imposed to a reduction strategy in the abstract normalisation proof.

3Notice that in the general case, from a < ¢ and b < ¢ one cannot imply b < a or a < b. Such a
condition is not implied by the ARS model. In the figure a3 is nesting b just for graphical simplicity.

60 CHAPTER 3. NORMALISATION

Definition 3.2.1 (Reduction strategy). A (multistep) reduction strategy for an
ARS A is any function S : (O\NF) — P(R) such that S(t) # & and S(t) < RO(t) for
all t; here NF stands for the set of normal forms of U; cfr. Dfn. 2.1.8. A single-step
reduction strategy is a reduction strategy S s.t. S(t) is a singleton for every t in the
domain of S.

A multistep reduction strategy determines, for each object, a multireduction: if t €
NF, then the associated multireduction is nil;, otherwise it is S(to); S(¢1);...;S(tn); . ..
where to := t and t,41 := tgt(S(t,)). The multireduction sequence determined by S
is in fact a reduction sequence. These multireductions allow to formally characterise a
normalising reduction strategy; cfr. Section 1.1.3.

Definition 3.2.2 (Normalising reduction strategy). A reduction strategy is normal-
ising iff for any object t, the determined multireduction ends in a normal form for all
normalising objects.

We formalise neededness, and the related notion of necessary set, in the ARS model.

Definition 3.2.3 (Needed, necessary). We say that a step a is needed iff for every
A
multireduction src(a) —e» u such that u is a normal form, A uses a. A multistep A is

A
necessary, iff for every multireduction src(A) —e» u such that u is a normal form, A
uses A.

The notion of necessary set generalises that of needed redex; notice that any singleton
whose only element is a needed redex is, indeed, a necessary set. As mentioned in the
introduction, there is an important difference: while not all terms admit a needed redex,
any term admits at least one necessary set, i.e. the set of all its redexes.

The other condition to be imposed on reduction strategies is related with gripping.

Definition 3.2.4 (Gripping relation on multisteps, non-gripping). We extend the grip-
ping relation to multisteps as follows:

o B grips a, written a € B, iff a €« b for some be B.

o B grips A, written A < B, iff a < B for at least one a € A.
We declare B to be non-gripping iff for any finite multireduction W such that src(V) =
src(B), RO(tgt(¥)) « B[¥]. Notice that B being non-gripping implies that all its resid-
uals are.

3.3 Necessary normalisation for ARS

We prove in this section that, for any ARS verifying all the fundamental axioms, all the
normalisation axioms except for stability, the gripping axioms, and also the new Pivot
introduced in Section 3.1.4, the systematic contraction of necessary and non-gripping
multisteps is normalising.

The general structure of this proof has been mainly inspired by the normalisa-
tion proof for first-order term rewriting systems, given in [SR93]. Assume that S is

3.3. NECESSARY NORMALISATION FOR ARS 61

a reduction strategy selecting always neces- A
0

sary and non-gripping multisteps. Consider to U
A

an initial multireduction g ue NF, and S(to)i>
t1 the target term of the multistep selected by t A1 u

. S .
S for tg, i.e. tg —%92 t1. We construct a multi-

A
reduction ¢; —e» u, such that the multireduc- tn Ap u
tion A is strictly smaller than the original one s)%; H
w.r.t. a convenient well-founded ordering <. ! Ant1
U U

A
We have thus transformed the original £, S

S(to)

in tg = t1 —Aelee u. Given the well-foundedness
of the given ordering on multireductions, an it-
eration over this procedure allows to conclude
that repeated contraction of the multisteps selected by the strategy S yields the normal
form u. This is depicted in Fig. 3.1 where A is strictly smaller than Ay for all £ and
A, 41 is a trivial multireduction. The original multireduction Ay is first transformed into
S(to); A1, then successively into S(tg);. .. ; S(tx); Agy1; and finally into S(tg);. .. ; S(tn).

Figure 3.1: Proof idea

Several notions contribute to this proof. We define a measure inspired from [SR93,
v099], based on the depths of the multisteps composing a multireduction.

Definition 3.3.1. Let A = A[l..n] be a multireduction. We define x(A) as the n-
tuple (v(A[n]),...,v(A[1])); the lezicographic order is used to compare (measures of)
multireductions.

Notice that the (well-founded) ordering defined allows only to compare multireduc-
tions having the same length; the minimal elements are the n-tuples of the form <0, ..., 0)
which corresponds exactly to the trivial multireductions. Another observation is that
whenever x(A) < x(I') then for all multireductions II, ¥ verifying tgt(II) = src(A),
tgt(¥) = src(l'), and |II| = |V, x(I;A) < x(¥;T') holds. As remarked in [vO99],
the measure used in [SR93|, based on sizes of multisteps rather than depths, is not
well-suited for a higher-order setting.

To build Ay 1, we observe that the fact that S(¢x) is a necessary set, implies that it
is used along Ay at least once. Therefore, we can consider the last element of Ay, say
A, including (some residual of) an element of S(t;). We build the diagram shown in
Fig. 3.2, where A, = A, A; A" A S(t)[A'] # &, and A” does not use S(t;)[A; AJ.

N A A"
tr U

S(tr) S(tr)[A]
A'[S(E)]

tht1

Figure 3.2: Construction of Ay

Let us call A7 = A n S(tg)[A'] # &, and Ay = (A\A1)[A1]. Then we can refine the
previous diagram, obtaining Fig. 3.3, where B = S(t;)[A’; A1]. Now Ag; A” does not
use B. Notice that A; # ¢ implies v(As) < v(A). Observe also that A; € S(t;)[A'],
implying A [S(tx) [A']] = &

62 CHAPTER 3. NORMALISATION

A Ay As A"
tr S U

S(tr) S(t)[A’] B

~

N) SN T=2

Figure 3.3: Construction of Ay, 1, refined

1—\/
It suffices to obtain some multireduction I such that s’ —e» u and x(I") < x(Ag; A”) <
X(A; A”"); taking the elements of a multireduction in reversed order in the measure
allows to conclude. We obtain the final diagram shown in Fig. 3.4.

A Ar Ao A"
tr S U

S(tk) S(tr)[A'] B

t
ML NSl AIA=0 I “

Figure 3.4: Construction of Ay, 1, finished

The construction of I is the most demanding part of the proof. It is based on the
following observations:

e Each multistep comprising Ag; A” can be split in a free and a dominated part
w.r.t. B, as remarked in Section 3.1.3.

e Given that S(t) is non-gripping, implying that also B is non-gripping, the depth
of the free part of each multistep can be proven greater or equal than that of
its residual after (the corresponding residual of) B. This is the reason for the
introduction of gripping.

e Given that B is not used, and that v € NF implies B[Ay; A"] = &, we prove that
the dominated part of each multistep can be simply ignored when defining I".

We describe the details in the remainder of this section.

3.3.1 Relevance of gripping

As described in the introduction, one of the effects of having a « b is to change the
number of residuals of some step ¢ after a. This implies an unwanted change on the
depth of certain multisteps. We recall the term involved in the examples on gripping
given in the introduction

7

A ~ b —
(M. Dz)(_ I3) — (Azvzx)(I3)
b c c

Let us call A = {a,c} and B = {b}. Then we have A :1 B and A « B. Observe
that v(A[B]) = 3 > 2 = v(A). This increase in the depth of the residual multistep

3.3. NECESSARY NORMALISATION FOR ARS 63

could cause the measure of the multireduction A1, described in the beginning of this
chapter, to be greater than that of Ay, thus invalidating the inductive argument of the
normalisation proof. The role of gripping in the proof is to guarantee the following
property: A $1 B and A « B imply v(A[B]) = v(A). Cfr. Lem. 3.3.4.

Recall that for a set of steps to be non-gripping, any residual of that set of steps
must be non-gripping as well, cfr. Dfn. 3.2.4. This requirement in the definition of a
non-gripping set is needed to extend Lem. 3.3.4 to multireductions, cfr. Lem. 3.3.5. The
proof of these properties follows.

We remark that the requirement about residuals in the definition of a non-gripping
set is required also to extend the postponement property, again from multisteps to mul-
tireductions, cfr. Lem. 3.3.8, and later in Lem. 3.3.10.

Lemma 3.3.2. Consider A, B such that A §1 B, A « B, and de€ A. Then A[d] 4 B[d]
and Ald] « B[d].

Proof. If B = &, then the result holds trivially since also B[d] = &. So assume b € B.
Next, we may assume some a € A s.t. a # d. Otherwise A[d] = & and the result also
holds trivially. For the same reason, a[d]a’ for some a’. Similarly, we may assume there
exists b’ s.t. b[d]d’.

The hypotheses implies the following: b € a, b £ d, a « b, and d & b.

Observe b’ = a’ would contradict Ancestor Uniqueness. On the other hand, b’ < d
would imply b < a v (d « b Ad < a) by Grip-Instantiation, while ¢’ « b would
imply a « b v a « d € b by Grip—Density. Therefore, either case would contradict the
hypotheses. Thus we conclude. O

Lemma 3.3.3. Consider a,B such that a 51 B. Then a[B] is a singleton.

Proof. By induction on v(B). If B = (J, then we conclude by observing that a[] =
{a}. Otherwise assume some b € B. Then a $ B implies b € a, thus Linearity yields
a[b] = {a’}. Let us show that a’ $ B[b]. Take b, such that by[b]d} for some by € B.
Assume b, < a’. Then b € a and Context-Freeness imply by < a thus contradicting
a 3 B. On the other hand, b, = a’ would contradict Ancestor Uniqueness. Consequently,
a’ 1 B[b]. The IH can then be applied to obtain that o'[B[b]] is a singleton. We
conclude by observing that a[B] = a[[b][B[b]] = «'[B[b]]- O

Lemma 3.3.4. Let A, B < RO(t) such that A 51 B and A « B. Then v(A) = v(A[B]).

Proof. By induction on v(A). If A = ¢F then A[B] = &, thus we immediately conclude.
Otherwise we show v(A) < v(A[B]) and v(A[B]) < v(A).

Consider ¢ = d;¢" a complete development of A verifying |6| = v(.A). Observe that
8" I+ A[d] and moreover v(A[d]) = |0'|, since a development of A[d] longer than ¢’
would imply v(A) > |§]. Therefore, v(A) = v(A[d]) + 1. Lem. 3.3.3 implies d[B] =
{d'} for some step d’. Furthermore, Prop. 3.1.9:(1) implies B;d[B] = d;B[d], then
A[B][A[B]] = A[d][B[d]]. Cfr. the following figure:

" d Ald]

,3% fsm

d[B]={d'} ALBI[4[B]] = Ald][B[d]]

64 CHAPTER 3. NORMALISATION

o We verify v(A) < v(A[B]). Observe that for any complete development ~' of
A[d][B[d]], ;v I+ A[B]. Moreover, Lem. 3.3.2 implies A[d] 3 B[d] and
A[d] « B[d]. Then the IH can be applied to A[d] and B[d], yielding v(A[d]) =
v(A[d][B[d]]). Therefore v(A) = v(A[d]) + 1 = v(A[d][B[d]]) + 1 < v(A[B]).

o We verify v(A[B]) < v(A). Consider v = d’;9 a complete development of
A[B] such that |y| = v(A[B]). Let d € A such that d[B]d’. Lem. 3.3.3 im-
plies d[B] = {d'}, implying v I+ A[B][d[B]] = A[d][B[d]]. Observe that
v(A[d][B[d]]) = |¥|; the contrary would contradict v(A[B]) = |y|. Hence
v(A[B]) = v(A[d][B[d]]) +1. An application of the IH similar to that performed
earlier yields v(A[d]) = v(A[d][B[d]]). Moreover, §' I+ A[d] implies d;§" I+ A.
Therefore, v(A[B]) = v(A[d]) + 1 < v(A).

0

Lem. 3.3.4 can be extended to multireductions.

Lemma 3.3.5. Let A be a multireduction and B a multistep, such that src(A) = src(B),
B is non-gripping and A b B. Then x(A) = x(A[B]).

Proof. By induction on [A]. If A = nilgg), then A[B] = nily,ys), so we conclude
immediately. Assume, therefore, A = A; A’ so that A[B] = A[B]; A’[B[.A]]. Observe
A D B, A &« B, A’ 51 B[A] and B[A] is non-gripping. Then Lem. 3.3.4 implies
v(A) = v(A[B]), and the IH on A’ yields x(A’) = x(A'[B[A]]). Thus we conclude. [J

3.3.2 Postponement of dominated multisteps

The next ingredient in the normalisation proof is the ability to postpone a dominated
multistep after a free multistep or multireduction. The situation is described in Fig-

ure 3.5.
\@B\ B[[/A}l/ \@B\ W
VY e t Avs T
C>B$ o C[A] > B[A] C>B$ o C[A] > B[A]
Y Y

§—o—>1u s u

A 1 B[C] A 1 B[C]

/Zzﬁ A'=A[C] /ﬁ A=A[C]
Figure 3.5: Postponement of dominated multisteps: the one step and multiple step case

In the left-hand side diagram, we show the transformation of C; A’ into A;C[A]:
a dominated (by B) multistep is postponed after a free (from B[C]) one, yielding a
multireduction in which the free multistep precedes the dominated one. The right-
hand side diagram shows that a dominated multistep can be postponed after a free
multireduction as well.

We observe that the only role of the added Pivot axiom in the normalisation proof,
is to verify that C[.A] > B[.A] in the left-hand side diagram.

The corresponding proofs follow.

3.3. NECESSARY NORMALISATION FOR ARS 65

Lemma 3.3.6. Let A, B,C € RO(t) such that AnB = & and C>>B. Then C[A]>B[A].

Proof. We proceed by induction on v(A). If A = &, then C[A] = C and B[A] = B, so
that we conclude immediately. Otherwise, consider a € A and ¢ € C[a] (if C[a] = &,
then C[A] = & and C[A] > B[.A] holds trivially). Let ¢ € C such that ¢’ € c[a]. Note
that a # ¢ for otherwise c[a] = &. We will verify the existence of some b’ € B[a] such
that o < ¢, so that C[a] > B[a]. Let b € B be such that b < ¢, as follows from the
hypothesis. Observe that a = b or a = ¢ would contradict, respectively, the hypotheses
of this lemma or our observation above on the existence of ¢/. Therefore a # b and
a # c¢. We consider two cases.

1. Case a € c. Then b < ¢ implies a <« b, so that Linearity implies b[a] = {¢'}, and
then Context-Freeness applies to obtain b’ < .

2. Case a < c. If b < a,ie b < a < c then Linearity implies b[a] = {b'} (since
a 4« b), and therefore Enclave-Embedding applies to obtain ' < ¢/. Otherwise, we
have a < ¢, b < ¢ and b € a, then Pivot applies to obtain b[a]t’ and b’ < ¢’ for
some b'.

Hence, we have verified C|a] > B[a]. Moreover, Ancestor Uniqueness yields Afa] n
B[a] = &&. Thus we can apply the IH, obtaining C[a][A]a]] > B[a][A[a]] . Thus we
conclude. O

Lemma 3.3.7 (Postponement of dominated multisteps — One step case). Let B € RO(t)

and t 5> s 4, u, such that C> B, A" 5 B[C] and B is non-gripping. Then there exists
A<SRO(t) s.t. A =A|C], A+$ B and v(A) = v(A’) (cfr. Fig. 3.5 — left)

Proof. If A" = (J, then taking A = ; suffices to conclude.
If A" # s, then we proceed by induction on v(C). If C = ¢, i.e. s = t, then we
conclude by taking A’ := A; observe that in this case B[C] = B.

Consider ¢ € C and t - t U Observing that ¢ ¢ B (since C > B), so that
{c}nB = &, we can apply Lem. 3.3.6 to obtain C[c[>B[c]. Moreover B[C] = B[][C][]],
and B non-gripping implies B[c| non-gripping. Therefore, the IH on C[c] yields the
existence of some A” € RO(tp) such that A" = A"[C[c]], A" $ B[c] and v(A") = v(A').
Hence, to conclude the proof, it suffices to verify the existence of some A < RO(t)
verifying (1) A" = A[c], (2) A4 B and (3) v(A) = v(A"). Observe that A" # ¢, and
v(A") = v(A’) imply A" # &y, .

1. Let by € B such that by < ¢, so that Linearity implies bo[c] = {bj}. Let a” € A”.
Then a” being created by ¢ would imply b < a” by Enclave—Creation, contradicting
A" 4 B[c]. Therefore, aJc]a” for some a. Let A := {a / Ja”" € A”. a[c]a"}.
Observe that A" < A[c] and let us show that also Afc] < A”.

Let ag € A[c], a € A such that a[c]ag, a” € A” such that a[c]a”. Observe that ¢ <
a would imply by < ¢ < a, and then bfj < a” by Enclave-Embedding, contradicting
A" 41 B[c]. Moreover, ¢ = a would contradict ac]a”, cfr. Self Reduction. Therefore
¢ € a, so that Linearity applies yielding that a[c] is a singleton, hence ag = a” € A”.
Consequently, Afc] < A”, and then Afc] = A”.

66 CHAPTER 3. NORMALISATION

2. Let a € A and be B. If b is minimal in B w.r.t. <, then C > B implies b[c] = {0}
by Linearity, since ¢ £ b. Let a” € A” such that a[c]a”. Observe that we have
already verified that ¢ < a. Then b < a would imply b” < a” by Context-Freeness,
contradicting A” $ B[c]. Otherwise, if b is not minimal in B w.r.t. <, then there
is some by such that by < b and by is minimal in B w.r.t. <.* Therefore, by « a
implies b < a. Consequently, A $ B.

3. Consider by € B such that by < ¢. Observe that a « ¢ would imply either a « by
or by < a by Grip—Convexity, contradicting B being non-gripping and A 1 B
respectively. Therefore A & ¢, and moreover A F1 ¢ (recall ¢ € a for any a € A).
Hence we can apply Lem. 3.3.4 to obtain v(A) = v(A”). Thus we conclude.

O

Lemma 3.3.8 (Postponement of dominated multisteps — Multireduction case). Let

A/
t—$55—e»u and BC RO(t) such that B is non-gripping, C > B, and A" 1 B[C]. Then

. . . e A clA
there exists some multireduction A verifying A" = A[C], so that t —» &' ‘1 u for some

object s' (cfr. Prop. 3.1.9:(2)), and moreover A 11 B, C[A] > B[A], and x(A) = x(A').
The effect is that a multistep dominated by B is postponed after a multireduction free
from the same B, without affecting neither the free-from and domination relations w.r.t.
(the corresponding residual of) B, nor the measure of the “free” multireduction (cfr.
Fig. 3.5 — right).

Proof. We proceed by induction on |A|. If A’ = nily, i.e. u = s, then it suffices to take
A :=nils, so that s’ = ¢.

C Af ’
Assume A" = Aj; A', so that t —e» s "&b o' 45 u. Observe that Lem. 3.1.12 implies
A} F B[C]. Then we can apply the IH on Aj, obtaining that Af{j = Ag[C] for some

: : Ao, Cl[A] : "
multireduction Ag, so that t —e» s =" u' for some object s”, and moreover Ay 1 B,

C[Ao] > B[Ao], and x(Ap) = x(Af). We can build the following diagram.

t

C%
s ! !/
A A

On the other hand, A’ $1 B[C] implies A" $1 B[C; Aj] (cfr. again Lem. 3.1.12),
therefore Prop. 3.1.9:(2) yields A" 41 B[Ao; C[Ao]] = B[Ao][C[A0]]. Moreover, B non-

Ag

S”
% ClAo]
u/

u

!/

Cc[A
gripping implies B[Ag] non-gripping. Hence we can apply Lem. 3.3.7 to s” _[[e_g]] u,
obtaining that A" = A[C[A]] for some A € RO(s") verifying A $ B[Ag] and v(A) =
v(A"). Consequently, we can complete the previous diagram as follows.

Ap A
S s

t
C% %C[[Ao]] %C[[Ao;flﬂ
S u

A A

4The fact that < is a well-founded order, cfr. Dfn. 2.1.1, implies the existence, for any b € B, of a
minimal by € B w.r.t. < such that by < b, unless b is itself <-minimal in B.

3.3. NECESSARY NORMALISATION FOR ARS 67

We define A := Ag; A. Given C[Ag]| > B[Ao] and A 1 B[Ag], so that A n B[Ao] =
&, Lem. 3.3.6 implies that C[Ag][A] > B[Ao][A], that is, C[A] > B[A]. Moreover,
given Ag 1 B and A $1 B[Ag], a simple induction on |Ap| yields A $1 B. Finally,
X(A) = x(A’) is immediate. Thus we conclude. O

3.3.3 Main results

The postponement result is used to show that, whenever ¢ —ges u, B € RO(t) is non-
gripping and not used in A, and B[A] = &, all activity dominated by (the successive
residuals of) B is irrelevant, i.e. it can be omitted without compromising the target object
u, and moreover without increasing the measure. Therefore, the dominated part of each
multistep in As; A” can be just discarded in the construction of A1, cfr. Figure 3.4
on page 62.

Lemma 3.3.9. Let t -5 s —Ae% u and B < RO(t), such that B is non-gripping, C > B,
A" 11 B[C], and B[C; A" = &. Then there is a multireduction A such that A" = A[C],
t—g%u, A 1 B, B[A] = & and x(A) = x(A).
o . / A cCla]

Proof. Lem. 3.3.8 implies the existence of A such that A" = A[C], t—-»s' > u, A 1 B,
C[A] > B[A], and x(A) = x(A’). Then B[A][C[A]] = B[A;C[A]] = B[C;A'] = &;
cfr. Prop. 3.1.9:(2).

Assume for contradiction the existence of some b € B[A], and moreover that (wlog)
b is minimal in B[A] w.r.t. <. Then C[A] > B[A] implies b 51 C[A], so that Lem. 3.3.3
yields b[C[A]] = {V'}, contradicting (B[A])[C[A]] = &. Therefore B[A] = &.

In turn, the existence of some ¢ € C[A] would imply that of some b € B[A] such
that b < ¢, contradicting B[A] = &. Therefore C[A] = ¢, implying u = s’ so that

A
t —o» 1. Thus we conclude. O

A
Lemma 3.3.10. Let t —e» u and B € RO(t), such that B is non-gripping, A does not

use B, and B[A] = &. Then there exists a multireduction T' such that t —g»» w, I' 71 B,
B[T] = & and x(T') < x(A).

Proof. We proceed by induction on |A|. If A =nily, then it suffices to take I' := A.

A
Assume A = A; A, so that ¢ 4> s —e» u for some object s. Observe B [A] is non-
A It
gripping. Then we can apply the IH on s o= u, thus obtaining s —o% u for some Ty

verifying I'y 3 B[A], B[A][I't] = & and x(I'y) < x(Ao).
I‘\/

AF L, AP 0
We define A" := {a € A/ a D B} and AP := (A\AF)[AF], so that t Ze»t/ Zoss—e»u
for some object . As mentioned in Section 3.1.3, it is easy to check A 41 B and
(A\AT) > B; recall A does not use B, so that A n B = J. As moreover A n B =
4, then Lem. 3.3.6 yields AP > B[AF]. Observe that B non-gripping implies B[Af]
non-gripping, Iy 41 B[A] = B[A][AP], and B[AF][AP;T}] = B[A][TL] = &; cfr.

D T
Prop. 2.1.16. Therefore Lem. 3.3.9 applies to t’ A s o u, implying the existence of

r
some Ty verifying #' —e» u, To 3 BIA"], BIAF[T] = & and x(To) = x(I%) < x(Ao).
Hence we conclude by taking I' := Af: T since A" < A implies in particular that

v(AF) < v(A). O

68 CHAPTER 3. NORMALISATION

We now conclude the normalisation proof, following the main lines given at the
beginning of this section.

A
Proposition 3.3.11. Let t —o» u and B < RO(t) s.t. B is non-gripping, A does not
r
use B, B[A] = & and t &5 5. Then there exists a multireduction T s.t. s —o» u and
x(T) < x(4).

r
Proof. Lem. 3.3.10 implies the existence of some I'g such that t—eo%u, Ty 1 B, B[] =9
and x(I'o) < x(A). We define I' := I'g[B]. Then we can build the following diagram;
cfr. Prop. 3.1.9(2).

1)
4@%“

t
g
s U
T

Lem. 3.3.5 implies x(I") = x(I'p) < x(A). Thus we conclude. O

Lemma 3.3.12. Let A, B € RO(t) such that A # & and AnB = . Then v(B[A]) <
v(Au B).

Proof. Let 6 be a complete development of B[A] such that |§] = v(B[A]), and v a
complete development of A. Observe that v;d is a complete development of A U B, and
|v| > 0 since A # . Then v(B[A]) = |0| < |v;6| < v(A v B). Thus we conclude. [

A
Proposition 3.3.13. Let t —o» u and B € RO(t), s.t. B is non-gripping, A uses B,

r
B[A] = & and t &5 5. Then there exists a multireduction T such that s —s» u and
xX(I) < x(A).

Proof. The hypothesis indicates A uses B, therefore the “last” multistep of A which uses
the corresponding residual of B can be determined, i.e. A can be written as Ay; A; Ao,
such that A uses B[A1] (i.e. A B[A1] # &) and Ay does not use B[A;; A]. Observe
|A| = |A1| + |A2| + 1.

Let B := B[A1], A1 := An B, and As := (A\A;)[A1]. Observe that A; # ¢,
so that Lem. 3.3.12 implies v(As) < v(A). Therefore x(Az2; Az) < x(A; A2). Moreover
Ai[B'] = &. We can build the following diagram

A A A A
t ! to d tl 2 tQ ; u
o ol
S S) ———= S

Suppose Az uses B'[A;]. Notice that the existence of some b' € Ay N B'[.A;] would
in turn imply the existence of some by € B’ s.t. b1[A;1]b" and also the existence of some
by € A\A; s.t. b A1]b'. Consider an arbitrary § I A;. Then a simple induction on
|d], based on Ancestor Uniqueness, yields by = by. Therefore by = by € B’ n (A\A1).
But then, by definition of Ay, by = by € Aj, which is absurd. Therefore A does not
use B'[A1] and hence, since Ag does not use B[Aq; A], Ag2; Ag does not use B'[A;].
Moreover, B non-gripping implies B'[.4;] non-gripping. Hence Prop.. 3.3.11 yields the

3.4. THE PURE PATTERN CALCULUS 69

r
existence of some I'y verifying sy —» u and x(T2) < x(A2;A2) < x(A; Ag). Observe
ITa| = |Ag] + 1.

Ay A; Ao

t t() u
B % B %
AqB] Iy
S S0 U

Thus if we define I' := A [B]; 'y, then |I'| = [Aq]|+|Az|+1 = |A], and x(T'2) < x(A; Ag)
implies x(I') < x(A) independently of the relative measures of A;[B]] and A1, since the
multisteps of a multireduction are considered in reversed order when building measures.
Thus we conclude. O

Returning to the general proof structure described at the beginning of the section,
Prop. 3.3.13 shows the existence of an adequate Ay, 1; consider tx, tr 1, S(tx) and Ay
as t, s, B and A respectively in the statement of that proposition.

Theorem 3.3.14. Let A = (O, R, src, tgt, [-], <, <) be an ARS enjoying all the funda-
mental axioms, all the embedding axioms except for Stability, all the gripping axioms, and
Pivot. Repeated contraction of necessary and non-gripping multisteps on 2 normalises.

Proof. Let ty € O be a normalising object in 2. Then there exists some multireduction

Ag such that tg —Aega u where u is a normal form. We proceed by induction on x(Ay),
i.e. using the well-founded ordering defined in the beginning of this section. If x(Ag) is
minimal, i.e. either Ag = nily, or Ay = (Do, - ., Diy), then g is a normal form, and
therefore there is nothing to prove. Otherwise, let B be a necessary and non-gripping
multistep such that %y g, t1. Then Ag uses B, and u being a normal form implies
B[Ao] = &. Therefore Prop. 3.3.13 implies the existence of a multireduction A; such

A
that t; —e» u and X(A1) < x(Ap). The IH on A; suffices to conclude. O

3.4 The Pure Pattern Calculus

As mentioned in the introduction, PPC is a pattern calculus allowing arbitrary terms
to be used as patterns, and supporting novel forms of polymorphism; cfr. [JK09] where
several examples are included. In this section, we present this calculus. We first present a
brief overview of PPC following [JK09]. Then, we show that PPC fits the ARS framework,
including all the axioms required by the abstract normalisation result.

The next section is devoted to the presentation of a normalising reduction strategy
for PPC.

3.4.1 Overview of PPC

Consider a countable set of symbols f,g,...,z,y, 2. Sets of symbols are denoted by

meta-variables 0, ¢, The syntax of PPC is summarised by the following grammar:
Terms (T) t x| T |tt| Ny tot
Data-Structures (DS) D == Zz|Dt
Abstractions (ABS) A == M tit
Matchable-forms (MF) F DA

70 CHAPTER 3. NORMALISATION

The term x is called a variable, Z a matchable, tu an application (¢ is the
function and u the argument) and Ay p.u an abstraction (is the set of binding
symbols, p is the pattern and u is the body). Application (resp. abstraction) is
left (resp. right) associative. An abstraction with an empty set of binding symbols is
written Ag p.u. A A-abstraction Az.t can be defined by Ay, Z.t. The identity function
A{z} T.z is abbreviated I. The notation || is used for the size of ¢, defined as expected.

A binding symbol x € 6 of an abstraction A\g p.s binds matchable occurrences of
x in p and variable occurrences of z in s. The derived notions of free variables and
free matchables are respectively denoted by £fv(_) and fm(_). This is illustrated in Fig-

ure 3.6.
R R Formally, free variables and free matchables
Ma} TT . T T of terms are defined by: fv(x) := {z}, fv(Z) := &,

7/ £(tu) == £v(t) L £(u), £v(hg pau) i= (Ev(u)\0) L
tv(p), tm(z) := J, tn(Z) := {x}, fm(tu) := fm(t) U

Figure 3.6: Binding in PPC fm(u), fm(Ag p.u) := (fm(p)\0) U fm(u).

As usual, we consider terms up to alpha-
conversion, i.e. up to renaming of bound matchables and variables. A constructor
is a matchable occurring in a term, such that all its occurrences are free. To ease the
presentation, they are often denoted in typewriter fonts a, b, c,d, ..., thus for example
Mazy) Ty ay denotes A, 4 @ y 2.y. The distinction between matchables and variables
is unnecessary for standard (static) patterns which do not contain free variables.

A position is either e (the empty position), or na, where n € {1,2} and a is a
position. We use a,b,... (resp. A,B,... and §,p,,...) to denote positions (resp. sets
and sequences of positions) and bA to mean {ba | a € A}. The set Pos(t) of positions
of t is defined as expected, provided that for abstractions Ag p.s positions inside both
p and s are considered. Formally, Pos(xz) = Pos(Z) = {€}, Pos(tu) = {¢} v {la / a €
Pos(t)} u{2a / a € Pos(u)}, and Pos(Agp.s) = {e} u{la / a € Pos(p)} u{2a / a € Pos(s)}.
Here is an example Pos(A(,y a b.a z) = {¢,1,2,11,12,21,22,211, 212}.

We write t|, for the subterm of ¢ at position a and ¢[s], for the replacement
of the subterm at position a in ¢ by s. Notice that replacement may capture variables.
An occurrence of a term s in a term t is any position p € Pos(t) verifying ¢ |,= s.
Particularly, variable occurrences are defined this way.

We write a < b (resp. a || b) when the position a is a prefix of (resp. disjoint from)
the position b. Notice that a || b and a < ¢ implies ¢ || b. All these notions are defined as
expected [BN98| and extended to sets of positions as well. Particularly, given a position
a and a set of positions B, we will say that a < B iff a < b for all b € B, and analogously
for <, ||, etc.. Finally, we write s € ¢ if s is a subterm of ¢ (note in particular s € s).

A substitution o is a mapping from variables to terms with finite domain dom(c).
We write {z1 — t1,...,z, — t,} for a substitution with domain {z1,...,x,}. The set
of free variables of a substitution o are defined as follows: £v(0) = | eqon(o) £V(02).
Similarly for fm(c). The symbols of ¢ are sym(c) := dom(c) U fv(o) U fm(c). A set of
symbols 0 avoids a substitution o, written 640, iff § n sym(c) = . The application
of a substitution o to a term is written and defined as usual on alpha-equivalence
classes; in particular o(Ag p.s) := A\g o(p).o(s), if 0#c. Notice that data structures and
matchable forms are stable by substitution. The restriction of a substitution o to a
set of variables {z1,...,7,} S dom(c) is written oy, ... The composition o o7 of
two substitutions o and 7 is defined by (o o n)x = o(nz).

The following notation is useful to define the reduction strategy S, and later to prove

3.4. THE PURE PATTERN CALCULUS 71

properties about it, in Section 3.5.

Notation 3.4.1. Ift and 0 are a term and a set of symbols respectively, then bm(t,)
denotes the predicate which is true iff t is a matchable bound by 0, i.e., if t = T for
some x € 6.

Matching and Semantics.
The definition of the rewrite rule of PPC resorts to the notions of match and matching
operation.

Definition 3.4.2. A match p is either a substitution or a special constant in the set
{fail,wait}. A match is positive if it is a substitution; it is decided if it is either
positive or fail.

The notions of domain, free variables and free matchables extends to matches as fol-
lows: dom(fail) = fv(fail) = fm(fail) = J, while dom(wait), fv(wait) and fm(wait)
are undefined. The restriction to a set of variables is also extended to matches, by
defining wait|g,, . ..z = wait and failly,, .., = fail, for any set of variables
{z1,...,zn}. Furthermore, the composition is extended to matches, as follows. If p1
and po are matches of which at least one is fail, then uo o 1 is defined to be fail.
Otherwise, if p1 and pe are matches of which at least one is wait, then pgop is defined
to be wait. Thus, in particular, fail o wait is fail.

Definition 3.4.3. The application of a match u to a term t, written ut, is defined
as follows: if u is a substitution, then it is applied as explained above; if y = wait, then
ut is undefined; if u = fail, then ut is the identity function I.

Other closed terms in normal form could be taken to define the result of fail(t¢). The
choice of I prevents computation after a matching failure to be blocked, and moreover
allows to encode pattern-matching definitions given by alternatives [JK09], without the
need of additional constructs.

The disjoint union of matches is a crucial operation in the definition of the meaning
of matching in PPC.

Definition 3.4.4. The disjoint union of two matches p1 and po, notation py w po is
defined as: their union if both p; are substitutions and dom(u1) N dom(ue) = &; wait if
either of the p; is wait and none is fail; fail otherwise.

This definition of disjoint union of matches validates the following equations which are
responsible for the non-sequential nature of PPC, as we will discuss in Section 3.4.2:

fail wwait = wait w fail = fail
Now we define how the matching operation is modeled in PPC.

Definition 3.4.5. The compound matching operation takes a term, a set of bind-
ing symbols and a pattern and returns a match, it is defined by applying the following
equations in order:

{Zgt} = {z:=1t} ifxeb

(o2} = ifzé¢d
{pggtu} = {peptlw{qg=pu} if tu,pqe MF

{p=pt} = fail it p,t e MF

{ppt} = wait otherwise

72 CHAPTER 3. NORMALISATION

The name “compound” given to this operation is related to the third clause, where
the matching of a compound argument w.r.t. a compound pattern is specified. The
use of disjoint union in that case of the previous definition restricts positive compound
matching to linear patterns;® disjoint union of two substitutions fails whenever their
domains are not disjoint. Notice also the restriction to matchable forms in that clause
and in the following one. These features are necessary to guarantee confluence.

Definition 3.4.6. The result of the matching operation® {p/y t} is defined to be the
check of {p=gt} on 0; where the check of a match p on 0 is fail if u is a substitution
whose domain is not 0, u otherwise.

Definition 3.4.7. A redex (A\gp.s)u where {p/g u} = fail is called a matching failure.

The previous definitions allow to introduce the only rewrite rule of PPC.
Definition 3.4.8. The reduction relation of PPC is generated by the rule:
(Ngp-s)u — {p/y u}s if {p/p u} is decided

where {p/g u} denotes the PPC matching operation, that is, the meaning in this calculus
of the matching of the argument u w.r.t. the pattern p.

In the just introduced rule, the matching of the argument u w.r.t. the pattern p is defined
by means of the matching operation {p/y u}. The result of this operation, a match, is
applied to the argument s. In fact, a match is applied only if it is decided, i.e. if it is a
substitution or the constant fail. If the match is wait, then the rule does not apply.

We give some examples of matching and reduction steps, according to the just given
definitions. The match {aZ ¥/, 4 ab(la)} yields the substitution {z — b,y — Ia}.
In turn, {2a2y/(,, cb(la)} = fail, since a and c are different constructors, and
{a7y/(z,) Ib} = wait, because the term Ib is not a matchable form. Therefore, the
following are valid reduction steps in PPC:

(Mayy2Zy.yz)(ab(la)) — Iab (MayyaZyyz)(cb(la)) — I

while the rewrite rule does not apply to (A, 327 J.yz)(Ib). Notice that the following
reduction sequence can be constructed from the latter term:

MazppaZyyz)(Ib) — (AppaZyyz)db — 1

Other matching examples follow: {77/, uv} gives fail because 77 is not linear;
{29/ {2,y,-) uv} gives fail because {z,y, 2} # {z,y}, {Z/z u} gives fail because J #
{z}; {U/(2) U} gives fail because {x} # J; {Ty/(5y uZ} gives fail because {y >, 2}
is fail; {Zy/y uz} gives fail for the same reason.

5A pattern p is linear w.r.t. 6 if for every in 6, the matchable Z appears at most once in p.
SNote that our notation for (compound) matching differs from [JK06a] and [JKO09]: the pattern and
argument appear in reversed order there.

3.4. THE PURE PATTERN CALCULUS 73

3.4.2 Non-sequentiality in PPC

Let us consider the term:

t= (\wpins.a) (p(la) (I£) (1d))

corresponding to the non-sequentiality example in the introduction of this chapter. To
verify that the rewrite rule of PPC does not apply to this term as a whole, observe the
definition of compound matching yields:

{pZms >y p(la) (If) (1d))}
= {p () p}w {Z D> (2} Ia} w {m B>} It} w {s B>} Ia}
= PJwir—> [a} wwait wwait
= wait

Changing either of the occurrences of wait in J w {r — la} w wait w wait to fail
would cause the result of the compound matching to fail. This is a consequence
of how disjoint union is defined on matches, and particularly of the equations
fail wwait = wait w fail = fail.

In turn, the contraction of If or Id in ¢t would imply the third, resp. fourth, com-
ponent of & w {r — [a} w wait w wait to change from wait to fail. We check this
assertion for the former case, the latter being analogous.

{pPns =y p(12) £ (10))}
= {pomplw{r o la} wi{neg £} w {s >,y 1d}
= PJwir—> [a} wfail wwait
= fail

Hence the possibility of the two reduction sequences:

(AmypZms.z) (p(la) (If) (Id)) — (AgpZms.z) (p(la)f(ld) — [
(AmypZms.z) (p(la) (If) (Id)) — (Agyprms.z) (p(la)([f)d) — [
which testify that none of the steps in t is needed, and hence that PPC is non-sequential.

The example shows that the ability of handling dynamic patterns, i.e. to perform
reduction steps inside the pattern of an abstraction, is not crucial for the non-sequential
nature of PPC. Non-sequentiality stems from the error mechanism of the calculus, which
applies also to static, algebraic patterns.

Sequentiality of PPC can be recovered (see e.g. [Jay09, BallOa, BallOb]) by simpli-
fying the equations of disjoint union, however some meaningful terms will no longer be
normalising. E.g., if fail w p is defined to be fail, while wait w fail = wait and
owfail = fail, then (Ag ab b .y) (a) c), where 2 is a non-terminating term, would
never fail as expected.

Finally, we want to remark that the example developed in this section shows that
PPC does not enjoy the Stability axiom. The counterexample shown in Section 2.1.4,
based on the “parallel-or” rewriting system, can be rephrased as follows

74 CHAPTER 3. NORMALISATION

a b

/\{x}pxmsx (Ia) (If
(Az}pZms.7)

d;i
I

(AmypZms.z)(p (fa) (If)d)

e

(Az1pZms.z)(p ([2) £d)

d

1

The contraction of either of the disjoint steps a and b suffices to create the external
matching failure; hence the counterexample to the Stability axiom.

3.4.3 PPC as an ARS

Let us define an ARS to describe PPC; we give some examples later on.

Definition 3.4.9. The ARS 21ppc = (O, R, src, tgt, [-], <, <) is defined as follows.

Objects
The set O of objects is the set of terms of PPC.

Steps, source, target
A step is any pair {t,a), such that t|o= (Agp.s)u and {p/p u} is decided. In this
case src({t,ay) :=t and tgt({t,a)) := t[{p/o u}s]a.

Residual relation
If a, = {t,a), b, = {' by and bl. = (u,b’) are steps, then b.[a,]b. iff ' =
u = tgt(a,), and one of the following cases apply, where t|,= (Agp.s)u:
e a<bandb =b.
e b=al2n,V =an and {p/p u} # fail.
o b=a2mn, bV = akn, {p/y u} # fail, and there is a variable x € 0
such that t|g11m= plm= T and t|410k = S|k— T.

Embedding
Let a, = {t,ay and b, = {t,b) be steps. We define a, < b, iff a < b. Given
¢r = {t,c), notice that whenever a, < ¢, and b, < c,, then a, and b, are comparable
w.r.t. the embedding, i.e. either a, = b, a, < b, or b, < a,.

Gripping
Let a, = {t,ay and b, = {t,b) be steps and let t|,= (Agp.s)u. Then a, < b, iff
{p/o u} # fail, b =al2n, and 0 N fv(s|,) # .

Notation 3.4.10. Given a step {t,a) we will often denote it a,; this notation shall prove
convenient when we address the compliance of PPC w.r.t. the axioms of an ARS. This
notational convention is extended to multisteps: if A is a set of redex positions in the
term t, we will use A, to denote {{t,a) / a € A}. This extension is used in Sections 3.5.1
and 3.5.2.

3.4. THE PURE PATTERN CALCULUS 75

Using positions to identify redexes yields the given, somewhat complicated, defini-
tions of the residual and gripping relations. The former aims to trace redexes from
source term to target term, while the latter characterises, by means of positions, the
idea of gripping described in Section 1.3.1. The use of one common notion, namely that
of positions, to define all the relations, eases the proofs of results where several of these
relations are involved. Hence the reason why we favor positions over other mechanisms,
such as labeling which is used for Aj;, in Chapter 4 and also for A-calculus in e.g.
[Bar84, Kri90].

To exemplify the definitions of residuals and gripping, consider the following step:

t= (A{xvy}cfﬂ.x (Iz)) (c(d(Ia))(Ib)) (Ie) — d(Ia)(I(d(Ia)))(le) =u
where the contracted redex is a, = {t,1). Let us analyse the residuals of each step in ¢:

e Take (t,1122), whose subterm is Iz. The second clause of the residual definition
applies, where n = 2. Therefore there is one residual, namely {(u, 12).

e Take (t,12122), whose subterm is Ia. The third clause applies, where m = 12 and
n = 2; observe czy|12= Z. There are two occurrences of = in z(Ix), at positions 1

and 22, these are the possible k in the definition of residuals. Hence there are two
residuals, {(u, 112) and {u, 1222).

e Take (t,122), whose subterm is Ib. The third clause applies, where m = 2 and
n = €; observe czy|a=y. There are no occurrences of y in xz(Ix), hence there are
no residuals of this step after a,.

e Take (t,2), whose subterm is Ie. The first clause applies, then there is one residual:
(u, 2).

The only pair in the gripping relation among the residuals of ¢ is a, « {t,1122).
W.r.t. the definition of gripping, we have n = 2 and z € {z,y} n fv(Ix).

Let us consider, as a second example, this step:
t = Mzyc@y.w (Ir))(d(la)) (Ie) — I(le)=u

and define a, = {t,1). Observe that there is no copy, in u, of any of the redexes
embedded by a, in t. This observation motivates the condition {p/g u} # fail in the
second and third clauses in the definition of residuals.

For a more involved example about gripping, we consider this term:

1= (a2 Qe (an),)U),)02),) (ece) 2)a

T

Qr

where the redexes are underlined. We have b, « ¢, since z € {z,y} n fv(I(ax)).
Analogously, we have b, < d,. On the other hand, b, « e,, because {z,y} nfv(Iz) = .
Moreover, observe that ¢, d, and e, are inside the body of a, as well. Observing the
occurrences of z, we obtain a, « ¢, a, € d and a, < e,. Finally, we remark that there
is another pair in the gripping relation for this term: a, < b,.

In the remainder of this section, we verify that the ARS modeling PPC verifies the
fundamental axioms, FD, SO, the embedding axioms except for Stability, the gripping
axioms, and also Pivot.

76 CHAPTER 3. NORMALISATION

Initial axioms.

Self Reduction is immediate from the definition of residuals for PPC: none of the cases
there applies for a,[a,]. Finite Residuals follows from the fact that terms are finite.
Axiom Ancestor Uniqueness is proved below.

Lemma 3.4.11 (Ancestor Uniqueness). Let by, by, , ar,bl. be steps verifying by, [a,]b]. and
by,[ar]bl.. Then by, = by,.

Proof. Let b, = {t',b1) and b,, = {t’,be) where t' = tgt(a,). We prove that by = bs.
Let t|o= (Agp.s)u. We consider three cases according to the definition of by, [a,]b...

e If a & by, then by = ¥/ so that a £ 0. A straightforward case analysis on the
definition of residuals yields a £ by, therefore by = by = 1'.

e If by = a2mn and V' = akn, then s|y= = and p|,,= Z for some z € 6. Observe
that a < o' implies a < by. We consider two cases. If by = al12n’ and b = an/,
then kn = n’. This would imply |5, = $|g, has the form (A\gp’.s")u’, contradicting
s|k being a variable. Therefore, akn = V' = ak'n’ and by = a2m’n’, where sl =1y
and pl,y = y for some y € §. Observe that k < k', i.e. k' = kc where ¢ # €, would
imply kc € Pos(s), contradicting the fact that s|j is a variable; so that k 4 k. We
obtain k' € k analogously. On the other hand, k || &' would contradict kn = k'n/.
Hence k = k', implying n = n/ and also y = . In turn, {p/sp u} being positive
implies that p is linear, and then m = m’. Thus we conclude.

e If by = al2n and V' = an, then we have again that a < b’ implies a < by. On
the other hand, assuming by = a2m’'n’, so that an = V' = akn’, would yield a
contradiction as already stated. Therefore by = al12n’ and an = V' = an/, implying
n = n' and consequently by = bs. 0

Finally, FD and SO are left for the end of this section.

The Enclave—Creation axiom.

To verify Enclave—Creation involves a rather long technical development, including some
preliminary lemmas, particularly a creation lemma indicating the creation cases for PPC.
One of these lemmas is used in the proof of subsequent axioms as well.

Lemma 3.4.12. Let p — p’ and u — u'. Then,

(i) {p=pu} positive implies {p’ =g u'} positive,

(i1) {p=>pu} = £ail implies {p' =9 u'} = fail.
(111) {p/e u} positive implies {p'/g u'} positive,

(v) {p/g u} = £ail implies {p'/y u'} = fail.
Proof. We prove item (i). Given {p =g u} is positive, a straightforward induction on p
yields that p is a normal form, implying p’ = p. If bm(p, 0), then {p ¢ v’} is positive
for any term u'. If p is a matchable and —bm(p,0), then {p >y u} positive implies
u = p, i.e. u is a normal form, and therefore v’ = u, which suffices to conclude. Assume

p = p1p2. Then the hypotheses imply p € MF, u = ujus € MF, and {p; ¢ u;} positive
for i = 1,2. In turn, v € MF implies v’ = ujuf and u; — v} for i = 1,2. Hence, the

3.4. THE PURE PATTERN CALCULUS 7

IH can be applied for each u; — u}, which suffices to conclude. Finally, any other case
would contradict {p =y u} positive.

We prove item (ii). Observe {p =>p u} = fail implies p,u € MF, and therefore
p',u' € MF. Therefore, p and p’ share their syntactic form (i.e. they are either both
matchables, both applications or both abstractions), and similarly for v and «'. If p
and u, and therefore p’ and v/, have different syntactic forms, or else if p,p’,u,u’ are
abstractions, then it suffices to observe that {p’ =¢ v’} = fail for any such p’ and u'.
If p,p’,u,u’ are matchables, then p = p’ and u = o/, thus we immediately conclude.
Assume p = pipa, p' = piph, u = ujug and v’ = uiul. In this case, hypotheses imply
{pi>oui} = fail for some i € {1, 2}, and moreover p,u € MF imply p; — p} and u; — u}.
Therefore, we conclude by applying the IH, and recalling that fail w R = fail for any
possible R.

To prove items (iii) and (iv), we observe that a straightforward induction on p yields
that {p =>p u} = o implies dom(c) = fm(p) , and therefore in this case {p/yp u} is
positive iff # = fm(p), and {p/y u} = fail otherwise. Recall also that {p =g u} positive
implies p being a normal form, and then p’ = p. For item (iii): {p/p u} positive implies
{p=gpu} = o where 6 = fm(p) = £m(p’). On the other hand, item (i) just proved implies
{p' =9 v} = o', which suffices to conclude. For item (iv): assume {p/yp u} = fail. If
{p=gu} = fail, then item (ii) just proved implies {p’ =g’} = fail, thus we conclude.
Otherwise, {p =9 u} = o and o # fm(p) = fm(p’), and item (i) just proved implies
{p' =9 u'} = o', which suffices to conclude. O

Lemma 3.4.13 (Creation cases). Let t — t', and J[a,]b., i.e. b, is created by (the

contraction of) ar. Say tla= (Ngp.s)u and t'|,= (A\gp'.s")u'. Then one of the following

holds:

Case 1. the contraction of a, contributes to the creation of b. from below, i.e., b €
Pos(t), a = bl implying t|y= (Ngp.s)uu’, and either

(i) s = x where x € 0 and T occurs in p, {p/yp u} = o, cx = (N\gp'.¢").
(i) s = Xgp".8", {p/o u} =0, p =0op”, s =0cs".
(11i) {p/o u} = fail, \gp'.s' = I.
Case I1. the contraction of a, contributes to the creation of b, from above, i.e., b = an,
slp=au”, {p/y u} = o, ox = Ngp'.8'), v = ou”.
Case II1. The argument of a redex pattern becomes decided. We have three such situ-
ations:
(i) b = an, s|n= (Ngp".s" ", {p"/g v"} = wait, {p/y u} = o, p' = op”,
u = ou”.
(it) a = b2n, tlp= (Agp'.su", {p"/p '} = wait.
(11i) a = blln, t|y= (Agp".s), {p"/p v"} = wait.
Proof. We proceed by comparing a with b.
e If a || b, then t|,= |, so that {t,b)[a,]b,, contradicting the hypotheses.
e Assume a < b, i.e. b = ac.

In this case, {p/yp u} = fail would imply ¢’ |,= I, contradicting ¢’ |, being a
redex. Then {p/y u} = o, implying ¢’ |,= os|.. Observe that ¢ = kn, s|p= x

78 CHAPTER 3. NORMALISATION

and t'|,= ox |, for some variable z would imply (¢, a2mn)[a,]b, where p|,,= Z.
Therefore = s|.= t1u” and t'|,= (A\gp'.s)u’ = (ot1)ou”. If t; is a variable, so that
oty = Agp'.s', then case IT applies, otherwise case IIL.(i) applies.

e Assume b < a.

If a = bl, i.e. t|p= (Agp.s)ur/, then observe {p/g u}s = t'|a= Ngp’.s". If {p/y u} =
fail, then case I.(iii) applies. If s is a variable, then case I.(i) applies. Otherwise,
s is an abstraction, so that case I.(ii) applies.

If b11 < a, i.e. tlp= (Agp”.s")u/, then observe KF[a, b, implies {p” /¢ u'} = wait.
Then case II1.(iii) applies. If b2 < a, a similar argument yields that case IIL.(ii)
applies.

Finally, 12 < a implies t|,= (Ag:p’.s")u’, and ¢'|, being a redex implies {p'/g u'}
decided so that {t,b)[a,]b,, contradicting the hypothesis. -

Lemma 3.4.14. Let t = t' such that t ¢ MF and t' € MF. Then a, is outermost.

Proof. By induction on t'.

If ¢ is a variable or a matchable, then a = ¢, thus we conclude.

If ' is an abstraction, then a # € implies ¢ is an abstraction contradicting ¢t ¢ MF.
Thus a = € and we conclude.

If t' = t|t5, then ' € MF implies t{ € DS. We consider three cases. (i) If a = € then
we immediately conclude. (ii) If 2 < a, then we contradict ¢t ¢ MF. (iii) If 1 < a, i.e.

a = 1d’, then ¢t = t1¢}, and #; Ay t}. Observe that t; € DS would contradict ¢ ¢ MF,
and t; € ABS would imply | € ABS, contradicting ¢} € DS. Therefore, t; ¢ MF, and
hence the TH yields that {(t1,a’) is outermost. We conclude by observing that ¢; ¢ MF
implies that (t, €) is not a step. O

Lemma 3.4.15. Let t % t' such that {p =g t} = wait and {p =g t'} is decided for
some 0, p. Then a, is outermost.

Proof. We proceed by induction on ¢t. Observe that {p =gt} = wait implies —=bm(p,).
In turn, {p =¢ t'} decided implies p € MF, and moreover —bm(p,#) implies ¢’ € MF.
If t ¢ MF then Lem. 3.4.14 suffices to conclude. Therefore, assume ¢t € MF. In
this case, {p ¢ t} = wait implies p = pip2, t = tite, and {p; =¢ t;} # fail for
i = 1,2. Furthermore, t € MF implies a # €. Assume a = ld/, implying ¢ = t]t5 and

t1 —5 4. Notice {p1 =g t1} positive would imply {p; = t|} positive, cfr. Lem. 3.4.12,
thus contradicting either {p gt} = wait (if {ps =y ta} is positive) or {p =y t'} decided
(if {p2 >p t2} = wait); while {p; =p t1} = wait would contradict {p =p t'} decided.
Hence IH can be applied to obtain (t1, a’) outermost, which suffices to conclude (given
{t,€) not being a step). The case a = 2a’ admits an analogous argument. O

Lemma 3.4.16. Let p " p' such that {p >t} = wait and {p' >t} is decided for
some 0, t. Then a, is outermost.

Proof. We proceed by induction on p. Observe that {p’ =gy t} decided implies p’ € MF.
If p ¢ MF then Lem. 3.4.14 suffices to conclude. Therefore, assume p € MF. This
implies p’ is not a matchable, and consequently {p’ =y t} decided implies ¢t € MF. In
turn, {pgt} = wait yields ¢ = tite, p = pip2, {pi>ot;} # fail for i = 1,2, and a # e.

3.4. THE PURE PATTERN CALCULUS 79

Assume a = 1ld/, implying p’ = pips and p; N py. In this case, {p1 =g t1} positive
would imply p; to be a normal form, while {p} =pt1} = wait would contradict {p' =gt}
decided. Therefore the TH can be applied to obtain {p1, a’) outermost, which suffices to
conclude since (p, €) is not a step. The case a = 24’ admits an analogous argument. [

Lemma 3.4.17 (Enclave-Creation). Let a,, b, be steps such that b, < a,, b;[a,]b., and
Dlar]e.. Then bl < .

Proof. Observe that a € b implying b’ = b. Say t - ¢/, t|o= (\gp.s)u, and t' |»=
(Agp'.s")u'. We proceed by case analysis w.r.t. Lem. 3.4.13.

Case I In this case ¢’ € Pos(t) and a = (1, so that t|s= (Agp.s)uu’. Therefore, it
suffices to observe that b = ¢ would forbid b, to be a step, then b < a implies
b<d.

Cases II or III.(i) In either case ¢ = an, thus b < a implies b < (.

Case IIL.(ii) In this case a = ¢/2n and t|v= (Agp'.s')u”. Then, b < a implies either
b<c,b=c orb=c2n' where n’ < n. We conclude by observing that the second
and third cases would contradict &f[a,]c,. and Lem. 3.4.15 respectively.

Case IIL.(iii) In this case a = ¢11n and t|y = (A\gp”.s')u’. A similar analysis applies,
resorting to Lem. 3.4.16 instead of Lem. 3.4.15. O

The other embedding and gripping axioms.

Linearity is immediate from the definition of residuals. The remaining embedding axioms,
and also Grip—Instantiation, are related with the invariance of embedding w.r.t. residuals.
The following lemma describes the exceptions to such invariance, so that several axioms
can be obtained as simple corollaries of its statement.

Lemma 3.4.18. Suppose b, [a,]b. and c,[a,]c,, such that =(b, < ¢, < b, <). Then
(ar < by) A (ar < ¢), and moreover

o cither (b, || ¢;) A (b, <) A (ar < b)) A (a2 < e),

o or (by <cp) A (b]).
Proof. Suppose t %> u and t|,= (Agp.s)u. If =((a, < b,;) A (ar < ¢;)), then we obtain
by < ¢, o bl <l by the following case analysis:

e a =bora=c: either case would contradict the existence of b/. and /.

e a £band a £ c: in this case b’ = b and ¢’ = ¢, which suffices to conclude.

a| band a <c: implies b || cand ¥ =b | a < ¢, hence b, € ¢, A Y, €).

a <band a || ¢: analogous to the previous case.
eb<a<c implissb<candb =b<a<dc, hence b, <c, A b, <.

e ¢ < a < b: we obtain analogously ¢ < b and ¢ < ¥/, hence b, € ¢, AV, € ;.

If @ < b and a < ¢, then we analyse the possible cases w.r.t. the residual relation,
recalling that all cases suppose {p/yp u} # fail, and therefore that p is linear.

e b =al2n and ¢ = al2n’. In this case b’ = an and ¢ = an’, thus we conclude
immediately.

80 CHAPTER 3. NORMALISATION

e b=al2n and ¢ = a2m/n’. In this case b/ = an and ¢ = ak'n’, where p|,, = = and
sl = x for some x € f. Observe b || c¢. If ¥’ &« ¢ then we conclude immediately,
so that assume b’ < ¢, implying n < k'n’. Notice that s|, is a redex while s |
is a variable, then n < k'n’ implies n < k’. Therefore x € 6 N £v(s|,), implying
ar < by. Thus we conclude.

e b =a2mn and ¢ = al2n’. In this case, b’ = akn and ¢ = an’, where p|,,= T and
s|x= x for some x € . Observe b || c. Moreover s|,s being a redex while s|j is a
variable implies k < n/, then kn 4 n’, hence b’ « . Thus we conclude.

e b =a2mn and ¢ = a2m'n’. In this case b’ = akn and ¢ = ak'n’, where p|,,= 7,
slk= x, plww= 9 and s|p =y for some x,y € . Both s|; and s|p being variable
occurrences implies k = k' or k || £’. An analogous argument yields m = m' or
m || m'.

If b € c and ¢ <« b, then we conclude immediately.

If b < ¢, then m = m/ implying z = y, and n < n/. If k = k', then V' < ¢,
otherwise, b’ || ¢’. Thus we conclude.

Finally, if ¥ < ¢/, then k = k' and n = n’. But k = k¥’ implies z = y, and then
m = m’ by linearity of p. Then b < c. -

It is easy to obtain Context-Freeness, Enclave-Embedding and Grip—Instantiation as
corollaries of Lem. 3.4.18.

We verify Pivot; a previous lemma is needed first.

Lemma 3.4.19. Let p,t,b such that {p/g t} is positive and t|, is a redex. Then there
exists some a < b verifying plo= & for some x € 6.

Proof. By induction on p, considering the cases in the definition of the compound match-
ing allowing {p/g t} to be positive. If bm(p,0) then taking a = e allows to conclude.
Otherwise, {p/y t} positive implies p = pip2, t = tita € MF, and {p;/p t;} positive for
i =1,2. In turn, t € MF and t|, being a redex imply b # ¢, then b = it/ where i € {1, 2},
hence t|p= t;|y. TH yields p;|,s = T where x € 6, for some o’ < b'. We conclude by taking
a=1id. O

Lemma 3.4.20 (Pivot). Let a,,b,,c,,c. steps verifying a, < ¢y, b, < ¢, by £ a,, and
crlar]c,.. Then there exists a step bl. such that b.[a,]bl. and bl. < c.

Proof. Observe that a < ¢, b < c and b §£ a implies a < b < ¢. We proceed by case
analysis on the definition of residuals, considering a, < ¢,. Say t|,= (Agp.s)u. Observe
that a < ¢ and ¢, [a,]c,. imply that {p/yp u} is positive.

If ¢ = al2n/, so that ¢/ = an’, then b < ¢ implies b = al2n and n < n' (recall
t|a1 € ABS). Hence, taking V' = an suffices to conclude.

If ¢ = a2mn, then b = a2b” and " < mn. Observe that p|,,= T where x € 0, and
' = akn where s|p= z. Lem. 3.4.19 implies " = biby where p|p, = y. Notice that
biba < mn, along with both p|,, and p|, being matchable occurrences, imply that
by = m, then z = y, and also by < n. Hence we conclude by taking b’ = akb,. O

Finally, we verify the two remaining gripping axioms.

3.4. THE PURE PATTERN CALCULUS 81

Lemma 3.4.21. Let t = (\gp.s)u —> t', c.[a,]c., and x € £v(t'|+). Then x € fv(t|.),
or ay K ¢ and x € fv(u).

Proof. By case analysis on the definition of residuals. If a € ¢ or ¢ = a2mn, then
t|c=t'|s, implying x € t|.. Otherwise, i.e. if ¢ = al2n, ¢ = an, and {p/y u} # fail, let
us consider d such that t'|vq= ({p/s u}s)|na= x. Given n € Pos(s), it is easy to obtain
(1p/o w}s) na= ({p/o ub(sla) la= ({p/o w}(¢le))|a. Tn turn, = € £v({p/s u}(t].)) yields
easily z € fv(t|.) or z € fv(u) A t|. n 0 # . We conclude by observing that the latter
case implies a, < ¢;.]

Lemma 3.4.22 (Grip—Density). Let a, b, b, ¢, cl. be steps verifying b,[a,]b.., ¢ [ar]cl.,
and bl < c.. Then b, € ¢, v by € ap < ¢;.

Proof. Let t 2 ', and say t|o= (\op.8)u, ' |y = (N\gp'.s)u, and t|,= (Agrp”.s")u";
notice that the the set € is invariant w.r.t. the contraction of a,. Recall that b « ¢
implies {p” /¢ u"} positive, ¥'12 < ¢ and 6’ N fv(t'|s) # . Observe that {p”/¢ u"}
positive and {p'/p u'} decided imply {p'/y u'} positive; cfr. Lem. 3.4.12. Let z €
0" n fv(t'|+). Then Lem. 3.4.21 implies x € fv(t|.) v (ar € ¢ A x € £v(u)).

Given b/ < ¢, Lem. 3.4.18 implies b < c or (b || ¢ A a2 < ¢). The latter case implies
ar € ¢, and 0" N £v(t|.) = &, contradicting x € £v(t|.) v a, < ¢,. Hence b < ¢. There
are three cases to analyse, depending on a.

l.a<b<e.

Assume b = al2n, ¢ = al2n/ and n < 7/, so that ¥/ = an and ¢ = an’. Then
b'12 < ¢ implies n12 < n/, and therefore b12 < c¢. Moreover, al2 < b implies
0 ~ fv(u) = &, so that = € £v(t|.). Consequently, b, < ¢,.

Assume b = a2mn, ¢ = a2m'n’, mn < m/n', pl;= 9, plww =z, and y, 2z € 6. In this
case, both p|,, and p|,s being variable occurrences, along with mn < m/n’, imply
m = m/, then y = z. Therefore b’ = akn and ¢ = ak/n’, where s|x= sl = y.
In turn, the last assertion along '12 < ¢ imply k = &/, then n12 < n/, therefore
b12 < c¢. Moreover, in this case a, &« ¢, implying x € £v(t|.). Thus b, < ¢,.

2. b<a<e.

In this case b12 = V'12 < ¢ and a < ¢, therefore b < a implies b12 < a < c¢. The
existence of ¢ implies {p/p u} # fail. If z € fv(t|.), then b, « ¢,. Otherwise,
ar < ¢y and z € fv(u) € £v(t|,), implying b, < a,. Thus we conclude.

3. b<c<a.

In this case, b12 = V12 < ¢ = ¢, and a, K ¢, implies x € fv(¢t|.). Therefore

b, < cp.
O

Lemma 3.4.23 (Grip—Convexity). Let a,, by, c, € RO(t) such that a, < b, and ¢, < b,.
Then a, € ¢, v ¢ < ap.

Proof. Observe that a < b and ¢ < b implies that either ¢ < a or a < ¢. In the former
case we immediately conclude. Otherwise, it suffices to notice that a < ¢ < b, al2 < b
and t|. being a redex imply al2 < ¢, and that ¢ < b, along with the variable convention,
implies 0 N fv(t|y) S 0 N fv(t|.), where t|,= (Agp.s)u. Therefore ¢§ # 0 N fv(t|.) so
that we conclude a, < c,.]

82 CHAPTER 3. NORMALISATION

The axioms FD and SO.

We prove the two remaining axioms.

FD is a consequence of the gripping axioms. Thm. 3.2. in [Mel96] states that an ARS
satisfying the gripping axioms along with Self Reduction, Finite Residuals and Linearity,
and whose embedding and gripping relations are acyclic, also enjoys FD. For the ARS
modeling PPC, we have verified all the required axioms. The embedding relation being
an order, and the gripping relation being included in the former, imply immediately
that both are acyclic. Hence we obtain FD.

Lemma 3.4.24 (SO). Let a,,b, € RO(t). Then there exist 6,y such that § I+ a,[b,],
v Ik befar], tgt(ay;y) = tgt(by;) and the relations [ar;~] and [by;d] coincide.

Proof. We consider arbitrary reduction sequences ¢, verifying § I+ a.[b,] and v I+

belar]. Tet t -2 81— ¢/, ¢ 25ty 20 7 and tla= (Agp.s)u.

If a || b, then it is straightforward to obtain t' = ¢ = t[t1]|.]a[t2]s]s, and also that
cerlar; 7] = er[br;] for any c.

If a < band {p/p u} = fail, then v = nily, and ¢’ = ¢; = t[I],. On the other hand,
to = t[(Ngp'.s)u']a, Lem. 3.4.12 implies {p'/p v’} = fail, and § = ({t2,a)). Thus the
result follows easily.

If a < b and {p/p u} is positive, a simple, yet tedious, analysis yields the result. This
analysis relies on the fact that replacement, residuals and reduction steps are compatible
with substitutions. O

3.5 The normalising reduction strategy S for PPC

In this section, we formulate the multistep reduction strategy S for PPC, and we show that
S computes necessary and non-gripping multisteps. In view of the abstract normalisation
result stated in Section 3.3, these facts about S, along with the fact that PPC as an ARS
enjoys all the required axioms, imply that S is normalising. In the following, we use LO
as an acronym for “leftmost-outermost”.

We define formally the notion of prestep.

Definition 3.5.1. A prestep is a term of the form (\g p.t)u, regardless of whether the
match {p/o u} is decided or not.

The rationale behind the definition of S can be described through two observations.
First, it focuses on the LO prestep of ¢, entailing that when PPC is restricted to the
A-calculus it behaves exactly as the LO strategy for the A-calculus. Second, if the match
corresponding to the LO occurrence of a prestep is not decided, then the strategy selects
only the (outermost) step, or steps, in that subterm which should be contracted to get
it “closer” to a decided match.

E.g. consider the following term, where 71 and ro are steps:

(A{wfy} aZ (cy)yx) (ars ra)

Since we want to avoid lookahead, the strategy can only recognise the occurrences of
the prestep structure, and whether a prestep is in fact a step; it cannot distinguish
between different steps, in terms e.g. of their targets, or of the fact that a step could

3.5. THE NORMALISING REDUCTION STRATEGY S FOR PPC 83

lead to an infinite reduction sequence. Therefore, the decision of & cannot depend on
particular features of r1 and ro, it just knows that they are steps: it selects the steps in
the same position (i.e., only 71, only 72, or both) for any term having this form. The
match {a 7 (¢ J)/(zyy @ 71 72} is not decided; the role played by 7 is different from
that of ro in obtaining a decided match. Replacing r; by an arbitrary term ¢; does not
yield a decided match, i.e. {a & (c ¥)/(z,y} @ t1 72} is not decided. However, replacing
ro by c sa (resp. by d s2) does: {a T (c ?j)/{m/} ar (cs2)}t={x—>r,y— s} (resp.
{2 7 (c ¥)/izyy a7 (d s2)} = fail). Hence, contraction of ry can contribute towards
obtaining a decided match, while contraction of r; does not.

Let us now consider the non-sequential example (ApZms.x) (p(/a)(If)(Id)).
Again, S only knows, about the subterms (/a), (/f) and (/d), that they are steps;
therefore, it makes similar selections for any term having the form:

(AzypZms.x) (pri7m273)

where each r; is a step. As in the previous example, contraction of 1 does not contribute
towards obtaining a decided match, therefore the candidates to be selected are ry and 3.
Selecting only ro could lead to non-normalisation, e.g. if 2 is a non-terminating term,
and r3 = Id. The situation is analogous for r3. Hence, a normalising reduction strategy
should select both steps in this case. This example shows the relevance of multistep
reduction strategies to cope with non-sequential systems.

We also notice that steps in the pattern and/or the argument of a prestep could be
selected. However, the steps in the body of the abstraction may be ignored, since no
such step can contribute to generate a decided match. E.g., take:

()‘{gc,y} a (b Z/L‘\) T‘l.’l”g) (a 3 (d T4))

where every r; is a step. The strategy selects r; and r3; contraction of r4 is delayed
since 71 is not in matchable form (if the contractum of r; were e.g. either d § or a, then
the match w.r.t. d r4 would be decided without the need of reducing ry).

We model a reduction step as in Dfn. 3.4.9, i.e. a pair {t, p), where p is the position
of a subterm of ¢ having the form (Agp.s)u. The definition of the reduction strategy S
for PPC follows.

Definition 3.5.2. The reduction strategy S is defined as S(t) := {{t,p) /pe S:(t)},
where the auziliary functions S; (returning positions) and SM (returning pairs of sets
of positions) are defined as follows.

S(z): =
& ()=
S: (Mg p-t):=18:(p) ifp¢ NF
S:(Mg pt):=25:(t) ifpe NF
S (Mg pt)u):={e} if {p/s u} decided
S:((Ng pt)u):=11G u 2D if {p/s u} = wait,SMy(p,u) ={G, D) # {(J, &),
871’(()\9 p. t)u) _11371—(}9) if {p/G u} = WaitstQ(pv U’) = <®7®>ap ¢ NF
S ptu)=128.(8) if {p/o u} = wait, SMy(p,u) = (D, Dy p € NF,t ¢ NF
S (Mg pt)u):=28;(u) if {p/op u} = wait,SMy(p,u) =<{&,F),pe NF,t € NF
Se(tu) : =18 (t) if t is not an abstraction and t ¢ NF
)

1
Se(tu):=28; (u) if t is not an abstraction and t € NF

84 CHAPTER 3. NORMALISATION

SMy(2,t):={F, D) if 2 €0
SMy(3,2):={T, D) if 2 ¢ 0

SM@(plpz,tltg) Z=<1G1 v 2G2, 1D1 v 2D2> if tltg,plpg € MF, SMg(p“tl) = <G“ Dz>
SMo(p, 1):=(S:(p), D) it p¢ MF
SMy(p,t):={J,S:(t)) if pe MF & t ¢ MF & —bm(p,0)

Recall Dfn. 2.1.8 for the definition of the set of normal forms, i.e. NF.

The function SM formalises the simultaneous structural analysis of pattern and
argument which is performed if the LO prestep is not decided. Its outcome is a pair of
sets of positions, corresponding to steps inside the pattern and argument respectively,
which could contribute to turning a non-decided match into a decided one. Notice the
similarities between the first three clauses in the definition of SM and those of the
definition of the matching operation (cfr. Section 3.4.1).

We also notice that whenever a non-decided match can be turned into a decided one,
the function SM chooses at least one (contributing) step. Formally, it can be proved
that, given p and u such that {p/y u} = wait, if there exist p’ and «’ such that p —e» p/,
u—e»u' and {p'/y v'} is decided, then SMy(p,u) # (&, D).

Let us analyse briefly the clauses in the definition of &;.

The focus on the LO prestep of a term is formalised in the first four and the last
two clauses. If the LO prestep is in fact a step, then the strategy selects exactly that
step; this is the meaning of the fifth clause. If the LO prestep is not a step, then SM
is used. If it returns some steps which could contribute towards a decided match, then
the strategy selects them (sixth clause). Otherwise, as we already remarked, the prestep
will never turn into a step, so that the strategy looks for the LO prestep inside the
components of the term (seventh, eighth and ninth clauses).

Notice that for the translation of any A-calculus term into PPC, all the presteps are
in fact steps, particularly the LO one. Therefore the focus on the LO prestep, along
with the selection of exactly that prestep if it is a step, imply that S behaves exactly as
LO when PPC is restricted to the A-calculus.

While the strategy focuses in obtaining a decided match for the LO prestep, it can
select more steps than needed. E.g., for the term (A\y,; ab c 5.y) (a (I c) (I b) (I a)),
the set selected by the strategy S is {I c,I b}, even if the contraction of just one step
of the set suffices to make the head match decided.

The reduction strategy S is complete, i.e., if ¢ is not a normal form, then S(t) # &.
Moreover, all steps in S(t) are outermost. On the other hand, notice that S is not
outermost fair [vR97]. Indeed, given (Acx.s)(Q, where Q is as in the A-calculus, S
continuously contracts €2, even when s contains a step.

3.5.1 Normalisation of S — preliminary notions and results

The remainder of this section is devoted to prove that S selects necessary and non-
gripping sets. We use the notational conventions a, and A,, cfr. Notation 3.4.10 in
page 74, to relate (sets of) steps with the corresponding (sets of) positions.

The forthcoming proofs rely on the notion of projection of a multireduction w.r.t.
a position. We define this notion in the following. Afterwards, we prove that it is well
defined, and that moreover target, residuals and the uses relation are compatible with
projections. Several previous definitions are needed.

3.5. THE NORMALISING REDUCTION STRATEGY S FOR PPC 85

Notation 3.5.3. Let B € RO(t) and a € Pos(t). We write a < B iff a < b for all
b, € B. Analogously, for every reduction sequence § and a € Pos(src(d)), we write a < §
iff for any i < |9], a < b; where [i] = {t;, b;).

Definition 3.5.4. Let B be a multistep, and a € Pos(src(B)). We say that B preserves
a iff all b, € B verify b € a, or equivalently, a < b or a || b. In turn, a multireduction A
preserves a iff all its elements do.

Definition 3.5.5. If B preserves a, then we define the free part and the dominated
part of B w.r.t. a, written BY and BY respectively, as follows: BY := {b. € B / a || b}
and BP := {b, € B / a < b}.” Observe B = B w BP, and by, € BL' and by, € BP imply
by || ba.

Definition 3.5.6. Let § be a reduction sequence, and a € Pos(t) where t = src(d).
We define the projection of 6 w.r.t. a, notation 6 |,, as follows: if § = nily, then
d|a = nily),, otherwise |0]o | = |6| and 6|, [i] = 0[i]|a for all i < |9].

Definition 3.5.7. If B < RO(t) preserves a € Pos(t), then we define the projection of
B w.r.t. a, notation B4, as {{t|a,b") / ab', € B}; if this set is empty, then Bl, = &y, -
Notice that B |, = B? |,.

Definition 3.5.8. If a multireduction A preserves a € Pos(src(A)), then we define
projection of A w.r.t. a, notation Alg, as follows: nily |, = nily , and in any other

case, A |g = (A[1] |a;- -5 An] |a; -).

We prove that 0 |, is a well-defined reduction sequence (Lem. 3.5.9, along with a
straightforward induction on ||, suffices), and that targets (Lem. 3.5.10) and residuals
(Lem. 3.5.12) are compatible with the projection of reduction sequences.

ab,

Lemma 3.5.9. Let t —> t'. Then t|ai> t'a-

Proof. Let tlep= (Mgp.s)u and 8" = {p/y u}s. Then ¢’ = t[s']4. Observe (t|s)]o= t|ap
and t' = t[(t|o)["]p]a iImplying ¢'|o= (t|4)[s']s- Thus we conclude. O

s dla
Lemma 3.5.10. Let a be a position and t —» t', such that a < 6. Then t|,—> t'|q.
Proof. We proceed by induction on |§|. If § = nily, then ¢’ = ¢ and §|,= nily,, so we

6/
conclude. Otherwise, a < § implies § = ab,; ', say t br 7 ¢ Then Lem. 3.5.9 and
&|a
IH imply t|ai> t”|a—|» t'|q. Thus we conclude. O
Lemma 3.5.11. Let ab,,ac, € RO(t), so that b.,c, € RO(t|,). Then ac,[ab,]d, iff
d=ad and ¢, [b.]d',.

Proof. Let t|gp= (t|a) [p= (Agp.s)u. In the analysis of ac.[ab,]d, and ¢, [b.]d',, cfr.
Dfn. 3.4.9, always the case applying is the same, and moreover with the same arguments.
E.g. if ab = ac2mn, then b = ¢2mn, the values for m and n coincide. In this case, the
subterms p and s also coincide. These observations suffice to conclude. O

"A remark about the names “free” and “dominated” given to BZ and BP follows. We recall that b
is free from a (that is, b f1a) iff a € b, i.e. b < a or b || a. The former possibility cannot occur since
B preserves a, hence the name given to BE. In turn, it is not true in general that b € BY implies that
b is dominated by {a}, the exception being the case b = a; hence, the name “dominated” is in fact
approximate.

86 CHAPTER 3. NORMALISATION

Lemma 3.5.12. Let a be a position, ab, € RO(t), so that b, € RO(t|.), and § a
reduction sequence verifying src(6) = t and a < 0. Then ab.[6]d, iff d = ad' and
be[0]a]d -

Proof. We proceed by induction on [§]. If § = nils, so that §|,= nily,, then ab,[d]d.
implies d = ab, and b,[0],]d’, implies d’ = b, thus we conclude. Otherwise, a < § implies
d =acy;d, a <, and 0|,= ¢r;0'|,. We proceed by double implication. Let us define
t' = src(d').

=) ab,[d]d, implies ab,[ac,]e, and e,[¢']d, for some e,. Lem. 3.5.11 implies e = ae’
and b.[c.]e/,. Observe that e, = ae’, € RO(t'). Therefore IH yields d = ad' and
e[|a]d -, hence b,[d]q]d' s

<) b.[0],]d, implies b,[c, e, and €' [0'|q]d, for some €',.. Let us call e = ae’ and
d = ad'. Observe €', € RO(t'|,), cfr. Lem. 3.5.9, then e, € RO(t'). Lem. 3.5.11 implies
aby[ac,]e,. In turn, TH implies e, [¢']d,. Thus we conclude. O

We verify that if a < B, then residuals (Lem. 3.5.15) and complete developments
(Lem. 3.5.16) are compatible with the projection B |,.

Lemma 3.5.13. Let a < B and b, € B. Then a < B[b,].

Proof. Hypotheses imply b = ab’. For all ¢, € B[ab',], Lem. 3.5.11 implies ¢ = ac’. Thus
we conclude. O

Lemma 3.5.14. Let a < B and § |- B. Then a <.

Proof. We proceed by induction on v(B). Let t S 1B = ¢ then § = nily and
we conclude immediately. Otherwise B = b,;’ where b, € B, implying a < b, and
0" IF B[br]. Lem. 3.5.13 implies a < B[b,]. Hence IH yields a < ¢’, which suffices to
conclude. O

Lemma 3.5.15. Let a < B and ab, € B. Then (Blab,])|a= Bla [br]-

Proof. By double inclusion.

D) Let ¢ € (B|aby]) |a, so that ac, € Blab,]. Let ad, € B such that ad,[ab;]acy,
observe d, € Bl,. Lem. 3.5.11 implies d,[b,]c,. Hence ¢, € B|, [b+].

c) Let ¢, € Bl, [br], let d, € B|, such that d,[b,]c,, observe that ad, € B. Lem. 3.5.11
implies ad,[aby |ac,. Then ac, € B[ab, |, implying ¢, € (B[ab,])|a- O

Lemma 3.5.16. Let a < B and § I+ B. Then 6|41+ Bla.

Proof. By induction on v(B). Let t = src(B). If B = J; then observing 6 = nil, suffices
to conclude. Otherwise § = ab,;d’ where ¢’ |- Blab,]. In this case, §|,= b,;0'|,. TH
yields ¢’ |4 IF (Blaby]) |- In turn, Lem. 3.5.15 implies (B[ab,])|o= Bla [br]. Hence
blalF Bla. O

We verify that given a multistep t £t st. B preserves a, it is only the dominated
part of B that actually modifies t|,; cfr. Lem. 3.5.18.

Lemma 3.5.17. Let a, B such that B preserves a, and b, € B. Then B[] preserves a.
Moreover B[b, Y = BE[b,.] and B[b.]2 = BP[b,].

3.5. THE NORMALISING REDUCTION STRATEGY S FOR PPC 87

Proof. Take b}, € B[b.] and let by, € B such that by,.[b.]V],. Observe that either b < b}
(if b < by), or b = by (if b £ by). We verify that b} < a. B preserves a implies a < b or
a || b, and analogously for b;.

e Assume a < b. If a || by then b} = by implying a || b}. If a < by, then either b} = by
or b < b} imply a < b].

e Assume a || b. If a || by then either b} = by or b < b} imply a || b}. If a < by, so
that b || by, then b} = by, implying a < 0.

Consequently, B[b,] preserves a. Furthermore, a || b; implies a || ¥} and a < by implies
a < b). The former assertion implies BL'[b,] < B[b.]L. Moreover, let by € B[b.]
and by, € B such that by,.[b,]b5,. Observe that a < by would imply a < b, therefore
B preserves a implies a || ba, i.e. by, € BE. Therefore B[b,]5 < BE[b,], so that we
obtain B[b.]Jf = BI'[b.]. An analogous argument on the dominated parts allows to
conclude. 0

BY oy B8]
Lemma 3.5.18. Let B € RO(t) and assume B preserves a and t 6> t" &%
t/|a _ t”|a-

t'. Then

Proof. A simple induction based on Lem. 3.5.17 yields that b || a if b, € BY[BP].
Therefore, a straightforward analysis allows to conclude. O

Lem. 3.5.18 allows to verify that targets and residuals are compatible with the pro-
jection B |q.

Lemma 3.5.19. Let t 35 ' and assume B preserves a. Then:

(i) tla 585 ¢,

(ii) If ac, € RO(t), so that ¢, € RO(t|o), then ac.[B]d, iff d = ad' and ¢, [Bl.]d;.

By " BB ! D FrrD

Proof. Let t <> " "3 " t/. Let § such that ¢ |- BS, and v I+ B, [B.]. Observe
4

t st Ly, Moreover, a < & and §lql- BY|,= Bla, by Lem. 3.5.14 and Lem. 3.5.16

respectively. On the other hand, b || a for all b, € BE[BP] implies a || [i] for all i.

Notice that a || b A a || ¢ implies a || d whenever b,[c,|d,.

To prove item (i), it suffices to observe that Lem. 3.5.10 implies t|a ot o=t o
cfr. Lem. 3.5.18.

We prove item (ii), by double implication.
=) Let ac,[B]d,. Then ac,[0]e, and e.[y]d, for some e,. Lem. 3.5.12 implies e = ae’
and ¢.[0|q]€/r. In turn, a || v[i] for all i and a < e imply d = e, i.e. d = ad’ where
d =¢, and ¢, [d],]d'r. We conclude by recalling that |41 Bl .
<) Let ¢;[B|a]dy, and d = ad’. Then ¢, [§|q]d’r. Lem. 3.5.12 implies ac,[0]<t", d).
In turn, a || y[¢] for all ¢ and a < d imply (", d)[y]{t', d). Hence ac,[B]d, O

Now consider a multireduction A which preserves some position a. For any n < |A|,
Lem. 3.5.19:(i) implies that src(A[n +1]|q) = src(A[n +1]) |o= tgt(A[n] |o). This
implies that the definition of the projection of A over a is well-defined.

We verify the expected properties for the projections of multireductions.

A
Lemma 3.5.20. Let t —o» t' and assume A preserves a. Then:

88 CHAPTER 3. NORMALISATION

Alg
(i) tla —o» t'a.
(i1) If ac, € RO(t), then ac,[A]d, iff d = ad’ and ¢, [Al.]d'r.
(iii) If ac, € RO(t), then A uses ac, iff Al uses c;.

Proof. To prove item (i) a simple induction on |A|, resorting on Lem. 3.5.19:(i), suffices.

Item (ii) admits an argument similar to the one used to prove Lem. 3.5.12, resorting
on Lem. 3.5.19:(i) instead of Lem. 3.5.11.

We prove item (iii). Assume A|, uses ¢, i.e. A = Ay;D; Ay and there exists some
dr € D)o N c[A1]a]- Item (ii) implies ac,[Aq]ad,, and moreover d, € D |, implies
ad, € D. Hence A uses ac,.

Assume A uses ac,, i.e. A = Aj;D; Ay and there exists some d, € D N ac,[Aq].
Item (ii) implies d = ad’, so that d', € D|,, and ¢, [Aq |s]d'r. On the other hand,
Alg= A1la;Dla; Az2le. Hence A, uses ¢;. O

We conclude this section by introducing some results used to prove that S selects
necessary sets, and also to prove that S selects non-gripping sets. In the following
proofs, as well as in those of Section 3.5.2, we use Notation 3.4.10 in the following sense:
if SMy(p,t) = (G, D), then G, and D, are the sets of steps, in p and t respectively,
corresponding to the sets of positions G and D.

Lemma 3.5.21. If {p =g u} is positive, then SMy(p,u) = {,).

Proof. Observe that {p = u} positive implies p € DS. Then a simple induction on p
suffices. In particular, if p = p1pe, then {p =p u} positive implies u = uju2 and both
{pi =¢ u;} positive, so that the IH on each i allows to conclude. [

Lemma 3.5.22. Let t,u be terms and p be a pattern.
A
(i) Let t —e»t' where t ¢ MF and t' € MF. Then A uses S(t) and S(t)[A] = &.

.. r I .)
(i1) Let p—e» p' and u—e» u', where {p =g u} = wait and {p’ =g '} is decided. Let
(G,D) =SMy(p,u). ThenT uses G, or Il uses D,. Moreover, {p’ =gu'} positive
implies G, [I'] = D,[1I] = &.

r I . .

(iii) Let p —e» p' and u —e» u', where {p/y u} = wait and {p'/yp u'} is decided. Let
(G,D) = SMy(p,u). Then T uses G, or Il uses D,. Moreover, {p'/g u'} positive
implies G, [T'] = D,[II] = &.

