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Una perspectiva computacional sobre números normales

Resumen: La normalidad es una forma débil de azar. Un número real es normal en
una base entera dada si su expansión en esa base es balanceada: todos los bloques de
la misma cantidad de d́ıgitos tienen igual frecuencia en la expansión. La normalidad
absoluta es normalidad en toda base. En esta tesis resolvemos varios problemas
sobre normalidad:

• La existencia de números absolutamente normales computables era conocida,
pero no se conoćıa ningún algoritmo que computara uno en tiempo polinomial.
Nosotros damos un algoritmo que computa uno en tiempo apenas mayor a
cuadrático.

• Mostramos que el conjunto de números absolutamente normales, como sub-
conjunto de los reales, no tiene otras propiedades aritméticas que las impuestas
por la definición de normalidad. Técnicamente, demostramos que el conjunto
de números absolutamente normales es Π0

3-completo.

• Extendemos la caracterización conocida de normalidad en términos de incom-
presibilidad mediante autómatas finitos. Analizamos exhaustivamente todas
las maneras de mejorar un simple autómata finito agregando memoria de difer-
entes formas, permitiendo no-determinismo y permitiendo la lectura de la en-
trada más de una vez.

• Demostramos que la normalidad se preserva bajo reglas de selección basadas
en prefijos finitos o sufijos infinitos reconocidos por autómatas finitos, pero no
ambos simultáneamente. Esto extiende un resultado conocido para el caso de
prefijos.

palabras clave: números normales, complejidad algoŕıtmica, complejidad descrip-
tiva, autómatas finitos, compresibilidad





A computational perspective on normal numbers

Abstract: Normality is a weak form of randomness. A real number is normal
to a given integer base if its expansion in that base is balanced: all blocks of the
same number of digits occur with the same frequency in the expansion. Absolute
normality is normality to all bases. We solve several problems on normality:

• It was known that computable absolutely normal numbers exist, but no algo-
rithm was known to compute one in polynomial time. We give an algorithm
that computes one in just above quadratic time.

• We show that the set of absolutely normal numbers, as a subset of the real
numbers, has no other arithmetical properties than those imposed by the def-
inition of normality. Technically, we prove that the set of absolutely normal
numbers is Π0

3-complete.

• We extend the known characterization of normality in terms of incompress-
ibility by deterministic finite automata. We exhaust all ways of enhancing a
simple finite state automaton by adding memory in different forms, allowing
non-determinism, and allowing to read the input more than once.

• We prove that normality is preserved by selection rules based on finite pre-
fixes or infinite suffixes being recognized by finite automata, but not both
simultaneously. This extends a known result about the prefixes case.

keywords: normal numbers, algorithmic complexity, descriptive complexity, finite
automata, compressibility
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Universidad de Buenos Aires, al CNRS de Francia, a la Universidad Paŕıs-Diderot, a
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1

We, the authors. The present thesis is written in first-person plural. Since dif-
ferent parts of the work were done by different sets of people, different instances of
we may mean different sets. In all cases it means Pablo Ariel Heiber together with
a subset of Verónica Becher, Olivier Carton and Theodore A. Slaman.





CHAPTER 1

Introduction

This thesis is about normality, in particular, normality as a notion of randomness.
Normality is a combinatorial property of real numbers. In this chapter we introduce
normality informally and motivate its study from a computational perspective. A
formal presentation of normality is delayed until the next chapter.

Normality has now more than one hundred years and it is a subject of study
in number theory, ergodic theory, and theoretical computer science, specifically in
combinatorics of words. The thesis solves selected open problems on normal numbers
in relation with computing machines. We start here with some historical references
that illustrate our path through the subject, and the relevance of the problems we
solved in the context of the previous results. The references we give should not be
taken as a thoroughly complete historical account but as a trace of our work towards
the problems we treat in this thesis.

1.1 Brief history and motivation

At the end of the 17th century and beginnings of the 18th, Jakob Bernoulli
developed the foundations of probability theory, in an attempt to formally support
the bases of experimental science. Much of this work was later published in [Ber13].
A pillar of the theory is the very first version of the law of large numbers. In natural
language, the law of large numbers prescribes that if the same random experiment is
repeated, the frequency of occurrence of each possible outcome converges to its real
probability. Then, randomness was regarded as a property of the experiment, but
not a property of the objects. This thesis, on the other hand, focuses on randomness
as a property of the objects.

In 1959, Karl Popper published “The logic of scientific discovery” [Pop59]. In
his book he develops, in his words, a method to construct a random-like object. He
deals with a specific kind of object: infinite words of zeroes and ones. He argues
that for such an object to be random-like, it ought to contain each possible short
word in a minimalistic way. He goes on to conclude that this means that the object
adheres to the law of large numbers. That is, the actual frequency of each word in
the object converges to the probability of that word, given by a uniform distribution
of probability for the all the words of each given length.

Popper’s concept aimed at discussing epistemology was mathematically formal-
ized long before. In 1909, Émile Borel defined normal numbers [Bor09]. To define

3
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normality, Borel considered conditions on the expansion of each real number. Thus,
in some sense, he studied an object similar to Popper’s: infinite words of digits. The
condition Borel prescribed on the expansion of a real number for it to be normal is
adherence to the law of large numbers. More precisely, a real number is normal to
a given integer base if its expansion in that base is balanced: all blocks of the same
number of digits occur with the same frequency in the expansion. He also defined
absolutely normal numbers as those that are normal in every possible integer base.
A fundamental theorem, proved by Borel as soon as he gave the definition of nor-
mality, is that almost all real numbers are absolutely normal. Thus, it is a regular
situation to obtain a normal number when choosing a real number at random. This
justifies the chosen name normal and it also explains why normality is a necessary
condition for randomness.

Borel’s theorem ensuring that almost all real numbers are absolutely normal
implies, of course, their existence. Borel asked immediately for a concrete example.
It has not been easy to exhibit specific instances, even for normality to one base.
Borel conjectured that all irrational algebraic numbers are absolutely normal, but
to this day, normality could not be proved or disproved even for a single example of
an algebraic irrational on a single base. Usual mathematical constants like π, e or?

2 are conjectured to be absolutely normal, and some empirical evidence seems to
point in that direction [BC01, SNS13], but a proof is still missing.

The first example of a number normal to a given base is due to Champernowne in
1933 [Cha33]. It is the concatenation of all positive integers expressed in that base,
in order. This construction was generalized by Copeland and Erdös in 1946 [CE46]
who considered the concatenation of the terms of a sequence obtained by certain
polynomials. In particular, the concatenation of all the primes expressed in some
base yields a normal number to that base. Many other examples were developed
later based on the concatenation idea. This way of proceeding only provides non-
algebraic examples, thus leaving Borel’s conjecture still open.

For absolutely normal numbers, the first constructions are independently due
to Henri Lebesgue and Wac law Sierpiński [Leb17, Sie17] but they are not finitary
based. Thus, these constructions do not stand as algorithms to compute instances,
but they provide names to particular instances. The first algorithm to output abso-
lutely normal numbers was given by Alan Turing, presumably in 1937 [Tur92]. But
unfortunately his manuscript was not complete and remained unpublished until the
edition of his Collected Works. In 1962, Schmidt gave a computable construction
[Sch62]. Although he noticed that his construction is effective, there has been no
analysis of its computational complexity, and it has not circulated in the computer
science community.

The availability of algorithms to compute absolutely normal numbers became
better known only recently. Becher, Figueira and Picchi reconstructed Turing’s al-
gorithm and made a full computational analysis of it [BFP07]. Becher and Figueira
also gave a recursive reformulation of Sierpiński’s construction [BF02]. Both algo-
rithms turned out to have double exponential time complexity. These algorithms
are too slow to be used in practice, in contrast to the optimal time complexity and
simplicity of a construction as Champernowne’s for normality to a given base. This
opened the question of the existence of feasible algorithms to generate absolutely
normal numbers. Such feasible algorithm would be one step closer to exhibiting
concrete examples of absolutely normal numbers.

During the middle of the 20th century, a different approach on defining random
objects took the scene. In 1948, Shannon developed a general theory for measuring
information content [Sha48]. In 1965, Kolmogorov formalized a different approach
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for measuring information content of finite words based on computability [Kol65],
but failed to use it to define a randomness notion for infinite words. In 1966, his
student Martin-Löf succeeded in defining randomness for infinite words based on
computability [ML66], which turns out to be equivalent to a definition based on Kol-
mogorov’s ideas. A few years later Chaitin showed that Shannon’s and Kolmogorov’s
approach to define information content were compatible [Cha75]. A similar theory
was developed by Levin [ZL70, Lev73].

This convergence of approaches to a unique way of defining randomness created
a new area called algorithmic information theory [Cha87, Nie09, DH10]. Absolute
normality is a necessary but not sufficient condition for Martin-Löf’s randomness.
Since algorithmic information theory is focused on definitions based on definability,
computability and predictability with Turing machines, a combinatorial definition
like normality has not been the center of attention. However, many of the aspects
that have been studied for randomness as part of algorithmic information theory
can be studied for normality. We cover some of those aspects.

In 1968, Agafonov studied a relation between computational power and normal-
ity, by showing that a particular class of functions computed by finite automata
preserve normality [Aga68]. Normality, a combinatorial property, was thus related
to a computing machine. The full set of machine operations that preserve normal-
ity is still unknown. Indeed, only a few forms of preservation of normality have
been studied. In contrast, the problem of preservation of randomness has been fully
understood by algorithmic information theory.

These is another relation between normality and computing machines, which also
involves finite automata: it is possible to define normality in terms of incompressibil-
ity. This result was obtained for the first time by joining a theorem by Schnorr and
Stimm [SS72] with a theorem by Dai, Lathrop, Lutz and Mayordomo [DLLM04].
The result characterizes normality as incompressibility by finite automata, the sim-
plest computing machines. This characterization of normality in terms of incom-
pressibility by finite automata is parallel to the definition of randomness in terms of
incompressibility by Turing machines in algorithmic information theory. This gave
the study of normality as a notion of randomness a new push. The theorem opened
the question of whether machines that are more powerful that finite automata but
less than a Turing machine could compress normal sequences.

1.2 Contributions and open problems

The thesis makes three main original contributions. The first one is a solution
to the question of existence of feasible algorithms to compute an absolutely normal
number. We present one that computes the first n digits in time polynomial in
n; in fact, just above quadratic. The algorithm uses combinatorial tools to control
divergence from normality. Speed of computation is achieved at the sacrifice of speed
of convergence to normality. This is currently the fastest algorithm that produces
an absolutely normal number. The question of its overall optimality, on the other
hand, remains open. Its efficiency allowed us to program a practical version of the
algorithm and compute the first digits of the absolutely normal output [BEHS13].
The first few digits are 0.403129054200380913237142838082705910276511 ¨ ¨ ¨ .

The technique we use to give the algorithm allowed us to show a subsidiary result.
We show that the set of absolutely normal numbers, as a subset of the real numbers,
has no other arithmetical properties than those expressible with three alternations
of quantifiers, starting with a for all. Technically, this is a result in descriptive set
theory that says that the set of absolutely normal numbers is Π0

3-complete in the
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Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal
numbers is Π0

3-complete in the effective Borel hierarchy. These results are compiled
in Chapter 3 and published in full in the articles [BHS13b, BHS13a].

The second main contribution is the characterization of normality as incompress-
ibility by several different automata. Compression is achieved through transducers,
which are automata augmented with an output tape. We prove that transducers, de-
terministic or not, even non-real time, with no extra memory or just a single counter,
cannot compress normal infinite words. We exhaust all combinations of determinism,
real-time, and additional memory and identify the models that can compress normal
infinite words. These results answer the question of characterizations of normality
by incompressibility for almost all possible combinations including memory models
with counters and/or stacks, leaving open only the case of deterministic pushdown
automata.

What happens when augmenting transducers with the ability to read the input
several times instead of just one? These new transducers are called two-way trans-
ducers. We show that generalizing the definition of compressibility to this setting
is not straightforward, but we prove the equivalence between the several possibili-
ties, both for deterministic and non-deterministic two-way transducers. Then, we
prove that the two-way enhancement does not improve the compressibility power
of transducers. That is, two-way transducers, deterministic or non-deterministic,
cannot compress normal numbers. We also show that the classical definition of com-
pressibility does not generalize well to two-way transducers with extra unbounded
memory, even in its simplest form: a single counter.

Results on compressibility are presented in Chapters 4 and 5. Chapter 4 contains
the results on one-way automata, summarized in Table 4.1, which are also contained
in our publication [BCH13]. The results on two-way automata appear in Chapter 5
and are published in [CH13].

The third main contribution is about preservation of normality. We consider
the case of selection functions done by finite automata. Complementing Agafonov’s
theorem for prefix selection, which we present with a detailed proof, we show that
suffix selection preserves normality too. Suffix selection involves non-deterministic
machines, which makes the proof more interesting than a simple generalization. We
also show simple two-sided selection rules that do not preserve normality. This is
only the beginning of the study on preservation of normality. Functions other than
selection rules remain to be studied. Even among selection rules, there are questions
to be answered such as the existence of two-sided rules that do preserve normality, or
generalization of prefix or suffix selection to more powerful automata. These results
are in Chapter 6 of this document and published in [BCH13].

The formal presentation begins by introducing the basic definitions, properties
and examples of normality with complete and elementary proofs. This presentation
is in Chapter 2.

Presentation and methodology. To understand the proofs in this thesis it is not
necessary to have background knowledge on normal numbers. The prerequisites are
just basic results of mathematics and computer science and a few non-basic theorems
in computability theory and in automata theory. The problems in this thesis are
treated from first principles and the proofs are as elementary as possible. This work
started by giving direct proofs of known theorems as we show it in Chapters 2, 4
and 6, and also in [BH13]. We believe that these direct proofs let us uncover the
new mathematical truths in this dissertation.



CHAPTER 2

Normality and combinatorics on words

In this chapter we introduce the basic definitions and results of normality. Sec-
tion 2.1 introduces the notation for the entire thesis. In Section 2.2 we prove some
basic lemmas about word combinatorics. Section 2.3 gives the formal definition
of normality. Section 2.4 introduces the concept of discrepancy, which is used to
study normality. In Section 2.5 we prove the equivalency of several well known al-
ternative definitions of normality, and more advanced lemmas to prove normality.
Section 2.6 provides a list of interesting examples of normality. Finally, Section 2.7
introduces infinite de Bruijn words, a particular interesting example that requires
more development than the previous.

2.1 Notation

2.1.1 Basics

As usual, we write N for the set of positive integers and Z for the set of all integers.
If A is a finite set, we denote its cardinality by |A|. We write log without an explicit
subindex as an abbreviation for log2, the logarithm in base 2. We write mod for the
modulus operator, that is, if n and m are integers, mmodn “ m ´ n tm{nu. We
use µpq to denote Lebesgue measure [Leb02]. A function f is t-to-one if the function
that maps each y to its number |tx : fpxq “ yu| of pre-images is bounded by t. A
function is bounded-to-one if it is t-to-one for some integer t.