Proof. Item (iii) follows from item (ii) since {p/y u} = wait implies {p =g u} = wait,
and {p'/y u'} decided or positive implies {p’ =y u'} decided and positive respectively.
We prove items (i) and (ii), by simultaneous induction on |¢t| + |u| + |p]|.

e Item (i). Observe that ¢t ¢ MF implies that ¢ is either a variable or an application.
In the former case t' = t ¢ MF contradicting the hypothesis. So we consider the
latter one.

Assume t = (A\gp.s)u where {p/p u} is decided, so that S(t) = {<¢,e)}. If there

is some i < |A| such that {t;,e) € A[i], where ¢; 2l ti+1, taking the minimal
such ¢ yields S(t)[A[l..i — 1]] = {{ti, ey}, so that A uses S(t), and moreover

3.5. THE NORMALISING REDUCTION STRATEGY S FOR PPC 89

S(t)[A[1..7]]] = e. Otherwise t' = (Agp'.s'), contradicting ¢ € MF. Thus we
conclude.

A/ A//
Assume ¢t = (A\gp.s)u where {p/y u} = wait. Then ¢’ € MF implies t —e» t" —o» ¢/

where t” = (A\gp”.s")u" and {p”/p u"} is decided. Moreover A’ preserves 11 and 2,
A A
implying p —e‘isl p” and u —e‘i u” by Lem. 3.5.20:(1). Let SMy(p,u) = (G, D). The

IH:(iii) can be applied, yielding that A’|1; uses G, or A’|s uses D,. Therefore
(G,D) #{J,), implying S:(t) = 11G v 2D. In turn, Lem. 3.5.20:(iii) implies
that A’ uses S(t). Furthermore, if {p”/g u"} is positive, then TH:(iii) also implies
G, [A11] = D.[A|2] = &, and {p”/y u"} = fail, along with ' € MF, implies
t' = I. In both cases we obtain S(t)[A] = &.

Assume t = su where s ¢ MF. Then, t' € MF implies t = su—Ae% s'u’éeeat’, where

A’ preserves 1 and 2, and either s’ € DS or s’ is an abstraction, i.e. s € MF.
A/
In turn, Lem. 3.5.20:(i) implies s —eg s'. Therefore, the IH:(i) applies, yielding

that A’|; uses S(s) and S(s)[A’|1] = &. Observe that s ¢ MF and s’ € MF
imply s # s, then s ¢ NF, hence S;(t) = 1S;(s). Hence Lem. 3.5.20:(iii) and
Lem. 3.5.20:(ii) implies that A" uses S(t) and S(t)[A’] = & respectively. Thus we
conclude.

Finally, the remaining case t = su where s € DS contradicts ¢t ¢ MF.

e Item (ii). Observe that {p’ = v’} decided implies p’ € MF, and also ' € MF
unless bm(p’,0). We consider the following cases depending on whether p is in
MTF or not and likewise for w.

Assume p ¢ MF, so that G = S;(p) and D = . In this case, p’ € MF implies that

r
the TH:(i) can be applied on p —e» p’. We obtain that I" uses G, and G,[I'] = &,
which suffices to conclude.

Assume p € MF and u ¢ MF, so that {p >p u} = wait implies —bm(p,0), and
therefore G = J and D = S;(u). Observe that p € MF, {p =g u} = wait and

r
p —e» p/ imply —bm(p’,0), so that v’ € MF. Therefore, the IH:(i) can be applied
Il
on u —e» u'. We conclude like in the previous case.

Assume p,u € MF, so that {p>gu} = wait implies p = p1ps and u = ujuz. Then
G = 1G; U 2G2 and D = 1D; U 2Dy, where SMy(p;, u;) = {G;, D;) for i = 1,2.

Moreover, it is straightforward to verify that both I' and II preserve 1 and 2, so
F|7; H"L
that Lem. 3.5.20:(i) implies p’ = piph, v’ = uwjuh, and p; —» p} and u; —e» u} for

i = 1,2. On the other hand, the hypotheses imply the existence of some k € {1,2}
verifying {pi = ur} = wait and {p) =pu} } decided. Therefore, the IH:(ii) can be
applied yielding that I'|; uses (Gy), or II|; uses (Dy),. Hence, Lem. 3.5.20:(iii)
implies that I" uses G, or II uses D,.
Moreover, {p' =p v’} positive implies {p; =g u;} positive for i = 1,2. For each i,
observe that {p >p u} = wait implies {p; =9 u;} # fail. If {p; >p u;} = wait,
then the IH:(ii) implies (G;),[I';] = (Ds),[11|;] = &; if {pi =6 us} is positive,
then Lem. 3.5.21 implies G; = D; = . Hence Lem. 3.5.20:(ii) yields G,[I'] =
Dr[Hﬂ = .

O

90

CHAPTER 3. NORMALISATION

3.5.2 Normalisation of S — main proofs

In this section we show that S always selects necessary and non-gripping sets of redexes.

A
Proposition 3.5.23. Let t —e»t' where t ¢ NF and t' € NF. Then A uses S(t).

Proof. We prove the following three statements simultaneously, where ¢, u, p are terms.

(i) The statement of the proposition.

r I
(ii) Let p —e» p’ and u —e» v’ where p',u' € NF, (G, D) = SMy(p,u) # {J,), and

{pgu} = {p =9 '} = wait. Then I uses G, or II uses D,.

r I
(iii) Let p —e» p’ and u —e» w’ where p’,u' € NF, (G, D) = SMy(p,u) # {J,), and

{p/o u} = {p'/p v'} = wait. Then I uses G,, or II uses D,.

As in Lem. 3.5.22, item (iii) follows from item (ii). So we prove the others, by induction
on [t| + |u| + |p|.

e Item (i). If ¢ is either a matchable or a variable, then ¢ is a normal form contra-

dicting the hypotheses, so let us assume that ¢ is an application or an abstraction.

Assume t = (Agp.s)u and {p/y u} decided, so that S(t) = {{,€)}. Suppose A does
not use S(t), so that t' = (\gp’.s")u’, and A preserves 11, 12 and 2. This implies
p —e» p' and u —e» o/, cfr. Lem. 3.5.20:(i), so that Lem. 3.4.12 implies {p'/p '}
decided, contradicting ¢ being a normal form. Thus we conclude.

Assume t = (M\gp.s)u, {p/y u} = wait and (G, D) = SMy(p,u) # (&,). We
define A’ as follows. If A includes the contraction of, at least, one head step, i.e.
if there exists some n < |A| verifying (tgt(A[l..n — 1]),€) € A[n], we consider the
minimum such n and define A’ := A[l..n — 1]. Otherwise, A’ := A. In both

A/
cases t —o» (A\gp'.s")u’ and A’ preserves 11 and 2, so that Lem. 3.5.20:(i) implies
A A
P o p' and u “o% ', Notice that in the latter case, p',u’ € NF. In both cases we

obtain that A’y uses G, or A’|y uses D, if {p'/g v’} decided by Lem. 3.5.22:(iii),
otherwise by the TH:(iii). Recalling that in this case, S;(t) = 11Gu2D, we conclude
by applying Lem. 3.5.20:(iii).

Assume t = (M\gp.s)u, {p/y u} = wait, and SMy(p,u) = (&,). A simple
argument by contradiction based on Lem. 3.5.22:(iii) implies that ¢’ = (Agp’.s")u’

Al
and A preserves 11, 12 and 2. Therefore, Lem. 3.5.20:(i) implies p —o p’ and

similarly for s and u. If p ¢ NF, so that S;(¢t) = 11S5:(p), then the IH:(i) can be
applied to obtain that A|;; uses S(p), so that Lem. 3.5.20:(iii) allows to conclude.
The remaining cases, i.e. p € NF,s ¢ NF and p,s € NF respectively, can be
handled similarly.

Assume ¢t = su and s ¢ ABS. If there exists some n such that tgt(A[n]) = s'u’

and s’ € ABS, then we consider the minimal such n, and let A’ = A[1..n]. Tt is
A/
easy to deduce that A’ preserves 1 and 2, so that Lem. 3.5.20:(i) implies s —e|—>19 s

Observe that s ¢ NF, implying S;(t) = 1S:(s). Moreover, s € DS would imply
s’ € DS, so that s ¢ MF. Hence, a projection argument similar to that used
in previous cases, based on Lem. 3.5.22:(i), allows us to conclude. Otherwise s
does not reduce to an abstraction, implying ¢ = s'u/, A preserves 1 and 2, and

3.5. THE NORMALISING REDUCTION STRATEGY S FOR PPC 91

Al2

Al
s',u’ € NF. Again, a projection argument applies, to s—ens if s ¢ NF, to u—e»u’
otherwise, based on IH:(i).

Assume ¢t = A\gp.s. Then, t' = (A\gp'.s’), A preserves 1 and 2, and p’, s’ € NF. A

Al A\
projection argument based on IH:(i) applies to p o p or s o5 s s', depending on

whether p € NF or not.

e Item (ii). Assume p ¢ MF, so that G = S;(p) and D = . The hypotheses
imply S:(p) # &, and then p is not a normal form. Therefore, item (i) just proved

r
applies to p —e» p’, which suffices to conclude.
Assume p € MF, —bm(p,0), u ¢ MF. In this case, G = J and D = S§;(u). Hence,
Il
an argument similar to that of the previous case applies on u —e» u'.

Assume p,u € MF. In this case, {p >p u} = wait implies p = p1ps and u = ujus,
so that G = 1G1 U 2G2 and D = 1D; u 2Dy, where SMy(p;,u;) = {Gi, D;)
for i = 1,2. The assumption p,u € MF also implies p' = pip, v’ = ujul,

Tf;
and both T" and II preserve 1 and 2. Then Lem. 3.5.20:(i) implies p; —e‘—» p; and

1
U; —e‘»a u, for i = 1,2. Moreover, (G, D) # {, &) implies (G}, Dy) # (&, &) for

some k € {1,2}. Notice that {pr =p ur} being positive (resp. fail) contradicts
Lem. 3.5.21 (resp. {p=p u} = wait). Then {py =p ur} = wait, so that either
the IH (ii) or Lem. 3.5.22:(ii) applies, depending on whether {p) = u} } is wait or
positive. In either case, we obtain that I'|; uses (Gy),, or II|; uses (Dy),. Thus

Lem. 3.5.20:(iii) allows to conclude. -

A
Lemma 3.5.24. Let t —» t', b, € S(t)[A], and a, verifying a, < b.. Then a, is a
matching failure.

Proof. We prove the following, more general statement.
(i) The lemma statement.

r II
(ii) Let p—e»p’ and u—e»u’ such that {p>pu} = wait, b, € G,[I'] or b, € D,[II] where
SMy(p,u) = (G, D), and a, verifying a, < b,. Then a, is a matching failure.

r o
(iii) Let p—e»p’ and u—e»u' such that {p/y u} = wait, b, € G,[I'] or b, € D, [II] where
SMy(p,u) ={G, D), and a, verifying a, < b,. Then a, is a matching failure.

As in Lem. 3.5.22, item (iii) follows from item (ii). So we prove the others, by
induction on |t| + |u| + |p|.

e We prove item (i). If ¢ is either a variable or a matchable, then ¢ is a normal form,
contradicting the existence of b,.

Assume t = (Mgp.s)u and {p/y u} decided, implying S(t) = {{t,e)}. Then, a
straightforward inductive argument on |A| yields that S(t)[A] = & or b, = {t', €),
contradicting in both cases the existence of a,. Thus we conclude.

Assume t = (M\gp.s)u, {p/p u} = wait, and (G, D) = SMg(p, u) # (&,). Then

A//
S:(t) = 11Gu2D. Consider A, A” such that A = A"; A", t—e»»t” = (\gp'.8")u' —»

92

CHAPTER 3. NORMALISATION

t', A’ preserves 11 and 2, and either A” = nily or (t",e) € A"[1]. Lem. 3.5.20:(i)
N N
implies p —e|}»1p/ and u —e'fe u'. If {p'/g u'} is positive, then Lem. 3.5.22:(iii) implies

Gr[A'|11] = D, [A']2] = &, and therefore Lem. 3.5.20:(ii) yields S(¢)[A'] = &. If
{p'/p '} = fail and A” # nily, then it is immediate to obtain ¢’ = I, a normal
form, contradicting the existence of b,. Therefore, assume {p'/y u'} € {wait, fail}
and A” = nily, so that A = A’ and ¢ = (\gp'.s")u/. An analysis of the ancestor
of by, which is some by, € S(t), along with Lem. 3.5.20:(ii), yields that b = 11¥’
where V', € G.[A |11] or b = 2V where V', € D,[A |2], implying respectively
that o', € RO(p') or ¥, € RO(v'). Let a, verifying a, < b,. If a = ¢, then
{p'/p u'} = fail, i.e. a, is a matching failure. Otherwise, a = 11a’ or a = 24/, so
that a/, € RO(p') or d/, € RO(u') respectively, and o', < b',. Therefore TH (iii)
implies that a’, is a matching failure, which suffices to conclude.

Assume t = (Agp.S)u, {p/p u} = wait, and SMy(p,u) = (I,). Observe that

r
t —o» (Agp".s")u” such that {p”/y u"} is decided would contradict SMy(p,u) =
(&, &); cfr. Lem. 3.5.20:(1) and Lem. 3.5.22:(iii) considering a minimal such I
Therefore, t' = (A\gp'.s")u/, A preserves 11, 12 and 2, and {p'/y v'} = wait. If
p ¢ NF, so that S;(t) = 11S;(p), then Lem. 3.5.20:(i) and Lem. 3.5.20:(ii) imply

A
p—|el—>1>p/ and b = 110" where V', € S(p)[A[11] respectively. Observe {p//p v’} = wait

implies that (',) ¢ RO(t'). Then a, < b, implies a = 11a/, so that o', € RO(p'),
and a', < V',.. Hence the TH:(i) applies, which suffices to conclude. The other cases
(p' € NF and s’ ¢ NF, and p/, s’ € NF) admit analogous arguments.

4

Assume t = su where s ¢ ABS. Let A’, A” such that A = A’; A", t—Aeaa s'u —e» t,
A’ preserves 1 and 2, and either A” = nily or (s'u/,e) € A”[1]. Lem. 3.5.20:(i)
implies s ée‘»ls s' and u ée‘f» u'.

— If s € ABS, then s # s’ implying that s is not a normal form, and therefore
S:(t) = 18:(s). Moreover, s ¢ MF; notice that s € DS would imply s’ € DS.
Therefore, Lem. 3.5.22:(iii) implies S(s)[A’|1] = &, so that Lem. 3.5.20:(ii)
contradicts the existence of b,. Thus we conclude.

— If s ¢ ABS, then A” = nily,, so that A = A’ and ¢’ = s'u’. Moreover,
{' ey ¢ RO('). If s is not a normal form, so that S;(t) = 15:(s), then
Lem. 3.5.20:(ii) implies b = 1b" where V', € S(s)[A]1]. On the other hand,
ar < b, implies a = 1a’ where o/, € RO(s'). Then the IH:(i) applies, which
suffices to conclude. If s is a normal form, so that S:(t) = 2S5:(u), then a
similar argument applies.

Assume t = N\gp.s. Then A preserves 1 and 2, so that t' = A\gp'.s’ and Lem. 3.5.20:(i)
Al

and 5 —o» s'. A projection argument based on IH (i) analogous to

. : Al Al)

those used in previous cases, on p Zo» p' or s “on s depending whether p € NF,

allows to conclude.

Alq

implies p —e» p’

We prove item (ii). There are three cases to analyse, given {p =y u} = wait.
If p ¢ MF, then G, = S(p) and D, = J, so that b, € G.[I'] = S(p)[I']. The

r
IH:(i) on p —e» p’ suffices to conclude.

3.5. THE NORMALISING REDUCTION STRATEGY S FOR PPC 93

If pe MF and u ¢ MF, so that G, = J and D, = S(u), then an analogous
argument applies.

If p = p1p2, u = wug, and p,u € MF, then G = 1G1 U 2G2 and D = 1D U 2D,
where (G;, D;) = SMpy(pi,u;) for i = 1,2. Moreover, p,u € MF implies that
I' and II preserve 1 and 2, p' = pip) and v’ = wjul. Lem. 3.5.20:(i) yields

r|; 1),
pi —o» p; and u; —e» u} for i = 1,2. In turn, Lem. 3.5.20:(ii) implies b = kb’ where

V' € G, [T|] or V' € Dy, [11|;], for some k € {1,2}. We consider that k. Observe

that {pr>pur} = fail would contradict {ppu} = wait, and {pg>pux} positive

would imply Gy, = Dy, = ¢ by Lem. 3.5.21. Therefore {py=>gur} = wait. Observe

that neither (p’, €) nor (', €) are steps, so that a, < b, and b = kb’ imply a = kad’.
Ll l

Hence the TH:(ii), applied on pj —» p). and uy —e» uj,, allows to conclude.

Proposition 3.5.25. Let t be a term not in normal form. Then S(t) is a non-gripping
set.

v
Proof. Let t —e» u, a, € RO(u), b, € S(t)[¥]; it suffices to deduce that b, does not grip
ar. If a, € b, then we immediately conclude. If a, < b, then Lem. 3.5.24 entails that
a, is a matching failure so b, cannot grip a,. O

Theorem 3.5.26. The reduction strategy S, cfr.Dfn. 3.5.2, is normalising.

Proof. The results in Section 3.4.3 yield that PPC enjoys all the required axioms.
Prop. 3.5.23 and Prop. 3.5.25 imply that the sets of steps selected by S are necessary
and non-gripping. Thus the statement is an immediate consequence of Thm. 3.3.14. [

94

CHAPTER 3. NORMALISATION

Chapter 4

Standardisation for the linear
substitution calculus

As we described in the introduction, cfr. Section 1.2.2, the linear substitution cal-
culus, notation A, is an explicit substitution (ES) calculus at a distance, in which
substitutions are not propagated along terms, thus yielding a simpler reduction space
than that of previously proposed ES calculi.

The linear substitution calculus enjoys several properties expected for ES calculi.
The proofs can be obtained as minor variations of the proofs given for other ES calculi
at a distance, cfr. [KOC08, AK10].

The purpose of this chapter is to establish standardisation results for Ay, through
the ARS model. To reach this goal, it suffices to model this calculus as an ARS, and show
that the resulting ARS satisfies all the axioms required by the abstract standardisation
theorems presented in [Mel96], which are included in this thesis as Thm. 2.1.23 and
Thm. 2.1.24, cfr.page 41. There are three aspects which make the characterisation of
Alsup @5 an ARS a non-trivial task.

Firstly, the identification of steps, and thus the definition of residual relation, is
not immediate, because different coinitial steps could correspond to the same subterm.
Recall the rule

Cle][z/u] — Clu][z/u] (4.1)

introduced in page 11, and consider the two steps for this rule in the term (zz)[z/y]:
these steps can be distinguished only by the respective occurrence of x.

Secondly, the intent of the embedding relation in the ARS model, as described in
Section 1.3.1, is not coherent with the syntactic nesting of steps. We recall that, accord-
ing to the ARS model, a < b should indicate that the contraction of a could possibly
result in the erasure, or the duplication, of b. Cfr. the axiom Linearity, defined in Sec-
tion 2.1.5. As discussed in Section 2.1.1, for the A-calculus, this criterion is coherent
with the nesting of steps: a necessary condition for a step a to erase or duplicate a step
b, is that (the subterm corresponding to) a nests (that) b in their common source term.

This coherence does not hold in AJL,,. Recall the rule (4.1), and let us remark that
the explicit substitution construct s[z/u] binds the occurrences of x in s. Then term

t = (zz)[z/y][y/u]

95

96CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

includes two steps corresponding to the underlined occurrences of x and y. Let us call
these steps a, and a, respectively. Let us find out the subterms corresponding to a,
and ay. The scope of the substitution [z/y] is the subterm (zz); therefore, the context
C indicated in (4.1) for a, is (Oz). In turn, the scope of the substitution [y/u] is
the subterm (zz)[z/y], notice that ¢ is properly parsed as the added parentheses in
((z2)[z/y]) [y/u] suggest. Hence, the context C' for ay is (zz)[z/0]. Consequently, we
can mark the subterms corresponding to the steps a, and a, as follows:

ay
A
N

t = ((z2)[z/y]) [y/u]
—

Qg

The contraction of these steps yields

(22)[2/y][y/u] == (y2)[e/ylly/ul =t (22)[2/y][y/u] =5 (@2) [x/u][y/u] = t,

Notice that a, has two residuals after a,, matching the two underlined occurrences of y
in t,.! On the other hand a, has exactly one residual after ay. Therefore, any definition
of the embedding relation in an ARS modeling AT, should establish a, < a,, whereas
the nesting between the corresponding subterms goes in the opposite direction.

The third aspect which makes modeling of A, as an ARS complex, is the corre-
spondence between the calculus and the linear logic proof-nets [Gir87].

Terms of Ay, and proof-nets are behaviorally equivalent in a strong sense: every
term ¢ maps to a proof-net P;, and every step on t or P, maps to an evaluation step
on the other. Additionally, a bijection can be established between the steps in t and
those in P, so that concepts such as residuals transfer from terms to proof-nets and vice
versa. As expressed in Section 1.2.2; an equivalence relation, defined through equational
logic from three simple equations, turns the behavioral equivalence between terms and
proof-nets into a true isomorphism: each proof-net corresponds exactly to a class of
equivalent terms. From this perspective, we could consider equivalent terms as just
different representations of an unique object being rewritten.? On the other hand, to
support this view, we should be able to define an ARS whose objects were not single
terms, but classes of equivalent terms. Therefore, all the elements participating in an
ARS, as steps, residuals and embedding, should be stable by this equivalence.

We define a first ARS for Ay, using labels to identify and trace steps, leading to
the definition of the residual relation, and using a simple left-to-right embedding order
on coinitial steps. This ARS enjoy all the axioms required in Thm. 2.1.24, namely the
initial axioms, FD, SO, and all the embedding axioms. We remark that this calculus
enjoy semantical orthogonality, despite the fact that it fails to comply with a syntactic
orthogonality criterion: e.g., the two steps in (zx)[z/y] form a critical pair.®> We also
notice that the left-to-right embedding imposes a total order on coinitial steps, making
it easier to verify the embedding axioms. We obtain a strong standardisation result for
this ARS: each class of equivalent reduction sequences includes exactly one s.r.s..

! As in a previous example, these two steps correspond to the same subterm of ¢, being distinguished
only by the contexts of the respective occurrences of y.

2as it is the case w.r.t. a-equivalence in the A-calculus, cfr. [LV02].

3We discuss different perspectives about orthogonality in Section 6.2.3.

97

W.r.t. the aspects making the characterisation of A7, in the ARS model a challeng-
ing task, the two former ones are adequately addressed: labels lead to a sound definition
of residuals, and the left-to-right order is coherent with the intent of the embedding
relation. On the other hand, this is not the case for the last concern, i.e., stability
by equivalence on terms. Particularly, the left-to-right-order on coinitial labels is not
stable. Recall the equation described in Section 1.2.2:

tla/sly/ul ~ tly/ullz/s] if o ¢ £v(u) and y ¢ £v(s)

and consider the following terms:

t = (ya)[2/s1][y/s2] ~ (ya) [y/se][2/s1] = ¢

It is clear that the relative embedding between two steps, lying inside s; and sg respec-
tively, are different in ¢ than in ¢'.

To deal with the equivalence defined on terms, we show that labels induce, for
any pair of equivalent terms, a bijection between their sets of steps such that targets
of related steps are again equivalent. Moreover, the label-based characterisation of
residuals preserves these bijections: residuals of related steps in equivalent terms, after
related steps, are again related. Furthermore, we define an order on coinitial steps,
the box order, which is stable by equivalence on terms, via the bijection on steps just
mentioned.

These elements allow to define a second ARS for A];,,, which satisfies the three
concerns identified for the characterisation of the calculus in the ARS model. This
ARS satisfies all the axioms required in Thm. 2.1.23, yielding the existence of a s.r.s.
equivalent to any reduction sequence. Unfortunately, this ARS fails two axioms required
for Thm. 2.1.24, so that uniqueness of s.r.s. in each class of equivalent reduction
sequences cannot be derived from this result. We nevertheless obtain uniqueness of
s.r.s. for this ARS, and hence for A\{;,,, by developing a novel abstract standardisation
proof in the ARS model. This proof makes use of the existence of two different ARS
modeling the same rewriting system.

Therefore, the material in this chapter makes a contribution to the study of explicit
substitution calculi at a distance, and also a contribution to the ARS model. These
results were presented in [ABKL14], along with other results about Aj5,,. We mention
a coinductive characterisation of the notion of external step, which allows to show that
the leftmost reduction strategy is normalising for this calculus. The linear head reduction
for Al is also studied in that work.

Plan of the chapter

In Section 4.1 we introduce AJL,,, following [ABKL14]. The labels used to identify
and trace steps, and the graphical equivalence on terms which sets the isomorphism
with proof-nets, are presented as well. In Section 4.2 we describe the first model of
Aleup @S an ARS, showing that it verifies all the axioms required in the standardisation
theorems stated in Section 2.1.8. Therefore, our first standardisation results are given
in Section 4.3, where we discuss also its limitations. Section 4.4 is devoted to show that
the label-based definition of steps and residuals is stable by the graphical equivalence.
In Section 4.5 we define the box order and use it to define the second ARS which models
Asup; We verify the axioms needed to obtain the existence of an s.r.s. equivalent to
any given reduction sequence, and subsequently show why the stronger uniqueness result

98CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

cannot be obtained through the abstract standardisation results presented in [Mel96].
Finally, in Section 4.6 we develop a novel abstract standardisation proof, and apply it
t0 Alaup-

4.1 The linear substitution calculus

Consider a countable set of wvariables x,y,z,2',21,.... The set of terms of the linear
substitution calculus, denoted by T, is generated by the following grammar:

t o= x| tt | Axt | t|x/t]

A term z is called a variable, tu an application, Az.t an abstraction and t|z/u] an
explicit substitution. We will use L,L’,L;,... to denote (possibly empty) lists of
substitutions [x1/t1]... [zy/tn]. Notice that the lists of substitutions are not terms.

In the terms Az.t and ¢[x/u], the occurrences of x in t are bound by the abstraction
or the explicit substitution respectively. The derived notion of free variables of a term ¢ is
denoted by fv(t). As usual, we consider terms up to a-conversion, i.e. up to renaming of
bound variables. When needed, we will assume that terms follow Barendregt’s variable
convention, cfr. [Bar84].

A context is a term having at least one occurrence of a designated symbol O called
the hole. In this chapter we use mostly contexts having exactly one occurrence of the
hole, i.e. one-hole contexts. We also use occasionally two- and three-hole contexts. The
meta-notation L = [z1/t1]...[xr/tk] can also be seen as a context O|xy/t1]...|zk/tk].
We write C[t] for the term obtained by replacing the only hole of a one-hole context
C by the term t. We write C[[u]] when the free variables of u are not captured by
the context C', i.e. there are no abstractions or explicit substitutions in C that bind
the variables of fv(u). We use D[t1,t2] (resp. D[t1,t2,t3]) analogously to C[t] for a
two-hole (resp. three-hole) context D.

In the following, we give the definition of two variants of the linear substitution
calculus, which we call A\jgyp and AJg,, respectively.

Definition 4.1.1 (Ajggp-calculus). The Aisup-calculus is defined by the preceding syn-
taz, plus the semantics given by the reduction relation —), . This relation is defined
as the union of —av, —1s, and —gc, which are the closure by contexts C of the following
rewriting rules:

(Az.t)Lu —a t[z/u]L
Clal[z/u] =1s Clu][z/u]

t{z/u] Foge b if © ¢ fv(t)

The names db, 1ls, and gc stand for distant beta, linear substitution, and garbage
collection, respectively.

Rule -4, (resp. +15) comes from the structural A-calculus [AK10] (resp. Milner’s
calculus [Mil07b]), while 4. belongs to both calculi. In db we may assume w.l.o.g. that
Ule{:vi} Nfv(u) = & and = ¢ fv(u) U Ule fv(t;) . The occurrence of L, considered
as a context, in the db-rule, the use of a context C' in the 1ls-rule, and the global side
condition in the gc-rule, justify the idea of rewriting rules at a distance.

Fig. 4.1 shows a reduction sequence including applications of the three rules. We
remark the application at a distance of the db- and ls-rules in the second and third

4.1. THE LINEAR SUBSTITUTION CALCULUS 99

steps, respectively. In turn, the application of the gc-rule in the last step also act at a
distance: there is no need to propagate the substitution [x/a] through the term prior
to garbage-collecting it. Cfr. the Ax and the \J,, reduction sequence examples given in
Section 1.2.2, Figs. 1.2.2 and 1.4 respectively.

(Az.(A\y.y(zy)))ab —an (Ay.y(zy))[z/a]b
—a (y(zy))[y/b][2/2]
—1s (y(ay)) [y/v][z/a]
—gc (y(ay))[y/v]

Figure 4.1: An example reduction sequence in Aigup

The list-of-substitutions context L in rule db is motivated by its encoding in proof-
nets, where substitutions are in fact unordered, except for occurrences of variables bound
by a substitution in the list. Moreover, in proof-nets substitutions are partially free
to float (i.e. to traverse some term constructors). These features of substitutions are
formalized as follows:

Definition 4.1.2 (Graphical equivalence). We define the graphical equivalence, no-
tation ~, as the contextual, transitive, symmetric and reflexive closure of a-conversion
and the following axioms:

tlz/ully/s] ~os tly/s][z/u] = ¢ fu(s) &y ¢ fu(u)
(Ayt)[z/u] =0, Aytlz/u]l y ¢ fv(u)
(ts)[z/u] mop tlx/u]s x ¢ £v(s)

This equivalence characterizes exactly the representation of terms as proof-nets, in
the sense that ¢ ~ w iff t and v map to the same proof-net [Accll]. We use = to denote

. 1 .

the union of ~¢s, ~4, and ~,,, and ~ to denote the symmetrical and contextual closure

of the union of a-conversion and ~. Therefore, ~ is the reflexive and transitive closure
1

of ~.

Definition 4.1.3 (A p-calculus). The ALy -calculus is given by the set of terms T
modulo the graphical equivalence ~, and by the reduction relation — .. , defined as
follows: |t] —x~ |u] iff there exist t',u verifying t ~ t' —y,_, u' ~ u, where |t| denotes
the ~-equivalence class of terms associated to t. Thus in particular t —y,_, t' implies

[t =5 1E]-

Notice that the terms related by the graphical equivalence equations o1 and oo are
syntactically different: the main construct in (Ay.t)[z/u] is the explicit substitution,
while it is the abstraction for \y.t|x/u]; a similar situation can be seen in oy. In turn,
the terms related by the CS equation are also syntactically different in a remarkable
way: they are parsed as (t|x/u])|y/s| and (t|y/s])|z/u] respectively. We notice that
the list-of-substitutions meta-notation L is at odds with syntactic structure: if L =
[z1/t1] ... [zn/tn] and u is a term, then the term that we write informally as uL actually
parses as ((u[z1/t1])...)[zn/tn]. The intuition given by the graphical equivalence and
the L meta-notation, corresponding with proof-nets, is in tension with the term syntax.
This tension motivates the careful study of the properties of AJ;,, that we perform in
Section 4.4. This study entails that Ay, behaves as expected.

100CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

4.1.1 A labeled version

In Sections 4.2 and 4.5.1, we introduce several ARSs to model A1gy, and AJg,,. Residuals
are defined in these ARSs by labeling redexes. In order to compute a[b], the redex a is
given a unique label, say «, obtaining a labeled term. This labeled term includes a step
corresponding to b; the residuals of a after b are exactly the redexes labeled with « in
the target of that step.

We formalise this idea by defining a labeled version of A\j,. Consider a countable
set of labels, i.e. special symbols denoted as «,3,7,.... The set of labeled terms,
denoted by 7T, is generated by the following grammar.

tu=a| x| tt| Ae.t | Aat | t{z/t] | tlx/t]

The notations (), X\z(®) .t and #[z(® /t] mean that 2 may or may not be labeled.
We write Lab(?) to denote the set of all the labels of ¢ and ¢° to denote the term
obtained from ¢ by removing all its labels. Thus for example ((z%y®)[y/\27.2])° =
(xy)[y/Az.z]. A term t can be labeled in different ways, leading to different variants of
t. More precisely, we say that ¢ is a variant of w iff t© = w°®. Thus in particular, ¢ is a
variant of itself.

We extend the meta-notation L to lists of possibly labeled substitutions, and C' to
possibly labeled contexts. Similarly, the notions of free and bound variables are extended
to labeled terms as expected together with their corresponding notion of a-conversion.
We use £1v(t) to denote the subset of £v(t) having at least one labeled occurrence, e.g.

£1v((z*y”)[y/2]) = {=}.

Definition 4.1.4. Labeled reduction = on labeled terms is defined as the contextual
closure of the following rewriting rules, on labeled terms:

Az®)Ly Se tlz/u]l

ClaTlz/u] S1s Cllullla/u]

t[xz®/u] gt x ¢ fv(t)

Definition 4.1.5. The labeled graphical equivalence* ~ on labeled terms is given
by the contextual, transitive, symmetric and reflexive closure of a-conversion and the
following axioms:

t[x(“)/u] [y(ﬁ)/s] g t[y(ﬁ)/s] [x(o‘)/u] x ¢ fv(s) & y ¢ fv(u)
MDD /] ~py WOtz /u] y ¢ fv(u)
(ts)[2(®) /u] ro, () /u]s x ¢ fv(s)

2

The axioms are to be understood in such a way that each label occurs either in both sides
of the axiom or in none of them.

Notice that the terms, lists of substitutions and contexts which occur in Dfns. 4.1.4
and 4.1.5 are labeled. In order to show that Aj;,, satisfies the SO axiom, we will work
with the following subset of labeled terms.

Definition 4.1.6. We define the set of well-labeled terms, notation Ty, as follows:

4By abuse of notation we use the same symbol both for the equivalence relation on labeled and
unlabeled terms.

4.2. A FIRST ARS TO MODEL \isus 101

e x € Tywe and x € Ty

Ifte Twe and x ¢ £1v(t) then A\x.t € Tyye

If t,u € Ty, then tu € Tyyr

If (A\z.t)L,u € Tyye, then (Ax®.t)Lu € Ty

Ift,u € Twe, then tx/u] € Twe
o Ift,ue Tywe and x ¢ £v(t), then t[z*/u] € Tyy,.

Note that Az®.z, Az.z® and z[z*/u] are not in Tyy,. Note also that subterms of well-
labeled terms are not necessarily well-labeled (e.g. the abstraction of a labeled db-redex).
Well-labeled terms are stable by reduction and graphical equivalence:

Lemma 4.1.7. Let t € Ty, Ift = w ort ~ u, then u € Tyy,.

Proof. See Appendix C, page 263. O

4.2 A first ARS to model)\ o

In this section, we define an ARS Ry to model the Mgy calculus. This ARS is a
first, approximate model of the reduction spaces of A\igup. It allows us to obtain some
preliminary standardisation results. These results, in turn, are used in the study of
more “accurate” models of the linear substitution calculus, given by the ARSs we define
in Section 4.5.1. For the relation between the ARS 2(; and those we define later, cfr.
Section 2.1.9.

Definition 4.2.1. We define the ARS . = (O, R, src, tgt, [-], <) as follows.

Objects
The set O of objects is the set of terms of A1sub-

Steps, source, target
There are three kinds of steps, corresponding to the three rules of Aigw. Let D
be a context and r a term.

o A pair {D,r) is a db-step iff r = (A\r.s)Lu,
o q triple (D,r,C) is a 1s-step iff r = C|z]|[z/u], and
e a pair {(D,r) is a gc-step iff r = s|z/u] and x ¢ £v(s).

The set R of steps is the union of the sets of db-, 1s- and gc-steps.

For all kinds of steps, the source is the term D|[r|. The target is D|s|z/u]L],
D[C[lu] [x/u]], or D[s], for db-, 1s- and gc-steps respectively.

The anchor of a step is the variable occurrence which would possibly carry a label
in a labeled variant of the corresponding term. It is the only occurrence of x for
db- and gc-steps, and the one inside the context C for 1s-steps.

102CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Residual relation

Observe that the definition of steps applies also to labeled terms, exactly as it is
giwen for unlabeled terms, provided that D, r and C' stand for labeled contexts and
terms. Let t be a labeled term, a € RO(t) (where the anchor of a can be labeled or
not), and « ¢ Lab(t). If t is a labeled term, a is a step and « is a label, then we
say that a is an a-labeled step in t iff src(a) =t and the anchor of a is labeled
with a. We define the a-a-lift of t, notation 1ift(t,a,«), as the variant of t
obtained by assigning the label a to the anchor of a: if a = (D, (A\z(® .s)Lu), then
lift(t,a,a) = D[(Az®.s)Lu], and analogously for the other kinds of steps.

Notice that t = D[r] and t' being a variant of t imply that t' = D'[r'], where D’
and v’ are variants of D and r respectively. This observation yields the existence
of a natural bijection between the sets of steps of two variant terms.

Given a,b € RO(t), we define a[b]a’ as follows. Let t 5w and 1lift(t, a, @) LN
ug where by is the step which corresponds to b in 1ift(t,a,«). Then a[[b]d’ iff
a' € RO(u), and the anchor of the step corresponding to a' in uy is labeled with c.

We remark that any variant of t could be used to compute a[[b]: the result is inde-
pendent of the variant, considering the natural bijection between steps in variants.

Embedding
Given a,b € RO(t), we define a <y b iff the anchor of a is to the left of the
anchor of b (considering t as a string of symbols). Clearly, <y is a total order so
that a €1 b and a # b imply b <¢ a.

Observe that the quotient by the graphical equivalence ~ is not considered: if t # u and
t ~ u, then ¢t and u are two different elements of O.

We define other notions associated with steps.

Definition 4.2.2 (Pattern, box, context of a step). Given a step a = (D,r) or a =
(D,r,C, the pattern of a is r; the box® of a is the subterm of the pattern noted u in
the definition of each kind of step; and the context of a is D.

Fig. 4.2 depicts several concepts associated with steps, using as example a ls-step.
Notice that the pattern of two different coinitial steps can coincide. This is the case for
1s-steps, as in the two steps in the term (zz)[z/y].

pattern
(D Clz _IM=/ w _1.C)
context anchor box

Figure 4.2: Notions associated with steps in Aigup
We already noticed, in the definition of the residual relation, that the definition of

steps extends naturally to labeled terms.

Notation 4.2.3. If t is a labeled term, then we write Red,(t) for the set of steps in t
whose anchors are labeled with c.

SWhen terms are represented as linear logic proof-nets, what we call boz corresponds exactly to the
exponential box.

4.2. A FIRST ARS TO MODEL \isus 103

We give some examples of the preceding definitions. The term

t = (Az.z[z/b])((wyw) [w/a] [y/c])
is the source term of the following five 2l steps:

e One db-step, whose pattern comprises all the term ¢. This step is described in 2l
as (O, t), and its anchor is the x appearing next to the only occurrence of \.

e One gc-step, corresponding to the substitution [z/b], whose description is
{(Az.0)((wyw) [w/a][y/c]), x[z/b]), and whose anchor is z.

e Two 1s-steps, corresponding to the two occurrences of w in the subterm wyw. The
description of the step corresponding of the leftmost occurrence is
{(Az.z[z/b])(O[y/c]), (wyw) [w/a], Oyw), and its anchor the corresponding oc-
currence of w. Notice that the pattern of these two steps, namely (wyw)|w/a],
coincide.

e One ls-step, corresponding to the occurrence of y in the subterm wyw, whose
description is {(Az.x [2/b])0, (wyw) [w/a] [y/<], (whw) [w/al).

The labeling of the anchors of these steps, using different labels for each, yields the
variant

= ([/b)) (wy 7w’ [w/a] [y/c])

Let a,b, ¢, d, e be the steps in ¢ labeled with «, 3, v, § and 7 respectively in . The relative
position of the anchors give the embeddings for these steps, namely
e <p a <y b <¢ ¢ < d. In turn, performing a labeled reduction from ¢’ allows to
compute their residuals. Consider

t= (ama[2/b])((why) [w/al[y/c])
S 2] /o] [/ () [w/al [y/c]] = 1
o1s (W) [w/a][y/c] [22/b] [2/(wiy ud) [w/al [y/c]] = t)

E.g., we observe that b has one residual after e, which is the S-labeled step in ¢}. In
turn, this step has two residuals after the 1s-step contracted subsequently, i.e. the two
B-labeled steps in t.

Two decisions were made in order to keep 2 simple. Firstly, the quotient of the
set of terms by the graphical equivalence ~ is not considered; each term of Ay, is a
separate object. Secondly, the embedding relation <t is a total order, being larger than
what the intuition of embedding (as described in Section 1.3.1) would suggest: a < b
does not imply that a can have some power on b. E.g. in (z|z/s]|)(y|y/u]), we have
a <t b for any a and b inside s and u respectively. The converse does hold: whenever a
can have some power on b, a <¢ b is verified.

In the remainder of this section, we prove that 2lp verifies the initial axioms, FD,
SO, and all the embedding axioms.

It is immediate to verify that Self Reduction and Finite Residuals hold.

Lemma 4.2.4 (Ancestor Uniqueness). Let bi[a]b’ and ba[a]b’. Then by = bs.

104CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Proof. Let us define t as the source of a, by and by. Let t' be the variant of ¢ which
results of lifting it successively w.r.t. each of its redexes, i.e. the anchor of each redex in
t carries a unique label in #. Let ¢/ = «’. Independence of the variant used to compute
residuals implies that the residuals of all the steps in ¢ can be obtained by looking for
the corresponding label in u’. Therefore, by [a]]b’ implies that by has, in ¢, the same label
as b in u'; and bofa]b’ yields that also by has in ¢ the same label as b’ in «’. Hence, by
and by have the same label in #'. Consequently, each redex carrying a unique label in ¢/

implies b; = bo.]

We organise the proofs of the other axioms in different subsections.

4.2.1 Finite developments

We define the notion of labeled multiplicities, and then use it to define the measure
(called number of potential labeled redexes) proving finiteness of developments.

Definition 4.2.5. The number of labeled multiplicities of well-labeled terms is defined
as follows:

0 (for all z)

1

0 (for z # y)

LM, (t)

LM, (t) + LM, (u) if te Twe

(

LM, ((Ay.t)L) + LMz (u)
(t
(

8
=X E 5_%
L= ~

~ —

Sv

o

_/
| A | VY

LM, (t) + LMy (u)
LM, (t) + LM, (u) + LM, (t) - LM, (u)

~— |—|r—\|—|
\
g
[
~— —

Note that LM,

Definition 4.2.6. The number of potential labeled redexes of well-labeled terms is
defined as follows:

PLR(z) = PLR(z®) := 0

PLR(\2.t) — PLR()

PLR(tu) := PLR(¢) + PLR(u) ifte Twe
PLR((Az®.v)Lu) := 1+ PLR((Az.v)L) + PLR()

PLR(¢[x/u]) = PLR(t) + PLR(u) + LM, () - PLR(u) + LM, (¢)

PLR(¢[2® /u]) := 1+ PLR(t) + PLR(u)

Remark that for every t € Ty containing at least one redex we have PLR(t) > 0.

Several lemmas are needed to prove that the PLR measure decreases with each step
of labeled reduction. The proof of some of these auxiliary lemmas can be found in
Appendix C.2.

Lemma 4.2.7. Let C[2{™)] € Ty, and t € Ty such that £v(t) N bv(C) = &. Then
Citll € Twre-

Proof. See Appendix C.1, page 260. O

4.2. A FIRST ARS TO MODEL \isus 105

Lemma 4.2.8. Let t, x be such that x ¢ £1v(t). Then LM.(t) = 0.
Proof. Straightforward induction on t. O

Lemma 4.2.9. Let C[|z%]|,u € Twe and a variable y such that x # y, £v(u) nbv(C) =
&, and x,y ¢ fv(u). Then: (i) LM(C[z*]) > LM (C[u]), and (it) LM, (C[z*]) =
LMy (Clul))-

Proof. See Appendix C.2, page 263. O

Lemma 4.2.10. Let C[y"]| € Twe, v € Twe and x variable, such that x # vy, y ¢ £v(u)
and x ¢ bv(C). Then LM (C[y"]) + LMy (Clly"]) - LMx(w) = LMx(C[lu])) + LM, (Clu])) -
LM, (u).

Proof. See Appendix C.2, page 264. O

Lemma 4.2.11. Let C|[z*] € Twe and u € Ty such that x ¢ £v(u). Then PLR(C[z“]])+
LM, (C[[z*]) - PLR(u) = PLR(C[[u])) + LM.(C[[u]]) - PLR().

Proof. See Appendix C.2, page 265. O

Lemma 4.2.12. Let t,u € Ty, such that t ~ u, and x ¢ bv(t). Then (i) LM, (t) =
LM, (u), and (ii) PLR(t) = PLR(u)

Proof. By case analysis on the equation used in t = u.

e Assume t ~cs u. Recall that z ¢ fv(s2) and y ¢ £v(s3).

If t = s1[y*/s2][2%/s3] and u = 5127 /s3] [y*/s2], then
LM;(t) = LMz (u) = LMy(s1) + LMz(s2) + LMz (s3), and analogously for PLR.

If t = s1|y®/s2]]z/s3] and u = s1[2/s3][y*/sz2], then
LM, (t) = LMy (u) = LMy(s1) + LMz(s2) + LM, (s3) + LM.(s1) - LM (s3), and
PLR(¢) = PLR(u) = 1 + PLR(s1) + PLR(s2) + PLR(s3) + LM.(s1) - PLR(s3) + LM, (s1).

If t = s1[y/s2][z/s3] and u = s1[z/s3][y/s2], then
LM, (t) = LMy (u) = LMI(81)+LMI(82)+LMZ’,(51) -LM,(s2) +LM;(s3) +LM,(s1)-LM;(s3),
and
PLR(t) = PLR(u) = PLR(sy) + PLR(sq) + LM,(s1) - PLR(s2) + LM,(s1) + PLR(s3) +
LM, (s1) - PLR(s3) + LM.(s1).

o Assume t x4, u, so that t = (A\y.s1)[2(%/so] and u = My.s1[2(/s5], and y ¢

fv(sq2). Notice that ¢t € Tyy, implies that the y is not labeled. It is straightforward
to verify the result, whether z is labeled or not.

e Assume t ~,, u, so that t = (s159) [¢(?) /s3], u = s1[y(®/s3]s9, and y ¢ fv(sa).
Consider s} = s1 if 51 € Ty, and 8] = (Az.s4)L if 51 = (A2P.54)L.
If t = (s182)[y®/s3] and u = s1[y®/s3]se, and s1 € Ty, then
LM, (t) = LM, (u) = LMy(s}) + LMy (s2) + LMz (s3), and analogously for PLR.
If t = (s182)[y/ss] and u = s1[y/s3]se, and s1 € Ty, then
LM, (t) = LMy (u) = LMy (s]) + LMy (s2) + LMy(s3) + LM, (s)) - LMz(s3), and
PLR(t) = PLR(u) = k + PLR(s}) + PLR(s2) + PLR(s3) + LM,(s}) - PLR(s3) + LMy(s’l)E.]

106CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Lemma 4.2.13. Let t,u € Ty, such that t ~ u, and x ¢ bv(t). Then (i) LMy(t) =

LM, (u

), and (ii) PLR(t) = PLR(u)

Proof. By induction on the characterisation of ~ as the reflexive-transitive closure of <

The interesting case is ¢ ~ u. We verify this case by induction on |C| where t = C[t'],
u=C[u] and t' ~ o/. If C = O then we conclude by Lem. 4.2.12.

If C = Cys and C1[t'] = (\y®.s)L, then there are several cases to consider.

If C; = O, so that ' = (A\y®.s)L, then let us define t” = (\y.s)L. Case analysis
yields v/ = (\y?.s")L/, and also t” ~ u” where u” = (\y.s')L’. Observe that

LM, (C[t']) = LM, (¢") + LM,(s), PLR(C[t']) = 1 + PLR(¢") 4+ PLR(s),

LM, (C[u']) = LMz (u”) + LM, (s), PLR(C[u']) = 1 4+ PLR(u”) + PLR(s).

Hence Lem. 4.2.12 allows to conclude.

If C; = OL, so that ¢ = Ay?.s, then let us define t” = \y.s. Case analysis yields
u' = (\yP.s")L and t" ~ u" where v = (\y.s')L. Observe that

LM, (C[t']) = LM, (C1[t"]) + LM, (s), PLR(C[t']) = 1 + PLR(C1[t"]) + PLR(s)

LM, (C[u']) = LM, (Cy[u"]) 4+ LM (s), PLR(C[u']) = 1 + PLR(Cy[u"]) + PLR(s).
Hence TH on C1[t"] Lo [u"] allows to conclude.

If C; = (A\yP.Co)L, or C1 = (\y”.s)L1[2/Ca]La, then let C} be the result of replac-
ing ? by y in C;. We have

LM, (C[t']) = LM, (C1[t']) + LMz (s), PLR(C[t']) = 1 4+ PLR(C{[t']) + PLR(s)

and analogously for C[u']. Hence TH suffices to conclude.

If C = C1[y/s], so that C1[t'], s € Ty, then variable convention implies y ¢ £v(t').
For (i) we have

LM, (C

[t']) = LMy (C1[t]) + LMy (s) + LM, (C1[t']) - LMy (s) , and

LM, (C[u']) = LMy (Ci[u']) + LMz (s) + LM, (C1[u]) - LMy (s). Then applying IH twice, for
LM, and LM,, allows to conclude. For (ii) we have

PLR(C[t']) = PLR(C)[t']) + PLR(s) + LM, (C1[t']) - PLR(s) + LM, (Cy[t']) , and

PLR(C[v']) = PLR(C1[v']) +PLR(s) + LM,(C1[v']) - PLR(s) + LM, (C1[t']). Therefore TH: (1)
for LM, and IH: (%) allow to conclude.

For the remaining cases, a simple inductive argument applies. O

Lemma 4.2.14. Let t,u € Ty such that t > u, and x ¢ bv(t). Then (i) LMy(t) >

LM, (u

), and (ii) PLR(t) > PLR(u).

Proof. By case analysis on the used rule.

If t = (A\y®.51)Ls2 +>ap s1[y/s2]L = u, then let us define L = [x1/t1]... [zn/tn].
Variable convention on ¢t implies y ¢ fv(¢;) for all 4, y ¢ £v(s2), and also x; ¢ £v(s2)
for all i. Therefore (Ay.s1)L ~ Ay.s;L and u = s[y/s2]L ~ s1L[y/s2]. Hence
Lem. 4.2.13 implies LMz ((Ay.s1)L) = LMz(Ay.s1L), LMz (u) = LMz (s1L|y/s2]), and
analogously for PLR.

Moreover, t € Ty, implies \y.s1 € Ty, then y ¢ £1v(sy), so that y ¢ fv(t;) for
all ¢ implies LM, (s1L) = 0; cfr. Lem. 4.2.8.

For (i), is enough to observe

4.2. A FIRST ARS TO MODEL \isus 107

LMz(t) = LMw(()‘y‘Sl)L) + LMx(SQ) = LMm()‘y'SlL) + LMx(SQ) = LMx(SlL) + LMw(SQ)
and

LM, (u) = LM (s1L[y/s2]|) = LMz(s1L) + LMy (s2) + LMy (s1L) - LMy (s2) = LM, (s1L) +
LMx(SQ).

For (i), it suffices to observe

PLR(t) = 1+PLR((\y.51)L) +PLR(s2) = 1 +PLR(\y.s1L) +PLR(s9) = 1 +PLR(s1L) +
PLR(SQ)

and

PLR(u) = PLR(siL[y/s2]) = PLR(s1L) + PLR(s2) + LM, (s1L) - PLR(s2) + LM, (s1L) =
PLR(s;L) + PLR(s2).

o If t = Cy°T[y/s] >1s C[s][y/s] = u, then variable convention implies y ¢
fv(s).
For (i) we have
LM, (t) = LM, (Clly®]) + LMx(s) + LMy (C[y“]) - LMz (s) , and
LM, (u) = LM, (C[s]]) + LMz(s) + LM, (C[[s]]) - LMy (s)
Therefore Lem. 4.2.10 suffices to conclude.
For (ii) we have
PLR(t) = PLR(C[[y*])) + PLR(s) + LM, (C[[y*])) - PLR(s) + LM, (C[[y*])
and
PLR(u) = PLR(C[[s])) + PLR(s) + LM,(s) - PLR(s) + LM, (s)
Moreover, Lem. 4.2.11 and Lem. 4.2.9: () imply PLR(C[[y*]|)+LM, (C[ly*]])-PLR(s) =
PLR(C[s]]) +LM,(s) - PLR(s), and LM, (C[ly*]]) > LM,(s) respectively. Thus we con-
clude.

o Ift = s1[y*/s2] +>gc $1 = u, then LM, (¢) = LM (s1) +LM;(s2) = LMz (s1) = LM, (u)
and PLR(¢t) = 1 + PLR(s1) + PLR(s2) > PLR(s1) = PLR(u).

O
Lemma 4.2.15. Let t,u € Tyyy such that t > u, and = ¢ bv(t). Then (i) LM,(t) >
LM, (u), and (ii) PLR(t) > PLR(u).

Proof. By induction on |C| where t = C[t'], w = C[v/] and ¢’ — «/. If C' = O then we
conclude by Lem. 4.2.14.

For the inductive cases, an argument similar to that described in the proof of
Lem. 4.2.13 applies, changing references to &~ by >, and the reference to Lem. 4.2.12
by Lem. 4.2.14. The straightforward cases are the same, those detailed admit similar
arguments. The case C' = (s, subcase C| = OL does not apply to this lemma, because
t' = \yP.s implies that there is no «' satisfying ¢’ +> u/'. O

Proposition 4.2.16. Let t € Ty, and let L be the set of all the labels of the redexes in
t. Then the reduction relation —1, is terminating.

Proof. Immediate corollary of Lem. 4.2.15. 0

Proposition 4.2.17. The ARS . enjoys the axiom FD.

Proof. Let t be a term and A € RO(t). We consider the term ¢’ which results of applying
successively the lift operation, to assign a label to the anchor of each step in A. Let L
be the set of the labels used to lift . Given that residuals are defined in %I} in terms of
labels, Prop. 4.2.16 entails the result.]

108CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

4.2.2 Semantic orthogonality

The definition of residuals in terms of labels allows to prove the axiom SO, cfr. Sec-
tion 2.1.4, for Ay by a level-based argument.

Let a,b,c € RO(t). We lift ¢ to assign the labels «, 8 and v to a, b and ¢ respectively,
let us call ¢ the labeled term obtained. A different rewrite relation corresponds to each

label, consider the relations - and 5, The term t' includes exactly one —>-step and
exactly one E>-step. Let t' 5 t; and ¢/ LA to. Observe that a complete development of
b[a] corresponds to a % reduction sequence from ¢; to a %, normal form, and similarly
for a[b]. Therefore, to prove SO, it suffices to verify that the P, normal form of t; and
the S-normal form of ¢, coincide as labeled terms. In such case, the (unlabeled) targets
of a;b]a] and b;a[b] coincide, and also the residuals of the coinitial step ¢, which are
exactly the y-labeled steps in the common labeled target.

In turn, the equality of the normal forms coincides with the local commutativity

of the relations % and 2. Assume that t E» t" and to % " Observe that t1 does
not include « labels, and therefore neither does t”. Analogously, t” does not include 3
labels. Hence, t” = t"” implies that term not to include neither v nor 3 labels, i.e., to
be a - and a E>—n01rmaul form.

These considerations motivate the following statement:

Lemma 4.2.18. The reduction relations > and LA locally commute, i.e. if t,u1,us €

B
Twe, t = uy and t LN uy then there exists s s.t. uy — s and us Ss.

Proof. Let a and b the steps contracted in ¢ 2wy and ¢ LR uo respectively. Let Di,r;
be the context and pattern of a, and Dy, 9 those of b, so that ¢t = Di[r1] = Da[re].

If a = b, or there exists a context E verifying D; = E[O,rs] and Dy = E[ry, 0],
then a straightforward argument allows to conclude. Therefore, we assume wlog that

Dy = Dy or Dy = Dy[D'] for some context D’. Let us define ry LA rh,. We analyse the
possible cases on a.

Assume that a is a 1s-step, i.e. 11 = (Az®.s)Lu.

e If ro is inside s, i.e. if D' = (A\x®.E)Lu, then

Dy [(Azx“.E[ra])Lu] e Dy [E[Tz‘] [x/u]L]
B | B
\4
Di[(Az®.E[r3])Lu] — — - — — = Di[E[r)][2/u]L]

A brief remark on notation: from now on we omit the outer context D7, which is
common to all the forthcoming diagrams.

e If ro is inside L, or if it is inside u, then a similar argument applies.
e If s = E[[y’] and L = L; [y/s']Lg, then
(A2 By ILu —+ Elly°] [z/u]L

B
Y
Az*E[)u—— - - — — > E[s'][z/u]L

4.2. A FIRST ARS TO MODEL \isus 109

Assume that a is a 1s-step, i.e. 11 = C|lz®][z/u].

o If C = ('[ry,0], so that D' = C'[0, 2%][z/u], then a simple argument suffices to
conclude.

o If % is inside 79, i.e. D' = C1[z/u] and ro = Co[[x®]], then we have to analyse the

rule for b.

— Assume that b is a db-step, i.e. 1o = (A\y?.s")Lu/.
If 2% is inside s, that is Cy = (\y®.E)Lu/, then

Cil” . Bl TLu/][2/u] - Ci[(\°.E [?])Lu'] [z/u]
6l g
Y
CiE[z] [y/v L] [z/u] = = = 5 = = = C1[E[u] [y/v/]L] [x/u]

If % is inside either L or u/, then a similar argument applies.
— Assume that b is a 1s-step, so that ro = E[[y°] [y/«].
If z¢ is inside E[y°], i.e. C2 = E'[0,4°][y/v'] where E = E'[z, 0], then
CLE [z, y"] [y /u' 1] [2/u] : C1[E'[u, yﬁ]‘[y/u’]] [2/u]
Bl }
Y
CilE [« ' [y/u']l [2/u] = - = 5 = = = Co[E"[w, /] [y/u']] [x/u]
If 2 is inside «/, that is Cy = E[[y°] [y/E'], then
CiELY T y/E T2 111 [/u] . Gi[E[Y°] [y/‘E' [ull][2/u]
6l \
\
CiE[E =] [y‘/E'[[SUa]]]] [/u] |8
al \
v v
CLEE Tullly/Ela] [2/u] = = = & = = = CL E[E[u]|[y/E'Tul]| [/u]
— Assume that b is a gc-step, so that 7o = s'[y? /u/].
If 22 is inside ', i.e. Cy = E[y?/u'], then
Oy B[/ol][] CrLELlly? /el
Bl 8
Y
Ci[E[z*N[z/u] = = = = 5= = = = = Ci[E[u]][z/u]
If 2% is inside v/, that is Cy = s’ [y®/E], then

Cu[s' [y /BT [#/u] —= Cr[s' [y /E[ul]][2/u]

-
///
_
_
g _ -8B
-

Ci[s'][/u]

B

o If D' = C[[2°] [z/E], then

110CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Cll=*][z/E[r]] . <7[l?[rz]][w/1?[r2]]
I8
¥
8 <7[1?[ré]][w/l?[r2]]
|8
¥
Clz*T[z/Elr3]] - = = 5 = = CLE[ro]][z/E[r3]]

Assume that a is a ge-step, i.e. 11 = s[z/u].
o If ro is inside s, i.e. D' = E[x“/u], then a simple argument suffices.

e If ry is inside u, that is D' = s[z®*/E], then

s[z®/E[ry]] —= — $
8 2T
s[a*/E[r4]]

Proposition 4.2.19. The ARS 21 enjoys the axiom SO.

Proof. Given the argument described at the beginning of this section, Lem. 4.2.18 suffices
to conclude: local commutativity of the relations generated by different labels implies
semantic orthogonality. d

4.2.3 Embedding axioms

Recall that the embedding relation of 2l is a total order. This fact allows to simplify
the analysis of the relative embedding of steps, and of its residuals, to a great extent.
Moreover, a simple analysis of the rules of Ajgu, yields that a step a only has the power
to erase, duplicate or change the relative embeddings, on steps whose anchor is on the
right of that of a. Therefore, if a affects another step b in any of the described way, then
a <p b. Some examples are given in Fig. 4.3, observe that a <t b in all the cases.

These considerations lead to simple proofs of most of the embedding axioms. The
exception is Enclave—Creation: a result stating the step creation cases for A1gyp is needed
to prove this axiom.

duplication [z/ NP y)z] -5 (W y)2) 2/ y)z]
erasure wlz®/M\Py)z] -5 w
change of relative embeddings

Aw®zw) [z/(My? 9)2] (@] [e1/m]) 5 (@w) [w/a] [z1/0]][z/ (A" y)z]
a, the a-labeled step, exercises the indicated power over b, the -labeled one.

Figure 4.3: Different forms of the power of a step over another.

Lemma 4.2.20 (Linearity for 2;). Let a,b € RO(t) such that a £ b. Then there is
exactly one step b’ verifying bla]b’.

4.2. A FIRST ARS TO MODEL Misys 111

Proof. By totality of <1, we have to show that if b <1 a in ¢ then 310’ / b[a]d’. Now,
if a is a db-step this is obvious, as no step is duplicated /erased by a db-step. If a is a
{gc, 1s}-step then it can only erase or duplicate steps whose anchor is in its box, i.e. on
steps on its right, and thus this cannot be the case for b. O

Lemma 4.2.21 (Context-Freeness for 1). Let a,b,c,a’,t’ be steps such that b[a]b’ and
cla]d. Then the following assertion holds: a <y ¢ v (b <y ¢ <V <p).

Proof. If a 41 ¢ then ¢ <1 a. Assume b <y ¢ (and so b <y ¢ <y a). Then, a is on the
right of both b and c. It is easily seen that a can only change the order between steps
on its right; consequently o' < ¢. The other direction is by contraposition. Assume
b 41 ¢, that is ¢ <¢ b. We have to prove that b’ < ¢/, i.e. ¢ <p b'. There are two cases.
If ¢ <¢ b <1 a then we reason as in the previous direction, getting ¢’ <y b’. Otherwise,
we have ¢ <t a <¢ b. Now, the only case that is not immediate is when a is a ls-step.
It is enough to observe that a 1s-step can only move the steps in its box at most where
the step itself was; hence, b’ can at most be where a was (while the position of ¢ is left
unchanged), and so ¢’ < b'. O

Lemma 4.2.22 (Creation lemma for \igp). Let t — t/, and b € RO(t') such that
Jla]b. Then one of the following conditions holds (where, for readability, (B is used to
label the created step)

1. (db creates a db-step)
t = C[((Ax®.(\y.s)L1)La2 u) Lgv] —ap C[(Ayﬁ.s)Ll [2/u]LeLsv] =t/

2. (db creates a 1s-step)
t = C[(\z®.D[a])Lu] —a» C[D[=*][x/u]L] = ¥/
3. (db creates a gc-step)
t = C[(Max®.5)Lu] —ap C[s[z?/u]L] = t' , where x ¢ £v(s)
4. (1s downward creates a db-step)
t = C[D[z"Ly u] [z/(\y.5)L1]] =15 C[D[(M\yP.5)L1Llou] [2/(M\y.s)L1]] = ¢/
5. (1s upward creates a db-step)
t = C[2°Ls [z/(\y.5)L1 L3 u] =18 C[(AyP.8)L1La [2/(Ay.s)L1 [Lgu] = ¢/
6. (1s creates a gc-step)
t = C[D[2"T[z/u]] =15 C[D[ul[z"/u]]l = ', where x ¢ £v(D[u])

7. (gc creates a gc-step)

t = C[D[s[y*/E[=IN[z/u]l] =g C[D[s][z?/u]] = t' , where y ¢ £v(s) and z ¢
fv(D[s])-

Proof. See Appendix C.3, page 267. O

Lemma 4.2.23 (Enclave—Creation for 2.). Let a,b,b', ¢ be steps such that b[a]V!, S[a]c,
and b <. a. Then b’ < .

112CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Proof. A simple inspection of the cases of creation, cfr. Lem. 4.2.22, shows that a step
a can create a step ¢ only on its right or at most where it was, so that ¢’ cannot be on
the left of any step that was, in turn, on the left of a. Thus we conclude. O

Lemma 4.2.24 (Enclave-Embedding for 1.). Let a,b,c,b’,c be steps such that b[a]V’,
cla]d, and b <y a <p c. Then V' <, c.

Proof. 1t suffices to recall that a step can move other steps only up to the point where
its anchor was. Therefore the contraction of a cannot provoke the anchor of a residual
of ¢ to be on the left of that of b'. O

Lemma 4.2.25 (Stability for). The ARS 24, enjoys the axiom Stability.

Proof. The hypothesis of the axiom assumes the existence of two steps a and b verifying
a || b. This case cannot happen when considering <i, which is a total order. Thus we
conclude. O

4.3 A first standardisation result

As we have verified in the previous section, the ARS 2; verifies the initial axioms, the
axioms FD and SO, and all the embedding axioms. Therefore, our first standardisation
result for the linear substitution calculus follows directly from the results for ARS given
in [Mel96], and described in Section 2.1.8.

Theorem 4.3.1. Let v be a reduction sequence in the A\isup calculus. Then there exists
a unique Ap-s.r.s. & such that § is permutation equivalent to ~y.

Proof. Immediate corollary of Thm. 2.1.24, page 42.

Observe that the embedding <t is a total order, implying the non-existence of steps
a and b verifying a # b and a || b. Therefore, the relation & generated by 2, coincides
with identity. Hence, the existence of a unique ¢, instead of just uniqueness of § modulo
<&, can be stated. O

This standardisation result, while interesting, is not entirely satisfactory, because it
does not respect the close relation between Agyp and proof nets.

The linear substitution calculus has been designed to mimic the representation of
A-calculus in linear logic proof-nets [Gir87], where -reduction is decomposed into small
steps. The relationship between the two formalisms occurs at the static and the dynamic
levels: every term can be mapped to a proof-net, and every proof-net can be mapped
to a graphical-equivalence class of terms, as this equivalence defined in Section 4.1 by
means of the relation ~. Moreover, there is a bijection ¢ between the steps of a term
t and the steps of its corresponding proof-net PNy which induces a strong bisimulation
between terms and proof-nets: if ¢ —,_, u by reducing a step a, then PN; —pn PN, by
reducing ¢(a), and if PNy —px R then there exists a term u s.t. ¢t — u and R = PN,,.

Therefore, one expects that any reasonable notion of standardisation valid in Ajggp
can also be applied to proof-nets. There are two reasons which prevent the standardis-
ation result obtained for 2{; to meet this requirement.

First, the objects of 2y, are not ~-equivalence classes of A\jgyp terms, but rather each
term is a different object in that model. Consequently, steps and residuals are defined

4.4. WORKING WITH EQUIVALENCE CLASSES 113

for terms. In order to obtain standardisation results applicable to ~-equivalence classes,
we should obtain definitions of steps and residuals which preserve this equivalence.
Particularly for residuals, notice that if t —*» ¢’ and b is a step in ¢, then b[a] is a set of
steps in t’. It is not immediately clear how to relate these steps in ¢’ with steps in some
term t” verifying t' ~ ¢".

Second, the total left-to-right order <t is not preserved by the ~-equivalence classes.
A simple example follows: consider

t'=2[y’ fwlr® ~ (zr*) [y’ w] = t"

where r® stands for pattern of a step whose anchor is labeled with . Let us call a’ and
a” the a-labeled step in t' and t” respectively, and b,V the gc-steps labeled with S in
those terms. We have b/ <y @’ and a” <p b”, while it is intuitively clear that a” is the
step in t” corresponding to a in t’, and analogously for b” and ¥'.

We will address these issues in the following sections.

In Section 4.4 we show that steps and residuals are well-defined w.r.t. ~-equivalent
classes, by proving the existence of a bijection between steps in equivalent terms. This
bijection preserves residuals: if two steps a and @’ in ~-equivalent terms are related by
this bijection, and similarly for b and b, then the residuals bJa] and b'[a'] are again
related, one-to-one if there are several such residuals.

In Section 4.5, we define a different embedding relation for Aigu,, the box order,
which is preserved by ~-equivalence.

These elements allow to define other ARSs, whose standardisation results are appli-
cable to AJL,, and hence to proof-nets.

4.4 Working with equivalence classes

In this section we first define the notion of residual of a step along a ~-equivalence
derivation, so that we will be able to trace steps along AJ;,,-reduction sequences. We
then show that the notions of step and residual defined in Section 4.2 is well-defined
w.r.t. equivalence classes, i.e. 1) residuals along equivalence derivations yield a unique
bijection between two steps in the same ~-equivalence class, cfr. Lem. 4.4.9, and 2)
residuals of rewriting steps lift to ~-equivalence classes, cfr. Lem. 4.4.10.

To trace a step along an equational derivation, we use labels, just like we do to define
residuals after — ..

Definition 4.4.1. Given t ~ u, a € RO(t) and « ¢ Lab(t), we consider the labeled
equation 1ift(t,a,a) ~ u. The set of residuals of a after t ~ wu, is given by
aft ~ u] := {Redy(u) / 1ift(t,a,) ~ u}. Again, this definition is independent from
the variant used to lift the term t. We write a[t ~ u]ad’ iff ' € a[t ~ u] and we

extend this notion to sets of steps as expected, in which case we write At ~ u]A’, where
AC RO(t) and A" € RO(u).

We illustrate this definition with the following example: given v = (z®z)[z/y][z'/y'] ~
(! fy'129)z/y] = o' and b = (O[a'fy/], (2%)[z/y], Dz, we have blv ~ o'] =
{8, 0fz'fy'])}.

Note that our equations do not duplicate/erase/rename labels, so that any step has

a unique residual along the equivalence. Therefore, a bijection between the steps in
~-equivalent terms can be defined as follows:

114CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Definition 4.4.2. Let t ~ t'. We define the correspondence definitions between
RO(t) and RO(t'), notation ¢y, as follows: ¢y p(a) =d' iff aft ~t']d’.

Although this is a quite natural way to relate steps in ~-equivalent terms, its well-
definedness is not immediate, the reason being the existence of different ways to obtain
that two given terms are ~-equivalent. Two examples of this phenomenon follow.

to[z/t1]y/t2][2/t3]

\
/

toly/ta]lz/t:][2/ts] tolz/t1][z/ts][y/t2]

$ $

toly/t2][2/ts][x/t1] tolz/tsllz/t]ly/t2]

/
\

tolz/ts]ly/t2]|x/t1]

tilz/ui][y/uzlts

\
/

t1[y/uz][z/u1]t2 (t1z/ur]t2)[y/us]

| i

(t1ly/ualte)[x/ui] (t1t2)[z/u1][y/uz]

/
\

(t1t2)[y/us][2/ui]

Well-definedness of the bijection between steps could be shown, in principle, by in-
troducing proof-nets and showing that the proof nets corresponding to two ~-equivalent
terms s and t are identical: thus there is a bijection between redexes in s and redexes in
t, since there is a bijection between redexes in s (resp t) and redexes in their proof-net
representation. We prefer, however, to avoid introducing proof-nets here: on the one
hand because they are only apparently simpler than terms, and on the other hand, to
resort to a unique formalism, namely terms, to develop our ideas.

Consider two unlabeled terms ¢t and t' such that ¢t ~ ¢/, and ¢; a variant of t. For
each different ~ derivation justifying ¢ ~ ¢/, there is a corresponding labeled derivation
t1 ~ t}, where now ~ stands for the labeled graphical equivalence, Dfn. 4.1.5. We must
verify that all the possible derivations ¢ ~ t/, when lifted to ¢y, attain the same labeled
term t. Otherwise, the well-definedness of the bijection ¢; 4 can be compromised.
Consider

t = Cl(zz) [y/z]][z/u] ~ Cla[y/x]z][x/u] =¥
and t; = C[(z*2%)[y/x"]][z/u], a variant of t. Let a be the step labeled with a in ;.
It is straightforward to verify that

t1 = Cl(z*2”) [y/2"]][x/u] ~ Cla®[y/a"]2"] [2/u] = 1)
Suppose that ¢} were not uniquely determined, e.g. that we could somehow obtain:
t1 = Cl(«*2”) [y/a"]][x/u] ~ Cla” [y/a"]2] [x/u] =]

In this case, the definition of ¢; ;(a) would be ambiguous.

4.4. WORKING WITH EQUIVALENCE CLASSES 115

Observe that in such case, transitivity of ~ would entail immediately
Clz®[y/x"]2®][x/u] ~ C[z®[y/z7]x*][x/u]. This observation implies that the fol-
lowing statement is a sufficient condition for the well-definedness of ¢; 4:

Let ¢, be labeled terms verifying t° = #'°. Then t ~ ¢ implies t = ¢'.

To prove this statement, we introduce and verify three structural invariants of labeled
steps with respect to the equivalence ~. These invariants are: being a well-named term,
substitution address of each label, and a partial order on labels.

Definition 4.4.3. A term t € Ty is well-named iff 1) all its bound variables have
pairwise distinct names and 2) all its labels are pairwise distinct.

The restriction to well-named terms is just given to reason about (the unique occurrence
of) each label in a term.

Definition 4.4.4. For each label a occurring in a well-named term t, we consider the
substitution address add(a,t) which is given by the sequence of all the names of the
successive substitutions we have to enter in t in order to find a (that is a well-defined
and unambiguous sequence because t is well-named).

For example, if t = (x®[x/y®[27/y*]]y?)[y/w][x¥ /w], then the sequence for a and § is €
(i.e. empty), for § is x, for v and p is xz, and for v is x;.

Definition 4.4.5. Given a well-named term t, the order <; on its labels is defined
as the left-to-right order (looking at t as a string of symbols) but only between labels
contained in exactly the same substitution, i.e. a <y B iff add(«,t) = add(f,t) and «
appears to the left of (.

Lemma 4.4.6. Let t be well-named and t ~ u. Then:
1. w is well-named and Lab(t) = Lab(u).
2. add(a,t) = add(c, u) for any o € Lab(t).
3. < =<y,
Proof. Easy induction on the equational derivation ¢ ~ u. O

These invariants are used to prove the following lemma, for which we also need to
introduce a new concept. Let ¢ and u be s.t. t© = u°. We say that ¢ and u are equally
labeled if they have labels on exactly the same symbols of ¢° (but not necessarily the
same label).

Lemma 4.4.7. Let t,u be well-named and equally labeled. If

1. Lab(t) = Lab(u),

2. add(a,t) = add(a, u) for any « € Lab(t), and

8. <p=<y
then t = w.

Proof. The proof is by induction on the number of labels occurring in ¢, and then by
structure of ¢.

116CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

e Ift = x or t = 2% then we conclude immediately.

e Assume t = Az.t;. In this case hypotheses imply u = A\x.uj, t1° = u1°, Lab(t;) =
Lab(u1), <¢ = <u,, and add(a,t1) = add(a,u;) for all a € Lab(t;). Then we
conclude by the ITH.

e Assume t = t1t9 and t1 € Tyy,. In this case hypotheses imply u = uqug, and for
i = 1,2, that ¢t; and u; are well-named and equally labeled, and also ¢;° = ;°.

To verify that Lab(t;) = Lab(uy), assume for contradiction the existence of some
a € Lab(t1) — Lab(uq). This would imply « € Lab(us), recall Lab(t) = Lab(u).
Hypotheses and definition of add(_,) imply add(«a,t;) = add(a,t) = add(«a, u) =
add(a, ug). In turn, add(a,t;) = add(a,u2) = x - k would imply both ¢; and us
include a substitution for the variable x, contradicting ¢° = «°. Then add(a,t;) =
add(a, ug) = e. On the other hand, ¢; and u; being well-named and equally labeled,
and Lab(¢;)—Lab(u;) # & would imply the existence of some /5 € Lab(u;)—Lab(t1),
then 8 € Lab(tz). An argument analogous to that used for « entails add(f3,t2) =
add(f,u1) = €. But then a <; 5 and 8 <, «, contradicting <; = <,,.

The existence of some « € Lab(uj) — Lab(¢;) can be contradicted by a similar
argument. Consequently Lab(#;) = Lab(uy). Therefore, a simple argument on
the sets of labels entails Lab(ts) = Lab(ug). Hence, observing the definitions
of substitution addresses and the order on labels is enough to obtain <, = <,
and add(a,t;) = add(«,u;) for all a € Lab(t;), for ¢ = 1,2, given <;=<, and
add(«,t) = add(a,u) for all @ € Lab(t). Thus we conclude by applying the TH
twice.

e Assume t = (Az®.t;)Lto. In this case hypothesis imply u = (Az”?.uj)L'uy (recall t
and u are equally labeled). Assuming o # 8 would imply « € Lab((Az.u1)L'usg),
B € Lab((Az.t1)Lt2), and add(a,u) = add(5,t) = ¢, then a <; f and § <, a,
contradicting <; = <,,. Then a = 3, implying Lab((Az.t1)Lte) = Lab((Ax.u1)L uz).
Moreover, it is straightforward to verify that (Az.t1)Lty and (Az.uj)L'uy verify the
remaining hypotheses. Then the TH entails (Ax.t1)Lty = (Az.ui)L'ug, thus we
conclude.

o If t = t1[x/t2], then hypotheses imply that u = u;[z/u2]. The existence of some
a € Lab(t;) — Lab(uy), then « € Lab(ug), would imply add(«,t1) # add(«,us),
since t; does not include a substitution for the variable x. A similar argument
entails Lab(u;) — Lab(t1) = (&, and consequently Lab(¢1) = Lab(u1). In turn, a
simple argument on sets of labels imply Lab(to) = Lab(ug). It is straightforward
to obtain that ¢; and wu; verify the remaining hypotheses for ¢ = 1,2. Thus we
conclude by applying the IH twice.

o Ift = t1[x/t5]. then hypotheses imply u = u[2® /uz]. We observe that add(a, t) =
add(f,u) = x, then hypotheses entail add(3,t) = add(a,u) = z. Then, assuming
a # [would imply « € Lab(usg), add(«, ug) = €, B € Lab(t2), and add(f,t2) = €.
But then o <; f and § <, «, contradicting <; = <,. Consequently, o = [, im-
plying Lab(t1[x/t2]) = Lab(ui[z/uz]). Moreover, it is straightforward to verify
that t1[x/te] and u[x/uz] verify the remaining hypotheses. Then the IH entails
ti[z/t2] = u1[z/ug], thus we conclude. B

4.4. WORKING WITH EQUIVALENCE CLASSES 117

The preceding lemmas allow to prove the desired condition on ~-equivalent terms,
and hence the well-definedness of ¢; .

Lemma 4.4.8. Let t be a well-named term having labels exactly at the anchors of all
its steps. Let u such thatt ~u and t° = u®. Then t = u.

Proof. A simple induction on the equivalence derivation implies that exactly the anchors
of the steps in u are labeled, therefore ¢ and w are equally labeled; recall t° = u°.
Moreover, Lem. 4.4.6:(1) implies that u is well-named, and the whole of Lem. 4.4.6

implies that the remaining requirements of Lem. 4.4.7. Hence we conclude by Lem. 4.4.7.
O

Lemma 4.4.9. Let t,u € Tywe such that t ~ u. Then ¢ is well-defined.

Proof. Assume (by a-conversion) that bound variables in ¢ have pairwise distinct names
and consider t1, the lift of t w.r.t. the (anchors of the) full set of steps RO(t), so that 1 is
well-named. Consider u1 such that t; ~ 1. Then a simple induction on the equivalence
derivation implies that exactly the anchors of the steps in u are labeled, implying the
existence of exactly one residual of each step in ¢ (which is uniquely labeled in t;).
Moreover, Lem. 4.4.8 implies that u; is unique for ¢t; ~ u; and u1® = u. Thus we
conclude. O

Lem. 4.4.9 allows to write t ~4 u to denote ¢; ,: ¢ is a bijection uniquely determined
between the steps of ¢ and of u. We prove that this bijection preserves targets and
residuals.

Lemma 4.4.10. Let t ~4 u. Consider a,be RO(t). Ift —>t', then:

1. Simulation: u e u' with

2. Same equivalence target: t' ~ v/, i.e. I s.t. t' ~¢ ', and

3. Preservation of residuals: if b[a]V', then ¢(b)[¢p(a)]E(V).

Proof. The following diagram depicts the statement

b ¢(b)
\ ; ~e e :
h I
[a] ‘li ld’(a) : [#(a)]
/ ~ |
o (')

We proceed by induction on the derivation ¢ ~ u, considered as a sequence of appli-
cations of one equation in either way, inside a context. We consider the case when ¢ and
u are one equation application away, i.e. t = E[t1], u = Fl|u1] and t; ~ uy.

In the following, we consider that the steps a and b are labeled in ¢ by « and
respectively. Let us call D' and r the context and pattern of a respectively, and r’ the
term verifying ' = D’[r’]. We analyse some cases for which the result can be established
independently of the nature of t; and wu;.

Assume that D' = D[O,t], so that E = D[r,Od]. Therefore

118CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

~o

t =D|r,t1] ——— D[r,u1] = u
| o
t'=D[r',t1] - - T D[’ ui] =

Items 1 and 2 hold immediately.

If the anchor of b is inside D, then bJa] = {0’} where ¥ is the S-labeled step in ¢,
and ¢(b) is the B-labeled step in u. In turn, £(b') is the S-labeled step in u'. Therefore,
it is straightforward to verify that ¢(b)[¢(a)] = {£(b')}. Hence item 3 holds for b.

If the anchor of b is inside 7, then b[a] is the set of S-labeled steps in ' inside ¢/,
and ¢(b) is the S-labeled step inside 7 in u. Therefore ¢(b)[¢(a)] is the set of a-labeled
steps in r’ inside u/, where the labeled variants of r’ inside ¢’ and v’ coincide. On the
other hand, for any b’ € b[a], £(b') is a B-labeled step in 7’ inside u’. Hence item 3 holds
for b.

We observe that in any case, item 3 yield from an analysis similar to those just
described. Therefore we will check only items 1 and 2 in the following. In all cases
justifying diagrams, the result is immediate from the diagram, so we will not remark
this fact after each one.

Assume that a is a 1s-step, so that t = D'[C[[z*]|[z/s]], and that ¢; is inside s.
Then we have

D'[Clz°] [z/s]] ——— D'[C[="T[x/5']]
| o
D'[Cls][/s]] - = == = = D'[C[s" [+/5]]
A similar analysis applies if ¢1 is inside C[[2*]), so that C[[#*] ~ C'[+*]], here it is crucial
to observe that C'[[z“] includes exactly one a-labeled occurrence of . An analogous
reasoning applies also in analogous cases if a is a db-step or a gc-step.
We analyse the remaining cases.
e Assume that ¢; ~cs to, i.e. t = E[s1[x/s2][y/s3]] and u = E[s1[y/ss][z/s2]].
If a is inside some s;, then a straightforward argument suffices.
If a is a 1s-step on an occurrence of = inside s1, then we have
E[C[z*[x/s2]y/ss]] ———— E[C[="T[y/ss][x/s2]]
| oo
E[C[s2]l[2/s2]1y/s3]] = = = = = E[Cl[s2]l [y/s3][2/s2]]

If a is a is a 1s-step on an occurrence of y inside s1, then a similar analysis applies.
There are no other internal 1s-steps, since y ¢ fv(s2) and x ¢ fv(ss3).

If a is a gc-step on x, then we have

Els1[z%/s2][y/s3]] ———— Els1[y/ss][2/s2]]

| P
Elsily/s3]l - - - - = - -~ -E[s1]y/s3]]

If a is a gc-step on y, then a similar analysis applies.

If E = E'[0OLsy4] and s1 = Az®.s), then we have

4.4. WORKING WITH EQUIVALENCE CLASSES 119

E'T(Az*.s1) [w/s2][y/s3]Lsa] ———— E'[(Az".51) [y/s3] [/ s2]Ls4]

| s
E'[sy[2/sall/s2]ly/s3|L] = = —= = = E'[s1[2/sa][y/s3][2/s2]L]
e Assume that t; ., to, ie. t = E[(Ay.s1)[x/sz2]], u = E[\y.s1[x/s2]], and y ¢
fv(sa).
If a is inside some s;, then a straightforward argument suffices.

If a is a 1s-step on an occurrence of x in sy, or it is a ge-step on x, then diagrams
similar to those shown for the ~¢g case can be built.

If E = F'[OLss| and r = (A\y“.s1)[z/s2]Lss, then we have
E'[(Ay®.s1) [x/s2]Lss] ———— E'[(Ay®.s1[x/s2])Lss]

ai o

E'[s1|y/s3][x/s2]Lss] = — = — = E'[s1[x/s2] [y/s3]Ls3]

Notice that we can assume x ¢ fv(s3) by variable convention, and we have y ¢
fv(sa), hence si[y/ss][z/s2] ~cs s1[z/s2][y/s3]. This diagram applies only if
read right-to-left.

e Assume that ¢ =4, to, i.e. t = E[(s152)[2/s3]], v = E[s1[x/s3]s2], and x ¢
fv(sa).
If a is inside some s;, then a straightforward argument suffices.

If a is a 1s-step on an occurrence of x in sy, or it is a gec-step on x, then diagrams
similar to those shown for the ~¢g case can be built.

If 51 = (A\y®.s})L, then we have
E[((Ay®.s1)Ls2) [2/s3]] ———— E[(Ay®.s1)L[x/s5] 52]

| -

Elsi[y/s2|L[2/s3]] - — —= — = Els} [y/sa]L /s3]

We get back to the induction on the derivation ¢ ~ u. If ¢ = w then we conclude
immediately; the bijections ¢ and ¢ are the identity on RO(t) and RO(t’) respectively.
Otherwise, consider the following diagram:

b p(b) 1(¢(b))
\ ~é ‘ ~u /
t S U
a one eqn. case qu(a) IH p(e(a))
' = s ~ o
v (') v(§(0))

Let 6 such that ¢ ~y u. Uniqueness of 6, cfr. Lem. 4.4.9, implies that 6§ = p - ¢. Then
item 1 is immediate, and item 2 also: considering ¢ = v - £, we obtain ¢’ ~, «’. Ttem 3
follows from the one-equation case and the IH, given the definitions of § and . O

120CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

We conclude this section by noticing that we have just shown that the graphical
equivalence ~ is a strong bisimulation between Aigyp and itself: ¢ ~ u — s implies the
existence of some r verifying t — r ~ s. Moreover, this bisimulation induces a bijection

of steps, so it is possible to mimic reduction sequences via ~ as follows: given t —» u

6/
and t ~ ¢, we can unambiguously refer to the simulation ¢ —» u of §, where u ~ u’.
This simulation also preserves residuals. Thus we can say that the reduction sequences
0 and ¢’ essentially contract the same sequence of steps.

4.5 The box order on steps

Let us recall the drawbacks of the left-to-right embedding < defined in Section 4.2,
page 102.

Firstly, it does not correspond to the idea of the embedding relation in the ARS
model: if < is the embedding for an ARS, then a < b should imply that the step a
possibly has some power over the step b, e.g. to erase or duplicate it. In the term

T S1 82

which is in fact a head normal form, it is clear that no step inside s; can have any power
over a step inside s9, and yet a <p b if ¢ and b are inside s; and ss respectively. Another
example is

(yx)[z/s1][y/s2]

where again, a < b if a and b are inside s; and s respectively. In other words, <t
captures more than what the “power principle” suggests.
Secondly, the order <p is not preserved by the graphical equivalence. E.g., we have

t = (yz)[z/s1]y/s2] ~ (o) [y/se][w/s1] =¥/

where the relative <p-embedding of two steps, one inside s; and another inside so, is
different in ¢ than in . Another example is described in page 113.

Then we introduce the box order <g, designed to overcome both shortcomings of
<. It is based on the “power principle”: if a step a can erase or duplicate a step b, we
enforce a <p b. Several examples are given in Figure 4.4. In all the cases shown, the
downward a, whose anchor is labeled with an «, must precede the rightward b, whose
anchor is inside s for Fig. 4.4.a and Fig. 4.4.b, and it is labeled with a 8 in the remaining
two diagrams.

a) C [[Svo‘f [2/s] ——C [[93“]1 [z/5] b) t[xji?[fa/ s']
Clisll[z/s] — —Cls'll[z/5] t

o) a[zfy’lly/s] ——=a[a/2]ly/z]) w[2"/yP]ly/z] > w2 /2] [y/2]

! | !

Ly /2] — —= zla/z]1y/2] zy/z]

Figure 4.4: Some standardisation diagrams for Ajgup.

4.5. THE BOX ORDER ON STEPS 121

Observe that the figure actually shows local confluence diagrams. A simple diagram-
matic intuition, due to [Klo80] and then explored in [Mel05], indicates that whenever a
step is duplicated (resp. erased), then the standard reduction sequence should be the
longest (resp. shortest) side of the diagram. In all the diagrams, the standard reduction
sequence is that going down and then right. This intuition, and also the Linearity axiom,
are in line with the “power principle” we use to define <g.

Observe that in Fig. 4.4.a and Fig. 4.4.b, the pattern of a syntactically nests that of
b; more precisely, it is the boz of a what nests the pattern of b (cfr. the definition of the
box of a step in page 102). This is not the case for Fig. 4.4.¢ and Fig. 4.4.d. In these
cases, we have actually the pattern of b syntactically nesting that of a. Therefore, the
intuition indicating the coherence between semantic embedding and syntactic nesting is
not valid for the linear substitution calculus.

However, there is a syntactic indication common to all the examples in Fig. 4.4: the
anchor of the step b is inside the box of the step a. This observation allows to formalise
the definition of <g.

The formal definition of the box order <g follows.

Definition 4.5.1. Let a,b e RO(t). Then,

e a immediately boxes b, noted a <4 b, if the anchor of b is in the box of a, i.e.
if the pattern of a is any of (Ax.t)Lu, C[z][x/u] or t[z/u], then the anchor of b
appears in u.

e a boxes b, noted a <g b if a(<y)Tb (we use a <g b for a(<4)*b);

Observe that <g allows embedding to occur at a distance. Consider the term
(z“2[x/y®ly2)[y/2]. The a-labeled step <g-embeds the SB-labeled one, while the sub-
stitution corresponding to the latter is distant from the pattern of the former.

Notice also that a || b (i.e. a # b, a €p b and b € a) does not imply that a and b
are syntactically disjoint. Examples: the steps labeled with o and 8 are disjoint but 1)
syntactically superposed in (z® 2%)[2/y], and 2) syntactically nested in (Az®.2" [z/2])y.
However, disjoint steps always strongly locally commute in the following sense: if tg = t;
and tg LA to then there exists t3 s.t. t1 LA ts and to —> t3. Note that this is just a
particular case of SO where the diagram can be closed by using just one reduction step
from t; to t3. This observation shows the semantic adequacy of the box order.

A final remark about <g: the relation <p is not contained in <é, therefore the
definition of the former is not redundant. This phenomenon is caused by chains of
1s-steps where the anchor of each one is inside the box of the following, as in the
term 2%y [x/y?][y/27][2/2'y']. If we call a, b and c the steps labeled with a, 8 and ~
respectively, then we have a <} b <4 ¢, implying a <z ¢, but not a <3 c.

The box order preserves the graphical equivalence ~, thus solving the second short-
coming mentioned at the beginning of this section. For example, for t|z/u][y/v] with
y ¢ £v(u) the redexes in u and the redexes in v are not related by <g, so that <g is sta-
ble by the permuting axiom t|y/v|[z/u| ~cs t|x/ully/v] (where y ¢ fv(u) & z ¢ £v(v)).
More precisely, given s ~ t, the bijection between RO(s) and RO(t) defined in Sec-
tion 4.4 is order-preserving. Formally

Lemma 4.5.2. Let t,u be terms s.t. t ~y u, where ¢ is the bijection described in
page 114, cfr. Lem. 4.4.9. Then, ¢ commutes with <g, i.e. a <g b iff ¢p(a) < ¢(b).

122CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Proof. Tt suffices to remark that symbols cannot go in/outside the box of a step, includ-
ing those of db-steps, by means of the ~ relation. See Appendix C.4, page 271, for the
technical details. O

Consequently, <g can be thought as a relation on ~-equivalence classes. This result,
along with those described in Section 4.4, cfr. Lem. 4.4.10, implies that the definition
of ATz, as a rewriting system on ~-equivalence classes behaves as expected, despite the
reduction relation being defined on terms. That is: the set of steps of a ~-equivalence
class, the target and residuals of a step, and how the steps are related by <g, do not
depend on the term used to compute them.

This observation leads to the possibility of defining an ARS to model Ay, having
the box order <p as the embedding relation. For technical reasons to be discussed later,
we actually define two ARS.

4.5.1 ARS based on the box order
The box order <g leads to the definition of two ARS, for A\jguyp and Ajg,, respectively.

Definition 4.5.3. We define the ARS g as follows: the objects, steps, source and target
functions, and residual relation, are as defined for i, cfr. page 101. The embedding
relation is the box order <g, considered as a relation on terms.

Definition 4.5.4. We define the ARS 45 as follows:

e the objects are the ~-equivalence classes of the set of terms of A1suwp, i.€., the objects
being rewritten in Algyp-

e the steps, source, target and residuals are the quotient, by ~-equivalence, of those
defined for 1., given the bijection between steps in ~-equivalent terms defined in
page 114. Lem. 4.4.10 implies that these elements are well-defined.

o the embedding relation is the quotient of the box order <g by ~-equivalence; Lem. 4.5.2
implies its well-definedness.

We verify that g and 245 enjoy the initial axioms, FD, SO, Linearity and Context-
Freeness. The following definition allows to express more concisely, in the following
proofs, the possible locations of the pattern of a step within a term.

Definition 4.5.5. If t = C|[s], then we say that a step a in t is inside s, notation
a € s, iff its context is D = C|D1], so that its pattern is a subterm of s. We define
analogously the meaning of a step a being inside a substitution list L, and denote a < L.
We write a > s iff the pattern of a is exactly the displayed occurrence of s, so that its
context is C'. Notice that a > s implies a s.

We focus on g first. The proofs of the initial axioms, FD and SO given for i, are
immediately valid for 20, since these axioms are not related with the embedding relation
of an ARS.

The proof of Linearity follows; it is preceded by an auxiliary lemma.

Lemma 4.5.6. Let t = C[[z°] where the indicated is only the occurrence of the label
B in t, and t = w, such that x® is not in the box of a. Then u contains exactly one
occurrence of x°.

4.5. THE BOX ORDER ON STEPS 123

Proof. By induction on the context of a. We label the anchor of a using a.. For the base
case, namely a X t, we consider each rule.

o If t = (Ay®.s1)Lsg, so that u = s;[y/s2]L, then the result holds for any possible
location for 2.

o If t = D[y®][y/s2], so that u = D[sy][y/s2], then 2 not being in the box of a
implies that it is inside D, hence we conclude immediately.

o If t = s1[y*/s2], a similar, yet simpler, analysis applies.

If a vk t, then t = \y.t1, t = t1te or t = t1[y/t2], and a S t; for some i.
If the occurrence of z” lies inside t;, then we conclude by IH. If this occurrence is
inside a different subterm, then we conclude immediately. O

Proposition 4.5.7 (The ARS g enjoys the axiom Linearity). Let a,b be two coinitial
steps, such that a g b. Then '3V / b[a]b’.

Proof. By induction on n = min(ng,ny), where n, is the length, defined as number of
symbols, of the context of a, and similarly, n is the length of the context of b. We label
the anchors of @ and b using o and 3 respectively, and define t — w.

The base case is when n = 0. We analyse the rules of —» _..

o If t = (Az“.s1)Lsg, so that u = s;[x/s2]L, then the result trivially holds for any
possible location of b verifying a g b, i.e.: b € s1, b € L, 51 = C[[2%] where
L=1014 [Z/S3]L2, and L = L; [25/83]1_.2.

e If t = (A\2”.51)Lsy, so that u = (\z”.s})L's), then we conclude immediately.

o If t = Cflx*]|[z/s2], so that u = C[[s2]] [x/s2], then a g b implies b = C[z“] or
C = D[z%,2"]. In both cases, we conclude immediately.

o If t = s1[x%/s2], then we conclude immediately.
o If t = C[[z°] [x/s2], then we analyse different cases separately:
— if & € s then: if the occurrence of z° is in the box of the pattern of a then
we would contradict a £g b, otherwise Lem. 4.5.6 allows to conclude;
— if & € s5 then we conclude immediately;
— if C = D[z®,0], so that C[[z°]] = D[z®, 2], then u = D[sq, 2°][x/s2], and

this observation suffices to conclude.

o Ift =35 [.TB/SQ], so that a € s1 or a € s9, then the result holds trivially.

The inductive case is when a tk t and b vk ¢, that is, t = Az.t1, t = t1tg or t = t1 |z /ts],
and a € t;, b € t; for some 4, j. In this case, if ¢ = j then IH suffices to conclude, and if
¢ # j then the result is immediate. Thus we conclude. O

The proof of Context-Freeness involves a case analysis on the possible positions of
steps, far more extensive than that just developed for Linearity. Several auxiliary lemmas
are needed.

Lemma 4.5.8. Let t = (Ax®.t1)[y1/s1]- .. [yn/Sn]t2 and u = t1[z/ta][y1/s1] - .- [yn/sn],
so that t = u where a is the redex labeled by o, and b,c € RO(t), ¥/, € RO(u) such
that b[a]b’ and c[a]c’. Then b <} c iff b/ <3 .

124CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

Proof. See Appendix C.5, page 273. O

Lemma 4.5.9. Let t = E|27]|[z/s], ¢ the y-labeled step int, a,b < E[[x"]], b[a]b’, and
cla]c. If a g c, then b <} c iff b’ <3 .

Proof. See Appendix C.5, page 273. O

Lemma 4.5.10. Let a,b,c € RO(t). Assume a g ¢, t — t', b[a]t, c[a]c’ and
V <@ d <L, where d' is a created redex. Then b <§ ¢ with k < n.

Proof. See Appendix C.5, page 275. O

Lemma 4.5.11. Let u be a term s.t. x ¢ £v(u) and v ¢ Lab(u), and b € RO(u). Let E
be a context s.t. c € RO(E[z]]) has label v. Then b 43 c in El[u]].

Proof. We just conclude by observing that b <4 ¢ in E[Ju]] would imply the label ~y
occurs in the box of b, therefore in u. O

Lemma 4.5.12. Let E be a context, u a term, and b,c € RO(E[z]]), where b and ¢ are
labeled with B and vy respectively. Then b <4 c iff b/ <} ', where ' and ¢ are the B- and
~v-labeled steps in Efu].

Proof. Straightforward induction on FE. O

Lemma 4.5.13. Let a,b € RO(t), where a and b are labeled with o and [respectively,
and E a context. Then a <5 b iff a’ <§ V', where a' and V' are the a- and B3-labeled steps
in E[t].

Proof. Straightforward induction on F. O

Proposition 4.5.14 (Context-Freeness for 2g). Let a, b, ¢ be coinitial redezes s.t. b[a]t/
and c[a]d. If a g ¢ then (b <gc < b <g).

Proof. Let us define t = u, and consider the variant of ¢ in which a, b and ¢ are given
the labels «, 5 and ~y respectively. Notice that a € {b, ¢} would contradict the existence
of b’ or ¢. Therefore we can assume a ¢ {b, c} as well as a g c.

We prove first that b <3 c iff b’ <4 ¢/. We proceed by induction on the context of a.
The base case is when that context is 0. We analyse the different rewrite rules.

Assume t = (A\z®.t;) Lty = t1 [2/t2] L = u. We conclude by Lemma 4.5.8.

Assume t = t1[z%/ts] %t = u. If bc € t1, then we conclude immediately by
Lemma 4.5.13. Otherwise b C t5 or ¢ C t9, contradicting the existence of b’ or .

Assume that t = E[[z*]|[z/t2] = E[[t2]][x/t2] = u. We analyse the possible locations
of v and . We start by observing that neither b nor ¢ can be gc-steps on the variable
x. Moreover, ¢ € ty contradicts a {p ¢, hence we assume ¢ € EfJz%] or ¢ < ¢ in the
following analysis.

o If b,c € E[x?]], then we conclude by Lemma 4.5.12.

4.5. THE BOX ORDER ON STEPS 125

o If b € E[x®] but ¢ x t, then 27 occurs free in Efz?].

Suppose b <3 c. Then the box of b does not contain the whole pattern of ¢ (which
is the whole term t), therefore 27 occurs free in the box of b in ¢. That is, E[Jz*] =
D1 [D2[[z7]], %] or E[[z*]] = D3[Da[x”, x“]], where the pattern of b is Dy[[z] or
Dy|z”,xz%]. Hence u = Dy[D2[z7]), ta] [x/t2] or u = Ds[Dy4|x7,ta]][z/t2]. It is
straightforward to observe that z” also lies inside the box of b in wu, therefore
V<.
Suppose b <i .
conclude b <3 c.

e If bt (27 occurs free in E[Jz*])) and either ¢ € E[[z%] or ¢ t, then b 4 ¢ and
b 44 ¢ since the label v does not occur in the box of the S-labeled step (which is
t2) in neither ¢ nor w.

e Ifb € ty and either ¢ € E|z*]| or ¢ x ¢, then ty = D|p]| and v = E[D[p]|ll[=/Dprl]
where p is the pattern of b. Let us call by (resp. b1) the step whose pattern is the
leftmost (resp. rightmost) occurrence of p in u. Then b[a]by and b[a]b;.

Then a similar analysis applies, observing that = ¢ fv(ta), to

We first remark that b 44 ¢ and b; 4 ¢ since the label v neither occurs in the
box of b in ¢ nor in that of by in u. Moreover, if ¢ € E[[x%], then by 3 ¢’ holds
by Lemma 4.5.11 observing that the v label does not occur in to; if ¢ X ¢, i.e. 27
occurs free in EfJz®], then by 44 ¢ because the free occurrence of x7 in E[ts] is
not inside ¢3. Thus we conclude.

Now we analyse the inductive cases.
ot = vty S Ay = u, where tq -5 uy. We conclude by the IH on ¢; and
Lemma 4.5.13.
o t =1ty N Uity = u or t = t1ty N tiuz = u, where t; LN U; for 7 € {1,2}.

If b and c lie in different ¢;s, i.e. b S t; and ¢ < t3_; for j € {1,2}, then b } ¢ and
Y &3 ¢ since the box of b (resp. ¥’) does not contain the label 7.

If b, c < t;, then we conclude by the TH on t;.
If b,c € t3_;, then we conclude by Lemma 4.5.13.
If bat,ie t; = (AzP.t11) L, then b <} ciff ¥ <} ¢ iff ¢ C to.
If c i t,ie t; = (Ax7.t11) L, then b 44 c and ¥ L .
o t = ti[w/ta] > wi[x/ta] = wor t = ti[x/ts] > t1[x/us] = u, where t; - u; for
ie{l,2}.
— If b,c S t;, then we conclude by the IH on ¢;.
— If b,c € t3—;, then we conclude by Lemma 4.5.13.

— Ifectjand b S ts_; for j = 1,2, then b £ c and b 4§ ¢ since the box of b
(resp. b') does not contain the label .

— If bt and ¢ C tg, i.e. either 2 occurs free in t; or [x/t3] is indeed [2°/ts],
then b <} c and b’ <} ¢/. If i = 1 and 2 occurs in ¢;, then observe that the
existence of ¥’ implies that 2 occurs in ;.

— If bt and ¢ C tq, then b 4 ¢ and b’ £} ¢ since the box of b (resp. ¥’) does
not contain the label ~.

126CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

— If ¢ > t is the ge-step on x, so that x ¢ fv(t;), implying eventually x ¢ £v(u),
then the box of no step in t or u contains the label 7, so that b 3 ¢ and
Vg .

— If ¢t is a 1s-step, i.e. 7 occurs free in t1, there are several cases:

If b € t1 and @ = 2, then it suffices to observe that ¢; remains unchanged.

If b € t; and ¢ = 1 so that u; = D[[z”] (notice that Linearity and a «p ¢
imply 27 occurs free exactly once in u;) then we conclude by Lemma 4.5.9
by using the condition a g ¢ which is needed in order to apply that lemma.

Otherwise, b 3 ¢ and b’ 43 ¢ since the box of b (resp. V') does not contain
the label ~.

We now prove the statement of the lemma, i.e. that b <g c iff ¥’ <z . We prove
each side of the iff separately, proceeding by induction on n in b <j ¢, resp. b’ <§ .

Assume b <§_1 d <g c. Observing a <g d would imply a <g ¢, we obtain a g d.
Linearity then gives the existence of exactly one d' s.t. d[a]d’. We apply IH on n — 1,
thus obtaining b’ <g d’. Moreover, d’ <} ¢ holds by the proof we have just performed
for the <3 case. Thus we conclude.

Assume b’ <21 d' <1 ¢, where d' € RO(u) and d[[a]d’ for some d € RO(t). By the
proof we have just performed for the <i case we obtain d <} ¢, so that again we get
a *p d. Then we proceed similarly to the previous case.

Assume b <071 d' <} ¢/, where d’ € RO(u) is a created redex. Lemma 4.5.10 implies
o <’§ c for some k < n — 1, so that we conclude by the IH on k.]

As we have already remarked, to analyse the steps, residuals and box embedding for
an object of 25, namely a ~-equivalence class, it is enough to observe an arbitrary term
belonging to that class. Therefore, the proofs of the initial axioms, FD and SO given for
2r., and those of Linearity and Context-Freeness, given for 2(z, apply to 25 as well. For
FD, we notice that the measures used in the proof, namely the functions LM, and PLR,
are stable by ~; cfr. Lem. 4.2.13. Therefore, these measures can also be considered as
defined on ~-equivalence classes.

4.5.2 Some standardisation results stable by graphical equivalence

As described in Section 2.1.8, holding the initial, FD, SO, Linearity and Context-Freeness
axioms, are a sufficient condition, for an ARS, to assert the existence of a s.r.s. being

permutation equivalent to a reduction sequence. Therefore, the latter result holds for
g and Ag". Namely:

Theorem 4.5.15. Let v be a reduction sequence in Ag. Then there exists a s.r.s. 0,
such that & and ~ are permutation equivalent.

Theorem 4.5.16. Let v be a reduction sequence in 205 . Then there ezists a s.r.s. 0,
such that & and ~ are permutation equivalent.

Proof. Both theorems are immediate corollaries of Thm. 2.1.23, given the axiom proofs
presented in Section 4.2 and Section 4.5.1. O

4.6. A NOVEL PROOF FOR THE UNIQUENESS OF S.R.S. 127

On the other hand, the uniqueness of s.r.s. modulo square equivalence cannot
be proved for 2g, and hence neither for 27, by resorting to Thm. 2.1.24, the unique-
ness result given in Section 2.1.8. The reason is that these ARS, contrarily to g (cfr.
Thm. 4.3.1), do not enjoy the required axioms. A case analysis entailing a counterex-
ample for Enclave—Creation, and also one for Enclave-Embedding, follows.

Consider t = ((A\2P.2)(y[22/2'])[#' /u] - ((AxP.2)y)[2'/u] = t', where a and b
are the steps in ¢ whose anchors are labeled with . and 3 respectively, and d is a step
in ¢ verifying d € u. Let us define ¢ as the gec-step for 2/, created by a, and ¥, d’
the unique steps in ¢’ verifying b[a]d’ and dfa]d’. Then we have b <g a and b’ £p ¢/,
and also b <g a <p d (more precisely, a <2 d, since a <5 e <3 d where e is the 1s-
step on the occurrence of 2’ in [2%/2']) and b’ 4p d’. Thus both Enclave—Creation and
Enclave-Embedding are contradicted.

The preceding counterexample involves the gc-rule. We notice that the calculus gen-
erated only by the db- and 1s-rules does not enjoy Enclave-Embedding either. Consider

t = ((A2”)y™) [y/w [w/z]] > (Aa’a)w [w/=]) [y/w [w/z]] = t'

and let a, b, c be the steps in t labeled with «, 8, respectively; notice b <g a <z c.
Then we have b[a]b’, c[a]¢” and &’ «g ¢, where b’ is the S-labeled step in ¢', and ¢” the
rightmost ~-labeled one.

W.r.t. Stability, we observe that there is a case in which a step can be created in
two different ways, but not being a counterexample for the axiom, since the two steps
involved are not disjoint. Consider

e
/ \
t' =y’ /w][z/w] v zlzfw] ="

where again, the anchors of a and b are labeled with o and § respectively. In this case,
both a and b create the gc-step on z. On the other hand, b <z a, so that this case is not
a counterexample for Stability. Notice that there are no ambiguity about the standard
way to go from t' to t”, in line with the discussion in page 121 preceding the definition
of the box order: bis a s.r.s., while a; b’ is not. We conjecture that the Stability axiom
is valid for 20z and 23", we did not try to build a proof yet.

In the next section, we introduce a novel technique allowing to obtain standardisation
uniqueness results for 2Ag and Ag".

4.6 A novel proof for the uniqueness of s.r.s.

In this section, we develop an abstract proof of standardisation, which allows to obtain
the result of uniqueness of s.r.s., modulo square equivalence, for an ARS 2. This proof
does not require 2 to verify any of the Enclave—Creation, Enclave-Embedding or Stability
axioms. The initial axioms, FD, SO, Linearity and Context-Freeness are the requirements
imposed on 2.

The proof relies in the existence of a second ARS, let us call it 2, whose terms,
steps and residuals coincides with that of 2, whose embedding relation is a total order
containing that of 2, and which verifies all the standardisation axioms. Therefore, the

128CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

uniqueness of s.r.s. for 2 can be obtained as a corollary of Thm. 2.1.24. On the other
hand, the existence of a s.r.s. equivalent to any reduction sequence in 2 yields from
Thm. 2.1.23. These facts are exploited to obtain the uniqueness of s.r.s. result for 2.

This proof applies to g, where the ARS 2., whose embedding is the total order <,
plays the role of 2 in the abstract proof.

The following notion is referred to in the forthcoming statements and proofs: given

4
t —» t' and a € RO(t), we say that a is contracted along ¢ iff § = d1;a’; 55 where
afé1]a’.

Two auxiliary results are needed, namely:

Lemma 4.6.1. Let 2 be an ARS satisfying the initial axioms, FD, SO, and all the

5 o
embedding axioms. We note its embedding relation as <. Let t —» t' — wu, and
a € RO(t) such that a < b for all b € RO(t) contracted along 0;¢’. Then there exists
a' € RO(t") such that a[d] = {a'} and o’ <.

Proof. We proceed by induction on |§].

If 0| =0, i.e. § =nily, then ¢’ =¢, ¢ <, u, and ¢ € RO(t) is obviously contracted
along itself, so that the hypothesis implies a < ¢. We conclude by observing that
al5] = {a). |

If § = d; ¢, then t st N # -5 u. The hypothesis implies a < d, then Linearity
yields a[[d] = {ap}. Let by € RO(ty) contracted along d'; ¢'.

e If b[d]by for some b € RO(t), then b is contracted along d; ¢/, so that the hypothesis
implies a < b.

If d € b, then Context-Freeness yields ag < bg.
If d < b, then a < d < b; in this case we obtain ag < by by Enclave-Embedding.

o If &[d]by, then Enclave—Creation implies ag < by.
Hence the TH applies to [6’|, which suffices to conclude. O

Lemma 4.6.2. Let 2 be an ARS verifying the initial axioms, FD, SO, and all the

§
embedding azioms, whose embedding relation, noted <, is a total order. Lett — to, —»
t', where § is a s.r.s. for A, and a < b for any b € RO(t) contracted along a;6 and
verifying b # a. Then a;0 is a s.r.s. for 2.

Proof. If § = nil; then we conclude immediately, therefore we assume § = bg; ¢’

As the square equivalence of 2 is the identity, then a; 0 not being 2-standard would
imply the existence of an anti-standard pair in that reduction sequence. On the other
hand, standardness of § implies that it does not include any anti-standard pair. Conse-
quently, verifying that a; by is not an anti-standard pair suffices to conclude.

If b[a]bo, then the hypothesis implies a < b. Otherwise F[a]bo. In both cases, a; by
is not anti-standard. Thus we conclude. O

Theorem 4.6.3. Let A1, Ao be two ARS verifying the following conditions, where for
1 =1,2, <; is the embedding relation of U;:

e the sets of objects and steps, the source and target functions, and the residual
relation, coincide for Ay and As.

4.6. A NOVEL PROOF FOR THE UNIQUENESS OF S.R.S. 129

o The embedding relation <1 is a total order.
o <9 .
o 2y and Ay verify the initial axioms, FD, SO, Linearity and Context-Freeness.

o 2y verifies the rest of the embedding axioms as well.

Then the uniqueness of s.r.s. result stated in Thm. 2.1.24 holds for As. Namely,
for any reduction sequence 7y, there is a s.r.s. § such that § and v are permutation
equivalent, and moreover § is unique modulo square equivalence. That is, for any s.r.s.
o', &' being permutation equivalent with v implies §< 8.

Proof. Observe that any reduction sequence for 2l is a reduction sequence for 2 and
vice versa. Moreover, permutation equivalence also coincide for both ARSs, since the
definition of permutation equivalence for ARS, cfr. Section 2.1.7, does not depend on
the embedding relation.

Let v be a reduction sequence for both ARSs. Let d; and do be two reduction
sequences, such that both are permutation equivalent with v, 1 is a s.r.s. for 2; and
b2 is a s.r.s. for /Us. The existence of §; and dy are a consequence of Thm. 2.1.23.
Moreover, 91 is unique modulo <, by Thm. 2.1.24. Furthermore, <; being a total order
implies that the square equivalence for 2; is the identity; cfr. the comment in the proof
of Thm. 4.3.1. Hence, ;1 is unique given that it is a s.r.s. for 2; and is permutation
equivalent with ~.

To conclude, it suffices to show d; O d2: any reduction sequence 05 being permutation
equivalent with v and s.r.s. for 2y, would verify d; &85 as well, and therefore 2 ¢ 9
by transitivity of <.

We prove §; ©dg by induction on |ds]. Let us define ¢’ as the term verifying ¢ N v,
ti»t’ andtﬁ»t'.

If |[02] = 0, i.e. do = nily, then §; = v = Jy since all of them are permutation
equivalent. Thus we conclude.

If 62 # nily, then we consider the minimal, w.r.t. <y, of the steps in RO(t) contracted
along d2; let us call this step a. That is, a is contracted along do, and for any b € RO(t)
contracted along ds such that b # a, a <1 b.

5/ 7 6//
Let 6o = &';a';6" where a[[6']a’, so that t —» t; — t, — t'. We verify that
d2<Ca;d'[a]; 0" and |'[a]| = |¢’|, by induction on |§].

e If ¢ = nily, so that ¢t = ¢ and a € RO(t), then ¢'[a] = nil;,, and a[d']a. In this
case, 02 = a;0" = a;0'[a]; 8", hence we conclude.

o If & = m;b, then let a; be the step verifying a[r]ai[b]a’. In this case, dy =
m;b;a’;0”. Observe that a <y ¢ for any ¢ € RO(t) contracted along 7;b. Then
Lem. 4.6.1 applies, yielding a[r] = {a1} and a; <; b, and therefore b 4, a;. On the
other hand, a; <9 b would contradict the 2As-standardness of 2. Consequently,
aj ||2 b, so that Linearity yields a1[b] = {a'} and b[a1] = {b’'} for some step ¥'.
Therefore, 6o O m;ay;b'; 6", implying that the latter is 2o-standard.

Observe that the sets of steps in ¢ contracted along the two equivalent reduction
sequences 09 and 7;aq;b’; 6" coincide, so that a is the minimal, w.r.t. <i, step in
such a set for m;ay;b’;6"”. This observation implies that IH applies on 7, yielding:

5o © ma; ;8" O a;rfal;b'; 8"

130CHAPTER 4. STANDARDISATION FOR THE LINEAR SUBSTITUTION CALCULUS

and |r[a]| = |r|. We conclude by observing that ¢'[a] = 7[a]; V.

We have thus obtained da = ¢';a;6" < a;6'[a]; 6", and |62| = |a;8'[a];6"]. Then
a;¢'[a]; 8" is standard for 2As. It is straightforward to obtain that ¢’[a];¢” is standard
for 205 as well.

Let 0 be the unique 204-s.r.s. permutation equivalent to §'[a];d”. Then the
IH on |d2| applies, because |§'[a];0”| < |d2]. We obtain 6 < §'[a];d”, and therefore
a;0 < a;0'[a]; 6" & 2. As we already noticed, the set of steps in RO(t) for d2 and
a; 0 coincide. Hence a is the <i-minimal such step for a; 6, so that Lem. 4.6.2 applies,
yielding that a;0 is 2;-standard. Moreover, it is permutation equivalent with ~, and
therefore with d;. Hence, uniqueness of s.r.s. for 2y yields §;1 = a;60 < §o. Thus we
conclude. O

This proof allows to obtain strong standardisation results for 2z and, consequently,
for Az

Theorem 4.6.4. Let v be a reduction sequence in Ag. Then there exists a s.r.s. §
such that v and 6 are permutation equivalent. Moreover, § is unique modulo <. That
is, for any s.r.s.d', &' being permutation equivalent with v implies 6 < §'.

Proof. This statement is a corollary of Thm. 4.6.3, where 2 and 2z play the roles of 2/;
and 2 respectively. The required axioms are verified in Section 4.2 and Section 4.5.1
respectively. O

Theorem 4.6.5. Let v be a reduction sequence in 2y . Then there exists a s.r.s. §
such that v and 6 are permutation equivalent. Moreover, § is unique modulo <. That
is, for any s.r.s.0’, &' being permutation equivalent with ~v implies 6 < §'.

Proof. Thm. 4.5.16 yields the existence of 4. Since reduction sequences, residuals and
embedding for a ~-equivalence class can be observed on any term belonging to that
class, then two permutation equivalent s.r.s. § and ¢’ can be observed on the same
term, so that Thm. 4.6.4 implies 6 & 4’. Thus we conclude. O

Chapter 5

Permutation equivalence for
infinitary rewriting

As described in Section 2.2, proof terms are a representation of reduction sequences, and
more generally of different forms of contraction activity. Each rewriting rule is denoted
by an ad-hoc symbol, while the binary symbol - denotes concatenation. Equivalence
of contraction activities is characterised by equational logic based on proof terms: two
contraction activities are said permutation equivalent iff the proof terms representing
them can be proven equal by the contextual and equivalence closure of a set of basic
equations.

In this chapter, we generalise the notion of proof term to the realm of infinite reduc-
tion; more precisely, to first-order, left-linear infinitary term rewriting systems, adopting
the strong convergence criterion; cfr. Section 1.2.3. We define and study the notion of
permutation equivalence for transfinite reductions, by means of the so defined infinitary
proof terms.

Infinity arises in different ways in infinitary rewriting. Consider the rewriting rule
f(x) — g(x), and the reduction sequence

[= 9(f*) = 9(g(f*)) - ¢*

where f“ is a concise description of the term f{f(f(...))), which can be also described
by the equation ¢ = f(¢). This reduction sequence comprises the application of the
given rewriting rule to each of the occurrences of f in the source term f“. This term
includes an infinite number of such occurrences, implying that the length of the given
reduction sequence is infinite. On the other hand, observe that all the steps included
in this sequence correspond to redexes present in the source term (put in other words,
no created redex is contracted); therefore, this reduction sequence is equivalent to the
simultaneous contraction of an infinite set of steps:

fe—g”
where —— denotes the simultaneous contraction of a number of steps, in this case an

infinite number of them. The transformation of each of the f in f“ into a g can be
organised in many other different ways, e.g.:

J¥ == g(g(f*)) > 9(9(9(9(f*)))) —o» g*

(9
I = Fg(f*)) = Flg(F(g(f)))) = Fg(f(g(f(g(--))))))
— 9(g(f(g(f(g(-- IN)) — 9(g(g(g(f(g(--))))) = g*

131

132CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

For each possible way to transform f“ to ¢* through the given rule, an infinitary proof
term denoting precisely that contraction activity must exist. In turn, we should be able
to conclude that all the resulting proof terms are permutation equivalent.

This example shows that the extension of the notion of proof term to infinitary
rewriting should consider infinite concatenations of steps, or more generally of contrac-
tion activities, including the possibility of going beyond the w-th component, as in the
last given reduction sequence, in which a concatenation of w steps is followed by an-
other one of the same length. The simultaneous contraction of an infinite number of
steps must be taken into account as well.

In the permutation equivalence perspective of the equivalence between reductions,
two reduction sequences are considered equivalent iff each of them can be transformed
into the other by means of a number of permutations of adjacent steps. The character-
isation of equivalence in both the ARS and the proof term models we use in this thesis
reflect this view, cfr. Sections 2.1.7 and Section 2.2."

Infinitary rewriting leads to the existence of infinite, equivalent reduction sequences,
where the transformation of one of them into the other one involves an infinite number of
step permutations. Recalling an example from Section 1.4.3, consider the rules f(z) —
g(z) and m(z) — n(x). In order to verify the equivalence between the following two
reductions:

m(f“) — m(g(f~)) — m(g(g(f*))) - m(g*) — n(g”)
m(f<) — n(f) — n(g(f*)) — nlg(g(f*))) - n(g”)

the last step in the former reduction must be permuted with an infinite number of steps,
since it corresponds with the first step in the latter reduction.

For a more complex example, we add the rule g(z) — j(x). Assume that we want
to prove the equivalence between the following reduction sequences:

9= g(f) = g(g(f*)) = ¢ — 3(g”) — §(5(g”)) = 5
<= g(f?) = (<) — 3(g(f9) = 3G(f<)) = 3%

If we successively permute the step g — j(¢*) in (5.1) with each of the infinite preceding
steps except for the first one, we would obtain

f© = g(f%) = 3(f*) = 3 (g(f*) = (g(g(f*))) = i(g*) = 3(i(g”)) = j*

To transform this reduction sequence into (5.2), we would need to repeat this process
for each of the infinite steps corresponding to the rule g(z) — j(z).

The definitions we give in this chapter take into account the aforementioned consid-
erations. We remark that the equivalence of reduction sequences having different lengths
can be stated by means of these definitions; e.g., the lengths of the equivalent sequences
(5.1) and (5.2) are w x 2 and w respectively. The phenomenon of infinitary erasure is
adequately reflected as well, cfr. Section 5.3.4.

A finite reduction sequence & = aj;as;...;a, can be represented by a proof term
having the form ¥ = 11 - 9 - ... - ¢, where each ; describes precisely the step a;.

1We recall that [BKAV03] includes other characterisations of equivalence as well, related with notions
different from permutation of steps.

133

Each 1; includes exactly one rule symbol, and does not contain occurrences of the dot.
Such representation of a given rewrite step a; is unique. We give an example in Fig. 5.1.

Rules: p: f(x) — g(z) 7:h(g(z),y) — k(y,x) m:ia—b

hf(e),a) =5 hlgle),a) > higlc),b) = k(bco)
(h(u(e)ya) - h(glc),m)) - 7(c,b)
(Y1 ' V2) : 3

Figure 5.1: A reduction sequence, and a proof term representing it

On the other hand, the fact that the dot is a binary symbol implies that its occur-
rences can be associated in different ways. E.g., observe that the proof term
h(p(c),a) - (h(g(c),m) - 7(c,b)) also denotes the reduction sequence given in Fig. 5.1.
We say that the representation, in the described way, of a finite reduction sequence as
a proof term, is unique up to rebracketing, i.e., to the associativity of the dot. Observe
that the “equality-up-to-rebracketing” relation on finite proof terms corresponds exactly
to the equivalence relation generated solely by the (Assoc) equation schema.

In this chapter, we extend this correspondence between reduction sequences and
proof terms to infinitary rewriting, and also formalise it. Namely, we formalise the notion
of infinitary stepwise proof terms, to wit, the proof terms which precisely denote reduc-
tion sequences. The idea of two stepwise proof terms being “equal-up-to-rebracketing”
is formalised by the introduction of the rebracketing equivalence relation, which is (anal-
ogously to the case for finitary rewriting) the infinitary equivalence relation on stepwise
proof terms generated by the (Assoc) equation schema. We also formalise the idea of
denotation of a reduction sequence by means of a stepwise proof term. Subsequently,
we prove that any infinitary reduction sequence whose length is a countable ordinal is
denoted by a proof term, and that moreover this proof term is unique up to rebracket-
ing. This result applies particularly to all strong convergent reduction sequences, cfr.
[KdV05].

Besides the ability to faithfully represent any strongly convergent reduction sequence,
and to reason about the equivalence of reductions, we claim that the proof term model
provides a framework in which relevant properties of infinitary rewriting can be proved.
We give in this chapter a proof, based on proof terms, of the compression result for
infinitary rewriting, described in Section 1.2.3. Specifically, we prove that any infinitary
proof term is permutation equivalent to a stepwise proof term whose length is at most w.
In this way, we provide a version of the compression result strengthened in two different
ways: it comprises not only reduction sequences but also other forms of contraction
activity, and it establishes that the original and the compressed reduction are equivalent,
besides coinciding in their source and target terms. Note that a compression statement
establishing the equivalence between the original and compressed reductions is proved
in [KKSdV95, BKdV03]; however, orthogonality of the rewriting system is assumed in
these results.

The main definitions we present in this chapter are given by inductive means, so
that inductive arguments can be used to reason about them. We notice the existence
of sound induction principles for fundamental concepts in infinitary rewriting. While
the number of occurrences in an infinite term are indeed infinite, the distance of any of

134CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

them to the root of the term is finite, giving an induction principle to reason about the
set of occurrences of a term. On a different front, while an infinitary reduction sequence
can include an infinite number of steps, an (either finite or transfinite) ordinal can be
set as the length of any sequence, so that transfinite induction can be used to reason
on reduction sequences in infinitary rewriting. Strong convergence provides an added
element we can use for the limit case in such reasonings: the sequence of the depths of
the successive steps, up to any limit ordinal, tends to infinity in a strongly convergent
reduction sequence. By “depth of a step” we mean, in this chapter, the depth of the
corresponding redex, that is, the distance of the redex to the root of the source term of
the step.

We give an adequate, transfinite induction principle to reason on the set of infinitary
proof terms, by associating a countable ordinal to each one. This ordinal is related to the
occurrences of the concatenation symbol, i.e. the dot: the base case corresponds to the
proof terms in which the dot does not occur, and the limit case to the representation
of infinite concatenations. An analogous technique is used to reason by transfinite
induction on the set of permutation equivalence judgements: a countable ordinal is
associated to each judgement. The base case corresponds to the instances of the basic
equation schemas. The ordinal associated to the conclusion of a rule is always strictly
greater than that of any of its premises.

An alternative, co-inductive approach to the study of infinitary rewriting, was pro-
posed in [EHH*13]. Proof objects emerge there as witnesses in the co-inductive charac-
terisation of the reduction relation. Their focus, however, is on techniques for proving
properties of the reduction relation, rather than the fine structure of the space of trans-
finite reductions, which is our primary interest. Another coinductive study of infinitary
rewriting, also focused in the reduction relation, was recently presented in [Czal4].

We end this introduction with a remark about terminology: in this chapter, we use
the acronym “TRS” with the meaning of “first-order term rewriting system”; “iTRS”
denotes an infinitary, first-order term rewriting system.

Plan of the chapter

Section 5.1 includes the preliminary material needed for the development of the rest
of the chapter. Particularly, we give the definitions for the main concepts of infinitary
rewriting, including those of term, rewrite step and reduction sequence, we use later on.
Section 5.2 is devoted to the notion of proof term. We define the set of valid infinitary
proof terms. As this definition is involved, we describe extensively its organisation, and
we also provide several examples. In Section 5.3, we present a characterisation of the
equivalence of infinitary reductions based on proof terms, which formalises the notion of
permutation equivalence as already noted. We describe, by means of several examples,
the challenges imposed by infinite reductions to the formalisation of permutation equiv-
alence; subsequently, we show how the proposed characterisation deals adequately with
those examples. In this section we also introduce the phenomenon of infinitary erasure,
and show that it is accurately modeled by the proposed permutation equivalence charac-
terisation. In Section 5.4, we address the issue of the denotation of reduction sequences
by means of proof terms, along the lines described earlier in this introduction. Finally,
Section 5.5 is devoted to the proof of the compression result.

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 135

5.1 Infinitary rewriting and other preliminary material

The work on infinitary rewriting we describe in this chapter resorts to several definitions
and properties. The present section describes this preliminary material.

The subject of Section 5.1.1 is the theory of countable ordinals; we present some
definitions and results which are particularly relevant to the extension of the proof term
model to infinitary rewriting.

In Sections 5.1.2 to 5.1.4, we give the definitions of the main concepts of infinitary
rewriting we use in the following. In Section 5.1.2, we deal with the definition of infinitary
term, and of the related notions of position and context. Some basic results are given as
well. In Section 5.1.3, we study the extension, to the infinitary setting, of the notion of
substitution, verifying that it enjoys some expected properties. Section 5.1.4 is devoted
to the definition of infinitary (first-order) term rewriting system, and to formalise the
notions of reduction step and reduction sequence.

Finally, in Section 5.1.5 we introduce the notion of pattern, and Section 5.1.6 includes
some results about infinitary rewriting which are needed in the following.

5.1.1 Countable ordinals

We do not give a general presentation of the theory of ordinals. The general references
we use for this subject are [Sup60, Sie65, For03].

In order to deal with infinitary composition, we will need to obtain the sum of
a sequence including w ordinals. Thus we will resort to the following definition, cfr.
[Sup60] Dfn. 6 pg. 216.

Definition 5.1.1 (Ordinal infinitary sum). Let {a;);<, be a sequence of ordinals. We
define the sum of {a;)i<. as follows:

Sa;i=sup({ag +o1+ ...+ ap1+ o, / n<w})
1<w

The sum of w ordinals, in the way it was just defined, enjoys the following important
property.

Lemma 5.1.2. Let {@;);<, be a sequence of ordinals, and 8 an ordinal such that B <

Y ay. Then there exist a unique k < w and an ordinal v such that f = ag+. .. +ap_1+7
<w

and v < Q.

Proof. This is an easy consequence of some properties of ordinals. Namely, § < X
<w

implies that the set {k <w / 8 < ap+...+ay} is nonempty; we take n as the minimum
of this set. Then ag+...+ay,—1 < S < (ap+...+a,—1)+a,. Basic properties of ordinals
entail the existence and uniqueness of an ordinal ~ verifying (g + ... + ap—1) +v = S,
and also that v < «ay,. Thus we conclude. O

Finally, the property of w-cofinality of countable ordinals, cfr. [For03] Remark 73
pg. 169, is needed in some proofs along this chapter. Specifically, we resort to the
following consequence of this property.

Proposition 5.1.3. Let a be a limit countable ordinal. Then there exists an increasing

sequence of ordinals {a;)i<, such that 0 < a; < a for alli < w, and o = ¥ «;.
<w

136CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

5.1.2 Positions, terms, contexts

We consider the usual definition of the notion of position.

Definition 5.1.4 (Position, depth of a position). A position is a finite sequence of N~.
The empty sequence is denoted by the symbol €. The depth of a position p, notation |p|,
is defined as its length; observe that |e| = 0.

Definition 5.1.5 (Concatenation of positions). Let p, q be positions. Then we define p-q,
the concatenation of p and q, as follows: €-q := q and (ip)-q :=i(p-q). Moreover, given
P, Q sets of positions, then we define also P-q := {p-q /p € P} and p-Q := {p-q / g € Q}.

We will omit the dot to denote concatenation, i.e. we will write pq, pQ, Pq instead
of p-q,p-Q, P -q wherever no confusion arises.

Following e.g. [Cou83], the definition of infinitary term is based on the notion of tree
domain. The notion of signature can be defined exactly as for finitary term rewriting,
cfr. Dfn. 2.2.1.

Definition 5.1.6 (Tree domain). A tree domain is any set of positions P satisfying the
following conditions (p,q positions; i,j € N~o): P # &; P is prefix closed, i.e. pq € P
implies p € P (particularly, e € P); if pj € P and 1 <i < j, then pi € P.

Definition 5.1.7 (Term, positions of a term, symbol at a position, sets of finitary and
infinitary terms). A term over a signature ¥ and a countable set of variables Var is any
pair (P, F'), such that P is a tree domain, F': P — ¥ uVar, and the following condition
holds: if p€ P and F(p) = h, then pi € P iff i < ar(h), where we consider ar(z) = 0 if
x € Var.?

If t = (P, F) is a term, we will denote P by Pos(t), and F just by t; therefore, we
will write t(p) to denote F(p).

A term is finite iff its tree domain is, otherwise it is infinite.

Given a signature 3 and a countable set of variables Var, the set of finitary terms
over ¥, notation Ter(X,Var), is the set of finite terms over X; and the set of infinitary
terms over X, notation Ter™(X,Var), is the set of finite or infinite terms over 3.

We will often drop the set of variables, writing just Ter(X) or Ter®(%).

We will name head symbol of a term ¢ the symbol ¢(¢). The name root symbol
will be used as well.

We give some examples of terms, according to Dfn. 5.1.7. We use the symbols
h/2, /1, a/0, b/0. The term t; = h(f(a),b) is described formally as (P;, F}), where
Py ={e1,11,2} and Fy = {¢ > h,1 —> f,11 > a,2 — b}. This is a finite term, because

2in some texts, e.g. [Cou83] and [Gal86], a term is defined just as a function from positions to symbols;
the set of positions is implicitly determined by being the domain of the function. We prefer to explicitly
include the set of positions in the definition.

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 137

sois P;. We have e.g. t1(1) = f and ¢1(2) = b. We show graphically three infinite terms:

VAN
/ \h / \h / \h
ANV ANNANYAY as

The term to corresponds to the idea described informally as f(f(f(...))). Formally, we
define to = (P, Fy), where P» = {1" / n < w} and F5(1") = f for all n < w. In turn,
ts = (Ps3, F3), where Ps is the set of all finite sequences built using the numbers 1 and
2, and F3(p) = h for all p € Ps. Finally, t4 = (Py, Fy), where Py = | J,__{2",2"1}, and
for all n < w, Fy(2") = h and F4(2"1) = a.

S~

n<w

Notation 5.1.8 (Intuitive notation for terms). An alternative notation will be often
used for terms in Ter®(X,Var): if x € Var and f/n € X, then we will write

o =z for {{€}, F) where F(e) =z, and

o f(t1,...,tn) for (P, F), where P = {€} U |J,<;<, {ip / p € Pos(t;)}, F(e) = f,

and F(ip) = ti(p).

We will use t € Var as shorthand notation for t = {{€}, F'), F(€) = z, and = € Var.
If f/1 € X, then we will write f¥ for the term t = f(f(f(...))), whose formal definition
is described above.?

We observe that any term comprised in Dfn. 5.1.7 can be described using Nota-
tion 5.1.8.

Proposition 5.1.9. Let t € Ter®(X,Var). Then eithert = x ort = f(t1,...,t,) where
f/ne ¥ and t; € Ter®(X,Var) for all i < n; cfr. Notation 5.1.8.

Proof. Dfn.. 5.1.6 implies that € € Pos(t).

Assume t(e) = x € Var. Moreover, assume for contradiction the existence of some
p € Pos(t) such that p # e. In that case there should be some n € N being the minimum
of the depths of such positions, i.e. n = min(|p| / p € Pos(t) Ap # €). Observe that n =1
would imply the existence of some ¢ € N verifying i € Pos(t), contradicting Dfn. 5.1.7
since we consider ar(z) = 0. In turn, n > 1 would entail p = p’i € Pos(t) for some p
verifying [p| = n and |p/| > 0, implying p’ € Pos(¢t) by Dfn. 5.1.6, thus contradicting
minimality of n. Consequently, Pos(t) = {€}, hence t = z.

Assume t(e) = f € X. For each i € N we define P; := {p / ip € Pos(t)}, and
F; : P, > ¥ u Var such that F;(p) := t(ip). If i < ar(f), then P; # & since € € P;.
Moreover, Pos(t) being a tree domain implies immediately that P; enjoys the remaining

3This convention could generalise to any f/n € ¥, by defining f* = (P, F) where P is the set of all
the sequences that can be built using the numbers {1,2,...,n}, and F(p) := f for all p € P. Roughly
speaking, f* would be defined as the infinite tree all filled with f.

138CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

conditions in Dfn. 5.1.6; and also the condition on F; described in Dfn. 5.1.7 stems
immediately from the fact that ¢ is a term. Therefore, t; := (P;, F;) is a term. On the
other hand, i > ar(f) implies that P; = &, thus Pos(t) = {e} U <;<arplip /P € Pi}.
We conclude by observing that ¢ = f(t1,...,t). O

Some notions related to terms

A number of basic definitions pertaining to first-order term rewriting extend to the
infinitary setting; some expected properties are preserved. For the finitary counterparts
of these definitons and properties, cfr. e.g. [BN98], Section 3.1.

Definition 5.1.10 (Occurrence). Let t be a (either finite or infinite) term over ¥ and
a € ¥ uVar. An occurrence of a in t is a position p € Pos(t) such that t(p) = a. We
define Occy(t) as the set of occurrences of a in t.

A symbol a € ¥ U Var occurs in a term t iff Occy(t) # &, i.e. iff there is at least
one occurrence of a in t; a occurs exactly n € N times in t iff |Occq(t)| = n, where |S)|
denotes the cardinal of any set S.

Definition 5.1.11 (Closed term, linear term). A termt is said to be closed iff it includes
no occurrences of variables; it is said to be linear iff no variable occurs in it more than
once.

For example, the symbol f has two occurrences in the term t = h{f(a),g(f(b)));
more precisely, Occy(t) = {1,21}. The symbols h, a, b and g also occur in ¢, while e.g.
the symbol ¢ does not. Obseve that no variable occurs in ¢, so that it is a closed term.

Definition 5.1.12 (Subterm at a position). Let t = (P, F) be a term, and p € P.
We define the subterm of t at position p, notation t|,, as (P|,, F|,), where P|, and
F|, are the projections of P and F over p respectively; i.e., P|,:= {q / pq € P} and
F|,: P|, —» ¥ uVar such that F|, (q) := F(pq).

A simple example shows that Dfn. 5.1.12 extends the usual definition of subterm at a
position. Let ¢t = h(h(f(a), g(b)), g(h(b,a))), so that t = (P, F’) where P = {¢,1,11, 111,
12,121,2,21,211,212} and F = {¢ — h,1 — h,11 — f,111 — a,12 — ¢,121 — b,2 —
9,21 — h,211 — 0,212 — a}. Then P|a= {¢,1,11,12}. In turn, F|2 (1) = F(21) = h.
Analogously, we obtain F'|y (€) = g, F'|2 (11) = b and F'|2 (12) = a. Hence, t|2=
e, 1,11,12}, {e > g,1 —> h,11 — b,12 — a}), that is, the term g(h(b,a)).

An example involving infinitary terms follows. Let ¢; and to be the following terms:

ty = (P, F1) ty = (P, Fy)
h h
a/ \h b/ \h
b/ \h a/ \h
a/ \h b/ \h
/N N
b a

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 139

so that Py = Py = | J,,_,{2%2"1}, F1(2") = F»(2") = h, F1(2?"1) = F»(2?""11) = a
and Fy(2?"*t11) = F3(22"1) = b. Then t1|;= a and t3|; = b, as expected. In turn, it is
not difficult to grasp that P o= P = P, Fi|o (2%) = F1(2"") = h, F1]o (22"1) =
Fi(22"t11) = b, and Fi|o (22"T11) = Fy(22"1) = a. Therefore, t1|o= t3. Analogously,
we obtain ty |2= t;. These results coincide with what can be easily observed in the
graphical description of ¢; and t».

Dfn. 5.1.12 allow a straightforward and direct (i.e. non-inductive) proof of a basic
result about subterms. Namely

Lemma 5.1.13. t|,q= (t])|q-

Proof. If we call (P, F) := t|pq and (P',F") := (t|p)|q, then Dfn. 5.1.12 yields

P = {r/pqrePos(t)} P" = {r/qrePos(t|y)}
F(r) = tpgr) Fi(r)y = tlp (qr) = t(pgr)
We conclude by observing that pgr € Pos(t) iff gr € Pos(t],). O

Particularly, if t = f(t1,...,t,), then t|;,= t;|,; cfr. Notation 5.1.8.

Definition 5.1.14 (Replacement at a position). Let t and u be terms, and p € Pos(t).
We define the replacement of t under position p with u, notation t{u],, as (P',F") such
that P' := {qe Pos(t) / p £ ¢} v {pq / q € Pos(u)} and
tlq) iff pfq
F'(q) := . .
@) { u(g) iff g =pqd

We state and prove some basic properties about replacement. It is worth mentioning
that the definition of infinitary term we give in Dfn. 5.1.7 is of a different nature from
the definitions of (finitary) term given in [BKdV03] (Dfn. 2.1.2, page 26) and [BN9§]
(Dfn. 3.1.2, page 35), so that it is necessary to verify these properties.

Lemma 5.1.15. Let t = f(t1,...,t,) and u be terms, and p € Pos(t;). Then t{u];), =
f(tl, “. ,ti[u]p, PN ,tn).

Proof. Let us call ¢/ = (P, F') := f(t1,...,ty)[u]ip and
t"=(P" F") = f(t1,... ti[ulp, ... tn).

By joining Notation 5.1.8 and Dfn. 5.1.14 we obtain P’ = {¢} u{jq / g € Pos(t;) Aj #
i} u{iq' / ¢ € Pos(t;) Ap £ '} uiipg / q€Pos(u)}. It is straightforward to verify that
P’ = P"; particularly, notice that Pos(t;[u],) = {¢' / ¢ € Pos(t;) Anp £ ¢} u{pg/ q€
Pos(u)}.

Let us compare F'(p) and F”(p), for any pe P' = P". F'(e) = F"(e) = f. If j # i
then ip € jg, then F'(jq) = F"(jq) = t;(q). If p £ ¢, then F'(i¢") = F(i¢') = t:i(¢),
and F"(iq") = t;[u],(¢") = ti(¢'). Finally, if ¢ = pq’, then F'(iq) = u(q') and F”(iq)
ti[ulp(pq’) = u(q’). Thus we conclude.

~—

(|

Lemma 5.1.16. Let t and u be terms and pq € Pos(t). Then t[u]pq = t[t|p [u]q]p-

Proof. By induction on p.

If p = €, then both t[u],, and t[t|, [u]q]p are equal to t[u],.

Assume that p = 4p/, in this case t = g(t1,...,t,). Lem. 5.1.15 implies that t[u]y, =
tulipg = g(t1, ... tilulyg, - - - tn) and also t[t|, [ulqlp = tltlipy (ulglipy = g(t1,. .. tiltily
[u]qlys - -, tn). We conclude by IH on p/, t; and w. O

140CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Lemma 5.1.17. Let t,s be terms and p, q € Pos(t) such that p || q. Then (t[s|q)|p=tlp-

Proof. Say t = (P, F), t[s]y = (P, F"), t|,= (Pp, F},), and (t[s]y)|p= (P, F},). We prove
P, = P} by double inclusion.
C) Let p/ € Py, so that pp’ € P. Observe that p || ¢ implies pp’ || ¢, so that
q € pp', implying pp’ € P’, and therefore p’ € P,
2) Let p' € P, so that pp’ € P'. We have already verified ¢ £ pp', so that the
only valid option w.r.t. Din. 5.1.14 is pp’ € P, implying p’ € P,.

Let p’ € Py = P, so that pp' € P n P’ and ¢ £ pp’. Dfn. 5.1.12 implies F)(p') =
F'(pp') and F,(p') = F(pp'). In turn, Din. 5.1.14 yields F'(pp’) = F(pp'), since q £ pp'.
Consequently Fj, = F;,. Thus we conclude. O

Contexts

The notion of context also extends to infinitary terms as expected, provided that the
contexts we deal with in this chapter include only a finite number of holes. In some
situations, particularly in the definition of rewriting rules, variable occurrences play a
role similar to that of the holes in a context.

Definition 5.1.18 (Context, one-hole context). A context over ¥ is a term (either
finite or infinite) over ¥ u {00/0}. A one-hole context is a context in which the symbol
O occurs exactly once.

Definition 5.1.19 (Position of a variable (hole) occurrence in a term (context)). Let ¢
be a term. Then we define VOccs(t) := {p / t(p) € Var}. Given a term t, if |VOccs(t)| =
n € N, then for any i such that 1 < i < n we define Vpos(t, i), the i-th variable occurrence
in t, as the i-th element of the set VOccs(t), considering the order given by p < q iff
ol < lq| or |pl =lq|, p=7ip', g =7rjq', i <j .

Analogously, if C' is a context including a finite number of occurrences of the symbol
O, then we define Bpos(C, i) as the i-th element of Occn(C), considering the order just
described.

Definition 5.1.20 (Context replacement). Let C' be a context including exactly n oc-
currences of the symbol O, and t1,...,t, terms. We define the replacement of C' using
tiy ... tn as Clt1,... tn] := (P, F), where
P :={pePos(C) / C(p) # O} uJ;{Bpos(C, i) - p / p € Pos(t;)},
C(p) iff C(p)#0O
Y -
wd P00 ={ S0) Crren() -

It is easy to verify an expected result about context replacement, namely:
Lemma 5.1.21. C[t1, ..., tn]|pos(c,i)p= tilp

Proof. Immediate from Dfn. 5.1.20. O

Distance between terms, equality, metric space of terms

The following notion of distance is used to ascertain the equality of terms.

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 141

Definition 5.1.22 (Distance between terms, cfr. [BKAV03] p. 670). Let t,u be terms.
We define the distance between t and u, notation dist(t,u), as follows:
e 0ifft=u, and
o 27 otherwise, where k is the length of the shortest position at which the two
terms differ; i.e. k = |p| s.t. p is minimal for p € Pos(t) U Pos(u) and either
p ¢ Pos(t) N Pos(u) or t(p) # u(p).

Remark 5.1.23 (Equality criterion for terms). Dfn. 5.1.22 implies that, given two terms
t and u, obtaining dist(t,u) < 27F for all k < w is a sufficient condition to conclude
t = w. In turn, to check dist(t,u) < 27% it is enough to verify, for any position p, that
|p| < k and p € Pos(t) U Pos(u) entails p € Pos(t) nPos(u) and t(p) = t(u).

We give some examples of Dfn. 5.1.22, involving the terms t; = h(f(f(a)), g(g(g(b)))),
ta = h(f(f(a)),g(b)) and t3 = h(f“,g*). We obtain dist(ti,t2) = 22, because
t1(21) = g # b = t2(21), and for all p € Pos(t;) U Pos(t2) such that |p| < 2, that
is, for p = €,1,2, we have t;(p) = t2(p). Analogously, we obtain dist(t1,t3) = 273, since
t1(111) = a # f = t3(111), and dist(t2,t3) = 272, since t2(21) = b # g = t3(21).

The notion of distance given by Dfn. 5.1.22 allows to define the limit of an infinite
sequence of terms.

Definition 5.1.24 (Limit of a sequence of terms). Let < t; >;<o a sequence of terms
where a is a countable limit ordinal. We say that the sequence < t; > has the term t as
its limit (notation lim;_, t; = t) iff the following limit condition holds: for any p € N
there exists k, < a such that for all j satisfying k, < j < o, dist(t;,t) < 27P.

E.g., let t; = f'(a). To conclude that lim; ,,t; = f¥, it suffices to observe that
dist(t;, f¢) =27¢ for all i < w.

Dfn. 5.1.22 yields a metric, which can be applied to both Ter(X) and Ter®(X).
The set T'er®(X) turns out to be isomorphic to the metric completion of Ter(¥) w.r.t.
this metric, cfr. e.g. [AN80, KKSdV95] and [BKdVO03] pp. 670/671; it is therefore
metric-complete on Ter(X), and also on Ter® () itself. Consequently, for any Cauchy-
convergent sequence of terms, a term exists which is the limit of that sequence.

The set T'er® (%) forms, moreover, an ultrametric space along with the given metric.
Formally:

Lemma 5.1.25. Let t,u,w be terms. Then dist(t,w) < max(dist(t,u),dist(u, w)).

Proof. If t = u = w, then all distances are 0. Otherwise, we proceed by induction on k
where max(dist(t,u),dist(u,w)) = 27%. If k = 0 we conclude immediately since the
distance between any pair of terms cannot be greater than one. Assume k = k' + 1.
Then dist(t,u) < 27%, implying that for any position p such that |p| < &/, it is easy to
verify that p € Pos(t) iff p € Pos(u), and moreover, p € Pos(t) implies t(p) = u(p). On
the other hand, the same properties hold for u w.r.t. w, since dist(u,w) < 2=* Hence
dist(t,w) < 27%, thus we conclude. O]

The distance between a term and the result of a replacement on that term is limited
by the depth of the position corresponding to the replacement. Namely:

Lemma 5.1.26. Let t,s be terms and p € Pos(t). Then dist(t,t[s],) <2 PI.

142CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Proof. We proceed by induction on p. If p = € then we conclude immediately since
dist(t,u) < 20 = 1 for any term u. Otherwise, i.e. if p = ip/, observe that ip’ € Pos(t)
implies t = f(t1,...,t, ..., tm). Then t[s], = f(t1,... . ti[s]y,- .., tm), cfr. Lem. 5.1.15,
implying dist(t,t[s],) = % « dist(ts, ti[s]y). In turn, IH yields dist(t;, t;[s]y) < 2P,
Therefore, easy exponent arithmetics recalling |p| = |p’| + 1 suffices to conclude. O

5.1.3 Substitutions

The definition of substitution extends, in a natural way, from finitary to infinitary terms.

Definition 5.1.27 (Substitution). Given a set of variables Var and a signature ¥, a
substitution is a function o : Var — Ter®(X,Var) where o(z) = x except for a finite
subset of Var.

Any substitution is extended into a function, bearing the same name o, where o :
Ter®(X,Var) — Ter® (X, Var), defined as follows: ot := (P, F) where
P ={pePos(t) / t(p) ¢ Var} u {pqg / t(p) = x € Var A q € Pos(ox)} and

t(p) iff pePos(t) At(p) ¢ Var
F(p) = { oz (q : o _
qd) iff p=gqqd At(q) =xe€Var

For finitary terms, the extension of the domain of a substitution from variables to
terms can be defined by resorting to the concept of Y -algebra; cfr. [BN98| Chapter 3.
Given a signature X, we can define a Y-algebra whose carrier set is Ter(X, Var), which
we will denote by Ter(X, Var) as well. For any f/n € 3, the corresponding function is
defined simply as follows:

frer®EVan) gy o ty) i= f(t, o tn)
This X-algebra is generated by Var. Then the result of uniqueness of homomorphisms
for a X-algebra generated by a set, given the values for the generator set, cfr. [BN9§]
Lem. 3.3.1, allows to define the extension of the substitution ¢ to terms as the only

endomorphism on (the X-algebra whose carrier set is) Ter(X) coinciding with o for all
the variables.

We can consider a Y-algebra having as carrier set T'er®(X), defined as we just did
for Ter(X); cfr. Notation 5.1.8. The extension of any substitution o to Ter®(X), as
given in Dfn. 5.1.27, is an endomorphism on this Y-algebra.

Lemma 5.1.28. Let o be a substitution defined only on variables, and & the correspond-
ing extension to Ter®(X). Then & is an endomorphism on Ter® (X, Var) which extends
.

Proof. 1t is enough to show that o(f(t1,...,tn)) = f(6(t1),...,0(tn))); cfr. Prop. 5.1.9;
let us call these terms ¢’ = (P', F') and t" = (P", F") respectively.
By applying notation 5.1.8 and Dfn. 5.1.27, we obtain
P = {e}u UU; {ip / pePos(t;) A ti(p) ¢ Var} U
{ipg / ti(p) = x € Var A q € Pos(ox)})

File) = f
F'(ip) = ti(p) if p € Pos(t;) A ti(p) ¢ Var
F'(ipq) = ox(q) if t;(p) = x € Var A q € Pos(ox)

An analogous analysis for P” and F” is enough to conclude. O

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 143

Nonetheless, we cannot use the mentioned result on uniqueness of homomorphisms
on generated Y-algebras, given the values for the generator set, to assert that & is the
only endomorphism on Ter® (X, Var) which extends o. The reason is that Ter™ (X, Var)
is not generated by Var: notice that the X-subalgebra generated by Var for T'er® (X%, Var)
is exactly Ter(3, Var).

Fortunately, an analogous uniqueness result can be proved for endomorphisms on
Ter®(3,Var).

Proposition 5.1.29. Let ¥ be a signature, and ¢,y two endomorphisms on the -
algebra Ter™ (%, Var) which coincide on Var. Then ¢ = 1.

Proof. We will prove the following statement, which entails the desired result (i.e. that
for any term ¢, 1(t) = ¢(t)): for any k < w, given a term t and a position p such that
Ip| < k and p € Pos(¢(t)) u Pos(o(t)), then ¥ (t)(p) = ¢(t)(p). Cfr. comment following
Din. 5.1.22.

We proceed by induction on k. There is one case which does not need to resort to
the inductive argument: if ¢ € Var, then ¢ (t) = ¢(t) since hypotheses assert that these
functions coincide on Var.

Thus assume t = f(t1,...,ty); cfr. Prop. 5.1.9. In this case hypotheses entail
() = FE1). . (b)) amd (1) = F(B(t1), ., H(tm)). IEk = 0, then [p| < k implies
p = €, hence it is enough to observe that ¥ (t)(e) = ¢(t)(e) = f. Assume k = k' + 1. If
|p| < K then applying IH on &' w.r.t. ¢t and ¢ suffices to conclude. If |p| = k, then p = iq
(recall k > 0) where |g| = k' and ¢ € Pos(¢(t;)) U Pos(¢(t;)). Therefore we can apply
IH on k' w.r.t. t; and ¢, obtaining 1 (t;)(q) = ¢(t;)(¢). Thus we conclude by observing
»(t)(p) = ¥(t;)(¢) and analogously for ¢. O

Consequently, we can assert that ¢ is the only endomorphism on Ter® (3%, Var) which
extends o, as desired.

5.1.4 Rewriting: TRS, step, reduction sequence

The definition of infinitary term rewriting system is the natural extension of its finitary
counterpart, cfr. Dfn. 2.2.2, provided that the left-hand side of rewriting rules is required
to be a finite term.

Definition 5.1.30 (Rewrite rule, term rewriting system). Assuming a set of variables
Var and given a signature X, a rewrite rule (just rule if no confusion arises) over ¥ is
a pair of terms {l,r) satisfying the following conditions: 1 is a finite term, | ¢ Var, and
each vartable occurring in v occurs also in l. Notation for a rewrite rule: | — r, also
Wl — rif assigning explicit names to rules is desirable. The terms | and r, respectively,
are the left-hand side and right-hand side, lhs and rhs for short, of the rule | — r.

A term rewriting system (shorthand TRS) is a pair T = (X, R), where ¥ is a
signature and R is a set of rules over X.

If the right-hand sides of all the rules are finite terms, then T can be considered as
a TRS over either Ter(X) or Ter®(X); otherwise, only the infinitary interpretation is
valid. In either case, a TRS over Ter®(X) is known as a infinitary TRS, or iTRS for
short.

We say that a rewrite rule u : [— r is collapsing iff r € Var.

144CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

We define that a TRS is left-linear iff for any [left-hand side of a rule, and for any
x variable, x occurs in [at most once. In this chapter, we study left-linear iTRSs only.
A TRS T is orthogonal iff it is left-linear and there is no term ¢ such that ¢ = o1l; and
t|p= o2la, where l; and Iy are left-hand sides of rules in T', I;(p) is a function symbol
(i.e. it is not a variable), and either p # € or the rules corresponding to /; and [y do not
coincide.

Some examples of left-hand sides of rules leading to non-orthogonal TRSs follow.
No TRS including a rule whose left-hand side is f(g(z)) and another having as left-
hand side either g(z) or g(h(x)), is orthogonal: ¢t = f(g(h(a))) is a counterexample for
the corresponding condition. Also, no TRS including rules whose left-hand sides are
h(f(x),y) and h(z,g(y)) is orthogonal, a counterexample is t = h(f(a),g(b)). In this
case the position p mentioned in the definition is € for the given counterexample. Finally,
no TRS including a rule whose left-hand side is f(f(z)) is orthogonal, a counterexample
ist = f(f(f(a))). In this case the same rule corresponds to /3 and [s.

Properties of first-order infinitary orthogonal TRSs are studied e.g. in [KKSdV95,
KdV05, EGH"10]. In this thesis, some auxiliary iTRSs we use to define notions per-
taining to proof terms, which are “companions” to the object iTRS, i.e. the iTRS whose
reductions are to be modeled by means of proof terms, happen to be orthogonal. We
therefore profit from some properties of orthogonal iTRSs; cfr. Section 5.1.6. This ob-
servation does not imply the scope of proof terms to be limited to orthogonal rewriting
systems; reductions in any left-linear system, either orthogonal or not, can be described
by proof terms. The mentioned “companion” iTRSs are orthogonal, even for non-
orthogonal object iTRSs.

Reduction steps

We formalise the notion of reduction step as follows.

Definition 5.1.31 (Reduction step, source, target, redex position, depth). Let T' =
(E, Ry be a TRS, t € Ter®(X), pe Pos(t), u:1l - r e R and o a substitution, such that
tlp= ol. Then the 4-tuple a = (t,p, ,0) is a reduction step. We use a,ay,d’,b,c, ete.,
to denote reduction steps. We define src(a) :=t, tgt(a) := t[or],, rpos(a) := p, and
d(a) := |p|. They are, respectively, the source, target, redex position and depth of a.
We say that a is a step from src(a) to tgt(a); we use the notation t — u to indicate
that a is a step from t to u.

If the source term of a reduction step is clear from the context, it can be omitted
when describing the step. On the other hand, if the substitution is unimportant w.r.t.
the subject being discussed, it can be omitted as well. Therefore, we will sometimes
refer to a reduction step {t,p, u, o) as {p, u, oy, or even just {p,).

Notice that, given a term ¢, the reduction steps having ¢ as source term are in an
obvious bijection with the occurrences of redexes (i.e. of subterms having the form ol
for some rule p : I — r) inside ¢t. Namely, the reduction step {t,p, u, o) correspond to
the occurrence, at position p, of a redex with rule p and substitution . Therefore, we
take the convention of considering reduction steps from ¢ and redex occurrences in ¢
as synonyms. Cfr. Section 1.1.2.

We also want to remark that the definition of a reduction step is given in terms of the
position of the corresponding redex occurrence, opposed to the context which surrounds
it (cfr. [BKAVO03] dfn. 2.2.4). This decision is motivated by the fact that in infinitary

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 145

rewriting reasonings, induction on terms (and therefore in contexts which are terms for
an extended signature) is not valid, whereas induction on positions is allowed.

Finally, notice that if ¢, p and p are known in advance, then the specification of o is
redundant. Nonetheless, we prefer to include the substitution in the definition because
it will permit to describe with precision a redex occurrence whose existence is asserted.
Notice also that the inclusion of the rule is redundant for orthogonal TRSs; it is included
in the characterisation of reduction steps because proof terms are intended to describe
reductions in any, maybe non-orthogonal, left-linear TRS.

Some examples of reduction steps follow: consider the TRS whose rules are p :

f(z) = g(x) and v : h(i(z),y) — j(y,x), and the term ¢t = ¢ (h(z(f(a)),f(z(b)))) Then
there are three reduction steps from ¢, namely:

&L v {x = fla),y := f(i(b)}), ¢, 111, p, {z := a}), and {t, 12, p, {z :=i(b)}).

We remark that Dfn. 5.1.30 does not pre- ¢ '
clude rules having an infinite right-hand side. h h
Consider the term ¢ shown to the right, which / \ / \
can be defined by the recursive equation ¢ = T h a h
h(z,t). Then f(x) — t is a valid rewriting rule, / \ / \
allowing the step f(a) — t/, where ¢/, shown x h a h
also to the right, is defined by the equation / _ / _
t' = h(a,t'). x K a K

Reduction sequences

In the following, we give a formal definition for the concept of reduction sequence. A
precise definition is needed in order to formally establish the relation between stepwise
proof terms and reduction sequences, cfr. Section 5.4.2. The formal definition of an
infinitary reduction sequence is an essential element of infinitary rewriting; it is discussed
in e.g. [KKSdV90, DKP91, KKSdV95, BKdV03, KdV05, Kah10].

A reduction sequence is a sequence of reduction steps, having any (finite or infinite)
ordinal as length. However, not all sequences of steps are reduction sequences; some
conditions must hold. Obviously, if a and b are consecutive steps in a sequence, then
tgt(a) must coincide with sre(b). Cfr. the corresponding definition given in the ARS
model, Dfn. 2.1.10. For infinite sequences, the coherence condition must hold also for
steps at limit positions. E.g. in a sequence ag; ai;...;an;...0w;Aywi1; .- ., there must be
some relation between the step a, and the sequence of the steps previous to it. This
relation is commonly formalised in the literature by asking the sequence of targets of the
previous steps, i.e. the sequence tgt(ag);tgt(ar);...;tgt(ay);. .. to have a limit, and that
limit to coincide with src(a,,). This requirement is related with the characterisation of
weakly convergent infinitary rewriting, which is the favored criterion in [DKP91].

We give some examples, using the rules f(z) — g(x), g(x) — k(x) and i(z) — i(z).
The successive transformation of each occurrence of f in the term f“ to g by means of
the rule f(z) — g(z), proceeding outside-in, configure the following, weakly convergent
reduction sequence:

[—=g(f*) = a(g(f?) = ... = glg(-..g(f*)...) = g(g(. .. g(g(f*))...)) — (: |
5.3

It is not difficult to see that the sequence of the targets in this reduction is convergent,
and that its limit is ¢*. Moreover, a subsequent step can be appended to the given

146CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

reduction sequence, in order to form a new sequence having length w + 1, iff the source
of that step is g*. E.g., the concatenation of the sequence (5.3) with the step ¢¥ — k(g*)
form a weakly convergent reduction sequence. In turn, if we concatenate (5.3) with an
analogously conceived outside-in transformation of each occurrence of g in g“ to k, in this
case by means of the rule g(x) — k(x), then we obtain the following weakly convergent
reduction sequence

[= g(f*) = g(g(f*) = ... g¥ = k(g”) = k(k(g*)) — ... k¥

whose length is w x 2. We remark that the term ¢“ is not the target of a step in this
sequence, but rather the limit of the targets of the first w steps; hence the absence of
an arrow pointing to it. The situation is analogous for k“, which is the target of the
whole sequence. On a different front, the rule i(x) — i(x) yields the following, weakly
convergent reduction sequence

i(a) > i(a) > i(a) = ... > i(a) > i(a) > ...

whose length is w, and whose target is i(a).

In order to obtain a notion of reduction sequence enjoying some desired properties,
a further condition is imposed. Namely, the depth of successive steps is required to tend
to infinity at each limit in the sequence, i.e. up to the w-th step, up to the w = 2-th step,
and so on, and also up to w?, etc.. Reduction sequences satisfying this requirement,
and also the coherence requirements described before, are known as strongly convergent
in the literature.* This is the criterion favored in e.g. [KKSdV95, KdV05, Ket12]. We
adopt the strong conve rgence criterion in this thesis as well. Therefore, in the following
definition of reduction sequence, we refer to just convergence of reduction sequences,
with the meaning of strong convergence.

We observe that the reduction sequence i(a) — i(a) — i(a) — ... = i(a) = i(a) =
... described above, is not strongly convergent, because all of its steps are at depth
0. On the other hand, the reduction sequence f“ — g(f“) — g(g(f*)) —» ... ¢*¥ —
k(g¥) — k(k(g*)) — ... k¥ is strongly convergent: the sequence of the depths of its
first w steps, and also the sequence of the depths of all its steps, tend to infinity.

These considerations motivate the following definitions.

Definition 5.1.32 (Reduction sequence, convergence). A (well-formed) reduction se-
quence is: either Ids, the empty reduction sequence for the term t, or else a non-empty
sequence of reduction steps 6 := (0[a])q<p, where > 0 and 6 verifies all the following
conditions:

1. For all a such that o +1 < 8, src(d|a + 1)) = tgt(d]a]).
2. For all limit ordinals By < B:

(a) The sequence (tgt(d[a]))a<p, has a limit.

(b) lima g, tgt(d[a]) = src(8[fol)-
(c) For all n < w, there exists ' < By such that d(§[a]) > n if B’ < a < By.

4n [Kah10], different criteria to formalise the notion of infinitary reduction sequence, including
those of weak and strong convergence, are discussed. The notion of adherence is proposed there as an
alternative to convergence.

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 147

We say that a reduction sequence § is convergent iff either § = Id; for some term t,
or else 6 = (§[a])a<p, and either B is a successor ordinal, or else B is a limit ordinal
and conditions (2a) and (2¢) hold for 8 as well. We use 6,01,0',7, 7, etc., to denote
reduction sequences. We use the semicolon to concatenate reduction sequences.

Dfn. 5.1.32 coincides with the definitions of reduction sequence and convergent reduc-
tion sequence given in [KdV05]. Our definition of reduction sequence coincides with the
notion of strongly contiguous sequence of steps given in [KKSdV95, BKdV03]. In turn,
our definition of strongly convergent reduction sequence is the same as in [BKdV03]; in
[KKSdV95], a strongly convergent reduction sequence is a strongly continuous sequence
whose length is a successor ordinal.

Definition 5.1.33 (Source of a reduction sequence). Let § be a reduction sequence. We
define the source term of 0, notation src(d), as follows: if § = Id;, then sre(d) :=t, if
d = (8la])a<p, then src(d) = src(o]0]).

Definition 5.1.34 (Target of a reduction sequence). Let 0 be a convergent reduction
sequence. We define the the target term of &, notation tgt(d), as follows: if & = Idy,
then tgt(0) := t; if 0 = (0]c])a<p, then = B’ + 1 implies tgt(d) := tgt(5[F']), and B
being a limit ordinal implies tgt(d) := lim,_,5 tgt(d[c]).

Definition 5.1.35 (Length of a reduction sequence). Let ¢ be a reduction sequence. We
define the length of §, notation length(d), as follows: if 6 = Idy, then length(d) := 0, if
§ = (6[a])a<p, then length(d) := 3.

Remark 5.1.36. Any mention of tgt(d) implies that the target of the reduction sequence
0 is defined, i.e. that § is a convergent reduction sequence.

)
Notation 5.1.37. We write t —» u to denote that ¢ is a convergent reduction sequence,

0
src(d) =t and tgt(0) = u. If length() < w, then we write t —» u as well. We also use
the notation t —» u (t — u), to denote that t can be transformed into u by means of a
(finite) reduction sequence.

Definition 5.1.38 (Minimum activity depth of a reduction sequence). Let § be a reduc-
tion sequence. We define the minimum activity depth of §, notation mind(d), as follows:
if § = Id¢, then mind(0) := w, if § = (§|a])a<p, then mind(0) := min{d(d[a]) / a < B}.

Definition 5.1.39 (Fragment of a reduction sequence). Let § be a reduction sequence
and «, 8 ordinals verifying o < length(d), 8 < length(d) and o« < 3. We define the
fragment of § from « to B, notation o, 3), as follows: if a« = [< length(d), then

Sla, B) = ldgc(5[a]), Otherwise, i.e. if a < B3, then 0]a, B) := (0l +7])y / a4ry<p-

We give some examples of infinite reduction sequences, using the following rules:
i @) = glo), v gla) - k), T a > k(a), p: i(2) - i(x), 6 b — j(b,b),
n:k(zr)—>c

A simple example of convergent reduction sequence is

[= 9(f%) = g(g(f*) = .- = g(g(- .. 9(f*) ..)) = ¢*
The length of this reduction sequence is wj; its n-th step is (¢"(f“), 1", u, {x := f*“}). For

3
any countable ordinal A, it is easy to define a convergent reduction sequence f% 2 g¥

148CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

such that length(dy) = A: it suffices to consider a bijective function F' : A — w, and to
define, for all a < A, d\[a] as the transformation of the occurrence of f at depth F'(«)
into an occurrence of g, by means of the p rule. E.g., if A = w2, F(n) = 2n + 1 if
n < w, and F(w 4+ n) = 2n, then we have the following reduction sequence:

[= f(g(f*) = fla(f(g(f))) = t' — glg(')) — g(g(g(g(t')))) = g*

where ' is the term defined by the equation ¢’ = f(g(#')). Another convergent reduction
sequence whose length is w * 2 is

<= g(f*) = g9(g(f*)) = g* — k(g*) = k(k(g")) - k¥

Notice that this reduction sequence is equivalent, in the sense that involves the same
steps, as the following

f2 = g9(f) = k(f°) = k(g(f*)) = k(E(f*)) - £

so that equivalent infinite reductions can have different lengths, even when no erasure
is involved.

The reduction sequence
i(a) = i(a) = i(a) > ...

whose length is w, is not convergent because the depth of all its steps is 0: all the steps in
this sequence have the form {(i(a), €, p, {z := a}). On the other hand, infinite convergent
reduction sequences exist for which both their source and target are finite terms. An
example follows.

a — k(a) —> k(k(a)) > k¥ —> ¢

The depth condition of strong convergence, along with the fact that the left-hand side of
any rewrite rule must be a finite term, imply that the target of any convergent reduction
sequence whose length is a limit ordinal, must be an infinite term.

Finally, we note that an infinite reduction sequence can involve rewrite rules in which
more than one variable appear, as in the following example:

b— j(b,b) = j(j(b,b),b) - u
where u is the term defined by the equation u = j(u, b).

It is worth remarking that the requirement about depths of successive steps, i.e.
condition (2¢) in Dfn. 5.1.32, is not enough to guarantee the well-formedness of reduction
sequences. Let us discuss briefly this issue. Some examples will be given using the rules
f(z) > g(x), hiz) - j(z), and g(z) — f(x).

The depth requirement alone does not guarantee coherence at limit positions, as
discussed prior to Dfn. 5.1.32. E.g., the sequence of steps which results of the concate-
nation of f¥ — g(f¥) — g(g(f“)) —=» ¢* and h* — j(h*) — j(j(h¥)) —» j*, which total
length is w * 2, does not produce a well-formed reduction sequence, even when depths
tend to infinity at each limit ordinal in the sequence of steps; a target (namely g*) can
be determined for the prefix of the first w steps, but it does not coincide with the source
of the w-th step, i.e. h*.

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 149

Moreover, the depth condition alone does not even guarantee the existence of a limit
for each limit ordinal prefix. E.g. consider the sequence of steps, having length w?, in-
formally described as follows: f¥ —» g*; g% —» f;g(f*) = ¢“; f(¢*) = f<;9*(f%) >
- g f2(g?) = Y. g (f*) - ¢¥; f(¢¥) = f“;..., where each fragment in-
cludes w steps performed from the outside in, and the semicolon denotes concatenation
of sequences. This sequence of steps obeys the depth condition at each limit ordinal,
including w? itself, but however, a limit cannot be determined for it. Therefore, the
requirement about the existence of a limit, i.e. condition (2a), cannot be removed by
the mere fact of including the depth requirement.

It could possibly be proved, by means of a careful transfinite induction on limit
ordinals, that for any sequence of steps, and each limit ordinal 5 up to the length of
that sequence, the depth requirement on each limit ordinal < [, plus coherence (i.e.
condition (2b)) at all limit ordinals < (3, imply the existence of a limit in the sequence
of targets at ordinal 8. Since this issue is not in the focus of the present work, we leave
it as subject of further investigation.

Other notions

The definition of reduction step leads immediately to that of normal form; cfr. Dfn. 2.1.8.

Definition 5.1.40 (Normal form). A normal form is a term having no redex occur-
rences, or equivalently, a term being the source of no reduction step.

Given a term t, we will refer to the reduction sequences having ¢ as source term as
the reduction sequences from t. Moreover, if s is the only normal form verifying t —» s,
then we will say that s is the (infinitary) normal form of ¢.

We can define reduction steps and sequences which model applications of rules to
contexts rather than terms.

Remark 5.1.41. For any TRS T = (%, R) we can think of an associated TRS T" :=
(¥ v {0/0}, R), which makes it possible to describe reductions on contexts. In the sequel
we will include references to reduction steps and reduction sequences whose source and
target are contexts; they must be understood as defined in T".

5.1.5 Patterns, pattern depth

Given a rewrite rule i : | — r and a reduction step a = {t, p, i, o), the role of the function
symbol occurrences in [differs from that of the variable occurrences: the former must
be present explicitly in src{a) having the same structure as in [; while the latter are
included in the domain of o.

We will sometimes need to refer to the positions of all the occurrences of function
symbols in (the lhs of) a rule, and also in (the source term of) a reduction step. E.g.
if u = f(g(z,h(y))) — f(y), then the occurrences of function symbols in (the lhs of) u
are at positions €, 1 and 12. The corresponding formal definitions follow.

Definition 5.1.42 (Pattern, pattern positions, pattern depth). Let t be a term. The
pattern of t, notation pat(t), is the context which results of changing all the variable
occurrences in t with boxes; cfr. [BKdV03] dfn. 2.7.8, pg. 49. The set of pattern
positions of t, notation Ppos(t) is defined as {p / p € Pos(t) and t(p) ¢ Var}. The
pattern depth of t, notation PA(t), is defined as mazx({|p| / p € Ppos(t)}); if x € Var
then Pd(x) is undefined.

150CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Let v : 1 — r be a rewrite rule. The set of pattern positions and the pattern depth of
w are defined as follows: Ppos(u) := Ppos(l), Pd(p) := PA(l).

Let a = {t,p,pu,0) be a reduction step. The set of pattern positions of a is defined as
follows: Ppos(a) := p - Ppos(u).