We use the asymptotic notation Opfq and opfq to denote the family of functions
bounded by some constant times f and the family of functions bounded by any
constant times f , respectively. Namely, Opfq “ tg : Dc, n0,@n ą n0, gpnq ď cfpnqu
and opfq “ tg : @c, Dn0,@n ą n0, gpnq ď cfpnqu. When we say that a function g is,
or it is equal to, Opfq or opfq, it means that g P Opfq or g P opfq, respectively. For
a more detailed presentation of the asymptotic notation, see [CSRL01].

As usual, a function f : A Ñ B with countable A and B is computable when
there is a Turing machine that realizes it, that is, when given some representation of
A in the input tape, it finishes execution with a representation of the corresponding
element of B in the output tape. A function f : A Ñ B with uncountable A or B

is computable if it is the limit of computable functions with countable domain and
range. In particular, a real number is computable if there is a computable function
that given n returns a rational within 2´n of the real number. Thus, a real number is

7
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computable if it can be written down by a machine [Tur36]. Since irrational numbers
require infinitely many digits, the machine writing it down never halts.

2.1.2 Words and reals

In this document, an alphabet is a finite set of at least two symbols. A word
over alphabet A is a sequence of symbols from A, which can be finite or infinite. Aℓ

is the set of words of ℓ symbols from A, Aăℓ “ Ť

0ďℓ1ăℓ A
ℓ1

is the set of words of less
than ℓ symbols from A, A˚ “ Ť

ℓě0A
ℓ is the set of all finite words over A and Aω is

the set of all infinite words over A.

The empty word is denoted by λ. The length of a finite word u is |u|. If a is a
symbol, we also denote by a the word consisting of only the symbol a. If u is a finite
word and x is a finite or infinite word, ux is the concatenation of u and then x. For
a finite word u, un is equal to uuu ¨ ¨ ¨u, with u repeated n times, and uω is equal
to uuuuu ¨ ¨ ¨ with u repeated infinitely many times. Finally, if u is a finite word, ũ
denotes the reverse of u, that is, the word that results from reading u from right to
left.

Concatenation as juxtaposition and powering to integers, ˚ and ω are naturally
extended to sets of words: if L is a set of finite words and u is a word, we define
uL “ tuv : v P Lu, Lu “ tvu : v P Lu, Ln “ tu1u2 ¨ ¨ ¨un : ui P Lu, L˚ “ Ť

ně0 L
n

and Lω “ tu1u2u3 ¨ ¨ ¨ : ui P Lu. Juxtaposition can also be extended to pairs of sets
of words, if L and L1 are sets of words, LL1 “ tuv : u P L, v P L1u.

We number the symbols of words starting from 1. Given integers 1 ď i ď j such
that x is either infinite or |x| ě j, xris is the symbol in position i and xri..js is the
finite word consisting of the symbols in positions i to j, in order. For an integer n,
x ↾ n “ xr1..ns is the word consisting of the first n symbols of x and x ↿ n is the
word consisting of all but the first n symbols of x. Notice that x ↾ n is always a
finite word, while x ↿ n is finite if and only if x is finite. We say that u is a subword
of x if and only if u “ xri..js for appropriate i and j. We let

occpu, vq “ |i : t1 ď i ď |u| ´ |v| ` 1 and uri..|v|s “ vu|

be the number of occurrences of v inside u and

bocpu, vq “ |i : t1 ď i ď t|u|{|v|u and urpi ´ 1q|v| ` 1..i|v|s “ vu|

be the number of block occurrences of v inside u, that is, the number of occurrences
inside the blocks of length |v| of u.

We mostly use lowercase letters close to the beginning of the alphabet (a, b, c, d)
to identify symbols, letters in the second half (s, t, u, v, w) to identify finite words
and letters close to the end (x, y) to identify infinite words. Lowercase letters in the
middle of the alphabet (i, j, k, ℓ, n,m) we mostly use for integers. Uppercase letters
and Greek letters are reserved for more complex objects such as sets or tuples, or
significant numerical constants.

A base is an integer greater than or equal to 2. When we say a word is in base
b, we mean a word whose symbols are the digits of base b, that is, a word over the
alphabet t0, 1, ¨ ¨ ¨ , b ´ 1u. We identify a finite or infinite word x “ a1a2a3 ¨ ¨ ¨ in
base b with the real number .x “ ř

i aib
´i. Given a real number r P r0, 1q its base-b

expansion prqb is the unique infinite word x in base b such that r “ .x and infinitely
many symbols of x are different from b ´ 1. Since reals are thereby identified with
infinite words, we mostly use the same lowercase letters to represent them as we use
for infinite words.
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We use the phrase b-adic interval to refer to a semi-open interval I of the form
ra{bm, pa ` 1q{bmq, for integers a, b and m such that 0 ď a ă bm. We move freely
between b-adic intervals and base-b representations. Every finite word u in base
b corresponds to a unique b-adic interval r.u, .u ` b´|u|q. In this way, the base-b
expansions of reals in a b-adic interval correspond to extensions of the finite word
associated to it.

2.2 Some lemmas

The following technical lemmas are helpful to reduce equations concerning oc-
currences. We use it in the following without an explicit reference.

Lemma 2.2.1. Let ℓ be a non-negative integer. For each word v over alphabet A,
ÿ

uPA|v|`ℓ

occpu, vq “ pℓ ` 1q|A|ℓ and
ÿ

uPA|v|ℓ

bocpu, vq “ ℓ|A||v|pℓ´1q.

Proof. To count the total number of occurrences of v in the set of words of length
|v| ` ℓ, we count, for each possible position i, the number of u that contain v in
position i. For occ there are ℓ ` 1 possible positions i at which an occurrence of v
can begin, and there are |A|ℓ ways of completing a word of length |v| ` ℓ if we fix
v occurring at position i. For boc, there are ℓ positions i at which an occurrence of
v can begin, and there are |A||v|pℓ´1q ways of completing a word of length |v|ℓ if we
fix v occurring at position i.

Lemma 2.2.2. Let u, v be words over A such that |v| ă |u|. Then,

occpu, vq “
|v|
ÿ

j“1

bocpu ↿ j ´ 1, vq.

Proof. Notice that bocpu ↿ j ´ 1, vq is the number of occurrences of v inside u at a
position i such that imod |v| “ j. If we sum over each possible value of imod |v|,
we account for all occurrences.

The following are basic results in Shannon’s information theory [Sha48]. The
next two lemmas are applied at the beginning of Chapter 4.

Lemma 2.2.3. For fixed t and b, the unique maximum in p0, tq of the function
p ÞÑ ´p logb p ´ pt ´ pq logbpt ´ pq is at p “ t{2.

Proof. Simple calculations show that the only zero of the derivative of the function
is at p “ t{2, and that the function at p “ t{2 is greater than at p “ t{4 or
p “ 3t{4.

Corollary 2.2.4. For fixed b, the unique maximum over the set of probability dis-
tributions p1, p2, . . . , pn of the function

p1, p2, . . . , pn ÞÑ ´
n

ÿ

i“1

pi logb pi

is at p1 “ p2 “ ¨ ¨ ¨ “ pn “ 1{n.

Proof. Assume a maximum of the function such that not every pi is equal to 1{n. So,
there is i such that pi ă 1{n and j such that pj ą 1{n. By Lemma 2.2.3, changing
both those values to ppi ` pjq{2 yields a larger value for the function.
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According to Shannon’s source coding theorem, the optimal code length for a
symbol is ´ logb p, where b is the number of symbols used to make output codes
and p is the probability of the input symbol. The most common entropy encoding
technique is Huffman coding [Huf52].

Definition. A set of finite words is prefix-free if no word in the set is a prefix of
another word in the set.

Theorem 2.2.5. A finite multiset of integers tℓ1, ℓ2, . . . , ℓnu is the multiset of
lengths of a prefix-free set of words over alphabet |A| if and only if

řn
i“1 |A|´ℓi ď 1.

Proof. Let ta1, a2, . . . , a|A|u “ A.
Let us begin with the “only if” part. Assume a set L Ď A˚ with minimum

sum of word lengths
řn

i“1 |A|´ℓi . such that for its multiset of lengths the claim
does not hold. First, L cannot be the empty set, because on the empty set the
claim holds. Then, if λ P L, then L cannot contain any extension of λ, thus,
L “ tλu and its multiset of lengths is t0u for which the claim holds. If λ R L,
consider La1

, La2
, . . . , La|A|

such that La “ tu : au P Lu are the words of L that
start with a, with the starting a removed. By definition, La is prefix-free and with
smaller sum of word lengths than L, therefore,

ř

uPLa
|A|´|u| ď 1. By definition,

L “ a1La1
Y a2La2

Y ¨ ¨ ¨ Y a|A|La|A|
, then

ÿ

uPL

|A|´|u| “
ÿ

aPA

ÿ

uPLa

|A|´|au| “
ÿ

aPA

|A|´1
ÿ

uPLa

|A|´|u| ď
ÿ

aPA

|A|´1 “ 1.

For the “if” part, if n ď |A| then the set ta1ℓ1 , a2
ℓ2 , . . . , an

ℓnu proves the claim.
Assume then that n is minimum and there is tℓ1, ℓ2, . . . , ℓnu that fulfill the hy-
pothesis but it is not the multiset of lengths of any prefix free set. Without
loss of generality, assume ℓ1 ď ℓ2 ď ¨ ¨ ¨ ď ℓn. Consider the multiset of lengths
tℓ1, ℓ2, . . . , ℓn´|A|, ℓn´|A|`1 ´ 1u,

|A|´pℓn´|A|`1´1q `
n´|A|
ÿ

i“1

|A|´ℓi ď |A||A|´ℓn´|A|`1 `
n´|A|
ÿ

i“1

|A|´ℓi “

n
ÿ

i“n´|A|`1

|A|´ℓi´|A|`1 `
n´|A|
ÿ

i“1

|A|´ℓi ď
n

ÿ

i“n´|A|`1

|A|´ℓi `
n´|A|
ÿ

i“1

|A|´ℓi ď 1.

Since the size of the new set is n´|A|`1 ă n, by hypothesis, there is a prefix free set
L1 “ tu1, u2, . . . , un´|A|, vu such that |ui| “ ℓi and |v| “ ℓn´|A|`1 ´ 1. Consider the

set L “ tu1, u2, . . . , un´|A|, vpaℓn´|A|`1´|v|
1 q, vpaℓn´|A|`2´|v|

2 q, . . . , vpaℓn´|v|
|A| qu. Clearly,

its multiset of lengths is tℓ1, ℓ2, . . . , ℓnu. Moreover, L is prefix free because L1 is and
|v| ă ℓn´|A|`j for each j “ 1..|A|, so there is no prefix within the extensions of v.

2.3 Definition of normality

We come now to the most important definition of this thesis, the definition of
normality. This definition was introduced by Émile Borel in 1909 [Bor09]. Several
formulations based on combinatorics on words are equivalent to Borel’s original
formulation. We give our own presentation of the most important equivalencies
in the following sections. There exist also several equivalent characterizations of
normality in terms of number theoretic properties, see for instance [Bug12]. Another
possible characterization of normality is in terms of incompressibility. This is the
main subject of Chapters 4 and 5.
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Definition. Let x be an infinite word over alphabet A, r P r0, 1q be a real number
and b a base. x is simply normal if for each symbol a P A,

lim
nÑ8

bocpx ↾ n, aq{n “ 1{|A|.

x is ℓ-simply normal if for each finite word u P Aℓ,

lim
nÑ8

bocpx ↾ nℓ, uq{n “ 1{|A|ℓ.

x is normal if it is ℓ-simply normal for every ℓ ą 0.
r is (simply) normal to base b if the infinite word prqb is (simply) normal.
r is absolutely normal if it is normal to every base.
r is absolutely abnormal if it is normal to no base.

The following are some basic properties about normality.

Theorem 2.3.1. A real number r is simply normal to base bℓ, if and only if prqb is
ℓ-simply normal.

Proof. Let r be a real number and x “ prqb. Notice in the definition of simple
normality that the subword u P Aℓ being examined by the definition of boc is
exactly the i-th digit in base b|u| of r. It follows immediately that the condition
for u in the definition of ℓ-simply normal is equivalent to the condition of simple
normality to base bℓ.

Corollary 2.3.2. A real number is normal to base b if and only if it is simply
normal to all bases that are powers of b.

Proof. Immediate from Theorem 2.3.1 and the definition of normality and simple
normality for real numbers.

Corollary 2.3.3. A real number is absolutely normal if and only if it is simply
normal to all bases.

Proof. Immediate by Corollary 2.3.2 and the definitions of normal and simply nor-
mal.

Notice that absolute normality is equivalent to being simply normal to every
base, but absolute abnormality is not equivalent to being not simply normal to
every base. Recall that a real number is normal to either none or infinitely many
bases.

Theorem 2.3.4. If a real number is simply normal to just finitely many bases then
it is absolutely abnormal. If a real number is normal to just finitely many bases then
it is absolutely abnormal.

Proof. Fix a base b. By contraposition, if R were normal to base b, then it would
be simply normal to all bases bℓ, a contradiction to the hypothesis of the first claim.
Simple normality to all bases bℓ implies by definition normality to all bases bℓ, which
contradicts the hypothesis of the second claim.

The following lemma shows that occurrences of a finite subword within a normal
infinite word cannot be too far apart.

Lemma 2.3.5. Let x be a normal infinite word and w a word over the same alphabet
A. There is an increasing function hpnq “ opnq depending on x and w, such that
for any n there is an occurrence of w in the word xrn..n ` hpnqs.
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Proof. Let x “ v1v2v3 ¨ ¨ ¨ where each |vi| “ |w|. Let i1, i2, i3, ¨ ¨ ¨ be the increasing
sequence of occurrences of w in the blocks vi, i.e., vi “ w ô i “ in. Then, by
definition of normality

lim
nÑ8

n

in
“ |A|´|w| and lim

nÑ8

n ` 1

in`1
“ lim

nÑ8

n

in`1
“ |A|´|w|

therefore,

lim
nÑ8

in

n
“ lim

nÑ8

in`1

n
“ |A||w|

and then

lim
nÑ8

in`1 ´ in

n
“ 0.

Letting hpnq “ |w| maxtim`1 ´ im : |w|im`1 ď nu finishes the proof.

Notice that since h is increasing, for large enough n there is also an occurrence
of w in the word xrn ´ hpnq..ns.

The following is a technical lemma. In the sequel we use it several times without
making explicit reference to it.

Lemma 2.3.6. Let f1, f2, f3, ¨ ¨ ¨ be an increasing sequence of positive integers such
that fn ´ fn´1 goes to zero as n goes to infinity. Then, for any word u and infinite
word x,

lim
nÑ8

bocpx ↾ n, uq
n

“ lim
nÑ8

bocpx ↾ fn, uq
fn

and

lim
nÑ8

occpx ↾ n, uq
n

“ lim
nÑ8

occpx ↾ fn, uq
fn

.

Proof. Let mn be such that fmn ă n ď fmn`1. Then,

bocpx ↾ n, uq
n

ď bocpx ↾ fmn`1, uq
fmn

“ bocpx ↾ fmn`1, uq
fmn`1

ˆ

1 ´ fmn`1 ´ fmn

fmn`1

˙

,

which implies

lim
nÑ8

bocpx ↾ n, uq
n

ď lim
nÑ8

bocpx ↾ fmn`1, uq
fmn`1

.

Analogous arguments apply for the lower bound and for occ in place of boc.

The following theorem provides a simple characterization of normality.

Theorem 2.3.7. An infinite word is normal if and only if it is ℓ-simply normal for
all but finitely many ℓ ą 0.

Proof. The “only if” part is immediate from the definition. For the “if” part, assume
x is ℓ-simply normal for all but finitely many ℓ and let m be the maximum length
such that x is not m-simply normal. Fix an ℓ ą 0. Since 2ℓm ą m, x is 2ℓm-simply
normal, so for each v P A2ℓm,

lim
nÑ8

bocpx ↾ n2ℓm, vq{n “ |A|´2ℓm.
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Fix arbitrary u P Aℓ. Since 2m{n goes to zero as n goes to infinity,

lim
nÑ8

bocpx ↾ nℓ, uq
n

“ lim
nÑ8

bocpx ↾ n2mℓ, uq
2mn

“ lim
nÑ8

ř

vPA2mℓ bocpx ↾ n2mℓ, vq bocpv, uq
2mn

“ |A|´2mℓ
ÿ

vPA2mℓ

bocpv, uq
2m

“ |A|´2mℓ |A|2mℓ´ℓ2m

2m
“ |A|´ℓ.

Thus, x is ℓ-simply normal for every ℓ ą 0, and therefore, x is normal.

A given property of infinite words is invariant under suffixes, or shift invariant,
when x has the property if and only if any suffix of x has it. It is clear from the
definition that simple normality is shift invariant. However, the following example
shows that 2-simple normality is not. Consider the infinite word p01011010qω over
the binary alphabet t0, 1u. It is clearly 2-simply normal, because each word of length
2 occurs exactly once in the period. However p00101101qω ↿ 1 “ p01011010qω is not
2-simply normal, because the word 00 does not occur in the pattern. Of course 00
does occur as a subword of p01011010qω, but since it does not occur properly aligned,
bocpp01011010qω ↾ n, 00q “ 0 for every n.

Even though ℓ-simple normality is not shift invariant for some ℓ, normality is,
as shown by the following theorem.

Theorem 2.3.8. Every suffix of an infinite normal word is normal.

Proof. Let x P Aω be a normal word and x ↿ n be a fixed suffix of x. Let us prove
the result for n “ 1. Since x ↿ 0 “ x and x ↿ n ` 1 “ px ↿ nq ↿ 1, the result for all
n ě 0 follows then by induction.

Assume x is normal. Fix ℓ and let us show that x ↿ 1 is ℓ-simply normal. For that,
fix u P Aℓ and ε ą 0 and let us show that limnÑ8 | bocppx ↿ 1q ↾ nℓ, uq{n´1{|A|ℓ| ď ε.

Let m “ r2{εs and write x “ v1v2v3 ¨ ¨ ¨ where each |vi| “ mℓ to get

x ↿ 1 “ pv1 ↿ 1qv2v3 ¨ ¨ ¨ “ pv1 ↿ 1qpv2 ↾ 1qpv2 ↿ 1qpv3 ↾ 1qpv3 ↿ 1qpv4 ↾ 1q ¨ ¨ ¨ .
Since m{n goes to zero as n goes to infinity,

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

bocppx ↿ 1q ↾ nℓ, uq
n

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

lim
nÑ8

bocppx ↿ 1q ↾ mnℓ, uq
mn

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

lim
nÑ8

řn
i“1 bocppvi ↿ 1qpvi`1 ↾ 1q, uq

mn
´ 1{|A|ℓ

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

lim
nÑ8

řn
i“1 bocppvi ↿ 1q, uq

mn
´ 1{|A|ℓ

ˇ

ˇ

ˇ

ˇ

` 1

m

ď
ˇ

ˇ

ˇ

ˇ

lim
nÑ8

ř

vPAmℓ |ti ď n : vi “ vu| bocpv ↿ 1, uq
mn

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

` 1

m

ď
ˇ

ˇ

ˇ

ˇ

lim
nÑ8

ř

vPAmℓ bocpv, x ↾ nq bocpv ↿ 1, uq
mn

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

` 1

m

ď
ˇ

ˇ

ˇ

ˇ

ř

vPAmℓ bocpv ↿ 1, uq
|A|mℓm

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

` 1

m

ď
ˇ

ˇ

ˇ

ˇ

ř

vPAmℓ bocpv, uq
|A|mℓm

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

` 2

m

ď
ˇ

ˇ

ˇ

ˇ

m|A|m
|A|mℓm

´ 1{|A|ℓ
ˇ

ˇ

ˇ

ˇ

` 2

m
“ 2

m
ď ε.
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Corollary 2.3.9. If x P Aω is normal, then for any finite word u P A˚, ux is
normal.

Proof. By contraposition, assume that for some ℓ, ux is not ℓ-simply normal. So for
every m ě 0, ux ↿ ℓm is not ℓ-simply normal. In particular ux ↿ ℓ|u| is not ℓ-simply
normal, but ux ↿ ℓ|u| is a suffix of x, and by Theorem 2.3.8 it is ℓ-simply normal.
This is a contradiction. Then, ux must be ℓ-simply normal.

2.4 Discrepancy

The simple discrepancy of a finite word indicates the difference between the ac-
tual number of occurrences of the symbols and their expected average. The definition
of normality can be given in terms of discrepancy.

Definition. Let u be a word over A. The simple discrepancy of u is

Dpu,Aq “ maxt| occpu, aq{|u| ´ 1{|A| | : a P Au.
The ℓ-block discrepancy of u is

Dℓpu,Aq “ maxt| occpu, vq{|u| ´ 1{|A|ℓ | : v P Aℓu.
Notice that Dpu,Aq is a number between 0 and 1 ´ 1{|A|, Dℓpu,Aq is a number

between 0 and 1 ´ 1{|A|ℓ and Dpu,Aℓq ‰ Dℓpu,Aq because the first is by definition
Dpu,Aℓq “ maxt| bocpu, vq{|u| ´ 1{|A| | : v P Aℓu so it counts block occurrences
instead of all occurrences. When dealing with real numbers in base b we write
Dpu, bq as an abbreviation for Dpu, t0, 1, ¨ ¨ ¨ , b ´ 1uq.

The definition of discrepancy allows us to rewrite the definition of simply normal
more concisely. An infinite word x over alphabet A is simply normal if and only
if limnÑ8 Dpx ↾ n,Aq “ 0. It is also possible to define normality using block
discrepancy, but the proof of the equivalence is not a simple rewrite We establish it
in Theorem 2.5.1, in the next section.

The next lemma bounds the discrepancy of a concatenation of words. We use it
very often in the sequel, without making explicit reference to it.

Lemma 2.4.1. If u1, . . . , un are words over A,

Dpu1u2 ¨ ¨ ¨un, Aq ď
n

ÿ

i“1

Dpui, Aq|ui|
O

n
ÿ

j“1

|uj |.

Proof. Let a P A be a symbol maximizing |occpu1u2 ¨ ¨ ¨un, aq{|u1u2 ¨ ¨ ¨un| ´ 1{|A| |.
Dpu1u2 ¨ ¨ ¨un, Aq “ |occpu1u2 ¨ ¨ ¨un, aq{|u1u2 ¨ ¨ ¨un| ´ 1{|A| |

ď
ˇ

ˇ

ˇ

ˇ

ˇ

˜

n
ÿ

i“1

occpui, aq
O

n
ÿ

j“1

|uj |
¸

´ 1

|A|

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

occpui, aq ´ |ui|
|A|

ˇ

ˇ

ˇ

ˇ

ˇ

O

n
ÿ

j“1

|uj |

ď
n

ÿ

j“1

|ui|
ˇ

ˇ

ˇ

ˇ

occpui, aq
|ui|

´ 1

|A|

ˇ

ˇ

ˇ

ˇ

O

n
ÿ

j“1

|uj |

ď
n

ÿ

j“1

Dpui, |A|q|ui|
O

n
ÿ

j“1

|uj | .
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For any alphabet, almost every sufficiently long word has small discrepancy (sim-
ple and block). We need an explicit bound for the number of words of a given length
having larger simple discrepancy than a given value. The next lemma gives such a
bound. We follow Hardy and Wright’s classic text [HW60], but sharpen the value
obtained there.

Let the number of words of length k in alphabet A where a given digit occurs

exactly i times be pApk, iq “
ˆ

k

i

˙

p|A| ´ 1qk´i.

Lemma 2.4.2 ([HW60], adapted from Theorem 148). Let A be an alphabet and

k ě 0 be a word length. For every real ε such that 6{k ď ε ď 1{|A|,
ÿ

0ďiďk{|A|´εk

pApk, iq

and
ÿ

k{|A|`εkďiďk

pApk, iq are at most |A|ke´|A|ε2k{6.

Proof. Observe that for each i such that i ď k{|A|, pApk, i ´ 1q ă pApk, iq holds;
and for each i such that i ą k{|A|, pApk, iq ă pApk, i ´ 1q. The strategy to prove
the wanted bounds is to “shift” the first sum to the right by m “ tεk{2u positions,
and the second sum to the left by m` 1 positions. We start with the first sum. Let
a “ k{|A| ´ εk. For each i such that 0 ď i ď a,

pApk, iq “ pApk, iq
pApk, i ` 1q ¨ pApk, i ` 1q

pApk, i ` 2q ¨ . . . ¨ pApk, i ` m ´ 1q
pApk, i ` mq ¨ pApk, i ` mq.

The largest quotient in the expression above is pApk,i`m´1q
pApk,i`mq . Using the symbolic

expression for pApk, iq, pApk, iq
pApk, i ` 1q “ pi ` 1qp|A| ´ 1q

k ´ i
. Then,

pApk, iq
pApk, i ` 1q ď pApk, tau ` m ´ 1q

pApk, tau ` mq “ ptau ` mqp|A| ´ 1q
k ´ tau ´ m ` 1

ă pk{|A| ´ εk{2qp|A| ´ 1q
k ´ k{|A| ` εk{2

“ 1 ´ ε|A|{2

1 ´ 1{|A| ` ε{2

ă 1 ´ ε |A|{2, pusing ε ď 1{|A|q
ă e´|A|ε{2.

Since m “ tεk{2u and εk ě 6, it follows that

e´|A|εm{2 ď e´|A|εpεk{2´1q{2 “ e´|A|ε2k{4`|A|ε{2 ď e´|A|ε2k{6.

We obtain pApk, iq ă e´|A|ε2k{6 pApk, i ` mq. From
ř

0ďiďk pApk, iq “ |A|k we can
conclude

ÿ

0ďiďa

pApk, iq ă e´|A|ε2k{6
ÿ

0ďiďa

pApk, i ` mq ď |A|ke´|A|ε2k{6.

To bound the second sum we shift the sum to the left by m ` 1 positions. Let
z “ rk{|A| ` εks. For any integer i such that z ´ m ă i ď k,

pApk, iq “ pApk, iq
pApk, i ´ 1q ¨ pApk, i ´ 1q

pApk, i ´ 2q ¨ . . . ¨ pApk, i ´ mq
pApk, i ´ m ´ 1q ¨ pApk, i ´ m ´ 1q

where these quotients increase as the indices decrease. So,

pApk, iq
pApk, i ´ 1q ď pApk, rzs ´ mq

pApk, rzs ´ m ´ 1q “ k ´ rzs ` m ` 1

przs ´ mqp|A| ´ 1q

ď k ´ k{|A| ´ εk{2 ` 1

pk{|A| ` εk{2qp|A| ´ 1q
ă 1 ´ ε|A|{3.
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To see the last inequality observe that it is equivalent to ε|A| ´ 2{|A| ´ ε ă 1 ´ 6
ε|A|k ,

which is implied by 1 ´ 2{|A| ă 1 ´ 6
ε|A|k , because ε|A| ď 1 and ε ą 3{k. Therefore,

pApk, iq
pApk, i ´ 1q ă e´|A|ε{3. Then, using m ` 1,

pApk, iq ă e´|A|εpm`1q{3pApk, i ´ m ´ 1q ď e´ |A|ε2k

6 pApk, i ´ m ´ 1q.

From the last inequality and the fact
ÿ

0ďiďk

pApk, iq “ |A|k we can conclude that

ÿ

zďiďk

pApk, iq ă |A|ke´|A|ε2k{6.

We can now give an upper bound for the number of words with simple discrep-
ancy larger than a given value.

Lemma 2.4.3. The number of words u P Ak such that Dpu,Aq ą ε is bounded by
2|A|k`1e´|A|ε2k{6.

Proof. Let a P A be a symbol. If Dpu,Aq ą ε, then, for some symbol a P A,
| occpu, aq{|u| ´ 1{|A| | ą ε. By Lemma 2.4.2, the number of words u of length k

such that | occpu, aq{|u| ´ 1{|A| | ą ε is at most 2|A|ke´|A|ε2k{6. Thus, counting the
|A| possible choices for a we obtain |A|2|A|ke´|A|ε2k{6.

Lemma 2.4.4. Let t ě 2 be an integer and let ε and δ be real numbers between 0
and 1, with ε ď 1{t. Let k be the least integer greater than r6{εs and ´ lnpδ{2tq6{ε2.
Then, for any alphabet A such that |A| ď t and for every integer k1 ě k, the fraction
of words u over A of length k1 for which Dpu,Aq ą ε is less than δ.

Proof. By Lemma 2.4.3, the number of words u of length k such that Dpu,Aq ą ε

is bounded by 2|A|k`1e´|A|ε2k{6. To have this constitute a fraction of no more than
δ of all the |A|k words, it is sufficient that δ ą 2|A|e´ε2k{6. This is implied by
k ą ´ lnpδ{p2|A|qq6{ε2.

Since δ is less than or equal to 1, if 2 ď |A| ď t then ´ lnpδ{p2tqq ě ´ lnpδ{p2|A|qq,
and hence k ě ´ lnpδ{p2|A|qq6{ε2. Then for any k1 ą k, the number of words u1

of length k1 such that Dpu1, Aq ą ε is a fraction of no more than δ of all the |A|k1

sequences, as required.

2.5 Equivalent definitions of normality

We state here two well known formulations of normality that are equivalent to
the definition. In the next sections we will use one to show normality of several
examples.

Theorem 2.5.1. An infinite word x over alphabet A is normal if and only if for
every u P A˚, limnÑ8 occpx ↾ n, uq{n “ |A|´|u|.

Theorem 2.5.2. An infinite word x over alphabet A is normal if and only if there
is a constant c such that for every u P A˚, lim supnÑ8 occpx ↾ n, uq{n ď c|A|´|u|.

Proof of Theorems 2.5.1 and 2.5.2. We prove both theorems by showing the follow-
ing are equivalent,

(1) x P Aω is normal.