For example, if = (i(x), g(i()), &) — h(x,,), t = g(h(i(g(a)), g(i(h)),) and
a={,1,pu{x:=g(a),y := b}), then Ppos(p) = {¢,1,2,21,3}, Pd(u) = 2, and Ppos(a) =
1-Ppos(p) = {1,11,12,121, 13}.

5.1.6 Some properties about infinitary rewriting

We include in this section the statement and proof of some properties on infinitary
rewriting which are needed in following sections. In turn, these properties require some
definitions to be given.

We say that a term ¢ is infinitary weakly normalising, shorthand notation WN®,

iff there exists at least one reduction sequence § such that ¢ —6» v and u is a normal
form. We say that a term t is strongly normalising, shorthand notation SN®, iff there
is no divergent reduction sequence whose source term is t. A term ¢ has the unique
normal-form property, shorthand notation UN*, iff whenever ¢ —» w1, t —» ug and both
u; and wug are normal forms, then u; = ug. A TRS is WN® (SN®, UN®) iff all its
terms are. Cfr. [KdVO05] for a study of normalisation for infinitary rewriting.

A TRS T is disjoint iff the set of all the function symbols occurring in the left-hand
sides of the rules of T is disjoint from the set of all the function symbols occurring in
the right-hand sides of the rules of T'.

The results to be given in this section are particularly needed for the study of the class
of proof terms corresponding to coinitial sets of redexes, which involves the definition of
TRSs which are ‘companions’ to the TRS under study. Cfr. the concept of 2-rewriting
system, notation 8.2.12 in [BKdVO03].

The ‘companion’ TRSs enjoy some desirable properties. First of all, they are all
orthogonal, and therefore they enjoy the property UN®; cfr. [KdV05] Section 5. Some
of them are Recursive Program Schemes (cfr. [BKdV03] dfn. 3.4.7), i.e., they are or-
thogonal and all their rules have the form f(...,z;,...) — ¢, so that we can distinguish
the subset F := {f / f(...,%;,...) = t € R} within their signature.

Notice that for Recursive Program Schemes, the disjointness condition amounts to
assert that no symbol in F appears in the right-hand side of any rule.

Fragments of reduction sequences, cfr. Dfn. 5.1.39, enjoy some basic properties.

Lemma 5.1.43. Let 0 be a reduction sequence, and o < length(d). Then 6|0,) is
convergent.

Proof. 1t is immediate to verify that §[0,) is a well-formed reduction sequence. If o = 0,
ie. 0[0,a) = Id sre(s), O if o is a successor ordinal, then it is immediately convergent. If
« is a limit ordinal, the fact that § is well-formed implies that conditions (2a) and (2c)
hold for @ < length(d), hence [0, @) is convergent. O

Lemma 5.1.44. Let § be a reduction sequence and o < length(d). Then src(d|a]) =
tgt(]0, av)).

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 151

Proof. Notice that Lem. 5.1.43 implies that [0, «) is convergent, so that its limit is
defined. If a = 0, i.e. 6[0, @) = Id.c(5[0]), then we conclude immediately. Otherwise, o =
o' +1 implies sre(d[a]) = tgt(d[a’]), and « limit implies sre(d[a]) = limy o tgt(d[a’]),
cfr. conditions (1) and (2b) resp. in Dfn. 5.1.32. In either case, this coincides with
tgt(6[0, @)), cfr. Dfn. 5.1.34. Thus we conclude. O

We prove some expected properties of targets of convergent reduction sequences.

Lemma 5.1.45. Let § be a convergent reduction sequence andn < w such that mind(§) >
n. Then dist(src(d),tgt(d)) < 27".

Proof. We proceed by induction on length(d). If length(d) = 0, i.e. § = Id; for some term
t, then tgt(d) = sre(d) = t, so that we conclude immediately.

Assume that length(d) is a successor ordinal, so that 6 = ¢’;a where length(d') <
length(d). Then IH can be applied to obtain dist(src(d),tgt(8’)) = dist(src(d), sre(a)) <
27", In turn, tgt(d) = tgt(a) = src(a)[s], for some term s, where p = rpos(a), so that
hypotheses imply mind(a) > n. Then Lem. 5.1.26 implies dist(src(a), tgt(d)) < 271l <
27". Hence Lem. 5.1.25 allows to conclude.

Assume that « := length(0) is a limit ordinal. In this case tgt(d) = limy/_,, tgt(0[a]).
Let oy, < « such that dist(tgt(0[a]),tgt(d)) < 27" if a;, < & < «a. Then particu-
larly dist(tgt(0[aw, + 1]),tgt(d)) = dist(tgt(d[0, aun + 2)),tgt(0)) < 27™; recall oy, <
limit implies «,, + 2 < «. In turn, IH can be applied on §[0,a, + 2) to obtain
dist(src(d[0, ap + 2)),tgt(5[0, s, +2))) < 27 ™. Hence we conclude by Lem. 5.1.25. [

0
Lemma 5.1.46. Let t —» u and p € Pos(t) such that rpos(d[a]) || p for all a <
length(5). Then t|p,= ulp.

Proof. We proceed by induction on length(d). If length(d) = 0, i.e. 6 = Id;, then we
conclude immediately since u = t.

U

Assume that length(d) is a successor ordinal, so that ¢ 2. u' %> . In this case,
IH applies to ¢', yielding t |,= o' |,. In turn, u = /[s], for some term s, where
q = rpos(a) || p. Then Lem. 5.1.17 implies «’|, = u|,. Thus we conclude.

Assume that a := length(d) is a limit ordinal. In this case we have u = tgt(d) =
lima/—q tgt(8[e/]). Let n < w, and a, < « such that dist(tgt(d[/]),u) < 2=(+IPD,
implying dist(tgt(6[a/])]p,ulp) < 277, if o, < @' < a. Recall that o, < « limit
implies o, + i < o if i < w. Then dist(tgt(d[oy, + 1])|p,ulp) < 27™. Moreover, IH
can be applied to d[0, o, + 2), yielding src(d]0, o, + 2)) |, = tgt(d]0, o, + 2))|p, so that
tlp= tgt(d[an +1]) |,. Hence dist(t|p,ul,) < 27" for all n < w. Consequently, we
conclude. O

The properties just introduced allow to define the projection of a reduction sequence
not including head steps over an index. We verify that the definition yields a well-formed
reduction sequence; in the infinitary setting, this verification involves a fair amount of
work. The following definition involves the use of a sequence of non-contiguous ordinals
which we will call A. We use ord(A) and A[«] to denote the order type of A and its
a-th element respectively, where a < ord(A). In turn, this sequence is built from a set
of ordinals S as follows. If S = &, then A is the empty sequence, so that ord(A) = 0.
Otherwise, we define A[0] as the minimal element of S. Let a > 0 such that A[a] is
defined for all o/ < a. If &« = &/ + 1 then we consider the set {$€ S / > A[a']}, and

152CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

if v is a limit ordinal then we consider {5 € S / 8 = sup({A[d/] / & < a})}. In either
case, if the considered set is empty then we state that A[a1] as undefined for all oy > «,
so that ord(A) = a. Otherwise, we define A[a] as the minimum of the considered set.

Definition 5.1.47. Let § be a reduction sequence such that mind(d) > 0, and i such
that 1 < i < m where sre(d) = f(t1,...,tm). We define the projection of § over i,
notation ¢ |;, as the reduction sequence whose specification follows.

Let A be the sequence built from the set {o / a < length(d) A i < rpos(d[a])}, w.r.t.
the usual order of ordinals. If A is empty, then & |; := Idy,. Otherwise length(d |;) =
ord(A), and (0;)[c] := {si,p,) where 6[A[a]] = {f(s1,---,Sis---,Sm),ip,). Ob-
serve that Lem. 5.1.43 implies §|0, Ala]) to be convergent, and in turn Lem. 5.1.45
implies tgt(0[0, Ala]))(e) = sre(d)(e) = f; therefore, tgt(6[0, Ala])) = src(6[Ala]]) =
f(s1y.ey8is-vy8m). Cfr. also Lem. 5.1.44.

Lemma 5.1.48. Let ¢ be a reduction sequence such that mind(d) > 0, and i such that
1 < i < m where src(6)(e) = f/m. Then §|; is a well-formed reduction sequence and
sre(d ;) = sre(d)];. Moreover, if § is convergent, then 0|; is convergent as well, and

tgt(0 |;) = tgt(d)|;-

Proof. Let A be the sequence of positions of steps in d at or below position . We proceed
by induction on length(d |;) = ord(A).

Assume A is empty, so that §|; = ldg.c;),. Then just Dfn. 5.1.32 implies imme-
diately that ¢ |; is a well-formed and convergent reduction sequence, and Dfn. 5.1.33
that src(d|;) = sre(d) ;. If § is convergent, then observe that A being empty implies
rpos(d[a]) || ¢ for all & < length(d); recall mind(d) > 0. Then Lem 5.1.46 implies
tgt(0)|i= src(d)]i= tgt(d];). Thus we conclude.

Assume that ord(A) = a + 1, ie., ord(A) is a successor ordinal. Observe that
(01:)[0,) = [0, A[]) |5, and that Lem. 5.1.43 implies that [0, A[«]) is convergent.
Then IH on §[0, A|a]) yields that (;)[0,«) is a well-formed and convergent reduc-
tion sequence, that sre(d ;) = sre((9:)[0,«)) = sre(d) |;, and that tgt((d];)[0, @) =
tgt(9[0, A[a]))|i= src(6[Ala]]) |i, cfr. Lem. 5.1.44. On the other hand, src((d |;)[a]) =
sre(3[A[a]]):-

We verify that the conditions in Dfn. 5.1.32 hold for ¢ |;. The analysis depends on

o If a =0, then §[;[0,a) = Id o). In this case, conditions (1) and (2) hold
immediately.

e If o =da' +1, then (§];)[0,) being a well-formed reduction sequence implies
that condition (1) holds for all ag such that ag + 1 < a5 i.e. for all needed
indexes but o/. In turn, tgt((d|;)[a']) = tgt((6];)[0,a)) = src(6[A[a]]) |i=
sre((0]i)[a]) = sre((d]i)[¢ + 1]). On the other hand, (4 ;)[0,) being well-
formed implies also that condition (2) holds for § |;; indeed, ap < (/ +1) + 1
and ag limit implies ag < o/ + 1.

e If v is a limit ordinal, then (d];)[0, @) being a well-formed reduction sequence
implies that condition (1) holds for ¢ |;; notice ap + 1 < o + 1 implies o < @,
so that a limit implies in turn ap + 1 < «. Furthermore, (9 |;)[0,) being
convergent implies that conditions (2a) and (2c) hold for all ag limit ordinals
verifying ap < a+1, particularly for «; and also that condition (2b) holds for all
limit ap < e In turn, limy 4 tgt((|:)[’]) = tgt((d |:)][0,) = src(d[Ala]])|:
= src((9];)[«]), so that condition (2b) to hold also for «

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 153

Hence, in either case, we have verified that ¢|; is a well-formed reduction sequence.
In turn, length(d |;) = ord(A) being a successor ordinal implies immediately that § |; is
convergent.

If § is convergent, then we must verify tgt(d|;) = tgt(d)];. Let (§|;)[a] = {ti,p, 1)
where S[A[a]] = {(f(t1,... tis. .., tm),ip, py. Then tgt(d];) = tgt((6]:)[a]) = tilslp
for some term s, and tgt(S[Ala]]) = f(t1, ... ti, .. tm)slip = f(t1, - tilslp, - - tm)s
cfr. Lem. 5.1.15, therefore tgt(d|;) = tgt(6[A[e]]) |:- If length(d) = A[a] + 1, then
tgt(0) = tgt(6[A[c]]). Otherwise, for all o/ verifying Ala] < o' < length(d), it is
immediate that rpos(d[a’]) || ¢ Then Lem. 5.1.46 implies tgt(5[A[a] + 1, length(d))) |
= src(0[Ala] + 1,length(6)))];. In either case, tgt(d)|;= tgt(6[Ala]])|i= tgt(d|;). Thus

we conclude.

Assume that « := ord(A) is a limit ordinal.

Let o/ such that o/ +1 < «, then « limit implies o/ + 2 < . Therefore IH can be
applied to obtain that (4 |;)[0, o’ 4+ 2) is a well-formed reduction sequence, implying that
sre((0) +1]) = tgt((d|;)[/]). Consequently, ¢ |; verifies condition (1) in Dfn. 5.1.32.

Let ap be a limit ordinal verifying ap < «. Observe that A[ap] < length(d),
then Lem. 5.1.43 implies that [0, A[ap]) is convergent. We apply IH to obtain that
(01:)[0, ap) is a well-formed and convergent reduction sequence. Therefore conditions (2a)
and (2c) hold for § |; w.r.t. ag. Moreover limy_,q, tgt((0 |;)[e']) = tgt((d]:)[0, x)) =
sre((6 i)[awo], cfr. Dfn. 5.1.34 and Lem. 5.1.44 resp.. Hence ¢ |; enjoys condition (2b)
w.r.t. ap as well.

Consequently, 6 |; is a well-formed reduction sequence. Observe that src(d|;) =
src((6:)[0]) = src(d[0, A[1]) |;). Since obviously 1 < «, we can use IH to obtain
sre(d |;) = sre(0]0, A[1]))]i= sre(d)]:-

Assume that ¢ is convergent. Let B := {3’ / ' < length(d) A A[a/] < f' for all &/ <
a}. We define S as follows: (3 := length(d) if B is empty, and 8 := min(B) otherwise.
Assume for contradiction that 8 = ' +1 for some 3'. If B is empty, so that length(d) =
B’ + 1, then ' ¢ B implies the existence of some o’ < a such that 5’ < A[o/] and then
p' < Ald’ + 1], contradicting Ao’ + 1] < length(d). Otherwise 8 = min(B), implying
that 8 < A[d/] for some o < . But this would imply 8 < A[a/ 4 1], contradicting
B € B. Consequently, g is a limit ordinal.

We verify conditions (2a) and (2¢) for § |; w.r.t. a.

e To verify condition (2a), it is enough to show that limys 4 tgt((0 |;)[']) = uli,
where v = limg_,gtgt(5[5']) = tgt(6[0,B)). Let n < w, and B, < B such
that dist(tgt(5[8']),u) < 2~V implying dist(tgt(5[8])]i,uls) < 2™, if
Bn < ' < . Then B, < implies that 3, < A[ay] for some a,, < «, then o, <
o' < «a implies dist(tgt((0 |;)[a']),u|i) < 27", recalling that tgt((d |;)[a']) =
tgt(0[A[a]]) |;. Consequently, limy_,q tgt((d];)[e']) = tgt(d]0,3))];, and then
J |; verifies condition (2a) w.r.t. a.

o Let n < w, let B, < B such that d(4[p']) > n+1if 5, </ < 5. By an
argument similar to that used for condition (2a), we obtain the existence of
some ay, < a such that d(0[A[¢]]) > n + 1, implying d((d |;)[¢/]) > n, if
an, < o < a. Consequently, ¢ |; verifies condition (2¢) for a.

Hence, ¢ |; is a convergent reduction sequence. In turn, Dfn. 5.1.34 yields tgt(d |;) =
limy o tgt((d|;)[’]), then we have already verified that tgt(d|;) = tgt(6[0,3)) ;. If
B = length(d), then immediately tgt(d|;) = tgt(d)|;. Otherwise, it is immediate to
observe that rpos(d[5']) || ¢ if B < B’ < length(d). Hence tgt(d];) = tgt(d[0,5)) |:

154CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

= src(d]B, length(6))) |i= tgt(d]B,length(d))) |i= tgt(d) |;; by already obtained result,
Lem. 5.1.44 (recall src(d[B, length(d))) = src(d[S]), Lem. 5.1.46, and simple analysis of
Din. 5.1.34 resp.. Thus we conclude. O

The following result extends the idea of a projection of a reduction sequence from
arguments of function symbols to arguments of contexts.

1
Lemma 5.1.49. Let C' a context having exactly m holes, and C[t1,. .., ty,] —» u, such
that for all o < length(6), there exists some i verifying 1 < i < m and Bpos(C,i) <
rpos(d[a]). Then uw = Clui,...,um] and for all i such that 1 < i < m, there is a

. o i
reduction sequence §; verifying t; —» u;.

Proof. Straightforward induction on maxz{|Bpos(C,i)| / 1 < i < m}, resorting on
Lem. 5.1.48 for the inductive case. O

We illustrate Lem. 5.1.49 by means of an example, using the rules f(x) — g(x) and
k(z) — j(x). Let us consider the sequence § defined as follows:

t=h(m(f*),m(k)) — h(m(g(f*)), m(k)) — h(m(g(f*)), m(j(k~)))

and the context C' = h(m(0O), m(0)), so that Bpos(C,1) = 11, Bpos(C,2) = 21, and
t = Clt1,t2] where t; = f“ and to = k. Notice that 11 < rpos(d[n]) if n is odd,
and 21 < rpos(d[n]) if n is even. Therefore, § verifies the lemma hypotheses. Observe

§ é
that v = C|g¥, %], f¢ s g“ and k¥ s j“, where 01 is exactly the sequence

obtained by projecting the steps in § having odd indexes on the position 11, namely
19— g(f*) = g(g(f¥)) — ..., and analogously for ds.

Two properties about normalisation follow.

)
Lemma 5.1.50. Let T an orthogonal TRS, and t,s,u terms such that t s u, t —» s,

/

u is a normal form, and d(6[i]) = O for all i < length(5). Then s Sy for some
reduction sequence '.

Proof. We proceed by induction on length(d); observe that ¢ is finite, so that non-
transfinite induction suffices. If length(d) = 0, i.e. J is the empty reduction for ¢, then
s =t so that we conclude by taking 7’ := 7.

6/
Assume length(§) = n + 1, so that t = sy —» s where a = {t, ¢, u) for some rule
pil[ze, ..., xm] — h, and length(d’) = n.
We will resort to a result presented and proved in e.g. [KKSdV95] and [BKdV03],

where it is called Strip Lemma.® This result implies that whenever ¢ ot and t -2 80,

by .
then ' —» s’ and sq s , where b, is the residual of b after v.6 The result of the
lemma can be described graphically as follows:

°In [KKSdAV90], a preliminary version of [KKSdV95], the same property is called Parallel Moves
Lemma

5The statement in [BKdAV03], and also in [KKSdV90], describes also the nature of .. We will not
give the details here since they are not needed for this proof.

5.1. INFINITARY REWRITING AND OTHER PRELIMINARY MATERIAL 155

t47>>>t/
b by

S0 —=—>> s’

While we will not include here the formal definition of residual, we mention a feature
valid for orthogonal TRSs which is crucial for this proof. Assume b = (¢, ¢, u) such that
p:l— h,and ¢ = {t,p,v) where p # € and t —> v. Then t = I[t1,...,tm], ¢ < p for
some ¢ such that I(q) € Var, and therefore v = [[t},...,,]. In this case, there is exactly
one residual of b after ¢, namely (v, €, uy. This property carries on for the residual of b
after a reduction # where mind(f) > 0, even if length(6) is a limit ordinal. Graphically:

C:<t,p,l/> 0
{———v

b:<t»5nu'> <U7EH“'> b:<t757.u'> <v>57.u'>

' w’ t’ w
We return to the proof. Observe that ¢ = [[v1,...,vy] since {t,e, p) is a redex.
Then a simple transfinite induction yields that 7 not including any root step would
imply u = I[v],...,v],], contradicting that u is a normal form. Let o be the minimum
index corresponding to a root step in . Then the described property of residuals implies
that a has exactly one residual after 7[0, a), which is @’ := (t4, €, i) where t, is the target
term of 7|0,). Moreover, 7[a] being a root step implies that the rule used in that step
is also py, i.e. m[a] = {ta, €,y = a’. Therefore we can build the following graphic:

w[0,c) mla] =ta, €, 1) m[a+1,length(r))
t ta ta+1 U
a={_t e uy a' ={ta, € py
S0 T tatl boa m[a+1,length(m))
5/
Hence IH on sg — s suffices to conclude.]

Proposition 5.1.51. Let T' be a disjoint TRS which does not include collapsing rules.
Then T has the property SN®.7

Proof. First we prove the following auxiliary result: for any reduction sequence 9, limit
ordinal 8 such that 8 < length(9), and n < w,

if 381 <B/Vi(B1<i<}p implies d(d[i]) = n)

then 3p' < B/ Vi (B <i' < B implies d(6[i']) > n) (5-4)

Assume for any d, 5 and n that the premise holds. The term src(d[5]) = tgt(d[51,5))
can include only a finite number of redexes at depth n. Additionally, the hypothesis
yields that any reduction step included in §[f1,), say d[j], satisfies d(d[j]) = n, and
moreover leaves at its redex position (cfr. Dfn. 5.1.31) a symbol not being the head

"We conjecture that this property can be generalised to any TRS in which the sets of head symbols
of lhss and rhss are disjoint, with exactly the same proof. The statement restricted to disjoint TRS we
give here suffices for this thesis.

156 CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

symbol of a left-hand side, since T is disjoint and it does not include collapsing rules.
Therefore, no redex occurrence can be created at depth n, implying that any reduction
step at depth exactly n included in ¢[f51,3) must correspond to a redex occurrence
already included in src(0[51]) and being at the same position. Consequently, if we call
k the number of steps at depth exactly n included in §[f1, 3), we obtain k < w. Thus
we conclude the proof of the auxiliary result by taking 8’ to be the ordinal such that
5[B'] is the last of such steps if k > 0, and ' := 1 if k = 0.

Now we prove, for any reduction sequence § in 7', that ¢ is convergent; i.e. that for
any n < w and [limit ordinal such that 8 < length(J),

18" < B/ Vi (B < i< 8 implies d(d[i]) > n) (5.5)

We conclude the proof of the proposition by proving (5.5) by induction on n. If n = 0,
then the premise of (5.4) holds taking 81 = 0, then we conclude by (5.4). If n > 0, then
the premise of (5.4) holds for some 31 by IH of (5.5) considering n — 1 instead of n, then
we conclude again by (5.4). O

5.2 Infinitary proof terms

This section is devoted to define the set of infinitary proof terms for a left-linear iTRS
T, and to give some of the basic properties of proof terms. Proof terms for finitary,
left-linear TRS are introduced in Section 2.2.2.

The signature for infinitary proof terms is the same as for the finitary ones, cfr.
Dfn. 2.2.4; it is the result of adding the rule symbols and the concatenation symbol,
i.e. the dot, to the signature of the object TRS.® Also analogously to the finitary case,
not all the infinitary terms in the extended signature are valid proof terms, and the
restrictions derive from conditions imposed to the occurrences of the dot. Besides the
coherence condition described for finitary proof terms (cfr. Dfn. 2.2.5), which also applies
to infinitary ones, an additional condition is needed: left components of concatenations
must denote convergent reductions. This added condition reflects the convergence con-
dition in the definition of infinitary reduction sequences, cfr. Dfn. 5.1.32. Similarly as
the coherence condition implies that proof terms must be defined simultaneously with
their source and target terms, the added convergence condition forces other notions to
be defined simultaneously as well, resulting in the extensive definition we give in the
following.

The definition of the set of proof terms is given in two separate stages. First, the
proof terms without occurrences of the dot are introduced, along with all the needed aux-
iliary notions, in Section 5.2.1. We call these proof terms infinitary multisteps, because
they denote the simultaneous contraction of coinitial sets of steps, called multisteps in
[BKAV03], Dfn. 4.5.11.9 Notice that infinite sets of coinitial steps must be considered.
Subsequently, we define the whole set of valid proof terms in Section 5.2.2, by specify-
ing the conditions which apply to the occurrences of the dot. The concatenation of an
infinite number of reductions is dealt with by an ad-hoc formation rule; this allows to
give a definition of the set of infinitary proof terms based on transfinite induction. We
verify the soundness of the given definition in Section 5.2.3, and provide an alternative

8Recall Notation 2.2.7 for the meaning of “object TRS”.
9We also describe the notion of multistep using the ARS model, cfr. Section 3.1.1.

5.2. INFINITARY PROOF TERMS 157

principle to reason by induction on the set of proof terms in Section 5.2.4. Finally, we
give some basic properties of proof terms in Section 5.2.5.

5.2.1 Infinitary multisteps

In this section, we define the set of infinitary multisteps, along with some basic features
of a multistep, namely: how to determine its source and target terms, whether it is con-
vergent or not, and its minimum activity depth. These concepts are needed to properly
define the restrictions to be imposed to occurrences of the dot in the general definition
of the set of proof terms. We give all the indicated definitions, and afterwards, some
examples illustrating them.

Definition 5.2.1 (Signature for multisteps). Let T = (X, R) be a (either finitary or
infinitary) TRS. We define the signature for the infinitary multisteps over T as follows:
SE=Yu{um/p:l—-reRA|FV()| =n}.

Analogously to the case of finitary proof terms (cfr. Dfn. 2.2.5), all terms not includ-
ing occurrences of the dot are valid proof terms.

Definition 5.2.2 (Infinitary multisteps). The set of infinitary multisteps for an iTRS
T{(X, R) is exactly the set of the closed (cfr. Dfn.5.1.11) terms'® in Ter®(2).

To define the source and target terms of a multistep, we define ‘companion’ ad-hoc
iTRSs; cfr. the beginning of Section 5.1.6.

Definition 5.2.3 (srer, tgtr). Let T = (X, R) be a (either finitary or infinitary) TRS.
We define the TRSs srcy and tgtr as follows. The signature of both srcr and tgtr is
SE. The rules of srer are {p(w1, ..., xn) — U[z1,...,2,] / p: 1 —re R}. The rules of
tgtr are {p(x1,...,zn) = rlz1, ..., 0] / p:l—re R}

We remark that for any object TRS T, both srcpy and tgtp are orthogonal and
disjoint; moreover, srcy does not include collapsing rules, since the lhs of a rewrite
rule cannot be a variable (cfr. Dfn. 5.1.30). Therefore, both srcy and tgtr enjoy the
property UN® (cfr. the comment about UN® at the beginning of Section 5.1.6) and
srep enjoys also SN (cfr. Prop. 5.1.51). Moreover, given an infinitary multistep 1,
each rule symbol occurrence in 1 implies the existence of a reduction step w.r.t. each
of srcp and tgtr having 1 as source, so that ¢ can be the source of one, or several,
reduction sequences for each of these TRSs. Consequently, any infinitary multistep has
exactly one srcep-normal form, and at most one tgtp-normal form. These observations
entail the soundness of the following definition.

Definition 5.2.4 (Source and target of an infinitary multistep). Let ¢ be an infinitary
multistep. We define src(y) to be the srep-normal form of 1. Moreover, if 1 is weakly
normalising w.r.t. tgtr, then we define tgt(y) to be the corresponding normal form;
otherwise, tgt(v) is undefined.

For the kind of contraction activity we intend to denote with infinitary multisteps,
it is correct to identify convergence with existence of target. Formally:

0By restricting infinitary multisteps, and later proof terms (cfr. Sec. 5.2) to be closed terms, we follow
the idea expressed in [BKdV03], Remark 8.2.21 (pg. 324): “Since here we are interested in permutation
equivalence, we may simply assume that reductions/proof terms are closed.”. This decision simplifies,
indeed, our treatment of permutation equivalence given in Sec. 5.3.

158CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Definition 5.2.5 (Convergent infinitary multisteps). An infinitary multistep ¢ is con-
vergent iff tgtr () is defined.

Definition 5.2.6 (Minimum activity depth of an infinitary multistep). Let ¢ be an
infinitary multistep. We define the minimum activity depth of v, notation mind(y), as
follows.
If ¢ does not include occurrences of rule symbols, i.e. if it is a term in Ter®(X), then
mind(y) == w.
Otherwise mind(1)) is the minimum n such that exists at least one position p verifying
¥(p) = p where w is a rule symbol, and n = |p|. This case admits an equivalent inductive
definition based on Notation 5.1.8:

mind(f(Y1...¢n)) = 1+ min(mind(¢r)...mind(y))

mind(p(1 ... ¢Ypn)) = 0

In the following, we will give some examples of infinitary multisteps. We will consider
the following object rules: p : h(g(z),y) — k(y), 7 : i(x) > z, w:a = b, p: f(x) >
g(z), k : m(x) = h(x,z). Then the rules of the companion iTRSs are
srers p(a,y) = hig(@),y) 7(2) > i@) m—a pl)— f@) k) - m)
tgtr: p(z,y) > k(y) 7(x) >z 7-b p@)—>gl@) k@) > h(z,)

For each example, we show the source term, underlining the head symbols of some
of its redexes, and the infinitary multistep denoting contraction of underlined redexes.
Then we develop the computation of the source and target terms, according to Dfn. 5.2.4.
To keep notation compact, we omit some parenthesis for unary symbols.

e The infinitary multistep corresponding to j(h(ga,nfb)) is 1 := j(p(m,nub)).
Computations of sre(i) and tgt(vy1) follow:
Y1 = jlp(m,nub)) —— j(h(gm, nub)) —— j(h(ga, nub)) —— j(h(ga, nfb))

Y1 = j(p(m,nub)) — jknub — jkngb.
tgtr tgtr

o i := k(u(a)) corresponds to m(f(a)). We compute the source and target terms:

Yo=K) o m(p(a)) o m(f(a))
Y2 = k(p(a

) —> h(p(a), (@) —> hg(a), p(a) — h(g(a), g(a)).
gtr gt gtr

e 13 := p“ corresponds to f“. Let us compute source and target:
V3 = p — f(u) — f(f (1)) —> f*
srer srer srer

s = 1 > g(p*) = 9(g(1*)) —» g
gtr tgtr tgtr
e 1y := T corresponds to i“.

The computation of source runs as in the previous case: 14 = 7 —» . On the
srer

other hand, the target of all tgtr redex occurrences in 7 (namely, (1%, 7(z) —
x,{x — 7})) is again 7. Therefore tgt(1)4) is undefined.

o Finally, ¢’s = j(p(r*,) corresponds to j(h(gi¥, a)).
Computation of source follows:
¥s = j(p(r4,m) — j(h(gr,m)) — j(h(g7",a)) —» j(h(gi”, a))).
srcr srcr srcr
Many tgtr reduction sequences from)5 are possible, e.g.:
Vs = j(p(t*, 7)) —> jkm — jkb
tgtT tgtT

5.2. INFINITARY PROOF TERMS 159

b5 = J(p(r, 1)) —> §(p(r, b)) —» j(p(r*,b)) —> jkb where the i-th step for
tgtr tgtT tgtr

1<i<wis Glp(t¥,b),11- 18 7(x) - z,{x = 7°})

U5 = j(p(T¥,b)) e Jj(p(t¥,b)) where all steps are {(¢5,11,7(x) — x,{x := 7%}),
gtr

a divergent tgtr reduction sequence.
Then 15 admit both convergent and divergent reduction sequences in tgtr. As s
is tgtp-weakly normalising, we get tgt(vs5) = jkb.

5.2.2 The whole set of proof terms

In this section we give the definition of the set of all valid infinitary proof terms, by
providing precise rules for the inclusion of the occurrences of the concatenation symbol,
that is, the dot. The foundation for this definition is given by the set of infinitary
multisteps, defined in the previous section.

As pointed out in the introduction to Section 5.2, two conditions apply for ¢ - ¢
to be a valid proof term. First, the activity denoted by v must be convergent, i.e., it
should exist at least one way to render such activity as a convergent reduction sequence;
this condition implies particularly that the target term of ¢ can be uniquely determined.
Second, the activity denoted by ¥ must be coherent with that of ¢ in the following sense:
the target term of (the activity denoted by) ¢ must coincide with the source term of
(that corresponding to) ¢.

The need of imposing such conditions on the occurrences of the dot implies that
the set of proof terms must be defined along with the source, target and convergence
condition for each proof term, in a joint definition. Convergence depends in turn of the
depth of the contraction activity being denoted by a proof term; therefore, minimum
activity depth of proof terms must be merged within the same, extensive definition.

The set of infinitary proof terms is defined by an inductive construction, where the
base case is given by the infinitary multisteps, and inductive rules govern the addition
of dots. A binary concatenation rule allows proof terms of the form 1 - ¢, given that
1 and ¢ are proof terms. Note that some mechanism must be provided to denote the
concatenation of an infinite series of reduction sequences, or more generally of contrac-
tion activities. The definition to be presented in the following admits terms including
an infinite number of occurrences of the dot. These infinite concatenations are defined
by a separate rule, different than that allowing to define binary concatenations. In
the infinite concatenation rule, special care is taken to guarantee that no component is
“lost”, i.e., that the root of any component is at a finite distance from the root in the
corresponding proof term.

The separate rules for binary and infinite concatenation give rise to potential ambi-
guities in the construction of a proof term. To avoid the possibility of such ambiguities,
the definition of the set of proof terms is layered, such that the proof terms included in
a layer can be built taking as components proof terms in previous layers only. Count-
able ordinals are used as layers for proof terms, and each proof term belongs to exactly
one layer. The separation of proof terms in layers yields also a transfinite induction
principle to reason about the set of infinitary proof terms. The base layer corresponds
to infinitary multisteps, and the layers for limit ordinals correspond exactly to infinite
concatenations. A second, alternative induction principle for the set of proof terms is
introduced in Section 5.2.4.

The aforementioned considerations lead to the following definitions.

160CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Definition 5.2.7 (Signature for proof terms). Let T' = (3, R) be a (either finitary or
infinitary) TRS. We define the signature for the proof terms over T as follows: ©F7 :=
SR U {-/2} . Recall the definition of X%, cfr. Dfn. 5.2.1.

Note that the signature for infinitary proof terms coincide with that of finitary ones,
cfr. Din. 2.2.4.

Definition 5.2.8 (PT,, set of proof terms at layer o). Let T be a TRS, and o a
countable ordinal. We define PT,, the a-th layer in the construction of the set of proof
terms for T, along with the source, target, convergence condition, and minimum activity
depth of any proof term in PTy. If ¢ € PT,, we will write src(v), tgt(v) and mind(1))
for the source, target and minimum activity depth of 1 respectively.

If a = 0, then PT,, := . Otherwise, we proceed inductively on «, defining PTy to
be the smallest set in Ter®(XFT) verifying the following conditions.

1. If a = 1 and ¢ is an infinitary multistep for T, then ¢ € PTy. The source,
target, convergence condition and minimum activity depth of 1 coincide with the
definitions given for infinitary multisteps in Sec. 5.2.1.

2. Assume that for any i < w, ¢; € PT,,, such that o = X oy; cfr. Dfn. 5.1.1.
1<w
Moreover, assume that for all n, 1, is convergent, and tgt(yy,) = src(Pn1).

Then 1 := (P, F € PTy, where A graphical representation is
P:={2"/n<w}u (Y 2"1-Pos(¢n)),

J, 2\,

n
F(2™) := -, and F(2"1p) := ¥n(p). Y1
A concise term notation for Y is <u V;; / \
being in fact an abbreviation for P2 '

o (- (s - o). /N
)3 :

We define the source, target and minimum activity depth of ¥ as follows: src(i) :=
sre(g), tgt(v) = lim;—,, tgt(v;) and mind(v) := min(mind(v;);<.); notice that
tgt(v) can be undefined. We define that v is convergent iff for all k < w, there is
some n < w such that mind(v;) > k if j > n.

3. Assume that 11 € PT,,, Y2 € PT,,, as is a successor ordinal, 11 is convergent,
tgt(p1) = src(va), and o = a1 + ag + 1. Then ¢y = (P,F) € PT,, where
P = {e} u(1-Pos(¢1)) U (2-Pos(1h2)), F(e) := -, and F(ip) := ¢;(p) fori=1,2.

A concise term notation for 1 is 1 - . A graphical notation is / . \

() o

If 1 = 1y - 1o, then we define sre(v) := sre(ir), tgt(v) = tgt(s) and mind(y) =
min(mind(yy), mind(2)); ¥ is convergent iff 1o is.

4. Assume that ¢; € PT,, fori=1,2,...,n, that a; > 1 for at least one i, f/n € X
(resp. u/n is a rule symbol), and o = a1 + ...+, +1. Then ¢ := (P, F) e PT,,
where P := {e}u(|J i-Pos(vy)), F(e) := f (resp. F(e) :=), and F(ip) := ¢i(p)

1<ign

fori=1,2,... n.
A concise term notation for v is f(¢1,...,¢%n) (resp. p(1,...,1¥n)).

5.2. INFINITARY PROOF TERMS 161

If f € X, i.e. it is an object symbol, we define src(yp) = f(sre(r),. .., sre(iy)),
tgt(v) = fQtgt(¥r), ..., tgt(n)), mind(y) := 1 + min(mind(Yr), ..., mind(¢y)).
In this case, v is convergent iff all 1; are. We observe that tgt(v) is undefined if
at least one tgt(1);) is.

If w is a rule symbol such that p : I — r, we define src(y) = l[src(ir), ..., sre(in)],
tgt(v) = r[tgt(wr), ..., tgt(¥n)], and mind(y) := 0. In this case, ¥ is convergent
iff all; corresponding to some x; occurring in r are. We observe that tgt()
is undefined if at least one tgt(i;) is, for the 1; already mentioned.

Definition 5.2.9 (PT, the set of proof terms). We define the set of proof terms as
follows: PT := |J PT,.

a<wi

We notice that all proof terms are closed terms in Ter®(XFT). This fact is a con-
sequence of the definition of the set of infinitary multisteps, which are the base layer in
the definition of PT. Cfr. the footnote on Dfn. 5.2.2.

We will say that a proof term v is an infinite concatenation iff (2") = - for
all n < w. Observe that all infinite concatenations admit the concise term notation
Y = -i<w ¥4, where ¥, = ¥ |an. Furthermore, 1) not being an infinite concatenation
implies the existence of some n < w such that 2" € Pos(¢)) and ¥ (2") # -.

We define as trivial proof terms those which denote no activity.

Definition 5.2.10. Let v be a proof term. We will say that ¥ is a trivial proof term
iff it does not include any rule symbol occurrences.

We remark that the structure of trivial proof terms can be arbitrarily complex, i.e.
“jew (ti<w @) is a trivial proof term. The following property of trivial proof terms is
used later on in this chapter.

Lemma 5.2.11. Let ¢ be a proof term. Then v is trivial iff mind(y) = w.

Proof. For the =) direction, a straightforward induction on v (i.e. on « such that
1 € PT,,) suffices. For the base case, i.e. when 1) is an infinitary multistep, we just refer
to Dfn. 5.2.6.

For the <) direction, a similar induction on ¢ yields the contrapositive, i.e. that if
1 includes at least one rule symbol occurrence, then mind(y) < w. If ¢ is an infinitary
multistep, then we define n to be the least depth of a rule symbol occurrence in . An
easy induction on n yields mind(vy) = n. If ¢» = u(y1,. .., ¥n), then mind(y)) = 0. For
the other cases, IH suffices to conclude. O

We observe that all the finitary proof terms are comprised in Dfn. 5.2.9, and moreover
that they are convergent and correspond to finite layers. This can be verified by means
of a simple inductive argument over Dfn. 2.2.5. Therefore, all the examples given in
Section 2.2.2 correspond to infinitary proof terms, with the same source and target
terms. The set of infinitary multisteps is included in PT, hence the examples given
at the end of Section 5.2.1 are infinitary proof terms as well. We give some additional
examples of infinitary proof terms, using the rules u : f(x) — g(x) and v : g(z) — k(x).
We refer to the formation rules in Dfn. 5.2.8.

162CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Consider the reduction sequence f* — g(f“) — g(g(f“)) —» ¢“ having length w.
The i-th step of this sequence, namely ¢*(f*) — ¢g**1(f*), can be described by the proof
term ¢'(u(f*)). It is straightforward to check that the sequence formed by these proof
terms verifies the conditions of the infinitary composition rule, and that the depth of
the denoted activity tends to infinity. Therefore -;—, ¢*(u(f*)) is a valid proof term,
by means of rule 2; the indicated condition about depths implies that it is moreover a
convergent proof term. We observe that src(- ¢'(u(f®))) = src(u(f*)) = f©. In
order to obtain tgt(-;i—., g'(u(f*))) = ¢*, it is enough to observe that the sequence of
targets of each ¢'(u(f*)), namely g(f“), g>(f*), ..., converges to that term.

Analogously, the reduction sequence f“ — g(f“) — k:(f“’) — k(g(f*)) — E2(f) —»
k“ can be denoted by either <., (K'(u(f¥)) - K'(v(f*))) or i< (K'(u(f*) - v(f*))),
again by means of rule 2. In the latter case, for any n < w, we obtam that pu(f“) - v(f¥)is
a valid proof term by rule 3; therefore, applying n times rule 4 we get k™ (u(f*) - v(f%)).

In turn, the reduction sequence f“ — g(f“) — g(g(f¥)) — ¢* — k(¢*) can
be denoted by the proof term (-i—w ¢°(1(f“))) - v(g*) by means of rule 3, because
vicw 9H((f*)) is a convergent proof term, and tgt(<o g'(u(f*))) = src(v(g®”)) = g“.
We obtain sre((-ico g'(u(f*) + ¥(g) = sre(rew G(()) = f° and
tgt((-icw g"(1(f9))) - v(g?)) = tgt(v(g*)) = k(g*).

As observed for finitary proof terms in Section 2.2.2; the rules defining the set of
proof terms can be combined in different ways. A simple example follows: rule 4 implies
that k(<. ¢'(u(f®))) is a valid proof term, given that ;- ¢'(u(f*)) is, as we have
already verified. We get sre(k(-i<w ¢'(1(f*)))) = k(sre(-icw ¢'(1(f*)))) = k(f*), and
analogously for the target term. The reduction f¥ —» ¢g“ —» k“, can be denoted by
either -;—o, ¢'((f*)) - i< kK'(v(g®)) (if taken as a sequence having length w x 2) or
wu? - v (if considered as the composition of two infinite simultaneous reductions), in both
cases by means of rule 3, since both ;- ¢*(u(f*)) and pu“ are convergent. Specifically,
vicw G ((f2)) - icw K (v(g*)) € PTou241, and p® - v* € PT3. The reduction f¥ —
Fg(f)) = f(R(f2)) = fR(g(f)) — F(R*(f*)) = f(k) — g(k*) can be denoted
by cicw fIE(u(f<) - v(f9))) - p(k*), and also by f(-icw K (u(f“) - v(f*))) - n(k?).

We give some examples involving non-convergent proof terms; we use the rules 7 :
i(r) — i(x) and p : h(z,y) — m(x). The proof term 7(a) is convergent; i(a) is both its
source and target term. Therefore, rule 2 implies that -, 7(a) is a valid proof term. In
turn, the minimum activity depth of all the components of ;- 7(a) is mind(7(a)) = 0,
so that -, 7(a) is not convergent. Notice that src(<, 7(a)) is well defined, namely,
it is sre(r(a)) = i(a).

Non-convergence of -, 7(a) implies that neither v(;<. 7(a)) nor p(j<w 7(a), (b))
are convergent. On the other hand, p(u(b), -i<w 7(a)) is a convergent proof term; observe
that the variable replaced by the non-convergent subterm -, 7(a) in the left-hand side
of p, namely y, does not occur in the corresponding right-hand side. Computation of the
source and target terms yields sre(p(u(b), «i<w 7(a))) = h(sre(u(b), sre(i<y T(a))) =

h(f(b),i(a)), and tgt(p(s(b), i< T(a))) = m(tgt(1(b))) = m(g(b)).

Finally, we remark that infinite composition can be combined with itself. Let us
consider a reduction sequence having length w?, and ¢;; be a proof term denoting its
w * 1 + j-th step, so that for each i < w, -j<, ¢; denotes the subsequence including
the steps from the w * i-th up to the w * (i + 1)-th. Then -, -j<u ¢i; is a proof term
denoting the entire reduction sequence. By iteration of this pattern, proof terms can be

5.2. INFINITARY PROOF TERMS 163

built denoting reduction sequences of any countable ordinal length. This claim is proved
in Sec. 5.4.

5.2.3 Soundness of the definitions

In this section, we study the definition of the set of valid proof terms in some detail,
stating and proving properties related to its soundness.

Lemma 5.2.12. Let ¢, o such that ¢ € PT,. Then 1 is an infinite concatenation iff
a is a limit ordinal iff ¥ is generated by case 2 in Dfn. 5.2.8.

Proof. We proceed by induction on «, analysing the rules in Dfn. 5.2.8.

Case 1: in this case ¢ is an infinitary multistep, so that 1(2°) = () # -

Case 2: in this case ¥ = -;—, 15, that is, an infinite concatenation. It is enough to
observe that PTy = J, and that a; > 0 for all 7 implies that >}, «; is a limit ordinal.
Case 3: in this case ¢ = 1 - 1o where 9; € PT,,, as is a successor ordinal, and
a = a1 + as + 1, i.e. a successor ordinal. TH on 5 implies that ¢9(2") # - for some
n < w. We conclude by observing that 1(27+1) = 15 (2").

Case 4: in this case it is immediate that ¢(2°) = v(e) # -, and that « is a successor
ordinal. O

Lemma 5.2.13. Let ¢, a such that ¢» € PT,. Then v is an infinitary multistep iff
a =1 iff ¢ is generated by case 1 in Dfn. 5.2.8.

Proof. We proceed by induction on «, analysing the rules in Dfn. 5.2.8.
Case 1: we conclude immediately.

Case 2: in this case v is not an infinitary multistep, observe e.g. that 1(¢) = -, and «
is a limit ordinal, cfr. Lem. 5.2.12. Thus we conclude.
Case 3: in this case ¢ is not an infinitary multistep, observe e.g. that ¥(e) = -, and

a>a;+1>1, recall PTy = . Thus we conclude.

Case 4: in this case ¢ = f(¢1,...,%y) where ¢, € PT,, for all i, and exists some k such
that ap > 1. Observe that a > aj > 1, then we can apply IH to obtain that ¢y is not
an infinitary multistep, hence 1 is neither. Thus we conclude.]

The set PT is closed by operations, formally:

Proposition 5.2.14 (Completeness of PT).

~

. If 1 is an infinite multistep, then ¢ € PT.
2. If Y1, € PT, 4y is convergent, and src(ig) = tgt(¢n), then ¢y - 1o € PT.

3. Given a sequence {1;yi<, such that for all i, 1»; € PT, 1b; are convergent, and
tgt(v;) = src(is1), then <<, ¥; € PT.

4. If 1,... 0, € PT and f € X, then f(¢1,...,%,) € PT.

5 Ifir,...,0n € PT and p is a rule symbol, then u(q,...,1¥,) € PT.

164CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Proof. We prove each item separately, referring to cases in Dfn. 5.2.8.

Item 1: in this case 1) € P'Ty, this is immediate from case 1.

Item 2: Let oy, ag such that ¢; € PT,, for i = 1,2. If ay is a successor ordinal,
then 11 - Y2 € PTqo, 1a,+1 S PT. If ag is a limit ordinal, then Lem. 5.2.12 implies that
9 = -j<w @i, where for all i, ¢; is convergent and tgt(¢;) = src(pi+1); cfr. case 2. On the
other hand, hypotheses imply that v is convergent and tgt(¢1) = src(ia) = sre(do).
Then 11 - 12 € PTy, +a,, again by case 2. Observe that ¢ - 12 = 1 - (ricw ¢i) = icw ¢;
where ¢f := 11 and ¢, := ¢; for all i < w.

Item 3: we conclude just by observing that case 2 implies that -, 1; € PTpg, where
;€ PT, for all i <w and B := >, a;.

Item 4 and Item 5: it is enough to observe that case 4 applies. O

Now we prove uniqueness of formation, w.r.t. the layered definition, for any valid
proof term.

Lemma 5.2.15. Let ¢ € PT. Then there exists a unique o such that ¢ € PTy, and
moreover there is exactly one case in Dfn. 5.2.8 justifying ¢ € PT,,.

Proof. We will prove the following statement, which is equivalent to the desired result.

Let ¢ € PT, o minimal for ¢ € PT,, and 3 such that ¢» € PT3. Then
B = «, and there is exactly one case in Dfn. 5.2.8 justifying ¢ € PT,,.

We proceed by induction on «, analysing which case in Dfn. 5.2.8 could justify ¥ € PT,.
Case 1. In this case @ = 1 and 9 is an infinitary multistep. We conclude by Lem. 5.2.13.
Case 2. In this case ¢ = -j«, ¥; such that ¢; e PT,, and o = >, ;. Observe that
a > o; for all 4, recall PTo = ¢J. Assume ¢ € PTg3. Lem. 5.2.12 implies that this
assertion is generated by case 2, implying that § = >,__ f; and ¢; € PTpg,. Let i < w
and ~; minimal for ¢; € PT,,. Then v; < a; < «, and therefore IH can be applied twice
on each v; obtaining 5; = a; = ;. Thus we conclude.

Case 3. In this case ¥ = ¥1 - Y9, a = a1 + as + 1, @y is a successor ordinal, and
Y; € PT,, for i = 1,2. Then Lem. 5.2.12 applied to 12 implies that it is not an infinite
concatenation, thus neither is ¢). On the other hand, observe that « is a successor ordinal
verifying o > «; for ¢ = 1,2. Assume 1) € PTg. Then applying again Lem. 5.2.12 yields
that this assertion is not justified by case 2 (since 1 is not an infinite concatenation);
therefore, the shape of 9 (recall ¢)(e) = -) leaves case 3 as the only valid option. Hence
B = p1 + B2 + 1 where ¢); € PTg, for i = 1,2. An argument analogous to that used in
the previous case, i.e. resorting to the IH on each ;, yields 8; = a;. Thus we conclude.
Case 4. In this case ¥ = f(¢1,...,%n) and & = a1 + ... + a;, + 1, where ¢; € PT,,
for all 7, and exists some k verifying o > 1. Then Lem. 5.2.13 implies that 1 is not
an infinitary multistep, so that neither is ¢). Therefore, the shape of ¢ (recall 1(e) # -)
leaves case 4 as the only valid option, implying that 5 = 81 + ... + B + 1 where
1; € PTg, for all i. We conclude by obtaining 3; = «a; through an argument resorting
to the IH, like in the previous cases.]

We remark that Lem. 5.2.15 ensures that transfinite induction on the layer attached
to each proof term, combined with rule analysis w.r.t. Dfn. 5.2.8, is a sound principle to
reason about the set of proof terms.

5.2. INFINITARY PROOF TERMS 165

5.2.4 An alternative induction principle

As noted in Section 5.2.2, the principle given by the layered definition of PT allows to
perform reasonings by transfinite induction over the set of infinitary proof terms. In
this section we introduce a second sound induction principle for proof terms, based in
their concise notation. This induction principle is equivalent to that given by layers.
Some of the forthcoming proofs about proof terms resort to this alternative, equivalent
induction principle, while other proceed by transfinite induction on the layer attached
to each proof term. The intent is to obtain proofs as intuitively simple as possible, with-
out compromising their validity. The following proposition introduces the alternative
induction principle, and shows that it is equivalent to that given by layers.

Proposition 5.2.16 (Alternative, equivalent induction principle for PT). Let P a

unary predicate satisfying all the following conditions:
1. If) is an infinitary multistep, then P(1) holds.

2. For all Y,y such that 1y - 19 € PT, P(v1) and P(12) imply P(y - 9).
3. Given (1;)i<y such that i<, ; € PT, P(1;) for all i imply P(i<y ¥i).
4. For all ¢1,...,¢, € PT and for all f € X, P(1),...,P(t,) imply

P(f(wh s 7w7’b))
5. Foralln,..., 1, € PT and for any rule symbol u, P(yn), ..., P({y) imply

P(u(¥r, ...).
Then P(%) holds for all ¢h € PT.

Proof. We proceed by induction on « where ¥ € PT,, referring to the conditions in the
lemma statement.

If @ = 1, then Lem. 5.2.13 implies ¥ to be an infinitary multistep, so that we conclude
by condition 1.

Assume that « is a successor ordinal. If ¢(e) = -, then Lem 5.2.12 implies that ¢ =
Y1 - g, such that for i = 1,2, ¢; € PT,, for some «; satisfying a > «a;. Then IH can
be applied on each ; yielding P(+1) and P(12) to hold. We conclude by condition 2.
Otherwise, i.e. if ¢ = f(¢1,...,0m) or ¥ = pu(1,...,%m), then Lem. 5.2.13 implies
that 7 is not an infinitary multistep, therefore for all ¢, ¢; € PT,, where a > ;. Then
IH on each i yield P(1);) to hold for all .. We conclude by condition 4.

Assume that « is a limit ordinal. In this case, Lem 5.2.12 implies that ¢ = ;< ¥, such
that for all ¢ < w, 1; € PT,, where o; < o. Then we can apply IH on each 1); obtaining
that P(v;) holds for all i < w. We conclude by condition 3. O

In the proofs resorting to Prop. 5.2.16, we indicate as induction hypotheses the
hypotheses of each case in the Proposition. E.g. when proving a property for proof
terms having the form vy - 19, we will refer to the hypotheses of case 2 in Prop. 5.2.16,
namely that the property holds for 1 and 19, as induction hypothesis in the proof.

5.2.5 Basic properties of proof terms

The following lemma shows that the target of a convergent proof term is always defined,
and also a correspondence between mind(v¢) and the existence of a fixed prefix for the
activity denoted by 1. These two results are merged in the same lemma because they
need to be proved simultaneously.

Lemma 5.2.17. Let ¥ be a convergent proof. Then

166CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

(a) tgt() is defined.
(b) For alln < w, mind(v) > n implies dist(src(y), tgt(v)) < 27",

Proof. We proceed by induction on a where ¥ € PT,, analysing the case in Dfn. 5.2.8
corresponding to . If 1 is an infinitary multistep, then item (a) is immediate from
Difn. 5.2.5, and for item (b) an easy induction on n suffices.

Assume 1) = 1)1 - 9. Item (a) can be proved by just applying IH on 5. To obtain
item (b), observe that IH applies to 1; for i = 1,2, since mind(v;) = mind(y)) > n, yield-
ing dist(src(v;), tgt(;)) < 27 ™. Moreover Lemma 5.1.25 implies dist(src(v), tgt(vy)) <
maz(dist(srce(y), sre(ie)), dist(sre(ys), tgt(v)). Thus we conclude by observing that
sre(y) = sre(yr), sre(ihz) = tgt(yr), and tgt(y) = tgt(iz).

Assume ¢ = -, U;.

We prove item (a). For any i < w, 1; being convergent implies that ITH applies to
obtain that tgt(1);) is defined. Let n < w, and k,, such that mind(y;) > n if k, <
i < w. Let j such that k, < j. Then IH:(b) applies on 9,41 - ... - 1, implying
dist(tgt(Yr,+1),tgt(1h;)) < 27" Therefore, for any position p and j = kj, + 1, p €
Pos(tgt(t;)) iff p € Pos(tgt(tk, +1)), and in such case, tgt(y;)(p) = tgt{vr, +1)(p). We
define ¢t = (P, F) as follows: p € P iff p € Pos(tgt(vr, +1)), and F(p) := tgt(yy, +1)(p)
for all p € P. To conclude this part of the proof, it is enough to verify that tgt(¢) =
lim;_,, tgt();) = t.

e We verify that P is a tree domain, cfr. Dfn. 5.1.6. Let pg € P, then
pq € Pos(tgt(i/}klpqlﬂ)), implying that p € Pos(tgt(z/)k‘pq‘ﬂ)), and therefore that
p € Pos(tgt(vx,,,)). Hence, p € P. Let pj € P and i such that 1 < i < j.
Observing |pj| = |pi|, a straightforward argument based on Yk, +1 Yields pi € P.

e We verify that ¢ is a well-defined term, cfr. Dfn. 5.1.7. Let p € P, f/m := F(p), and

i <w. Observe f =1y +1(p) = Yx,,,+1(p). Then pi € P iff pi € Pos(¢y,, 1) iff
< m.

e We verify that ¢t = lim;_,,, tgt(1;). Let n < w, j > ky, and p a position verifying
Ip| < n, so that k| < ky, implying in turn &k, + 1 < j. Then p € Pos(t) iff
p € Pos(tgt(vy, +1)) iff p € Pos(tgt(¢;)), and in such case, t(p) = tgt(y, +1)(p) =
tgt(y;)(p). Hence dist(tgt(v;),t) < 27". Consequently, ¢ = lim;_,, tgt(1);).

We prove item (b). For all i < w, mind(y;) = mind(y) > n, so that an easy induc-
tion on ¢ using an argument similar to that just described for binary composition yields
dist(src(y),tgt(vi)) < 27". Recall that tgt(y) = lim;_,, tgt(¢);), then there exists some
k such that dist(tgt(v;),tgt(v)) < 27" if j > k. Then dist(src(vy), tgt(Yr41)) < 27"
and dist(tgt(vr+1),tgt(y)) < 27". We conclude by Lemma 5.1.25.

Assume ¢ = f(11,...,1,,) and that it is not an infinitary multistep. Then 1 being
convergent implies that all ¢; are. Therefore a straightforward argument based on TH
implies item (a) to hold. Moreover, the way in which sre, tgt and mind for this case,
implies that a natural inductive argument yields also item (b).

Assume ¥ = p(11,...,1%n), and that it is not an infinitary multistep. Then 1 being
convergent implies that v; is if z; occurs in the right-hand side of p, thus IH:(a) implies
that tgt(v;) is defined for those ;. Hence, definition of tgt for this case yields item (a).

1A possible shortcut from here is observing that the sequence (tgt(¢);)>i<. is Cauchy-convergent, and
therefore has a limit. We can refer to Thm. 12.2.1 in [BKdV03], or its proof.

5.2. INFINITARY PROOF TERMS 167

On the other hand, mind(y) = 0 contradicting the hypotheses of item (b). Thus we
conclude. 0

Lemma 5.2.18. Let C' be a context in Ter(X) having k holes, and 1, ..., proof
terms. Then mind(C[y1, ..., ¥x]) = min{mind(y;) + [Bpos(C,)| / 1 < i < k}.

Proof. An easy, although somewhat cumbersome, induction on maz{|Bpos(C,i)|} suf-
fices. If C = O, then both sides of the equation in the lemma conclusion equates to ¥,
thus we conclude.

Assume C = f(Cq,...,Cp).

Observe that C[¢1,...,¥x] = f(Ci[Yry, .. ¥1,] o Cul¥mys - - Ymg,n]), Where
{v,} = {¢1,...,¢¥r}. Consequently, for any ¢ such that 1 < i < k, Bpos(C,i) = ep
for some e verifying 1 < e < m, and therefore p = Bpos(C,, 1) for some [. In turn, this
implies |Bpos(C,i)| = 1 + |Bpos(Ce,l)|. Conversely, for any e such that 1 < e < m,
and for any Bpos(Ce,i), there is an index j such that Bpos(C,j) = e - Bpos(Ce,1).
Furthermore, mind(C[¢1, ..., ¥x]) = 1 + min{mind(Cj[vj,, ..., ¥;,;]) /1 <j<m}.

Let j minimal for mind(1;) 4+ [Bpos(C, j)|, so that showing mind(C|v1, ..., ¢¥x]) =
mind(y;) + |Bpos(C, j)| is enough to conclude. Let e,i such that Bpos(C,j) = e -
Bpos(Ce, 7). The existence of some j', i’ such Bpos(C, j') = e-Bpos(Ce, ') and mind(y})+
IBpos(Ce,)| < mind(y);) + [Bpos(Ce,)| would contradict minimality of ¢; w.r.t. C, so
that j, ¢ are minimal for mind(v;) + |Bpos(Ce,)|. Therefore, applying IH on Cj, yields
that mind(Ce[ve,, - - -, Ve,.]) = mind(v;) + |Bpos(Ce, 1)|.

Assume for contradiction the existence of some m, h such that
mind(Cplny s - - ¥Yng, 1) < mind(Ce[tbey, - .., ¥n,,]). Applying IH on C} we obtain
mind(CplYn,s - - Yn,,]) = mind(yy) + [Bpos(Ch, f)| for some f and g such that
Bpos(C,g) = h - Bpos(Cp, f). But then our assumption would imply mind(iy,) +
|Bpos(C, g)| = mind(1g) +[Bpos(Ch, f)|+1 < mind(v;)+|Bpos(Ce, i) |+1 = mind(;)+
|Bpos(C, j)|, contradicting minimality of j w.r.t. C.

Hence, mind(C[¥1, ..., ¢¥x]) = 14+mind(Ce[vey, . . . , Ve,]) = mind(j)+[Bpos(C, j)|.
Thus we conclude. 0

Some properties related with convergence follow.

Lemma 5.2.19. Let) = f(¢1,...,1¥n) be a convergent infinitary multistep, and i such
that 1 < i < m. Then v; is a convergent infinitary multistep.

Proof. Dfn. 5.2.2 yields immediately that ; is an infinitary multistep. Moreover,

f(b1,...,%y) being convergent means the existence of a convergent tgtp-reduction se-
0

quence ¢ such that f(i1,...,1%n) P t and t is a tgtp-normal form, i.e. t € Ter®(%).
gt

Observe that mind(d) > 0, since f does not occur in any left-hand side of a rule in tgty.
dl;

Then Lem. 5.1.45 implies t = f(t1,...,ty). In turn, Lem. 5.1.48 implies 1); %»» t;.
gt

Thus we conclude. O

Lemma 5.2.20. Let v = f(1,...,%n) be a proof term. Then 1 is convergent iff 1; is
convergent for all i such that 1 < i < m.

Proof. 1f 1 is an infinitary multistep, then the =) direction is an immediate corollary of
Lem. 5.2.19. For the <) direction, recall that for any 4, 1; being convergent means the

168CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

0;
existence of a tgtp-reduction sequence §; verifying 1); P t; where t; € Ter®(X). Then
gt

§
f@h1, ...) P fti, ... tm), where 6 := (1-01);...;(m - dy,), and i - 0; is defined as
gtr
follows: length(i-d;) := length(d;) and i-d;[] := (f(t1,..., D, ... 1"m),ip, uy where §;[a] =
105
{(p,p,py. A simple transfinite induction yields f(t1,...,ti—1,%i, Vis1,---,Vm) —»

tgtr

f(th s 7ti—17tiawi+17 s 7wm)
If ¢ is not an infinitary multistep, then the result is an immediate consequence of
Difn. 5.2.8, case (4). Thus we conclude. O

Lemma 5.2.21. Let C be a context in Ter®(X) having exactly m holes, and i1, ..., P¥m
proof terms. Then C[Yn, ..., 1] is convergent iff 1; is convergent for all suitable i.

Proof. A straightforward induction on max{|Bpos(C,7)| / 1 < ¢ < m}, resorting to

Lem. 5.2.20 in the inductive case, suffices to conclude. O
Lemma 5.2.22. Let p : l[z1,...,2m] — hlz1,...,2m] be a rule included in a certain
TRS; and 1, ...,¥m proof terms. Then b = u(1,...,1m) is convergent iff ; is
convergent for all i such that z; occurs in h[z1,...,ZTm].

Proof. Assume that 1 is an infinitary multistep. We verify =). Convergence of 1

é
implies 1) P t for some reduction sequence &, where t € Ter®(X). Notice that
gtr

mind(§) > 0 would imply t(e) = p (cfr. Lem. 5.1.45), contradicting ¢t € Ter®(X).
Therefore mind(0) = 0, implying § = 1;{x,€,v), 02 where mind(d1) > 0. In turn,

mind(d1) > 0 implies that tgt(d1) = x = ulx1,- -, Xm) where 1); %t% Xi, cfr. Lem. 5.1.45
and Lem 5.1.48. Hence v = p : p(x1,...,2m) — h[z1,..., %], implying src(de) =
h[X1,-..,Xm]. Observe that y; occurs in src(de) iff x; occurs in h. We analyse two
cases:
. 5l; 02
o hlzy,...,2zm] = x;, so that src(d2) = x;. In this case ¢p; —» x; —» t. We

conclude by observing that only convergence of 1); is required in this case.

1
e h ¢ Var. In this case h|x1,..., Xm] —25 t. Observe that all the steps in Jy lies
“below” (an argument of) h. Then Lem. 5.1.49 implies t = h[ty,...,] and,

6i
moreover, that a reduction sequence 0; exists which verifies x; —» t; for all ¢
such that x; occurs in h|z1,...x,,]|. Therefore, for any of those indices, say 1,
81 i 5

1y —» x; —» t;. Thus we conclude.
To verify the <) direction, observe that all the v; corresponding to variables oc-

5 Om
curring in h being convergent implies ¥ — h[Y1, ... 1Un] — hlti, ..., ¥m] ... —»
hlti,...,tm], where eventually some ¢; are performed more than once, if the corre-
sponding x; occurs more than once in h[z1,...,2,]. Hence ¢ is tgtp-WN®, i.e. it is a

convergent infinitary multistep.

Finally, if ¢ is not an infinitary multistep, then Dfn. 5.2.8, case (4), allows to conclude
immediately. O

5.3. PERMUTATION EQUIVALENCE 169

5.3 Permutation equivalence

In this section, we present a characterisation of the equivalence of reductions, more
precisely of contraction activities, for convergent infinitary rewriting. A study of equiv-
alence comprising non-convergent, as well as convergent, reductions, is left for further
investigation.

As described for the finitary case in Section 2.2.3, equivalence is formally charac-
terised by defining an equivalence relation on the set of proof terms. In fact, the def-
inition we present in the following extends its finitary counterpart, namely Dfn. 2.2.8,
preserving its basic features. Equivalence of reductions is formalised by resorting to the
notion of permutation equivalence. Moreover, the definition of the permutation equiva-
lence relation on the set of infinitary proof terms is based on equational logic, similarly
to Dfn. 2.2.8, and additionally, the set of basic schemas for infinitary permutation equiv-
alence is the result of adding an additional schema to those presented in the finitary
definition.

We remark that this characterisation of the equivalence of infinitary reductions in-
volves equational logic to be performed on infinitary objects, namely the proof terms.
On the other hand, the mere extension of Dfn. 2.2.8, as it is presented, in the sense
of allowing infinitary proof terms to be included in equational judgements, does not
suffice to obtain an adequate characterisation of infinitary permutation equivalence.
There are several challenges, related specifically to infinite concatenation, which must
be addressed. We discuss these challenging issues by presenting some examples in the
following.

5.3.1 Motivating examples

Consider the rules p: f(xz) — g(z) and p : m(z) — j(z), and the reduction sequences:

() L5 mla(£)) - m(g?(f)) " m(g®) > §(g") (5.6)
m(f) < §(F2) =5 (a(F2)) =5 5(g* () = i(9°)

where we annotate the arrows with the rule used in each step or sequence. These
reduction sequences involve exactly the same steps, namely a u step for each occurrence
of f in m(f“), plus a p step for the external m. Therefore, we should be able to
consider these reduction sequences as equivalent. Independently of the representation of
these reduction sequences by proof terms, let us try to apply the notion of permutation
equivalence to justify our assertion about their equivalence. To this effect, we should
obtain either of these reduction sequences from the other, as the result of a series of
permutations of contiguous steps.

The problem here is that the p step must be permuted with an infinite number of y
steps. If we try to transform the former equation into the latter one, there is not even
a first definite p step with which the p step can be permuted. If we go the opposite
direction, for any n < w, the leading p step can be permuted with the leading n u steps,
resulting in

m(f2) L5 m(g(f*)) 5 . A5 m(g" (1) L (gM() = (g

In any case, an infinite number of p steps remain past the p step, preventing us to
conclude the equivalence of the original reduction sequences.

170CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

This situation is reflected if we try to justify the equivalence of the proof terms
denoting the given reduction sequences, namely

(i< m{g" (R(F))) - p(g®) and p(f*) + (ricw J(g"(L(S9)))) (5.7)

by means of Dfn. 2.2.8. On one hand, there is no “last” element in the infinite concate-
nation -;—,, m(g*(u(f*))), having the form m(...), which could be joined, by applying
a number of times the (Assoc) schema, with p(g*), to subsequently apply the (InOut)
schema. Cfr. the second example of finitary permutation equivalence judgement given
in Section 2.2.3, where this idea is used to permute the last step of a finitary sequential
proof term with the preceding one. On the other hand, for any n < w, the p step can
be postponed after the n leading p steps. The following remark is useful here, as well
as in later examples.

Remark 5.3.1. We recall from Dfn. 5.2.8 that ;<. ¥; is just a concise notation for
o -+ (Y1 - (o« ...)). Therefore, Yo - (+i<w V1+4) is a different concise notation for the
same proof term.

Having this observation in mind, consider this permutation equivalence judgement:
p(f<) - (icw 39" (0(f*))))

(p(f<) - (1) -+ Cicw 3(g" (u(f9))))

p(u(f9) - Cizewo G(g" " (u(f9))))

(m(u(f9) - p(g(f)) - (i< (" (1(f*))))

(f<)) - (p(a(f*)) - G(a(u(f)))) - Cicew G(g* T (<))

(f<)) - plg(u(f*))) - (z<w.7((<))

(f<)) - (mg(u(f*))) - P(G*(f)) - (vicw J(()

) - ?

3

m(g(u(F)) - (g (1)) - J(gP(u(F))) -
()

)

QRN &

”\E%\

m(p
m(p
m(p
m(pu(f*
(vicw J(g

&

m(u(f<)) - mg(u(f<))) - m(g*(u(f<))) = .. - m(g" " (u(f*)))-
p(g"(f*)) « (ricw 3(g"(u(f))))

which repeats a pattern formed by the application of (Assoc) to join the p step with the
following p step, then (Outln) to obtain a simultaneous contraction of these steps, and
subsequently (InOut) to get their sequential contraction where the u step precedes the
p step. This pattern is similar to that described in the second example in Section 2.2.3,
with (Outln) and (InOut) applied in reverse order. Note that disregarding the value of
n, an infinite concatenation comes after the p step. Hence, there is no way to justify, as
desired, the equivalence of the two given proof terms, using just the finitary definition
on infinitary proof terms.

22 “ee

Moreover, observe that all the steps involved in the reduction sequences in (5.6)
can be performed simultaneously from the term m(f“); the infinitary multistep p(u®)
denotes such infinite simultaneous contraction. The involved steps can be contracted in
many other different forms, such as those denoted by the proof term p(i, ¢*(1(f“)))
or p(f¥) - 7(u¥). A sound characterisation of permutation equivalence for infinitary
rewriting must state that all these proof terms are equivalent among themselves, and
also to any of the sequential proof terms given in (5.7). Let us take

p(f<) - Cicw 3(g"(0(f)))) and p(u*) (5-8)

5.3. PERMUTATION EQUIVALENCE 171

To prove the equivalence between these proof terms, all the y steps must be “packed”
(cfr. Section 1.3.2 and Section 2.2.3) from -, j7(¢*(u(f*))) into an infinitary multi-
step, or conversely, “unpacked” from j(u“) to form an infinite concatenation. Again,
Dfn. 2.2.8 allows to obtain the desired result only for a finite number of i steps. Consider
e.g. the following permutation equivalence judgement.

p(f*) - Cicw 59" (1(f))))

~ (=) G2 - Gw)) - oo M))+ Cimw 36 ()
(5.9)

~ (p) - GO - How=) - 9a(F2D)))+ (e 6™ ()

~ (=) G2 - G0(=) - o)) - Ciew 36*H ()))

~ (=) G2 - 36N - Cice 365 () (5.10)

~ (p(f*) - 3(u(f?) - g(2(f2) - (icw §(@* T (u(f*))))
~ (p(f*) - 31 (f9) - Cicw 3(* (u(f9)))) (5.11)
~ p(P () -+ (vicw J(@* T (W(F))))

In this judgement, many applications of (Assoc) yield (5.9), preparing the structure
where the successive “packing” of steps can take place. (Struct) is applied twice from
Jg(u(f*))) - 7(g(g(r(f*)))), this is needed to apply (Outln) resulting in (5.10). (Struct)
is again followed by (Outln) to obtain (5.11), and a last application of (Outln) yields the
final result. By repeating the “(Struct)-and-then-(Outln)” pattern, a judgement can be
built to justify

p(f9) - Cicw 509" () = p(™(F2)) - Cricw (9" (0(f))))

for any n < w, so that an infinite concatenation comes after the leading infinitary
multistep including the p step and the n external u steps. Therefore, just applying
Dfn. 2.2.8, the equivalence of the proof terms in (5.8) cannot be attained.

Let us analyse a different case, using the rules p : f(z) — g(z) and v : g(z) — k(z).
Consider the reduction sequences

F9 = g(f2) = g*(f) = g° — k(g”) = K*(¢*) — k¥ (5.12)
F9 = g(f*) = k() = k(g(f*)) = K*(f*) — k* (5.13)
These reduction sequences comprise the contraction of exactly the same steps: a u step
for any occurrence of f in f“, plus a v step for any of the created occurrences of g.

They are different only by the order in which these steps are contracted. Therefore, we
should be able to conclude that the proof terms

(vi<w 9 (0(f))) + (i K (v(¥))) (5.14)
i<w (K'(u(f%)) - K'(v(g7)))
which denote respectively the just introduced reduction sequences, are equivalent.

As in the previous examples, the permutation equivalence of these proof terms cannot
be justified by resorting to Dfn. 2.2.8. The situation is even more complex in this case,

172CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

than in the example given by (5.6) and (5.7). To transform (5.12) into (5.13), we should
permute an infinite number of v steps; in turn, each of these v steps must be permuted
with an infinite number of u steps. That is, infinity is involved in the permutation
equivalence reasoning of this case, in two different dimensions. The need to cope with
this phenomenon has a great influence on the design of the formal definition of the
permutation equivalence relation for infinitary proof terms.

5.3.2 The formal definition

In order to obtain an adequate characterisation of infinitary permutation equivalence,
we add three elements to Dfn. 2.2.8.

Two of these added elements are a basic equation schema and a contextual equational
logic rule, which allow to extend to infinite concatenations, respectively, the (Struct)
scheme and the closure by operations, which the finitary permutation equivalence defi-
nition provide for binary concatenation only. Namely, the characterisation of infinitary
permutation equivalence includes the equation schema:

(InfStruct) e FOF, - 07) ~ flrico Oy icw O
and the equational rule:

v ~¢; foralli <w

InfComp

icw Vi R vicw G

The third added element is an equational rule which allows to incorporate the notion
of limit into the permutation equivalence judgements. The form of this rule is:

for all k < w { Y xp Xk - Y, mand(yy) > k
exists Xk, ¥y, O ¢ =g Xp ¢, mind(dy) >k Lim
Vv &

where ~p denotes a restriction of the = relation, which we discuss later on. The Lim
rule can be described as follows: if ¢ and ¢ can be proven permutation equivalent,
respectively, to two arbitrarily “similar” proof terms, then we can conclude that i and
¢ are, themselves, permutation equivalent.

The notion of “similarity” between proof terms we use in this rule, reflect the similar-
ity of the denoted contraction activities. It is based on two elements: the concatenation
symbol, i.e. the dot, and the notion of minimum activity depth. By resorting to the dot,
we can separate a prefix of any contraction activity, not only of reduction sequences. In
any proof term having the form £ - 6, the activity denoted by & precedes that denoted
by 6. The use of the dot allows to define the degree of “similarity” between two proof
terms, in relation to what follows a common prefix. Namely, given two proof terms & - 61
and £ - 0o, the less significant 61 and 05 are, the more “similar” we consider £ - #; and
£ - 0. In turn, the “significance” of a proof term is considered to be the inverse of its
minimum activity depth. A proof term & verifying mind(§) = 0 includes root activity;
we consider that such proof terms have the greatest significance. A greater value of
mind(€) indicates a greater context which is not affected by (the activity denoted by)
&, and hence a smaller significance.

We want to remark another aspect related to the Lim rule: we consider that the
“stacking” of uses of this rule, i.e. to use Lim in the derivation leading to a premise of

5.3. PERMUTATION EQUIVALENCE 173

another Lim application, should not be necessary to obtain an adequate characterisation
of infinitary permutation equivalence. Therefore, we resort to a separate relation ~p,
which we call base permutation equivalence, and which is the closure of the equation
schema instances by all the rules except for Lim, in the premises of the Lim rule.

We note that the added rules InfComp and Lim have an infinite number of premises.
In order to obtain a proper definition, and also to have a way to reason about the
permutation equivalence relation by transfinite induction, we organise the following
definition in layers, similarly as the definition of the set of infinitary proof terms in
Section 5.2, cfr. Dfn. 5.2.8 and Dfn. 5.2.9.

The formal definition of the permutation equivalence relation on the set of infinitary
proof terms follows.

Definition 5.3.2 (Layer of base permutation equivalence). Let a be a countable ordinal.
We define the a-th level of base permutation equivalence, notation %B , as follows: given

Y and ¢ proof terms, ¥ Rp & iff the equation ¥ X ¢ can be obtained by means of the
equational logic system whose basic equations are the valid instances of the following
schemas:

(IdLeft) sre() <~

(IdRight) Y- tgt(y) ~

(Assoc) Yve(o-x) ~ (-9 -

(StrUCt) f(¢1771/}m)) f(¢177¢m) ~ f(l/Jl ¢17--‘7¢m : (rbm)
(InfStruct) i FOF W)~ flricw O i)
(Outln) whr, .o m) o~ (St Sm) T, e YUm)
(InOut) Wty oo thm) o~ Ut m] - p(t, -)

where p 2 1 — 1, s; = src(Y;), ti = tgt(y;), and an instance of an equation is valid
iff both the lhs and rhs are convergent proof terms, cfr. Dfn. 5.2.9. For (InOut), notice
that the target of each of the v¥; must be defined, since all the t; occur in the right-hand
side of the equation schema, therefore, all the 1p; must be convergent proof terms for an
instance of this schema to be valid.

Equational logic rules are defined by transfinite recursion on « as follows

1) ~ ¢ is a basic equation

—— Refl Eqn
)~ Y~
M Symm b0 0%¢ Trans
a1+1 o] t+ag+1
¢ 1\“"‘ 'l/] l+~2+
PN . R, f/neX
ar+..fon+1 Fun
f(lbl:---ﬂbn) ~ f(¢177¢n)
V1N pr . by R gn p/nis a rule symbol
a1t +an+tl Rule
M(%w--ﬂ%) ~ //J((,bl’“-,d)n)
Y1~ g1 P = o v N foralli <w

Comp

InfComp
al+tag+1 a;
L 1 e) i<w Vi P L, o

174CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Definition 5.3.3 (Base permutation equivalence). Let ¥, ¢ be proof terms. We say

that ¥ and ¢ are base-permutation equivalent, notation ¥ =g ¢, iff ¥ %B ¢ for some
a < wi.

Definition 5.3.4 (Layer of permutation equivalence). Let o be a countable ordinal. We
define the a-th level of permutation equivalence, notation %, as follows: given ¥ and ¢
proof terms, ¥ 2 & iff the equation ¥ X ¢ can be obtained by means of the equational
logic system whose basic equations are those described in Dfn. 5.3.2, and the set of
equational logic rules is the result of adding the rule Lim defined as follows

for all k < w U Rp xi Ul mind(y)) > k
exists xx, ¥}, @) ® ’%B Xk - &, mind(¢}) >k Lim

v R P where o = >}, _ oy + > Bi
to the rules introduced in Dfn. 5.5.2.

Definition 5.3.5 (Permutation equivalence). Let ¢, ¢ be proof terms. We say that 1
and ¢ are permutation equivalent, notation ¢ =~ ¢, iff ¥ X ¢ for some a0 < wi.

Observe that for any countable ordinal «, Rp S %, and therefore ~p C ~.

As indicated prior to the definitions, the use of ~p instead of = in the premises
of the Lim rule prevents the use of Lim in the judgements leading to the premises of a
Lim application. On the other hand, this definition does allow permutation equivalence
judgements including several applications of the Lim rule. E.g., the following:

Y1 ~p & - P Yo ~p Xk - P
o1 ~p & - ¢} : b2 =B Xk - ¢
Lim
V1 = ¢ Py = ¢
Y1 -y = P - P2
is a valid permutation equivalence derivation. The Lim rule is discussed, including
possible variations, in the conclusions of this thesis, cfr. Sections 6.1.3 and 6.3.

Lim

2
Comp

Finally, we want to point out a subtle point in Dfn. 5.3.2, regarding the notion of
valid instance of an equation schema, particularly in relation to the schemas (Outln)
and (InOut). For an instance of either of this schemas to be valid, the corresponding

instance of u(11,...,1,) must be a convergent proof term. Note that this condition
does not entail that all the v¢; must be convergent as well. We recall that Dfn. 5.2.8
requires convergence only for the v; occurring in 741, . . ., ¥,], where 7 is the right-hand

side of p. Let us give an example, using the rules u : f(x) — g(z), v : g(x) — k(x),
p:h(z,y) — j(y), and 7 : i(x) — . The instances of (Outln) and (InOut) regarding the
rule p have this shape:

(Outln) p(¢1,102) ~ p(sre(ipr), sre(ibz)) - j(12)
(InOut) p(th1,2) ~ h(ib1,2) - p(tgt(ahr),tgt(yz))

The following instance of (Outln):
p(r%,pu(a) - via)) ~ p(i*, f(a)) - j(u(a) - v(a))

is valid, even when the proof term standing for ¢)1, namely 7%, is not convergent. Observe
that the source term of any proof term, either convergent or not, can be computed; cfr.

5.3. PERMUTATION EQUIVALENCE 175

the comment preceding Dfn. 5.2.4. On the other hand, the target of 7% is undefined.
Therefore, there is no instance of (InOut) whose left-hand side is p(7%, u(a) - v(a)),
because the target of the proof term standing for ¢; cannot be computed, whereas it is
needed to build the instance of this schema. Hence the condition about convergence of
each v; for instances of the (InOut) schema, detailed in Dfn. 5.3.2.

5.3.3 Some infinitary permutation equivalence judgements

It is straightforward to observe that the relation given by Dfn. 5.3.5 includes the finitary
permutation equivalence relation formalised by Dfn. 2.2.8. Therefore, the examples given
in Section 2.2.3 are valid infinitary permutation equivalence judgements as well.

To illustrate the application of the three elements added to obtain the character-
isation of infinitary permutation equivalence, we go back to the motivation examples
described in Section 5.3.1, and a variation of one of them. We use the following rules:

prflx) = g(x) viglae)>k(x) prmlz)—j) 7:k(@) > m(z)
As a first example, we recall the proof terms given in (5.7), page 170:
(vi<w m(g'(u(f))) - p(g®) and p(f) - (vi<w J(g"((F*))))

We can prove the equivalence of these proof terms easily, by resorting to the (InfStruct)
equation schema, as follows:

(vicw Mg (u(f)))) - P(g*)

~ m(icw 9 (W(F9))) - p(g*)

~ p(ricw 9 (1(f9))) (5.15)
~ p(f¥) - §(icw 9 (1(f9)))
~ p(f°) - (view J(g" ((f2))

Application of (InfStruct) allows to use (InOut) afterwards to obtain (5.15), where the
infinite concatenation of the u steps is enclosed in the p step. Subsequently, (Outln)
allows the reorder the contraction activity as desired, and a final application of (InfStruct)
yields the expected result.

Now let us recall the proof terms presented in (5.8), namely
p(f9) - (vicw 3(g"(u(f¥)))) and p(u®)

We prove that these proof terms are permutation equivalent by resorting to the Lim
rule. Consider the following derivation

p(ue) =~ p(f<) - j(u*) (Outln)
~ p(f°) - g (u(f) - g(u*)) (Outln)
~ p(f<) - (Gr(f) - ig(p))) (Struct)
~ (p(f<) - J(u(f*))) - ig(p)) (Assoc)
~ (p(f<) - J(f)) - d(g(u(f<) - g(u?))) (Outln)
~ (p(f<) - 3(u(f2) - Glg(u(f<)) - 3(g* (1)) (Struct) x 2
~ ((p(f<) - 3(u(f) - 3(g(u(f)))) - 3(g*(u?)) (Assoc)

176CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

where the used equation schema is indicated next to each line; the legend (Struct) x 2
in the next-to-last line indicates the two successive applications of that schema from
J(g(u(f?) - g(1u¥))) needed to obtain the final result.

Let n < w. By iterating over the shown pattern of (Outln) followed by (an ever-
increasing number of applications of) (Struct) and then (Assoc), we can obtain:

(p(F) = 3 ((f)) - Gg(u(f)) « oo 3 (g™ H(u(F2)))) - (g™ (1)) (5.16)

where some parenthesis are omitted. On the other hand, repeated application of (Assoc)
suffices to obtain

p(f<) - (vicw 509" (W(f¥))))

~ (p(F2) - 3 u(f)) - 3 g(u(F)) - - (" () - Cicw 59" (1 (fz")))))
5.17

&

p(p)

Moreover, mind(j(g™(u~))) = mind(-i<w 7(g" " (u(f*)))) = n + 1 > n. For the latter,
observe that for all i < w, we have mind(j(¢" " (u(f*)))) =n+i+1 = n+ 1. Note
also that Lim is not used to obtain (5.16) and (5.17). Hence, Lim can be applied, where

Xn = p(f<) - 3(u(f)) - 3(g(u(f))) - .. - j(g"~ (u(f*))), to obtain the expected result.

We go back to the last example discussed in Section 5.3.1, cfr. (5.14), involving the
proof terms

b= (vicw 9'((2) - (Cicw K 0(6?) &= icw (K (u(f)) - K (F¥)))
We prove that ¢ =~ ¢, again resorting to the Lim rule. Observe the following derivation:

¥ = (ricw 9'(0(f9))) - Cicw K ((9°)))

~ u(f?) - (Cicw 909" ((F2))) - v(97)) - (icw k(K (v(*))))
u(f9) - (9Cicw g'((f))) - v(9%)) - Cicw k(K (v(9”)))) (5.18)
p(f9) - () - k(icw g'(0(f)))) - k(vicw K ((97))) (5.19)
p(f?) - v(f*) - k() (5.20)
p(fe) - v(f<) - k() - (%) - k()

~ u(fe) - v(f2) - k(p(f9) - k(f)) - k(@) (5.21)

We apply (Assoc) many times, taking into account Remark 5.3.1, and then (InfStruct) on
viw 9(g"(1(f*))), to obtain (5.18). The successive application of (InOut) and (Outln)
models the permutation of the first v step with the infinite u steps in this infinite
concatenation, yielding (5.19). From this proof term, (Assoc) following by (Struct)
results in (5.20). Repeating the whole argument, and then applying (Struct), leads to
(5.21).

Let n < w. By iterating the just described reasoning, we can obtain

U () - () RG) B - R) R) - R)

observe mind(k"*1(1))) = n + 1. On the other hand, repeated application of (Assoc)
suffices to obtain

¢ & p(f) - v(f) - k(u(f)) - k@) - KN (u(f) - K)o

5.3. PERMUTATION EQUIVALENCE 177

where ¢ = -, (K" 1 (u(f9)) - kT (v (f*))). so that mind(¢') = mind(k™ 1 (u(f*)) -
K" (v (£“))) = n + 1. Hence we can apply Lim to obtain 1) ~ ¢, as expected.