(2) for every u P A˚, limnÑ8 occpx ↾ n, uq{n “ |A|´|u|.
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(3) there is c such that for every u P A˚, lim supnÑ8 occpx ↾ n, uq{n ď c|A|´|u|.

(4) for every u P A˚, limnÑ8 bocpx ↾ n, uq{n ď |A|´|u|.

To see (1) implies (2), assume x is normal and fix u P A˚. By Theorem 2.3.8, the
suffixes of x, x ↿ 0, x ↿ 1, . . . , x ↿ |u| ´ 1 are all normal. Since |u|{n goes to zero when
n goes to infinity,

lim
nÑ8

occpx ↾ n, uq
n

“ lim
nÑ8

occpx ↾ n|u|, uq
pn|u|q

“ lim
nÑ8

|u|
ÿ

j“1

bocppx ↾ n|u|q ↿ j ´ 1, uq
pn|u|q

“
|u|
ÿ

j“1

|A|´|u|

|u| “ |A|´|u|.

(2) implies (3) is immediate setting c “ 1.
To see (3) implies (4), fix x and c such that (3) holds. Fix a length ℓ and ε ą 0

and let us show that for u P Aℓ, limnÑ8 bocpx ↾ n, uq{n ď |A|´|u| ` 2ε. Since ℓ{n
goes to zero as n goes to infinity, this is equivalent to showing

lim
nÑ8

bocpx ↾ nℓ, uq{pnℓq ď |A|´|u| ` 2ε.

For the rest of the proof of this claim, fix the alphabet Aℓ and interpret u as a
symbol of the alphabet and x as a word over Aℓ by grouping blocks of length ℓ into
a single symbol. Notice that this change affects lengths and indices within words.
In this notation, it is enough for us to prove limnÑ8 Dpx ↾ n,Aℓq ď 2ε.

Fix k large enough such that 2|Aℓ|e´|Aℓ|ε2k{6ck ď ε, which is possible because
the expression decreases when k increases and its limit is 0. Let x “ v1v2v3 ¨ ¨ ¨
with |vi| “ k. Let V “ tv P pAℓqk : Dpv,Aℓq ą εu be the set of words with high

discrepancy. By Lemma 2.4.3, |V | ď 2|Aℓ|k`1e´|Aℓ|ε2k{6.

lim
nÑ8

Dpx ↾ n,Aℓq “ lim
nÑ8

Dpv1v2 ¨ ¨ ¨ vtn{kupvtn{ku`1 ↾ nmod kq, Aℓq

ď lim
nÑ8

Dpvtn{ku`1 ↾ nmod k,Aℓqnmod k

n
`

tn{ku
ÿ

i“1

Dpvi, A
ℓqk
n

ď lim
nÑ8

tn{ku
ÿ

i“1

Dpvi, A
ℓqk
n
.

Since we are assuming (3), among the vis, in the limit, at most c|Aℓ|´kn can
be equal to any particular v. Further, at most |V |c|Aℓ|´kn many is are such that
vi P V ,

lim
nÑ8

Dpx ↾ n,Aℓq ď lim
nÑ8

tn{ku
ÿ

i“1

Dpvi, A
ℓqk
n

ď lim
nÑ8

¨

˝

ÿ

1ďiďtn{ku,viPV

1
k

n

˛

‚`

¨

˝

ÿ

1ďiďtn{ku,viRV

ε
k

n

˛

‚

ď lim
nÑ8

|V |c|A|´kn
k

n
`

Yn

k

]

ε
k

n

ď |V |c|Aℓ|´kk ` ε

ď 2|Aℓ|k`1e´|Aℓ|ε2k{6c|Aℓ|´kk ` ε

ď 2|Aℓ|e´|Aℓ|ε2k{6ck ` ε ď 2ε.
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Finally, we prove (4) implies (1). Assume (4) and the negation of (1). Then, x
is not normal, hence it is not ℓ-simply normal for some ℓ, so there is u1 P Aℓ and
an increasing subsequence of positions n1, n2, n3, ¨ ¨ ¨ in which for a given word u1,
limiÑ8 bocpx ↾ ni, u1q{ni “ f1 ‰ |A|´|u1|. Let tu1, u2, ¨ ¨ ¨ , u|A|ℓu “ Aℓ be an enu-

meration of Aℓ. Let n1,i “ ni and for each j “ 2, 3, ¨ ¨ ¨ , |A|ℓ define nj,1, nj,2, nj,3, ¨ ¨ ¨
a subsequence of nj´1,1, nj´1,2, nj´1,3, ¨ ¨ ¨ such that limiÑ8 bocpx ↾ nj,i, ujq{nj,i “ fj

exists. Thus, on the sequence of positions n|A|ℓ,1, n|A|ℓ,2, n|A|ℓ,3, ¨ ¨ ¨ the limit exists

for all words of length ℓ. By (4), each fj ď |A|´ℓ and f1 ă |A|´ℓ. This is a contra-

diction because if all limits exist, the sum of the limiting frequencies
ř|A|ℓ

j“1 fj needs
to be 1.

Lemma 2.5.3. Let u1, u2, u3, . . . be a sequence of finite words over A of non-
decreasing length such that for every u P A˚, limnÑ8 occpun, uq{|un| “ |A|´|u| and
supt|un`1|{|u1u2 ¨ ¨ ¨un| : n ě 1u “ k ă 8. Then, u1u2u3 ¨ ¨ ¨ is normal.

Proof. Let us set x “ u1u2u3 ¨ ¨ ¨ . Fix a word u over A and let us show that
lim supnÑ8 occpx ↾ n, uq{n ď pk ` 1q|A|´|u|. Then, by Theorem 2.5.2, x is nor-
mal. To prove the claim, we fix ε ą 0 and show that, for sufficiently large n,
occpx ↾ n, uq{n ď pk ` 1q|A|´|u| ` ε.

Notice that the hypothesis implies that limnÑ8 |un| “ 8. By hypothesis, let
i0, i1, i2 be integers such that

for every i ě i0, occpui, uq{|ui| ď |A|´|u| ` ε{p3pk ` 1qq,
for every i ě i1, i|u|{|u1u2 ¨ ¨ ¨ui| ď ε{p3pk ` 1qq and

for every i ě i2, |u1u2 ¨ ¨ ¨ui0´1|{|u1u2 ¨ ¨ ¨ui| ď ε{p3pk ` 1qq.

For given n, let i be the index such that |u1u2 ¨ ¨ ¨ui| ă n ď |u1u2 ¨ ¨ ¨ui`1|. Assume
n is large enough to make i ě maxpi0, i1, i2q.

occpx ↾ n, uq{n “ occppu1u2 ¨ ¨ ¨uiui`1q ↾ n, uq{n
ď occpu1u2 ¨ ¨ ¨uiui`1, uq{|u1u2 ¨ ¨ ¨ui|
ď pk ` 1q occpu1u2 ¨ ¨ ¨uiui`1, uq{|u1u2 ¨ ¨ ¨uiui`1|

ď pk ` 1q
i|u| ` ři`1

j“1 occpuj , uq
|u1u2 ¨ ¨ ¨uiui`1|

ď pk ` 1q
˜

i0´1
ÿ

j“1

occpuj , uq
|u1u2 ¨ ¨ ¨uiui`1| `

i`1
ÿ

j“i0

occpuj , uq
|u1u2 ¨ ¨ ¨uiui`1|

¸

` ε

3

ď pk ` 1q
˜

i0´1
ÿ

j“1

|uj |
|u1u2 ¨ ¨ ¨uiui`1| `

i`1
ÿ

j“i0

occpuj , uq
|u1u2 ¨ ¨ ¨uiui`1|

¸

` ε

3

ď pk ` 1q
˜

i`1
ÿ

j“i0

occpuj , uq
|u1u2 ¨ ¨ ¨uiui`1|

¸

` 2ε

3

ď pk ` 1q
˜

i`1
ÿ

j“i0

p|A|´|u| ` ε{p3pk ` 1qqq|uj |
|ui0

ui0`1 ¨ ¨ ¨uiui`1|

¸

` 2ε

3

ď pk ` 1q|A|´|u| ` ε.
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2.6 Simple examples

Consider first the infinite words 0ω, p001qω and p01qω over the binary alphabet
t0, 1u. The first two are not simply normal, because the frequency of 0 is higher
than the frequency of 1. The last one is simply normal because the frequency of 0
and 1 is clearly 1{2. However, it is not 2-simply normal because the word 00 does
not even occur in it, so its frequency is 0 instead of the required 1{4. This shows
that an infinite word can be simply normal but not normal.

In this section we prove normality for some simple infinite words over an arbitrary
alphabet A. The next section elaborates a more sophisticated case.

We introduce three families of normal infinite words inspired on Champernowne’s
original example [Cha33].

Definition. Fix an alphabet A. For each length ℓ ě 1, let wℓ be the concatenation,
in lexicographical order, of all words of length ℓ, namely, wℓ “ wℓ,1wℓ,2 ¨ ¨ ¨wℓ,|A|ℓ

where wℓ,i is the i-th word in lexicographic order of the set Aℓ.

The complete Champernowne constant for A is w1w2w3 ¨ ¨ ¨ .

The palindromic Champernowne constant for A is w1w̃1w2w̃2w3w̃3 ¨ ¨ ¨ .

The delayed Champernowne constant for A is w1
1!2w2

2!2w3
3!2 ¨ ¨ ¨ .

Lemma 2.6.1. Fix an alphabet A. For wℓ defined as in the definition of Champer-
nowne constants, for every u P A˚, limℓÑ8 occpwℓ, uq{|wℓ| “ |A|´|u|.

Proof. Let wℓ and wℓ,i be as in the definition of Champernowne constants. Within
wℓ less than |A|ℓ|u| occurrences of u do not lie completely within some wℓ,i; therefore,

lim
ℓÑ8

occpwℓ, uq
|wℓ|

ď lim
ℓÑ8

|A|ℓ|u| ` ř|A|ℓ

i“1 occpwℓ,i, uq
|A|ℓℓ

ď lim
ℓÑ8

|A|ℓ|u| ` pℓ ´ |u| ` 1q|A|ℓ´|u|

|A|ℓℓ “ |A|´|u|.

Also,

lim
ℓÑ8

occpwℓ, uq
|wℓ|

ě lim
ℓÑ8

ř|A|ℓ

i“1 occpwℓ,i, uq
|A|ℓℓ

ě lim
ℓÑ8

pℓ ´ |u| ` 1q|A|ℓ´|u|

|A|ℓℓ “ |A|´|u|.

Putting both inequalities together yields the desired result.

Theorem 2.6.2. The complete Champernowne, palindromic Champernowne and
delayed Champernowne constants for any alphabet are normal.

Proof. Consider applying Lemma 2.5.3 to all 3 cases. The complete Champer-
nowne constant and the delayed Champernowne constants are normal directly by
Lemma 2.6.1, because they can be factorized into parts equal to some wℓ, and the
indices of those wℓ are increasing. For the palindromic Champernowne constant,
notice that occpwℓ, uq “ occpw̃ℓ, ũq, therefore, Lemma 2.6.1 is also true if we take
w̃ℓ instead of wℓ, therefore, the limit holds also for interleaving both sequences
w1, w2, w3, . . . and w̃1, w̃2, w̃3, . . . .

The complete Champernowne constant is interesting because it is an illustration
of the earliest example of a normal infinite word. The palindromic version we use
in the following chapters. The delayed version is interesting because it is extremely
well approximated by rationals, as the following theorem illustrates.
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Theorem 2.6.3. The delayed Champernowne constant for the alphabet of base b,
t0, 1, . . . , b ´ 1u, interpreted as a real number in base b, is a Liouville number. That
is, for each n there is a rational p{q that is within 1{qn of it.

Proof. Fix base b and n. Let x “ w1
1!2w2

2!2w3
3!2 ¨ ¨ ¨ and the rational approxi-

mation xn “ w1
1!2w2

2!2 ¨ ¨ ¨wn´1
pn´1q!2wn

ω. The rational .xn can be written with
řn´1

i“1 i!2|wi| fixed digits and a period of |wn| digits. Then, the denominator of
one of the fractions representing .xn has |wn| ` řn´1

i“1 i!2|wi| digits, so it is lower

than b|wn|`
řn´1

i“1
i!2|wi|. Also, x and xn have the first

řn
i“1 i!

2|wi| digits in common;

hence, they are within b´
řn

i“1
i!2|wi| of each other. We just need to prove that

řn
i“1 i!

2|wi|{p|wn| ` řn´1
i“1 i!2|wi|q is greater than n,

řn
i“1 i!

2|wi|
|wn| ` řn´1

i“1 i!2|wi|
ą n!2|wn|

|wn| ` řn´1
i“1 pn ´ 1q!2|wn|

ą n!2

1 ` pn ´ 1qpn ´ 1q!2 ą n.

Notice that delayed Champernowne constant is calibrated to meet Liouville’s
condition. However, it would be straightforward to delay the usage of each wi

even more to meet even tighter requirements of rational approximations. This is a
simplified version of the idea from [NV12]. In [Bug02] the existence of absolutely
normal Liouville numbers is proven. We recently submitted an article proving the
existence of computable instances [BHS14].

Our last explicit example is a direct consequence of Lemma 2.5.3.

Theorem 2.6.4. If x P Aω is normal, the infinite word px ↾ 1qpx ↾ 2qpx ↾ 3q ¨ ¨ ¨ ,
called the triangulation of x, is also normal.

Proof. By setting un “ x ↾ n we can apply Lemma 2.5.3 because its hypothesis is
exactly what we get from normality of x and Theorem 2.5.1.

The previous theorem can be easily generalized to a concatenation of prefixes of
lengths given by any non-decreasing sequence, and the same proof applies.

Moreover, from the way the triangulation is constructed, each word x ↾ n has
all but the last symbol in common with the previous one x ↾ pn ´ 1q, making the
triangulation of any x extremely compressible with Lempel and Ziv’s algorithm
[ZL78]. This shows that LZ compression compresses not only every non-normal
infinite word, but also, some normal infinite words. We consider the question of
incompressibility of normal infinite words in Chapters 4 and 5.

2.7 Infinite de Bruijn words

Infinite de Bruijn words are nice instances of normal infinite words. This has
been proved first by Edgardo Ugalde [Uga00]. We start by proving that infinite de
Bruijn words exist. An earlier presentation of the first results in this section can
also be found in our article [BH11].

Definition ([Bru46, SM94]). A (non cyclic) de Bruijn word of order n over A is a
word of length |A|n ` n ´ 1 such that every word of length n occurs exactly once as
a consecutive substring.

See [BP07] for a fine presentation and history of de Bruijn words. We give first
the proof of the following theorem.
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Theorem 2.7.1. Every de Bruijn word of order n over A with |A| ě 3 can be
extended to a de Bruijn word of order n ` 1. Every de Bruijn word of order n

over A with |A| “ 2 can not be extended to order n ` 1, but it can be extended to
order n ` 2.