We remark the use of Lim to make it possible to build this permutation equivalence
argument, in which infinity appears in two different dimensions, as described in Sec-
tion 5.3.1. An argument not resorting to Lim suffices to model the permutation of one v
step with an infinite number of i steps; observe the role of (InfStruct) to this effect. In
turn, the permutation of the infinite v steps is modeled by means of a limit argument,
formalised by the Lim rule.

The last example in this section shows the role of the InfComp rule in a permutation
equivalence judgement. Let us consider the following proof terms

¥ = (vicw (K(u(f*)) - K@) - (icw m'(7(k)))
¢ = vicw (M'((f)) - M (W(f*)) - m'(r(f*)))

This case is similar to the previous one: in order to prove the equivalence of ¥ and ¢,
an infinite number of 7 steps must be permuted, each of them with an infinite number
of u and v steps. We would like to apply an argument similar to that described for
the previous example. Namely, to show that for any n < w, a prefix similar to that
of ¢ can be obtained by permuting each of the first n 7 steps in ¥ w.r.t. an infinite
number of y steps and v steps. In turn, the permutation of each 7 step must involve the
transformation of ¢ = -, (k(K*(u(f*))) - k(k*(v(f*)))) into a proof term having the
form k(1), so that (InOut) can be applied, followed by (Outln), as in the steps leading
to (5.18) and (5.19) in the previous derivation.

But in this case, ¥; does not have the form -, k(&), so that (InfStruct) does not
apply to this proof term. On the other hand, the (Struct) equation schema can be
applied to each component in 11, as follows:

k(K (u(f))) - k(K ((f)) = k(K (u(F*)) - K (v(£2)))

Taking each of this one-step derivations as premises, the InfComp rule yields

U1~ icw k(K (W(F7)) - K (0 (F9)))

This observation enables the following judgement

¥ = (vicw (K (u(f*)) - K@ () - (icw m'(7(k)))

~— —

~ () - v(f<) - (- T(E)) - (icw m(m(T(k9)))) (5.22)
~ () - v(f9) - (view KGR (u(f)) - K (F9))) - 7(K*)) - (vicw m(m'(T(k))))
(5.23)

2

p(f<) - v(f<) - (k(izo K (u(f?) - B @(f9))) - T(K)) - (icw m(m'(1(k*))))
p(f<) - v(f<) - (7(f) - m(eico K (u(f<)) - K@) - m(icw m'(7(k*)))
(5.24)
(5.25)

2

~ p(f) - v () - () - mld)

This derivation is similar to that of the previous example, with the addition of the
argument based on InfComp previously described. (Assoc) yields (5.22); in turn, the
just referred argument leads to (5.23). (InfStruct) can be applied on this proof term,

178CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

allowing in turn to permute the 7 step; we obtain (5.24). Finally, (Assoc) and (Struct)
lead to (5.25).

Hence, the general argument given for the previous example allows to conclude ¥ =
¢, as expected.

5.3.4 Infinitary erasure

As described in Section 2.2.3, the characterisation of permutation equivalence obtained
by applying equational logic on proof terms models adequately the phenomenon of
erasure of some contraction activity by step permutation. This feature is common to
the finitary and infinitary versions given in that section and Section 5.3.2 respectively.

Infinitary rewriting, and particularly the behavior of reduction sequences at limit
ordinals, provoke a different form of erasure of contraction activity, which we call infini-
tary erasure. Let us describe this phenomenon by means of an example, using the rules
k: f(x) = g(f(x)) and 7 : a = b. Consider the reduction sequence

K

fla) = f(b) = g(£(b) = g*(f (b)) —> ¢” (5.26)

where we decorate the arrows with the rule used in each step or sequence. We can
permute the 7 step with each of the k steps in turn. After the permutation of n steps
we get

K

fla) = g(f(a)) = ... =5 g"(f(a)) = g"(f(b)) —» ¢”

If we resort to the notion of limit to model the permutation of the « step with all the
K steps, then we obtain

K

fla) == g(f(a)) => ... == g"(f(a)) = g" ' (f(a)) —» ¢” (5.27)

After the contraction of all the k steps, there is no trace of the source of the 7 step. The
latter is erased as a result of taking the limit of an infinite number of step permutations.
Therefore, we consider (5.26) and (5.27) as equivalent reductions.

The characterisation of permutation equivalence for infinitary rewriting we present
in this chapter models adequately the phenomenon of infinitary erasure. To verify this
assertion, let us work out the just given example. The reduction sequences (5.26) and
(5.27) can be denoted, respectively, by the proof terms

b= f(m) - (riw §'(5(D))) ¢ = -icw §'(k(a))

We can prove that these terms are permutation equivalent by resorting to the Lim rule.
Consider the following derivation

¥ = f(1) - (vicw 9'(8(D)))
(f(m) - &) - (i< 9(g"((D))))

2

~ k(a) - g(f(m) - g(i<w 9'(K(D)))

~ k(a) - g(¥) (5.28)
~ k(a) - g(k(a) - g(¢))

~ r(a) - g(k(a)) - g°(¥) (5.29)

5.3. PERMUTATION EQUIVALENCE 179

The permutation of the 7 step with the first « step is achieved by applying (Assoc) and
then (InOut) and (Outln). By applying (InfStruct) on -, g(¢°(x(b))), and then (Assoc)
and (Struct), we obtain (5.28). Repeating the whole argument and then applying (Struct)
yields (5.29). For any n < w, iterating over this reasoning results in

v~ (sa) - g(6(@) - ... - g"(k(a) - "7 (F(M)) - (vicw ¢" 71T ((D)))

On the other hand, a straightforward argument implies

¢ ~ (k(a) - g(k(@) - ... g"(K(a))) - (ricw ¢" "7 (K(a)))

so that the Lim rule can be applied to obtain ¢ =~ ¢.

5.3.5 Basic properties of permutation equivalence

Lemma 5.3.6. Let ¢, ¢ be convergent proof terms such that ¥ =~ ¢. Then src(y) =
sre(@), tgt(v) = tgt(p) and mind(y) = mind(p).

Proof. We proceed by induction on o where N ¢, analysing the equational logic rule
used in the final step of that judgement. Observe particularly that Lem 5.2.17:(a) implies
both tgt(y)) and tgt(p) to be defined. If the rule is Eqn, then we analyse the equation of
which the pair (¢, ¢) is an instance. It turns out that the only non-trivial cases are those
corresponding to the (InfStruct) equation and the InfComp and Lim rules. We prove the
result for each of these cases.

Assume that {1, ¢) is an instance of the (InfStruct) equation, i.e., that
¢= i<w f(wzla>w;n) and¢:f('i<w ¢'[17---7 i<w %n)

o We verify mind(y) = mind(¢).
Observe that mind(¥) = min;<,(mind(f(¥}, ..., ™)) = mind(f (YL, ...,¥7)) =

1+ min(mind(¥}), ..., mind(y™)) = 1 + mind(y)?) where

ind(f(r, ..., ") foralli<w (5.30)
mind(l) if1<j<m (5.31)

mz’nd(f(ll);, s d)
mind(y})

3

<
<

On the other hand, mind(¢) = 1 + min(mind(-i<w ¥}),...,mind(j<x V")) =
1+ mind(i< YY) = 1+ mind(¥?) where

mind(i<y) f1<j<m (5.32)
mind(y?) for all i < w (5.33)

mind(-i<w V) <

mind(y?) <
Assume for contradiction mind(¥l) < mind(4%). Then b # ¥ would imply
mind(i< ¥?) < mind(¥?) < mind(wgl,) = mind(i<, YY), contradicting (5.32),
and b = b would immediately contradict (5.33). Analogously, if we assume
mz’nd(wgl,) < mind(y?), then a # o would imply mind(f(¢L,....¢97) < 1+
mind(¥?) < 1+ mind(@l) = mind(f(L,...,¥™), contradicting (5.30), and
a = o/ would immediately contradict (5.31). Hence we conclude.

e To verify the condition about source terms, it is enough to observe that src(y) =

sre(¢) = f(sre(ig), - ., sre(Ug?).

180CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

o We verify tgt(y) = tgt(¢). Observe that tgt(v)) = lim;_, f(tgt(¥}), ... tgt(¥™))
and tgt(¢) = f(hmZHw tgt(wil)’ e 7hmiaw tgt(’ll}lm)).
Let ¢ := lim; tgt(wg), so that tgt(¢) = f(t1,...,tn). Then it is enough to prove
that dist(tgt(v), f(t1,-..,tm)) = 0.
Let n < w. Let k such that for all 7, ¢ > k implies dist(tgt(z/)f),tj) <21 and
also dist(f(tgt(v}l), ..., tgt(™)), tgt(y)) < 27™.
Let i :=k + 1. Then dist(f(tgt(¥}),...,tgt(¥™)), f(t1, ... tm)) =
Txmaz(dist(tgt(¥}), t1), ..., dist(tgt(¥),),tm)) < 27" Hence Lem. 5.1.25 yields
dist(tgt(v), f(t1,...,tm)) < 27™. Thus we conclude.

Assume that the rule justifying ¢ N ¢ is InfComp, so that ¥ = -, W5, ¢ = <0 i,
and for all 7 < w, 1; 2 ¢; where a; < a.
Source terms: it is enough to apply IH on g 2 @y obtaining src(y) = src(vy) =
src(go) = sre(d).
Target terms and mind: Observe that IH can be applied on each ; P ¢i, yielding
tgt(v;) = tgt(¢;) and mind(v;) = mind(p;). Then recalling the definitions of target
and mind on 1 and ¢ suffices to conclude.

Assume that the rule used in the last step of the judgement N ¢ is Lim, so that
forall n < w, ¥ ¥ xn - ¥, and ¢ T xn - ¢, where mind(¥)) > n, mind(¢,) > n,
an < a and B, < a. Observe that %B c & for any ordinal «, so that IH can be applied
to any premise of the Lim rule.

Source terms: applying IH on v B X0 - ¥, and ¢ 2 X0 - ¢p, we obtain sre(y) = sre(¢) =
sre(xo)-

Target terms: we prove dist(tgt(),tgt(¢)) = 0. Let n < w. Then IH on ¢ 2y P,
and ¢ ® x, - ¢, yields tgt(y) = tgt(¥)) and tgt(¢) = tgt(¢,). Moreover, it is
immediate to obtain src(¢)) = src(¢),) = tgt(xn). Recalling that mind(y)) > n
and mind(¢)) > n, Lem. 5.2.17 can be applied to obtain dist(tgt(xn),tgt(v))) =
dist(src(y],),tgt(¢))) < 27" and analogously dist(tgt(xy), tgt(d)) = dist(sre(dl,), tgt(dl)) <
27 ™. Therefore Lem. 5.1.25 yields dist(tgt(1)), tgt(¢)) < 2~ ™. Thus we conclude.
Minimum activity depth: Assume for contradiction n := mind(¢)) < mind(¢). Observe
Y & xn - Y, and ¢ = Xy, - ¢, where mind(y)],) > n and mind(¢,) > n. Then
mind(y) = n implies mind(x,) = n, and therefore mind(¢) = n, contradicting the
assumption. The assertion mind(¢) < mind(y) can be contradicted analogously. Thus
we conclude. O

The result about mind and src allows to prove that =g is closed w.r.t. the set of
convergent proof terms.

Lemma 5.3.7. Let ¢ and ¢ proof terms such that ¢ ~p ¢. Then ¥ is a well-formed
and convergent proof term iff ¢ is.

Proof. We proceed by induction on a where 1) ~p ¢, analysing the equational rule used
in the last step in the corresponding ~p derivation.
If the rule is Eqn, then we analyse the basic equation used.

o (IdLeft), i.e. ¥ = sre(¢) - ¢. It is immediate to verify the desired result.

5.3. PERMUTATION EQUIVALENCE 181

(IdRight), i.e. ¥ = ¢ - tgt(¢). Observe that ¢ must be a convergent proof term.
Thus we conclude immediately.

(Assoc), i.e. h =x - (£ - v) and ¢ = (x - &) - 7. In this case, ¥ is well-formed iff ¢
is well-formed iff y, & and ~ are well formed, and moreover x and £ are convergent.
Moreover, v is convergent iff ¢ is convergent iff v is convergent. Thus we conclude.

(Struct), Le. ¥ = f(x1,-- -, xm) - f(€15--58m) and & = f(x1 - &1, Xm - &m)-

In this case, v is well formed iff ¢ is well-formed iff all y; and &; are well-formed,
all the x; are also convergent (cfr. Lem. 5.2.20 for v), and tgt(x;) = src(&;) for all
i. Moreover, 1 is convergent iff all the & are convergent (cfr. again Lem. 5.2.20)
iff all the x; - & are convergent iff ¢ is convergent. Thus we conclude.

(InfStruct), i.e. ¥ = ~jcw F(XF, .-, X)) and & = f(icw Xby-- -y ti<w X7

=) Assume that 1 is well-formed and convergent. Given n < w, let k, < w
be an index verifying mind(f(x},...x™)) > n if k, < i. Let j such that 1 <
j < m. Then for all i < w, f(x},...x™) convergent implies X{ convergent, cfr.
Lem 5.2.20. In turn src(f(XilJr17 S Xi)) = tgt(f(xi, ... x"™)) implies immediately
src(XgH) = tgt(xg). Finally, if i > ky1, then mind(f(x},...x"™)) > n+1 implies
mz’nd(xg) > n. Hence -, X{ is well-formed and convergent. Consequently, so is
®.

<) Assume that ¢ is well-formed and convergent. Given j such that 1 < j < m
and n < w, let k(, ;) be an index verifying mznd(wf) > nif kg,) <i. Let i <w.
Then Xg convergent and src(wgﬂ) = tgt(v,bg) for all j implies f(x},...,x") con-
vergent and src(f(leﬂ, S Xi)) = tgt(f(xt,...x™)). Then 1 is a well-formed
proof term. Moreover, for all n < w, if i > max{ky ;) / 1 < j < m}, then
mind(f(xi,...,x™)) > n. Consequently, ¥ is convergent.

(InOut), ie. ¥ = p{x1,---,Xm) and ¢ = I[x1,- .., Xm] - p(t1,...,tm). In this case,
all x; are convergent proof terms, as it is explicitly noted in Dfn. 5.3.2. Then both
1 and ¢ are well-formed and convergent.

(Outln), ie. ¥ = p(xi,---sxm) and ¢ = p(s1,---,8m) - r[x1s---5Xm]. In this
case ¢ is well-formed iff ¢ is well-formed iff y; are well-formed. Moreover,

is convergent iff ¢ is convergent iff all x; corresponding to variables occurring
in the right-hand side r, which are exactly those occurring in r[x1,..., xm], are
convergent; cfr. Lem. 5.2.22 and Lem. 5.2.21 respectively.

If the equational rule used in the last step of the derivation ending in 1 ~p ¢ is Refl,
Symm or Trans, then a straightforward argument suffices to conclude.

If the rule is Fun, Rule or Comp, then a simple argument based on Lem. 5.2.20,
Lem 5.2.22 or just Dfn. 5.2.8 case (3) respectively, and TH, suffices to conclude.

Assume that the rule used in the last step of the derivation is InfComp. As the rule is
symmetric, then it suffices to prove one side of the biconditional in the lemma statement.
Then assume that ¢ = ;- 9; is a well-formed and convergent proof term. Let i < w.
Then ; is convergent and src(i);11) = tgt(;). Therefore TH implies convergence of ¢;,
and Lem. 5.3.6 yields src(¢;+1) = tgt(¢;). Hence ¢ is well-formed. Let n < w. Then
convergence of ¢ implies the existence of some k,, < w verifying mind(y;) > n if k, < i.
In turn, Lem. 5.3.6 implies mind(¢;) > n if k, < i. Consequently, 1) is convergent. [

182CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

The following lemma shows that permutation equivalence is compatible with infini-
tary contexts.

Lemma 5.3.8. Let C be a context having k < w holes, and {(1;)i<k and {¢)i<i two se-
quences of proof terms verifying 1v; ~g ¢; for alli. Then C[¢1, ..., ¢k] = C|¢1, ..., dr]-

Proof. An easy induction on mazx{|[Bpos(C,i)|} suffices. Resort to the Fun equational
rule for the inductive case. O

The following lemma shows that the (Struct) equation can be extended to contexts
having a finite number of holes.

Lemma 5.3.9. Let C be a context in X (i.e. built from function symbols only) having
eractly n < w occurrences of the box; and 1,...,Un, ¢1,...,0, proof terms. Then

C[wla"'vwn] : C[¢1,7¢n] ~B C[¢1 : ¢1>---,¢n ' ¢n]

Proof. We proceed by induction on max({|Bpos(C,1i)|}).
If ¢ = 0O, then we conclude immediately, notice that in this case n = 1.
Otherwise C = f(C1,...,Cy,). In this case

Clr,...,tn] - Clét, ... on] =

F(C1n, - mals - o Ol ¥rkim—1)+15 - s Pnl) -

f(Cilor, - bkl -+ Ol Pr(m—1)+15 - - - » Pnl), and
C[wl . ¢17---;'¢n . ¢7L] =

f(C1Yr - b1, ¥k - Grals- s Ol Vkim—1)41 * Prim—1)415-- - ¥n - On]). We
conclude by IH on each C;, and then by the Fun equational rule.]

Lemma 5.3.10. Let ¢ be a trivial proof term. Then ¢ = src(v).

Proof. Observe ¢ ~p src() - ¢ by (IdLeft). On the other hand, src(y) ~p src(sre(y)) -
src(y) = sre(y) - sre(y), by (IdLeft) and Dfn. 5.2.4 respectively; recall that sre(v) is a
trivial infinitary multistep. Moreover, for any n < w, mind(y)) = mind(src(y)) = w >
n, cfr. Lem. 5.2.11. Therefore the rule Lim can be applied to obtain ¢ ~ src(v). O

5.4 Denotation of reduction sequences

Proof terms are a means to describe different forms of contraction activity, comprising
reduction sequences. A basic question, which is particularly relevant regarding the
extension of the proof term model to infinitary rewriting we present in this chapter,
arises: can any reduction sequence be faithfully described by means of a proof term?
To answer this question, we focus on proof terms which denote reduction sequences
in a precise way, that is, reflecting the sequential nature of the activity denoted; we are
not interested, in this section, in proof terms denoting simultaneous and/or localised
contraction; cfr. Section 2.2.2. Formally, we define a proper subset of the set of valid
proof terms, which we call stepwise proof terms, which include only (denotation of)
single reduction steps and dots. A single reduction step is represented by a proof term
including exactly one occurrence of a rule symbol and no occurrences of the dot; cfr.
[BKAVO03] Prop. 8.2.22:(i). We prove that any reduction sequence whose length is a
countable ordinal can be denoted by means of a stepwise proof term. Observe that this
result applies particularly to all convergent reduction sequences, cfr. Thm. 2 in [KdV05].

5.4. DENOTATION OF REDUCTION SEQUENCES 183

Once the possibility of denoting all countable-length reduction sequences is stated,
the issue of uniqueness of stepwise denotation arises. As we discussed in the introduc-
tion to this chapter, cfr. Fig. 5.1 and the subsequent text, the fact that the dot is a
binary symbol implies that different ways to associate a sequence of dots lead to dif-
ferent stepwise proof terms representing the same reduction sequence. Schematically,
for a reduction sequence including three steps, say 0 = aq;as9;as, if 9; is a proof term
representing a; for i = 1,2,3, then (11 - ¥9) - 13 and 1)1 - (13 - 13) are different stepwise
representations of 0. Note that these proof terms are permutation equivalent. More-
over, they are related by the equivalence relation generated by the (Assoc) equation
schema alone. This relation formalises the idea of “rebracketing”, to wit, of changing
the associativity of a sequence of dots. Let us give the name rebracketing equiva-
lence to this relation. On the other hand, let us say that two stepwise proof terms are
denotationally equivalent iff they denote the same reduction sequence.

These concepts allow to state the question about the uniqueness of denotation in a
more precise way: do denotational and rebracketing equivalences coincide?

For the finitary case, a simple argument allows to verify that the answer to this ques-
tion is positive. Note that the representation of a single step described above is unique.
Therefore, by orienting the (Assoc) equation in either direction, standard denotations of
reduction sequences can be obtained. These standard stepwise proof terms correspond
with the result of coherently associating dots to the left or to the right.

i< gi(u(fw)) vi<w (9 2’”((f9)) - g (u(f)))
N
o fw{ \ u(f” g(u(f*))
/

u(f<)) \ /< \

N Pu() P
)

Figure 5.2: Two stepwise proof terms for the same infinite reduction sequence

For stepwise proof terms denoting infinite reduction sequences, the question seems
less obvious. E.g. consider the rule p : f(x) — g(x), and the reduction sequence § =
1 — g(f*) — g(g(f¥)) —=» ¢g*. A simple way of organising the dots in a stepwise proof
term denoting this sequence is considering the dot as right-associative; this criterion
yields the proof term ¢ = u(f*) - (g(u(f*)) - (¢*>(u(f*)) - (...))), which can be noted
concisely as -, ¢'(u(f*)). On the other hand, there may be other different ways
to organise the same sequence of dots; one of them leads to the stepwise proof term
b = icw (% (u(f*)) - ¢g** " (u(f*))), where the steps are first grouped in pairs, and
then right-associativity is applied to the set of pairs of steps. These proof terms are
depicted in Fig. 5.2. We observe that for any n < w, it is easy to obtain, resorting to
the (Assoc) equation schema only, that ¢ ~p (u(f*) - ...« g2 (u(f¥))) - 2=+ ()
and ¢ ~p (u(f¥) - ... - ¢Z*" T (u(f*))) - ¢***D(4). Then we can obtain w ~ ¢ by
resorting to a limit argument, i.e. by applying the Lim rule. We remark that we

184CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

did not find a way to justify the permutation equivalence of these stepwise proof terms
which do not involve the use of Lim.

In this section we prove that, provided the characterisation of permutation equiv-
alence given in Sec. 5.3, denotational and rebracketing equivalences do coincide for
infinitary term rewriting. The corresponding proofs make evident the role of the Lim
rule in order to verify this assertion.

5.4.1 Stepwise proof terms

In the following, we introduce the set of stepwise proof terms, give some additional
related definitions and state some basic properties of this subset of the set of valid proof
terms.

Definition 5.4.1 (One-step). A one-step is an infinitary multistep including exactly
one occurrence of a rule symbol. If ¢ is a one-step, then we define the redex position
of 1, notation rpos(y), as the position of the unique rule symbol occurrence in v, and
the depth of ¥, notation d(), as |rpos(¥)|; cfr. Dfn. 5.1.31 for the analogy with the
corresponding notions as defined for a reduction step.

Definition 5.4.2 (Stepwise proof term, Stepwise-or-nil proof term). A stepwise proof
term is any proof term 1 whose formation satisfies any of the following conditions, where
we refer to cases in Dfn. 5.2.8:

e v is a one-step, so it is built by case 1,

o) is built by case 2, so that ¢ = <., ¥;, and all of the 1; are stepwise proof terms,
or

e) is built by case 3, so that ¥ = 11 - o, and both VY1 and s are stepwise proof
terms.

A stepwise-or-nil proof term is any proof term 1 such that either v is a stepwise proof
term or 1 € Ter®(%).

Definition 5.4.3 (Steps of a stepwise-or-nil proof term). For any v stepwise-or-nil
proof term, we define the number of steps of 1, notation steps(), as the countable
ordinal defined as follows:

if 1 € Ter®(X), then steps(vy) := 0.

if 1 is a one-step, then steps(y) := 1.

if Y = -icw i then steps(vy) := >, steps(¢y); cfr.Dfn. 5.1.1.

if ¥ =11 - Yo then steps(v) := steps(Y1) + steps(iz).
Lemma 5.4.4. Let ¢ be a stepwise proof term, and let o the ordinal such that ¢ € PT,.
Then steps(v) is a limit ordinal iff « is.

Proof. Easy induction on a where v € PT,,. O

Definition 5.4.5 (a-th component of a stepwise proof term). Let ¢ be a stepwise proof
term and o an ordinal such that o < steps(v). We define the a-th component of v,
notation Y[a], as the one-step defined as follows:

if ¥ is a one-step, then ¥[0] := 1.

if ¥ = -i<w VU, then there are unique k and v such that o = steps(¢g) + ... +

steps(Yg—1) + v and v < steps(yy); cfr. Lem. 5.1.2. We define [a] := ¥r[7].

if =11 - 2 and o < steps(yr1) then Yla] == P1|al.

if v =11 - 2 and steps(yn) < a, then P[a] := o[B] such that steps(ip1) + 5 = a.

5.4. DENOTATION OF REDUCTION SEQUENCES 185

Definition 5.4.6. Let ¢ be a stepwise proof term such that steps(v) < w. Then we
define the maximal depth activity of ¢ as mazd(y)) := max(d(¢[n]) / n < steps(v))).
We also define the maximal step depth of 1 as maxsd(v) := max(Pd(u) / u € R) where
R is the set of all the rule symbols occurring in 1.

We show some expected properties of the components of a stepwise proof term. These
properties particularly entail that a stepwise proof term can be seen as the concatenation
of its components, so that the particular way in which they are associated is irrelevant.

Lemma 5.4.7. Let ¢ be a stepwise proof term, a an ordinal and n < w, such that
mind(y) > n and « < steps(y). Then

1. d(¢[a]) > n.
2. dist(src(y|a]), tgt(W]a])) <27
3. dist(src(y), tgt(v]a])) < 27™.

Proof. We proceed by induction on %, cfr. Prop. 5.2.16. If % is a one-step then o = 0
and 1[a] = 1. Then we conclude immediately; cfr. Lemma 5.2.17 for (2) and (3).

Assume ¢ = Y1 - Po. If @ < steps(1)1), so that ¢¥[a] = 11[a], then we conclude by
IH on 9. Otherwise a = steps(i1) + 3, so that [a] = ¥9[S]. Then by applying IH on
19 we obtain (1) and (2) immediately, and also dist(src(v2), tgt([a])) < 27™. On the
other hand we can apply Lemma 5.2.17 to 11, obtaining dist(src(v),tgt(¢1)) < 27"
Thus we conclude by Lemma 5.1.25 since tgt(1)1) = sre(i)s).

Assume ¢ = -, ;. Let k, 8 such that ¥[a] = ¢¥g[B], so that § < steps(Y).
Then ITH on 1)y, yields immediately (1) and (2), and also dist(src(yy), tgt(v[a])) < 27™.
On the other hand, for each i < k it is immediate that mind(1;) = mind(y) > n, then an
easy induction on k using Lemma 5.2.17 and Lemma 5.1.25 yields dist(src(v), sre(vy)) <
27", Thus we conclude by Lemma 5.1.25. 0

Lemma 5.4.8. Let ¢ be a convergent stepwise proof term such that mind(y) > p, and
a < steps(v). Then dist(tgt(y[al), tgt(y)) < 27P.

Proof. We proceed by induction on . If ¢ is a one-step then a = 0 and it suffices to
observe that ¥[0] = 1.

Assume ¢ = 11 - 9. If a < steps(t)y), then IH on vy yields dist(tgt(y[a]), tgt(vn)) <
27P. On the other hand, Lemma 5.2.17 implies dist(src(is),tgt(v)) < 27P. We con-
clude by Lemma 5.1.25 since tgt(¢1) = sre(iz). Otherwise, a = steps(i1) + 3, then
Yla] = ¥2[B]. In this case we can apply IH on v, obtaining dist(tgt(¢2[5]), tgt(v2)) <
27P_ thus we conclude.

Assume 1 = -, ¥; and let k, v such that ¢[a] = ¢r[y]. Then IH on
yields dist(tgt(¢|a]), tgt(vr)) < 27P. Moreover, Lemma 5.2.17 on <, ¥g+1+; implies
dist(src(¢ri1),tgt(v)) < 27P. Thus we conclude by Lemma 5.1.25. O

Lemma 5.4.9. Let ¢ be a stepwise proof term. Then src(y[0]) = src(v).
Proof. Easy induction on 1. O

Lemma 5.4.10. Let ¢ be a stepwise proof term such that steps(v)) = o+ 1. Then
tgt(y) = tgt(y[a]).

186CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Proof. We proceed by induction on . If v is a one-step then o = 0 and we conclude
immediately.

Assume 1) = 1)1 - 9. Then a < steps(1) would imply a+1 = steps(v)) < steps(1),
which is not possible since steps(12) > 0. Then let 5 be the ordinal verifying steps(1)1)+
B = «, so that ¥[a] = ¥s[5]. We observe that steps(y1) + 5+ 1 = a+ 1 = steps(v)),
then steps(¢2) = 8 + 1. We conclude by IH on 5.

Finally, v = -, 1; contradicts steps(1)) to be a successor ordinal. Thus we con-
clude. O

Lemma 5.4.11. Let ¢ be a convergent stepwise proof term such that steps(v) is a limit
ordinal. Then tgt(y) = lim,_,geps(y) tgt(P[]).

Proof. Observe steps(¢) being a limit ordinal implies ¥ = -;—, ¥; (cfr. Lem. 5.4.4 and
Lem. 5.2.12), so that tgt(¢) is defined to be equal to lim;_,, tgt(¢);). Observe that
Lem 5.2.17:(a) implies this limit to be defined. Let p € N, let k¥’ such that ¥’ < j < w
implies dist(tgt(v;),tgt(y)) < 27P, k" such that mind(y;) > p if j > k", and k :=
max (k' k").

Let 8 = steps(vo)+. . .+ steps(vy) and v > 3. Then vy = steps(o)+. . .+ steps(¢;) +
7" where 4" < steps(¢;41) and j = k, so that ¢¥[vy] = ¥j41[7/]. Then j+1 >k > k”,
so that Lemma 5.4.8 implies dist(tgt(¢[v]),t9t(¥j4+1)) < 27P. On the other hand,
J+1 >k >k implies dist(tgt(¢)j4+1),t9t(¢¥)) < 27P. Hence Lemma 5.1.25 yields
dist(tgt(y[v]), tgt(y)) < 27P. Consequently, we conclude. O

Lemma 5.4.12. Let ¢ be a stepwise proof term and o < steps(y)) such that « = o/ +1.
Then src(yla]) = tgt(v[a']).

Proof. We proceed by induction on 1. Observe ¢ is a one-step would imply a = 0,
contradicting o = o + 1.
Assume ¥ = 11 - 2. We consider three cases

o If a < steps(11) then we conclude just by IH on ;.

o If o = steps(v1), then Y[a] = ¥2[0] and ¢¥[¢/] = ¥1[a’] where ¢/ +1 = a =
steps(p1). Then tgt(y[a’]) = tgt(¢n) and sre(v|a]) = sre(ihs), by Lemma 5.4.10
and Lemma 5.4.9 respectively. Thus we conclude.

o If a > steps(v1), then o = steps(¢y1) + 8" and « = steps(y1) + (8" + 1), therefore
Yla] = o[+ 1] and ¥[a’] = 19[B’]. Observe that a < steps(v)) implies '+ 1 <
steps(1p2). Hence we conclude by TH on 5.

Assume 1) = -j-, ;. Let k, v such that a = steps(¢g) + ... + steps(¢p_1) + v and
v < steps(yy), so that Y[a] = Yg[y]. If v = 0, then steps(ypp_1) = B+ 1 for some
B, and o = steps(¢g) + ... + steps(ir_2) + B, so that ¢[a/] = p_1[B]. Therefore
sre(la]) = sre(yr) and tgt([a’]) = tgt(r_1), by Lemma 5.4.9 and Lemma 5.4.10
respectively. Thus we conclude. Otherwise v = 4/ +1; notice that v being a limit ordinal
would contradict « being a successor one. In this case [a'] = ¢k[7], thus we conclude

by TH on). O

Lemma 5.4.13. Let v be a stepwise proof term. Then
mind(vy) = min(d(¥[a]) / a < steps(1)))
= min(mind(y[a]) / o < steps(v))

5.4. DENOTATION OF REDUCTION SEQUENCES 187

Proof. We prove that mind(y)) = min(mind(y|«]) / a < steps(y)). The rest of the
statement follows immediately since it is trivial to verify d(¢[a]) = mind(¢[a]) for any
a; cfr. Dfn. 5.2.6.

We proceed by induction on ; cfr. Prop. 5.2.16. We define mind'(v)) :=
min(mind(Y[a]) / a < steps(v)), so we must verify mind(v) = mind (¢). If ¢ is
a one-step then the result holds immediately.

Assume ¥ = 1)1 - 1hy. In this case, IH on v; yields mind(y;) = mind'(1);) for each
i = 1,2, and Dfn. 5.2.8 implies mind(v)) = min(mind(i1), mind(1)2)). Then it suffices to
verify mind' (¢) = min(mind'(11), mind (12)). From the definition of mind’, it is imme-
diate that mind'(v) < mind'(¢;) for i = 1,2. Assume mind'(¢1) < mmd’(wg) Notice
mind’ () < mind' (1) would imply the existence of some ~ verifying mind' (¢ [v]) <
mind'(11), contradicting either the definition of mind' (1) (if v < steps(¢1)) or the
assertion mind'(11) < mind (1) (otherwise). Hence mind' (1)) = mind'(11). A similar
argument for the case mind'(12) < mind (1) is enough to conclude.

If ¢ = -, ¥;, then an argument similar to that used for binary composition applies.
To verify that mind'(v) = min;<,(mind'(1;)), observe that mind'(v)) < mind’ (1;) for
all 4, and consider n such that mind’ (v,) < mind'(1;) for all i. Then we can contradict
mind’ (1) < mind' (1) proceeding as in the previous case, hence mind' (1)) = mind' ().
Thus we conclude. O

5.4.2 Denotation — formal definition and proof of existence

In this section, we formalise the notion of a stepwise-or-nil proof term denoting a reduc-
tion sequence, resorting to the definitions of length and a-th component of stepwise-or-nil
proof terms, given in the presentation of such terms. Then we prove the existence, for
any reduction sequence having a countable ordinal length, of a stepwise-or-nil proof term
which denotes it.

As we have discussed in the introduction to Section 5.4, denotation of a reduction
sequence is not unique. In the next section, we will investigate how to characterise the
proof terms denoting the same reduction sequence.

Definition 5.4.14 (Denotation for reduction steps). Let a = {t,p,u) be a reduction
step, and ¢ a one-step. Then 1 denotes a iff all the following apply: src(¢) = t,

tgt(v) = tgt(a), and Y(p) = p, therefore d(a) = mind(v).

Definition 5.4.15 (Mapping from one-steps to reduction steps). Let T be a TRS. We
define the mapping sden from the set of one-steps for T to the set of reduction steps for

T, as follows: sden(v)) := {src(y), rpos(v), w(rpos(¥))).

Lemma 5.4.16. Let @ be a one-step and a a reduction step. Then ¢ denotes a iff
a = sden(v)).

Proof. We prove each direction of the biconditional.

=): Let us say a = {t,p,). Hypotheses imply immediately ¢ = src(y), and also
¥(p) = p, so that p = rpos(v)) and pu = (rpos(¢))). Thus we conclude. <): Let
us say sden(y) = {t,p,u) and g : Il — h. Then it is immediate from Dfn. 5.4.15 to
verify src(y) =t and ¢(p) = p. In turn, observe that tgt(y) = Y[h[t1,. .., tm]], where
Ylp= plti, ..., tm), and t = src(v) = Y[l[t1, ..., tm]]p, so that it is straightforward to
verify tgt(sden(t)) = tgt(y). Thus we conclude. O

188CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Definition 5.4.17 (Denotation for reduction sequences). Let § be a reduction sequence,
and v a stepwise-or-nil proof term. We will say that 1» denotes § iff steps(y)) = length(9d),
src(y) = sre(d) and Yol denotes d[a] for all o < length(d).

Lemma 5.4.18. Let § be a reduction sequence, and 1) a stepwise-or-nil proof term, such
that 1 denotes §. Then mind(v) = mind(d), ¢ is convergent iff 6 is, and in that case,

tgt(y) = tgt(d).

Proof. If ¢ € Ter® (%), then the result holds immediately.

Otherwise, the result about mind stems immediately from Lem. 5.4.13.

We prove the result about convergence. Assume that steps(v) is a limit ordinal,
then ¢ = -, ¥;; cfr. Lem. 5.4.4 and Lem. 5.2.12. Assume § convergent, consider
some k < w, and « such that d(§[8]) > k if § > a. Lem. 5.1.2 implies that a =
Dien Steps(¥;) +y and y < steps(iy) for some n; so that a < >, steps(v);). Consider
j >m, and v < steps(v;). Observe ¢;[y] = ¢[B] where 3 = 3,_, steps(¢;) + 7, so that
B = Dicn steps(i) > a. Therefore mind(y;[v]) = mind([5]) = d(d[B]) > k. Hence
Lem. 5.4.13 implies that mind(t;) > k. Consequently, 1 is convergent.

Conversely, assume 1 convergent, let k < w, consider n < w such that mind(vy;) > k
if j > n. Let a := Y}, steps(1;), and take such that o < B < length(d). Then
Lem. 5.1.2 implies 8 = >, steps(y;) + v and v < steps(¢);), moreover, 3 > « implies
j > n. Hence d(6[5]) = mind()j[y]) > k by Lem. 5.4.13. Consequently, the require-
ment about depths in the characterisation of convergent reduction sequences, i.e. con-
dition (2c) in Dfn. 5.1.32, holds for §. To prove the existence of lim,_,jength(s) t9t(0[]),
i.e. condition (2a) in Dfn. 5.1.32, it suffices to observe that Lem. 5.2.17:(a) implies that
tgt(v) is defined, and in turn Lem. 5.4.11 implies the desired limit to equal tgt(v)).
Hence 0 is convergent.

If steps(1)) is a successor ordinal, then assuming 0 is convergent, a straightforward
induction on v suffices to prove that v is convergent as well; observe that Lem. 5.4.4
and Lem 5.2.12 imply that only one-step and binary concatenation must be considered.
For the other direction, it is enough to observe that length(d) being a successor ordinal
implies immediately convergence of 9.

Finally, the result about targets stems immediately from Lem. 5.4.11 and Lem. 5.4.10.

O

Proposition 5.4.19. Let § be a reduction sequence having a countable length. Then
there exists a stepwise-or-nil proof term 1 such that ¥ denotes §.

Proof. We proceed by induction on length(J).

If length(0) = 0, i.e. § = Id;, then it suffices to take ¢ := t.

Assume that length(d) = 1. Let us say 6[0] = {¢,p, u) where p : [— h, implying
that t|,= [[t1,...,tm]. Take ¢ := t{u(t1,...,tm)]p. It is immediate to verify that
is a stepwise proof term verifying steps(y)) = 1. Moreover, a simple analysis yields
src(y) = sre(0[0]) = sre(d) = t. Furthermore, ¢(p) = p, and tgt(yp) = tgt(6[0]) =
tlhlt1,. .., tm]lp; therefore ¥[0] = 1) denotes §[0]. Hence v denotes 4.

Assume length(d) = o + 1 and o > 0. In this case, applying twice IH yields the
existence of 11, 12 such that ¢ denotes [0,) and 1y denotes o[, + 1). Then a
straightforward analysis allows to obtain that v := 7 - 19 denotes §.

Assume « := length(¢) is a limit ordinal; recall that « is countable. Then Prop. 5.1.3
implies o = >}, a; where o < « for all i < w. Therefore, for any n < w, IH can be
applied to obtain some 1, denoting 0[>};_,, v, >, ;). We take ¢ := i, ¥;.

5.4. DENOTATION OF REDUCTION SEQUENCES 189

Let n < w. It is easy to verify that 0[;;_, ci, > <, @;) is convergent, then Lem. 5.4.18
implies tgt(vn) = tgt(0[D; o), Qi Dy @) = STC(O[Dicp Xis Dlicpir @) = s7c(Vni1);
cfr. conditions about sources and targets in Dfn. 5.1.32. Hence 1 is a well-formed proof
term. Recalling that length(0[>];_,, ai, i), @) = au, it is straightforward to obtain
steps(yp) = length(d) = a. Moreover, src(y) = src(ig) = sre([0,ap)) = sre(d), re-
call that 1 denotes J[0,ap). Let 8 < a. Then Lem. 5.1.2 implies the existence of
unique k£ and « such that 8 = >, _,a; + v and v < a;. Therefore ¥[3] = ¥[v]
and 6[B] = 6[D;_p iy Dlicr @i)[7], cfr. Dfn. 5.4.5 and Dfn. 5.1.39. Hence 1}, denoting
O[Di<p s Xi<p i) implies that 1[5] denotes 6[5]. Consequently, we conclude. O

We remark that Prop. 5.4.19 gives a positive answer to the question put at the be-
ginning of Section 5.4: any reduction sequence whose length is a countable ordinal, thus
including particularly all the strongly convergent reduction sequences, can be faithfully
denoted in the model of infinitary rewriting based on proof terms we propose in this
chapter.

5.4.3 Uniqueness of denotation

In this section we will prove the claim we made at the beginning of Section 5.4: rebrack-
eting equivalence, which is the result of restricting the permutation equivalence relation
introduced in Section 5.3 by allowing only the instances of the (Assoc) schema as basic
equations, is an adequate syntactic counterpart of the relation of “denoting the same
reduction sequence”, i.e. denotational equivalence, between stepwise proof terms.

In the following we will give formal definitions for the concepts of denotational and
rebracketing equivalence, and subsequently prove that the defined relations coincide.

Definition 5.4.20 (Denotational equivalence). Let ¥, ¢ be stepwise-or-nil proof terms.
We say that 1) and ¢ are denotationally equivalent, notation v = ¢, iff either steps(v)) =
steps(¢) = 0 and ¢ = ¢, or steps(vp) = steps(¢) > 0 and Y[a] = ¢la] for all a <
steps(1)).

Definition 5.4.21 (Layer of rebracketing equivalence). Let a be a countable ordinal.

We define the a-th level of base rebracketing equivalence relation, notation %(B), 0T
the set of stepwise-or-nil proof terms, as follows. Given ¥ and ¢ stepwise-or-nil proof
terms, %(B) & iff the equation v ~ ¢ can be obtained by means of the equational logic
system whose basic equations are the valid instances of the (Assoc) equation schema
described in Dfn. 5.3.2, and whose equational rules are Refl, Eqn, Symm, Trans, Comp
and InfComp, described also in Dfn. 5.3.2.

We also define the a-th level of rebracketing equivalence relation, notation %(), on
the set of stepwise-or-nil proof terms, analogously, the only difference being that a rule is
added, namely the version of the Lim rule which results from changing, in the premises,

the references to the %B and %B relations, to aw’f(B) and %(B) respectively.
Definition 5.4.22 (Rebracketing equivalence). Let 1, ¢ be stepwise-or-nil proof terms.
We say that ¢ and ¢ are (base) rebracketing equivalent, notation (Y =~y ¢) P =) ¢,
. « «

iff (0 =y ¢) Y = ¢ for some a < wy.

Observe that all the following inclusions hold where « is any countable ordinal:
[0 [e% [0 [e% [e% «
~(B)ER(), ®(B)ERB, XS, and consequently ~p)Sx(), ¥pSxp and x(Cx.

190CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Therefore, several results stated for permutation equivalence hold also for rebracket-
ing equivalence. Particularly, properties proved for the ~p relation also apply to ~(p).

Lemma 5.4.23. Let 1 a stepwise proof term, and o« such that v € PT,. Then there
exists n < w such that a = steps(v) + n. Moreover, if « is a limit ordinal, then n = 0,
i.e. a = steps().

Proof. We proceed by induction on .. If @ = 1 then v is a one-step, and then steps(y)) =
1=a.

Assume « is a successor ordinal and « > 1. In this case, Lem. 5.2.12 and Lem. 5.2.13
imply that ¢ = i1 - 2, ¢¥; € PT,, for i = 1.2, ay is successor, and o = a3 + ag + 1.
IH implies a1 = steps(v1) + ny and ag = steps(ie) + na. If steps(is) < w, then
a = steps()) + n1 + ng + 1, otherwise a = steps(y)) + ny + 1. In either case the
conclusion holds, thus we conclude.

Assume that « is a limit ordinal, so that Lem. 5.2.12 implies ¥ = -, %; and
a =Y, o; where ¢); € PT,, for all i < w. Observe o; < a for all i. Then we can
apply IH on each i obtaining a; = steps(1);) +n;, so that proving >3, _ steps(¢;) +n; =
Do Steps(1h;) suffices to conclude.

Let k < w. Observe)., steps(1;)+n; < D steps(i) 4+ . i < Do Steps(1h;)+
w. On the other hand,) _ steps(v;) = >, steps(vi) + D, steps(Ppyi) =
Dick steps(;) + w. Then >, _, steps(v;) + ny < Y., steps(1p;). Consequently,
Dicw Steps(y) +ny < Y. steps(1p;). We conclude by observing that it is straight-
forward to obtain ., steps(v;) < >, steps(v;) + ;. O

Lemma 5.4.24. Let 1) be a stepwise proof term. Then steps() is a limit ordinal iff 1
s an infinite concatenation.

Proof. We proceed by induction on o where ¢ € PT; cfr. Dfn. 5.3.2. If ¢ is a one-step,
then we conclude immediately. If ¢ = 11 - 99 and it is not an infinite concatenation, then
9 is neither. Therefore we can apply IH on 19 obtaining that steps(i2) is a successor
ordinal. We conclude by recalling that steps(v) = steps(¢1) + steps(2). Finally, if ¢
is an infinite concatenation, then Lem. 5.2.12 implies that ¢ € PT, where « is a limit
ordinal. In turn, Lem. 5.4.23 implies that steps(y) = a. O

Lemma 5.4.25. Let ¢ be a stepwise proof term, o an ordinal verifying 0 < o <
steps(v), and B such that t» € PTg. Then there exist ¢, x such that ¢ =gy ¢ - x and
steps(¢) = a.. Moreover, if ¢ € PT., and x € PTs, then v < 8 and § < f5.

Proof. We proceed by induction on 1.
If p € Ter®(X) or v is a one-step, then no « verifies the hypotheses.

Assume 1) = 91 - 9, so that 3 = 31 + B2 + 1 where ¢); € PTpg, for i =1,2.

o If steps(1) < a, so that a = steps(11) + o/, then IH on 1)y yields the existence
of g2, x2 satisfying Yo ~(py ¢2 - x2, steps(¢2) = o', 72 < B2 and & < [z, where
¢2 € PT,Y2 and X2 € PTs.

Therefore, ¥ gy ¥1 - (¢2 - x2) ~(B) (¥1 - $2) - X2 and steps(Y1 - p2) = steps(y1)+
o' = a. Moreover, 91 - ¢ € PT where y = 1 +12+1 < 51+ 2+ 1 =, and
6 < 62 < ﬂ

o If steps(y1) = « then the result holds trivially.

5.4. DENOTATION OF REDUCTION SEQUENCES 191

o If steps(i1) > a, then TH on ¢y yields 11 =gy ¢1 - x1, steps(¢1) = o, v < 31 and
01 < B1, where ¢1 € PT,, and x; € PTy,.

Therefore ¥ =)y (¢1 * x1) * P2 =) ¢1 - (xa - ¥2). Moreover, v < 1 < 3, and
X1 - Y2 €PTswhered =61+ +1<81+P2+1=0.

Assume 1 = -, ¥4, so that steps(y) = >, steps(¢;). In this case, Lem 5.2.12
and Lem 5.4.23 imply that § is a limit ordinal, and therefore 8 = steps(1)). Moreover,
Lem 5.1.2 implies o« = Y, _, steps(1;) + o where o < steps(v,,), for some n and o.
IH on vy, yields ¢, ~(gy ¢n - Xn such that steps(¢n) = o; observe that steps(xn) <
steps(t)y,). Therefore

Y oxmpy (oo nc1) - Un) - vicw Yngie
~(B) ((1/10 el ¢n71) : (¢n : Xn)) *ti<w Ynaiti
~) (Yo i Yn1+n) Xn) * ti<w Yni1ti

~(B) (Yo - - Yn1 - Dn) - (Xn * ti<w Yniied)
where steps(ig « ... - Yn_1 - ¢n) = 2, steps(¥i) + o = a.
Moreover, if ¢g - ... - ¢p_1 - ¢, € PT,, then Lem. 5.4.23 implies the existence

of some k < w such that v = steps(ihg) + ... + steps(vn_1) + &' + k < steps(by) +
...+ steps(Yn—1) + steps(in) + w < steps(yp) = . On the other hand, notice that
Xn ° ‘i<w Yn+i1ei is an infinitary concatenation, so that x, * +i<w Yn+1+; € PTs im-
plies § to be a limit ordinal; cfr. Lem. 5.2.12. Therefore, recalling that steps(xn) <

steps(1r,), Lem. 5.4.23 yields 6 = steps(xn) 4+, Steps(Vnt1+i) < X, Steps(Pn+i) <
steps(v) = B. O

Lemma 5.4.26. Let ¢ = ¢, such that both are convergent. Then tgt(y) = tgt(p).
Proof. Easy, cfr. Lem. 5.4.10 and Lem 5.4.11. O
Lemma 5.4.27. Let - ¢ =" - ¢ andp =1)'. Then ¢ = ¢'.

Proof. Observe that definition of stepwise proof terms implies that steps(¢) > 0 and

steps(¢') > 0. Given steps(v - @) = steps(¢' - ¢') and steps(y)) = steps(y)'), properties
of ordinals yield steps(¢) = steps(¢'). We conclude by observing that for any suitable

a, ¢pla] = (¢ - @)[steps(v) + o] = (¥ - ¢')[steps(¢’) + a] = ¢'[a]. O
Proposition 5.4.28. Let ¢, ¢ be stepwise-or-nil proof terms such that ¢ = ¢. Then
V=9

Proof. We proceed by induction on a where ¢ %0 ¢. We analyse the rule used in the
last step of the rebracketing equivalence derivation.

For the rules Refl, Symm and Trans, the result holds immediately.

Assume that the last used rule in the derivation is Eqn, so that ¥ = (11 - 12) - 13
and ¢ = 11 - (12 - ¥3). In this case we can obtain steps(y) = steps(¢) > 0 immediately.

Let v < steps(). If v < steps(v1), then Y[y] = (¥1 - ¥2)[v] = ¥1[v] = ¢[v]. The
other cases, i.e. steps(11) < v < steps(¢n) + steps(2) and steps(y1) + steps(y2) < 7,
admit analogous arguments.

Assume that the last used rule is InfComp, so that ¥ = -, ¥;, ¢ = <o ¢i, and

Un @() ¢n where 8, < a, for all n < w. Then IH on each £, implies ¥,, = ¢,. Therefore
we obtain steps(y)) = steps(¢) > 0 immediately. To conclude it is enough to observe, for

192CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

any v < steps(v), that Lem. 5.1.2 implies v = Y, _, steps(1;) +70 where vy < steps(¢y),

. Bi
then (given IH on each ¢; = &) ¢¥[v] = ¢n[y0] = ¢nlr0] = ¢[7]-
If the last used rule is Comp, then a similar argument applies.

Assume that the rule used in the last derivation step is Lim. Assume for con-
tradiction steps(¢) > steps(1)), so that the step ¢[steps(y))] exists. Consider k :=

max(mind(4[0]), mind(¢[steps())])). Then there exist xx, ¢}, ¢, verifying ¢ %(B)

Xk s O %(B) Xk * U, mind(@)) > k = mind(¢p[steps(v)]), mind(y;) > k, a > ay, and
« > Pr. Recalling that %(B) c %() for any +, we can apply IH to oy, obtaining ¢ = x4 - ¢},
so that ¢[steps(v)] = (x& - ¢})[steps(v)]. Therefore, assuming steps(v)) = steps(xi)+7
would imply ¢}.[v] = @[steps(v)] contradicting mind(¢;,) > mind(¢[steps(1))]); cfr.
Lem. 5.4.13. Then steps(v)) < steps(xx). On the other hand, IH can be applied also to
Bk, yielding ¢ = xy, - ¢}, and therefore steps(v) = steps(xx), i.e. a contradiction. Con-
sequently steps(¢) < steps(p). A similar argument yields steps(¢) < steps(¢). Thus
steps(v) = steps(o).

Let v < steps(1)). Then there exists x, ©', ¢’ such that azO(B) SRR @(B) X - ¢,
mind(y)") > mind(¢[v]), mind(¢') > mind(¢¥[v]), ap < a and By < a. Then IH
on ag and Sy yields » = x - ¢/ and ¢ = x - ¢, so that ¥[y] = (x - ¢¥')[y] and
o[v] = (x - ¢)[y]- Observing that v = steps(x) + v would imply ¥[vy] = ¥'[v],
and then mind(y") < mind(y[v]) (cfr. Lem. 5.4.13) thus producing a contradiction, we
obtain v < steps(x). Then ¢[y] = x[7], and also ¢[v] = x[7]. Hence ¢¥[y] = ¢[y]. O

Proposition 5.4.29. Let ¢, ¢ such that ¢ = ¢. Then ¢ ~() ¢.

Proof. We proceed by induction on {a, #) such that) € PT, and ¢ € PT}.

If ¢ € Ter® (%), so that steps(y)) = 0, then ¥ = ¢ implies ¥ = ¢, hence we conclude
immediately.

If ¢ is a one-step, so that steps(y)) = 1, then ¢ = ¢ implies 1 = ¥[0] = ¢[0] = ¢.

Assume @ = 1 - 1o and that it is not an infinite concatenation. In this case,
steps(1) = steps(¢) > 1 is a successor ordinal, so that ¢ = ¢1 - ¢2 and it is neither an
infinite concatenation; cfr. Lem. 5.4.24. Observe that « = a3 +as+1and 8 = f1+52+1,
where 1; € PT,, and ¢; € PTg, for i = 1,2. We analyse the different cases arising from
the comparison between steps(1)1) and steps{¢1).

e Assume steps(yn) < steps(¢1). In this case we apply Lem. 5.4.25, obtaining that
$1 ~() x1 - x2 and steps(x1) = steps(i1) for some stepwise proof terms x; € PT,,
and x2 € PT,,, and moreover, that v; < 81 and 72 < /1.

Therefore ¢ =~ (x1 - x2) - ¢2 =~y x1 - (x2 * ¢2), and hence Prop. 5.4.28
and hypotheses yield ¢ = 1 - o = (x2 - ¢2) = ¢. Observe that for any

X1 -
B < steps(i1), v1[B] = ¥[B] = ¢[8] = (x1 - (x2 - ¢2))[8] = x1[B]; consequently,
11 = x1. In turn, Lem. 5.4.27 yields ¢ = x2 - ¢2.

Observing that «; < « for ¢ = 1,2 suffices to enable the application of IH to both
1 = x1 and Yy = x2 « ¢2. Therefore, we conclude by Comp, Symm and Trans.

e Assume steps(i1) > steps(¢py). In this case, an analysis similar to that of the
previous case yields ¥1 ~(py x1 + x2 such that steps(x1) = steps(¢1), 71 < a1 and
Y2 < a1 where x; € PT,, for i = 1,2; therefore x1 - (x2 - ¥2) =¥ = ¢ = ¢1 - ¢o;
and consequently x1 = ¢1 and xa - ¥y = ¢o.

5.4. DENOTATION OF REDUCTION SEQUENCES 193

Observe 71 < a1 < a. On the other hand, y2 - ¥ € PTs where § = yo + ag +1 <
a1 +as+ 1 =q, and By < . Therefore, IH can be applied to both x1 = ¢1 and
- g = ¢, so that we conclude as in the previous case.

e Assume steps(y1) = steps(¢1). Then a simple analysis of the components of
and ¢; yields 1)1 = ¢1. In turn, this assertion allows to apply Lem. 5.4.27 to obtain
Y2 = ¢2. Applying IH to both 1; we obtain 91 ~() ¢1 and ¥2 () ¢2. Hence we
conclude by Comp.

Assume 9 = -, 9;. In this case, a simple argument based on Lem. 5.4.24 yields
¢ = ricw Gi-

As the verification for this case involves a great number of technical details, we
describe the idea first. We define a stepwise proof term x = <, X; enjoying the
following properties: ¢ ~(y x, and X, = ¢, for all n < w. The Lim rule is used in the
last step of the derivation ¢ ~(y x, verifying that the corresponding premises are valid
w.r.t. &g). In turn, Lem. 5.4.23 allows to apply IH on any x;, since x € PTs implies
§ = steps(x) = steps(y)) = a (cfr. Prop. 5.4.28). Therefore we obtain x, =y ¢, for all
n < w, implying x =) ¢. Then Trans yields ¢ ~() ¢. A very schematic derivation tree
follows:

By
Y~y &k - Y "
~ roo n Xy On .
X NwB) S - X Lim Xn 70 Z InfComp
- X =0 Trans
Y@

where we can observe the soundness of the derivation, even if Lim is applied in some of
the B,, derivations.

We define xy, by induction on k, for all k& < w. We observe that). _, steps(¢;) <
steps(¢p) = steps()). Then we define, along with xg, two values py and i as follows:
po := 0, By := 0, and if & > 0, then p; and S are the unique (cfr. Lem. 5.1.2) values
verifying >, . steps(¢i) = >, steps(¢i) + By and By < steps(¢p,). We also define
p' := pry1 — 1. Simultaneously with the definition of x, we will verify the following

auxiliary assertion:

°XO'--~'sz(3)¢0'~--'¢p’ifﬁk+1—0 and
o there exist X', such that 1, ., ~) X' - §, steps(x') = Br+1and xo - - .. - Xk X(B)
Yo ooy - X (0T X0 e Xk ~(B)X if pri1 = 0), if B4 ~ 0.

Therefore, when defining x,, for a given n, we can consider this assertion to be valid for
all n’ < n.
Let n < w. Several cases must be analysed to define x,,.

e Assume that either n = 0, i.e. the base case, or n > 0 and 3, = 0.

— Assume p, = ppy1, implying steps(¢n) = Bpi1 > 0, so that steps(gbn) <
steps(ip,). In this case we define x;, to be some term verifying ¢, ~(p) Xn - §
and steps(xn) = steps(¢y); cfr. Lem. 5.4.25.

— Assume p, < ppy1 and Bn41 = 0, so that steps(¢y,) = steps(vp,) + ... +

steps(1hyy). In this case we define x,, :=1p, - ... - Y.
— Assume p, < ppi1 and Byy1 > 0, implying steps(¢pp) = steps(wpn) oot
steps(y) + Bny1. We consider some X', verifying vy, ., ~(p) - & and

steps(X') = Bn1; cfr. Lem. 5.4.25. Then we define x;, := ¢p,, - ... - wp/ X

194CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

In any case, if n = 0 then the auxiliary assertion holds immediately; otherwise,

it suffices to apply the same assertion on n — 1 obtaining xo - ... - Xn—1 ¥(B)
Yo - ... - YPp,—1, and then Refl and Comp.

e Assume 3, > 0. In this case n > 0, then the auxiliary assertion on n—1 implies the
existence of X', £ verifying ¢, ~(p) X' - &, steps(Y=Bnand xo - ... - Xn-1 X(B)
Yo “Pp,—1 - X' (0r X0 - Xn—1 ®(B) X if pp = 0).

— Assume ppi1 = pp, implying Bn11 = By + steps(dn) < Steps(d)pn) = Bn +
steps(€), implying steps(py,) < steps(€). In this case we define x,, to be some
term verifying & ~(py Xn - ' and steps(xn) = steps(¢n); cfr. Lem. 5.4.25.
Observe 1y, ~((X Xn) - 3 St@pS(X/ * Xn) = Bn + steps(¢n) = Bni1 and
X0t ot Xn ®B) Yo c v Ypo—1 - (X' - Xn), then the auxiliary statement
holds for n; recall Bny1 > Bn = 0.

— Assume p,+1 = p, + 1 and B,41 = 0, implying steps(vy,) = B, + steps(dp).
Observe steps(§) = steps(¢n). We define x5, := £ Then xo - ... xn x(p)
Yo+ oo 1 - X € Xy Yo o p,—1 v Py, then the auxiliary
statement holds for n.

— Assume p,41 > pp+1and 8,41 = 0, implying steps(¢,) = 8'+steps(¢p, +1)+

..+steps(1,y), where steps(1y,) = Bn+B'. Observe steps(§) = 5. We define
Xn =& Yp,+1 * ... - Y. We verify the auxiliary statement for n similarly
to the previous case.

— Assume p,4+1 > pp, and B,+1 > 0, implying steps(¢y,) = B’ + steps(¢p, +1) +

. +8t6p8(¢p/) + Bt (or just B+ By if ppy1 = pn+1), where Steps(l/ipn) =

Bn + B'. Observe steps(§) = B'. Let x”, &' such that vy, ., ~) x" - ¢’ and

steps(X") = Bn+1. We define xp, := & - ¥p,41 - ... - ¥y - X" (or just & - x”

if ppi1 = pn +1). We verify the auxiliary statement for n similarly to the
previous cases.

In turn, a simple analysis of each case yields steps(xy) = steps(¢y,) for each n < w.

We verify 1 = x, since this assertion is used when obtaining ¢ =~ x. Given
steps(xn) = steps(py) for all n < w, we obtain immediately steps(x) = steps(¢) =
steps(v) (recall the hypothesis ¢ = qb). Let 8 < steps(x), let n be a natural number

verifying 8 < >, steps(x;) (cfr. Lem 5.1.2). Then x[8] = (xo0 - ... - xa)[B]. Observe
X0+ --- * Xn Xy ¥ for some ¢’ verifying ¢ ~(py o' - 9", cfr. the auxiliary assertion
in the definition of x,, so that steps(¢’) = >, steps(x;) > [. Therefore x[f] =
(X0 * -+ xn)[B] = ¥'[B] = ¥[B], cfr. Prop. 5.4.28. Hence ¢ = x.

We verlfy Y =~ x. Let k < w, let p such that p > 0 and mind(y;) > k if i > p.
Let n be a natural number verifying >, steps(¢i) > X, steps(¢p;). Observe that
Pn+1 > p. We analyse the two possible cases of the auxiliary statement in the definition

of xn; again, p’ 1= ppy1 — 1.

If Bnt1 =0, then xo - ... - Xn =) %0 - ... - Yy; observe that also x ~p) x0 * -
Xn * (ticw Xnt14i) and @ 2y o - ... - Yy - (vi<w Pp,,q1i). We obtain immediately
X ~(B) Yo - oo Py (ticw Xngi4d) and mind(<o Yp,,+i) > K, since ppy1 > p.

Prop. 5.4.28 yields xo+...- Xn =0 - ... ¥y, so that Lem. 5.4.27 can be applied to obtain

“i<w Xntl4i = ‘i<w Up,ii+i, and therefore mind(i< Xn+1+:) > k, cfr. Lem. 5.4.13.
Otherwise, there exist some X', such that xo - ... - Xn &) %0 * .. - ¥ - X’ and

Vpni1 (B X - £&. By an argument analogous to that of the prev1ous case, we obtain

5.5. COMPRESSION 195

Y@y Yo Yy X (§ 0 i Vpngatiai)s X XB) Yo o Y o X (ti<w Xnt144),
and mmd({ Cti<w wpn+1+1+i) = mind(fi<w Xn+1+i) > k.
Consequently we can apply Lim to obtain ¢ ~(y x. Observe that the premises of the

Lim application correspond to the ~p) relation, so that the derivation is sound.

The only element needed to complete the idea described earlier, and then to conclude
the proof, is to obtain y, = ¢, for all n. We have already obtained ¥ = x, so that
the hypothesis ¥ = ¢ implies x = ¢. On the other hand, we have also obtained
steps(xn) = steps(¢y,) for all n. Then a simple induction on n yields x,, = ¢, for all n.
Thus we conclude. O

Theorem 5.4.30. Let ¢, ¢ be stepwise-or-nil proof terms. Then 1 =) ¢ iff P = ¢.

Proof. Immediate corollary of Prop. 5.4.28 and Prop. 5.4.29. O

5.5 Compression

The compression lemma, [KKSdV90, KKSdV95, BKdV03, Ket12], establishes that the
full power of left-linear, strongly convergent reduction can be achieved considering only
reduction sequences having length at most w, i.e. the first infinite ordinal. Formally, the

é
lemma states that for any strongly convergent reduction sequence ¢ —» w in a left-linear

TRS, there exists another strongly convergent reduction sequence ¢ s w such that
length(v) < w. In [KKSdV95] a more precise statement is given: for orthogonal TRSs,
the reduction sequence vy can be chosen such that it is Lévy-equivalent (cfr. [HLI1]) to .
Cfr. Section 1.2.3, where a reduction sequence which length is w x 2, and its compressed
version having length w, are presented. ~We point out that the compression result is
not valid in general, if we consider the weak convergence criterion for the definition of
infinitary reduction sequences, instead of the strong convergence criterion we use in this
thesis; cfr. [KKSdV95] p. 22.12 The compression result is also invalid, in the general
case, for non-left-linear, first-order term rewriting systems; an analysis of compression
for those systems can be found in [Ket12].

The aim of this section is to present a novel proof of the property of compression
for convergent, left-linear, first-order term rewriting, based on the characterisation of
permutation equivalence given in Section 5.3. Given that any convergent reduction se-
quence can be described by means of a proof term, cfr. Prop. 5.4.19, compression can
be studied within the framework given by proof terms. In this setting, the compression
result can be stated as follows: for any convergent proof term 2, there exists a stepwise-
or-nil proof term (cfr. Dfn. 5.4.2) ¢ such that ¥ ~ ¢ and steps(¢) < w. As observed in
the introduction to this chapter, the obtained result is more general than the statements
present in the referenced literature, in two ways. First, the result applies to orthogo-
nal reduction sequences, even for non-orthogonal TRSs, while at the same time, the
equivalence between the original and the compressed contraction activities is asserted.
Secondly, the result applies to (the description of) arbitrary contraction activities, that
is, it is not limited to reduction sequences. Put in this way, the compression result indi-
cates that any orthogonal contraction activity can be performed in a sequential fashion,
involving at most w steps.

12The weak and strong convergence approaches to infinitary rewriting are discussed in Section 5.1.4,
prior to the definition of reduction sequence, Dfn. 5.1.32.

196CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

This proof resorts to a key technical result, namely the ability of factorising (more
precisely, obtaining a factorised version of) any proof term, in a leading part denoting fi-
nite contraction activity, followed by a tail denoting activity at arbitrary depths; cfr. the
notion of minimum activity depth, formalised in Dfn. 5.1.38, Dfn. 5.2.6 and Dfn. 5.2.8.
The characterisation of permutation equivalence shows that the original proof term and
its factorised version denote the contraction of the same steps, while the concatenation
symbol allows to separate the leading part from the tail in the factorised version. For-
mally, the main auxiliary result for the compression proof is the existence, for any proof
term ¢ and n < w, of two proof terms y and ¢, such that ¥ ~p x - ¢, x is a finite
stepwise-or-nil proof term, and mind(¢) > n.

In the following, we develop the technical work leading to the factorisation result.
Subsequently, we give a statement of the compression lemma based in proof terms and
permutation equivalence, and prove it by resorting to factorisation.

5.5.1 Factorisation for infinitary multisteps

In this section, a factorisation result for the particular case of infinitary multisteps
is stated an proved. The proof is based on the concept of collapsing sequence of
positions for an infinitary multistep. Such a sequence indicates that the contraction
activity denoted by the infinitary multistep includes a series of reduction steps which
can be performed consecutively and at the same position, so that all of these steps,
except possibly the last one, correspond to collapsing rules.

Le., considering the rules p : f(z) — g(x), p:i(x) > x and p’ : j(x) — z, the proof
term h(p(p'(11(a))), n(b)) includes a finite collapsing sequence formed by the occurrences
of p and p' plus the leftmost occurrence of u. This collapsing sequence indicates that
a sequentialisation of the activity denoted by this proof term can include up to three
consecutive collapsing steps at the same position.

On the other hand, the proof term p“ includes an infinite collapsing sequence. Ob-
serve that this proof term is not convergent. In the following, a relation between infinite
collapsing sequences and non-convergence is shown '3, and later exploited in the proof
of the factorisation result for infinitary multisteps.

Definition 5.5.1. Let ¢ be an infinitary multistep. A sequence {p;yi<n (resp. {pi)i<w)
is a finite (resp. infinite) collapsing sequence for v iff for all i < n (resp. i < w),
Y(pi) = 1 where p 2 l[x1, ..., 2] = x5 and piyr = p;j.

Observe that the length of (p; i<y is n + 1. Moreover, for any (p;)i<n or {p; i<y, an
easy induction (on k — j) yields that j < k < w implies p; < py.

13We conjecture that, in fact, non-convergence of infinitary multisteps, and therefore non-termination
of developments of orthogonal sets of redex occurrences in first-order rewriting, can be fully characterised
by means of collapsing sequences. This observation suggests that infinitary multisteps could be used as a
technical tool to study termination of developments in infinitary rewriting, leading to an approach being
alternative to e.g. that described in [BKdV03], Sec. 12.5. In this work, only the material needed for the
factorisation result is developed. Some conjectures follow; further investigation about this subject is left
as future work.

Observe that infinitary multisteps exist being tgtr-W N* and including infinite collapsing sequences.
E.g., if we add the rule 7 : h(z,y) — y, then 7(p*,a) has a as tgtr-normal form. Intuitively, including
a collapsing sequence implies that an infinitary multistep is not tgtr-WN™, only if that collapsing
sequence cannot be erased. Then we state the following conjecture: an infinitary multistep is tgtr-
W N iff it does not include any infinite collapsing sequence at a non-erasable position, where a position
p is erasable for ¢ iff p = piip2, ¥(p1) = u, and the i-th variable in the left-hand side of p does not
occur in the corresponding right-hand side.

5.5. COMPRESSION 197

Lemma 5.5.2. Let ¢ be a proof term, {p;)i<n (resp. {Pi)i<w) a collapsing sequence for
Y, and j,k such that j + k <n (resp j,k <w). Then {(pjii)i<k 15 a collapsing sequence
for 1.

Proof. Easy consequence of Dfn. 5.5.1. 0

Notice that Lem. 5.5.2 implies particularly that {(p;);<x is a collapsing sequence if
k <n (resp. k <w).

For any v infinitary multistep and p € Pos(1), we observe that (p) is a collapsing
sequence for 1) whose length is 1. This is an easy existence result. A uniqueness result
for collapsing sequences holds as well, namely:

Lemma 5.5.3. Let ¢ be an infinitary multistep, p € Pos(v), and n such that 0 <n < w.
Then there is at most one collapsing sequence for v starting at p and having length n.

Proof. We proceed by induction on n. If n = 1 then the result holds immediately since
the only suitable sequence is (p).

Let n = n' +1. Let (p; i< and {g; i<’ two collapsing sequences for ¢, both starting
with p. Lem. 5.5.2 implies that both (p;);<(n/—1) and {gi)i<(n'—1) are collapsing sequences
for ¢p. Then IH on n’ implies p; = ¢ if i < n’, so that particularly p,_1 = ¢u_1.
Applying Dfn. 5.5.1 on {p;yi<n’ and {g; i<y yields ¥(py 1) = ¥(qy_1) = p such that
pillzy, ..., xm] = xj and py = ¢ = pp—1 j. Thus we conclude. O

Lemma 5.5.4. Let ¢ be an infinitary multistep, p € Pos(v), andn,k < w (respn < w),
such that both (p;)i<n and {qi)i<n+k (resp., and {q;)i<w,) are collapsing sequences for
starting with p. Then ¢ < n implies q; = p;.

Proof. Easy consequence of Lem. 5.5.2 and Lem. 5.5.3. O

We already remarked that any prefix of an infinite collapsing sequence is a collapsing
sequence as well. Conversely, a sequence of growing collapsing sequences starting at the
same position indicates the presence of an infinite collapsing sequence. The following
lemma formalises this idea.

Lemma 5.5.5. Let 1) be an infinitary multistep and p € Pos(v), such that for any
n < w, there is a collapsing sequence for 1 starting at p and having length n. Then
there is an infinite collapsing sequence for v starting at p.

Proof. We define the sequence (p; i<, as follows: for all k < w, py := qr where {q;);<k is
the only (cfr. Lem. 5.5.3) collapsing sequence for v starting at p and having length &k +1.
Let j < w, and {g;)i<;j and {g}i<(j+1) the collapsing sequences for ¢ starting at p and
having lengths j+1 and j +2 respectively. Observe that Lem. 5.5.4 implies p; = ¢; = q};
on the other hand, pj+1 = ¢}, ;. Then (g;)i<(j+1) being a collapsing sequence implies
that ¥(p;) = ¥(q;) = p where p : l[z1,..., 2] — 2 and pj41 = ¢ = ¢;i = pji.
Consequently, {(p;yi<w is a collapsing sequence. Thus we conclude. O

After this general presentation of collapsing sequences, we will focus on collapsing
sequences starting with e. The existence of an infinite collapsing sequence starting with
€ is invariant w.r.t. partial computation of the target of an infinitary multistep. This
implies that an infinitary multistep including such a sequence is non-convergent, i.e. its
target cannot be computed, cfr. Dfn. 5.2.4 and Dfn. 5.2.5.

198CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Lemma 5.5.6. Let 1 be an infinitary multistep, {p;)i<w a collapsing sequence for 1)

3
starting at €, and > ¢. Then there exists some {(q;)i<w being a collapsing sequence
gt

for ¢ starting at e.

Proof. We proceed by transfinite induction on length(d). If length(d) = 0, so that ¢ =),
then we conclude immediately.
6/
Assume length(d) = a + 1, so that ¢ — X ﬁ ¢ where length(d’) = «a; let us say
gt gtT
a = {x,r pt,0), and define d := d(a) = |r|, where y is the rule in tgtr corresponding

to a rule p in the object TRS. IH can be applied on ¢’, obtaining the existence of
{plYicw, a collapsing sequence for x starting at e. Observe that ¢ = x[oh], where
willzy, ..., xm] — h, so that u: u(xy,...,zy) — h, implying o = {z; := x|»;}. Notice
also that |p/,| = n for all n < w, implying |p/;| = |r|. We consider two cases.

e Assume p!, || r. Let n < w. Observe that n < d, resp. n > d, implies p}, < p,
resp. p, < pj,. In either case, r < pj, would contradict p/; || r, in the former
case by transitivity of <, in the latter since all prefixes of p!, form a total order
in a tree domain. Hence r € p/,. Consequently, for all n < w, p], € Pos(¢) and
o(pl,) = x(pl,). Thus (P!,)n<w is a collapsing sequence for ¢.

e Assume pj; = r. In this case, p : l[z1,..., 2] — x; and p),, = pj;j, so that

B i " B
¢ = X[X|P&+1]P'd‘ Observe that for any position p”, ¢|prdpn = X|p&+1p//.

Let {(¢;)i<. be the sequence defined as follows:
. ol ifn<d
e php” where p, | =pl, p" ifn>d

Let n < w. If n < d, then g, = p, < pl;, so that ¢(g,) = #(p},) = x(p;,) = v where
villy,.. . yml = ¥ and guy1 = Pl = Pt = qui. Now assume n > d. Let p”
such that pf,,; = pj;,,p”, observe that n = d implies p” = e. Observe x(p;,,,) = v,
villyy, .. yml = yiand p, o =), i = pzlﬂp”i. On the other hand, ¢, = p/;p”
(if n = d, then ¢, = p}, = plp” since in this case p” =€), gn+1 = Pip" i = gn i, and
in turn ¢(gn) = SPp") = x(Py10") = XPhs1) = v.

Hence {g;)i<. is a collapsing sequence for ¢. Thus we conclude by observing that

qo = pp = €.

Assume that length(d) is a limit ordinal. For any n < w, we define 8, xn, P})i<w

and g, as follows: (3, is an ordinal such that 3, < length(é) and d(é[y]) > nif 3, <7 <

. . . . - 6[0,8n) 8[Bn,length(5))
length(0); and x,, is the infinitary multistep verifying v —» Xn — . Observe
gtr gt

that we can assume wlog that 8, < fn+1. In turn, IH on 4|0, 5,,) and Lem. 5.5.3 imply
the existence of a unique collapsing sequence for x,, starting at €; we define (p');,, to
be that sequence, and g, := p.

Let n < w. Then Lem. 5.5.2 implies that {(p}')i<n is a collapsing sequence for x,.

. . . 6[0,8n)
Moreover, B, = Bp+1 implies xn = Xn+1, and otherwise 8, < Bn+1, so that ¥ P
gtr
3[Bn,Bn+1) 8[Bn+1,length(d))
Xn ;»;rl Xn+1 where mind(0[fy, Bnt+1)) > n. Furthermore, xp41 Ht—tm
gtr gtr

and mind(d[By+1, length(d))) > n. Therefore dist(xn, Xn+1) < 27" and
dist(xnt1,¢) <2~ by Lem. 5.1.45; in turn Lem. 5.1.25 implies dist(xn, #) < 2™

5.5. COMPRESSION 199

Then for any j < n, xn(pj) = Xnt1(P}) = ¢(p}) since |p}| = j. Therefore (p)i<n

is a collapsing sequence for Xyi1, so that Lem. 5.5.3 implies p} = p;.“’l if 7 < n.
Hence q, = p**1, so that ¢(qn) = Xn+1(qn) = v where v : l[x1,...,2,,] — 2; and
Qn+1 = PZH = p"*t1i = g, i. Consequently, {g;)<w is a collapsing sequence for ¢. Thus
we conclude by observing gy = e. O

Lemma 5.5.7. Let v be an infinitary multistep such that an infinite collapsing sequence
for i starting at € exists. Then 1 is not tgtp-weakly normalising.

Proof. Let ¢ P ¢. Then Lem. 5.5.6 implies that an infinite collapsing sequence for ¢
gtr

starting at e exists, so that ¢ is not a tgtp-normal form. Thus we conclude. O

On the other hand, the nonexistence of arbitrarily large collapsing sequences starting
at € allows a finite tgtp-reduction sequence ending in a proof term having a function sym-
bol at the root. In turn, for any finite tgtp-reduction sequence there is a corresponding
finite stepwise-or-nil proof term.

Lemma 5.5.8. Let v be an infinitary multistep and n verifying 1 < n < w, such that
there is no collapsing sequence for i starting at € and having length n. Then there

1)

exists a tgtp-reduction sequence § verifying P ¢, length(d) < n, d(6[i]) = 0 for all
gtr

i < length(d), and ¢(e) € X.

Proof. We proceed by induction on n.
Assume n = 2. If ¢(e) € ¥ then we conclude immediately. Otherwise 1(e) = p
where i : [— f(t1,...,t), so that the corresponding rule in tgtr is p : p(w1,...,2m) —

f(t1,...,tr), and therefore v Ej—tﬁz f(th,...,t,); thus we conclude by taking § := (e, u)).
gtT =

Assumen=n'+1and 1 <n' <w. If ¥(e) € X or (e) = p, p: 1l — h and h ¢ Var,
then the argument of the previous case allows to conclude. Otherwise, i.e. if ¢)(€) = pand
p: w1, ..., 2m] — g, then the corresponding rule in tgtr is p : p(x1, ..., Tm) — Tk,

implying that 1 %} ¥ |. Observe that (p;);<, being a collapsing sequence for ¥ |,

starting at € would imply ({e); {(k p;)i<n’) to be a collapsing sequence for 1) having length
n, thus contradicting the lemma hypotheses. Indeed, if we define {¢;)<, as the given
sequence for 1, then gy = € and q1 = k, so that the condition on collapsing sequences
holds for j = 0. If 0 < j < n, then ¢; = kp;_1, so that ¥(q;) = Y|k (pj—1) = v where
villyr,....ym| = yi and p; = p;_14, implying g1 = kp; = kp;j—1i = g;i.

Therefore TH can be applied to 9|, yielding the existence of a reduction sequence
§' verifying vl ¢, length(#') < ', d(¥'[il) = 0 for all i < ', and 6(e) € 5. Thus we

conclude by taking ¢ := (e, p); ¢’ O

Lemma 5.5.9. Let v be an infinitary multistep, and ¢ ﬁ ¢. Then there exists a
gtr

one-step x such that ¢ ~p x - ¢ and d(x) = d(a).

Proof. We proceed by induction on d(a).
Assume a = (€,), say p : l[z1,...,2n] — hl[z1,...,25] so that the corresponding
rule in tgtr is p : p(w1,...,2m) — h[z1,...,2m]. Therefore ¢ = p(ir,...,%n) and

200CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

¢ = hlYn, ..., ¥m]. We take x := u(src(yr),. .., sre(¢m)). Then (Outln) yields exactly
¥ =p x - ¢. Thus we conclude.
Assumea:(2p7u)7 SOthatw:f(((/}:l?"'?wi’""((/}m)’¢:f(w17"‘7¢i7"'71/)m)7

and v; Z—tﬁg ¢i. Then IH on (p, 1) implies ¢; ~p x; - ¢; where x; is a one-step verifying
d(xi) = |p|- We take x := f(sre(v1),..., X4, -.,5rc(m)). Observe that for any j # ¢,
(IdLeft) implies ©; ~p src(1);) - ¢4, so that
Y =g flsre() -1, xa Gy 5TC(Um) - bim)
~p f(sre(¥1), oy Xiy -y src(Um)) - f(01, .0, Diye oy m)
= X-¢
Thus we conclude by noticing that d(x) = [p| + 1 = d(a). O

é
Lemma 5.5.10. Let v be an infinitary multistep and v — ¢. Then there exists a
gtr

finite stepwise-or-nil proof term x such that ¢ ~p x - ¢, steps(x) = length(d), and
d(x[i]) = d(6[i]) for alli < steps(x).

Proof. Easy induction on length(d). If ¢ is an empty reduction sequence, then we con-
clude just by taking x := src(q).
6/
Assume 6 = a; ', so that ¢ % Wo e ¢. Then Lem. 5.5.9 implies that ¥ =g xo - %o
gtr gtr

where g is a one-step verifying d(xo) = d(a), and TH on ¢’ yields vy ~p X’ - ¢ where
X' is a finite stepwise-or-nil proof term verifying steps(x’) = length(¢’) = length(d) — 1,
and d(x'[1]) = d(d'[i]) = d(0[i + 1]) if i < steps(x').

We take x := xo - X'. It is straightforward to verify that x satisfies the conditions
about length and step depth. Moreover, 1 =g ' - ¢ implies xo - o =B x0 - (X' - ¢) =B
X - ¢, so that Trans yields ¢ ~p x - ¢ (recall ¥ ~p X0 - 1o). Thus we conclude. O

The previous auxiliary results allow to prove the main result of this section, i.e.
factorisation for infinitary multisteps.

Lemma 5.5.11. Let ¢ be a convergent infinitary multistep. Then there exist x, ¢ such
that v ~p x - ¢, Xx is a finite stepwise-or-nil proof term verifying d(x[i]) = 0 for all
i < steps(x), and ¢ is a convergent infinitary multistep verifying mind(¢) > 0.

Proof. We define A := {n /0 < n < w and there is no collapsing sequence for 1 starting
at € and having length n}. Dfn. 5.2.5 implies that 1 is tgtp-weakly normalising. Then
Lem. 5.5.7 implies that there is no infinite collapsing sequence for 1 starting at €, so

)
that Lem. 5.5.5 implies A # . Let n € A. Then Lem. 5.5.8 implies v P ¢, where
gt
length(d) < w, d(d]i]) = 0 for all suitable i, and ¢ is an infinitary multistep (since it is the
target of a tgtp-reduction sequence) verifying mind(¢) > 0 (since ¢(e) € X). Moreover,

1 being convergent means that 1 is tgtp-WN®, and tgtr is a convergent iTRS, so that
Lem. 5.1.50 implies that ¢ is also tgtp-W N® | i.e. convergent. We conclude by applying

0
Lem. 5.5.10 on ¢ — ¢. d
tgtT

5.5.2 Fixed prefix of contraction activity

This section introduces a technical tool, in which the extension of the factorisation result
from infinitary multisteps to arbitrary proof terms is based on. This tool formalises a

5.5. COMPRESSION 201

simple observation: the contraction activity denoted by a proof term can lie below some
fized prefix. Let us precise this idea, by means of an example using the rules p : f(z) —
g(z), v : g(x) > k(z), and 7 : a — b. The contraction activity corresponding to either
of the equivalent proof terms h(u(a) - v{(a),7) and h(u(a),a) - h(v(a),a) - h(k(a),n)
leaves the context h(O,0) fixed, so we say that h(O,0) is a fixed prefix for these proof
terms. For proof terms involving root activity, the only possible fixed prefix is 0. Note
that the notion of “fixed prefix” is considered here in a strong sense, consistent with the
strong convergence criterion we consider in this thesis, cfr. Section 5.1.4: a fixed prefix
does not only coincide for the source and target of the involved contraction activity, it is
furthermore not affected by that activity. In the sequel, we establish that fixed prefixes
are invariant w.r.t. permutation equivalence.

Obtaining a condensed-to-fixed-prefiz-form equivalent to a given proof term v allows
to permute a step performed on tgt(1)), whose redex lies in the fixed prefix of ¥, by means
of the (InOut) and (Outln) equation schemas, as we do in the examples of permutation
equivalence derivations described in Section 5.3.3. This observation is crucial in order
to prove a general factorisation result, since it allows to obtain a proof term in which
the (denotation of the) activity near to the root “shifts to the left as much as possible”,
i.e. lies in the lesser possible positions w.r.t. the order given by the sequence of dot
occurrences in a proof term.

The following definitions and results characterise the common prefix of a proof term
in a way allowing to manipulate it. The positions mentioned in the statements must be
understood as being relative to the contraction activity denoted by a proof term, rather
than as positions in the proof term. E.g. in the proof term (h(u(a),a) - h(v(a),a)) -
h(k(a),), the three occurrences of h, which are at the positions 11, 12 and 2 in the
proof term, correspond to the position € in the denoted contraction activity; in turn, the
occurrence of u, at position 111 in the proof term, corresponds to the position 1 in the
denoted activity. This assertion can be checked by observing the symbols corresponding,
in the successive terms involved in the reduction sequence denoted by this proof term,
namely h(f(a),a) — h(g(a),a) — h(k(a),a) — h(k(a),b), to the referred proof term

occurrences.

We formalise the concept of (the activity denoted by) a proof term having a fixed
prefix by defining a relation between proof terms and finite, prefix-closed sets of posi-
tions, which we call respect. Therefore, if 1) respects a set of positions P, then 1 has a
fixed prefix corresponding to the positions in P.

Definition 5.5.12. Let P be a set of positions, and i € N. Then we define the projection
of Ponias Pl;:=={p /ipe P}.

Definition 5.5.13. Let t be a term, and P a finite and prefix-closed set of positions
such that P C Pos(t). Then we define t|F, the prefix of t w.r.t. P, as follows.

If P=(, thent|F := 0.

If P # & and t € Var, so that P = {¢}, then t|F' :=t.

If P# & and t = f(t1,...,tm), so that P = {e} U Jicicm(i - Pli), then t|F =
f(tl |P‘1,...,tm|P‘m).

Notice that C =t | iff t = C[t1,...,t;] and P = {p / p € Pos(C) A C(p) # O}, this
can be verified by a simple induction on the cardinal of P.

202CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Definition 5.5.14. Let ¢ be a proof term, and P a set of positions. We say that ¢
respects P iff P is finite and prefiz-closed, and any of the following applies:

e 1 is an infinitary multistep, P < Pos(y) and ¥ (p) € ¥ for allp e P.

o) =1y - Py and both ¢ and Py respect P.
VY = sj<w Vi and all ; respect P.
= f(1,...,0m), at least one of the 1; is not an infinitary multistep, and
either P = & or 1; respects P|; for all i < m.
o= u(th1,...,m), at least one of the 1; is not an infinitary multistep, and
P=g.

The relation just defined enjoys some simple properties.

Lemma 5.5.15. Let v be a proof term and P such that 1 respects P. Then P <
Pos(sre(1)).

Proof. An easy induction on v suffices; cfr. Prop. 5.2.16. O

Lemma 5.5.16. Let ¢ be a convergent proof term and P such that v respects P. Then
P < Pos(tgt(t))).

Proof. An easy induction on ¢ suffices; cfr. Prop. 5.2.16. If ¢ = -, ¥; and P €
Pos(tgt(v;)) for all i < w, given p € P, we consider n such that dist(tgt(v;), tgt(v)) <
2-IPLif i > n, so that p € Pos(tgt(¥n+1)) implies p € Pos(tgt(v))). O

P

Lemma 5.5.17. Let ¢ = f(i1,...,%m), and P a set of positions. Then 1 respects
iff either P = & or 1; respects P|; for all i < m.

Proof. If ¢ is an infinitary multistep, then a straightforward analysis yields the de-
sired result. If at least one of the %; is not an infinitary multistep, then we conclude
immediately. Any other case in Dfn. 5.5.14 contradicts the stated form of . O

Lemma 5.5.18. Let ¥ be a proof term. Then i respects .

Proof. A straightforward induction on 1, cfr. Prop. 5.2.16, suffices to conclude. O

The respects relation can be obtained from conditions on the target and the minimum
activity depth of a proof term.

Lemma 5.5.19. Let ¢ be a convergent proof term and P a finite, prefix-closed set of
positions, such that mind(y) > n, |p| < n for all p € P, and P S Pos(tgt(v)). Then ¢
respects P.

Proof. We proceed by induction on v, cfr. Prop. 5.2.16.

Assume that 1 is an infinitary multistep. If P = ¢ then Lem. 5.5.18 allows to
conclude immediately. Otherwise, € € P, implying ¢ = f(¢1,...,%n). We proceed by
induction on n. If n = 0, then the only set of positions compatible with the lemma
hypotheses is P = {e}, so that we conclude immediately. Assume n = n' + 1, and let i
such that 1 < i < m. It is straightforward to verify that mind(vy;) > n', that |p| < n’ for
all p e PJ;, and also that P|; € Pos(tgt(¢;)) (recall tgt(¢) = f(tgt(¢r),...tgt(1m))).
Therefore, we can apply IH on 1);, obtaining that v; respects P |;, so that P |; € Pos(v;),
and moreover for any p € P|;, ¥(ip) = 1;(p) € X. Hence the desired result holds
immediately.

5.5. COMPRESSION 203

Assume ¢ = 11 - ¥o. In this case, mind(vy;) > n for i = 1,2, and P S Pos(tgt(¢)) =
Pos(tgt(2)). Then IH applies to 19 yielding that 9 respects P. In turn, Lem. 5.5.15
implies P < Pos(src(y2)) = Pos(tgt(y1)). Then IH applies to ¢ as well, implying that
i1 respects P. Thus we conclude.

Assume 1) = -, ;. Observe that mind(y)) > n implies mind(y;) > n for all
i < w. Let k such that dist(tgt(v;),tgt(y)) < 27 for all i > k. Let j > k. Then
P < Pos(tgt(v)) implies P < Pos(tgt(1;)). Then IH can be applied to 3; obtaining
that 1; respects P. In turn, t,; respecting P implies that P < Pos(src(¢ry1)) =
Pos(tgt(y)). Therefore TH applies also to 1, yielding that 1) respects P, and then
Lem. 5.5.15 implies P < Pos(src(iy)) = Pos(tgt(¢r—1)). Successive application of an
analogous argument yields that ; respects P for all ¢ < k. Thus we conclude.

If ¢ = f(¢1,...,%m), then an argument analogous to that given for infinitary mul-
tisteps applies.
Finally, ¥ = u(1, ..., %¥y,) contradicts mind(y)) > n for any n < w. O

The respects relation is invariant w.r.t. base permutation equivalence.

Lemma 5.5.20. Let ¢, ¢ be convergent proof terms and P a set of positions, such that
Y =g ¢. Then) respects P iff ¢ respects P.

Proof. We proceed by induction on a where 1) B ¢, analysing the rule used in the last
step of that judgement.

If the rule is Refl, then we conclude immediately.

If the rule is Eqn, then we analyse the equation used.

o (IdLeft) or (IdRight), i.e. ¥ = sre(¢) - ¢ or © = ¢ - tgt(¢). The =) direction is
immediate. For the <) direction, observe that Lem. 5.5.15 and Lem. 5.5.16 imply
P < Pos(src(¢)) and P < Pos(tgt(¢)) respectively. Then Dfn. 5.5.14 for infinitary
multisteps implies immediately that both src(¢) and tgt(¢) respect P. Thus we
conclude.

e (Assoc), ie. ¥ =x1 - (x2 - x3) and & = (x1 - x2) - Xx3. In this case either ¥ or ¢
respects P iff x1, x2 and x3 do. Thus we conclude.

i (StrUCt)7 Le. w = f(X177Xm) ' f(glavé.m) and ¢ = f(Xl : 517"'7X’m ' gm)
If P = g, then both ¢ and ¢ respect P; cfr. Lem. 5.5.18. Otherwise

1) respects P

iff both f(x1,...,xm) and f(&1,...,&n) do
iff for all j such that 1 < j < m, both x; and &; respect P |;
iff for all j such that 1 < j <m, x; - §; respects P |;
iff ¢ respects P.
Thus we conclude.

e (InfStruct). This case admits an argument analogous to the one used for (Struct).

e (Outln) and (InOut). In this case, it is immediate that either ¢ or ¢ respects P iff
P=g.

If the rule used in the last step of the judgement ~p ¢ is Symm, Trans, Fun, Comp
or InfComp, then a straightforward inductive arguments suffices to obtain the desired
result.

204CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Finally, if the rule is Rule, then it is immediate to verify that either ¥ or ¢ respect
Pifft P = . O

Observe that proof terms whose minimum activity depth is greater than 0 are exactly
those which respect {€}. Lem. 5.3.6 implies that this condition is stable by permutation
equivalence. For such proof terms, we define their condensed-to-fixed-prefiz-symbol form,
which is a proof term denoting the same activity as the original proof term, and having a
function symbol at the root. E.g. the condensed-to-fixed-prefix-symbol form of f(u(a)) -
f(v(a)) is f(u(a) - v(a)). The condensed-to-fixed-prefix-symbol form of a condensed
proof term is the same proof term, implying that this notion is idempotent.

Lemma 5.5.21. Let ¢ a convergent proof term which respects {€}. Then src(y)(e) =
tgt(¥)(e).

Proof. We proceed by induction on 1, cfr. Prop. 5.2.16. If ¢ = f(¢1,...,1y,) then the
result holds immediately, while ¢ = u(e1, ..., ¥,) contradicts the lemma hypotheses.

If ¢ = 41 - 1 and the result holds for both components, then lemma hypotheses
imply that both 11 and v» respect {€}, so that src(vy;)(e) = tgt(y;)(e) for j = 1,2.
Observe src(v) = sre(iy), tgt(y) = tgt(ys), and moreover tgt(y1) = sre(e) (by the
coherence condition on the definition of ¢). Thus we conclude immediately.

Assume 1 = -, 9; and the result holds for each ;. For any i < w, lemma
hypotheses imply that 1; respects {e}, and therefore src(i;)(e) = tgt(¢i)(e). Given
tgt(v;) = src(iipq) for all i < w, an easy inductive argument yields src(y)(e) =
sre(vo)(e) = tgt(i)(e) for any i < w. Let m such that dist(tgt(vy),tgt(y)) < 1 if
k > n; recall tgt(v) = lim;_,,(tgt(1;)). Then tgt(1p)(e) = tgt(Pni1)(e) = sre()(e).
Thus we conclude. O

Definition 5.5.22. Let ¢ be a proof term which respects {€}. We define cfps(v)), i.e.
the condensed to fixed prefix symbol form of ¥, as follows.

o iftp=f(¢Y1,...,¢n) then cfps(y)) :=1).
o if Y =111 then cfps(y) := f(¥11 + Y21, s V1m - Yom)
where cfps(1;) = f(Wi1, ..., Yim) fori=1,2
o if Y= icw ¢ then cfps(v) := f(ricw Vit ticw Yim)
where cfps(1;) = f(Wi1, ..., Yim) for all i < w.
o = p(1,...,0n) contradicts 1) respecting {e}.
Lem. 5.5.21 implies the soundness of the clauses corresponding to both binary and infinite
concatenation.

Condensed-to-fixed-prefix-symbol forms enjoy some properties related with base per-
mutation equivalence and the respects relation. In turn, these properties allow a simple
proof of the extension of Lem. 5.5.21 to arbitrary finite and prefix-closed sets of positions.

Lemma 5.5.23. Let ¢ be a proof term which respects {€}. Then 1) ~p cfps(1)).

Proof. Easy induction on 1. For the infinitary composition case, resort to the InfComp
rule and the (InfStruct) equation, cfr. Dfn. 5.3.3. O

Lemma 5.5.24. Let ¢, ¢ be proof terms such that ¢ ~p ¢ and 1, ¢ respect {€}. Let
cfps(v)) = f(1,...,0m) and cfps(d) = f'(¢1,...,0m). Then f = f' = src(v)(e), so

that m = m/, and v; =g ¢; for each i between 1 and m.

5.5. COMPRESSION 205

Proof. Lem. 5.5.23 and the hypotheses imply ¢ ~p cfps(¢) ~p cfps(¢), then Lem. 5.3.6
yields f = f' = src(¢)(e), and therefore m = m’. We prove ¢; ~p ¢; for all i by
induction on a where ~p ¢, analysing the rule used in the last step of that judgement.

e Refl: we conclude immediately.

e Eqn: we analyse each of the equations.

— (ldLeft): let src(¢) = f(t1,...,tm) wheret; = src(¢;) for all i; cfr. Lem. 5.5.23
and Lem. 5.3.6. Then ¢ = f(t1,...,tm) + &, so that cfps(yp) = f(t1 -
1y -yt - dm). Thus we conclude.

— (IdRight): an analogous argument applies.

— (Assoc): in this case p = £ - (v - x) and ¢ = (§ -) - x. Let cfps(§) =
[y &m)s cfps(y) = fly,....9m) and cfps(x) = f(x1,....xm); cfr.
Lem. 5.5.23 (implying f = src(¢)(e) = src(§)(e) = src(cfps(€))(e)) and
Lem. 5.5.21. Then for any i < m, ; =& - (7 - &) and ¢; = (& - Vi) - Xi-
Thus we conclude immediately.

— (Struct) and (InfStruct): in either of these cases Dfn. 5.5.22 allows to conclude
immediately.

— (Outln) and (InOut): either of these cases contradict 1, ¢ to respect {e}.
e Symm or Trans: a simple inductive argument applies.
e Fun: the hypotheses of the Fun rule are enough to conclude immediately.

e Rule: this case would imply that neither ¢ nor ¢ respect {e}, thus contradicting
lemma hypotheses.

e Comp: inthiscase,¢=x-f,¢:7-(5,XO§B 7,5%23 0, a1 < o and a9 < a.
Let cfps(x) = f(X1,-- -5 Xm), cfps(§) = f(&1, .-+, &m), cfps(v) = f(71,--.,¥m) and
cfps(d) = f(d1,...,0m). Let ¢ such that 1 < i < m. Observe ¢; = x; - & and
¢; = 7v; - 0;. On the other hand, IH implies x; ~p 7v; and & =~p ;. Thus we
conclude.

e InfComp: an analogous argument applies. In this case, ¥ = -, Vi, ¢ = -i<w P,
and for any i < w, 1; g ¢; where a; < . Let cfps(¢;) = f(i,...,¢™) and
cfps(¢i) = f(o}, ..., ™). Let j such that 1 < j < m. Then ¢; = -, wg and
Oj = icw ¢g . TH on each ; OéiB ¢; yields z/Jg B ¢z . Thus we conclude.

O]
Lemma 5.5.25. Let ¢ be a proof term such that 1 respects {€}. Then cfps(y)(€) =
src(i)(€) = tgt(¥)(e).
Proof. Immediate consequence of Lem. 5.5.24 and Lem. 5.5.21. O

Lemma 5.5.26. Let i be a proof term and P a set of positions such that P # & and
W respects P. Then 1); respects P |; for all i < m, where cfps(v)) = f(11,...,10m).

Proof. Lem. 5.5.23 implies ¢ ~p cfps(¢)), then Lem. 5.5.20 implies cfps(1)) respects P.
Therefore Lem. 5.5.17 allows to conclude. O

206CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Lemma 5.5.27. Let i be a convergent proof term and P a set of positions such that
respects P. Then tgt(y) |F = sre()|F.

Proof. We proceed by induction on the cardinal of P. If P = ¢, then tgt(y) |’ =
sre(y) [P = 0. Otherwise, P = {€} U (U1<icpm @+ P i) where cfps(v)) = f(¥1,...,%m).
In this case, Lem. 5.5.23 and Lem. 5.3.6 imply src(¢) = f(sre(¢r), ..., sre(iy,)) and
tgt(1h) = fltgt(r),. .. tgt(thm)), so that sre(y) |F = flsre(yr) [P, ... sre(m)|FIm),
and tgt(y) [P = fltgt(y1) P11, ... tgt(¥y) |Flm). On the other hand, Lem. 5.5.26 im-
plies that 1); respects P|; for all 4, so that IH can be applied to obtain sre(y;) [l =
tgt(1p;) |Fli. Thus we conclude. O

Assume that some proof term, say 1, respects not only the root, but a finite, prefix-
closed set of positions P. Then we can define the condensed-to-fixed-prefiz-context
form of ¢ w.r.t. P, analogously as we have just done with the condensed-to-fixed-prefix-
symbol form. The activity denoted by a condensed-to-fixed-prefix-context form w.r.t.
the set of positions P will lie inside a fixed context, i.e. a context in Ter(X), whose
set of (non-hole) positions is exactly P. E.g., the proof term A{f(g(u(a))),u(db)) -
h(f(g(g(m))),v(b)) respects P := {e,1,11}. The corresponding condensed-to-fixed-
prefix-context is h(f(g(n(a) - g(m))), 1(b) - v(b)). Observe that the activity of the latter
term lies inside the holes of the context h{f(g(Od)),0), whose set of non-hole positions
is exactly P.

The condensed-to-fixed-prefix-context form of ¢ w.r.t. P can be defined in two differ-
ent ways: either by induction on 1 analogously as the definition of cfps, or by induction
on P. The following definition uses the latter option for a pragmatic reason: it leads to
simpler proofs of the properties to be stated about these forms.

Definition 5.5.28. Let ¢ be a proof term and P a prefiz-closed set of positions, such
that 1 respects P. We define cfpc(t), P), the condensed to fixed prefix context form of
Y w.r.t. P, as follows.

If P = &, then cfpc(y, P) := 1.

Otherwise, P = {€} U (U <i<m i-P |:), where src(y)(e) = f/m. In this case cfpc(ip, P) :=
F(Efpc(tn, P 1), .- clpcliom, P lm)), where cfps(h) = F(r, ., tm)-

Lemma 5.5.29. Let ¢, P such that ¢ respects P. Then 1 ~p cfpc(¢, P).

Proof. We proceed by induction on the cardinal of P. If P = ¢ then we conclude
immediately. Otherwise, P = {e} U ((;<j<p, i P |i) where cfps(¥)) = f(¥1,...,%n), and
cfpc(y, P) = f(cfpe(v1, P 1), ..., cfpc(tm, P |m)). Lem. 5.5.26 implies that v; respects
P; for all i < m. Therefore IH can be applied on each P |; to obtain ¢; ~p cfpc(;, P |;),
so that Fun rule yields cfps(¢) ~p cfpc(¢), P). On the other hand, Lem. 5.5.23 implies
¥ ~ cfps(y)). Thus we conclude by Trans. O

Lemma 5.5.30. Let ¢, ¢, P such that ¢ and ¢ are convergent, ¢ ~g ¢ and ¢, ¢

respect P. Then cfpc(y, P) = C[1,...,¥%], cfpc(o, P) = Clé1, ..., ¢k] and ¥ ~p ¢;
for all i, where C = src() |F.

Proof. We proceed by induction on the cardinal of P. If P = ¢ then we conclude
immediately. Otherwise P = {€} U (U <;<m @ Pli), cfpc(p, P) = f(cfpc(yq, P 1), ...,
SFoc(tys P |n)); and cfpc(@, P) = F(cfpc(@h, P 1), .., cfpc(@hy, P). where cps(y) =
fWi, ..., and cfps(¢) = f(H),...,¢),). Lem. 5.5.23 and Lem. 5.3.6 imply that

5.5. COMPRESSION 207

sre() = f(sre()), ..., sre(y),)) and analogously for ¢, so that particularly the root
symbols of cfps(¢) and cfps(¢) coincide since ¥ ~p ¢.

Let j such that 1 < j < m. Lem. 5.5.24 implies that ¢; ~p ¢, and Lem. 5.5.26
implies that both 1/1} and gb;- respect P |;. Then we can apply IH on P |; obtaining that

cfpc(f, Plj) = Gl ..., g, cfpe(d), Ply) = Cjlé1,. .., dg,] and ¢ ~p ¢] for all i,
where sre(y}) 1Pl = ;.

We define C' := f(Cy,...,Cp). Tt is straightforward to verify that sre(y)|F =
C. Moreover, cfpc(y, P) = C[i1,...,¢x] and cfpc(p, P) = C[é1 ..., ¢r], where k =
Di<i<m Qi> and for any i <k, ¢; = wlj and ¢; = ¢{ for some j < m and [< ¢;, implying
¥; =g ¢;. Thus we conclude. O

Lemma 5.5.31. Let 1, P such that 1 respects P. Then cfpc(y, P)|F = src(y) | =
tgt(y) |”.

Proof. Straightforward corollary of Lem. 5.5.30 and Lem. 5.5.27. O

5.5.3 General factorisation result

In this section we will extend the factorisation result obtained for infinitary multisteps in
Sec. 5.5.1, to the set of all proof terms. As we have already mentioned, the condensed-
to-proof-term forms introduced in Sec. 5.5.2 lead to the proof of the main remaining
auxiliary result, namely, the ability of obtain proof terms in which activity at lower
depths is in low positions w.r.t. the sequentialisation order given by dot occurrences.

Lemma 5.5.32. Let 1) be a one-step. Then there exist two numbers n,n' < w such
that, for any convergent proof term & verifying tgt(€) = src(v) and mind(€) 2 n+n', a
one-step ¢’ and a convergent proof term & can be found, which verify all the following:

§-Ymp - ¢ d) = d(p), and mind(£') = mind(£) —n'.

Proof. We take n := d(v)) and n' = Pd(u) + 1 where p := ¢ (rpos(v)). We consider a
convergent proof term & verifying mind(§) = n + n' and tgt(§) = src(v).

Let Py := {p / p € src(¥) A lp| < d(v)}, P := Py u (rpos(y) - Ppos(u)), and
k := max{|lp| / p € P}. Observe that p € P implies |p| < d(¢) + Pd(p), so that
k< d(y) + Pd(u) < mind(€). Moreover, it is straightforward to verify that P <
Pos(src(y)) = Pos(tgt(§)). Therefore Lem. 5.5.19 applies w.r.t. £, P and k, implying
that £ respects P. Then &g := cfpc(§, P) can be defined. In turn, Lem. 5.5.29 implies
that & ~p £p, so that € - ¢ ~p £p - ¥, and Lem. 5.5.31 implies {p [P = tgt(€) | =
sre() |P.

Let C := src(y) [P, An easy induction on d(1) yields that ¢ [F = O, so that the
comment following Dfn. 5.5.13 implies ¢ = C[t1,...,t;—1, pw(ui, ..., um), tjg1, .-, k]
and {p / p e Pos(C) A C(p) # O} = Fy. Observe that [Bpos(C,i)| = d(¢) for all 7, and
that particularly Bpos(C, j) = rpos(v) for some j. In turn, the given form of ¢ implies
that src(v) = tgt(§) = Clta, ..., tj—1,l[ur, ..., um], tjs1,. .., tg] where p: 1 — h. Ob-
serve that the set of non-hole positions of the context C[O,...,0,[0,...,0],0,...,0]
is exactly P, implying that C' = tgt(¢) [P = &p |F, and therefore &p = C[&y, ..., &1,
U1, dml &1, - - - Ek]; cfr. the comment following Dfn. 5.5.13. Notice that &g is
convergent, implying that all the &; and also the ¢; are; cfr. Lem. 5.3.7 and Lem. 5.2.21.
Moreover, t; = tgt(&;) for any suitable i, and also u; = tgt(¢;) for all suitable i. Hence

208CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Er - ¥
~p Cl& -ty &1t Udr . bl - pur,), §vr - tjrs -5 & - ti]
~B C[&h"'v&j—lnu'((bl""7¢m)7§j+17"'7£k‘]
~p Cls1-&,...,85-1- &1, m(wi, ..., wm) - h[d1,. .., dml, 8511 &1y -5 5k - i
~p C[s1,--, 851, (w1, ..., Wm),Sj41,---,5k] -
C[fla e 75]71) [¢17 . '7¢m]7§j+17 cee 7516]
where s; 1= sre(§;) and w; := sre(;), in both cases for all suitable i. To justify the

equivalences; cfr. Lem. 5.3.9; (IdRight), (InOut) and Lem. 5.3.8; (IdLeft), (Outln) and
Lem. 5.3.8 again; and finally Lem. 5.3.9 again; respectively.

We take ¢ := C[s1,...,sj—1, (w1, ..., Wn), Sj+1, .-, Sk] and
& :=0Cl&,....&§-1,h[o1,. .., 0m],&+1, -, &]. Observe that convergence of all & and
¢; imply convergence of &', cfr. Lem. 5.2.21.

In order to conclude, we must verify that mind(¢') = mind(§) —n’ = mind(&p) —
(Pd(u) + 1); cfr. Lem. 5.3.6. Let a such that mind(§,) < mind(§;) for all i such that
1 <i<kandi# j, bsuch that mind(¢s) + [Bpos(l,b)| < mind(¢;) + |Bpos(l,i)| for all
i such that 1 < ¢ < m, and ¢, k such that mind(¢.) + |Bpos(h, k)| < mind(¢;) +
|Bpos(h,j)| if 1 < i < m and h(Bpos(h,j)) = z;. In these definitions, [and h
are considered as contexts as when we write e.g. l[¢1,...,¢n]. Lem. 5.2.18 implies
mind(§p) = d(¢) + min(mind(&,), mind(¢y) + |Bpos(l,b)|) and mind(¢') = d(¢) +
min(mind(&,), mind(¢.) + |Bpos(h, k)|). Observe that |Bpos(l,i)| < Pd(u) + 1 for all i.
We show mind({r) — (Pd(p) + 1) < mind(§).

If mind(&,) < mind(¢.)+|Bpos(h, k)|, then mind(£r) < d(¢) +mind(&,) = mind(&')
in either case w.r.t. the characterisation of mind(¢r). Otherwise, i.e. if mind(¢.) +
|Bpos(h, k)| < mind(&,), observe that mind({r) < d(v) + mind(¢py) + |Bpos(l,b)| holds
in any case. Therefore

mind({p) < d(¥) + mind(ép) + |Bpos(l, b)]

< d(y) + mind(¢.) + [Bpos(l, c)]

< d(y) +mind(¢c) + (Pd(p) + 1)
Therefore mind({r) — (Pd(p) +1) < d(v) +mind(¢.) < d(¢p) +mind(¢.)+ |[Bpos(h, k)| =
mind(£'). O

Lemma 5.5.33. Let @ be a finite stepwise-or-nil proof term. Then there exist two
numbers n,n' < w such that, for any convergent proof term & verifying tgt(§) = sre()
and mind(§) = n+n', a finite stepwise-or-nil proof term ' and a convergent proof term
& can be found, which verify all the following: £ - 1 ~p ' - &, steps(y)') = steps(v)),
d('[i]) = d(¥[i]) for all i, and mind(£') = mind(§) —n' = n.

Proof. We proceed by induction on steps(v). If steps(y) = 0, i.e. ¢ € Ter®(X), then
src(y) = 1. Therefore we can take n = n’ = 0, since for any & verifying tgt(§) = v, it is
straightforward to obtain £ - ¢ ~p src(§) - £, and to verify the required properties for
Y= sre(§) and £ =€ .

Assume steps(y)) = n + 1, i.e.) = x - ¢, where y is a one-step and ¢ is a stepwise-
or-nil proof term verifying steps(¢) = n. In this case, IH can be applied on ¢; let m
and m’ be the corresponding numbers. Moreover, Lem. 5.5.32 applies to x; let p and
p’ be the numbers whose existence is stated by that lemma. Let n := max(m,p) and
n' :=m'+p'. Let € a convergent proof term verifying mind(§) = n+n' =n+m'+p' >
p+p, and tgt(€) = sre(v) = sre(y). Then the conclusion of Lem. 5.5.32 implies that
E-v=¢ - x-o~p X & - ¢, where Y is a one-step verifying d(x') = d(x) and &”
is a convergent proof term such that mind(£") = mind(&) —p' = n+m' = m +m'.

5.5. COMPRESSION 209

In turn, the conclusion of the IH implies that ' - §&” - ¢ =g X' - ¢/ - £, where ¢’ is a
stepwise-or-nil proof term verifying steps(¢') = steps(¢) and d(¢'[i]) = d(¢[i]) for all i,
and ¢’ is a convergent proof term such that mind(£’) = mind(£”) —m’ = n. We take
' =" - ¢, and we conclude by observing that Trans implies £ - ¢ ~g ¢’ - £. O

The given auxiliary results allow to prove the statement being the aim of this Section.

Proposition 5.5.34. Let 1 be a convergent proof term and n < w. Then there exist x
and ¢ such that ¥ =~ x - ¢, x is a finite stepwise-or-nil proof term, ¢ is convergent and
mind(¢) > n.

Proof. We proceed by induction on o where ¢ € PT,, analysing the cases in the for-
mation of ¢ w.r.t. Dfn. 5.2.8.

e Assume that ¢ is an infinitary multistep. In this case we proceed by induction on
n. If n = 0 then Lem. 5.5.11 suffices to conclude.

Assume n = n' +1. Lem. 5.5.11 implies ¥ ~p xo - ¢’ where g is a finite stepwise-
or-nil proof term, ¢’ is a convergent infinitary multistep and mind(¢') > 0, so
that ¢/ = f(¢),...,¢},). Observe that ¢’ convergent implies ¢! convergent for all
i, cfr. Lem. 5.2.19. Then IH can be applied on all ¢} w.r.t. n’, yielding ¢’ ~p
f(x1 - @1,-..y Xm - &m) where for all 7, x; is a finite stepwise-or-nil proof term, ¢;
is convergent and mind(¢;) > n'. Hence ¥ =g xo0 - f(X1,--+,Xm) * J(P1,-- -, Pm)-
Assume that m = 3; observe that f(x1,x2,x3) = f(x1 * t1,82 * X2,83 * X3) =B
f(x1,82,83) - f(t1,x2,x3) &B f(x1,52,83) - f(t1-t1, X2 t2,53-x3) ~B [(X1,52,53)
f(ti,x2,83) - (t1,t2,x3). An analogous reasoning for any m yields that
SO xzs - xm) & f(xa, sre(xa), - - sre(xm)) - f(tgt(xa), X2, -5 s7¢(Xm)) -
ftgt(x1),tgt(x2),---,Xm)- In turn, it is straightforward to obtain a stepwise
proof term x}, ~p f(tgt(X1),-- -\ Xk,---»src(xm)), so that X' := xq « ...« X}y, I8
a stepwise proof term verifying X' ~p f(x1,Xx2,---,Xm). Thus we conclude by
taking x := xo * X' and ¢ := f(P1,...,Pm)-

e Assume ¥ = 1)1 - 1o and ¥ is not an infinite composition. In this case we can
apply IH on 9, obtaining 2 ~p x2 - ¢2 where x3 is a finite stepwise-or-nil proof
term, ¢9 is convergent and mind(¢2) > n. Lem. 5.5.33 applies to x2, implying
the existence of two numbers, say mgo and m/, which enjoy some properties. Let
m := maz(n,mg). Applying IH on ¢ w.r.t. m +m’, we obtain ¥y ~g x1 - ¢1,
where x1 is a finite stepwise-or-nil proof term, ¢; is convergent and mind(¢1) >
m—+m' = mg+m'. Observe ¥ ~p x1 - ¢1 - X2 - P2, so that tgt(pr) = sre(xa).

Therefore, the conclusion of Lem. 5.5.33 implies ¢1 - x2 = X5 - ¢}, so that
Y ~p X1 Xy, @) - b2, where Y} is a finite stepwise-or-nil proof term (since
steps(xh) = steps(x2)), ¢} is convergent and mind(¢}) = mind(¢1)—m' > m = n.
Thus we conclude by taking x := x1 - x5 and ¢ := ¢} - ¢Pa.

e Assume ¥ = -, ©;. Let k such that mind(y;) > n if i > k; convergence of
1 entails the existence of such k. Then ¢ ~p o « ... « ¥ + (vicw Vkii+i),
and mind(i<, Yr+1+i) > n; notice that convergence of ¢ implies convergence of
vi<w Yki14i. Observe that ¢ - ... - Yy € PT, where o/ < a. This observation
allows to use IH to obtain v - ... - ¥y =g X - ¢ where Y is a finite stepwise-or-
nil proof term, ¢ is convergent and mind(¢’) > n. Then we conclude by taking

¢ = ¢I ' ('i<w ¢k+1+z’)-

210CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

e Assume ¢ = f(¢1,...,%,) and ¢ is not an infinitary multistep. In this case, we
can apply IH on each v; obtaining ¢; =g x; - ¢;, where x; is a finite stepwise-or-
nil proof term, ¢; is convergent, and mind(¢;) > n. Then ¥ ~g f(x1,---,Xm) -
f(é1,...,¢m). Hence, an argument about f(xi,...,xm) analogous to that used
in the infinitary multistep case allows to conclude.

e Assume ¥ = u(1,...,1¥y) and ¥ is not an infinitary multistep. Let us define
wellzy, ..., xm] — h.
Assume h = f(hi,...,ht). In this case we have ¢ ~p u(src(yr),...,src(tpy)) -
f(h,l [wla e ,wm], ceey hk[wla e ,wm]) Applying IH on each w, yields 1/}1 B
X:i * @i, where x; is a finite stepwise-or-nil proof term, ¢; is convergent, and
mind(¢p;) > n.
Therefore ¢ ~p u(src(r),...,src(m)) - f(hilxis---sXmly -« hrelX1y -y Xml]) -
f(hi[o1,-- s Om], -, he[d1, ..., dm]); cfr. Lem 5.3.9. Hence, an argument about
f(hilx1s---yxml, -5 hr[Xx1,-- -, Xm]) analogous to that used in the infinitary mul-
tistep case for f(x1,...,Xm), cfr. Lem. 5.3.9, allows to conclude.

The other possible case is h = z;, implying ¢ ~p pu(src(1),...,src(m)) - ¥;.
IH can be applied on 1; obtaining ¢); ~p X' - ¢, where)’ is a finite stepwise-or-
nil proof term, ¢ is convergent and mind(¢) > n. Thus we conclude by taking

X = p(sre(r), ..., sre(m)) - X' O

5.5.4 Proof of the compression result

Finally, we give the main result of this section.

Theorem 5.5.35. Let ¢ be a convergent proof term. Then there exists some stepwise
proof term ¢ verifying ¥ ~ ¢ and steps(¢p) < w.

Proof. We define the sequences of proof terms {1;);<,, and {¢; ;<. as follows. We start
defining g := . Then, for each ¢ < w, we define ¢; and ;11 to be proof terms
verifying that ¢; ~p ¢; - Y11, ¢; is a finite stepwise-or-nil proof term and either
mind(i41) > mind(y;) or mind(y;t1) = mind(y;) = w; cfr. Prop. 5.5.34. Observe
that mind(v;) < w implies mind(¢;) = mind(vy;) by 5.3.6, so in that case ¢; is a
stepwise proof term, i.e. it is not trivial. Moreover, an easy induction on n yields

’QZ)RB d)o et qf)n : ¢n+1 for all n.
We define T := {n / vy, is a trivial proof term}. There are three cases to consider:

e If 0€ T, ie.if ¢ is a trivial proof term, then it is enough to take ¢ := src(e) and
refer to Lem. 5.3.10.

e Assume 0 ¢ T and T # J, let n be the minimal element in T. In this case we take
¢:=¢g ... ¢pp_1. For any k < w, observe that ¥ =g ¢ - ¥, ¢ ~p ¢ - tgt(p)
(cfr. (IdRight)), and mind(i,) = mind(tgt(¢)) = w > k, cfr. Lem. 5.2.11. Then
Dfn. 5.3.3 allows to assert ¢ &~ ¢. Finally, observe that each ¢; being finite implies
that ¢ is also a finite stepwise proof term, i.e. it verifies steps(¢) < w.

e Assume T = . In this case, for any 7 Lem. 5.2.11 implies that mind(y;) < w, so
that ¢; is non-trivial. We take ¢ := -, ¢;. Let n < w. We have already verified

that Qb B (bo C gbn . ¢n+1, and ¢ B ¢0 C . (bn C ti<w ¢n+1+i- On the

5.5. COMPRESSION 211

other hand, an easy induction on k implies mind(y;) = mind(¢y) = k for all k,
then mind(¢n1) > n, and also mind(-j<w ®nt1+:) > n. Hence the rule Lim can

be applied to obtain ¥ ~ ¢. We conclude by observing that steps(¢,) < w for all

n implies that steps(¢) < w. 0

212CHAPTER 5. PERMUTATION EQUIVALENCE FOR INFINITARY REWRITING

Chapter 6

Conclusions

6.1 Rewriting systems: challenges, decisions and results

We deal in this thesis with rewriting systems of different sorts. In turn, a different
subject is addressed in each case. The studied systems, and the main results presented
for each one, can be summarised as follows.

Pattern calculi
Subject: Normalisation.

Main result: Definition of a normalising reduction strategy for the Pure Pattern
Calculus (PPC).

Developed in: Chapter 3.

Explicit substitution calculi
Subject: Standardisation.

Main result: Uniqueness of s.r.s., modulo square equivalence, for the linear
substitution calculus (AJ5)-

Developed in: Chapter 4.

Infinitary, first-order term rewriting systems
Subject: Equivalence of reductions.

Main result: Characterisation of permutation equivalence by equational reason-
ing on proof terms.

Developed in: Chapter 5.

We remark that pattern calculi, explicit substitution calculi, and infinitary rewriting,
all emerged around 1990. We mention some of the earlier references in each case: [vO90]
for pattern calculi, [HL89, ACCL91] for explicit substitution calculi, and [KKSdV90,
DKP91] for infinitary rewriting. Hence, all these systems are considerably younger than
the A-calculus, and also than the study of generic properties and techniques for first-
order term rewriting systems. While each of these families of rewriting systems has
been a subject of considerable interest since its introduction, their features and formal
properties are still not as well understood as those of more “classical” rewriting systems.

213

214 CHAPTER 6. CONCLUSIONS

Moreover, in each case, there are features and peculiarities of the studied rewriting
systems, which make the study of the chosen subjects a challenging task. We summarise
these features, along with some choices made in this thesis.

6.1.1 Normalisation for the Pure Pattern Calculus

As described in Section 3.5, the failure mechanism of PPC implies that, to rewrite some
terms to a normal form, it is not possible for a reduction strategy to select a single
step, analysing only the term structure; that is, if for any set of terms having the same
structure, the strategy always selects the step in the same position. E.g., consider

t = (A\zyabcz.bd)(arirers)
where r1, ro and r3 are redexes. If 1 rewrites to d, then performing that step in ¢ yields
t' = (\jzgyabcz.bd)(adryrs)

which rewrites to I in one step, because the match of the pattern abcz against the
argument adrors yields fail. A similar situation holds if ro rewrites to d. On the other
hand, performing r3 does not affect the status of the mentioned match; it is wait for
any possible contractum. Consequently, in principle either of 1 or ro could be selected
to yield a normal form from ¢. But choosing r; would be a bad decision for a term
u having the same shape as ¢, that is u = (A;yabcx.bd)(ar|ryrs), where ry leads to
an infinite reduction, whilst 7, rewrites to d. An analogous reasoning invalidates the
selection of 7.

The reduction strategy defined in Section 3.5 chooses both steps in ¢t. Therefore, it
is a multistep (cfr. Section 3.1.1) reduction strategy.

The described behavior of PPC is related with the notion of non-sequentiality, and
also with the fact that PPC does not enjoy the ARS Stability axiom; cfr. Section 1.4.1,
the introduction to Chapter 3, and Section 3.4.2.

6.1.2 Standardisation for the Linear Substitution Calculus

The reduction space of several of the explicit substitution calculi known by the author
are extremely complex, due to the multiplicity of possible interleavings between (S-steps
and explicit substitutions, and to the interplay between different explicit substitutions.
While one of the aims for the introduction of explicit substitution calculi at a distance
is to obtain simpler reduction spaces, that of A7, is still more complex than that of the
A-calculus, as an unavoidable consequence of the inclusion of the substitution operation
inside the language.

Furthermore, a characterisation of standard reduction sequences based on the notion
of external steps, as described in Section 1.3.1 and Section 2.1.8, requires an order to
be defined on coinitial steps; this order is the embedding relation included in the ARS
model. In A-calculus, the embedding is closely related with the syntactic nesting of
redexes. This is not the case for Ay, implying a more complex definition of the em-
bedding. There are two reasons for this gap between semantic embedding and syntactic
nesting:

6.1. REWRITING SYSTEMS: CHALLENGES, DECISIONS AND RESULTS 215

1. The graphical equivalence introduced in Section 4.1 and noted ~, which relates
different terms describing the same linear logic proof-net [Gir87]. While the em-
bedding between steps should be invariant w.r.t. ~-equivalence, the latter equates
terms having different structure. E.g., consider the following equivalent terms

t to t3

(er)) [2/3]1y/4] ~ (y(er)[y/4ll2/3] ~ (yly/4](zr))[2/3]

where r is a redex. Each of these terms includes three steps: two ls-steps, for
the occurrences of z and y bound by the explicit substitutions [x/3] and [y/4]
respectively, and the step whose pattern is r. Let us call these steps a;, a, and
b respectively. In ¢, the subterm corresponding to a, is (y(zr))[z/3], while a,
involves the whole term. Hence we have a, nesting a, in ¢;. A similar analysis
yields that a, nests a, in t2. In turn, in £ we have a, nesting b, whilst these two
steps are disjoint in t3.

2. The fact that a step a can duplicate another step b, where a does not syntactically
nest b. E.g., let us consider

t = ((@[z/yD(w[w/2]))[y/4]

and call again a, and a, the steps corresponding to the occurrences of x and y
bound by the corresponding explicit substitutions. Performing a, yields

t' = ((ylz/y])(wlw/2]))[y/4]

thus duplicating a,; observe the two occurrences of y bound by [y/4] in ¢. But
a, does not nest ay; in fact, it is the other way around.

We introduce an embedding relation, the box order defined in Section 4.5, which
takes into account these considerations. The resulting ARS does not enjoy the Enclave—
Creation nor the Enclave-Embedding axioms, reflecting the subtle behavior of AJ; cfr.
Section 4.5.2.

The desired standardisation results are obtained by developing a novel abstract proof
in the ARS model, described in Section 4.6.

6.1.3 Equivalence of reductions in infinitary rewriting

As described in Section 1.4.3, equivalence of reductions is defined as the set of equations
on proof terms deducible by equational logic from a set of basic equations. In turn, the
basic equations describe the permutation of adjacent steps. The result is the permutation
equivalence relation = on proof terms.

Infinity arises in the equivalence judgements of the defined equational theory in
several ways, besides the basic fact that proof terms can be infinite objects. We comment
some sources of infinity in these judgements, using the rules u : f(z) — g(z) and

v:g(z) - j(z).
e Consider the reduction sequences:

9 = g(f“) = g(g(f*)) = g% — j(g*) — j(G(g*)) = 5
[= g(f9) = j(f<) = j(g(f*)) = 3(G(f<)) = 3¢

216 CHAPTER 6. CONCLUSIONS

corresponding to the proof terms
icw 91 (1(f9)) - icw 31 (V(97)) i< 3 (UY)) - G ()

Both reduction sequences comprise exactly the transformation of each f into g,
and subsequently into j. The difference between them is the order in which the
steps are performed. Hence the reduction sequences are permutation equivalent,
so that the same should happen to the proof terms denoting them.

Observe that to transform the former reduction sequence, or equivalently the for-
mer proof term, into the latter one, an infinite number of v-steps must be per-
muted, each one with an infinite number of u-steps.

e Consider the terms described by the equations

t = h(f(f(a)),1) t' = h(g(g(a)),t’)

and the following two reduction sequences which transform ¢ into t': one which
applies successively the two steps f(f(a)) = f(g(a)) = g(g(a)) in each occurrence
of f(f(a)) in t, and the other analogously for the steps f(f(a)) — g(f(a)) —
g(g(a)). To verify the equivalence of these infinite reduction sequences, an infinite
number of disjoint step permutations must be considered. From a different point
of view, each of these reduction sequences is an infinite concatenation where each
component is the two-step sequence shown; a step permutation must be performed
on each of the infinite components to verify their equivalence.

Both issues suggest the need to define some kind of “getting to limits”, cfr. [Kah10],
in order to build equational reasonings of an infinite nature. Furthermore, some method
to reason about the set of valid judgements must be provided. Length, and also depth,
of judgements turn out to be inadequate in the infinitary setting. We remark that
equational reasoning on infinite objects is a subject of current research; cfr. [Kah10).

We handle these issues by adding the following features to the equational logic-based
definition of the permutation equivalence relation = .

1. We add a specific equational logic rule to handle step permutations in each com-
ponent of an infinite concatenation.

2. We add a rule to formalise the idea of “getting to limits”: given two reduction
sequences 1) and ¢, if for any € > 0, ¥ can be proved equivalent to some ¢, and ¢
equivalent to some ¢’, such that the distance between ¢' and ¢’ is less than e, then
we can conclude that ¢ and ¢ are themselves equivalent. The distance between
two strongly convergent reduction sequences is inverse to the minimum depth of
their respective remaining parts following a maximal common prefix. We notice
that the “getting to limits” rule cannot be used, in turn, when proving ¢ =~ '
and ¢ ~ ¢'.

3. We associate a countable ordinal to each judgement, so that the ordinal for the
conclusion of a rule is strictly greater than that of any of its premises. In this way,
transfinite induction can be used to reason about judgements, even in the presence
of rules having an infinite number of premises.

6.2. GENERIC MODELS IN THIS THESIS 217

6.2 Generic models in this thesis

The material and achievements of this thesis can be seen from a different perspective:
that of the generic models used to study the addressed rewriting systems. In the author’s
opinion, the material included in this thesis supports the utility and value of the generic
models as a tool to study rewriting systems.

We remark that, as discussed in Section 6.1, the study of the subjects (normalisation
for PPC, standardisation for A ., equivalence of reductions for infinitary rewriting) we
examine through the ARS and proof term models, is a far from trivial task. We also want
to point out that we were able to extend the presentations of the ARS and proof term
models taken as reference ([Mel96] and [BKdV03] Sections 8.2 and 8.3, respectively).
Such extensions are needed in order to obtain the desired results about the rewriting
systems concerned in this thesis, summarised in page 213. In all the cases, the extensions
preserve the basic ideas underlying the conception of each generic model.

In the rest of this section, we examine the conclusions we can draw from the use of
generic models in this thesis, in different aspects:

e the insights that the ARS and the proof term models can give to the understanding
of the behavior of a rewriting system,

e the contributions made in this thesis to the ARS and the proof term models,
related to the extensions to these models just commented, and

e some preliminary notes for a comparison between different generic tools to study
rewriting systems.

6.2.1 Generic models give useful insights

The ARS model

The Pure Pattern Calculus (PPC) and the Linear Substitution Calculus (A]gy,) are mod-
eled in this thesis as Abstract Rewrite Systems (ARS).

As a result from this experience, we found that the ARS model gives useful insights
to the understanding of a rewriting system’s behavior. This seems to be particularly
the case for the embedding axioms, described in Section 2.1.5. The failure of a system
to uphold an axiom indicates peculiarities to be taken into account when assessing that
system’s properties. On the contrary, the azioms being verified by a rewriting system
indicate aspects in which the behavior of that system coincides with what is intuitively
expected.

The Linearity axiom expresses a basic condition a step must satisfy to have the power
to duplicate or erase other steps. It is a basic guide to shape the embedding relation, as
described for Al in Section 4.5. This axiom, together with Context-Freeness, form a
basic regularity requirement for the residual and embedding relations. All the rewriting
systems studied in this thesis (namely PPC, AJ5,, and the first-order, left-linear, infinitary
term rewriting systems) satisfy both axioms.

We notice the difference between the statement of the Context-Freeness axiom as it
appears in [Mel96] and in this thesis, and the following stronger variant, proposed in

[GLM92]:

Let a,b,c € RO(t), b[a]t/, and c[a]c .
Then a < c,or (b<c < b <d) A (c<b - <V).

218 CHAPTER 6. CONCLUSIONS

This statement does not hold, neither for the A-calculus if we consider the argument
order (i.e., that the a-labeled step in (Az%.s)u embeds the steps inside u, and does not
embed those inside s), nor for A\Jg,, if we consider the analogous box order. A simple
example for each of these rewriting systems follow:

Az z)r? % P Az)P 2 Dz /rP]

where a, b and ¢ are the steps labeled with «, 8 and 7 respectively, in the term
()\:BQ.IV:E)T”B. In both cases, a € ¢, ¢ € b and ¢ < V'.! The weaker version of Context-
Freeness allows to use the box order for A\J; -

Besides Linearity and Context-Freeness, PPC enjoys the Enclave—Creation and Enclave—
Embedding axioms, and it does not satisfy Stability. The counterexamples for the latter
correspond to disjoint ways of creating a matching failure, which is precisely the charac-
teristic which must be particularly considered in order to define a normalising reduction
strategy for that calculus.

On the other hand, the fact that PPC enjoys both enclave axioms, as well as Context-
Freeness, yields a high degree of invariance in the embeddings of residuals. This obser-
vation is further reinforced by the addition of the novel axiom Pivot, which complements
Context-Freeness, Enclave-Embedding and Enclave—Creation; cfr. Section 3.1.4. The de-
gree of invariance stated by these axioms is required to verify that a certain kind of
multistep permutation is allowed (namely, that it is possible to permute a dominated
multireduction w.r.t. a free one, such that the dominated and free properties are unal-
tered), cfr. Section 3.3.2. In turn, the latter result is crucial in order to prove that the
defined strategy is normalising.

The situation for A\jL,, is somewhat inverse: besides Linearity and Context-Freeness,
while we conjecture that this calculus, equipped with the box order, enjoys Stability,
we show through counterexamples that it does not satisfy neither Enclave—Creation nor
Enclave-Embedding; cfr. Section 4.5.2. We also conjecture that A, enjoys the following
weakened forms of Enclave—Creation and Enclave-Embedding.

Enclave—Creation (—) Let b < a, b[a]d’ and F[a]d’. Then ¢ € V.
Enclave-Embedding (—) Let b <a < ¢, b[a]t’ and c[a]¢’. Then ¢ < ¥'.

indicating that the irregular behavior of this calculus is bounded in some sense: if b < ¢,
then ¢’ can be free from (i.e. not embedded by) V', but it cannot embed ¥’ in turn.

A note on Stability: as shown in Section 4.5.2, there is a case in which a step (again,
a ge-step) can be created by the contraction of either of two different steps. But Stability
is not compromised, since the creating steps are not disjoint.

The proof term model
Reduction sequences, or more generally any form of contraction activity (cfr. Sec-
tion 1.3.2), for infinitary first-order, left-linear term rewriting systems, and also the
equivalence on reduction sequences (in fact, on any form of contraction activity), are
described in the proof term model.

In our opinion, this representation contributes to the understanding of some aspects
in infinitary rewriting.

In the AL example, ¢ <2 V), since ¢ <3 d' <g b where d’ is the created 1ls-step on the free
occurrence of x in Iz [x/r"].

6.2. GENERIC MODELS IN THIS THESIS 219

e The characterisation of permutation equivalence yields a clear view about the
nature of the permutations needed to prove the equivalence of two reduction se-
quences. It also helps to understand in which cases some contraction activity
exploiting parallelism, i.e. a simultaneous development, and a reduction sequence
(that is, a totally sequential form of contraction activity), are equivalent in the
infinitary setting.

e The obtained characterisation of permutation equivalence allows to shed some light
on the phenomenon of infinitary erasure, cfr. Section 5.3.4.

e Proof terms can also be a tool to analyse infinitary developments, which corre-
spond exactly to the base layer in the definition of infinitary proof terms given
in Sections 5.2.1 and 5.2.2. This direction is not pursued in the present thesis;
we describe some conjectures in Section 5.5.1, cfr. a footnote in page 196. In
the literature, cfr. [BKdVO03], Section 12.5, fore a study of properties of infinitary
development using different tools.

6.2.2 Contributions to the generic models

The ARS model

We summarise the main results obtained by means of the ARS model in this thesis:
for PPC, we prove that the reduction strategy defined is indeed normalising; and w.r.t.
Asup We prove, for every reduction sequence, the existence of an equivalent s.r.s., and
moreover that such s.r.s. is unique modulo square equivalence.

Similar results are present in [Mel96]. In that work, the normalisation of external
reduction strategies is proved in Section 5.2 (cfr. Thm. 5.2, page 137), and the existence
and uniqueness (modulo square equivalence) of s.r.s. for any class of equivalent reduc-
tions is stated in Section 4.3 (cfr. Thm. 4.2, page 81) and proved in Section 4.4. However,
both of these results require the ARS to satisfy all the embedding axioms, which is not
the case for neither PPC nor A, (endowed with the box order); cfr. Sections 3.4.2
and 4.5.2.

This thesis includes two novel proofs, which allow to obtain normalisation and stan-
dardisation results for ARS which fail to verify some of the embedding axioms.

1. The novel normalisation proof is described in Section 3.3, cfr. Thm. 3.3.14, and
applied to PPC in Section 3.5.2, cfr. Thm. 3.5.26.

2. The standardisation proof is described, and applied to AL, in Section 4.6, cfr.
Thm. 4.6.3 and Thm. 4.6.5.

We think that these proofs can be considered as a contribution to the ARS model,
and specifically to its capability to yield strong results for rewriting systems showing
peculiarities in their behavior.

We remark that the abstract normalisation proof included in this thesis involves the
use of the gripping relation and the concepts of multisteps and multireductions, elements
of the ARS model present in [Mel96], but applied there to other purposes. Namely, the
gripping relation is introduced as a means to state and prove an abstract proof of FD,?

2which we use to obtain FD for PPC, cfr. Section 3.4.3, page 82.

220 CHAPTER 6. CONCLUSIONS

while multisteps and multireductions are applied in an abstract proof of confluence; cfr.
Chapter 3 and Sections 2.3.2 to 2.3.6 in [Mel96], respectively.

On the other hand, the standardisation proof makes a subtle use of two ARS, differing
only in their embedding relation. The morale of this proof can be described as follows:

If an ARS 2 p, whose embedding relation is a partial order, verifies the initial
axioms, FD, SO, Linearity and Context-Freeness, and this partial order can be
completed to a total order, resulting in an ARS 207, such that 27 verifies the
remaining embedding axioms (namely, Enclave-Creation, Enclave-Embedding
and Stability) as well, so that 2p enjoys the existence of s.r.s. result and
r satisfies the stronger uniqueness of s.r.s. result, then the uniqueness
result can also be obtained for 2Ap.

We remark that this argument does not involve the Stability axiom. For the original
ARS, satisfying this axiom is not required. For the ARS whose embedding relation is
a total order, there are no a,b verifying a || b, while the statement of Stability, cfr.
Section 2.1.5, has the form “Assume a || b. Then ...”. Therefore, the axiom holds
immediately for such ARS.

One could wonder whether this statement applies to the ARS defined for PPC in
Section 3.4.3, obtaining in this way a result of uniqueness of s.r.s. for that rewriting
system. The answer is negative, because there is no way to complete the embedding
relation to a total order such that the resulting ARS verifies the Enclave—Creation axiom.
Let us consider the term

t= (\pEms.a) (p(_La)(_I£)(_Id)

a b c
whose three steps are indicated. As described in Section 3.4.2, we have

d/ dl/
A A
It N R

t =25 (A\mp2ms.z) (p(_Ja)f(_Id) t— (Ampéms.) (p(_Ja)(_I£)d)

/

a J G/” b//

where c[b]d, b[c]b', B[b]d, D[c]d", d < ¢ and d’ < b”. Let <; be a total order
extending <, so that d’ <; ¢ and d” <; b". Moreover, b and ¢ must be comparable w.r.t.
<s. If b <4 ¢, then d” <; " contradicts Enclave—Creation. Otherwise ¢ <; b, in this case
the axiom is contradicted by d’ <; ¢'.

C

The proof term model

The main, and obvious, contribution to the proof term model is its extension to infinitary
(first-order, left-linear) term rewriting. We remark that, as verified in Section 5.4, any
reduction sequence? can be denoted by a proof term, and moreover that this denotation
is unique modulo rebracketing.

The definition of the set of proof terms can be considered as an extension of that given
for the finitary case in [BKdVO03], Section 8.2. The basic principles are the same: the
signatures coincide, the restrictions for a term in that signature to be a valid proof term
apply to the occurrences of the dot, i.e. the concatenation symbol. The main differences

3More precisely, any reduction sequence whose length is a countable ordinal, therefore including
particularly all convergent reduction sequences. Cfr. [KdV05].

6.2. GENERIC MODELS IN THIS THESIS 221

are the addition of a convergence condition to these restrictions, and a special formation
rule for infinite concatenations.*

Analogously, the characterisation of equivalence on reductions extends that given for
finitary proof terms. Again the basic idea, namely to model permutation equivalence by
resorting to equational logic, coincide. Moreover, the basic equations are the same. The
additions for infinitary rewriting are those detailed in Section 6.1.3: special care is taken
with infinite concatenation, a rule is added to model the “getting to limits” operation,
and transfinite induction is used to reason about equivalence judgements. We point out
that the characterisation of the equivalence of reductions given in [BKdV03] Section 8.3
fail to capture all the cases of reduction sequences which sanctioned as equivalent in
infinitary rewriting, particularly those involving infinite reduction sequences. The ex-
tension we introduce in Section 5.3 addresses these shortcomings; several examples are
given there.

In our opinion, the fact that the main definitions of the proof term model can be
extended to infinitary rewriting, preserving the ideas underlying those definitions, is an
argument in favor of the strength of this generic model of rewriting systems. We notice
that the compression proof presented in Section 5.5 shows the capability of the obtained
model of infinitary rewriting to develop proofs of relevant properties.

On another front, we want to stress that the characterisation of permutation equiv-
alence given in Section 5.3.2 is a successful case of equational logic applied to infinitary
objects. We hope this work contributes to the development of infinitary equational logic
on its own.

6.2.3 Towards a comparison of generic models

We want to remark some points about the nature, features and strengths of the two
generic models used in this thesis. Of course, the following comments reflect the author’s
personal view, obtained from the experience of the work which led to this thesis.

The strengths of each model stem, in the author’s opinion, from the principles shap-
ing each of them.

The ARS model has a highly abstract nature, as highlighted in its name. We recall
that all the information about the steps is given in the form of relations (such as the
residual, embedding and gripping relations described in this thesis); besides them, only
the identity of each step, and its source and target objects, are part of the model. The
axioms modeling the expected features of a rewriting system are defined in terms of
these abstract relations. In turn, the statement of the properties which can be proved
in this model refer to the relations and axioms just mentioned.

In the author’s view, the modeling of rewriting systems as ARS offers a remark-
able value, besides the possibility of profiting from the abstract proofs which can be
expressed in that model. The abstract nature of the elements comprising an ARS (cfr.
Section 2.1.1) and the description of the features of rewriting systems given by the ax-
ioms (cfr. Section 2.1.3 to 2.1.6), provide a framework which can give useful insights
for the better understanding of a system’s behavior, as described for PPC and AJ,,, in

4While the finitary and infinitary definitions of proof terms differ in one aspect, namely how the
source and target of a proof term are computed (cfr. Section 2.2.2 and Sections 5.2.1, 5.2.2 for finitary
and infinitary proof terms respectively), the infinitary definitions are perfectly adequate for the finitary
proof terms as well.

222 CHAPTER 6. CONCLUSIONS

Section 6.2.1, and which can also be valuable for the comparison of rewriting systems
having different conceptions.

The proof term model, in turn, is limited to term rewriting. In this model, the
structure of the terms being rewritten is preserved in the proof terms. A consequence
is that this model must be explicitly adapted in order to expand its scope to rewriting
systems differing in their basic features, as done in this thesis for infinitary rewriting,
and in [Bru08] for higher-order rewriting.

The proof term model is focused on individual proof terms, where each proof term
denotes a particular reduction. The identity of a step, which is a central concept in the
ARS model, is not present in the proof term model. The detailed description of a partic-
ular reduction in this model, allows to denote, distinguish, and also combine, sequential
and parallel contraction. Localised contraction can also be adequately described in the
proof term model; cfr. Section 1.3.2. Moreover, in the author’s opinion, the explicit
rendering given by proof terms yields a more descriptive view of how a reduction can be
transformed in another, equivalent one. Considering a first-order term rewriting system
including the rule p : f(x) — g(x), the equivalence of the reduction sequences

f(f(a)) = f(g(a)) = g(g(a)) and f(f(a)) — g(f(a)) — g(g(a))

can be justified in the proof term model by means of the following permutation equiva-
lence judgement

In the author’s opinion, this justification is a clear description of the permutation of steps
which allows to transform the first reduction sequence into the second, or vice versa;
furthermore, it also suggests that both steps could also be contracted simultaneously,
yielding a third option to organise the contraction of these steps.

The rendering of the same situation in the ARS model is somewhat less direct, in
the author’s view. We could have the steps

a: [f(f(a)) — g(f(a)) b: f(fla)) — [f(g(a))
a: flgla)) — g(g(a)) v g(f(a)) — g(g(a))

and ab]a’,b[a]d’ in the residual relation, so that the definition of permutation equiva-
lence in the ARS model, cfr. Dfn. 2.1.18, yields b;a’ ~ a;’.

The nature of each model is reflected in the way orthogonality is handled in each
of them. Recall that from a syntactic perspective, orthogonality is related with the
absence of critical pairs [KB70, Hue80]. Local confluence of orthogonal steps arises as
a consequence. This view leads to weak forms of orthogonality, such as the definition
of almost orthogonal and weakly orthogonal rewriting systems; cfr. [vO94, vR97, vO99].

The ARS model defines orthogonality from a different perspective: two steps are
defined as orthogonal iff the contraction of their respective residuals yields a local con-
fluence diagram. This is the Semantic Orthogonality, or SO, axiom, introduced in Sec-
tion 2.1.4. Taking into account this semantical perspective of orthogonality, we can con-
sider some almost orthogonal and weakly orthogonal rewriting systems in equal terms
with orthogonal ones.’

SHowever, this is not always the case. Consider the first-order term rewriting system whose only rule

6.2. GENERIC MODELS IN THIS THESIS 223

In this thesis, we have profited from the abstract view of orthogonality given by the
ARS model. The complex matching operation of PPC weakens the meaningfulness of
the concept of critical pair to understand this calculus. In turn, AJL,, has critical pairs.
Nevertheless, we consider PPC and Ay, as semantically orthogonal systems.

We mention that systems which fail to satisfy the semantic characterisation of or-
thogonality, can also be studied in the ARS model. A compatibility relation is added
to identify the pairs of mutually orthogonal steps. We did not use this relation in the
present thesis.

On the other hand, a proof term denotes a particular reduction, in which for any
potential conflict due to a critical pair, a decision has already been taken. Proof terms
encode explicitly each decision taken: different decisions for the same critical pair give
rise to different, non equivalent, proof terms. E.g., if we consider the rules

pofl@) = glx) 7)) = gln(@) mgle) - n(e)

then the proof terms pu(m(a)) and 7(a) are not equivalent, even when their source and
target terms coincide, f(j(a)) and g(n(a)) respectively. While the proof term p(mw(a))
can be proved to be equivalent to either sequentialisation of its two steps, i.e. u(j(a)) -
g(m(a)) and f(mw(a)) - u(n(a)), neither of these proof terms can be equated, by means
of the equations and rules described in Section 5.3.2, to 7(a).%

In the general case, assume two steps a and b, which form a critical pair. There is
no way to contract a, and subsequently a residual of b, in the same reduction sequence.
Analogously, it is not possible to contract b and later a residual of a. The reason for this
is straightforward: the contraction of a leaves no residuals of b, and vice versa. As proof
terms denote reduction sequences,” no proof term can be built in which the contraction
of both a and b (or their residuals) is denoted. The focus that the proof term model
puts on individual reductions, implies that lack of orthogonality of a rewriting system
is simply not a concern.

Finally, we want to mention that the generic formalisms for the definition of
higher-order rewriting systems, such as CRS [Klo80], HRS [Nip91, MNO98] and ERS
[GKKO05], can be considered as generic models for the study of rewriting systems, just
as the ARS and proof term models used in this thesis.

If a given rewriting system, let us call it A, can be adequately modeled in one of these
formalisms, then (obviously) any statement proved for that formalism is automatically
valid for A (provided that the corresponding hypotheses hold). Such model can also give

is f(f(z)) = x. Then the term f(f(f(f(a)))) has three steps, according to the following diagram:
—_—

c

—
f(F(f(f(a))))
—

b
In this case, there exist a’, ¢’ verifying ac]a’ and c[a]¢’. On the other hand, a[[b] = ¢[b] = b[a] = b[c] =
. Therefore c[a;b[a]]c" while c[b; a[b]] = &, thus breaking SO.

An analysis of such cases of redex overlapping could benefit from the notion of weakly orthogonal
projection, as defined in e.g. [KKvOO04] Section 2.4, and also from the material given in [BKdV00]
Section 5, where the notion of cluster residual is introduced.

5This is also the case for the equivalence relation on proof terms which characterise permutation
equivalence for finitary rewriting, described in this thesis in Section 2.2.3

"In fact, proof terms can denote different forms of contraction activity, where reduction sequences
are one of these forms.

224 CHAPTER 6. CONCLUSIONS

valid insights for the understanding of the features of A, and for possible comparisons
with other systems.

As shown in Chapter 4 for AJg,,, to render a rewriting system in the ARS model,
and to prove that some expected feature holds for the resulting ARS, can be a difficult
task. On the other hand, we remark that the situation is analogous for the generic
formalisms for higher-order calculi: to describe a given rewriting system in one of these
formalisms can be far from trivial as well. We notice that the Pure Pattern Calculus
has been recently [vOvR14] modeled using the generic HRS formalism [Nip91, MN9S].

6.3 Further work

We briefly describe possible lines of further investigation for each of the three main
directions developed in this thesis.

Normalisation for pattern calculi

We recall the two main results obtained in this direction: the definition of the multistep
reduction strategy for PPC we called S, cfr. Section 3.5, and an abstract normalisation
proof developed in the ARS model, which we used to verify that the strategy S is
normalising, cfr. Section 3.3.

In our opinion, the scope of the work presented in this thesis can be expanded in
both aspects, i.e. the definition of reduction strategies and the normalisation proof.

To this effect, a possible research direction is to elucidate whether the ideas un-
derlying the definition of S can lead to the definition of strategies for other rewriting
systems, and whether the eventually obtained strategies can be proven normalising by
resorting to the abstract normalisation proof described in this thesis. Particularly, it
would be interesting to obtain families of calculi definable in some generic formalism for
higher-order term rewriting systems, such as HRS, CRS or ERS, cfr. Section 6.2.3, for
which positive results in this direction could be obtained.

In a different direction, possible extensions or variations of the normalisation proof
can be analysed, with the aim to broaden its scope. Particularly, we notice that the
proof is applied in this thesis to the strategy S, which selects always a subset of the set of
outermost steps, in a term. On the other hand, the proof does not apply, in its present
form, to the parallel-outermost reduction strategy, which indicates the simultaneous
reduction of all the outermost steps in any term. This unpleasant observation is due
to the fact that the non-gripping property of a set of steps is not necessarily preserved
in its supersets. Specifically, if we call O(t) the set of outermost steps in the term ¢,
then the set O(t) does not satisfies the non-gripping property in the general case. E.g.,
consider the term

t = (A\gar. Dz)(I(ab))
b a

whose only steps are a and b. As both steps are outermost, we have O(t) = {a,b}.
Contracting a results in

CI

A

E)\{z}ax. Dz)(ab)
b/
where b[a]d’ and ¢’ « b'. Hence O(t) does not enjoy the non-gripping property. On the
other hand, S(t) = {a}, this set is indeed non-gripping; observe S(t) = O(t).

6.3. FURTHER WORK 225

We conjecture that some variation of the given proof could apply to the parallel-
outermost strategy, e.g. for PPC. In this perspective, it could be possible that the property
of always selecting mecessary sets of steps could suffice to guarantee that a reduction
strategy is normalising. A proof of this conjecture, or a counterexample falsifying it,
would be an interesting result in this direction.

Besides the proposed initiatives, which are of a theoretic nature, another avenue
for further work is to test the practical feasibility of the strategy S by developing an
interpreter of PPC based on it.

Standardisation for explicit substitution calculi
A possible direction of future work is the application of the ideas underlying the concep-

tion of the ES calculi at a distance, and the standardisation results for Ay, presented in
Chapter 4, to the study of the phenomenon of pattern matching, through the definition
of calculi with explicit matching for which standardisation results can be stated.

Several calculi with explicit matching, inspired from pattern calculi, have been pro-
posed; cfr. [For02, CK04, dCPdF11], and particularly [BallOa] where a proposal based
on PPC is presented. While several properties, including confluence, simulation, preser-
vation of strong normalisation, and also properties of typed versions, have been stated
for these calculi, the author is aware of no result about standardisation for calculi with
explicit matching.

We conjecture that the application of the idea of distant substitution, expressed in
the 1s-rule of the A\, namely Cl[z]][z/u] — C[u][z/u], can lead to the definition
of calculi with explicit matching having simpler reduction spaces, as described for A\J5
in Section 1.2.2.

Another interesting aspect derived from the material in Chapter 4 is the characterisa-
tion of s.r.s. given by the box order, defined in Section 4.5. Based on the isomorphism
between AJL,, and linear logic proof-nets given by the graphical equivalence relation ~
on Ajg,p terms, and the fact that the standardisation results described in Section 4.6
are stable by ~, we conclude that the criterion described by the box order gives a sound
standardness notion for proof-nets. The possible application of analogous criteria to
other graph rewriting systems can be a subject of further investigation. Moreover, we
mention the existence of a different notion of standardisation for proof-nets, namely the
standardisation by levels, or depths [ACPdF11]. While the respective orders on coinitial
steps are in general incomparable, the study of possible relations between them could
shed some additional light about the behavior of proof-nets and ES calculi.

Infinitary rewriting

Some of the ideas underlying the proof of the compression result described in Section 5.5,
can be extended in order to obtain standardisation results for infinitary rewriting. As
noted in [Ket12], a concept of standard reduction being adequate for infinitary rewriting
should be used, since leftmost-outermost reduction does not fit in this setting. In terms
of the ARS model, an adequate embedding relation is needed. In our opinion, it is
possible to prove the existence of a wunique standard reduction in each permutation
equivalence class, using depth-leftmost standardness as defined in [Ket12].

In turn, we hope that the eventual standardisation proof obtained can be applied
to the finitary case as well, thus yielding a standardisation proof, based on proof terms,
for first-order, left-linear finitary term rewriting. This proof would be an alternative to
that presented in [BKdV03], Section 8.5.

226 CHAPTER 6. CONCLUSIONS

Another avenue of further research on infinitary rewriting, for which the proof term
model can be adequate, is the comparison of permutation equivalence, as defined in
Section 5.3, with other notions of equivalence of reductions. We notice that in [BKdV03]
Chapter 8, and also in [vOdV02], the equivalence of several such notions is established
for finitary rewriting. We observe also that equivalence of infinitary reductions is defined
in [KKSdV95] and [BKdV03] Chapter 12, by extending the Lévy equivalence criterion
[HL91], based on the projection of reductions.

We also mention the possibility of using proof terms (more precisely, infinitary mul-
tisteps) to study properties of infinitary developments, as suggested in Section 6.2.1.

With respect to the extension of the proof term model to infinitary rewriting, a
variant of the equational logic defined to model permutation equivalence, in which the
Lim-rule can be used at most once in a derivation, and only as its last step, is worth
considering. We notice that the derivations of permutation equivalence in our examples
in Sections 5.3.3 and 5.3.4 are all of this form. We conjecture that a proof-theoretic
analysis could yield the equivalence between this restricted variant and the more general
version defined in this thesis.

Appendix A

Resumen en castellano

A.1 Introduccion

La teoria de la reescritura es el estudio de la transformaciones discretas y paulatinas
de cualesquiera objetos. Si los objetos de las transformaciones estudiadas son términos,
es decir, cadenas bien formadas de simbolos, entonces se habla de reescritura de
términos.

La teoria de la reescritura influye, en forma significativa y sostenida en el tiempo,
en diferentes areas dentro de la ciencia de la computacién. Respecto de la teoria de la
computacion, destacamos que el cdlculo-lambda, uno de los sistemas de reescritura mas
antiguos y mas extensamente estudiados, conforma un modelo de cémputo equivalente
a los basados en maquinas de Turing y en funciones recursivas. En relacién con la pro-
gramacion informdtica, probablemente la contribucién mas relevante de la teoria de la
reescritura es el rol preponderante que tuvo el célculo-lambda para el surgimiento del
modelo funcional de la programacion. La influencia del modelo funcional en la comu-
nidad global de programacién esta en rapido aumento, lo que se manifiesta tanto por
la popularidad creciente de lenguajes funcionales, basados preponderantemente en este
modelo, como por la adopcion de técnicas y conceptos surgidos en el modelo funcional,
en otros lenguajes de programacién, asi como en la practica de profesionales que no
necesariamente utilizan los lenguajes funcionales recién mencionados.

Un ejemplo sencillo de reescritura es la simplificacion de expresiones aritméticas. El
célculo del resultado de la epresién (1 x 1) x (0 x 0) puede ser descripto por cualquiera
de las siguientes transformaciones graduales:

(Ix1)x(0x0) — 1x(0x0) > 1x0 —> 0 (A.1)
(Ix1)x(0x0) — (I1x1)x0 - 1x0 — 0

Observamos que la simplificacion procede por medio de una secuencia de pasos de
reescritura. Cada paso tiene una direccién definida, de una expresién origen a otra
destino; de aqui el uso de flechas, y no el de un simbolo de igualdad o similar, para
denotar cada paso. Las expresiones paso de reduccion y secuencia de reduccion se
usan comunmente en la bibliografia para denotar los pasos de reescritura y las secuencias
formadas por los mismos. Las secuencias de reducciéon también son conocidas como
reducciones o derivaciones. En esta tesis notamos t — wu si existe, al menos, una
reduccién con origen en el objeto t y destino en el objeto u. A la aplicacién, o ejecucion,
de un paso, también se la conoce como contraccién. Una forma normal es un objeto

227

228 APPENDIX A. RESUMEN EN CASTELLANO

que no es origen de ningun paso. Por ejemplo, la expresién 0 es una forma normal para
la simplificacién de expresiones aritméticas. Cuando se utiliza la teoria de la reescritura
para modelar una clase de computos, las formas normales suelen estar asociadas a los
resultados finales de dichos cémputos. Un objeto ¢ se dice normalizante si existe una
forma normal u que verifica t — wu.

En la mayor parte de los casos, se utilizan reglas de reescritura para especificar
las transformaciones validas: cada paso debe corresponder a la aplicacién de una regla.
Un conjunto de reglas de reescritura forma la base de la definicién de un sistema de
reescritura. En nuestro ejemplo sobre simplificacién de expresiones aritméticas, las
reglas:

lxx—ozx rx0—0

alcanzan para justificar cada uno de los pasos en las secuencias detalladas en (A.1). Al
aplicar una regla, cada variable que aparece en la misma puede ser reemplazada por
cualquier expresién. P.ej., el paso (1 x 1) x (0 x 0) — 1 x (0 x 0) corresponde a una
aplicacién de la regla 1 x x — x, donde la variable x es reemplazada por la segunda
ocurrencia de 1 desde la izquierda, en la expresién origen del paso. El reemplazo de una
variable por una expresién mas compleja al aplicar una regla de reescritura da lugar,
p.€j., a la siguiente secuencia:

(Ix1)x(0x0) > (I1x1)x0—>0

cuyo segundo paso corresponde a la regla £ x 0 — 0, donde = se reemplaza por la
expresién (1 x 1).

Un rapido repaso de algunos conceptos del calculo-lambda permite introducir al-
gunas nociones que se utilizan en esta tesis. El calculo-lambda puede describirse como
una formalizacién minimalista de la aplicacion de una funcién a un argumento. La sin-
taxis basica provee tinicamente un conjunto de wvariables, un constructor de abstraccion
que permite definir una funcién, y un segundo constructor para denotar la aplicacion
de una funcién a un argumento. P.ej. el término

M.z +2x+2x)3

denota la aplicacién de la funcién (Az.z + = 4+ x) al argumento 3. Las ocurrencias de la
variable x en el subtérmino x + x 4+ x estan ligadas por la abstracciéon Az. Los sistemas
de reescritura de términos que, como el célculo-lambda, incluyen mecanismos para ligar
ocurrencias de variables, son conocidos como sistemas de reescritura de términos
de alto orden. Los sistemas de reescritura de términos de primer orden son
aquellos que no incluyen tales mecanismos.

El calculo-lambda incluye una tnica regla de reescritura:

(Ar.s)u — {z:=u}s
conocida como regla 8. Aqui, {z := u}s denota la sustitucién, en el término s, de las
ocurrencias (no ligadas) de = por u. Un ejemplo de paso de reduccién es
Mzx+z+2)3 — 3+3+3

Notar que este es un paso atémico en el modelo del calculo-lambda: la aplicaciéon de
la sustitucién {z := 3} a x + = + x se considera una operacién externa al cdlculo. Por
otro lado, la sintaxis del calculo-lambda no provee ningin mecanismo para filtrar los
argumentos que puede aceptar una funcién.

A.1. INTRODUCCION 229

El conjunto de transformaciones posibles en un sistema de reescritura puede descri-
birse como un grafo, cuyos vértices son los objetos y cuyos ejes se corresponden con los
pasos de reduccion. Este grafo es conocido como el espacio de reducciones, o espacio
de derivaciones, asociado al sistema de reescritura. Las secuencias de reduccién se co-
rresponden, exactamente, con los caminos del espacio de reduccién. Los pares de objetos
conectados forman la relacién de reduccidn: el par {¢,u) estd en dicha relacién si,
y sblo si, t - u, o sea, si existe una secuencia de reducciéon que tiene a t y a u como
origen y destino respectivamente. Nétese que el espacio de reduccion de un sistema de
reescritura brinda un modelo mas rico del mismo que su relaciéon de reduccién.

Los espacios de reduccién suelen ser complejos, incluso los correspondientes a sis-
temas de reescritura sencillos. La Figura A.1 describe la fraccion del sistema que modela
la simplificacién de expresiones aritméticas, formada por las distintas maneras de sim-
plificar la expresién (1 x 1) x (0 x 0).

(1 x1)

/

1 x (0 x 0) 1x1)x0

(
oxo/ \“7
|

Figure A.1: Fraccion de un espacio de reduccion

(0 x 0)

Los conceptos y propiedades de sistemas de reescritura abordados en esta tesis estan
estrechamente relacionados con los espacios de reducciones.

La nocién de equivalencia entre reducciones puede servir como guia para el
estudio de espacios de reducciones. Dos reducciones se consideran equivalentes si com-
prenden, esencialmente, los mismos pasos de reduccion, realizados en distinto orden.
Es el caso de las reducciones (1 x 1) x (0 x0) - 1 x(0x0) - 1x0 vy
(I x1)x(0x0) - (I x1)x0 — 1x0, que se corresponden exactamente con el
rombo superior en la Figura A.1. Destacamos que la coincidencia de origen y destino no
es suficiente para que dos reducciones sean consideradas equivalentes. Por ejemplo, hay
dos formas distintas, no equivalentes, de transformar 1 x (1 x 1) en 1 x 1, que consisten
en dos aplicaciones distintas de la regla 1 x x — =z, donde se reemplaza la variable x,
respectivamente, por (1 x 1) y por 1 (en el segundo caso, la regla aplica al subtérmino

(1x1)).

Los llamados estudios de estandarizacién buscan definir subconjuntos minimales
del conjunto de reducciones de un sistema de reescritura, que cubran completamente la
relacion de reduccién. Una clase de reducciones standard deberia incluir, al menos,
una reduccién de t a u, para cada par de objetos que verifiquen ¢ — u; este es el llamado
criterio de existencia de reducciones standard. Idealmente, una clase de reducciones
standard deberfa incluir exactamente una reduccién de t a u por cada par que verifique
t — wu; este es el llamado criterio de unicidad de reducciones standard.

Los trabajos sobre estandarizaciéon estan ligados, en muchos casos, a la nociéon de

230 APPENDIX A. RESUMEN EN CASTELLANO

paso de reduccion externo, caracterizandose como standard las reducciones en las que

los pasos externos preceden a los internos. Segun este criterio, en nuestro ejemplo sobre

simplificaciones aritméticas, el paso 1 x (2 x 0) — 2 x 0 debe preceder, en una reduccién
|

standard, al paso 1 x (2 x 0) — 1 x 0; por lo tanto, la reduccién 1 x (2x0) ->2x0 — 0

es standard, mientras que 1 x (2 x 0) - 1 x 0 — 0 no lo es.

Una estrategia de reducciéon puede pensarse como un “plan” para llevar a cabo
una reduccién partiendo de un determinado objeto. Formalmente, una estrategia puede
definirse como una funcién, que dado un objeto ¢, indica un paso de reduccién sobre
t. Realizar este paso resulta en un nuevo objeto, el destino del paso elegido; llamemos
a este objeto u. La estrategia se aplica a su vez sobre u, obteniéndose un nevo paso a
aplicar, y asi sucesivamente. Una estrategia también puede elegir, en lugar de un solo
paso, un conjunto (no vacio) de pasos de reduccién a aplicar sobre el objeto ¢t. En tal
caso, hablamos de estrategias multipaso. Los pasos elegidos sobre un objeto en una
estrategia multipaso deben aplicarse simultdneamente, para lo cual puede apelarse a la
nocién de desarrollo completo! de un conjunto de pasos.

El objetivo, al definir estrategias de reduccién, es obtener una forma normal a partir
de cualquier término normalizante, mediante la aplicacion sistemdtica de la estrategia.
Formalmente, se dice que una estrategia de reducciéon es normalizante si, y sélo si,
para todo objeto normalizante ¢, existe una secuencia tg,t1,...,t,, tal que t = tg, t,, es
una forma normal, y ¢;,; es el objeto resultante de aplicar el, o los, paso/s de reduccién
indicados por la estrategia para t;, para todo ¢ < n. Se conoce como normalizacién
al estudio de estrategias de reduccién, incluyendo el desarrollo de técnicas para definir
estrategias que resulten normalizantes, y de otras que permitan demostrar que una dada
estrategia es normalizante.

El marco general descripto nos permite enunciar las contribuciones principales de esta
tesis. Abordamos un estudio de caracteristicas del espacio de reduccién para distintos
sistemas de reescritura de términos, segin se detalla a continuacion.

El Capitulo 3 es un estudio sobre normalizacion, enfocado particularmente en es-
trategias multipaso. Se presenta una demostracién abstracta de normalizacién para
estrategias multipaso, que da un conjunto de condiciones que resultan suficientes para
garantizar que una estrategia es normalizante. Estas condiciones se refieren, algunas
al sistema de reescritura para el que se define la estrategia, y otras a la estrategia en
si. También se define una estrategia multipaso para el Pure Pattern Calculus (PPC), y
se demuestra que la estrategia definida es normalizante aplicando la demostracién ab-
stracta recién introducida. El PPC pertenece a la familia de los cdlculos con patrones,
que se focalizan en la formalizacién de la capacidad de pattern matching presente en los
lenguajes de programacién funcionales. Las caracteristicas de este sistema de reescritura
hacen que sea particularmente pertinente el uso de estrategias multipaso.

El Capitulo 4 es un estudio de estandarizacion para el linear substitution calculus.
Definimos dos criterios distintos para considerar una reduccién como standard en este
sistema de reescritura; para ambos mostramos que cumplen el criterio de existencia, y
para el segundo de ellos mostramos que también cumple con el criterio de unicidad, uti-
lizando en este ultimo caso una técnica de demostracién novedosa. El linear substitution

!Usamos “desarrollo (completo)” como traduccién al castellano de la locucién inglesa “(complete)
development”.

A.1. INTRODUCCION 231

calculus pertenece a la familia de los cdlculo con sustituciones explicitas, cuyo foco es la
formalizacién detallada de los distintos pasos que conlleva la sustitucion, partiendo de
un término ¢, de todas las ocurrencias de una variable x por otro término u. Destacamos
que la bibliografia conocida por este autor incluye sélo un estudio de estandarizacién
para un calculo con sustituciones explicitas, a pesar de la proliferaciéon de propuestas de
definicién de distintos sistemas de reescritura en esta familia, y de estudios concernientes
a sus propiedades formales.

En el Capitulo 5, presentamos una caracterizacién de la equivalencia de reducciones
para sistemas de reescritura de términos infinitaria de primer orden. La reescritura in-
finitaria de términos estudia los sistemas que admiten reducciones en las que intervienen
términos infinitos, asi como también reducciones que involucran una cantidad infinita
de pasos, de las cuales puede determinarse un término destino, apelando a la nocién de
limite. La longitud de una reducciéon infinita puede, incluso, superar estrictamente el
primer ordinal infinito, o sea w: se admiten reducciones cuya longitud es w + 1, w x 2,

wz, etc..

A partir de esta propuesta para modelar la equivalencia de reducciones, presentamos
una demostracién alternativa del resultado de compresion de reducciones convergentes
para sistemas de reescritura lineales a izquierda, en el que se establece que toda reduccion
convergente es equivalente a otra cuya longitud es, a lo sumo, el ordinal w.

Finalizamos esta introduccion destacando un rasgo comun de las tres lineas de tra-
bajo incluidas en esta tesis: se trata del uso de modelos genéricos de reescritura.
Un modelo genérico brinda un marco para el estudio de propiedades de sistemas de re-
escritura, brindando definiciones abstractas de conceptos comunes tales como secuencia
de reduccién, espacio de reducciones, equivalencia de reducciones, etc.. A partir del
marco que provee un modelo genérico, se pueden desarrollar demostraciones abstractas
de propiedades, p.ej. vinculadas con la estandarizacién o la normalizaciéon. Los con-
ceptos definidos y las demostraciones desarrolladas en un modelo genérico, resultan en
consecuencia validos para cualquier sistema de reescritura que pueda encuadrarse dentro
del marco que provee dicho modelo.

El material incluido en los Capitulos 3 y 4 estd basado en el modelo de los llamados
sistemas abstractos de reescritura, ARS por sus siglas en inglés, utilizando la formu-
lacién desarrollada en [Mel96]. Por otra parte, el estudio sobre reescritura infinitaria
del Capitulo 5 utiliza el modelo basado en la nocién de proof term, tomando como
punto de partida la formulacion para reescritura finita de primer orden desarrollada en
[BKAVO03], Secciones 8.2 y 8.3. El Capitulo 2 de esta tesis es una descripcién de las
nociones fundamentales de estos dos modelos genéricos.

Destacamos que la presente tesis incluye contribuciones al desarrollo de los modelos
genéricos utilizados, como ser la demostraciéon abstracta de normalizacién incluida en
el capitulo 3, desarrollada en el modelo de los sistemas abstractos de reescritura, y la
extension del modelo de proof terms para abarcar sistemas de reescritura infinitaria, que
introducimos en el Capitulo 5.

Esta tesis puede ser considerada como un trabajo sobre el uso de modelos genéricos,
para estudiar sistemas de reescritura cuyas caracteristicas hacen particularmente desa-
fiante el estudio de sus espacios de reduccién.

232 APPENDIX A. RESUMEN EN CASTELLANO

A.2 Modelos genéricos de sistemas de reescritura

En este capitulo se introducen los dos modelos genéricos usados en esta tesis, a saber:
el de los Sistemas Abstractos de Reescritura, o ARS por sus siglas en inglés, y el de los
proof terms.

Un Sistema Abstracto de Reescritura, o ARS, es una estructura que modela a
un sistema de reescritura. Los elementos basicos de un ARS son dos conjuntos, el de los
objetos que se reescriben, notacion O, y el de los pasos de reduccién, notaciéon R. La
idea de “paso de reduccion” en este modelo es similar al rol que tienen los pasos en un
un espacio de reduccién: un paso es un eje que liga un objeto fuente con uno destino.
Esta idea se formaliza por medio de dos funciones: src,tgt : R — . Destacamos que
en este modelo un objeto, asi como un paso, son meramente elementos en un conjunto;
no se incluye ninguna informacién sintdctica, acerca de la estructura de los términos, o
del subtérmino correspondiente a un paso. Tampoco se incluye informacién sobre qué
regla de reduccién genera cada paso. Toda la informacién que se incluye en un ARS,
por fuera de los conjuntos de objetos y pasos, y de las funciones que describen fuente
y destino de cada paso, se produce por medio de relaciones definidas en el conjunto de
pasos.