Recall that a Hamiltonian cycle of a graph is a cycle in which each vertex of
the graph occurs exactly once. An Eulerian cycle is a cycle in which each edge of
the graph occurs exactly once. A graph that admits an Eulerian cycle is called an
Eulerian graph. An undirected graph is connected if for every pair of vertices, there
is a path between them. A directed graph is strongly connected if for every pair of
vertices there is a directed path between them. A directed graph is regular if each
vertex has the same number of incoming and outgoing edges as all other vertices.
Given a directed graph G, its line graph is a directed graph whose vertices are the
edges of G, and whose edges correspond to the directed paths of length two of G.

For a fixed alphabet A, a de Bruijn graph of order n, which we denote by Gn,
is a graph whose vertices are all words of length n, and the edges link overlapping
words w, v such that wr2..ns “ vr1..n ´ 1s. The edges of Gn can be labeled with
words of length n ` 1, such that the edge pw, vq is labeled with wr1sv “ wpvrnsq.
Then, each possible word of length n`1 in k symbols appears in exactly one edge of
Gn. Moreover, the line graph of Gn is exactly Gn`1. The label of a path v1, ..., vt in
Gn is the word that contains as subwords exactly the words v1, ..., vt, in that order,
namely, v1r1sv2r1s...vt´1r1svt. Note that the label of a path of length t is a word
of length t ` n ´ 1. If we take a path of length t in Gn and consider the set of
t´ 1 traversed edges, it is easy to see that they form a path that has the same label
in Gn`1. Consequently, the label of a Hamiltonian cycle in Gn is a de Bruijn word
of order n, and the label of an Eulerian cycle in Gn is a de Bruijn word of order
n ` 1, because an Eulerian cycle in Gn is a Hamiltonian cycle in Gn`1.

We base the proof of Theorem 2.7.1 in the characterization of Eulerian directed
graphs by I.J. Good [Goo46], which states that a directed graph is Eulerian if and
only if it is strongly connected and the in-degree and out-degree of each vertex
coincide.

Proposition 2.7.2 (folklore). A directed graph G in which each vertex has its in-
degree equal to its out-degree is strongly connected if and only if its underlying undi-
rected graph is connected.

Proof. The “only if” is immediate. Fix G and let dpvq be the in and out-degree of
vertex v in G. Let u be an arbitrary vertex of G. Let U be the set of vertices that
are accessible from u, that is, the smallest set such that (1) u P U , and (2) for every
edge pv, wq P G, if v P U then w P U . Note that, by definition, there is a directed
path from u to each of the vertices in U . Let G1 be the subgraph of G induced by U .
It is clear that each vertex v in G1 has out-degree dpvq, because every outgoing edge
in G that has its first endpoint in U is in G1 by condition (2). Also, the in-degree
of each vertex v in G1 is less than or equal to dpvq because G1 is a subgraph of G.
Since the sum of the in-degrees is the same as the sum of the out-degrees in G1,
the in-degree of vertex v in G1 must also be dpvq. Therefore, if w R G1, then there
is no edge in G, in any direction, that connects w to any vertex v in G1 (because
that would make the in- or out-degree of v greater than dpvq). Since the underlying
graph of G is connected, there is no such w, which implies G1 “ G. Since every
vertex in G1 is accessible from u, every vertex in G is accessible from u. Since this
is valid for any u, G is strongly connected.

Lemma 2.7.3. A Hamiltonian cycle in a de Bruijn graph over an alphabet of at
least three symbols can be extended to an Eulerian cycle in the same graph.
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Proof. Let H be a Hamiltonian path in Gn. Let I be the graph resulting of removing
the edges in H from Gn. We first prove that the underlying undirected graph of I
is connected. For an arbitrary pair of vertices u, v, we recursively define below a
sequence of pairs ui,vi, for 0 ď i ď n, satisfying the following properties:

(1) u “ u0 and v “ v0.

(2) For each i ă n, there is an edge from ui to ui`1 in I. Analogously for vi.

(3) The last i symbols of ui and vi coincide.
Let u0 “ u and v0 “ v. For each i “ 0..n ´ 1, let ai`1 be such that setting
ui`1 “ uir2..nsai`1 and vi`1 “ vir2..nsai`1 make the edges pui, ui`1q and pvi, vi`1q
not belong to H. Such a symbol ai`1 exists because each vertex has exactly one of
its (at least three) outgoing edges used in H. By definition the edges pui, ui`1q and
pvi, vi`1q are in Gn but not in H, hence they are in I. If the last i ă n symbols of vi

and ui coincide, so do the last i ` 1 symbols of ui`1 and vi`1, because they are the
last i symbols of ui plus ai`1. By condition (3), vn “ un, thus, u and v belong to
the same connected component of the underlying undirected graph of I. Since this
is valid for any pair u,v, the underlying undirected graph of I is connected.

Since Gn and H are regular, I is also regular. Then, by Proposition 2.7.2, I is
strongly connected. These two properties ensure I is Eulerian. Adding an Eulerian
cycle of I to H gives the desired extension.

Lemma 2.7.4. Lemma 2.7.3 fails if the alphabet has just two symbols.

Proof. Consider the de Bruijn graph of order 1. It has just one Hamiltonian cycle.
The removal of this cycle leaves the two points of the graph disconnected, with a self-
loop edge each. As argued by Lempel in [Lem70], the same failure occurs at every
order, because removing a Hamiltonian cycle from the graph leaves the self loops
(that always exist in the vertices of the form an) isolated in the residual graph.

Lemma 2.7.5. A Hamiltonian cycle in a de Bruijn graph in two symbols can be
extended to an Eulerian cycle in the de Bruijn graph of the next order.

Proof. Let H be a Hamiltonian cycle in Gn. Since Gn`1 is the line graph of Gn, H
corresponds to a simple cycle in Gn`1 that goes through half of the points of Gn`1.
Let I be the graph that results from removing the edges in H from Gn`1. We first
prove that the underlying undirected graph of I is connected. Let us call the two
symbols of the alphabet 0 and 1. Note that for any word s of length n, H contains
exactly one of the two vertices s0 and s1 of Gn`1. This is because s corresponds
exactly to one vertex in Gn, and s0 and s1 correspond to its outgoing edges. Since
H is a Hamiltonian cycle in Gn, exactly one of these edges is used in H. This in turn
implies that any vertex in Gn`1 has exactly one successor in H and one successor
not in H. For an arbitrary pair of vertices u, v in Gn`1, we recursively define below
a sequence of pairs ui,vi, for 0 ď i ď n ` 1, satisfying the following properties:

(1) For each i, at least one of ui or vi is not in H.

(2) There is an edge from u to u0, and there is an edge from v to v0.

(3) For each i ď n, there is an edge from ui to ui`1 in I. Analogously for vi.

(4) The last i symbols of ui and vi coincide.
Let u0 be any successor of u and v0 be the successor of v not in H. For 0 ď i ď n,
if vi R H, let ai`1 be such that uir2..n ` 1sai`1 is not in H. Otherwise, let ai`1

be such that vir2..n ` 1sai`1 is not in H. Then, set ui`1 “ uir2..n ` 1sai`1 and
vi`1 “ uir2..n`1sai`1. By definition, at least one of the endpoints of both pui, ui`1q
and pvi, vi`1q is not in H, so both edges are in I. Moreover, at least one of ui`1 and
vi`1 is not in H. If the last i ă n symbols of vi and ui coincide, so do the last i ` 1
symbols of ui`1 and vi`1, because they are the last i symbols of ui plus ai`1. By
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condition (4), un`1 “ vn`1, thus, u and v belong to the same connected component
of the underlying undirected graph of I. Since this is valid for any pair u,v, the
underlying undirected graph of I is connected.

Every vertex in I has its in-degree equal to its out-degree, because it is a cycle
subtracted from a regular graph. So, by Proposition 2.7.2, I is strongly connected.
These two properties ensure I is Eulerian. Adding an Eulerian cycle in I to H gives
the desired extension.

We are now ready to give the proof of the already stated Theorem 2.7.1:

Proof of Theorem 2.7.1. de Bruijn words of order n correspond exactly to the Hamil-
tonian cycles in de Bruijn graphs Gn. In turn, the Hamiltonian cycles in Gn`1 are
exactly the Eulerian cycles in Gn. Now the first assertion follows from Lemma 2.7.3
and the second from Lemma 2.7.4 and Lemma 2.7.5.

This property allows to define infinite de Bruijn as the limit of the extensions.
This turn out to be normal infinite words, providing the last example of normality
of this chapter.

Definition. An infinite word over an alphabet of at least three symbols is an infinite
de Bruijn word if it is the inductive limit of extending de Bruijn words of order n,
for each n. In case of a two-symbol alphabet, an infinite de Bruijn word is the limit
of extending de Bruijn words of order 2n, for each n.

Corollary 2.7.6. Infinite de Bruijn words exist over any alphabet.

Proof. Immediate from Theorem 2.7.1.

Now we prove that infinite de Bruijn words are normal.

Lemma 2.7.7. If u P Aℓ is a word of length ℓ, then it occurs in a de Bruijn word
of order n ě ℓ between |A|n´ℓ and |A|n´ℓ ` n ´ ℓ times.

Proof. If u occurs at a position 1 ď i ď |A|n, then it is the beginning of an occurrence
of a word of length n. There are exactly |A|n´ℓ words of length n whose first ℓ

symbols are u. Then, there are exactly n ´ ℓ other positions in a de Bruijn word of
order n at which a subword of length ℓ may start.

Theorem 2.7.8. Infinite de Bruijn words are normal.

Proof. Let x be an infinite de Bruijn word over A. Fix a word u of length ℓ and
n ą |A|ℓ ` ℓ ´ 1. By definition, for each n, x ↾ |A|2n ` 2n ´ 1 (multiplication by 2
is to account for |A| “ 2) is a de Bruijn word. Thus, we can bound the number of
occurrences of u in any given prefix of x by the number of occurrences of u in the
shortest prefix that is a de Bruijn word, yielding the bound

lim sup
kÑ8

occpu, x ↾ kq
k

ď lim sup
nÑ8

occpu, x ↾ |A|2n ` 2n ´ 1q
|A|2n´2 ` 2n ´ 3

Further, using Lemma 2.7.7,

lim sup
nÑ8

occpu, x ↾ |A|2n ` 2n ´ 1q
|A|2n´2 ` 2n ´ 3

ď lim sup
nÑ8

|A|2n´ℓ ` 2n ´ ℓ

|A|2n´2 ` 2n ´ 3
“ |A|´ℓ`2.

Therefore, by Theorem 2.5.2 using c “ |A|2, x is normal.



24 CHAPTER 2. NORMALITY AND COMBINATORICS ON WORDS

Theorems 2.7.1 and 2.7.8 raise the question of giving efficient algorithms to
construct infinite de Bruijn words. According to the proof of Lemmas 2.7.3 and 2.7.5,
the extension problem is just to construct an Eulerian cycle in the remaining graph.
Any of the known algorithms for Eulerian cycles is usable, even the ancient algorithm
of Fleury [Fle83]. However, this may not be the most efficient way of proceeding, as
it requires the output to be computed in chunks that grow exponentially.

If instead of infinite words we concentrate on real numbers, questions about
normality to different bases naturally arise. In particular, we can wonder about
absolute normality and absolute abnormality. Rational numbers, being periodic, are
not normal to any base, and thus, are examples of absolutely abnormal numbers.
Borel conjectured that all irrational algebraic numbers are absolutely normal, and
this is one of the most important open problems on normal numbers today. Also
it has been conjectured that usual mathematical constants such as π and e are
absolutely normal. So far we have just some empirical evidence [BC01, SNS13].

The construction of particular instances of absolutely normal real numbers has
not been satisfactory nor easy. We concentrate on this problem in Chapter 3.



CHAPTER 3

Complexity

In this chapter we consider constructing absolutely normal numbers computably.
We devise a general method that yields two main results. One is an algorithm with
low time complexity to compute an absolutely normal number. The other is a
completeness result on the descriptive complexity of the set of absolutely normal
numbers.

The first algorithm that computes an absolutely normal number was given by
Alan Turing [Tur92] but only became known after it was reconstructed and proved
to be correct by Becher, Figueira and Picchi [BFP07]. A similar algorithm is the
computable reformulation [BF02] of Wac law Sierpiński’s construction [Sie17]. Un-
fortunately, these two algorithms are extremely inefficient in terms of the time it
takes to compute the first n digits of the number. They both require time that is
double exponential in n. Another construction of an absolutely normal number was
given by Wolfgang Schmidt [Sch62]. He remarks his number is “clearly defined”
and, in fact, it is clearly computable, but its time complexity has not been analyzed.

Jack Lutz and Elvira Mayordomo were the first to announce the existence of an
absolutely normal number computable in polynomial time; they did it in Seventh In-
ternational Conference on Computability, Complexity and Randomness, Cambridge,
United Kingdom, in July 2012. Santiago Figueira and André Nies reported another
proof. See [May13] and [FN13] for details. Their arguments analyze polynomial-time
martingales, a device from the theory of algorithmic randomness, and the means to
diagonalize against them. In contrast, the algorithm we present as the first result
here constructs the expansion of an absolutely normal number directly from the
definition, bounding how far away from normality it can go. The technique is thus
combinatorial. This result is published in [BHS13b].

Alexander Kechris, in the early 1990s, was interested in knowing how difficult it
is to describe the set of absolutely normal numbers. Specifically, he asked whether
the set of real numbers which are normal to base two is complete for the class Π0

3 in
the Borel hierarchy. The Borel hierarchy is a categorization of sets according to how
difficult they are to describe with first order logic formulas. A set is Π0

n if it can
be described with a sentence using no more than n alternating quantifiers, starting
with a @. Such a set is complete for the class Π0

n if it is not possible to describe
it in a simpler way. The classes Σ0

n are analogous, but consider the alternation of
quantifiers starting with D. The effective Borel hierarchy is a similar categorization
that requires the formula after the quantifiers to be computable.

25
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Ki and Linton [KL94] proved that, indeed, the set of numbers that are normal
to any fixed base is complete in the Π0

3 class. However, their proof technique does
not extend to the case of absolute normality, that is, normality to all bases simul-
taneously, nor to the effective Borel hierarchy. We show that the set of absolutely
normal numbers is also Π0

3-complete. In fact, the set of absolutely normal numbers
and the set of normal numbers to any fixed base are complete for the Π0

3 class in
the effective Borel hierarchy. We give, as a second result, an explicit reduction that
proves the two completeness results. Our work on this is published in [BHS13a].

In Section 3.1 we develop some tools to construct real numbers computably. In
Section 3.2 we present our algorithm that computes absolutely normal numbers and
prove its correctness. In Section 3.3 we give the necessary implementation details
and we show that its time complexity is just above quadratic. Section 3.4 recalls the
Borel hierarchy on subsets of real numbers and discusses the descriptive complexity
of the set of absolutely normal numbers. Sections 3.5 and 3.6 give two algorithms
that are the base to show in Section 3.7 a reduction that proves the set of absolutely
normal numbers is complete in its level of the Borel hierarchy.

3.1 Construction of normality

First, we discuss the ingredients to construct a real number x that is simply nor-
mal to a single base b. We employ these means later for several bases simultaneously,
which by Corollary 2.3.3 yields an absolutely normal result.

We consider a sequence of b-adic intervals I1, I2, I3, . . . constructed by recursion
on i such that for each i, Ii`1 is a subset of Ii, and such that limiÑ8 µpIiq “ 0.
The real number x determined by this sequence is the unique element of

Ş

iě1 Ii,
i.e. the limit of the left endpoints of these intervals. We let vi be the word in base
b such that Ii is the b-adic interval r.vi, .vi ` b´|vi|q. We let ui`1 be the word such
that viui`1 “ vi`1. Thus, for any k ď i, vi “ vkuk`1uk`1 ¨ ¨ ¨ui and x is equal to
.vkuk`1uk`1uk`3 ¨ ¨ ¨ .

We work towards ensuring that simple discrepancy decreases as we consider
longer initial segments in the base-b expansion of x. We do so by choosing ui`1

so that Dpui`1, bq is smaller than a self-imposed threshold εi`1, where the function
i ÞÑ εi is monotonically decreasing.

We need to determine the appropriate length of ui`1. By allowing |ui`1| be
sufficiently large, existence of a word ui`1 such that Dpui`1, bq ă εi`1 is ensured. By
allowing |ui`1| be sufficiently small in comparison to |vi|, it is ensured that for each
ℓ less than or equal to |ui`1|, Dpvi`1 ↾ p|vi| ` ℓq, bq is not much larger than Dpvi, bq,
i.e. the variations of simple discrepancy within prefixes of ui`1 introduce only small
variations of simple discrepancy within prefixes of vi`1. Our task is to arrange for
limiÑ8 εi “ 0 while maintaining the appropriate proportions in length between vi

and ui`1 to comply to the hypothesis of the following corollary of Lemma 2.4.1.

Corollary 3.1.1. Take as given words v and u1, u2, . . . , um in base b. Suppose ε

satisfies the following conditions.

1. Dpv, bq ă ε.

2. For each i, Dpui, bq ă ε.

3. For each i, |ui|{|vu1u2 ¨ ¨ ¨ui´1| ă ε.

Then for every ℓ less than or equal to |u1u2 ¨ ¨ ¨um|,

D ppvu1u2 ¨ ¨ ¨umq ↾ p|v| ` ℓq, bq ă 2ε.



3.1. CONSTRUCTION OF NORMALITY 27

Proof. Let ℓ1 “ |v| ` ℓ. Applying the hypotheses and Lemma 2.4.1, it can be seen
that for i such that |u1u2 ¨ ¨ ¨ui| ď ℓ ă |u1u2 ¨ ¨ ¨uiui`1|,

Dppvu1u2 ¨ ¨ ¨umq ↾ ℓ1, bq ď Dpv, bq |v|
ℓ1

`
˜

i
ÿ

j“1

Dpuj , bq
|uj |
ℓ1

¸

` |ui`1|
ℓ1

ă ε

˜

|v|
ℓ1

`
ři

j“1 |uj |
ℓ1

¸

` ε ă 2ε.

We turn to working simultaneously with bases b P t2, . . . , tu in the context of
stage i of a construction by recursion. Instead of one interval Ii, we work with a
nested sequence of intervals, Ii,2 Ą Ii,3 Ą . . . Ii,t, such that each Ii,b is b-adic. The
following lemma shows that the lengths of these intervals need not shrink too quickly.

Lemma 3.1.2. For any non-empty interval I and any base b, there is a b-adic subin-
terval Ib such that µpIbq ě µpIq {p2bq. Moreover, such subinterval can be computed
uniformly from I and b.

Proof. Let m be least such that 1{bm is less than µpIq, namely, m “ r´ logbpµpIqqs.
Note that 1{bm is greater than or equal to µpIq {b, since 1{bm´1 ě µpIq. If there is a
b-adic interval of length 1{bm strictly contained in I, then let Ib be such an interval,
and note that Ib has length greater than or equal to µpIq {b. Otherwise, there must
be an a such that a{bm is in I and neither pa ´ 1q{bm nor pa ` 1q{bm belongs to I.
Thus, 2{bm is greater than µpIq. However, since 1{bm ă µpIq and b is greater than
or equal to 2, 2{bm`1 is less than µpIq. So, at least one of the two intervals

„

ba ´ 1

bm`1
,

ba

bm`1

˙

or

„

ba

bm`1
,
ba ` 1

bm`1

˙

must be contained in I. Let Ib be such. Then, the length of Ib is

1

bm`1
“ 1

2b

2

bm
ą µpIq {p2bq.

In either case, the length of Ib is greater than µpIq {p2bq. It is easy to see that
the steps described in the proof can be coded into an algorithm. In the upcoming
Lemma 3.3.1 we show an efficient option for doing it.

With the following definition and corollary, we specify the sequences of nested
intervals we are interested in.

Definition. A t-sequence is a nested sequence of t ´ 1 intervals, ~I “ pI2, . . . , Itq,
such that I2 is dyadic and for each base b, Ib`1 is a pb ` 1q-adic subinterval of Ib

such that µpIb`1q ě µpIbq {2pb ` 1q. We let wbp~Iq be the word in base b such that
.wbp~Iq is the expansion of the left endpoint of Ib in base b.

Corollary 3.1.3. For every non-empty dyadic interval I2 and integer t ě 2 there is a
t-sequence ~I starting with I2. Moreover, such t-sequence can be computed uniformly
from I and t.

Proof. Direct by iteratively applying Lemma 3.1.2.
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If ~I “ pI2, . . . , Itq is a t-sequence, then for any base b ď t and any real x P It, x
has wbp~Iq as an initial segment of its expansion in base b. If, further, ~I 1 “ pI 1

2, . . . I
1
t1q

is a t1-sequence with t ď t1 such that I 1
2 Ă It and x P I 1

t1 , then for each b ď t,
~I 1 specifies how to extend wbp~Iq to a longer initial segment wbp~I 1q of the base b

expansion of x. As opposed to arbitrary nested sequences, for t-sequences there is a
function that gives a lower bound for the ratio between the measures of Ib and Ib1 ,
for any two bases b and b1 both less than or equal to t. That is, assuming b ą b1, we
can state the following inequality, which we use repeatedly in the sequel:

µpIbq ě µpIb1q
2b´b1

b!{b1!
.

3.2 An algorithm with absolutely normal output

Our construction of the real x is by recursion and written in terms of two given
functions, i ÞÑ ti and i ÞÑ εi. The first determines the number of bases to be
considered at stage i and the second determines an upper bound on the allowed
discrepancy in each of those bases. At stage i ` 1, we start with a ti-sequence
~Ii “ pIi,2, Ii,3, . . . , Ii,ti

q given from the previous stage, with associated words wbp~Iiq,
for b ď ti.

Definition. For b ď ti, let vi`1,b be wbp~Ii`1q, the base b representation of the

left-endpoint of Ii`1,b, and let ui`1,b be ubp~Ii`1q, i.e. vi`1,b “ vi,bui`1,b.

Algorithm 3.2.1. Assume given computable functions i ÞÑ ti and i ÞÑ εi such that
ti and 1{εi are non-decreasing in i and unbounded, with εi ď 1{ti. Let δi`1 be the
following upper bound of the fraction of words in base b for b ď ti, of the length
considered at stage i ` 1, that can be discarded,

δi`1 “ 1

8 ti

1

2ti`ti`1ti!ti`1!
.

Let ki`1 be the length for the word in base ti to be appended at stage i ` 1,

ki`1 “ maxpr6{εi`1s ,
P

´ lnpδi`1{p2tiqq6{ε2i`1

T

q ` 1.

Initialization. Start with ~I0 “ ppI0,2qq, with I0,2 “ r0, 1q.

Recursion step i ` 1. Determine the ti`1-sequence ~Ii`1 for stage i ` 1 as follows.

1. Let L be a dyadic subinterval of Ii,ti
such that µpLq ě µpIi,ti

q {4.

2. For each dyadic subinterval J2 of L of measure µpJ2q “ 2´rlog tiski`1µpLq, let
~J “ pJ2, J3, . . . , Jti`1

q be a ti`1-sequence for J2.

3. Let ~Ii`1 be the leftmost of the ti`1-sequences ~J considered above such that
for each b ď ti, Dpubp ~Jq, bq ď εi`1.

We let x be the unique real in the intersection of the intervals in the sequences ~Ii.
Expressed in base b, x “ limiÑ8 .vi,b, obtained as the concatenation of the words at
each step i, pxqb “ u1,b u2,b u3,b ¨ ¨ ¨ .

Theorem 3.2.2. The output x of Algorithm 3.2.1 is well defined.

Proof. To show that x is well-defined, we just need to verify that at each stage i` 1
there is ti`1-sequence ~Ii`1. Computability of the first two steps of the algorithm is
justified by Lemma 3.1.2 and Corollary 3.1.3, respectively. To prove that the third
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step always finds a suitable candidate, we compare the measures of two sets. Let
S be the union of the set of intervals Jti`1

over the 2rlog tiski`1-many ti`1-sequences
~J “ pJ2, . . . , Jti`1

q. By Lemma 3.1.2 we have

µpLq ě µpIi,ti
q {4.

Since ~J is a ti`1-sequence, we also have

µ
`

Jti`1

˘

ě 1

2ti`1ti`1!
µpJ2q .

Observe that the possibilities for J2 form a partition of L. Hence,

µpSq ě 1

2ti`1ti`1!
µpLq .

Combining inequalities,

µpSq ě 1

2titi!

1

4

1

2ti`1ti`1!
µpIi,2q .

Let N be the subset of S defined as the union of the set of intervals Jti`1
which occur

in ti`1-sequences which are not suitable. A ti`1-sequence ~J is not suitable if for some
b ď ti, Dpubp ~Jq, bq ą εi`1. By construction, u2p ~Jq has length rlog tis ki`1 and for
each b ď ti, ubp ~Jq has length greater than or equal to ki`1. Each ~J considered
at stage i ` 1 is such that for every b ď ti each interval Jb is a subinterval of Ii,b.
According to Lemma 2.4.4 and by the choice of ki`1, for each b ď ti, the subset of Ii,b

consisting of reals with base b representations .vi,bubp ~Jq for which Dpubp ~Jq, bq ą εi`1

has measure less than δi`1 µpIi,bq, thus less than δi`1 µpIi,2q. Hence,

µpNq ă ti δi`1 µpIi,2q .
By the choice of δi`1,

µpNq ă 1

4 2titi! 2ti`1ti`1!
µpIi,2q .

Then, µpNq ă µpSq. Since S is a superset of N , this proves that there is a suitable
choice of ~J at the third step.

We turn now to giving sufficient conditions on the functions i ÞÑ εi and i ÞÑ ti to
ensure the output x is absolutely normal. Since pxqb “ u1,b u2,b u3,b ¨ ¨ ¨ and Dpui,b, bq
goes to zero as i goes to infinity, we are in a similar position as in the hypotheses
of Lemma 2.5.3 but for the case of simple normality. Since we have additional
hypotheses over the length of the ui,b, we can give an explicit upper bound on the
way the discrepancy approaches zero.

Theorem 3.2.3. Suppose that the functions i ÞÑ ti and i ÞÑ εi are monotonic and
such that limiÑ8 ti “ 8 and limiÑ8 εi “ 0. Furthermore, suppose that for each i

and for each b ď ti, |ui`1,b|{|vi,b| ă εi`1. Then, the real x constructed in terms of
these functions is absolutely normal.

Proof. Let b be a base and let ε ą 0. Choose an integer s so that b is less than
ts and 2εs is less than ε. During stages i ` 1 after s, we ensure of the constructed
real x that the base b representation of x is obtained by appending to vi,b words
ui`1,b for which Dpui`1,b, bq ă εs. Thus, Dpus`1,b us`2,b ¨ ¨ ¨un,b, bq ă εs for any
n. Fix s1 so that |vs,b|{ps1 ´ |vs,b|q ă εs. By noting that we add at least one
new symbol in the base b representation of x during every stage after s, we have
that Dpvs,b us`1,b us`2,b ¨ ¨ ¨un,b, bq is less than εs. Then, Corollary 3.1.1 applies to
conclude that for every ℓ, Dppxqb ↾ |vs,b us`1,b us`2,b ¨ ¨ ¨us1,b|`ℓ, bq ă 2εs ă ε, which
is sufficient to prove the theorem.
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3.3 Implementation and time complexity

We calculate the time complexity of the algorithm by counting the number of
elementary operations required to output the first i symbols, where an elementary
operation takes a fixed amount of time. We also count the number of mathemati-
cal operations performed by the algorithm, where mathematical operations include
addition, subtraction, comparison, multiplication, division and logarithm.

Algorithm 3.2.1 depends on two given monotonic functions i ÞÑ ti and i ÞÑ εi.
By controlling the rates at which ti and εi approach their limits, we can control
the number of operations required to run the construction. Thus, the count of the
performed operations up to step i is given as a product of two factors, one that
depends only on ti and εi which can be made arbitrarily small, and the other that
does not, which is the significant factor.

We say that a number is small if it can be bounded by a function of ti and εi`1.
By the virtue of the algorithm all values are polynomial in the inverse of the mea-
sure of the smallest interval I being considered, so they can be represented by
Op´ logµpIqq binary digits. Expensive mathematical operations are multiplications
and divisions having both operands non-small. Non-expensive mathematical op-
erations are operations having at least one small operand and also all additions,
subtractions and comparisons. Expensive operations require Opp´ logµpIqq2q el-
ementary operations, while for the non-expensive Opgpxqp´ logµpIqqq elementary
operations suffice, where g is some increasing function and x is small.

We represent b-adic intervals as tuples of four integers xa, b,m, py such that the
represented intervals are ra{bm, pa`1q{bmq and p “ bm. The last terms p are kept just
for efficiency of computation. For a b1-adic interval I1 “ xa1, b1,m1, p1y and a b2-adic
interval I2 “ xa2, b2,m2, p2y we define leftpI1, I2q “ a1 p2 and rightpI1, I2q “ a2 p1.

The next lemma bounds the needed operations to find a b-adic subinterval of a
given interval. It is intended that the given values be previously computed data; the
proof revisits the existential result given in Lemma 3.1.2.

Lemma 3.3.1. Suppose we are given two bases b1 and b2 and two b1-adic intervals
J1 and I1. We are also given a b2-adic interval I2 such that J1 Ď I2 Ď I1, and
the integers ℓI “ leftpI1, I2q and rI “ rightpI1, I2q. Suppose we want to compute
a b2-adic subinterval J2 of J1 such that µpJ2q ě µpJ1q {p2b2q, and also compute
the integers ℓJ “ leftpJ1, J2q and rJ “ rightpJ1, J2q. The result can be obtained
by two alternative computations, one takes Opp´ logµpJ1qq2q elementary operations;
the other takes Opgpb1, b2,´ logpµpJ1q {µpI1qqqp´ logµpJ1qqq elementary operations,
where g is some increasing function. In either case, Opgpb1, b2,´ logpµpJ1q {µpI1qqqq
mathematical operations suffice.