La principal de estas relaciones es la de residuo, notacién [-]; es una relacién
ternaria. Se usa la notacién af[b]a’ para indicar (a,b,a’) € [-]. En tal caso, decimos
que a’ es un residuo de a después de b. La idea es que, siendo el origen de a el mismo
que el de b (o sea, src(a) = src(b)), @’ es un paso, cuyo origen es el destino de b (esto es,
src(a’) = tgt(b)), y que “proviene” de a. Dicho de otra forma, a’ es (parte de) “lo que
queda” de a en el objeto destino de b. Veamos un ejemplo en el sistema de simplificacién
de expresiones aritméticas; llamemos b al pasot = (1 x 1) x (0 x0) — 1 x (0% 0) = u.
Notamos que el paso correspondiente al subtérmino 0 x 0 en u, proviene del correspon-
diente al mismo subtérmino en ¢. Si llamamos a y a’ a los pasos correspondientes a 0 x 0
en t y u respectivamente, entonces tenemos af[b]a’. Graficamente:

t=(1x1)x(0x0) b 1x(0x0)=u
a a[b]a’ a
(Ix1)x0 1x0

En otros sistemas de reescritura, la relacién de residuo es menos sencilla. Si consideramos
los siguientes ejemplos en el calculo-lambda:

! b i b
1 (Qe3)((Ayy)s) — 3 2) (Qaaz)(Ayy)5) — ((Ay9)5) (Ay-9)5)
: b
3) (/\a:(:\yy)_:g)5 — @yy)j

notamos que en 1), a no tiene ningun residuo después de b, mientras que en 2), atiene
dos residuos; en 3), el subtérmino correspondiente al paso a, que es (Ay.y)z, es “trans-
formado” en (Ay.y)5, el subtérmino correspondiente al residuo de a después de b.

A.2. MODELOS GENERICOS DE SISTEMAS DE REESCRITURA 233

La mayor parte de los resultados que pueden obtenerse mediante el modelo ARS
apelan también a la relaciéon de embedding entre pasos. Es una relacién binaria que
notamos mediante el simbolo <, usado en forma infija. Un par b < a en esta relacién
indica que b tiene, al menos potencialmente, la potestad de multiplicar, o bien de borrar,
a; o sea, hacer que a tenga mas de un residuo, o bien no tenga residuos, después de b.
De acuerdo a esta idea, cualquier ARS que modele el cdlculo-lambda debe incluir b < a
para los casos 1) y 2) de los ejemplos recién descriptos. Estos ejemplos sugieren una
correlacién entre la nocién, seméantica, de embedding, y el anidamiento sintdctico entre
(los subtérminos correspondientes a los respectivos) pasos de reduccién, en sistemas de
reescritura de términos. En los modelos del calculo-lambda como ARS descriptos en
[Mel96], y también en la representacién de otros sistemas de reescritura, en particular
el Pure Pattern Calculus que estudiamos en el Capitulo 3, una condicién necesaria para
b < a es que el paso b anide sintacticamente al paso a. En el Capitulo 4 mostramos una
excepcién a esta correlacion entre embedding y anidamiento.

Destacamos que la visién de un sistema de reescritura que presenta el modelo ARS
estd orientada al espacio de reducciones del mismo.

Los elementos incluidos en un ARS, segin lo descripto hasta el momento, permiten
describir en forma abstracta varias nociones y propiedades relevantes de sistemas de
reescritura. Dos pasos a y b cuyo origen coincide son ortogonales en este modelo, si
aplicar a, y luego los residuos de) b después de a, produce el mismo efecto (esto es,
tiene el mismo destino, y define la misma relacién de residuos que) aplicar b, y luego los
residuos de a después de b. El siguiente grafico muestra un caso sencillo:

t=(1x1)x(0x0)

—
b

a
b a
/ \() O
S9 = X
/

1x1
—
bl

u=1x0

Aqui, d’ es el tinico residuo de a después de b, y andlogamente, b’ es el tinico residuo
de b después de a. En este ejemplo podemos notar, asimismo, que la secuencia a;b’
puede obtenerse permutando los dos pasos que forman la secuencia b;a’. A partir de
la nocién de permutacién de pasos, se caracteriza la equivalencia entre reducciones
en el modelo ARS: dos reducciones son equivalentes si, y sélo si, cada una de ellaas
puede obtenerse como el resultado de una serie de permutaciones de pasos a partir de
la otra. La relaciéon de embedding da lugar a una nocién de paso externo, a partir de la
cual se deriva una caracterizacién abstracta de reduccion standard.

El modelo ARS, incluyendo las relaciones de residuo y de embedding, tiene la riqueza
suficiente para desarrollar demostraciones abstractas de propiedades relevantes. En
[Mel96] se incluyen propiedades sobre estandarizacién y normalizacién, entre otros as-
pectos. En esta tesis se desarrollan una nueva demostracion abstracta de normalizacién,
y otra de estandarizacion, en este modelo.

En las demostraciones abstractas se establecen condiciones que debe verificar un
sistema de reescritura para poder afirmar, para dicho sistema, la propiedad demostrada.

234 APPENDIX A. RESUMEN EN CASTELLANO

Estas condiciones se especifican en la forma de azxiomas, cuyos enunciados se basan
en las relaciones de residuo y de embedding. Estos axiomas permiten caracterizar, en
forma abstracta, distintas caracteristicas de un sistema de reeescritura, que resultan
pertinentes para su estudio.

Finalmente, mencionamos que para el estudio de normalizacién en sistemas no-
secuenciales desarrollado en el Capitulo 3 requiere del agregado, en la definicién de
un ARS, de una tercer relacién entre pasos de reduccién, llamada relaciéon de gripping.

La nocién de proof term es la base del otro modelo genérico de sistemas de reescritura
usado en esta tesis. Como veremos, este modelo resulta menos abstracto que el basado
en ARS. Existen varias formulaciones de este modelo, que apuntan a distintas familias
de sistemas de reescritura; en esta tesis nos basamos en la que se presenta en [BKdV03]
para reescritura de términos de primer order, cuyos conceptos principales presentamos
a continuacion.

Un proof term para un sistema de reescritura de términos 7', es un término en
una signatura que extiende la de T'. Para cada regla se agrega un simbolo que denotara
los pasos de reduccién correspondientes a dicha regla. También se agrega un simbolo
binario de concatenacién, que se nota mediante el simbolo - usado en forma infija.
Veamos algunos ejemplos de proof terms para el sistema de simplificaciones aritméticas,
déndole a las reglas estos nombres: p:1xy -y, v:yx0—0.

(3

Ixv(lx1 Ix((ILx1)x0) - 1x0

— —
:3x((2x1)x0) > 3x0 — 0

~— ~— —
(I1x1)x(2x0) > 1x(2x0) - 1x0 — 0

)
)
Ixv(2x1) - v(3)
)

u(l) x (2x0) - 1xv(2) - w0

En estos ejemplos, se indica el subtérmino correspondiente a cada paso con una llave,
y el reemplazo de la variable y en la regla utilizada mediante subrayado. En el tltimo
caso, se aprovecha que la concatenacién es asociativa para omitir un par de paréntesis.

Una caracteristica destacable de este modelo es que los simbolos de regla, y también
el de concatenacién, pueden combinarse de distintas formas. Esto permite denotar la
contraccion simultdnea y/o localizada de pasos de reduccién, como se aprecia en los
siguientes ejemplos:

w(l) xv(2) @ (Ix1)x(2x0) —» 1x0
p(r(2)) : 1x(2x0) —> 0
2x (p(1)x3 - pu(3)) : 2x((1x1)x3) - 2x(1x3) - 2x3

donde —e~> denota la aplicacién simultidnea de pasos de reduccién. Observamos que
w()xv(2), w(l)yx(2x0) - 1xv(2) vy (1x1)xv(2) - u(l)x0 son tres proof terms
distintos, de forma tal que este modelo permite diferenciar la contracciéon simultanea de
pasos, de su contrapartida secuencial. En esta tesis usamos la locuciéon actividad de
contraccién para referirnos a las distintas formas de combinar pasos de reduccién que
pueden ser distinguidas en el modelo de proof terms.

La equivalencia de reducciones puede describirse en el modelo de proof terms
a partir de la nocién de permutacién de pasos. Se define un conjunto de ecuaciones

A.3. NORMALIZACION 235

que formaliza una permutaciéon de pasos; dos reducciones (o més generalmente, dos
actividades de contraccion) se consideran equivalentes si, y s6lo si, la equivalencia entre
los proof terms que las representan puede concluirse mediante l6gica ecuacional a partir
de dichas ecuaciones. Las ecuaciones describen que tanto la sucesiéon formada por un
paso a seguido de (los residuos de) b, como la formada de b seguido por (los residuos
de) a, son equivalentes a la contraccién simultdnea de los dos pasos. La equivalencia
entre las dos secuencias se establece mediante la equivalencia de cada una de ellas con
la versién simultdnea. P.ej., se establece que: (1 x 1) x v(2) - p(l) x0 ~ p(l)xv(2) ~
(1) x (2 x0) - 1 x v(2), formalizdndose de esta forma la permutacién entre los dos
pasos de la secuencia (1 x 1) x (2x0) > (1 x1) x0—1x0.

A partir de esta caracterizacién de la equivalencia de reducciones, en [BKdV03]
se obtienen resultados de estandarizacion para sistemas de reescritura de términos de
primer orden.

Finalmente, mencionamos que una segunda caracterizacién de la equivalencia entre
reducciones usando proof terms, basada en la nocién de proyecciones, también aparece
en [BKdVO03], en donde se establece la equivalencia entre estas dos caracterizaciones, y
también con otras que también se describen alli. Se introduce aqui la caracterizacion
de la equivalencia mediante permutaciones sucesivas, porque es la que se extiende en el
Capitulo 5 de esta tesis a sistemas de reescritura infinitarios.

A.3 Normalizacién

La nocién de paso mecesario estd estrechamente relacionada con el estudio de la nor-
malizacién de sistemas de reescritura, que es el tema general de este capitulo. Un paso
con origen en un objeto ¢ se dice necesario si su contraccién resulta ineludible para
obtener una forma normal a partir de ¢; o sea, si cualquier reduccién con origen es ¢
y cuyo destino es una forma normal, incluye a ese paso, o bien a al menos uno de sus
residuos. Varios estudios de normalizacién estan basados en la nocién de paso necesario.
En particular, en [HL91| se demuestra que la contraccén sistematica de pasos necesarios
es normalizante.

Por otro lado, los enfoques basados en la nocién de paso necesario no son aplicables
en sistemas de reescritura que admiten términos, que no son formas normales, y para
los cuales ninguno de sus pasos resulta necesario. Un ejemplo profusamente mencionado
en la literatura es el llamado disyuncion paralela, que incluye las siguientes reglas:

or(z,tt) — tt or(tt,xz) — tt

El término or(or(tt, ff), or(ff, tt)) incluye dos pasos, correspondientes a los subtérminos
or(tt,ff) y or(ff,tt). Las siguientes secuencias de reduccién

or(or(tt,ff),or(ff,tt)) — or(or(tt,ff),tt) — tt
or(or(tt,ff),or(ff,tt)) — or(tt,or(ff,tt)) — tt

cuyo destino es una forma normal, muestran que ninguno de los dos pasos del término
origen son necesarios: el paso de la izquierda (respect., de la derecha) no es utilizado en la
primer (respect., en la segunda) secuencia. Incluir términos, que no son formas normales,
y que no incluyen ningin paso necesario, es condicién suficiente para considerar a un
sistema de reescritura como no secuencial; la definicion precisa de esta nocién escapa
al presente resumen.

236 APPENDIX A. RESUMEN EN CASTELLANO

Varios trabajos coinciden en senalar la pertiencia de considerar estrategias multipaso
para obtener estrategias normalizantes en sistemas no-secuenciales. En particular, en
[SR93] se demuestra que la contraccién sistematica de conjuntos necesarios de pasos es
normalizante para sistemas de reescritura de términos no-secuenciales de primer orden,
como es el caso de la disyuncién paralela. La nocién de conjunto necesario de pasos
generaliza la de paso necesario: un conjunto de pasos A con origen en un objeto t es
necesario si cualquier reduccion con origen en t cuyo destino es una forma normal incluye
al menos un paso en A, o alguno de sus residuos.

En esta tesis se utiliza el modelo de los ARS para desarrollar una demostracion
abstracta de normalizaciéon. Esta demostracién se basa en la estructura de la que
aparece en [SR93], utilizando también algunas ideas que se proponen en [vO99]. Nuestra
prueba extiende la de [SR93|, dado que el modelo ARS puede aplicarse a sistemas de
reescritura de alto orden. Por otro lado, se debe requerir una condiciéon adicional sobre
los conjuntos de pasos: ademas de ser conjuntos necesarios, deben ser mon-gripping,
condicién surgida en el estudio abstacto de desarrollos completos incluido en [Mel96].

En la introduccién se menciond que la sintaxis del calculo-lambda no incluye mecan-
ismos para filtrar los posibles argumentos de una funcién; una abstraccién de la forma
Az.s puede ser aplicada a cualquier término. Esta situacion contrasta con la préactica
habitual de los lenguajes de programacion funcionales. Estos lenguajes incluyen una
caracteristica conocida como pattern matching, por la que al definirse una funcion,
pueden especificarse restricciones sobre la forma de sus argumentos. Tomemos esta
definicién en Haskell:

length []
length (x:xs)

0
1 + length xs

La funcién length asi definida s6lo puede ser aplicada a listas; si se aplica esta funcién a,
p-€j., un nimero, se produce un error de matching. Ademads, presenta dos definiciones
distintas, para listas vacfas (notacién [1) y no vacias (notacién x:xs) respectivamente.

Los céalculos con patrones tienen como objetivo modelar formalmente el fenémeno
del pattern matching. El Pure Pattern Calculus, o PPC, pertenece a esta familia de
sistemas de reescritura. Varios cédlculos con patrones, entre ellos el PPC, incluyen un
constructor de abstracciéon generalizada, de la forma Ap.s, donde p es un patrdén. Dichos
calculos incluyen una generalizacion de la regla 3, de la forma

(Ap.s)u — {p/u}s

donde {p/u}s es el resultado del matching del argumento u respecto del patrén p. La
definicién del matching de argumento contra patrén es uno de los aspectos principales
en la definicién de un célculo con patrones.

En estos calculos con patrones, si p es un constructor de datos, entonces el siguiente
es un paso de reduccién valido

(Apzy.y) (p34) — 4

mientras que la aplicacién (Apzy.y) 3 desencadena un mecanismo de error especi-
ficado en la definicién del célculo, dado que el matching del argumento 3 respecto del
patrén pxy es imposible. En el PPC, los errores de matching reducen en un paso a un

A.3. NORMALIZACION 237

término que representa a la funcion identidad, que notaremos como I. Por lo tanto, en
PPC tenemos
(Apzy.y)3 — 1

Esta defnicion del PPC permite modelar las alternativas en la definicién de una funcién;

cfr. [JKO09].

La sintaxis del PPC se describe en la Seccién 3.4.1, y en [JKO09]; los ejemplos que
brindamos a continuacién usan una versién simplificada de dicha sintaxis. Una carac-
teristica saliente del PPC es que cualquier término puede ser un patrén. En particular, un
patrén puede incluir ocurrencias libres de variables, para lo cual se indica explicitamente,
para cada abstraccion, cudles son las variables que liga. P.ej. la funcién identidad puede
definirse en PPC mediante el término A,yz.z.

En el término

t = A2y 7(y2).9))

las dos ocurrencias de x estdn ligadas por el abstractor exterior. Esto permite generar
un patrén concreto a partir de la especificacién genérica A, .1x(yz), aplicando ¢ a un
término adecuado. En esta reduccién

Mayz-(Ay,232(y2).y) a (a(34)) = (A .1ay2).y) (a(34)) — 3

se aplica t al constructor de datos a; como consecuencia, se obtiene una funciéon que
solo acepta, como argumentos, estructuras de datos sobre ese constructor. Si aplicamos
t a una funcion, el patrén concreto serd el resultado de un computo que se lleva a cabo
dentro del patron, como en este caso:

My -y 232 (¥2)-9) A 12"y py'a’") (p34)
= (My.2y Ay @'y py'a") (y2).y) (p34)
= (Afy,-1P2y-y) (p34) — 4

Estos ejemplos muestran la naturaleza dindmica de los patrones en PPC, que permiten
modelar formas de polimorfismo no presentes en los lenguajes funcionales utilizados
actualmente en el ambito del desarrollo de software; cfr. [JKO6b, JK09] al respecto.
Destacamos que la defniciéon del matching de PPC evita los problemas respecto de la
estabilidad del cédlculo que podrian provenir de aceptar patrones como, p.ej., xy. P.ej.
en el término (Ag; .1 7y.2)((A(z32.2)3), el matching del argumento (A} 2.2)3 respecto del
patrén Ag, 1y no es exitoso y tampoco produce un error de matching; el tinico paso
de reduccién con origen en este término es el que corresponde al subtérmino (A(,;2.2)3.

Consideremos ahora la estructura de datos e (nombre) {(géneroy (facultad), que
representa a un estudiante. La funcién Ag,yexvi . z permite recuperar el nombre de
un estudiante varén que estudia ingenieria. El término

(Azyezvi . z)(e(la)(Im)(Id))

incluye tres pasos de reduccién, correspondientes a ([a), (Im) y (Id) respectivamente.

Las secuencias de reduccién
(Amyezvi . x)(e(la)(Im)(Id))
(Amezvi . x)(e(la)(Im)(Id))

(Amezvi.x)(e(la)m(ld)) — [
(Amezvi. x)(e(la)(m)d) — I

—
—

238 APPENDIX A. RESUMEN EN CASTELLANO

muestran que ninguno de estos pasos es necesario, y que por lo tanto, el PPC es un
sistema de reescritura no-secuencial. Por otro lado, destacamos que {(/m), (/d)} es un
conjunto necesario de pasos. El segundo paso de la primer reduccion puede explicarse
como sigue: los segundos argumentos de la estructura encabezada por e en arguemto y
patron son dos constantes distintas, m y v respectivamente. Esta falla en un argumento
alcanza para disparar el mecanismo de error de matching. En la segunda reduccién, un
argumento andlogo aplica al tercer argumento.

En este capitulo definimos una estrategia multipaso para el PPC, y demostramos
que esta estrategia es normalizante, apelando a la demostracion abstracta mencionada
anteriormente. Para esto mostramos que el PPC puede modelarse adecuadamente como
un ARS, verificindose todas las condiciones impuestas por la demostracién abstracta. La
estrategia definida elige conjuntos necesarios y non-gripping de pasos. Destacamos que
esta estrategia se comporta exactamente como la leftmost-outermost para los términos
del PPC que tienen correspondencia inmediata en el cdlculo-lambda, resultando “monopaso”
para dichos términos.

A.4 Estandarizacion para el linear substitution calculus

Como se indica en la introduccion, la sustitucién es considerada como una operacién
externa en el cdlculo-lambda. Por ejemplo, el siguiente:

(Mx+z+zx) > 3+3+3

es un paso de reduccién atémico. Por otro lado, el computo de sustituciones es un
elemento relevante en la evaluacion de programas en los lenguajes funcionales, 1o que
genera interés por modelos formales detallados de esta operacion. El objetivo de los
calculos con sustituciones explicitas, o calculos ES, es modelar detalladamente
la aplicacion de una sustitucion a un término. Brindamos una pequena descripcion de
algunas facetas de los calculos ES, tomando como ejemplo una variacién del calculo Ax,
[Ros92, BR95], en la que incluimos constantes.

Los célculos ES proveen una construccién para denotar, explicitamente, la aplicacion
de una sustitucién a un término. Asi, si s y w son términos, entonces s[z/u] es un
término bien formado. Se incluye una regla de reescritura andloga a la regla § del
calculo-lambda, de la forma:

(Ax.s)u — s|z/u]

A diferencia de la regla 3, la sustitucién [z/u] sélo se genera, no se evalia. Se de-
finen reglas de reescritura adicionales para modelar detalladamente la evaluacién de una
sustitucion a un término. En el calculo que usamos como ejemplo, estas reglas son:

(tita)[z/u] — (b1 [z/ul)(t2[2/u]) (Ayt)[z/u] = Ayt[z/u]
z[z/u]l - u clz/u] — ¢ ylz/ul =y ify#x

Una sustitucién se propaga (reglas en la primer linea), generdandose copias; cada copia
o bien se aplica, o bien se elimina (reglas en la segunda linea).

La propagaciéon de sustituciones implica que los espacios de reduccién de los célculos
ES tienden a ser extremadamente complejos. P.ej. para simular el paso de reduccién del
célculo-lambda (Az.px(sx)) 3 — p3(s3) hacen falta ocho pasos de reduccién en A\x, que

A.4. ESTANDARIZACION PARA EL LINEAR SUBSTITUTION CALCULUS 239

pueden ordenarse en formas distintas, dando lugar a una gran diversidad de distintas
reducciones. Una de estas reducciones es:

(Az.pr(sz))3 (pz(sz))[x/3]
pl/3]x[x/3] ((sx)[x/3])
pxlz/3] (s[z/3]x[x/3]) p3(slz/3]x[x/3])
p3(sz[z/3]) p3(s3)

Los calculos ES a distancia han sido propuestos recientemente. Estos cédlculos ES
evitan la propagacién y copia de las sustituciones, permitiendo que una sustitucién se
aplique a una ocurrencia distante de la variable involucrada. Estos célculos incluyen
una regla de la forma

(pz) [2/3] ((sz) [/3])
pl/3]x[x/3] (s[2/3] x[x/3])

Ll
Ll

Clel[z/u] — Clull[x/u] (A.2)

donde C' es un contexto arbitrario que no liga la ocurrencia de = en C[[z]]. De esta
forma, se obtienen cédlculos cuyos espacios de reducciones tienen un menor grado de
complejidad. Este capitulo estudia el linear substitution calculus, o A7y, un calculo
ES a distancia, que agrega la siguiente regla para eliminar sustituciones superfluas, de
acuerdo a la idea de garbage collection:

tlz/u] — t if z ¢ fv(t) (A.3)

~

1su

(Az.pr(sz))3 — (pz(sz))[z/3] — (p3(sx))[z/3]
— (P3(s3)[z/3] — (p3(s3))

Esta reduccién resulta mas sencilla que la correspondiente a un cédlculo ES con propa-
gacién, como la desarrollada anteriormente para Ax.

El paso de reduccién (Az.pz(sx))3 — p3(s3) puede emularse en AL, como sigue:

En este capitulo se realiza un estudio de estandarizacion para el calculo Ay, basado
en el modelo ARS. Dos caracteristicas de este sistema de reescritura hacen que modelarlo
como un ARS resulte una tarea no trivial. Una de ellas es la existencia de distintos pasos
de reduccién con origen en el mismo término, que corresponden exactamente al mismo
subtérmino. Es el caso de dos ocurrencias de la misma variable, que se corresponden con
dos pasos distintos generados por la regla (A.2). P.ej. el subtérmino correspondiente a
los dos pasos en el término (xx[y/z])y es xx|y/z]. Esto provoca que para identificar un
paso de reduccion, no alcanza con el subtérmino correspondiente. Para pasos generados
por laregla (A.2), el contexto C' debe tenerse en cuenta. El otro aspecto problemético de
ATsup €S que la relacion de embedding no se corresponde con el anidamiento sintactico de
pasos de reduccion. Recordemos que si a y b son pasos con origen en el mismo término,
entonces a < b indica que la contracciéon de a podria duplicar, o bien eliminar, b. Si
consideramos el término ¢t = z[z/y][y/z] y llamamos a, y a, a los pasos generados por
la regla (A.2) correspondientes a las ocurrencias de = e y respectivamente, notamos que
a, anida sintdcticamente a a,, como se aprecia en la siguiente figura:

ay

——
zlz/y]ly/z]
—

(%3

240 APPENDIX A. RESUMEN EN CASTELLANO

Por otro lado, la contraccién de estos pasos resulta en:

zz/ylly/z] == yla/ylly/2] =t wlafylly/z] =5 zle/z][y/2] = t2

Se observa que la contraccién de a, duplica a,; nétense las dos ocurrencias de y en t;.
Por lo tanto, en cualquier modelo de AT, como un ARS, la relacién de embedding debe
incluir el par a; < ay, lo que se contradice con el anidamiento sintactico.

Un primer ARS que describe Ajg,,, definido teniendo en cuenta las peculiaridades
recién descriptas, permite obtener resultados de existencia y unicidad de reducciones
standard para este cdlculo, apelando a demostraciones abstractas desarrolladas en [Mel96].

Sin embargo, estos resultados no resultan satisfactorios, debido a la estrecha relacién
que existe entre A5, vV las proof nets de la légica lineal. Se puede establecer una
equivalencia operacional fuerte entre términos de A\JL, ¥ proof nets, que se convierte en
un isomorfismo si se considera, en lugar del conjunto de términos de AJ,,, su cociente
por la relacion de equivalencia generada por tres ecuaciones. Estas ecuaciones reflejan
que la ubicacién precisa de una sustitucién dentro de un término es, en muchos casos,
irrelevante; una de ellas es:

tlz/ully/s] ~ tly/s]lz/u] ifxgfv(s) A y¢iv(u)

En este isomorfismo, una proof net se corresponde, exactamente, con una clase de equi-
valencia de términos. Por lo tanto, los resultados que se obtengan a partir de un modelo
de A, como ARS, cuyos objetos sean las clases de equivalencia del conjunto cociente
recién mencionado, seran validos también para proof nets.

Para obtener un ARS con estas caracteristicas, establecemos una biyeccién entre los
conjuntos de pasos de reduccion de términos equivalentes, valiéndonos de la técnica de
etiquetado (labeling en inglés), mostrando que la relacién de residuos es una bisimulacién
respecto de esta biyeccion. Como la relacién de embedding del primer ARS definido no
es invariante respecto de la biyeccién entre pasos de reduccién, definimos una nueva
relacion de embedding, que es una restriccién de la anterior, y que si resulta invariante.

~

De esta forma obtenemos un segundo ARS, que modela AJ;,, considerando que el
conjunto de objetos que se reescriben es el cociente definido en el conjunto de términos,
resultando cada término individual un mero representante de su clase de equivalencia.
Este ARS cumple con las condiciones exigidas para el resultado de ezistencia de reduc-
ciones standard enunciado en [Mel96], pero no con aquellas requeridas para el resultado
correspondiente de unicidad. A pesar de esto, obtenemos un resultado de unicidad de
reducciones standard para Al considerado como un sistema de reescritura de clases de
equivalencia de términos, por medio del desarrollo de una nueva demostracion abstracta
de estandarizacion en el modelo ARS.

A.5 Equivalencia de reducciones para reescritura infini-
taria

Consideremos los sistemas de reescritura de términos T3 y 15, que definimos a continua-
cion. El sistema 77 incluye al nimero 1, el simbolo de la suma, un simbolo unario [, el
constructor de listas que denotamos mediante el simbolo :, “dos puntos”, y la regla de
reescritura

x) — x:l(z+1)

A.5. EQUIVALENCIA DE REDUCCIONES PARA REESCRITURA INFINITARIA241

El sistema 75 incluye las constantes a y b, y las reglas
a — b b — a
Podemos construir reducciones infinitas tanto en 77 como en T5. Para T3, consideremos
(1) > 1:0(2) >1:2:03) —> ...
donde 2,3, ... abrevian 1 + 1, (1 4+ 1) + 1, etc.. Para T, tenemos esta secuencia
a—>b—-sa—->b—oa—...

Podemos apreciar una diferencia importante entre estas dos reduccciones, observando
las secuencias de términos de destino parciales de cada una, que son respectivamente:

1:02),1:2:10(3),1:2:3:1(4)...) y (b,a,b,a...)

No es dificil aprehender que la secuencia de la izquierda converge, con limite en el término
infinito 1 :2:3:4: ... mientras que la secuencia de la derecha diverge. Notamos que
los dos sistemas de reescritura presentados pueden describirse facilmente en lenguajes
de programacién funcionales; consideremos p.ej. estas definiciones en Haskell:

natlist n = n : natlist (n+1)

diva = divb
divb = diva
Observamos que mientras la evaluaciéon de natlist 1 genera la lista [1,2,3,4 ...],

la de la expresién diva continda indefinidamente, sin entregar ningun resultado parcial.

Estas consideraciones motivan el estudio de sistemas de reescritura de términos
infinitarios. La nocion de convergencia es particularmente relevante en este ambito.
Varios criterios de convergencia han sido propuestos en la literatura. En esta tesis,
adoptamos el criterio de convergencia fuerte, segin el cual una secuencia de reduccién
infinita? es convergente si, y s6lo si, la secuencia formada por la profundidad de cada paso
tiende a infinito. P.ej. la secuencia [(1) — 1:1(2) > 1:2:1(3) — ... es fuertemente
convergente, pues el i-ésimo paso se realiza a profundidad ¢—1, mas precisamente, debajo
de ¢ — 1 ocurrencias anidadas del constructor de lista. Para las secuencias convergentes
infinitas® , se puede establecer como término destino el limite de los destinos de los
prefijos de dicha secuencia. Notamos ¢ —» u para indicar la existencia de una reduccién,
ya sea finita o infinita, con origen en ¢ y destino en wu.

En los sistemas de reescritura infinitarios, la infinitud se manifiesta de diversas
formas. Veamos algunos ejemplos utilizando las reglas de reescritura f(z) — g(x) y
g(z) — k(z). En un sistema de reescritura infinitario, cada paso de reduccién puede
involucrar términos infinitos. Si abreviamos como f“ el término infinito f(f(f...)),
que consta de una cantidad infinita de ocurrencias, todas del simbolo f, entonces el
siguiente es un paso de reduccién vélido: f¥ = f(f¥) — g(f“). Ademsds, las secuen-
cias de reduccion pueden tener una longitud infinita. Un ejemplo es f“ — g(f“) —

g(g(f“)) = ... = g(...g(f(f)...) = g(...9(g(f*))...) — ... Esta secuencia es con-
vergente, siendo ¢g“ su término destino. En lo sucesivo, denotaremos una secuencia de

2més precisamente, una secuencia cuya longitud es un ordinal lémite.

3otra vez, nos referimos a secuencias cuya longitud es un ordinal limite.

242 APPENDIX A. RESUMEN EN CASTELLANO

esta forma como f“ — g(f*) — g(g(f“)) —» ¢*. A partir de este tultimo término, la
secuencia puede continuar, p.ej. con el paso g* — k(g“), generdndose una secuencia
cuya longitud es w + 1, donde w es el primer ordinal infinito. A su vez, la secuencia
fo = g(f*) = g(g(f?) - ¢* — k(g*) — k(k(g”)) — k“ es de longitud w x 2.
Puede demostrarse la existencia, para cualquier ordinal numerable «, de una reduccién
fuertemente convergente cuya longitud es exactamente c.

Este capitulo es un estudio de la equivalencia de reducciones en sistemas de
reescritura de primer orden infinitarios, basado en el modelo de proof terms. Se toma
como punto de partida la definicién de proof terms y la caracterizacion de la equivalencia
entre reducciones por permutaciones sucesivas utilizando proof terms, que aparecen en
[BKAV03], Secciones 8.2 y 8.3. Para ello, se extiende a la reescritura infinitaria la nocién
de proof term, permitiendo denotar reducciones infinitas y/o sobre términos infinitos,
mediante proof terms. Se pone especial cuidado en la denotacién de la concatenacién
de una secuencia infinita de reducciones. También se extiende la caracterizacién de la
equivalencia entre reducciones por permutaciones sucesivas, utilizando ldgica ecuacional
sobre proof terms: dos reducciones resultan equivalentes si, y sélo si, la ecuacién ¢ = ¢
puede concluirse, utilizando légica ecuacional, a partir de un conjunto béasico de ecua-
ciones, donde ¥ y ¢ son proof terms que representan las dos reducciones en cuestion.
Destacamos que esta forma de caracterizar la equivalencia de reducciones infinitarias es
una aplicacion de légica ecuacional en un contexto infinitario.

Para obtener la caracterizacion mencionada de la equivalencia entre reducciones
infinitarias se agrega, a las reglas que definen la clausura por equivalencia y por opera-
ciones, una regla que permite apelar al concepto de limite en un razonamiento ecuacional:
dos proof terms se consideran equivalentes, si son, cada uno de ellos, el limite de una
secuencia de proof terms, tal que las distancias entre los elementos sucesivos de las dos
secuencias tiende a cero. El concepto de profundidad minima es utilizado para definir la
distancia entre dos proof terms: separando la actividad que denotan dos proof terms en
una parte comun y otra que refleja la diferencia entre ellos, la distancia entre los proof
terms es inversamente proporcional a la profundidad minima de la parte en que difieren.

Destacamos que la caracterizacion obtenida modela adecuadamente casos en los
cuales debe permutarse un paso respecto de una cantidad infinita de pasos, y/o re-
alizar una cantidad infinita de permutaciones, para obtener la equivalencia entre dos
reducciones. Damos algunos ejemplos, utilizando las reglas f(x) — g(x), g(z) — k(x) y
m(x) — n(x). Para transformar la secuencia

m(f*) = m(g(f“)) = m(g(g(f“))) = m(g*) — n(g*)
en la equivalente

m(f*) = n(f*) = n(g(f*)) — nlg(g(f*))) - n(g*)
el dltimo paso de la primer reduccion debe permutarse con una cantidad infinita de pa-
sos, pues se corresponde con el primer paso de la segunda reducciéon. Para transformar

[= 9(f?) = 9(g(f*)) = ¢* = k(g”) = k(k(g”)) - k¥
en la secuencia equivalente
fo = g(f*) = k(<) = k(g(f“)) = k(k(f“)) — &
cada uno de los infinitos pasos correspondientes a la regla g(x) — k(z) debe permutarse
con infinitos pasos correspondientes a f(x) — g(z).

A.6. CONCLUSIONES 243

Demostramos que la representacion de reducciones mediante proof terms es com-
pleta: para cada secuencia de reduccién cuya longitud es un ordinal numerable, existe
un proof term que la denota. Adicionalmente, mostramos que este proof term es wnico,
salvo por la asociatividad del simbolo que representa la concatenacién. Para demostrar
esta afirmacion de unicidad, se extiende la nocién de “expresiones iguales salvo asocia-
tividad de un operador binario” al términos infinitarios.

Finalmente, utilizamos la formalizacion de la equivalencia entre reducciones mediante
proof terms, para desarrollar una demostracién alternativa del resultado de compresién
de reducciones infinitarias. Concretamente, demostramos que cualquier reduccién? es
equivalente a otra, cuya longitud es a lo sumo w. P.ej., ya mencionamos que la secuencia
[= 9(f) = g(g(f*)) - ¢° — k(g”) — k(k(g*)) — k¥, cuya longitud es w x 2,
es equivalente a fY — ¢g(fY) — k(f“) — k(g(f¥)) — k(k(f¥)) — k¥, secuencia
de longitud w. Destacamos que el resultado demostrado representa una versién del
resultado de compresién maés fuerte que las que aparecen en la literatura conocida por

el autor.

A.6 Conclusiones

Resenamos las principales contribuciones realizadas en esta tesis.

Respecto de la normalizacion, presentamos una nueva demostracién abstracta en
el modelo ARS, que puede utilizarse para estrategias multipaso, y para sistemas de rees-
critura de términos tanto de primer orden como de alto orden. Definimos una estrategia
multipaso para el Pure Pattern Calculus, un calculo con patrones no-secuencial, y de-
mostramos que dicha estrategia es normalizante, por medio de la demostracién abstracta
mencionada mas arriba.

Respecto de la estandarizacién, obtenemos varios resultados para el linear substi-
tution calculus, un célculo ES a distancia. En particular, demostramos la unicidad de
reducciones standard considerando al conjunto de los términos de este calculo médulo
una relacién de equivalencia. Para obtener este resultado, desarrollamos una nueva de-
mostracién abstracta de estandarizacion en el modelo ARS, y demostramos que todas las
nociones que intervienen en la representacién de un sistema de reescitura en el modelo
ARS, tales como paso de reduccién, residuo, etc., son invariantes respecto de la relacién
de equivalencia mencionada.

Respecto de la equivalencia entre reducciones, presentamos una caracterizacion
de la equivalencia por permutaciones sucesivas, para los sistemas de reescritura infini-
tarios lineales a izquierda de primer orden, mostrando que permite analizar distintos
casos en los que resulta necesaria una cantidad infinita de permutaciones para mostrar
la equivalencia entre dos reducciones. Para obtener esta caracterizacion, se extiende el
modelo de proof terms, en la formulacién para reescritura de términos de primer orden
descripta en [BKdV03], al 4&mbito de la reescritura infinitaria. Demostramos que toda se-
cuencia de reduccién fuertemente convergente puede ser representada por un proof term,
y ademads, que dicho proof term es unico, médulo la asociatividad del operador binario
de concatenacién. Utilizamos el modelo de reescritura infinitaria mediante proof terms
para presentar una demostracién alternativa del resultado de compresiéon de reducciones
fuertemente convergentes.

4En rigor el resultado obtenido es més general, aplica a cualquier actividad de contraccién.

244 APPENDIX A. RESUMEN EN CASTELLANO

Como posibles lineas de trabajo futuro, mencionamos las siguientes.

Respecto del trabajo sobre normalizacién, estudiar si las ideas que subyacen a la
definicion de la estrategia de reduccién para el Pure Pattern Calculus que presentamos en
esta tesis, pudieran dar lugar a la definicién de estrategias multipaso para otros sistemas
de reescritura de alto orden, o mejor ain, para familias de dichos sistemas. Por otro
lado, creemos que resulta interesante estudiar la posibilidad de extender la demostracion
abstracta de normalizacién que presentamos en esta tesis. Aunque no hemos logrado
demostrar que la seleccién sistemadtica de conjuntos de pasos necesarios sea suficiente
para demostrar que una estrategia de reduccién es normalizante, prescindiendo asi de la
nocion adicional de conjunto de pasos non-gripping, tampoco hemos encontrado ningtin
contraejemplo; en la opinion del autor, dilucidar esta cuestién implicaria avanzar un
paso en la comprensién de las estrategias multipaso.

Respecto del trabajo sobre estandarizacion, evaluar la aplicabilidad de la idea de la
aplicacién de una operacion a distancia, en el estudio del fenémeno de pattern matching,
mediante la definiciéon de cdlculos de matching explicito a distancia. Aunque varios
calculos de matching explicito, basados en calculos con patrones, han sido propuestos
y estudiados en la literatura, el autor no conoce ningin estudio de estandarizacién que
aplique a céalculos de matching explicito. Conjeturamos que un calculo de matching
explicito a distancia podria tener asociado un espacio de reducciones menos complejo,
posibilitando de esta forma el estudio de resultados de estandarizacion para el mismo.

Respecto de la equivalencia de reducciones para reescritura infinitaria, cree-
mos que algunas de las ideas subyacentes a la demostracién del resultado de compresién
que se presenta en esta tesis, pueden dar lugar al desarrollo de demostraciones genéricas
de resultados de estandarizacion para reescritura infinitaria, utilizando el modelo de
proof terms. Tal como se indica en [Ket12], se requiere una nocién de paso externo que
resulte adecuada a la reescritura infinitaria. Conjeturamos que utilizando la nocién
propuesta en ese trabajo, pueden obtenerse resultados de wnicidad de reducciones
standard. Otra direccién posible de trabajo futuro es la comparacion de la caracte-
rizacion de la equivalencia por permutaciones sucesivas que presentamos en esta tesis,
con otras posibles caracterizaciones de la equivalencia entre reducciones infinitarias. Al
respecto, destacamos que en [KKSdV95], y también en [BKdV03], Capitulo 12, se pre-
senta una definicién de equivalencia basada en proyecciones, que extiende la llamada
“Lévy-equivalencia”, cfr. [HLI1]. Por otra parte, en [BKdV03], Capitulo 8, asi como en
[vOdV02], se demuestra la equivalencia entre varias caracterizaciones de la equivalencia
entre reducciones, para reescritura finitaria.

Finalmente, mencionamos que en este capitulo, ademaés de la resena de los resultados
obtenidos y la descripcién de posibles direcciones de trabajo futuro, presentamos algunas
notas relacionadas con el uso, en esta tesis, de los modelos genéricos de los sistemas
abstractos de reescritura (ARS) y de proof terms. Estas notas ponen en relevancia los
indicios que pueden proporcionar estos modelos genéricos para la comprensién de las
caracteristicas de distintos sistemas de reescritura, y brindan algunos elementos que
comparan los dos modelos utilizados.

Destacamos cémo se refleja, en cada modelo, la nocién de ortogonalidad en sistemas
de reescritura de términos. El modelo ARS da una caracterizacion semdantica de la
ortogonalidad que permite tratar como ortogonales algunos sistemas de reescritura que
no resultan tales de acuerdo a un criterio sintactico, como es el caso del linear substitution
calculus, o para los cuales resulta dificil analizar su ortogonalidad desde un punto de vista

A.6. CONCLUSIONES 245

sintactico, debido a la forma en que estdn definidos, como es el caso del Pure Pattern
Calculus. Por su parte, el modelo de proof terms esta enfocado en la descripcion detallada
de reducciones individuales. Notamos que para cualquier situacién en la que la falta de
ortogonalidad implica una eleccién entre opciones mutuamente incompatibles, en una
reduccién particular se elige, a lo sumo, una de estas opciones, pudiéndose establecer
cudl es la opcién elegida. Esta observacién implica que la problemética de la falta de
ortogonalidad pierde relevancia en el modelo de proof terms. Por lo tanto, en este modelo
pueden obtenerse resultados que, en otros enfoques, quedarian restringidos a sistemas
ortogonales, de forma tal que resulten validos para familias de sistemas de reescritura
que incluyan tanto sistemas ortogonales como no ortogonales.

246 APPENDIX A. RESUMEN EN CASTELLANO

Appendix B

Résumé en francais

B.1 Introduction

On aborde dans cette these certaines propriétés formelles de systemes de réécriture qui

concernent leurs espaces des dérivations. Les systemes de réécriture choisis présentent

des caractéristiques particulieres qui font I’étude des propriétés choisies des défis intéressants.
Dans la suite, on présente les systeémes étudiés dans cette these.

e Le chapitre 3 est dédié au Pure Pattern Calculus, PPC dans la suite. Il s’agit d’'un
calcul avec motifs. Un attribut clé de ce calcul est que ’ensemble des motifs est
le méme que celui des termes. Notamment, des pas de réduction peuvent étre
effectués a l'intérieur d’un motif; c’est a dire, les motifs sont dynamiques. Une
opération de matching soigneusement définie permet de préserver la confluence
dans le PPC.

On étudie la question de I'existence de stratégies de calcul normalisantes pour le
PPC. On remarque que le dispositif pour gérer les erreurs de matching implique
son caractere non-séquentiel. Par conséquent, les résultats dérivés de la notion de
radical nécessaire ne peuvent étre appliqués pour le PPC.

e Le sujet du chapitre 4 est le Linear Substitution Calculus, \j5,, dans la suite,
un calcul appartenant a la famille des calculs avec substitutions explicites. La
caractéristique la plus importante de ce calcul est qu’on peut appliquer une sub-
stitution explicite concernant une certaine variable, a une occurrence distante de
cette variable, c’est a dire, une occurrence non juxtaposée a la substitution. Il
existe une forte corrélation entre le AJ;,, et les réseaux de preuves utilisés dans
la logique linéaire. Une relation d’équivalence ~ dans ’ensemble des termes de
Alsups €ntrainée par trois équations, permet d’établir un vrai isomorphisme: le
comportement d’un réseau de preuve correspond exactement a celui de n’importe
quel terme dans une certaine classe de ~-équivalence.

On établit des criteres et des résultats de standardisation pour le Linear Substitu-
tion Calculus. Certains d’entre eux sont définis sur ’ensemble des termes modulo
la relation ~ mentionnée ci dessus.

e Dans le chapitre 5, on étudie les systeémes de réécriture infinitaire du premier
ordre, linéaires a gauche. On adopte dans cette these le critere de convergence
forte pour la définition des dérivations.

247

248 APPENDIX B. RESUME EN FRANCAIS

Plus précisément, on propose une caractérisation de 1’équivalence entre dérivations
infinitaires. On montre 'adéquation de notre définition dans plusieurs exemples.
Notamment, on discute un phénomeéne que 1’on trouve seulement dans la réécriture
infinitaire: I’existence d’un type particulier d’effacement de sous-termes.

On utilise la notion de équivalence définie pour développer une preuve d’une ver-
sion renforcée du résultat de compression des dérivations infinitaires.

Un trait commun aux trois sujets abordés dans ce travail est 'utilisation de formal-
ismes génériques de systemes de réécriture. Le matériel des chapitres 3 et 4 repose sur
les Systémes Abstraits de Réécriture, tels qu’ils sont décrits dans [Mel96]. De son co6té,
le chapitre 5 est fondé sur la notion de proof term. On étend a la réécriture infinitaire la
formulation pour les systémes de réécriture du premier ordre introduite dans [BKdV03],
ol les dérivations sont modélisés comme des proof terms. Une introduction aux deux
modeles génériques utilisés fait le sujet du chapitre 2.

Dans cette these, on décrit chaque calcul abordé dans le cadre de I'un de ces deux
modeles génériques. On se sert de la possibilité de développer des preuves abstraites
dans ces modeles pour aboutir aux résultats désirés.

B.2 Modeles génériques de réécriture

On décrit dans ce chapitre les modeles génériques de réécriture qu’on utilisera dans la
suite de cette these.

Le premier de ces modeles est celui qui repose sur la notion de Systéeme Abstrait de
Réécriture, dans la suite ARS, di a la sigle en anglais.

Un ARS est défini comme une structure ayant la forme (O, R, src, tgt, [-], <), ou O et
R désignent deux ensembles de termes (ou objets) et radicaux respectivement; src, tgt :
R — O modélisent les termes de départ et d’arrivée de chaque radical, [-] S R x R x R
est la relation de résidus, et <€ R x R est la relation d’emboitement.

La preuve abstraite de normalisation développée dans le chapitre 3 se sert d’'une
version étendue de la définition de ARS, qui inclut une relation additionnelle «€ R x R
dit d’agrippement.

Diverses caractéristiques d’un calcul peuvent étre modélisés dans le cadre des ARS
sous la forme d’aziomes.

A titre d’exemple, la finitude des développements et I'orthogonalité sont décrits par
des axiomes. A propos du dernier, nous soulignons que 'orthogonalité est définie sur la
base de la relation abstraite de résidus, produisant une description ayant un caractere
plus sémantique que celle fondée sur la notion de paire critique.

Les traits les plus marquants de la relation d’emboitement se modélisent également
comme des axiomes. Nous évoquons 'axiome dit de linéarité:

atb < I .b[a]V

qui définit une condition, liée a I’emboitement, qui doit satisfaire un radical a pour avoir
la capacité de multiplier, ou bien d’effacer, un autre radical b.

Dans ce modele de réécriture, une réduction est définie simplement comme une
séquence de radicaux rg,r1, ... qui vérifie tgt(r;) = src(r;+1) pour tout i. Etant donné

B.2. MODELES GENERIQUES DE REECRITURE 249

un ensemble de radicaux co-initiaux A, un développement de A est n’importe quelle
réduction rg,ry,... telle que pour tout i, r; € A[ro][r1]...[ri—1], ot A[r] est défini
comme | J,c 4{0 / a[r]b}. Un développement ro,71,. .., 7, est complet si Alro][r1] ... [4]
5. On peut montrer de maniére abstraite que pour n’importe quel ARS qui vérifie
les axiomes d’orthogonalité et de finitude des développements, en méme temps que
d’autres axiomes basiques, tous les développements complets d’un ensemble de radicaux
co-initiaux terminent sur le méme terme et induisent la méme relation de résidus.

Ce résultat permet de décrire, de maniere simple, la notion d’équivalence de réductions
par permutation de pas dans le cadre abstrait fourni par les ARS. Si dy et ds sont des
réductions, alors dy; a; f; do et d1; b; €; do sont équivalentes a une permutation pres lorsque
e et f sont des développements complets de a[b] et b[a] respectivement. L’équivalence
entre réductions se définit comme la cloture reflexive-transitive de cet relation. On peut
définir un ordre de standardisation entre réductions équivalentes, en ayant recours a la
relation d’emboitement: on dit que di;a; f; do est plus standard que di;b;e;ds si a < b
lorsque a < b.

La notion de réduction standard est precisée dans [Mel96] sur la base de cet ordre de
standardisation. En outre, plusieurs résultats de standardisation, concernant 1’existence
ou 'unicité des réductions standards dans chaque classe de réductions équivalentes, sont
énoncés et prouvés. Les conditions requises sur un ARS pour assurer ces résultats, sont
décrits sous la forme d’axiomes.

L’idée de se servir des termes pour répresenter des réductions, donne lieu au deuxieme
modele générique de réécriture qu’on utilise dans cette thése. On appelle proof terms les
termes qui répresentent des réductions. Dans la suite, nous décrivons le modele fondé sur
la notion de proof term, tel qu’introduit dans [BKdV03] pour les systémes de réécriture
des termes du premier ordre (TRS) linéaires & gauche. Ladite version du modele est la
base pour le materiel du chapitre 5 de cette these.

Un proof term pour un TRS T est un terme sur une signature qui étend celle de T'.
Pour chaque regle en T', on ajoute un symbole dont I’arité est le nombre de variables qui
apparaissent dans la regle. Par exemple, les regles f(x) — g(z) et g(x) — k(x) donnent
lieu & deux symboles unaires, disons u et v respectivement, dans la signature des proof
terms pour tout TRS incluant ces regles. La signature des proof terms se complete par
un symbole binaire, noté par le point, qui désigne la concaténation. Ainsi, la réduction
f(a) = g(a) — k(a) est dénoté par le proof term u(a) - v(a).

Nous soulignons que la notion de proof term donne des désignations particuliers
pour les réductions simultanées de ensembles de radicaux. C’est a dire, la réduction
simultanée d’un certain ensemble de radicaux est désignée par un proof term, qui est
différent de ceux qui désignent n’importe quel autre option pour la réduction séquentielle
des mémes radicaux. Par exemple, le proof term p(p(a)), qui désigne la réduction
simultanée des deux radicaux dans le terme f(f(a)), est différente soit de u(f(a)) -
g(p(a)) soit de f(u(a)) - p(g(a)), qui dénotent les deux possibilités pour réduire les
mémes radicaux de facon séquentiel.

Dans ce modele de réécriture, un schema de logique equationelle, opérant sur des
proof terms, permet de répresenter la notion de permutation de pas de réduction, et
par conséquent, ’équivalence entre réductions. La base pour cette répresentation se
compose des six schemas d’équation suivantes

250 APPENDIX B. RESUME EN FRANCAIS

(IdLeft) src(z/;) Voo~

(IdRight) Ctgt(Y) ~ ¥

(Assoc) (x) o~ (- 9) -

(StrUCt) f(’l,bl,ﬂ/)m) : f(¢lav¢m) ~ f(d}l ¢17-‘-7¢m : ¢m)

(Outln) Wbty ooy thm) o~ Sty Sm) - T, e Uml

(InOut) W)~ L1, tn] - it)
ou s; et t; désignent les termes de départ et d’arrivée, respectivement, du proof term
¥;; tandis que la regle désignée par p a la forme l|z1,...,zy| — 7[z1,...,2y]. Par

exemple, I’équivalence entre les réductions h(f(a), f(a)) = h(f(a),g(a)) — h(g(a), g(a))
et h(f(a), f(a)) = h(g(a), f(a)) = h(g(a),g(a)), ou chacune de ces réductions est le
résultat d’une permutation de pas paralleles sur l'autre, peut étre établie moyennant
leur répresentation comme proof terms comme suit:

h(F(a), (@) - h(u(a).g(a)) ~ h(f(a) - p(a),p(a) - gla)) (Struct)
~ h(ua), u(a)) (IdRight), (IdLeft)
~ h(u(a) - gla), f(a) - pla)) (ldLeft), (IdRight)
~ hiu(a), f(a) - h(g(a), pu(a) (Struct)

L’équivalence entre réductions concernant la permutation de pas emboités peut
étre établie a 'aide des équations (Outln) et (InOut). Par exemple, nous obtenons

Iéquivalence des réductions f(f(a)) — f(g(a)) — g(g(a)) et f(f(a)) — g(f(a)) —

g(g(a)) comme suit:

ou l'on fait appel d’abord & (InOut), et apres a (Outln).

B.3 Normalisation

Le but général du chapitre 3 est d’atteindre des stratégies de réduction normalisantes
et effectives pour le Pure Pattern Calculus en particulier, et pour des calculs non-
séquentiels en général. Dans ce cadre, nous nous penchons sur des stratégies “multi-
radicaux”, c’est a dire, celles qui permettent la sélection de plusieurs radicaux dans le
méme terme. Le terme suivant dans la dérivation donnée par une stratégie “multiradi-
caux” est le résultat de la réduction simultanée des radicaux choisis.

On peut distinguer deux parties dans ce chapitre.

Le matériel dans la premiere de ces parties est de nature abstraite. On travaille avec
les Systéemes Abstraites de Réécriture, bref ARS, comme indiqué dans l'introduction.
Dans ce cadre, nous présentons une preuve abstraite de normalisation inédite, orientée
vers les stratégies “multiradicaux”. Pour développer cette preuve, on se sert de la
capacité des ARS pour modéliser les dérivations dans lesquelles chaque pas, ou chaque
étape, correspond a la réduction simultanée d’un ensemble de radicaux co-initiaux.

Plus précisément, nous prouvons que, pour tout calcul satisfaisant un certain ensem-
ble de conditions, la réduction d’ensembles de radicaux nécessaires et non-agrippants
est normalisante.

Les conditions imposées sur le calcul incluent tous les axiomes requis dans les preuves
de standardisation présentées dans le chapitre 4 de [Mel96], sauf pour I'un d’entre eux.
L’axiome omis est celui dénommé Stabilité, qui décrit une condition liée au caractere

B.3. NORMALISATION 251

séquentiel d’un calcul. Par conséquent, ’exclusion de cet axiome permet d’utiliser le
cadre des ARS pour aboutir & des résultats que I’on peut appliquer sur des calculs non-
séquentiels. D’autre part, la preuve que nous présentons fait recours a un nouvel axiome,
que nous introduisons dans cette these. Cet axiome, qui nous appelons Pivot, compléte
I’analyse de la préservation de 'emboitement dans les résidus, décrit par les axiomes de
non-contexrtualité et d’enclave.

La notion d’ensemble nécessaire de radicauz co-initiauzr étend celui de radical nécessaire.
Un ensemble A de radicaux dans un terme t est dit nécessaire si toute dérivation de t
vers une forme normale inclus la contraction de, au minimum, un radical dans A, ou
bien, d'un de ses résidus. Une preuve de normalisation présentée dans [SR93| établit
que pour les systemes de réécriture de termes du premier ordre, la réduction des ensem-
bles nécessaires de radicaux est normalisante. Les idées principales de ce travail sont
revisitées dans la preuve que nous développons. La généralisation de ces idées au cadre
abstrait des ARS, dans lequel on peut modéliser des calculs d’ordre supérieur, requiert
I'introduction des notions additionnelles.

Entre ces notions, on remarque que la preuve abstraite de normalisation décrite
dans cette these fait appel & une version étendue du formalisme des ARS, incluant la
relation d’agrippement entre radicaux. Cette relation est introduite dans [Mel96] pour
donner une preuve abstraite de la finitude des développements. La condition d’étre non-
agrippante, qui exige des ensembles de radicaux réduits, est fondée sur cette relation.
On doit également ajouter trois axiomes additionnelles, qui décrivent ’agrippement de
forme abstraite, aux conditions imposées aux calcul.

Dans la deuxieme partie de ce chapitre, nous appliquons au Pure Pattern Calculus,
PPC dans la suite, le résultat abstrait de normalisation déja décrit. Comme indiqué dans
I'introduction, le PPC est un calcul avec motifs non-séquentiel, dans lequel les motifs sont
dynamiques. Nous définissons une stratégie de réduction multiradicaux pour ce calcul,
et nous prouvons que cette stratégie est normalisante, en faisant recours a la preuve
abstraite développée dans le cadre des ARS.

On utilisera dans ce résumé la version simplifiée de la syntaxe du PPC qui suit:

tu=x|c| Agtt |t

ou ¢ désigne un élément d’un ensemble de constants, et 6 est ’ensemble de variables liées
par la construction d’abstaction. Par exemple, les trois occurrences de la variable z dans
le terme A, .1 2w.(A(g 4y 27y.2yz)w sont liées par I'abstraction extérieure, méme celles
incluses dans I’abstraction interne. On désignera la fonction identité, i.e. (Ag,2.7), avec
la lettre 1.

La sémantique opérationnelle du PPC est définie par la régle suivante, qui généralise
la regle 5 du A-calcul classique:

(Nop-s)u — {p/g u}s si {p/p u} est décidé

La notation {p/yp u} désigne 'opération de filtrage du motif p avec 'argument u, en
relation a I’ensemble de variables 6. Etant donnés deux termes p et u, et un ensemble
0, il y a trois issues possibles pour I'opération de filtrage:

1. filtrage positif: largument se conforme au motif. Dans ce cas, le résultat du
filtrage est une substitution dont le domaine est ¢. Par exemple, {ax/(,; a(lc)} =
{x :=Ic}.

252 APPENDIX B. RESUME EN FRANCAIS

2. filtrage négatif: la forme de I'argument est différente de celle du motif. Dans
ce cas, on obtient la valeur bien connue fail comme résultat du filtrage. Par
exemple, {ax/(,1 b(Ic)} = fail.

3. filtrage non décidé: Iapplication de pas de réduction internes au motif, 4 I’argument,
ou aux deux, est nécessaire pour aboutir & des termes pour lesquels on peut
décider si le filtrage est positif ou négatif; la décision n’est pas possible pour
les termes donnés. Dans ce cas, le résultat est la valeur bien connue wait.
Par exemple, {ar/(; I(ac)} = {az/(y I(bc)} = wait. Dans I'un ou l'autre
cas, un pas de réduction dans 'argument permet d’obtenir un résultat décidé:
{az/(zy ac} = {x := ¢}, {ax/y) bc} = fail.

Un filtrage est dit décidé s’il est positif ou négatif.

Nous remarquons qu’'un terme ayant la forme (Agp.s)u dont le filtrage {p/p u} est
non décidé, ne correspond pas a un radical du PPC. Par exemple, le seul radical dans le
terme (A(zyax.x)(I(ab)) est celui correspondant au sous-terme I(ab). On désigne comme
pré-radical chaque sous-terme ayant la forme (Agp.s)u dans un terme, qu’il s’agisse d’'un
radical ou pas.

On complete la définition du PPC en indiquant que I'application de la valeur fail
a n’importe quel terme rapporte le terme I, c’est-a-dire, la fonction identité I. Par
conséquent, on a (Azar.dr)(ac) — dc et (Azyar.dr)(bc) — 1.

A propos du filtrage, on souligne que dans le cas ou soit le motif soit I’argument sont
des termes composés, 1’échec de filtrage (c’est-a-dire, la constatation d’une différence
entre le motif et 'argument) dans n’importe quel composante, entraine que le filtrage
composé est négatif. Par exemple, {abcz/(,; adce} = {abcz/(,; abde} = fail. Le

caractere non-séquentiel du PPC provient de cette particularité. A titre d’exemple, on
considere le terme t = (A\(yyabcz.z)(a(ld)(Id)e). Aucun des deux radicaux de ce terme
est nécessaire, comme indiqué par les réductions ¢ — (A(;yabcr.z)(ad(ld)e) — I et
t — (Agyabcr.z)(a(ld)de) — I. Le fait qu’il suffit de réduire n’importe lequel des deux
radicaux de t pour atteindre la forme normale I, est di au fait que la différence entre
b et d, ou celle entre c et d, suffit pour obtenir un filtrage négatif, et par conséquent
décidé, avec le motif abcz.

La stratégie de réduction que nous définissons dans ce chapitre se concentre sur le
pré-radical plus extérieure — plus & gauche (dans la suite LO, d a Pacronyme anglais
pour “leftmost-outermost”). Si le filtrage qui correspond a ce pré-radical est décidé,
c’est-a-dire, si ce pré-radical est en fait un radical, alors le choix se porte sur ce radical
uniquement. Autrement dit, le choix se porte sur des radicaux internes au motif et/ou
a Pargument du pré-radical LO. Dans ce cas, on cherche particulierement des radicaux
que peuvent contribuer & 'obtention d’un terme dans lequel le radical LO soit décidé.

Le point concernant le filtrage qui rend le PPC non-séquentiel, détermine aussi I’exis-
tence des termes pour lequels la stratégie doit choisir la réduction simultané de plusieurs
radicaux coinitiaux, et par conséquent, le caractere multiradicauzr de cette stratégie.
Par exemple, pour n’importe lequel des termes suivantes: (A(;jabcr.z)(a(lb)(Id)e),
(Aqzyabez.z)(af(Id)e), (Ayzabez.z)(a(ld)(Ic)e), et (A abcz.x)(a(ld)Qe), ot © dé-
signe un terme non-normalisant, la stratégie doit choisir la réduction simultané des deux
radicaux internes a l'argument. Ce choix est nécessaire pour atteindre, dans tous les
cas, un terme dont le filtrage du pré-radical exterieur est décidé.

B.4. STANDARDISATION POUR LE LINEAR SUBSTITUTION CALCULUS 253

La concentration sur le pré-radical LO et, en plus, la facon dont les radicaux a réduire
son choisis si ce pré-radical est non décidé, portent sur une stratégie judicieuse, dans
le sens de limiter le nombre des cas dans lesquels plus d’un radical est choisi, et plus
en général, le nombre de radicaux choisis pour chaque terme. Nous remarquons que,
notamment, cette stratégie s’accorde avec la stratégie “plus extérieur — plus a gauche”,
choisissant exactement un radical pour chaque terme, si on considere la restriction du
PPC a I’ensemble des termes avec correspondance immédiate avec le A-calcul classique.

Pour vérifier que la stratégie décrite est normalisante, nous définissons un ARS qui
modele le PPC. Notamment, la définition de cet ARS inclut la relation d’agrippement.
Nous prouvons que cet ARS vérifie tous les axiomes requis dans la preuve abstraite
de normalisation développée dans la premiere partie de ce chapitre, et également, que
cette stratégie aboutit toujours a la réduction d’ensembles de radicaux nécessaires et
non-agrippantes.

B.4 Standardisation pour le linear substitution calculus

L’objectif de ce chapitre est d’obtenir des résultats de standardisation pour le linear
substitution calculus, A\]5,, dans la suite, en utilisant le modele de réécriture défini par
la notion de ARS.

Comme nous avons signalé dans I'introduction, ATy, est un calcul avec substitutions
explicites (ES), ayant la capacité d’agir a distance. Une breve description du calcul
permet d’observer cette caractéristique.

La syntaxe de A\J,, est définie ainsi:

tu=x | Azt | tt| t]x/t]

On utilisera L, L/, etc., pour désigner des listes de substitutions ayant la forme
[z1/t1] ... [zn/tn]. Nous soulignons qu’une liste de substitutions, toute seule, n’est pas
un terme.

La sémantique de ATy, est donnée par les trois regles de réduction suivantes:

(Az.t)Lu —a t{z/u]L béta-a-distance
Clz]l[z/u] —1s Clull[z/u] substitution linéaire
t|z/u] —gc 1 if z ¢ fv(t) ramasse-miettes

ou [[z]] dénote une occurrence libre de x dans le contexte C. La forme de la régle de sub-
stitution linéaire permet, comme nous avons remarqué dans l'introduction, d’appliquer
une substitution a une occurrence de variable qui n’est pas adjacente a la substitution
en question. Par exemple, dans

((zy)(22)) [z/w] = (wy)(zz)[z/w] = (wy)(wz)[z/w]

deux pas de réduction, correspondant aux deux occurrences libres de = dans (zy)(zz),
suffisent pour appliquer la substitution. D’ailleurs, la régle béta-a-distance permet
d’appliquer une abstraction a un argument dont elle est séparée par une liste de substitu-
tions. De cette maniere, on évite la nécessité de multiplier et de déplacer les substitutions
explicites dans le terme, en obtenant ainsi un espace de réductions plus simple que celui
d’autres calculs avec ES.

254 APPENDIX B. RESUME EN FRANCAIS

Le caractere “a distance” du calcul Ay, fait que ’emplacement précis d’une sub-
stitution explicite soit parfois négligeable. Cette remarque témoigne ’analogie entre les
calculs ES a distance et les réseaux de preuve introduites dans le cadre de la logique
linéaire. La relation d’équivalence dans ’ensemble de termes définie par les équations
suivantes

tlz/ully/s] =~cs tly/sllz/u] = ¢ £v(s) & y ¢ fv(u)
Ay [z/u] ~e Aytlz/u] y¢fv(u)
(ts)[z/u] Ny, tlz/uls x ¢ fv(s)

permet d’établir un isomorphisme entre les classes d’équivalence de termes et les réseaux
de preuve. On appelle ~ cette relation.

Une premiere définition d’'un ARS qui modélise A\J;,, permet d’obtenir des premiers
résultats de standardisation pour ce calcul.

On signale que ce modele permet d’établir une distinction entre des radicaux différentes,
déterminés par la regle de substitution linéaire, qui correspondent au méme sous-terme
d’un terme donné, comme c’est le cas des deux radicaux du terme (zz)[z/y].

La relation d’emboitement pour cet ARS est un ordre “gauche vers droite”, dénoté
par <p et défini comme suit: étant donnés deux radicaux co-initiaux rq et ro, on définit
r1 <p 19 sil'ancre de rq est, textuellement, a gauche de celle de 79, ou ’ancre d’un radical
est 'expression soulignée comme suit pour chaque regle: (Az.s)Lu, Clz] [z/u], t[z/u].
Cet définition produit un ordre total, ce qui simplifie la vérification de certains ax-
iomes requis dans les résultats de standardisation présentés dans [Mel96]. L’application
d’étiquettes sur l'ancre de chaque radical, et ’observation du comportement de cettes
étiquettes, permettent de définir la relation de résidus du ARS qui modelisent A7y -

I’ARS ainsi défini permet d’arriver a une caractérisation forte de la notion de reduc-
tion standard pour Al ,: chaque classe de reductions équivalentes inclut, exactement,
une reduction standard.

D’autre part on remarque que 'ordre <p n’est pas invariant par rapport a la relation
d’équivalence ~ mentionée plus haut. Par exemple, si 'on considere les termes

ty = (zy) [v/ww/=]][y/y'] ~ (@[z/wlw/z]]) (y[y/y']) = t2

on voit que le radical correspondant & ’occurrence soulignée de y précede, dans t1, celui
de 'occurrence soulignée de w, tandis que cet ordre devient inverse dans ts.

Pour décrire A7, comme un calcul de réécriture opérant sur des classes d’équivalence
de termes par rapport a la relation ~, on définit d’abord une bijection entre les ensembles
de radicaux de termes équivalents, fondée sur l'étiquetage décrit auparavant. Nous
montrons que cette bijection établit une bisimulation entre les radicaux, par rapport a
la relation de résidus.

Par ailleurs, pour resoudre le probleme mentionné concernant I’emboitement gauche-
vers-droite, on définit un deuxieme ARS, dont la relation d’emboitement, que nous
baptisons “ordre de boite”, et notée <g, est un sous-ordre strict de <.

Tandis que ce deuxiéme ARS capture de maniére adéquate la notion de réduction
modulo, d’aprés ce qu’on vient de dire, il ne satisfait pas tous les axiomes requis dans
[Mel96] pour obtenir un résultat fort de standardisation. Pour arriver a un tel résultat,
nous développons une nouvelle preuve abstraite de standardisation dans le cadre des
ARS, laquelle s’applique, en effet, au deuxieme modele obtenu de AJ .-

B.5. EQUIVALENCE DE REDUCTIONS POUR LA REECRITURE INFINITAIRE255

Il est important de signaler que le fait de resortir au cadre abstrait pourvu par la
notion de ARS permet d’obtenir des résultats intéressants pour un calcul, tel le A5,
dont 'espace de réductions doit étre considéré modulo une relation d’équivalence sur
I’ensemble de termes.

B.5 Equivalence de réductions pour la réécriture infini-
taire

Le but de ce chapitre est de transférer la description de ’espace des réductions des
calculs fondée sur le concept de proof term, telle qu’elle est définie dans [BKdV03]
pour les systemes de réécriture des termes (TRS) linéaires & gauche, au cadre de la
réécriture infinitaire. La définition des réductions infinitaires tiendra compte du critere
de convergence forte.

On trouve deux défis par rapport a la tache de modéliser les réductions infinitaires:
d’une part on doit décrire des réductions de termes infinis et, d’autre part, il faut décrire
(et raisonner sur) des réductions ayant une longueur infinie, notamment des réductions
dont la longueur dépasse le premier ordinal infini w.

On est obligé donc de travailler avec des termes infinis, par exemple, si nous donnons
le nom p a la regle f(x) — g(x), on peut considérer le proof term p(f“), qui désigne le
pas de réduction f¥ = f(f“) — g(f¥), ou f¥ = f(f(...)) et le symbole f apparait w
fois.

En outre, le deuxieme des deux défis signalés pose le probleme de trouver une maniere
adéquate de modéliser la concaténation d’un nombre infini de pas de réduction ou bien,
des réductions en général.

Etant donnés ces remarques, nous définissons dans ce chapitre I’ensemble des proof
termes infinitaires, de méme que leurs termes de départ (source) et d’arrivée (target).
Nous caractérisons formellement la profondeur minimale de (la réduction décrite par)
un proof term.

La définition de ’ensemble des proof terms inclut deux regles différentes pour la
concaténation: 'une pour la concaténation binaire, servant a définir le proof term ¥ - ¢
ol ¥ et ¢ sont des proof terms, 'autre pour la concaténation infinie, notée -;-, v,
ou chaque 9; est un proof term. Par exemple, en utilisant la regle p définie plus haut,
on peut considérer le proof term -, f'(1(g*)) qui dénote la réduction infinie f& —
g(f«) = g(g(f*)) = ¢g“. La propriété de convergence d’une réduction infinitaire admet
une caractérisation simple dans le cadre des proof terms; celle-ci repose sur la notion de
profondeur minimale des proof terms.

La définition des proof terms est simultanée avec celle d’'un ordinal dénombrable
associé de maniere unique a chaque proof term. Cette association permet de faire appel
a 'induction transfinie pour donner une définition précise de ’ensemble des proof terms
et pour raisonner sur cet ensemble. Dans la dite association, les ordinaux limite se
correspondent exactement avec les concaténations infinies.

Nous étendons de méme la caractérisation de ’équivalence entre réductions décrite
dans [BKdVO03], Sec. 8.3, aux réductions infinitaires. Nous rappelons que cette car-
actérisation se base sur I’application de la logique équationelle aux proof terms, a partir
d’un ensemble de schémas d’équation basiques qui modélisent la permutation des pas
de réduction adjacents.

256 APPENDIX B. RESUME EN FRANCAIS

Pour adapter cette caractérisation & la réécriture infinitaire, nous ajoutons une regle
qui permet de faire appel a la notion de limite dans un raissonement équationel. La
structure d’une telle regle est la suivante: étant donnés deux proof terms i et ¢, si
lon peut construire deux séquences (1; i<, et {(P;)i<, telles que ¥ et ¢ peuvent étre
montrés équivalents a ; et ¢;, respectivement, pour tout i, et en plus, la limite des
distances entre 1; et ¢; est nulle quand ¢ tend vers I'infini, alors on conclut que ¥ et ¢
sont, eux-mémes, équivalents.

En ajoutant la regle que nous venons de décrire, en méme temps qu’une regle de
congruence et un schéma d’équation basique en relation avec la concaténation infinie,
on obtient un systeme de logique équationelle adéquat pour raisonner sur 1’équivalence
des (proof terms qui désignent des) réductions infinitaires. En utilisant ce systéme
on a pu vérifier I’équivalence des réductions dans plusieurs exemples impliquant des
réductions infinies. Notamment, cette caractérisation de 1’équivalence offre un modele
adéquat, a notre avis, du phénomene de 'effacement infinitaire, dans lequel une partie
d’un réduction est effacée suite a une chaine infinie de permutations de pas de réduction,
tandis que l'effacement ne se produit pas aprés n’importe quel préfixe fini de cet chailne.

La caractérisation des réductions infinitaires fournie par les proof terms est complete:
nous montrons que toute réduction infinitaire convergente peut étre représentée d’une
maniere précise par un proof term. On montre aussi que cette représentation est unique
modulo associativité de la concaténation, c’est a dire, en identifiant, par exemple, ¥ -
(6 - X) et (¥ - @) - x.

Pour montrer la complétude et I'unicité de la représentation des réductions, on définit
le sous-ensemble des proof terms séquentiels (stepwise proof terms) qui décrivent des
réductions dont les pas sont réalisés en forme strictement séquentielle. Par exemple,
le proof term p(f(a)) - g(u(a)) est séquentiel, tandis que p(u(a)) ne lest pas. Nous
précisons aussi la notion d’“égalité modulo associativité de la concaténation” dans le
contexte de la réécriture infinitaire, en utilisant le méme schéma de logique équationelle
défini pour modéliser I’équivalence entre réductions, ou 'on prend I’associativité de la
concaténation comme seul schéma d’équation basique.

Finalement, nous donnons une preuve du résultat connu sous le nom de compression,
c’est a dire, que si l'on se restreint a des réductions de longueur au plus w, on ne perd
pas le pouvoir expressif de la réécriture infinitaire car, pour n’importe quelle réduction
convergente 1, il existe une autre équivalente 1)’ de longueur finie ou w. L’énoncé que
nous montrons est, en fait, plus fort que ceux que nous avons trouvés dans la littérature,
étant donné qu’on établit 1’équivalence, et non seulement la coincidence des termes de
départ et d’arrivée, entre la réduction originale et sa “comprimée” correspondante. En
plus, on ne demande pas que le systeme de réécriture sous-jacent soit orthogonal, comme
c’est le cas de la preuve donnée en [KKSdV95].

La preuve que nous présentons est basée sur le fait suivant: étant donnée une
réduction dénotée par le proof term 1), et un entier naturel n, on peut construire une
forme factorisée de 1), c’est & dire, un proof term 1’ = 1)1 - 19 de sorte que 1) est
équivalent & v’, 11 désigne une réduction finie, et en plus, la profondeur minimale de
19 est supérieure a n.

B.6. CONCLUSIONS 257

B.6 Conclusions

Comme indiqué dans 'introduction de ce résumé, on aborde dans cette these 1’étude de
propriétés formelles de plusieurs calculs de réécriture. Plus précisément, on obtient des
résultats concernant la normalisation pour le Pure Pattern Calculus PPC; la standardis-
ation pour le Linear Substitution Calculus A\gy,; et 'équivalence entre réductions pour
des systemes de réécriture infinitaires du premier ordre.

Tous les calculs considérés présentent des caractéristiques qui rendent difficile I’étude
des propriétés traitées dans cette these. Dans la suite, nous donnons un bref apergu de
ces caractéristiques.

e Par rapport au PPC, nous rappelons que ’échec de filtrage dans n’importe quel
composant d’un filtrage composé entraine le fait que ce filtrage soit négatif. Cela
détermine soit le caractere non-séquentiel du PPC, soit la nécessité de définir une
stratégie multiradicaux afin d’obtenir des résultats de normalisation.

e Dans le cas de A\];,,, le manque d’adéquation de I’emboitement syntaxique pour
pouvoir étre considéré comme un ordre de standardisation entre radicaux co-
initiaux, est di a deux facteurs.

L’un de ces facteurs est que ’emboitement syntaxique ne vérifie pas la condition
exprimée par I’axiome de linéarité: il se peut que deux radicaux a et b soient tels
que a multiplie ou efface b, et a ne contient pas syntaxiquement b. Par exemple,
si I'on considere t = x[x/y][y/z], et que 'on appelle a, et a, les radicaux corre-
spondant aux occurrencesisur—lignés de x et de y respectivement, on observe que
la réduction de a, résulte en t' = y[z/y][y/z], et done, provoque une duplication
du radical a,, tandis que c’est le radical ay celui qui contient a, dans le terme ¢.

L’autre facteur est que I’emboitement syntaxique n’est pas invariant par rapport
a la relation d’équivalence qui permet d’etablir un isomorphisme avec les réseaux
de preuve.

e Par rapport a la réécriture infinitaire nous soulignons que, afin de définir I’équivalence
entre réductions sur la base de la notion de permutation, on doit tenir compte du
fait que, dans certains cas, un nombre infini de permutations est nécessaire pour
obtenir ’équivalence entre deux réductions. Notamment, c’est possible qu’il soit
nécessaire de permuter un ensemble infini de pas, et chacun d’entre eux, par rap-
port & un autre ensemble infini de pas.

Par exemple, si l’on considere les regles f(x) — g(x) et g(x) — k(x), pour obtenir
que la réduction f“ — g(f*) — g(g(f“) - ¢* — k(g¥) — k(k(g”)) — k*
est équivalente a Y — g(f*) — k(f*) — k(g(f*)) — k(k(f*)) - k“, on doit
permuter tous les pas correspondentes a la regle g(z) — k(z), c’est a dire, un
nombre infini de pas. D’ailleurs, chacun de ces pas doit étre permuté avec un
nombre infini de pas qui correspondent a 'autre regle.

A notre avis, un autre point notable dans cette these concerne 1'utilisation de modeles
génériques de réécriture. Nous avons souligné les développements inédites a cet égard,
telles que les preuves abstraites de normalisation et de standardisation développés dans
le cadre des ARS, et I'extension du modele fondé sur la notion de proof term a des
systemes de réécriture infinitaire. Nous estimons que, en général, le materiel dans cette

258 APPENDIX B. RESUME EN FRANCAIS

these témoigne de la pertinence de 'utilisation de modeles génériques dans 1’étude de
calculs dont ’analyse des espaces de réduction est une tache difficile.

Appendix C

Detailed proofs for the linear
substitution calculus

The functions about free and bound variables are defined as expected. The only differ-
ence between fv and flv is fv(x) = {z}, flv(z) = . We will also refer to the set of
bound variables of a term ¢, bv(t), with the expected definitions. As the contexts are
terms, the definitions of fv, £1v and bv apply to contexts as well as to terms.

We define the set of bound labeled variables of a list of substitutions
L= [/t .. [a t,], as blv(L) = {z; / 2*) = 2%}, ie., the subset of vari-
ables carrying a label in {xga‘)}

We say that a list of substitutions [mgal)/tl] . [Zb‘%an)/tn] is well-labeled, if for all
i, ti € Twe, and fv(t;) N blV([l’,Eiif—l)/ti_trl] . [acglo‘")/tn]) = f. We denote the set of
well-labeled lists of substitutions as £y .

We assume a-conversion preserves free variables and well-labeling, i.e.:

Lemma C.0.1. Let t,u terms such that t and u are a-convertible. Then fv(t) = fv(u),
flv(t) = £1lv(u), and t € Ty iff u € Tc.

C.1 Invariance of the set Ty,

We prove that well-labeling is invariant w.r.t. reduction and graphical equivalence, i.e.,
Lem. 4.1.7, stated in page 101. We obtain also Lem. 4.2.7, stated in page 104, as an
intermediate result.

Lemma C.1.1. Let t,u be terms and C a context. Then (i) fv(u) S £v(t) implies
tv(Clu]) € £v(C|t]), (i) £1v(u) S £1v(t) implies £1v(C|u]) € £1v(C|t]).

Proof. Straightforward induction on C. O
Lemma C.1.2. Let tLe€ Tye. Thente Twe, L€ Ly, and £v(t) nblv(L) = .

Proof. Easy induction on |L|. Notice that L = L’ [x%a”)/tn] implies tL = (¢L’) [x%a")/tn].
O

Lemma C.1.3. Let t € Ty, and L € Ly, such that £v(t) n blv(L) = . Then
tLe Twe.

259

260APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

Proof. Easy induction on |L|. O

Lemma C.1.4. Lett be a term and C' a context. Then:
(i) fv(t)\bv(C) < £v(C[t]) A £v(C) < £v(C[t]) < £v(C) U fv(t),
(i) £lv(t)\bv(C) < £1v(C[t]) A £1v(C) € £1v(C[t]) < £1v(C) U £1v(t)

Proof. Easy induction on C. O

Lemma C.1.5. Let t,u be terms. Then (i) t * u implies £v(t) 2 £v(u), and (i) t ~ u
implies £v(t) = fv(u).

Proof. Straightforward case analysis. O

Based on the previous basic properties, we can prove the results leading to Lem. 4.1.7.
The first of these results is actually Lem. 4.2.7.

The following proofs use extensively Lem. C.1.4. We will not mention explicitly this
fact in each occurrence, to make the text less cumbersome.

Proof of Lem. 4.2.7.
We proceed by induction on C.

e [f C' = O then we conclude immediately.

e Assume C' = M\y.Cy. In this case C[z(M] € Ty implies C1[2(Y] € Ty, and
y ¢ £1v(C1[=(]), so that y ¢ £1v(C}). Moreover bv(C) = bv(Cy) U {y}, implying
fv(t) nbv(C1) = & and y ¢ £v(t). The former allows to apply IH, obtaining
C1[[t]l € Twe, while the latter implies y ¢ £1v(t) which, along with y ¢ £1v(C}),
yield y ¢ £1v(C1[t]), cfr. Lem. C.1.4. Thus C[t]] = Ay.C1[t]l € Twe-

e The case C' = \y“®.Cy would contradict C[t]] € Twr.
e Assume C' = Ciu, Cq [[x(a)]] € Twe and v € Tyye. IH on C suffices to conclude.

e Assume C = Cru, C1[[z{9] = (\y®.5)L, (\y.s)L € Ty, and u € Tyy. There are
two cases to consider.

If C; = (\yP.Co)L, so that Ci[z(M] = (\y?.Co[x(@])L, then Lem. C.1.2 implies
Ay.Co[29 € Twe, L € Lwe, and £v(A\y.Cof[z{¥]) n blv(L) = &. In turn,
My.Co[[#(9] € Ty, implies Co[#(Y] € Ty and y ¢ £1v(Co[z(Y]), so that y ¢
£1v(C2). Noticing bv(C2)u{y} S bv(C) allows to apply IH to obtain Cs[t] € Twe,
and also implies y ¢ £1v(t), which along with y ¢ £1v(Cs) yields y ¢ £1v(Ca[[t]]).
Therefore A\y.Cy[[t] € Tyve. On the other hand, fv(Ay.Co[[z(¥]) n blv(L) = &
implies £v(C2)\{y} nblv(L) = &, and blv(L) S bv(C) implying fv(¢) N blv(L) =
, so that £v(Ay.Co[[t])) n blv(L) = J. Hence Lem. C.1.3 yields (Ay.Ca[[t]))L €
Twe. Thus C[[t] = (Ay®.Co[[t])Lu € Ty

If ¢, = (\yP.s)Ly [z('Y)/Cg]LQ, then Lem. C.1.2 implies (A\y.s)L1 € Ty, Cg[[x(a)]] €

Twe, fv(C'g[[x(o‘)]])mblv(Lg) = ¢, Lo € Ly, and fv(()\y.s)Ll)mblv([2(7)/02[[93(0‘)]]]@) =

. Observing bv(Cy) € bv(C), we obtain Cy[[t] € Ty, from Co[z(Y] € T, by
IH. Moreover, blv(Ly) € bv(C), so that £v(t) nblv(Ly) = &, and £v(Co[z(P]) A
blv(Ly) = & implies £v(C2) n blv(Ly) = F, so that £v(Ca[[t]) n blv(Ly) = .
Therefore [2(7)/Co[[t]|L2 € Lyyz. Furthermore, £v((Ay.s)L1)nblv([2)/Co[[t]]L2) =
fv((\y.s)L1) N blv([20)/Co[#(Y]]L2) = &. Hence Lem. C.1.3 yields

(Ay.s)Ly [200/Co[[t] L2 € Twe. Thus C[t]] = (My?.s)Ly [200/Co[[t] L2 w € Tove.

C.1. INVARIANCE OF THE SET Tw, 261

e Assume C = uCy. Then C[[2(™] € Ty, implies Cof[z®)] € Ty, and either
uw € Tye or u = (A\y?.s)L and (\y.s)L € Tyy,. In both cases, TH on Cy suffices to
conclude.

o If C' = Ci|y/u], then IH on C; suffices to conclude.

o If C = C1[y?/u], then C[z(¥] € Tw, implies C1[z(Y] € Tz, uw € Ty, and
y ¢ £v(C1[2(®]). Observing bv(C;) < bv(C), we obtain C,[t] € Ty, from
C1[[] € Ty by IH. Moreover, y ¢ £v(Cy[z(¥]) implies y ¢ £v(Cy), and y €
bv(C) implies y ¢ £v(t), so that y ¢ £v(C1[[t]). Thus C[t]] = C1[[t] [/u] € Twe-

o If C = u[y(ﬁ)/C’Q], then C[[x(o‘)]] € Ty implies u € Tyye, y ¢ fv(u) if yB) = P,
and Co[+(¥] € Tyyz. TH on Cs suffices to conclude. 0

Lemma C.1.6. Let t v> u such that t € Tyye. Then u € Tyyr.

Proof. There are three cases to consider.

If t Sqp u, ie. t = (Ax.s1)Lsy and u = 51 [x/s2]L, then t € Ty, implies (Az.s1)L €
Twe, so that Lem. C.1.2 implies Az.s1 € Ty, L € Lyye, and fv(Az.s1) nblv(L) = ¢F,
and also s2 € Tyyz. In turn Az.sy € Ty implies s1 € Tyyr, and therefore sy [z/s2] € Ty,
On the other hand, variable convention implies £v(s2) N blv(L) = &, which along with
fv(Az.s1) nblv(L) = & yield fv(s1[z/s2]) M blv(L) = &. Hence Lem. C.1.3 implies
u = si[x/s2]L € Twr.

If t 55 u, ie. t = Cz*][z/s] and v = C[[s]][z/s], then C[[z*]] € Ty, and
s € Twe. Moreover, variable convention implies fv(s) nbv(C) = J, so that Lem. 4.2.7
yields C[s]] € Twe, which suffices to conclude.

If t = s1|x%/s2] and u = s1, then we conclude immediately. O
Lemma C.1.7. Let t ~ u. Thent€ Ty, iff u€ e

Proof. There are three cases to consider.

Assume t ~cs u, i.e. t = s1[2(/so][yP) /s3], u = s1[yP) /s3] [V /s2], = ¢ £v(s3)
and y ¢ £v(sa), so that variable convention implies x # y.

Then t € Ty, implies s1,52,53 € Twe, = ¢ fv(sy) if 2(®) = z®, and y ¢ fv(s;) if
y#) = yP. Then it is immediate to obtain s1 [y(?) /s3] € Ty, and subsequently u € Tyy ..

On the other hand, if u € Ty, then we obtain ¢ € Tyy, analogously.

Assume t ~g, u, ie. t = Ay® .s1)[2(9)/s0], u = Ay .51 [2(¥) /s3], and y ¢ £v(s2).
In this case, variable convention implies = # y.

Then t € Ty, implies y® = g, and therefore s, € Ty, y & £1v(s1), so € Ty, and
x ¢ fv(Ay.sy) if #(®) = 2 Moreover, z # y implies that z ¢ fv(sy) if 2(®) = 2% Hence,
it is immediate to obtain s [m(o‘) /s2] € Ty, and subsequently u € Ty, recalling that
y ¢ £v(s2) 2 £1v(sa).