Proof. For s “ 1, 2, let Is and Js be given by xes, bs, ns, qsy and xas, bs,ms, psy, re-
spectively. Notice that µpIsq “ 1{qs “ 1{bns

s and µpJsq “ 1{ps “ 1{bms
s . Within this

proof, small values are those that can be bounded by gpb1, b2,´ logpµpJ1q {µpI1qqq.
In particular, later in the proof it becomes clear that for each s, ms ´ns and as ´ es

are small.

First we give a computation that uses Opgpb1, b2,´ logpµpJ1q {µpI1qqqq mathe-
matical operations, all of which are non-expensive. We start calculating the small
values bms´ns

s . Using iterated squaring it takes Oplogpms ´ nsqq multiplications, re-

quiring Oplog b
2pms´nsq
s q “ Opp´ logpµpJsq {µpIsqqq2q elementary operations, in total.

Notice that µpJ2q {µpI2q ą µpJ1q {p2b2µpI1qq and so

Op´ logpµpJ2q {µpI2qqq Ď Op´ logpµpJ1q {µpI1qqq.
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We need to find a2, m2, p2, ℓJ and rJ , such that:

p1q a1{bm1

1 ď a2{bm2

2 and pa2 ` 1q{bm2

2 ď pa1 ` 1q{bm1

1

p2q 1{bm1

1 ď 2b2{bm2

2

p3q p2 “ bm2

2

p4q ℓJ “ leftpJ1, J2q “ a1 p2 and rJ “ rightpJ1, J2q “ a2 p1.

Since J2 Ď I2, n2 ď m2. From µpJ2q ě µpJ1q {p2b2q and µpI2q ď µpI1q we can
conclude that µpJ2q ě pµpI2q {p2b2qqpµpJ1q {µpI1qq. Application of ´ logb2

to both
sides yields m2 ď n2`pm1´n1q logb2

b1`2. So there are at most pm1´n1q logb2
b1`2

possible values for m2, and we can iterate through each of them. From J2 Ď I2 we
also infer that e2b

m2´n2

2 ď a2 ď pe2 ` 1qbm2´n2

2 ´ 1, which means that there are
bm2´n2

2 possible values for a2 and we can iterate through each of them. Since the
number of iterations required to try the possibilities for both m2 and a2 are small
numbers, they can be bounded by choosing g appropriately. To compute the starting
and ending values in such iterations we only need a small number of non-expensive
mathematical operations, and to change between consecutive values we need only
addition. We then check for each pair if all requirements are met. Since Lemma 3.1.2
ensures that m2 and a2 exist, the described procedure eventually finds a suitable
pair meeting the requirements.

For a given pair a2 and m2, we can compute p2 by p2 “ q2b
m2´n2

2 with a single
non-expensive mathematical operation. To calculate rJ first notice that

rJ “ a2p1
“ a2b

m1

1

“ pa2 ´ e2qq1bm1´n1

1 ` e2q1b
m1´n1

1

“ q1pa2 ´ e2qbm1´n1

1 ` rIb
m1´n1

1 .

Since as ´ es is small, rJ can be obtained from the last expression using only
a constant number of non-expensive mathematical operations, because all factors
are small except the first one of each term. The calculation of ℓJ is similar. At
this point, ℓJ , rJ and p2 meet the requirements by their construction. To check
the requirements for a2 and m2, notice that requirement (1) is equivalent to 0 ď
rightpJ1, J2q ´ leftpJ1, J2q ď p2 ´ p1 and requirement (2) is equivalent to p2 ď 2b2p1,
and both can be checked with a constant number of non-expensive mathematical
operations, given that we already calculated ℓJ “ leftpJ1, J2q and rJ “ rightpJ1, J2q.

An alternative way of computing can be achieved by replacing the iteration
through possible values of a2 and m2 by their direct computation using the given
bounds and rounding. This entails a constant number of expensive mathematical
operations.

The next lemma counts the steps in one complete stage of our algorithm. As
in the previous lemma, it is intended that the given values be previously computed
data. We count all operations except the computation of ti`1, εi`1 and ki`1, which
is postponed until the subsequent theorem.

Lemma 3.3.2. Assume we are given i, ti, εi`1 and ti`1. Then, there is computable
function hpt, εq, increasing in t and 1{ε, such that stage i` 1 of Algorithm 3.2.1 can
be completed in Ophpti`1, εi`1qq mathematical operations. Let n be the minimum
number of digits that are sufficient to represent each of the endpoints of the intervals
of ~Ii. In case ti`1 “ ti´1 stage i`1 requires Ophpti`1, εi`1q nq elementary operations;
otherwise it requires Ophpti`1, εi`1q n2q elementary operations.
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Proof. We count the operations needed to run all the steps of stage i ` 1. Assume
first that ti`1 “ ti´1. Then, all bases considered in stage i ` 1 were also considered
in stages i and i ´ 1. Lemma 3.3.1 applies to count the operations needed to find
subintervals. In each application of the lemma, the values of I1, I2, ℓI and rI

in the hypothesis are carried forward from the computation in the previous stage.
Then, ´ logpµpJ1q {µpI1qq is bounded by rlog tis ki`1 and hence is a small value.
Since Op´ logµpJ1qq “ Opnq, finding a subinterval requires at most Opgpti`1, εi`1qq
mathematical operations or Opgpti`1, εiq nq elementary operations.

We write h with a subindex to indicate a function of ti`1 and εi`1. Let ho

be such that each non-expensive mathematical operation in this procedure uses at
most Ophoq elementary operations and each expensive mathematical operation uses
at most Opho nq. The computation can be organized in the following steps.

‚ Compute rlogptiqs, δi`1 and ki`1. This takes a constant number of non-
expensive mathematical operations or Ophoq elementary operations.

‚ Compute a dyadic subinterval L of Ii,ti
such that µpLq ě µpIi,ti

q{4. This
takes Opgpti`1, εi`1qq mathematical operations or Opgpti`1, εi`1q nq elementary op-
erations.

‚ In increasing order of left endpoint, consider the dyadic subintervals J2 of L:

1. For each possible J2, we determine a ti`1-sequence ~J starting with J2. This
takes Opti`1 gpti, εi`1qq mathematical operations or Oph1 gpti, εi`1q nq ele-
mentary operations.

2. For each b ď ti, compute the base-b representation of the left endpoint ubp ~Jq of
~Jb. This requires Op|ubp ~Jq|q non-expensive mathematical operations, because
each operation has at least one operand is a base and hence depends only on
ti, and |ubp ~Jq| ď rlog tis ki`1 also depends only on ti. Therefore, this takes
Oph2q mathematical operations or Oph2 hoq elementary operations.

3. Calculate thresholds for the number of occurrences of each symbol to check
Dpubp ~Jq, bq ď εi`1. Such thresholds are of the form p1{b ` εi`1q|ubp ~Jq| and
therefore can be calculated with a constant number of non-expensive mathe-
matical operations for each base. Hence, Optiq “ Oph3q non-expensive math-
ematical operations or Oph3 hoq elementary operations in total.

4. The counting of occurrences and the comparison against the threshold op-
erate only on small values (bounded by maxpti, |ubp ~Jq|q). This step takes
Op|ubp ~Jq| maxpti, |ubp ~Jq|qq non-expensive mathematical operations for each
base. In total, this is

Opti |ubp ~Jq| maxpti, |ubp ~Jq|qq “ Oph4q

mathematical operations or Oph4 hoq elementary operations.

The search stops upon finding a suitable ti`1-sequence, before exhausting 2rlog tiski`1

many intervals J2. This requires at most h˚ “ 2rlog tiski`1 iterations. We can com-
plete the proof for the case ti`1 “ ti´1 by setting h “ h˚ ph1 g ` h2 ` h3 ` h4q ho.

If ti`1 ą ti´1, then it is possible that for some uses of Lemma 3.3.1 we do not have
any previously computed data. In this case we set the intervals in the hypothesis of
the lemma as I1 “ I2 “ r0, 1q and ℓI “ rI “ 0, making

´ logpµpJsq {µpIsqq “ ´ logpµpJsqq “ Opnq

for s “ 1, 2, and thus requiring Opg n2q elementary operations for each application of
the alternative computation in Lemma 3.3.1. This requires Oph˚ h1 g n2q elementary
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operations more than in the previous case. Using the same h as before, this case
entail at most Oph n2q elementary operations.

Theorem 3.3.3. Suppose f is a computable non-decreasing unbounded function.
Algorithm 3.2.1 computes an absolutely normal number x such that, for any base b, it
outputs the first i symbols in the base b representation of x after performing Opfpiq iq
mathematical operations or Opfpiq i2q elementary operations.

Proof. We define functions i ÞÑ ti and i ÞÑ εi simultaneously with running an
implementation of Algorithm 3.2.1. Let t1 “ 2 and ε1 “ 1{2 Assume k1 “ 1 and
fp1q is known data, having a value greater than hp2, 1q, for the h as in Lemma 3.3.2
For the recursion stage i` 1, assume that ti “ z and εi “ 1{z are given, with z ě 2,
and that ~Ii is the result of the construction as determined by the first i many values
of t and ε with associated words vi,b. If the number of stage i ` 1 is a power of 2,
we execute i many elementary operations in the computation of the initial values of
f , obtaining the values of f on the numbers less than or equal to some integer m.
Notice that 1 ď m ď i. Define δ by

δ “ 1

8 ti

1

2ti`z`1 ti!pz ` 1q! ,

which would be the value of δi`1 if we were to define ti`1 “ z`1. Let kpε, δ, tq be the
function defined by the calculation of k as given in Lemma 2.4.4. Finally, we execute i
many elementary operations in the computations of the functions kp1{pz`1q, δ, z`1q
and hpz ` 1, 1{pz ` 1qq. If we obtain values for these functions within the allotted
number of operations and they satisfy the inequalities hpz ` 1, 1{pz ` 1qq ă fpmq
and, for each b ď ti,

rlogpz ` 1qs kp1{pz ` 1q, δ, z ` 1q ` r´ logpδqs

|vi,b| ă 1

z ` 1
,

then define ti`1 “ z ` 1 and εi`1 “ 1{pz ` 1q. Otherwise, let ti`1 “ ti “ z and
εi`1 “ εi “ 1{z. We then complete stage i ` 1 of the construction and thereby
complete the recursion step in the definitions of the functions t and ε. Clearly,
i ÞÑ ti and i ÞÑ εi are computable, i ÞÑ ti is non-decreasing, and i ÞÑ εi is non-
increasing. Applying the assumptions on f , limiÑ8 ti`1 “ 8 and limiÑ8 εi`1 “ 0.
Further, in the construction determined by these functions, if during stage j ` 1 the
value of εj`1 is lowered from 1{pz ´ 1q to 1{z, then for each b ď tj ,

rlogpz ` 1qs kp1{z, δj`1, z ` 1q ` r´ logpδj`1qs

|vj,b| ă 1

z
.

For every subsequent stage i ` 1 during which εi`1 “ 1{z and for every b ď z ` 1,

|ui`1,b| ď rlogpz ` 1qs kp1{pz ` 1q, δj`1, z ` 1q ` r´ logpδj`1qs

and |vi`1,b| ě |vj,b|, so |ui`1,b|{|vi,b| is less than or equal to 1{pz ` 1q. Thus, the
construction satisfies the hypotheses of Theorem 3.2.3 and thereby produces an
absolutely normal number.

All mentioned mathematical operations are non-expensive, because the only non-
small operands in them are of the form |vi,b| and all those appear on independent
calculations. The computations of the values of t and ε during stage i ` 1 add
only Opiq elementary operations to the construction itself. Since that calculation
is only done when the stage number is a power of two, in total this adds Opiq
extra elementary operations. Since f is non-decreasing, for every i, if ti`1 “ z ` 1
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then hpz ` 1, 1{pz ` 1qq ă fpi ` 1q. From the way ti is defined, ti`1 ą ti´1 in
at most Oplog iq stages; therefore, using Lemma 3.3.2 the total number of required

elementary operations is Opi fpi`1q iq`řlog i
j“1 fp2j `1q 2j2q “ Opfpi`1q i2q. Since

each stage produces at least one extra symbol in every base considered, i stages are
enough to produce the first i symbols in any of those bases.

3.4 The Borel hierarchy

Recall that the Borel hierarchy for subsets of the real numbers is the stratification
of the σ-algebra generated by the open sets with the usual interval topology. For
references see Kechris’ textbook [Kec95] or Marker’s lecture notes [Mar02].

A set A is Σ0
1 if and only if A is open and A is Π0

1 if and only if A is closed. A

is Σ0
n`1 if and only if it is a countable union of Π0

n sets, and A is Π0
n`1 if and only

if it is a countable intersection of Σ0
n sets.

A is hard for a Borel class if and only if every set in the class is reducible to A

by a continuous map. A is complete in a class if it is hard for this class and belongs
to the class.

When we restrict to intervals with rational endpoints and computable count-
able unions and intersections, we obtain the effective or lightface Borel hierarchy.
One way to present the finite levels of the effective Borel hierarchy is by means of
the arithmetical hierarchy of formulas in the language of second-order arithmetic.
Atomic formulas in this language assert algebraic identities between integers or mem-
bership of real numbers in intervals with rational endpoints. A formula in the arith-
metic hierarchy involves only quantification over integers. A formula is Π0

0 and Σ0
0

if all its quantifiers are bounded. It is Σ0
n`1 if it has the form Dx θ where θ is Π0

n,
and it is Π0

n`1 if it has the form @x θ where θ is Σ0
n.

A set A of real numbers is Σ0
n (respectively Π0

n) in the effective Borel hierarchy if
and only if membership in that set is definable by a formula which is Σ0

n (respectively
Π0

n). Notice that every Σ0
n set is Σ0

n and every Π0
n set is Π0

n. In fact for every set
A in Σ0

n there is a Σ0
n formula and a real parameter such that membership in A is

defined by that Σ0
n formula relative to that real parameter.

A is hard for an effective Borel class if and only if every set in the class is reducible
to A by a computable map. As before, A is complete in an effective class if it is
hard for this class and belongs to the class. Since computable maps are continuous,
proofs of hardness in the effective hierarchy often yield proofs of hardness in general
by relativization. This is the case in our work.

3.4.1 The set of absolutely normal numbers

By the form of its definition, normality to a fixed base is explicitly a Π0
3 property

of real numbers. The same holds for absolute normality. Absolute abnormality is,
for all bases, the negation of normality, hence a Π0

4 property.

Lemma 3.4.1 (As in [Mar02]). The set of real numbers that are normal to a given
base is Π0

3.
The set of real numbers that are absolutely normal is Π0

3.
The set of real numbers that are absolutely abnormal is Π0

4.