On the other hand, u € Tyy, implies ¢ = . s1[2(*) /s5] € Tyyr, s0 that s1, 52 € Tyyr
and = ¢ fv(s;) if z(® = 2% and also y ¢ flv(s;), since # # y. Hence we obtain
immediately Ay.s; € Ty, and subsequently ¢ € Tyy..

Assume t X, u, i.e. t = (s159)[2(Y /s3], u = 51 [2(*) /s3]0, and z ¢ £v(sy).

Then t € Ty, implies s152 € Ty, s3 € Tywe and z ¢ fv(sy) if 2(®) = 2. There are
two cases to consider for syss € Tyye. If 81,89 € Ty, then we obtain immediately that
s1[2() /s3], and subsequently wu, are in Tyy,. If 51 = (A\y®.s))L, and (\y.s))L, s2 € Ty,

262APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

then £v((\y.s))L) = fv(s1), implying that = ¢ fv((\y.s|)L) if 2(®) = 2% and therefore
(My.s)L[2(®) /s3] € Tyye. Hence u = (\yP.s4)L[2(%) /s3]s0 € Tyyr.

On the other hand, there are two cases to consider for u € Ty If 51 = (\y”.s))L,
and (\y.s))L[z(%/s3],52 € Twe, then (\y.s))L,s3 € Twe and = ¢ f£v((Ay.s))L)
if 2(®) = g Therefore, sis2 € Tyye. Moreover, fv(s;) = fv((Ay.sh)L), implying
z ¢ fv(sy) if () = 2% which along with z ¢ f£v(s) and s3 € Tyyz, imply t € Ty, O

Lemma C.1.8. Let t € Tyye and u a term, so that t = u ort L u. Thenue Twr-

e

Proof. The hypothesis implies t = C[t'], v = C[u'], and ¢’ = o/, t' =~ v/, v’ =~ ¢/, or v/
is the result of applying one step of a-conversion from ' or vice versa. We proceed by
induction on C.

e If C = O, we conclude immediately by Lem. C.1.6, Lem. C.1.7 or Lem. C.0.1.

e If C = \z.Cy, then t € Ty, implies C1[t'] € Tz, so that TH yields Cy[u'] € T,
and z ¢ £1v(C1[t']). As moreover variable convention implies z ¢ bv(C}), we can
obtain z ¢ £1v(t’), and therefore z ¢ £1v(u') by Lem. C.1.5 or Lem. C.0.1. Observe
that = ¢ £1v(C1[t']) implies also = ¢ £1v(C1), which along with x ¢ £f1v(u') yields
x ¢ £1v(Cy[v]). Thus C[u'] = Ax.Ci[u'] € T

e The case C' = \z®.C would contradict C[t] € Tyy..
o If C =C1sand Ci[t'],s € Tywe, then TH suffices to conclude.

e Assume C = C; s, C1[t'] = (Ax®.51)L, and (Az.s1)L,s € Tyye. There are several
cases to analyse.

— Cp =0, ¢ = (\z®.51)L. A case analysis on +», &~ and a-conversion implies
that v/ = (\y®.s})L’ where (Az.s1)L > (\y.s))L’, (Az.s1)L =~ (\y.s})L or vice
versa, or (Az.s1)L and (M\y.s])L’ are one application of a-conversion away.
Therefore Lem. C.1.6, Lem. C.1.7 or Lem. C.0.1 yields (A\y.s})L" € Twe,
hence C[u'] = (\y*.s})L's € Twr.

— Cp = 0OL and ¢ = Ax®.s;. Observe that (Az.s1)L € Tyy, implies A\z.s; €
Twe, L € Ly, and £fv(Ax.s1) nblv(L) = &, by Lem. C.1.2. Case analysis
yields v/ = (A\y*.s))L/, and (A\y.s))L’ =4, Az.s1, or A\x.s; and (\y.s))L' are
one application of a-conversion away (in the latter case, L' is the empty
list). Therefore, Lem. C.1.7 or Lem. C.0.1 implies (A\y.sj)L" € Tyye. In
turn, Lem. C.1.5 or Lem. C.0.1 implies fv((\y.s])L’) = fv(Az.s1). Hence,
Lem. C.1.3 implies that (Ay.s})L'L € Tyye. Thus, Clu'] = (A\y*.s))L'Ls €
Twe.

— C1 = (Az*.Co)L, so that (Az.Ca[t'])L € Tyye. Lem. C.1.2 implies Az.Ca[t'] €
Twe, L€ Lywr, and £v(Az.Co[t']) nblv(L) = (£v(Co[t'D\{z}) nblv(L) = &.
In turn, A\x.Cs[t'] € Ty implies Co[t'] € Ty, so that TH yields Cy[u'] € Ty,
and also x ¢ £1v(C3[t']). On the other hand, Lem. C.1.5 and Lem. C.1.1
imply £f1v(Cafu']) € £1v(Ca[t']) and £fv(Ca[u']) S £v(Ca[t']), so that par-
ticularly = ¢ £1v(Ca[u']). Hence Cy[u/] € Ty, implies Ax.Co[u'] € Thy,.
Notice that £v(Ca[u']) < £v(Ca[t']) implies (fv(Cafu'])\{z}) N blv(L) =
. Consequently, Lem. C.1.3 yields (Az.C2[u/])L € Tye. Thus Clu'] =
(Ax®.Co|u'])Ls € Tyye.

C.2. FINITE DEVELOPMENTS 263

— O = (Ax®.s1)Li [y /Co]La, so that (Az.s1)Li[y"®/Colt']|Le € Tywe. In
this case, Lem. C.1.2 implies (Az.s1)L1 € Twe, [y /Co[t']|L2 € Ly, and
fv((Az.s1)L1) nblv([y® /Co[t']]L2) = &. In turn, [yP) /Co[t']|Ls € Ly im-
plies Ca[t'] € Ty and £v(Ca[t']) nblv(Ly) = . Therefore, IH yields Cau'] €
Twe. Moreover, £v(Ca[u']) € £v(Cs[t']) by Lem. C.1.1, implying fv(Ca[u'])n
blv(Le) = &. Hence [y®/Colu/]|La € Lyyr, so that Lem. C.1.3 implies
(Az.51)Ly [y /Co[u']]La € Tywe. Thus Clu'] = (Ax®.s1)Ly [yP) /Co[u]]Las €

o If C' = sCs, then Cs[t'] € Ty, and either s € Ty, or s = (Az®.s1)L and (Ax.s1)L €
Twe. In both cases, IH suffices to conclude.

o If C = Ci[z/s], then Ci[t'], s € Ty, hence IH suffices to conclude.

o If C = C)[z%/s], then Ci[t'], s € Ty, and x ¢ £v(Cy[t']). IH implies C[u'] € Tye.
On the other hand, Lem. C.1.5 and Lem. C.1.1 imply £fv(Ci[u']) € £v(Ci[t']),
therefore = ¢ £v(C1[u']). Hence C[u] = C1[u'][2%/s] € Twe.-

o If C = 5[z(®/C1], then s, C1[t'] € Ty and z ¢ £v(s) if (%) = 2%, Therefore, IH
suffices to conclude. .

Proof of Lem. 4.1.7.
Given t € Ty and t > w or t ~ u, we must show u € Tyye. If t > u, then Lem. C.1.8
allows to conclude immediately. If ¢ ~ u, then a straightforward induction on the

sequence t = tg < t1 LA t, = u, based on Lem. C.1.8, is enough to conclude. O

C.2 Finite developments

We give the proof of some lemmas stated, and used, in Section 4.2.1.

Proof of Lem. 4.2.9.

We recall the statement.

Let C[z*]],u € Tw, and a variable y such that = # y, fv(u) n bv(C) = &, and
z,y ¢ £v(u). Then: (i) LMy (C[[z*]]) > LM, (C|[u]]), and (i5) LM, (C[[z*]]) = LMy (C[u]]).

The proof proceeds by induction on |C|.
o If C' =0, then LM, (%) = 1 > 0 = LM, (u), and LM, (%) = 0 = LM, (u).

o If C = \z.C1, then C[[z%] € Tw, implies C1[[z*]] € Tw,, therefore IH suffices to
conclude. Notice that z = would contradict A\z.Cq[[z“]] € Twc.

o If C = Cis and Ci[[xz*],s € Twre, then a straightforward inductive argument
suffices to conclude.

e Assume C = Cis, C1[[2°] = (A\2P.51)L, (A\z.51)L € Tye, s € Tyye. In this case,
Ci[[z] = (A\2#.s1)L implies C; = (A\28.Co)L or C; = (A2P.51)Ly [l’g’Y)/CQ]LQ. Let
C! be the result of replacing z® by z in Cy. Then |Cf] = |C1] < |C| and C}[[z%] =
(Az.s1)L € Ty, so that TH yields

LM, (C1[z°]]) > LMo (Cy[[u])) and LM, (C1[z°])) = LM, (C1[[u]))
We conclude by observing that LM, (C[[z?]]) = LM, (C} [z*]]) + LM, (s), analogously
for LM, (C|lu]]), and analogously again for LM,.

264APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

o Assume C = sCy, then CyfJx*]] € Twe. Let us define ' as follows: s’ = s if
5 € Twe, or 8 = (M\z.s))L if s = (Az%.s1)L. Then LM, (C[2°]) = LM(s") +
LM, (Ca[[z*]]), an analogously for LM,(C[lu]) and for LM,. Hence IH suffices to
conclude.

o If C = C4]z/s], so that Ci[[z“],s € Twe, then the occurrences of z in C|[t] are
bound for any ¢, implying x # z and z ¢ fv(u). IH implies LM, (Cy[[z“]) >
LM, (C[lul]), LMy (C1[[z“]]) = LMy(Ci[u]]), and also LM,(Ci[[z*]) = LM.(Ci[lu])-
Therefore, for (i) we have

LM, (Cllz“] [2/s]) LM, (Cy[[2?]]) + LMz (s) + LM, (Cq [[z*]]) - LMy (s)
LM, (Cy [[u]]) + LMz (s) 4+ LM, (Cy[Ju]]) - LMz (s)

LM (ClLull)

For (ii), if z = y then immediately LM, (C[[«“]]) = LM,(C[u]]) = 0, otherwise an

analysis similar to that used for (i) applies.

v 1

o If C' = s]|z/Cy], so that s, Ca[|z*]| € Twye, variable convention implies x # z. IH
implies LM (Caf[*]]) > LM, (Caf[u]]) and LM, (Co[[x*])) = LMy (Caf[u]]). For (i) we
have

LM, (Cllz“] [2/s]) LM, (s) + LM (Coflz]]) + LM.(s) - LMz (Ca[[z]))

LM, (s) + LM (Co[[u]]) + LM=(s) - LM, (Cof[u]])

LM (ClLull)

For (ii), if z = y then immediately LM, (C[[z“]]) = LM,(C[u]]) = 0, otherwise an

analysis similar to that used for (i) applies.

v 1

o If C = C1[2°/s], or C = s[2°/Cs], then we obtain z # z like in the previous
cases. A simple argument based on IH suffices to conclude, except for (i) if z # y;

in this case immediately LM, (C[z“]]) = LM,(C[u]]) = 0. -

Proof of Lem. 4.2.10.

We recall the statement.

Let C[y"] € Twe, v € Twe and z variable, such that x # y, y ¢ fv(u) and = ¢ bv(C).
Then LM, (C[[y™]]) + LM, (C[[y7])) - LMz (w) = LMz (Clu]]) + LM, (Cflu]]) - LMy (u).

The proof proceeds by induction on |C|.

o If C = O, then LM, (C[[y"]) + LM, (Clly) - LMz (u) = LM, (Cu]]) + LM, (Clw]]) -
LM, (u) = LMg(u).

o If C = Az.C4, then C[[y"]] € Twe implies z # y. A straightforward inductive
argument suffices to conclude.

e If C = Cys and C1[[y"]], s € Twe, then we have

LM, (Cy"]) + LMy (CTy"]) - LMz ()
= LM (Cilly™]]) + LMz (s) + (LM (C1[[y7]]) + LMy (s)) - LM (u)
= LM, (C1[y7]) + LMy (Cr[y7]) - LMo (u) + LMy (s) + LMy (s) - LMy (u)
Analogously we obtain
LM (Cllul)) + LMy (Clul]) - LMy (u)
= LM, (Ci[lul]) + LMy (Cy[lu]]) - LMz () 4+ LM (s) + LMy (s) - LMy (w)

Hence, TH suffices to conclude.

C.2. FINITE DEVELOPMENTS 265

e Assume C = Cys, C1[[y"]] = (A2#.51)L, (M\z.51)L € Twe, s € Tyye. Let us define
C] as in the analogous case in the proof of Lem. 4.2.9, so that C[[y"]] = (Az.s1)L.
Observe that LM (C[y"]]) = LM (C1[v"]]) + LMx(s), analogously for LM, (C[[u]),
and also for LM,. Moreover, IH applies to C]. Hence, an argument similar to that
used in the previous case applies.

o If C = sCy, so that Cof[y"]] € Twe, then let us define s’ as in the analogous
case in the proof of Lem. 4.2.9, so that LM, (C[[y"]) = LMz(s") + LM, (C2[[y"]]) and
analogously for LM,. An argument similar to that of the third case in this proof,
considering s', applies.

o If C = C1[z/s], so that C1[[y"]l, s € Twe, then the occurrences of z in C[t] are
bound for any t, implying y # z and z ¢ fv(u). Also, z ¢ bv(C) implies z # z.
Let us call s, = LM;(s), s, = LMy (s) and uy, = LM, (u). Then

LM, (Clly" 1) + LMy, (Clly D) - LMz (w)
= LM, (C1[y7]) + sx + LM(Ci[[y™]) - sx + (LM (C1 [y T) + sy + LM (Ci[y7]]) - sy) - ux
= LM, (C1[[y"T) + LMy (Cily™T) - ux + LM (C1[[y7T) - (5x + Sy - ux) + S¢ + sy - Uy
Analogously we obtain
LMy (Clull) + LMy (Cllull) - LM, (u)
= LM, (C1[lu]]) + LMy (Ci[[u]]) - ux + LMo (Ci[u]]) - (5x + sy - ux) + 5S¢ + Sy - Uy
Moreover, Lem. 4.2.9 implies LM, (C1[[y"]]) = LM,(Ci[u]]). Hence IH suffices to
conclude.

o If C' = s|z/Cs], so that s,Cal[y”]| € Twe, variable convention implies y # z, and
x ¢ bv(C) implies = # z. We add s, = LM,(s) to the acronyms used in the previous
case. Then
LM, (Clly" 1) + LM, (Clly D) - LMz (w)
= 5 + LM (Cofly7]) + 52 - LM (Cofly7T) + (sy + LMy (Cofly7]) + 52 - LMy (Coly7T)) - ux
= LM, (Ca[[y"]) + LMy, (Co[[y™) - ux + s, - LMz (Co[[y ™) + s, - LM, (Co[[y™]]) - ux + sx + sy - ux
= LM, (Co[[y"T) + LMy (Co[ly™T) - ux + s - (LM (Cofly™) + LMy (Ca[y™]]) - ux) + sx + sy - uyx
Analogously we obtain
LM, (Cllull) + LM, (Cllu]]) - LM (u)
= LM, (Caf[ul]) + LMy (Caf[u]]) - ux + sz - (LMz(Cof[u]]) + LMy (Cao[u]]) - ux) + sx + sy - ux
Hence IH suffices to conclude.

o If C = C1[2%/s], or C = s[2/Cs], then we obtain y # z and = # z like in the
previous cases. An inductive argument like in the third case allows to conclude.

O]

Proof of Lem. 4.2.11.

We recall the statement.

Let C[z*] € Twe and u € Ty such that = ¢ £v(u). Then PLR(C[[x“]) + LM (C[[z*]) -
PLR(u) = PLR(C[u]]) + LM, (C[u]]) - PLR(u).

The proof proceeds by induction on |C|.

o If C' =0, then
PLR(C[[z“]]) + LM, (C[[=z*]]) - PLR(u) = PLR(C[[v]]) + LMz (C[[u]]) - PLR(u) = PLR(u).

o If C = A\y.C4, then C[[z*]| € Ty, implies y # z. A straightforward inductive
argument suffices to conclude.

266 APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

o If C = C1s and C1|[z*]], s € Twr, then we have
PLR(C[[z“]]) + LMz (C[[z*]]) - PLR(u)
— PLR(Cy[[z°])) + PLR(s) + (LM, (C1[[z°])) + LM, (s)) - PLR(u)
= PLR(C4[[z%]) + LM (C4[[=]) - PLR(u) + PLR(s) + LMz(s) - PLR(u)
Analogously we obtain
PLR(C[u]]) + LM, (C[w]]) - PLR(w)
— PLR(Cy[[u]]) + LM, (C1[[u])) - PLR(w) + PLR(s) + LM, (s) - PLR(w)
Hence, TH suffices to conclude.

e Assume C = Cys, C1[[2°] = (A\2%.51)L, (A\z.51)L € Ty, s € Tye- Let us define C}
as in the analogous case in the proof of Lem. 4.2.9, so that C{[[x*]] = (Az.s1)L. Ob-
serve that PLR(C[z®]]) = 1+PLR(C [[z*]) +PLR(s), LM, (C[[z*]) = LM, (C} [=]) +
LM, (s), and analogously for Cflul]]. Moreover, IH applies to C]. Hence, an argu-
ment similar to that used in the previous case applies.

o If C = sCy, so that Ca[[z*] € Ty, then let us define s’ as in the analogous case
in the proof of Lem. 4.2.9, so that PLR(C[[z*]]) = 1 + PLR(s’) + PLR(C2[[z*]]) and
LM, (C[z*]) = LM.(s") + LM, (Co[[z*])). An argument similar to that of the third
case in this proof, considering s’, applies.

o If C' = C4[y/s], so that Ci[[z*]], s € Tw,, then the occurrences of y in C[t] are
bound for any ¢, implying « # y and y ¢ £v(u). Let us call s, = PLR(s), sy = LM (s)
and up = PLR(u). Then

PLR(C[[z*])) = PLR(C1[[z*]) + sp + LMy (C1[z*]]) - sp + LM, (C1[[z*]))
LM, (Cl[lz]]) - up = (LMz(C1[J2*]])) + sx + LMy (Ci[[x“]]) - sx) - up
Therefore
PLR(C[z*]]) + LMz(C[[z*]) - up
= PLR(C1[[z*]]) + LMz (C1[[2])) - up + LMy (C1[[2*]]) - (sx - up +5p +1) + 55 + 55 - Up
and analogously
PLR(Clu]]) + LM (C[lu]]) - up
= PLR(C1[[u]]) + LMz (Ciflu]]) - up + LMy (Ciflu]]) - (sx - up +5p + 1) +5p 4+ 5¢ - Up
Moreover, Lem. 4.2.9 implies LM, (C[[z*])) = LM,(Ci[[u]]). Hence IH suffices to
conclude.

o If C' = s[y/Cs], so that s, Co[[x*]| € Twr, variable convention implies = # y. We

add s, = LM, (s) to the acronyms used in the previous case. Then
PLR(C[[z*]]) = sp + PLR(C2[[z*]]) + sy - PLR(Ca[[z*]]) + sy
LM, (Cl[lz]]) - up = (sx + LMz (Co[[z*]]) + sy - LMz (Cao[x]])) - up
Therefore
PLR(C[[z?]]) + LMz (C[[z*]) - up
— PLR(Cy[[z°]]) + LM, (Ca[[z*]) - up +
sy - PLR(Co[[z?]]) + sy - LMz (Co[[z*]]) - up + Sp + Sy + Sk - Up
= PLR(Ca[[z*]]) + LMz (Ca[[z*]) - up +
sy - (PLR(Ca[[z*])) + LMz (Ca[x*]]) - up) + sp + 5y + 5 - Up
and analogously
PLR(Clu]]) + LM (C[lu]]) - up
= PLR(C2[Ju]]) + LM, (Co[[u])) - up +
sy - (PLR(Ca[[u]]) + LMz (Coflu]l) - up) + sp + Sy + Sx - Up

C.3. CREATION LEMMA 267

Hence IH suffices to conclude.

o If C = C1[y?/s], or C = s[y?/C3], then we obtain = # y like in the previous
cases. An inductive argument like in the third case allows to conclude. 0

C.3 Creation lemma

In this section we give the proof of Lem. 4.2.22, cfr. page 111. We need a previous result.

Lemma C.3.1. Let C be a context, u a term and x a variable. Let C' and v’ be variants
of C and u respectively, in which all steps in C[[z]], resp. wu, are labeled. Let b be a
non-labeled step in C'[[v']]. Then C = D[OLt], u = (Ay.u1)L1, and b = (D, (Ay.u1)LiLt),
1.e. a db-step.

Proof. By induction on C. Notice that the hypotheses C[[z] and C'[v/]] imply that
x ¢ bv(C) and fv(u) nbv(C) = &.

e If C' = O then C'[v/] = «/ and therefore all the steps are labeled.

e If C' = C)s, so that C" = (s, observe that if b is inside C{[«'] then IH suffices to
conclude, and if b is inside s then it is labeled in Ci[[z]]. The only other possible
case is b = (O, C{[[u]|s), a db-step, so that C{[[v']] = (A\y.w})L’. In turn, b being
not labeled, and therefore not present in C’[[z]], implies that C; = O or C; = OLg,
hence u = (A\y.u1)L; (and L = LyLy). Thus we conclude by taking D = O.

o If C = sCy, so that C' = §'CY, then b being inside s’ implies that it is labeled,
and if b is inside C4[[«']] then IH suffices to conclude. The only case left, namely
s = (Ay.s1)L and b = {0, sChu'), implies (O, sChz) to be a step as well, and thus
labeled (so that s’ = (Ay®.s1)L).

o If C' = C}[y/s'], then observe that y ¢ fv(u) and x # y. Moreover, y not being
labeled implies y € £1v(C]). If b is inside either C{[[u]] or s, then we conclude
immediately as in previous cases. Notice that no new y occurrences can appear
in Cf, nor the existing occurrences can be erased. Therefore, the only other steps
in C{[[u] are the 1s-redex corresponding to the occurrences of y in C{, which are
labeled. Thus we conclude.

o If ' = §'[y/CY], so that y € £1v(s'), then b being inside s’ or Ci[[v]] allows a
straightforward argument like in previous cases. Moreover, s’ € £f1v(s') prevents
(O, ¢ [y/CL[w']]) to be a ge-step. Thus we conclude.

o If C' = O [y?/s'], then b being inside C[[u'] or s' allows a straightforward argu-
ment like in previous cases. Moreover, observe that hypothesis entails y ¢ fv(u),
so that the only step for the substitution on y in C[[u']] is the labeled gc-step.
Thus we conclude.

e The cases C' = s'[y%/C4] and C' = \y.C} admit straightforward arguments.

Proof of Lem. 4.2.22.

We recall the statement.

Let t - ¢/, and b € RO(t') such that f[a]b. Then one of the following conditions
holds (where, for readability, 5 is used to label the created step)

268APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

(db creates a db-step)
t = C[((Az®.(\y.s)L1)La 1) L3v] —ap C[(AyP®.5)L1[2/u]LoLs v] = ¢/
(db creates a ls-step)
t = C[(M\x®.D[[z])Lu] —a C[D[[z°][z/u]L] = ¢’
(db creates a gc-step)
t = C[(Max®.5)Lu] —ap C[s[z?/u]L] = t' , where x ¢ fv(s)
4. (1s downward creates a db-step)
t = C[D[z“Lau] [z/(My.5)L1]] —1s C[D[(M\y”.8)L1Lou][z/(\y.5)L1]] = ¢/
(1s upward creates a db-step)
t = Clz“La [x/(My.s)L1]L3 u] —1s C[(M\y”.8)LiLa[x/(Ay.s)Li]L3u] =t/
(1s creates a gc-step)
t = C[D[[2°][z/u]] >1s C[DIullla”/u]] = ¢’ , where x ¢ £v(D[u])
(gc creates a ge-step)
t =

= C[D[s[y*/Elz]]l[z/u]] —gc C[D[s][a"/u]] = t', where y ¢ £v(s) and z ¢
£v(D[s]).

We proceed by induction on the context D of a. Let us call r the pattern of a, and

define r —%> 7/, where @’ is the step corresponding to a in 7. To improve readability, we
mark the anchors of a and b with the labels a and [respectively in the following.

If D = 0O, then we perform a case analysis on a.

e If a is a db-step, so that t = (Ax®.s)Lu and t' = s[z/u]L, then the only possible
cases for b are the following.
— If b is inside s, L or u, then it is not created.
— If s = C[[#”]], then case 2 applies.
— If the pattern of b is s[x?/u], so that = ¢ fv(s), then case 3 applies.
e If a is a 1s-step, so that t = C[z*]|[z/u] and ' = C[[u] [x/u], then observe that
variable convention implies x ¢ fv(u). We list the only possible cases for b.
— If b is inside C[u]], then Lem. C.3.1 implies that case 4 applies.
— If b is inside u, then it is not created.

— If b is a 1s-step on an occurrence of z in C[lul|, then x ¢ fv(u) implies that
b is not created.

— If the pattern of b is C[u]] [z®/u], then case 6 applies.

e If a is a gc-step, so that ¢t = s[z/u] and ¢’ = s, then we conclude immediately.
If D = Dys, so that t = Dq[r]s and ¢’ = D;[r']s, then the only possible cases for b are
the following.

e If b is inside D;[r], then IH suffices to conclude.

e If b is inside s, then it is not created.

C.4. THE BOX ORDER PRESERVES GRAPHICAL EQUIVALENCE 269

e The only other possible case is ¢ = (Az.s1)Ls, so that Dy [r'] = (Az”.s1)L. In this
case, b being created implies that D; = O or Dy = OLy, therefore ' = (Ax.s1)Lq,
and also that r is not of the shape (Az.s})L].

If a is a db-step, then case 1 applies.
If a is a 1s-step, then case 5 applies.
Finally, a being a gc-step would contradict 7 = (Ax.s1)L; or r # (Az.s))L].
If D = sDy, then b being internal to s or Dy[r’] implies that a b is not created, and that

IH suffices, respectively. The only other possible case is s = (Az.s)L, so that the pattern
of bis (A\z”.s)LDs[r']; in this case b is not created.

If D = Dy [x/s], then b being internal to D;[r'] or to s admits straightforward arguments,
like in the previous case. Moreover, observe that an occurrence of z in Di[r’] cannot
be created, therefore the only other possible case is the pattern of b being Dy [r'][27/s],
implying that = occurs in Dj[r] but not in Dq[r’]. Observing that neither a db-step nor
a 1ls-step can erase an occurrence of x, we conclude that a is a gc-step, and therefore
that case 7 applies.

Finally, the cases D = s[xz/D2]| and D = Ax.D; admit straightforward arguments. [

C.4 The box order preserves graphical equivalence

An auxiliary lemma is needed.

Lemma C.4.1. Let C[2°] ~4 C'[z°]] and a € RO(C[[z?]]). Then xP is in the box of
a iff it is in the box of ¢(a).

Proof. By induction in the definition of ~ as the reflexive and transitive closure of L

The interesting case is when C[[z”] ixg C'[+°]. We prove this case by induction on
C'. In the following, we label the anchor of @ with «, and we mention the conditions for
a and ¢(a) to include the occurrence of z” in its box.

e The case C' = O would contradict C[2°] ’l‘qs C'[="].

e Assume C = (C s.
If O [2°]] L Cil[z°] or s L ', then a is inside C} [”]], and similarly, ¢(a) is inside
C1[[z°]. Particularly, if C1[°]] = (Ay®.s1)L, implying O} [2°] = (A\y®.s1)L’, then
zP is neither in the box of a nor in that of ¢(a). Hence, if Cy[27] L C1[2°] we
conclude by IH, and if s ~ s’ we conclude immediately.

If C1[[z°] = Co[#°][y/s1] and C'[[z°] = (Ca[z"] s)[y/s1], then a is inside
Cs[[#°]), and similarly for ¢(a). Therefore, we conclude immediately.

If C1[z°] = s1[y/Ca], C'[[+°] = (s15)[y/Ca[[z°]], and y ¢ fv(s), then a is a
1s-step for an occurrence of y inside sy, it is the ge-step on y if y ¢ fv(sy), or it is
inside Cy[[#”]]. To conclude, it suffices to notice that exactly the same conditions
hold for ¢(a).

e Assume C = s(Cs.

If s X s or Co[[=°]] L C4[[z°]), then s = (Ay®.s1)L or a is inside Cy[[#°]. Observe
that t = (A\y®.s1)L implies t' = (Ay®.s})L" and vice versa. Therefore exactly the

270APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

same cases correspond to ¢(a). Hence we conclude by TH if Co[[27]] L C4[[=°]] and
a is inside Cy [[:):5]], and immediately in the remaining cases.

If s = s1[y/s2], C'[2°] = (51 Co[[z])[y/s2] and y ¢ £v(Ca[[z°]), then s; =
(A\y®.s)L or a is inside C[[2°]], and exactly the same cases hold for ¢(a), thus we
conclude.

e Assume C' = (4 [y/s]. Lemma hypothesis implies x # y.

If C1[[z°]) L C1[z%] or s L &', then a is inside Cy [2°], and ¢(a) is inside C4[[z°].
Then we conclude by IH if Oy [[z°]] L Ci[#"]], and immediately if s L

If C1 = Cz[z/s1] and C'[#°]] = Co[#°]|[v/s][2/51], then both a and ¢(a) are
inside Co[#”]), thus we conclude.

If O = s1[2/Cs], C'[2°] = s1[y/s][2/Ca[[z"]], y ¢ £v(Co[[z]]) and z ¢ £v(s),
then a is a 1s-step on a occurrence of z in s1, a ge-step on z if z ¢ fv(s;), or a
step in C’g[[xﬁ]]. We conclude by observing that exactly the same cases hold for

¢(a).

If C; = A\2.Cy and C'[#°]] = A\z.Co[[#”]|[y/s], then both a and ¢(a) are inside
Cy[[+”]), thus we conclude immediately.

If C) = 51Co, C'[2°] = s1[y/s]C:[[2°] and y ¢ £v(C2[[°]), then the possible
cases for a are s; = (Az%.s2)L or a inside Ca[[2°]]. We conclude by observing that
the possible cases for ¢(a) are exactly the same.

e Assume that C' = s[y/C4].

If s L s or C [=°] L C'[[+®], then the possible cases for both a and ¢(a) are: a
1s-step for an occurrence of y inside s and s', a ge-step on y if y ¢ fv(s) = fv(s),
or a step inside C; [[#°]] and C}[[+°]. Then we conclude by IH if a is inside Cy [2°]]
and C1[2°]] L C'[+°], and immediately in the remaining cases.

If s = s1[z/s2], C'[2°]] = s1[y/Cil[#°]][2/s2], v ¢ £v(s2) and z ¢ £v(C[[z°]),
then the possible cases for a are: a ls-step for an occurrence of y inside s1, a
gc-step on y if y ¢ fv(s1), or a step inside C [[z°]]. We conclude by observing that
the possible cases for ¢(a) are exactly the same.

If s = Az.s; and C'[#°] = Az.s1[y/C1[[#”]]], then an analysis like that of the
previous case applies.
If s = 5159, C'[2°] = s1[y/C1[[2°]]s2 and y ¢ £v(s2), then an analysis like that
of the previous cases applies. Notice that s; = (Az®.s})L implies that 2P is neither
in a nor in ¢(a).

e Assume C = \y.C1.
If C1 =] L C'[[z"], then a and ¢(a) are inside C;[2°] and C}[2°] respectively,
therefore IH suffices to conclude.
If C1 = Cz[z/s] and C'[[#”]] = (\y.Ca2[[z°])) [2/5], then both a and ¢(a) must be
inside C[[z?], hence we conclude immediately.
If C; = s[2/Cs] and C'[[z°] = (\y.s)[2/Ca[[2°]], then for both a and ¢(a) the
possible cases are: a ls-step on an occurrence of z in s, a ge-step on z if z ¢ fv(s),

or a step inside Cy[[z?]]. Thus we conclude. -

C.4. THE BOX ORDER PRESERVES GRAPHICAL EQUIVALENCE 271

Proof of Lem. 4.5.2. We recall the statement.
Let t,u be terms s.t. ¢t ~y u, where ¢ is the bijection described in page 114, cfr.
Lem. 4.4.9. Then, ¢ commutes with <g, i.e. a <g b iff ¢(a) <p ¢(b).

We prove the following, stronger statement: let ¢ ~4 u and n € N. Then a <y b
iff ¢p(a) <§ ¢b. We proceed by induction on (n,m) where m is the transitivity degree
when considering ~ as the reflexive-transitive closure of L. The interesting case is when
n =m = 1,i.e. toprove that a <} biff ¢(a) <} #(b), if t i¢ u. We prove this statement
by induction on t.

e The case t = x would contradict ¢ L Uu.

e Assume t = t1to. There are several cases to analyse.

— Assume t; L uyp and u = uqts.
If a and b are inside ¢;, so that ¢(a) and ¢(b) are in u;, then IH suffices to
conclude.
If a and b are inside t2, then we conclude immediately.
If a is inside ¢1, so that ¢(a) is inside u;, and b is inside t2, then it is immediate
to conclude that a 3 b and ¢(a) 3 o(b).
If a is inside to and b is inside 1, then a similar argument applies, yielding
a 4 b and ¢(a) <4 6(b).
If t; = (Az®.s)L, implying u1 = (A\z®.s")L/, then a <¢ b iff ¢(a) <§ (b) iff b
is inside ts.
If t; = (\2f.5)L, implying u; = (Az.s')L’, then a 4 b and ¢(a) 4 ¢(b) for
any a € RO(t).

A note for the rest of the proof: it is easy to observe that if a and b are inside
the same subterm, it is possible to conclude either by IH or immediately, and
if a and b are inside different subterms, then so are ¢(a) and ¢(b), implying
a g b and ¢(a) g ¢(b). Consequently, we will not mention such cases in
the following.

— Assume to S ug, so that u = tqus.
If t; = (Az.s)L, then a <3 b iff b is inside to iff ¢(b) is inside uy iff ¢p(a) <4
¢(b).
If t; = (A2.s)L, then a 44 b and é(a) «4 ¢(b) for any a € RO(t).

— Assume t; = si[x/s2], so that t = s1[z/s2]ta, u = (s1t2)[z/s2], and x ¢

fV(tQ).
If 57 = (A\y®.s))L, then a <} b iff ¢(a) <§ #(b) iff b is inside t5. Recall
T ¢ fV(tQ).

If 51 = (\y”.s})L, then a 4 b and ¢(a) 4 #(b) for any a € RO(t).

If a is a 1s-step for an occurrence of z in s1, or = ¢ £v(s1) and a is the gc-step
on x, then a <} b iff ¢(a) <3 ¢(b) iff b is inside so.

If b is a 1s-step for an occurrence of = in s1, so that ¢(b) is the 1s-step for
the same occurrence of z, then a <} b iff ¢(a) <} ¢(b) iff a is inside s; and
that occurrence of z is in its box.

If 2 ¢ fv(sy) and b is the gc-step on z, then a 4 b and ¢(a) 5 ¢(b) for any
a € RO(t).

272APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

e Assume that t = t;[x/ta]. There are several cases to analyse.

— Assume t; L uy and u = uy [z/t2].
If a is a 1s-step for an occurrence of z in t1, so that ¢t; = Cf[z®] and u; =
C'[x*]), or x ¢ £v(t1) and a is the gc-step for z, then a <3 b iff ¢(a) <3 ¢(b)
iff b is inside to.
If b is a 1s-step for an occurrence of z in t1, so that t; = C[[z”] and u; =
C'[#"], then a <} b iff a is inside C[z°]] and 27 is in the box of a, and
similarly, ¢(a) <4 ¢(b) iff ¢(a) is inside C'[[z°]] and x” is in the box of ¢(a).
Hence Lem. C.4.1 allows to conclude.
If z ¢ fv(t1) = fv(uy) and b is the gc-step for x, then a €4 b and ¢(a) 4 ¢(b)
for any a € RO(t).

— Assume to L ug and u = t1 [z /ug].
If a is a 1s-step for an occurrence of x in ¢, or x ¢ £v(¢1) and a is the ge-step
for x, then a <4 b iff b is inside to iff ¢(b) is inside us iff ¢(a) < G(b).
If b is a 1s-step for an occurrence of x in t1, then a <4 b iff ¢(a) <} #(b) iff a
is inside ¢; and its box contains that occurrence of x.
If 2 ¢ fv(t1) and b is the gc-step for z, then a 4 b and ¢(a) «4 #(b) for any
a € RO(t).

— Assume t; = s1[y/s2], so that ¢ = sy [y/s2][z/t2], u = s1[z/t2][y/s2], = ¢
fv(se) and y ¢ fv(ta).
If a is a 1s-step for an occurrence of y in s1, or y ¢ £v(s1) and a is the ge-step
for y (recall y ¢ £v(t2)), then a <3 b iff ¢(a) <4 ¢(b) iff b is inside s2; notice
x ¢ fv(sa).
The analysis is analogous if a is a ls-step for an occurrence of x in s1, or
x ¢ fv(s1) and a is the ge-step for .
If b is a 1s-step for an occurrence of z or y inside s, then a <3 b iff ¢(a) <3
¢(b) iff a is inside s1 and its box contains that occurrence of x or y.
If x ¢ fv(s1) and b is the gc-step for , or analogously for y, then a 4 b and
d(a) 43 ¢(b) for any a € RO(t).

— Assume t; = A\y.s1, so that ¢t = (A\y.s1) [x/t2], and u = Ay.s1[x/ta].
Then the interesting cases are where a or b is a 1s-step for an occurrence of
x in s1, or the ge-step for x if = ¢ fv(s;). A simpler version of the analysis
of the previous case applies.

— Assume t; = s189, so that t = (s1s2)[z/t2], u = s1[x/ta]s2, and x ¢ £v(s2).
If 51 = (\y®.s))L, then a <3 b iff ¢(a) <t ¢(b) iff b is inside s3. Recall
x ¢ fv(sa).
If 51 = (Ay”.s})L, then a 4 b and ¢(a) 3§ #(b) for any a € RO(2).
The remaining cases for a and b coincide with those specified for the previous
case in the proof, and a similar analysis applies.

e Assume that t = Ax.t7.

If t; L u1 and u = Az.uq, then all the steps are inside ¢; and w1, so that IH suffices
to conclude.

C.5. THE BOX ORDER ENJOYS CONTEXT-FREENESS 273

If t1 = s1|y/s2] and u = (Ax.s1)[y/sz2], then the interesting cases for a and b are
those involving 1s-steps or gc-steps for y, similar to those described in previous
case. We conclude by observing that a similar analysis applies. 0

C.5 The box order enjoys Context-Freeness

Proof of Lem. 4.5.8, page 123.

We recall the statement: let t = (Ax®.t1)[y1/s1] ... [yn/sn]t2 and u = t1[x/t2][y1/51] - - - [Yn/Sn],
so that t — u where a is the redex labeled by «, and b,c € RO(t), V/, ¢ € RO(u) such

that b[a]b’ and c[a]¢’. Then b <4 ¢ iff ¥ <3 €.

We proceed by a case analysis given b <4 ¢, resp. b’ <4 ¢/. Particularly, observe that
the steps in u consisting of either free occurrences of z in ¢; or the eventual gec-step on
x, are not residuals of steps in ¢, therefore they contradict the hypotheses. Notice also
that a € {b, ¢} would contradict the existence of &’ or ¢.

The list of possible cases of b <3 ¢ for each possible ¢ € RO(t) follows. We consider
a variant of ¢ in which the anchors of b and ¢ have the only occurrences of the labels 3
and y respectively.

e If the anchor of ¢ is inside t1, i.e. ¢ € t1 or y,z occurs free in t1, then the only
possibility is b € t; and the label v occurring in the box of b.

e If the anchor of ¢ is inside t1, i.e. ¢ € s;, or y; occurs free in s; where j < k, then
there are three possibilities: [y;/s;] being in fact [yf /il yf occurring free in ¢
or in some s; where i < j, or b € s; and the label v occurring in the box of b.

e If [y;/s;] is in fact [y;*/sj] then there is no redex which nests ~.

o If ¢ € ty, then the only possibility is b S to and the label v occurring in the box
of b.

To conclude, it suffices to observe that in each case the conditions are preserved in u,
and moreover, that these are the only cases for b <} ¢/ if we consider only non-created
redexes. If the anchor of c is inside s;, then recall that variable convention implies

yj ¢ fV(tQ). D

Proof of Lem. 4.5.9, page 124.
We recall the statement: let ¢ = E[[27]|[z/s], ¢ the 7-labeled step in t, a,b < E[z],
bla]t/, and cla]c. If a g ¢, then b <} ciff o' <} .

We consider a variant of ¢ in which the anchors of a, b and ¢ have the only occurrences
of the labels «, 8 and + respectively.

Before proving the lemma, we give two examples which show that the condition
a ¥3p c is needed in the statement.

L. yyPly/a"][x/s] - xVyP[y/27][x/s] = w. In this case b <} ¢ and b' £ ¢/, where
¢’ is the residual of ¢ whose anchor is on the left.

2. z[w? /y*[y/x"[x/s] = z[w’/x"][y/x"][x/s] = u. In this case b L ¢, and
V' <i ¢, where ¢ is the residual of ¢ whose anchor is on the left. This case is
counterexample also if we change <1 with <g in the conclusion, since b <g ¢ and
b 4«g ¢, where ¢” is the residual of ¢ whose anchor is on the right.

274APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

Now we develop the proof.

Let us consider tg = E[[+7] —% ug. We assume a ¢ {b, c}, otherwise a € {b, ¢} would
contradict the existence of ' and ¢/. Moreover, b = ¢ implies a {g b, and therefore, by
Linearity, we have b’ = ¢/, thus the statement of the lemma becomes trivial. Hence we
also assume b # ¢ hereafter. We now proceed by induction on E by observing that the
nesting relations in E[[2”]][z/s] mentioned in the hypothesis of the lemma coincide with
those of the smaller terms of the form D[x7]|[z/s] on which the IH is applied. Observe
that a «g ¢ implies that 7 occurs exactly once in ug, by Linearity.

e F = O contradicts the existence of a,b € E[z7].
o If £ =)\y.D, then a,b € D[[z"] so we conclude by the TH
e Assume E = Dts.
If b,a < D[z"], then we conclude by the TH.
If b € D[[2"]] and a € to, then we conclude by observing that ug = D[[z7]t,,

where to —> t).
If b S t9, then b 3 ¢ and b’ 4 ¢ because the label v does not occur in ¢y in
neither ¢y nor uyg.
If a x E[J27]), and b < D[[2"], i.e. either D = (Ay®.D’)Lor D = (Ay“.t11) L1 [2/D’] La,
then we just conclude by an analysis similar to that described in the proof of
Lem. 4.5.8, observing the form of ug and noticing that z ¢ £v(t2).
If b = E[27] is a db-step, then b 44 ¢ and b’ &3 .

e Assume E =1 D.
If b,a < DJ[|z"], then we conclude by the IH.

If a € t; and b © D[[2"]), then uy = | D[2]], where t; > t} and we trivially
conclude.

If b S t; and a th E[[27]], then b £} ¢ and b 3 .

If a x E[J27] is a db-step, then we get a contradiction with a g c.

If b > EfJz7] is a db-step, then b <} ¢ and ¥’ < ¢’ because the free occurrence of
27 lies inside the box of b in both tg and uyg.

e Assume E = D[y/ts].

If b < D[[z"]], then there are several cases to consider.

— If a € D[[«7] then we conclude by the TH

— If y* occurs free in D[[z”]], then an analysis of the relation between the
occurrences of 7 and y®, and the box of b, yields the following four cases for
D[[z"] : D'[D1[z"7,y*]], D'[D1][="], v*], D'[D1[ly“], =7], and D'[s,z7,y*].
The box of b is the subterm indicated with the context D; in the three former
cases, and s in the last one. Notice that b <4 ¢ in the former two cases, while
b 44 c for the first and fourth cases. We conclude by observing that a similar
analysis applies to ug, and that b’ <} ¢’ in the same cases.

— If either a » to is a ge-step on y, or a C ty, then tqg = D[z"][y*/ta] —
D[[z"] = ug or to = D[z |[y/t2] —= D[]|[y/th] = uo respectively, so that
it is trivial to conclude.

C.5. THE BOX ORDER ENJOYS CONTEXT-FREENESS 275

In any other case, i.e. b >t or b € to, we get that b £3 ¢ and b’ 3 ¢ because 27
does not occur free in the box of b. If b € ¢35 and a is a 1s-step on an occurrence
of y in D[[z7]], so that tg = D'[27,y*][y/t2], then uy = D'[z7,t2][y/t2], hence
neither of the two residuals of b embeds .

e Assume E = ti[y/D].
If b,a < D[z"], then we conclude by the IH

If b € D[[+"7] and @ € t1, then to = t1[y/D[z7]]] == t\[y/D[="]] = uo, where
t; — t} thus a trivial arguments allows to conclude.

If b < t1, and a S t; or a S D[[x7], then b €} ¢; notice that a free occurrence
of y being inside the box of b would imply b <32 ¢ but not b < c. It is then
straightforward to verify that b’ 44 ¢’ given the assumptions made on a, even if
ug includes two residuals of b.

If b > Ef[27]], and a S t; or a € D[[z"]], then we first observe that a cannot erase
neither b nor ¢ by the hypothesis b[a]b’ and c[a]c’. Therefore b <4 ¢ and b’ <} ¢,
given the assumptions made on a.

The case a x E[[z7] implies that the label v occurs in the box of a, which contra-

dicts a %3 c.
’ O

Proof of Lem. 4.5.10, page 124.
We recall the statement: let a,b,c € RO(t). Assume a g ¢, b[a]t/, c[a]d and ¥ <}
d' <} ', where d' is a created redex. Then b’ <k ¢ with k < n.

Let us define t — ¢/. In the following, we consider a variant of ¢ in which the anchors
of a and ¢ have the only occurrences of the labels a and v respectively. Moreover, we
will sometimes mark the anchor of d’ in ¢’ with a ¢, for improved readability.

This lemma is needed because it is not true that a,c € RO(t), a g ¢, t —— t/,
c[a]d and d' <} ¢ implies that d' is not created, i.e., that d[a]d’ for some d. A
counterexample follows: (y*z?)[y/I][z/t] = (Iz")[y/I][z/t]. The A-calculus exhibits
an analogous behavior, e.g. (Ay®.y((Az".t)s))I - I((Az".t)s). On the other hand, the
case t = y*[y/z7][z/t] > 27[y/x7]|x/t] = t', is not a counterexample because
a <p c.

Now we develop the proof. We analyse the possible cases for d’ being created, w.r.t.
Lem. 4.2.22.
If any of cases 1, 4, 5 or 7 apply, then we have:
t = C[(()\$a.(>\y.51)L1)L2 82) L3u] i> C[()\y‘s.sl)Ll [:U/SQ]LQLg u] = tl,
t = C[D[z°Lau][z/(M\y.s)L1]] — C[D[(M\y°.5)LiLou] [2/(My.s)L1]] = 1/,
t = Clz*Ly[x/(M\y.s)L1]L3 u] —%> C[(\y’.s)L1La[x/(\y.s)L1]L3u] = ¢, or
t = C[D[s[y*/ElalN][z/u]] = C[D[s][a’ /u]] = ¢
In any of these cases, d’ <4 ¢ iff the anchor of ¢ is inside u. We prove the lemma
statement by induction on n where b’ <§ d’. If ¥ <L d, then the box of ¥ contains
all the pattern of d’, notice that the latter is a db- or a gc-step. Therefore, the box of
b contains particularly the subterm u, implying b’ <} ¢/, so that the lemma statement
holds in this case. For the inductive case: b’ <E+1 o’
The case just verified implies e’ <3 ¢, which suffices to conclude.

implies b’ <k ¢/ <1 d for some ¢'.

276 APPENDIX C. DETAILED PROOFS FOR THE LINEAR SUBSTITUTION CALCULUS

Otherwise, one of the cases 2, 3 or 6 apply, i.e.
t = C[(Maz®.D[[z])Lu] - C[D[z°][z/u]L] = ',
t = C[(Max®.s)Lu] % C[s[x®/u]L] = ¢, or
t = CD[eNlz/ul] < CLDul[2/ul] = .
In any of these cases, d <i ¢ iff the anchor of ¢ is inside u. But then a <} c,
contradicting the hypothesis. Thus we conclude. O

Bibliography

[ABKL14]

[Accll]

[Accl2]

[ACCL1]

[AK10]

[AMO6]

[AMROG]

[AMROY]

[ANSO]

[Ball0a]

Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi.
A nonstandard standardization theorem. In Suresh Jagannathan and Peter
Sewell, editors, POPL, pages 659-670. ACM, 2014.

Beniamino Accattoli. Jumping around the box: graphical and operational
studies on A-calculus and Linear Logic. PhD thesis, La Sapienza University
of Rome, february 2011.

Beniamino Accattoli. An abstract factorization theorem for explicit substi-
tutions. In Ashish Tiwari, editor, RTA, volume 15 of LIPIcs, pages 6-21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

Martin Abadi, Luca Cardelli, Pierre Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. Journal of Functional Programming, 4(1):375-416,
1991.

Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In
Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes
in Computer Science, pages 381-395. Springer, 2010.

S. Antoy and A. Middeldorp. A sequential reduction strategy. Theor.
Comput. Sci., 165(1):75-95, 1996.

Ariel Arbiser, Alexandre Miquel, and Alejandro Rios. A lambda-calculus
with constructors. In Frank Pfenning, editor, RTA, volume 4098 of Lecture
Notes in Computer Science, pages 181-196. Springer, 2006.

Ariel Arbiser, Alexandre Miquel, and Alejandro Rios. The lambda-calculus
with constructors: Syntax, confluence and separation. J. Funct. Program.,
19(5):581-631, 20009.

André Arnold and Maurice Nivat. The metric space of infinite trees. alge-
braic and topological properties. Fundamenta Informaticae, 3(4):445-476,
1980.

T. Balabonski. On the implementation of dynamic patterns. In E. Bonelli,
editor, Proceedings of the Fifth International Workshop on Higher-Order
Rewriting (HOR), number 49, pages 16-30. Electronic Proceedings in The-
oretical Computer Science, July 2010. http://eptcs.org/content.cgi?
HOR2010.

277

278

[Ball0b)]

[Bar84]

[BBLRDYG6]

[BKAV00]

[BKAV03]

[BKLR12]

[BNOg]

[BR9S]

[Bru08g]

[CF58]

[CF07]

[Chu32]

[Chu41]

[CK98]

BIBLIOGRAPHY

T. Balabonski. Optimality for dynamic patterns: Extended abstract. In
M. Fernandez T. Kutsia, W. Schreiner, editor, Proceedings of the 12th In-
ternational Conference on Principles and Practice of Declarative Program-
ming (PPDP), pages 16-30. ACM, July 2010.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Else-
vier, Amsterdam, 1984.

Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne, and Jocelyne
Rouyer-Degli. Av, a calculus of explicit substitutions which preserves strong
normalisation. J. Funct. Program., 6(5):699-722, 1996.

Inge Bethke, Jan Willem Klop, and Roel C. de Vrijer. Descendants and
origins in term rewriting. Inf. Comput., 159(1-2):59-124, 2000.

Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term Rewriting
Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 2003.

Eduardo Bonelli, Delia Kesner, Carlos Lombardi, and Alejandro Rios. Nor-
malisation for dynamic pattern calculi. In 23rd International Conference
on Rewriting Techniques and Applications RTA’12, volume 15 of LIPIcs,
pages 117-132. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, Cambridge, UK, 1998.

Roel Bloo and Kristoffer Rose. Preservation of strong normalization in
named lambda calculi with explicit substitution and garbage collection. In
Computing Science in the Netherlands, pages 62—72. Netherlands Computer
Science Research Foundation, 1995.

H.J. Sander Bruggink. Equivalence of reductions in higher-order rewriting.
PhD thesis, Utrecht University, 2008.

Haskell B. Curry and Robert Feys. Combinatory Logic. North-Holland
Publishing Company, Amsterdam, 1958.

Horatiu Cirstea and Germain Faure. Confluence of pattern-based calculi.
In Franz Baader, editor, RTA, volume 4533 of Lecture Notes in Computer
Science, pages 78-92. Springer, 2007.

Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, Second Series, 33(2):346-366, 1932.

Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, Princeton, 1941.

H. Cirstea and C. Kirchner. p-calculus, the rewriting calculus. In Pro-
ceedings of Annual Workshop of the Constraints in Computational Logics
Working Group, CCL’98, Jerusalem (Israel), September 1998.

BIBLIOGRAPHY 279

[CKO1]

[CKO04]

[Cou83]

[CR36]

[Cra09]

[Czald]

[dCPAF11]

[DGO1]

[DKP91]

[EGH*10]

[EHH*13]

[EHK12]

[For(2]

H. Cirstea and C. Kirchner. The rewriting calculus - Part I and Part II.
Logic Journal of the IGPL, 9(3), 2001.

Serenella Cerrito and Delia Kesner. Pattern matching as cut elimination.
Theor. Comput. Sci., 323(1-3):71-127, 2004.

Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput.
Sci., 25:95-169, 1983.

Alonzo Church and J.B. Rosser. Some properties of conversion. Transac-
tions of the American Mathematical Society, 39(3):472-482, 1936.

Karl Crary. A simple proof of call-by-value standardization. Technical
Report CMU-CS-09-137, Carnegie-Mellon University, 2009.

Lukasz Czajka. A coinductive confluence proof for infinitary lambda-
calculus. In 25rd International Conference on Rewriting Techniques and
Applications RTA’1j (to appear), Lecture Notes in Computer Science.
Springer, 2014.

Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A
semantic measure of the execution time in linear logic. Theor. Comput.
Sei., 412(20):1884-1902, 2011.

René David and Bruno Guillaume. A lambda-calculus with explicit weak-
ening and explicit substitution. Mathematical Structures in Computer Sci-
ence, 11(1):169-206, 2001.

Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite,
rewrite, rewrite, rewrite, rewrite, . . Theor. Comput. Sci., 83(1):71-96,
1991.

Jorg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Jan Willem Klop,
and Vincent van Oostrom. Unique normal forms in infinitary weakly orthog-
onal rewriting. In Christopher Lynch, editor, Proceedings of the 21st Inter-
national Conference on Rewriting Techniques and Applications, RTA 2010,
volume 6 of LIPIcs, pages 85-102. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2010.

Jorg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky,
and Alexandra Silva. A coinductive treatment of infinitary rewriting. Pre-
sented at WIR 2013, First International Workshop on Infinitary Rewriting,
Eindhoven, Netherlands, June 2013, 2013.

Jorg Endrullis, Dimitri Hendriks, and Jan Willem Klop. Highlights in
infinitary rewriting and lambda calculus. Theor. Comput. Sci., 464:48-71,
2012.

Julien Forest. A weak calculus with explicit operators for pattern matching
and substitution. In Proceeding of Rewriting Techniques and Applications
(RTA), 15th International Conference, volume 2378 of Lecture Notes in
Computer Science, pages 174-191. Springer, 2002.

280

[For03]

[Gal86]

[Gir87]

[GKKO5]

[GLM92]

[Hil96]

[Hin69)]

[Hin78]

[HL8Y]

[HL91]

[Hue80]

[Jay04]

[Jay09)]

[JK06a]

[JKO6b]

[JKO09]

BIBLIOGRAPHY

Thomas Forster. Logic, Induction and Sets, volume 56 of London Math-
ematical Society Student Texts. Cambridge University Press, Cambridge,
UK, 2003.

Jean H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper & Row, 1986.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-101,
1987.

John R. W. Glauert, Delia Kesner, and Zurab Khasidashvili. Expression
reduction systems and extensions: An overview. In A. Middeldorp, V. van
Oostrom, F. van Raamsdonk, and R.C. de Vrijer, editors, Processes, Terms
and Cycles: Steps on the Road to Infinity, volume 3838 of Lecture Notes in
Computer Science, pages 496-553. Springer, 2005.

Georges Gonthier, Jean-Jacques Lévy, and Paul-André Mellies. An abstract
standardisation theorem. In LICS, pages 72-81, 1992.

Barney P. Hilken. Towards a proof theory of rewriting: The simply typed
2lambda-calculus. Theor. Comput. Sci., 170(1-2):407-444, 1996.

R. Hindley. An abstract form of the church-rosser theorem. i. Journal of
Symbolic Logic, 34(4):545-560, 1969.

R. Hindley. Reductions of residuals are finite. Transactions of the American
Mathematical Society, 240:345-361, 1978.

T. Hardin and J.-J. Lévy. A confluent calculus of substitutions. In France-
Japan Artificial Intelligence and Computer Science Symposium, 1989.

Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewrit-
ing systems, i and ii. In Computational Logic - Essays in Honor of Alan
Robinson, pages 395—414, 1991.

Gérard Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. Journal of the ACM, 27(4):797-821, 1980.

C. Barry Jay. The pattern calculus. ACM Trans. Program. Lang. Syst.,
26(6):911-937, 2004.

B. Jay. Pattern Calculus: Computing with Functions and Structures.
Springer Publishing Company, Incorporated, 2009.

B. Jay and D. Kesner. Pure pattern calculus. In P. Sestoft, editor,
ESOP, volume 3924 of Lecture Notes in Computer Science, pages 100-114.
Springer, 2006.

C. Barry Jay and Delia Kesner. Patterns as first-class citizens. Available
at http://hal.archives-ouvertes.fr/hal-00229331/fr, 2006.

C. Barry Jay and Delia Kesner. First-class patterns. J. Funct. Program.,
19(2):191-225, 2009.

BIBLIOGRAPHY 281

[Kah03]

[Kah04]

[Kah10]

[Kas00]

[KB70]

[KdV05]

[Ken89)

[Ken92]

[Kes07]

[Ket12]

[KG97]

[KKSdV90]

W. Kahl. Basic pattern matchin gcalculi: Syntax, reduction, confluence,
and normalisation. Technical Report 16, Software Quality Research Labo-
ratory, McMaster University, 2003.

W. Kahl. Basic pattern matching calculi: A fresh view on matching failure.
In Yukiyoshi Kameyama and Peter Stuckey, editors, Functional and Logic
Programming, Proceedings of FLOPS 2004, volume 2998 of LNCS, pages
276-290. Springer-Verlag, April 2004.

Stefan Kahrs. Infinitary rewriting: Foundations revisited. In Christopher
Lynch, editor, Proceedings of the 21st International Conference on Rewrit-
ing Techniques and Applications, RTA 2010, volume 6 of LIPIcs, pages
161-176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

Ryo Kashima. A proof of the standardization theorem in A-calculus. Re-
search Reports on Mathematical and Computing Sciences C-145, Tokyo
Institute of Technology, 2000.

D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263-297, Oxford, 1970. Pergamon Press.

Jan Willem Klop and Roel C. de Vrijer. Infinitary normalization. In We
Will Show Them: FEssays in Honour of Dov Gabbay, volume 2, pages 169—
192. College Publications, 2005.

Richard Kennaway. Sequential evaluation strategies for parallel-or and re-
lated reduction systems. Ann. Pure Appl. Logic, 43(1):31-56, 1989.

Richard Kennaway. On transfinite abstract reduction systems. Technical
Report CS-R9205, Centrum voor Wiskunde en Informatica, Netherlands,
1992.

Delia Kesner. The theory of calculi with explicit substitutions revisited. In
CSL, pages 238-252, 2007.

Jeroen Ketema. Reinterpreting compression in infinitary rewriting. In
Ashish Tiwari, editor, 23rd International Conference on Rewriting Tech-
niques and Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012,
Nagoya, Japan, volume 15 of LIPIcs, pages 209-224. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

Zurab Khasidashvili and John R. W. Glauert. The geometry of orthogo-
nal reduction spaces. In Pierpaolo Degano, Roberto Gorrieri, and Alberto
Marchetti-Spaccamela, editors, ICALP, volume 1256 of Lecture Notes in
Computer Science, pages 649-659. Springer, 1997.

Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan
de Vries. Transfinite reductions in orthogonal term rewriting systems. Tech-
nical Report CS-R9041, Centrum voor Wiskunde en Informatica, Nether-
lands, 1990.

282

[KKSAV95]

[KKvOO04]
[K1080]

[KMS9)

[KM91]

[KOCO08]

[KR95]

[Kri90]
[KvOdV08|

[LRAV14]

[LVO2]

[Mel96]

[Mel05]

[Mil99]

BIBLIOGRAPHY

Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan
de Vries. Transfinite reductions in orthogonal term rewriting systems. Inf.
Comput., 119(1):18-38, 1995.

Jeroen Ketema, Jan Willem Klop, and Vincent van Oostrom. Vicious circles
in rewriting systems. CWI Technical Report SEN-E 0427, 2004.

Jan Willem Klop. Combinatory Reduction Systems. Phd thesis, Utrecht
University, 1980.

Jan Willem Klop and Aart Middeldorp. Sequentiality in orthogonal term
rewriting systems. Technical Report CS-R8932, Centrum voor Wiskunde
en Informatica, Netherlands, 1989.

Jan Willem Klop and Aart Middeldorp. Sequentiality in orthogonal term
rewriting systems. Journal of Symbolic Computation, 12(2):161-196, 1991.

Delia Kesner and Shane O Conchiir. Milner’s lambda calculus with partial
substitutions, 2008. http://www.pps.univ-paris-diderot.fr/~kesner/
papers/shortpartial.pdf.

Fairouz Kamareddine and Alejandro Rios. A A-calculus a la de bruijn with
explicit substitutions. In Manuel V. Hermenegildo and S. Doaitse Swierstra,
editors, PLILP, volume 982 of Lecture Notes in Computer Science, pages
45-62. Springer, 1995.

Jean-Louis Krivine. Lambda-calcul types et modéles. Masson, Paris, 1990.

Jan Willem Klop, Vincent van Oostrom, and Roel C. de Vrijer. Lambda
calculus with patterns. Theor. Comput. Sci., 398(1-3):16-31, 2008.

Carlos Lombardi, Alejandro Rios, and Roel de Vrijer. Proof terms for infini-
tary rewriting. In Gilles Dowek, editor, 25rd Intl. Conference on Rewriting
Techniques and Applications, joint with 12th Intl. Conference on Typed
Lambda Calculi with Applications. RTA-TLCA’14, volume 8560 of Lecture
Notes in Computer Science, pages 303-318. Springer, 2014.

Carlos Lombardi and Enrique Vetere. FEstudio de relaciones de reduccion
en el cdlculo-\ puro. Tesis de Licenciatura en Ciencias de la Computacién
dirigida por Alejandro Rios, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, 2002.

Paul-André Mellies. Description abstraite des Systémes de Réécriture. PhD
thesis, Université Paris VII, 1996.

Paul-André Mellies. Axiomatic rewriting theory I: A diagrammatic stan-
dardization theorem. In A. Middeldorp, V. van Oostrom, F. van Raams-
donk, and R.C. de Vrijer, editors, Processes, Terms and Cycles: Steps on
the Road to Infinity, volume 3838 of Lecture Notes in Computer Science,
pages 554-638. Springer, 2005.

Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cam-
bridge University Press, Cambridge, 1999.

BIBLIOGRAPHY 283

[Mil07a]

[Mil07b)

[MNOS]

[New42]

[Nip91]

(0D77]

[Plo75]

[Plo77]

[RosT73]

[Ros92]

[Sch65]

[Sie65]

[SR93]

[Sup60]

[SWO1]

[Tak95]

[vO90]

[vO94]

Robin Milner. Local bigraphs and confluence: Two conjectures. Electronic
Notes in Theoretical Computer Science, 175(3):65-73, 2007.

Robin Milner. Local bigraphs and confluence: Two conjectures. ENTCS,
175(3):65-73, 2007.

Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their
confluence. Theoretical Computer Science, 192:3-29, 1998.

M.H.A. Newman. On theories with a combinatorial definition of “equiva-
lence”. Annals of Mathematics, Second Series, 43(2):223-243, 1942.

Tobias Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic
in Computer Science, pages 342—-349. IEEE Press, 1991.

M. J. O’Donnell. Computing in Systems Described by Equations, volume 58
of LNCS. Springer-Verlag, 1977.

Gordon Plotkin. Call-by-name, call-by-value and the lambda-calculus. The-
oretical Computer Science, 1(2):125-159, 1975.

Gordon D. Plotkin. Lcf considered as a programming language. Theor.
Comput. Sci., 5(3):223-255, 1977.

B.K. Rosen. Tree manipulation systems and churc-rosser theorems. Journal
of the ACM, 20:160-187, 1973.

Kristoffer Hggsbro Rose. Explicit cyclic substitutions. In Proc. Conditional
Term Rewriting Systems, Third International Workshop, CTRS-92, Pont-
a-Mousson, France, pages 36-50, 1992.

David Schroer. The Church-Rosser theorem. PhD thesis, Cornell University,
Ithaca, USA, 1965.

Wactav Sierpinski. Cardinal and Ordinal Numbers — second edition revised.
PWN - Polish Scientific Publishers, Warsawa, Polska, 1965.

R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic:
Beyond strong sequentiality. Inf. Comput., 104(1):78-109, 1993.

Patrick Suppes. Aziomatic Set Theory. D. van Nostrand, Princeton, USA,
1960.

D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile Processes.
Cambridge University Press, Cambridge, 2001.

Masako Takahashi. Parallel reductions in lambda-calculus. Information
and Computation, 118(1):120-127, 1995.

V. van Oostrom. Lambda calcuus with patterns. Technical Report IR-228,
Vrije Universiteit Amsterdam, 1990.

Vincent van Qostrom. Confluence for Abstract and Higher-Order Rewriting.
Phd thesis, Vrije Universiteit Amsterdam, 1994.

284

[vO99]

[vOdV02]

[vOvR14]

[vR97]

[Zan08)

BIBLIOGRAPHY

V. van Qostrom. Normalisation in weakly orthogonal rewriting. In
P. Narendran and M. Rusinowitch, editors, RTA, volume 1631 of LNCS,
pages 60-74. Springer-Verlag, 1999.

Vincent van QOostrom and Roel C. de Vrijer. Four equivalent equivalences of
reductions. Electronic Notes in Theoretical Computer Science, 70(6):21-61,
2002.

V. van Oostrom and F. van Raamsdonk. The dynamic pattern calculus as
a higher-order pattern rewriting system. In Proceedings of the Seventh In-
ternational Workshop on Higher-Order Rewriting (HOR). To appear, 2014.

F. van Raamsdonk. Outermost-fair rewriting. In P. de Groote, editor,
TLCA, volume 1210 of LNCS, pages 284-299. Springer-Verlag, 1997.

Hans Zantema. Normalization of infinite terms. In Andrei Voronkov, edi-
tor, Rewriting Techniques and Applications, 19th International Conference,
RTA 2008, volume 5117 of Lecture Notes in Computer Science, pages 441—
455. Springer, 2008.

Index of subjects

The page numbers in italic indicate where a concept is defined.

Abstract Rewriting System, see ARS
anchor of a step, see linear subst.
calculus, step, anchor
anti-standard pair, 40
ARS, 27, 60
for PPC, see PPC, as an ARS
for the linear substitution calculus,
see linear substitution calculus,
as an ARS
model, 14-19, 217-218, 221
contributions, 219-220
with gripping, 27
axiom
Ancestor Uniqueness, 18, 32, 32,
36, 40, 63, 65, 68, 76, 103
Context Freeness, 35, 35, 36, 37,
41, 54, 59, 63, 65, 66, 80, 111,
122-124, 126-129, 217, 218,
220, 273
Enclave Creation, 35, 35, 65, 76,
79, 110, 111, 127, 128, 215,
218, 220
Enclave Embedding, 35, 35, 36, 54,
59, 65, 80, 112, 127, 128, 215,
218, 220
Finite Developments (FD), 32, 32,
33, 34, 41, 42, 55, 57, 75, 76,
82, 96, 103, 107, 112, 122,
126-129, 219, 220
Finite Residuals, 32, 32, 33, 76, 82,
103
Grip-Convexity, 38, 38, 66, 81
Grip-Density, 37, 38, 38, 63, 81
Grip-Instantiation, 37, 37, 63, 79,
80

285

in the ARS model, 17, 217

Linearity, 34, 34, 35, 36, 3941, 54,
59, 63, 65, 66, 79, 82, 95, 110,
121-123, 126-129, 217, 218,
220, 274

Pivot, 59, 60, 64, 65, 69, 75, 80, 218

Self Reduction, 32, 32, 33, 36, 39,
65, 76, 82, 103

Semantic orthogonality (SO), 32,
32, 33, 34, 36, 41, 42, 55, 57,
75, 76, 82, 96, 100, 103, 108,
110, 112, 121, 122, 126129,
220, 222, 223

Stability, 22, 36, 36, 37, 42, 54, 74,
75, 112, 127, 214, 218, 220

a-labeled, 102

box of a step, 102
box order <g, see linear subst.
calculus, embedding, box order

closed term, 138
coinitial steps, 4, 6, 28, 38
depth, 31
collapsing sequence, 196, 196
Combinatory Reduction Systems, see
CRS
complete development, 31
compression, 13, 24, 195
condensed-to-fixed-prefix, 201, 204, 206
confluence, 3, 8
for infinitary rewriting, see
infinitary rewriting, confluence
context
in infinitary rewriting, see
infinitary rewriting, context

286

of a step
in the linear subst. calculus, 102
replacement
in infinitary rewriting, see
infinitary rewriting, context,
replacement
contraction activity, 20, 46
contractum, 4
convergence, 13
of a proof term, 160
of a reduction sequence, 146
of an infinitary multistep, 158
strong, see strong convergence
weak, see weak convergence
Created step, 28
CRS, 7, 223

db-step, 101
db-step, 101, 103, 109, 111, 118, 122,
127, 267269, 274, 275
decided match, see PPC, match,
decided
denotation
of a reduction sequence, 182, 188
of a reduction step, 187
denotational equivalence, 183, 189
depth, 31
derivation space, 4, see reduction space
development, 31
complete, 6, 81, 55, 108
complete (I-), 31-33, 3840, 57, 63,
64, 68, 82, 86, 87
disjoint steps, 28, 40, 121
distance, 121
distance between terms, 741
dominated, 58, 67
dominated (), 58, 64-67
dominated part, 85
dot (-), 19

embedding, 54
in ARS, 27, 39, 42
in PPC, see PPC, embedding
in the ARS model, 17
in the linear subst. calculus, see
linear subst. calculus,
embedding
equality

INDEX OF SUBJECTS

for infinitary terms, see infinitary
rewriting, term, equality
criterion
equational logic, 47
infinitary, 169, 172-175, 216, 226
infinite number of premises, 173
equivalence
denotational, see denotational
equivalence
graphical (in the linear subst.
calculus), see graphical
equivalence ~
of permutations, see permutation
equivalence
of reductions, 4, 222
in the ARS model, 16
in the proof term model, 20, 24
infinitary, see infinitary
rewriting, equivalence of
reductions
rebracketing, see rebracketing
equivalence
square, see square equivalence
equivalence of reductions, 46, 169
erasure, 48
infinitary, 178
error mechanism, 8, 53, 54, 73
ERS, 7, 223
explicit substitution, 2
calculi, 7, 9-12, 213
at a distance, 11
Expression Reduction Systems, see
ERS
external step, see reduction step,
external

factorisation
of a proof term, 196
fixed prefix, 200
free from, 57
free from (1), 57, 58, 62-68, 85
free part, 85
functional programming, 1, 7, 10, 12

gc-step, 101

gec-step, 101, 103, 109-111, 113, 118,
119, 124, 126, 127, 218,
267-275

INDEX OF SUBJECTS 287

graphical equivalence ~, 99, 113-121, subterm, 138
215 system, see term rewriting system,
derivation, 113 infinitary
labeled, 100 target, see target in infinitary
gripping, 18, 27, 54, 60, 219 rewriting, see target of a
in PPC, see PPC, gripping reduction sequence, infinitary
gripping («), 27, 28, 30, 37, 38, 60, term, see term in infinitary
62-64, 66, 69, 74, 75, 79-81, rewriting
224, 248 equality criterion, 141
termination, 13
Higher-order Rewriting Systems, see uniqueness of normal forms, 13
HRS infinite concatenation, 161
HRS, 7, 223
label, 23, 75, 100, 108, 113-120
infinitary erasure, see erasure, infinitary labeled reduction
infinitary multistep, 157, 196 in linear substitution calculus, see
source, see source of an infinitary linear substitution calculus,
multistep labeled reduction
target, see target of an infinitary labeled term
multistep in linear substitution calculus, see
infinitary rewriting, 2, 12-14, 213 linear substitution calculus,
confluence, 13 labeled term
context, 140 A-calculus
replacement, 140 acronyms for terms (I, D, K,Q), 7
equivalence of reductions, 13, 23, A-calculus, 1, 2, 6-12, 16-19, 22, 29, 30,
215, 221 33-39, 53, 54, 56, 58, 75, 84,
length, see length of a reduction 95, 96, 213, 214, 218, 275, 282
sequence, infinitary left-linear term rewriting system, see
normal form, see normal form in term rewriting system,
infinitary rewriting left-linear
occurrence, see occurrence in left-to-right order
infinitary rewriting in the linear subst. calculus, see
permutation of steps, see linear subst. calculus,
permutation of steps in embedding
infinitary rewriting leftmost-outermost, 21, 51, 53, 54, 82
position, see position in infinitary length
rewriting of a multireduction, 56
reduction sequence, see reduction of a reduction sequence, 30
sequence, infinitary of a reduction sequence
reduction step, see reduction step infinitary, 147
in infinitary rewriting lift, 102
replacement, 139 limit
source, see source of a reduction in equivalence judgements, 172,
sequence, infinitary 174, 183
standardisation, see of a sequence of infinitary terms,
standardisation for infinitary 141
rewriting linear substitution calculus, 11, 23

substitution, 142 Alsubs 99

288

)\1sub7 98
as an ARS
Ag, 122
g, 122
A, 101
context, 98
embedding
box order <g, 120127, 218, 254,
271-276
box order <3, 215
box order <, 121
left-to-right <, 102, 110
left-to-right <, 101-103,
110-113, 120, 128, 254
graphical equivalence, see graphical
equivalence
labeled reduction, 100, 108
labeled term, 100
variant, 100
residual relation, 102
standardisation, see
standardisation for the linear
subst. calculus
step, 101
anchor, 101, 120
box, 102
context, 102
inside (€ and), 122
inside (S and), 122-127,
273-275
pattern, 102
syntax, 98
well-labeled term, 100, 115
linear term, 138
list of substitutions, 98
as a context, 98
lookahead, 52, 82
1s-step, 101
1s-step, 101-103, 108, 109, 111, 118,
119, 121, 126, 127, 215, 218,
267-273, 275

matching, 8
explicit, 225
matching failure, 72
measure
of a multireduction, see
multireduction, measure

INDEX OF SUBJECTS

minimum activity depth

of a proof term, 160

of a reduction sequence, 147

of an infinitary multistep, 158
multireduction, 54, 56, 60

measure, 61

trivial, 56
multistep, 54, 55

infinitary, see infinitary multistep

necessary, 53-55, 60, 61, 82
necessary set of steps, 22
needed, 21, 51, 53, 60
non-gripping, 22, 54, 55, 60, 60, 61-69,
82, 84, 88, 90, 93, 224
non-sequential, 21, 51-54, 73-74, 83
normal form, 2, 28, 60, 83
head, 120
in infinitary rewriting, 149
labeled, 108
uniqueness, 2, 9
for infinitary rewriting, see
infinitary rewriting, uniqueness
of normal forms
normalisation, 6, 22, 51, 52, 54, 56, 214,
219, 224
normalising object, 30

occurrence
in infinitary rewriting, 138
one-step, 184
orthogonal, 16, 39, 195, 222
almost, 52, 222
weakly, 222
orthogonality, 222
outermost-fair, 53, 54

parallel-or, 52, 73
parallel-outermost, 224
pattern, 8

dynamic, 9

of a step in the linear subst.

calculus, 102

of a term and rewrite rule, 7149
pattern calculi, 1, 7-9, 213
pattern matching, 7
patterns

dynamic, 73
permutation equivalence

INDEX OF SUBJECTS

in ARS, 38, 39
in the proof term model, 169,
172-175, 221
for finitary rewriting, 47
for infinitary rewriting, 173
infinitary, 169-178
permutation of steps, 17, 23
in ARS, 38, 39
in infinitary rewriting, 169-172, 216
square, 40
standardising, 40
polymorphism, 9
position, 75
in infinitary rewriting, 136
positive match, see PPC, match,
positive
postponement, 6467
PPC, 8, 9, 21, 22, 25, 29, 52-55, 69, 69,
70-76, 82-84, 93, 213, 214,
217-219, 221, 223-225, 230,
236-238, 247, 251-253, 257
as an ARS, 74
compound matching operation, 71
embedding, 74
gripping, 74
match, 71
application, 71
decided, 71
disjoint union, 771
positive, 71
matching failure, see matching
failure
matching operation, 72
position, 70
reduction strategy, 82, 83
residual relation, 74
rewrite rule, 72
step, 74
substitution, 70
syntax, 69
preserves, 85
prestep, 54, 82, 83, 84
programming
functional, see functional
programming
projection
of a multireduction, 85
of a reduction sequence, 85

289

of a multistep, 85
of a reduction sequence
infinitary, 152
proof term, 19
finitary, 43, 44
infinitary, 161
layer, 160
source, target, convergence,
minimum activity depth, see
source, target, etc. of an
infinitary proof term
model, 19-21, 218-219, 222
contributions, 220-221
for infinitary rewriting, 24, 221
stepwise, 182, 184
stepwise-or-nil, 184
component, 184
steps, 184
trivial, 161
proof term model
for finitary rewriting, 42

rebracketing equivalence, 183, 189
redex, 3
redex occurrence, 4
reduction, 3
reduction relation, 4
reduction sequence, 3, 30, 60
equivalence, see equivalence of
reductions
infinitary, 146
reduction space, 4, 11
reduction step, 3
composition, 19
concatenation, 19
infinite, 216
external, 5
in infinitary rewriting, 144
in PPC, see PPC, step
in the linear substitution calculus
step, see linear substitution
calculus, step
needed, see needed
simultaneous contraction, 20
reduction strategy, 5, 54, 55, 60, 82, 224
for PPC, see PPC, reduction
strategy
multistep, 6, 22, 52, 54, 60, 82

290

normalising, 6, 51, 52, 60, 82
replacement
in infinitary rewriting, see
infinitary rewriting,
replacement
residual, 38, 54, 55, 67
after a multireduction, 56
after a reduction sequence, 30
after a multistep, 55
after a set of coinitial steps, 28
in the ARS model, 15
of a multireduction after a
multistep, 57
relation, 27
residual relation
after a graphical equiv. derivation,
118
in PPC, see PPC, residual relation
in the linear substitution calculus
step, see linear substitution
calculus, residual relation
on equivalence classes, 113-120
respects, 201
rewrite rule, 3, 10
in finitary rewriting, 43
in infinitary rewriting, 143
in PPC, see PPC, rewrite rule
pattern, 149
rewrite step, see reduction step
sequence, 2, see reduction sequence
rewriting, 2
infinitary, see infinitary rewriting
system, see rewriting system
term, see term rewriting
rewriting system, 2
term, see term rewriting system
typed, 1
rule
rewrite, see rewrite rule
symbol, 19

sequentiality, 52
strong, 52
signature
for infinitary multisteps, 157
for proof terms
finitary, 43
infinitary, 160

INDEX OF SUBJECTS

source
in ARS, 27
of a multireduction, 56
of a reduction sequence, 30
infinitary, 147
of a multistep, 55
of a finitary proof term, 43
of an infinitary multistep, 157
of an infinitary proof term, 160
square equivalence, 40
square equivalence (<), 4042, 112,
129, 130
standard reduction sequence (s.r.s.),
41
standard reduction sequence (s.r.s.),
5, 40-42, 96, 97, 112, 126-130,
213, 219, 220, 225
standardisation, 5, 22, 220
for infinitary rewriting, 225
for the linear subst. calculus, 112,
130, 214
in ARS, 3942, 127-130
stepwise proof term, see proof term,
stepwise
strong convergence, 13, 145, 195
substitution, 7
in infinitary rewriting, see
infinitary rewriting,
substitution
subterm
in infinitary rewriting, see
infinitary rewriting, subterm

target
in ARS, 27
in infinitary rewriting, 13
of a multireduction, 56
of a reduction sequence, 30
infinitary, 147
of a multistep, 55
of a finitary proof term, 43
of an infinitary multistep, 157
of an infinitary proof term, 160
term
closed, see closed term
in infinitary rewriting, 136
linear, see linear term
term rewriting, 2

INDEX OF SUBJECTS

term rewriting system
finitary, 48
first-order, 6
higher-order, 6
infinitary, 143
left-linear, 43, 195
termination, 2
infinitarily terminating, see
infinitary rewriting,
termination
non-terminating system, 12
tree domain, 136
trivial
multireduction, 56
trivial proof term, see proof term,
trivial

291

typed rewriting system, see rewriting
system, typed

uniqueness of normal forms, see normal
form, uniqueness
uses, 58, 61, 62, 67-69

variant
in linear substitution calculus, see
linear substitution calculus,
labeled term, variant

weak convergence, 145, 195

well-labeled term, see linear
substitution calculus,
well-labeled term

292 INDEX OF SUBJECTS

Index of notations — ARS

This index contains the notations defined for the ARS model, the Pure Pattern Calculus,
and the linear substitution calculus. Some acronyms related to the A-calculus are also
included.

A, 74 nil; (empty reduction sequence), 30
2, 101 nil; (empty multireduction), 56
Ap, 122 O (ARS objects), 27

Az, 122 PLR, 104

A, B,C (multisteps), 55 Pos (in PPC), 70

a, 74 R (ARS steps), 27

A, B,C (Set of coinitial steps), 28 RS, 30

a,b,c (ARS step), 28 RO, 28

A (ARS), 28 S, 83

ABS, 69 S, 83

add, 115 SM, 83

Bla, 85 src, 27, 30, 55, 56

BP. 85 t°, 100

BE. 85 t,u,s (ARS object), 28

bm, 71 tgt, 27, 30, 55, 56

C[It], 98 Towe, 100

D, 7 wait, 71

DS, 69 9,7, m, 0 (reduction sequence), 30
fail, 71 AT IL ¥ (multireduction), 56
f1v, 100 2(%) 100

fm (in PPC), 70 Az(@).t, 100

fv (in PPC), 70 t[z(*) /t], 100

1,7 I, 31

K, 7 ; (concatenation of reduction
L, 98 sequences), 30

L (as a context), 98 v, 31

Lab, 100 I, 28

1ift, 102 >, 58

LM,, 104 ~, 99

M, 55 ~, 99

MF, 69 ~ (labeled), 100

MRS, 56 =cs, 99

NF, 28 ~cs (labeled), 100

293

294

Ro, 99

~, (labeled), 100
Ry, 99

~,, (labeled), 100
G, 1, 114

&, 27

a< B, A« B, 60

C (step inside a subterm), 122
| : |7 30

a<B,a<d (in PPC), 85
A;subv 99

Alsuby 98

<g, 121

<g, 121

<, 102

<4, 115

X, 61

Q,7

/., 40

Alg, 85

0lq, 85

<, 40

S, 40

—6», 30

%5 (ARS step), 28

1

g, 41

g, 41

<, 41

w, 71

>, 122
AMlowp?

> Asub> 98

5, 100

45,55

INDEX OF NOTATIONS — ARS

—o», 56
—>4db, 98
ap, 100
—>db;, 98
Hgc, 98
ge, 100
—gc, 98
—1s, 98
15, 100
—1s, 98

ﬁp =g t}, 71
{p/G t}a 72
S[k], 30
Alk], 56
o[i..5], 30
Ali..j], 56
ba]t’, 28
bla], 28
Bla]t', 28
Bla], 28
b[o]¥', 30
b[4], 30
BI6Y, 30
B[5], 30
Qt[[a], 59
@t[[(s]]? 95
bAJY, 55
b[.A], 55
B[AJY, 55
B[A], 55
b[A]Y, 56
b[A], 56
B[A]Y, 56
B[A], 56
A[B], 57
aft ~ ula’, 113
aft ~ uf, 113
Alt ~ u] A, 113

Index of notations — Proof terms

This index contains the notations defined for the proof term model and for infinitary

rewriting.

a,ay,a’,b,c (reduction step), 144

Bpos(C, i), 140

Clt1,...,tn], 140

cfpc(e, P), 206

cfps(1)), 204

d(a), 144

dist(t,u), 141

iTRS, 134

length(d) (length of a reduction
sequence), 147

limi_)a tz‘, 141

mazd(v), 185

maxsd(vy), 185

mind(§), 147

mind(y) (minimum activity depth of
an infinitary multistep), 158

mind(t) (minimum activity depth of
an inf. proof term), 160

Occq(t), 138

pat(t), 149

Pd(t), Pd(u), 149

Pos(t), 136

Ppos(t), Ppos(u), Ppos(a), 149

PT.,, 160

PT, 161

rpos(a), 144

sden(v)), 187

src(a) (source of red.step), 144

sre(d) (source of a reduction sequence),
147

src(1) (source of an infinitary
multistep), 157

src(1) (source of an inf. proof term),
160

srer, 157

steps(1)), 184

t(p) (symbol at a position), 136

Ter(¥), 136

Ter®(3), 136

Ter(X,Var), 136

Ter®(3,Var), 136

tgt(a) (target of red.step), 144

tgt(d) (target of a reduction sequence),
147

tgt(y) (target of an infinitary
multistep), 157

tgt(vy) (target of an inf. proof term),
160

tgtr, 157

TRS, 134

VOccs(t), 140

Vpos(t,i), 140

d,01,0",7v,m (reduction sequence), 146

»f 157

; (concatenation of reduction
sequences), 146

d[a] (a-th step in a reduction sequence,
146

O, B), 147

Ip| (length of a position), 136

t|F (prefix of a term), 201

d|; (projection of a reduction
sequence), 152

P|; (projection of a set of positions),
201

Y] (a-th step in a stepwise proof
term), 184

], 138

296

~
—

ul,, 139
, 189

, 189
, 189

. 189

< <

B

2o 0 2e 2
R

02¢)

Ne)

)

Pall

1
(for finitary rewriting), 47
174

, 173

2L &L

N o~

INDEX OF NOTATIONS — PROOF TERMS

~ (for infinitary rewriting), 174

~pB, 174

2,173

—», 147
6

—», 147

—», 147
6

—», 147

9, 144

	Portada
	Resumen
	Abstract
	Résumé
	Contents
	Chapter 1. Introduction
	Chapter 2. Preliminaries - generic models of rewriting systems
	Chapter 3. Normalisation
	Chapter 4. Standardisation for the linear substitution calculus
	Chapter 5. Permutation equivalence for infinitary rewriting
	Chapter 6. Conclusions
	Appendix A
	Appendix B
	Appendix C
	Bibliography
	Index of subjects
	Index of notations - ARS
	Index of notations - Proof terms