Thus, to prove completeness of the set of absolutely normal real numbers for the
class Π0

3 we need only prove hardness. We prove our hardness result for the Borel
hierarchy by relativizing a hardness result for Π0

3 subsets of the natural numbers.
Let L be the language of first order arithmetic. As usual, a sentence is a formula
without free variables.
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We define an algorithm that maps Π0
3 sentences in the language of first order

arithmetic L to infinite words of zeros and ones. If the given sentence is true then the
corresponding binary sequence is the expansion in base two of an absolutely normal
number. Otherwise, the corresponding binary sequence is the expansion in base two
of an absolutely abnormal number. We define this algorithm as a composition of
two algorithms. We use Baire space N

N as an intermediate working space. The
first algorithm maps sentences in L to infinite sequences of positive integers that
reflect the truth or falsity of the given sentences. The second algorithm maps these
sequences of elements in N

N to binary infinite words with the appropriate condition
on normality.

In the proof of Theorem 3.7.1, where we prove the actual completeness result, we
consider a computable reduction (from positive integers to positive integers) defined
from the algorithm just described.

Recall that a Π0
3 formula in first order arithmetic is equivalent to one starting

with a universal quantifier @, followed by the quantifier “there are only finitely many”
Dă8 and ended by a computable predicate, see Theorem XVII and Exercise 14-27
in [Rog87]. The computable predicate in this equivalent form comes from the Σ0

0

subformula of the original.

3.5 An algorithm from sentences to infinite sequences

We define a computable function that maps a sentence in L to an infinite sequence
of positive integers that reflect the truth or falsity of the input sentence.

Algorithm 3.5.1. Let @iDă8j Cpi, jq be the input Π0
3-sentence, with C a com-

putable predicate.
For every positive integer n in increasing order, let i “ maxtk P N : 2k divides nu

and let j “ n{2i. If j “ 1 or Cpi, jq then append i, i ` 1, . . . , i ` j ´ 1 to the output
sequence.

Lemma 3.5.2. If ϕ is a Π0
3 sentence in L then Algorithm 3.5.1 outputs an infi-

nite sequence f of integers such that the subsequence of f ’s first occurrences is an
enumeration of N in increasing order and the following dichotomy holds:

If ϕ is true then no positive integer occurs infinitely often in f .

If ϕ is false then all but finitely many integers occur infinitely often in f .

Proof. Assume ϕ of the form @iDă8j Cpi, jq, where C is computable. We say that a
tuple xi, jy is appending if j “ 1 or Cpi, jq. It is clear by inspection that all possible
pairs xi, jy with i, j P N are processed, and that xi ` 1, jy and xi, j ` 1y are always
processed after xi, jy.

Thus, the first occurrence of an integer i ` 1 in f is due to the appending tuple
xi ` 1, 1y or an appending tuple xi1, jy with i1 ă i ` 1 and i1 ` j ą i ` 1. In the
first case, the appending tuple xi ` 1, 1y is processed after xi, 1y, which appends i

to the output. In the second case, the processing of an appending tuple xi1, jy with
i1 ă i ` 1 and i1 ` j ą i ` 1 appends i right before i ` 1 to the output. Thus, i ` 1
occurs for the first time in f after i.

Suppose now ϕ is true. For any i, there are finitely many appending tuples of
the form xi1, jy with i1 ď i. After all such appending tuples have been processed, i
will not be appended to the output sequence. Thus no positive integer can occur
infinitely often in f .

Now suppose ϕ is false. Let i be such that there are infinitely many j such that
Cpi, jq. Let k be any positive integer. Each time an appending tuple of the form
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xi, jy with k ă j is processed, i ` k is appended to the output. Since we assumed
there are infinitely many such tuples, i ` k is appended to the output an infinite
number of times. Thus, all integers greater than i occur infinitely often in the output
sequence.

3.6 An algorithm with absolutely normal or abnormal

output

We give an algorithm that maps a sequence of infinite integers to an infinite
binary word representing an absolutely normal or absolutely abnormal number.

We use the ingredients of Algorithm 3.2.1, but in a different way. We start
defining a function that, for an integer i and a t-sequence ~I (for some t), constructs
an pi ` 1q-sequence inside ~I with good properties. The method is to determine the
expansion of the rational endpoints of each b-adic interval in the pi ` 1q-sequence.
Since the respective b-adic intervals are nested, the determination of the expansions
is done by adding suffixes.

We introduce three functions of i, pδiqiě1, pkiqiě1 and pℓiqiě1, that act as param-
eters for the construction of an pi` 1q-sequence. The integer ki indicates how many
digits in base pi ` 1q can be determined in each step; thus, ki rlogpi ` 1qs indicates
how many digits in base 2 can be determined in each step (keep in mind that, in
general, more digits are needed to ensure the same precision in base 2 than in a
larger base). The integer ℓi limits how many digits in base 2 can at most be de-
termined in each step. And the rational δi bounds the relative measure of any two
intervals in two consecutive nested pi`1q-sequences. We call Refi the function that
given ~I constructs an pi ` 1q-sequence by recursion. It is a search through nested
pi` 1q-sequences until one with good properties is reached. The choice we make for
pδiqiě1, pkiqiě1 and pℓiqiě1, allow us to prove the correctness of the construction.

Definition. Let pkqiě1 and pℓqiě1 be the computable sequences of positive integers
and let pδqiě1 be the computable sequence of positive rational numbers less than 1
such that, for each i ě 1,

δi “ 1

22i´2 pi ` 1q!2

ki “ least integer greater than max

ˆ

r6pi ` 2qs ,´ ln

ˆ

δi

2pi ` 1q2
˙

6pi ` 2q2
˙

ℓi “ ki rlogpi ` 1qs ` r´ logpδiqs .

Algorithm 3.6.1. The algorithm Refi maps a pp ` 1q-sequence ~I “ pI2, . . . , Ip`1q
into an pi ` 1q-sequence Refip~Iq, that we define recursively.

Initial step 0. Let ~I0 “ pI0,2, . . . , I0,i`1q be an pi ` 1q-sequence where I0,2 is the
leftmost dyadic subinterval of Ip`1 such that µpI0,2q ě µpIp`1q {4.

Recursive step j ` 1. Let ~Ij`1 be the pi ` 1q-sequence such that

• Let L be the leftmost dyadic subinterval of Ij,i`1 such that µpLq ě µpIj,i`1q {4.

• Partition L into ki rlogpi ` 1qs many dyadic subintervals of equal measure
2´kirlogpi`1qsµpLq. For each such subinterval J2 of L, define the pi`1q-sequence
~J “ pJ2, J3, . . . , Ji`1q.

• Let ~Ij`1 be the leftmost of the pi` 1q-sequences ~J considered above such that

for each base b ď i ` 1, Dpubp ~Jq, bq ď 1{pi ` 2q, where ubp ~Jq is such that
wbp~Ijqubp ~Jq “ wbp ~Jq.
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Repeat the recursive step until step n when all the following hold for every base
b ď i ` 1:

a. |wbp~Inq| ą ℓi`1pi ` 3q
b. Dpwbp~Inq, bq ď 2{pi ` 2q
c. D2ℓi

pwbp~Inq, bq ą b´2ℓi´1.

Finally, let Refip~Iq “ ~In.

The following lemmas show that for every positive integer i, the function Refi

is well defined and it is computable.

Lemma 3.6.2. There is always a suitable (i+1)-sequence ~J to be selected in the
recursive step of Algorithm 3.6.1.

Proof. Consider the recursive step j ` 1 of the algorithm. Let S be the union of the
set of intervals Ji`1 over the 2kirlogpi`1qs many pi ` 1q-sequences ~J . We have

µpLq ě µpIj,i`1q {4

and, since ~J and ~Ij are pi ` 1q-sequences, we have

µpJi`1q ě µpJ2q
2i´2pi ` 1q! and µpIj,i`1q ě µpIj,2q

2i´2pi ` 1q! .

Since the possibilities for J2 form a partition of L,

µpSq ě µpLq
2i´2pi ` 1q! ě µpIj,i`1q

2ipi ` 1q! ě µpIj,2q
22i´2pi ` 1q!2 “ δiµpIj,2q .

Let us say that an pi ` 1q-sequence ~J is not suitable if for some base b ď i ` 1,

Dpubp ~Jq, bq ą 1{pi ` 2q.

Let N be the subset of S defined as the union of the set of intervals Ji`1 which occur
in pi ` 1q-sequences which are not suitable. Each ~J considered at stage i ` 1 is such
that for every base b ď i ` 1 each interval Jb is a subinterval of Ij,b. By definition,

|ubp ~Jq| ą ki for each b and ~J . By Lemma 2.4.4 with t “ i ` 1, ε “ 1{pi ` 2q,
δ “ δi{pi` 1q and k “ ki, for each base b ď i` 1, the subset of Ij,b consisting of reals

with base b expansions starting with wbp~Ijqubp ~Jq for which Dpubp ~Jq, bq ą 1{pi ` 2q
has measure less than δµpIj,bq, and hence, less than δµpIj,2q. Therefore,

µpNq ă pi ` 1qδµpIj,2q “ δiµpIj,2q ď µpSq .

This proves that S is a proper superset of N , therefore, there is always a suitable
pi ` 1q-sequence.

Lemma 3.6.3. The recursion in Algorithm 3.6.1 finishes for every input sequence ~I.

Proof. Using Lemma 3.1.2 or Corollary 3.1.3 the needed b-adic subintervals with the
appropriate measure and pi ` 1q-sequences can be found computably. Lemma 3.6.2
ensures that a suitable ~J can always be found in each recursive step. All the other
tasks in the recursive step are clearly computable. It remains to check that the
ending conditions of the recursion are eventually met.
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Let ub,j`1 and vb be such that wbp~Ijqub,j`1 “ wbp~Ij`1q and wbp~I0q “ wbp~Iqvb.
Then, 1 ď |ub,j | and

|ub,j | “ |wbp~Ijq| ´ |wbp~Ij´1q|

“ ´ logb

µpIj,bq
µpIj´1,bq

“ ´ logb

µpIj,bq
µpIj,2q

µpIj,2q
µpIj´1,i`1q

µpIj´1,i`1q
µpIj´1,bq

ď ´ logb

1

2b´3b!

1

4 2kirlogpi`1qs

1

2i`1´bpi ` 1q!{b!

ď ´ log
1

2i´2pi ` 1q!
1

4 2kirlogpi`1qs

ď ki rlogpi ` 1qs ´ log δi

ď ℓi.

For any k, wbp~Ikq “ wbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,k. Also, the recursive step establishes
Dpub,j , bq ď 1{pi ` 2q. Notice that, in each of the three conditions paq, pbq and pcq,
the right side of the inequality is fixed. For condition paq, |wbp ~Inq| is thus equal to
|wbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n|, so it is strictly increasing on n, which means it is greater
than the required lower bound for sufficiently large n. For condition pbq, observe
that

Dpwbp ~Inq, bq “ Dpwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n, bq
ď |wbp~Iqvb|{|wbp~Inq| ` Dpub,1 ub,2 ¨ ¨ ¨ub,n, bq
ď |wbp~Iqvb|{|wbp~Inq| ` 1{pi ` 2q.

In the right hand side, the first term approaches 0 for large n, so the entire expression
is less than 2{pi ` 2q for sufficiently large n. For condition pcq, observe that the
recursive step ensures that ub,j is never all zeros. So, a sequence of 2ℓi zeros does
not occur in ub,1 ub,2 ¨ ¨ ¨ub,n. By definition,

D2ℓi
pwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n, bq ě

ˇ

ˇ

ˇ

ˇ

ˇ

occpwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n, 0
2ℓiq

|wbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n|
´ 1

b2ℓi

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since occpwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n, 0
2ℓiq is bounded by a constant, for sufficiently large

n, the discrepancy D2ℓi
pwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,n, bq is arbitrarily close to b´2ℓi .

Lemma 3.6.4. Let ~I be an arbitrary pp` 1q-sequence, i ě 1 be an integer and ~R be
Refip~Iq. For every base b ď minpi, pq ` 1,

1. R2 Ď Ip`1

2. Dpwbp~Rq, bq ď 2{pi ` 2q

3. D2ℓi
pwbp~Rq, bq ą b´2ℓi´1

4. |wbp~Rq| ą ℓi`1pi ` 3q

5. For each ℓ such that |wbp~Iq| ď ℓ ď |wbp~Rq|,

Dpwbp~Rq ↾ ℓ, bq ď Dpwbp~Iq, bq ` r´ logpδpqs {|wbp~Iq| ` 1{pi ` 2q ` ℓi{|wbp~Iq|.
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Proof. Let ub,j`1 and vb be such that wbp~Ijqub,j`1 “ wbp~Ij`1q and wbp~I0q “ wbp~Iqvb,
as in the proof of Lemma 3.6.3. Then, 1 ď |ub,j | ď ℓi, Dpub,j , bq ď 1{pi ` 2q, and for

any k it holds that wbp~Ikq “ wbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,k.

Fix a base b. Point (1) follows by induction in the recursive steps in the definition
of Refip~Iq, since each subsequent interval is contained in the previous one. Points
(2), (3) and (4) follow from the termination condition in that recursion. For point
(5), use the above definition of vb and the parameter δp.

|vb| “ |wbp~I0q| ´ |wbp~Iq|

“ ´ logb

µpI0,bq
µpIbq

“ ´ logb

µpI0,bq
µpI0,2q

µpI0,2q
µpIp`1q

µpIp`1q
µpIbq

“ ´ logb

1

2b´3b!

1

4

1

2p`1´bpp ` 1q!{b!

“ ´ log
1

2ppp ` 1q!
ď ´ log δp

ď r´ logpδpqs .

Then, for each m, Dpub,1 ub,2 ¨ ¨ ¨ub,m, bq ď 1{pi ` 2q and

Dpwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,m, bq ď Dpwbp~Iq, bq ` r´ logpδpqs {|wbp~Iq| ` 1{pi ` 2q.

Finally, for fixed ℓ, let m and ℓ1 be such that

pwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,mqpub,m`1 ↾ ℓ1q “ wbp~Rq ↾ ℓ.

Then,

Dpwbp~Rq ↾ ℓ, bq “ Dppwbp~Iqvb ub,1 ub,2 ¨ ¨ ¨ub,mqpub,m`1 ↾ ℓ1q, bq

ď Dpwbp~Iq, bq ` r´ logpδpqs

|wbp~Iq|
` 1

i ` 2
` |ub,m`1|

|wbp~Iq|

ď Dpwbp~Iq, bq ` r´ logpδpqs

|wbp~Iq|
` 1

i ` 2
` ℓi

|wbp~Iq|
.

Algorithm 3.6.5. We define the algorithm LimRef that takes infinite sequences
of positive integers f to infinite binary words. As a notation abuse, we write
LimRefpfq to mean also the real number represented by the infinite binary word.

LimRefpfq is the unique element in
8
č

j“1

p~Rjq2,

where ~R0 “ pr0, 1qq and ~Rj`1 “ Reffj`1
p~Rjq.

That is, LimRefpfq is the real obtained by iterating applications of Refi where
i is determined by the positive integers in f .

Lemma 3.6.6. Algorithm LimRef is uniformly computable from its input f .
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Proof. By point (1) of Lemma 3.6.4, for each j ě 1, LimRefpfq is inside every inter-
val in every pfj `1q-sequence ~Rj , and therefore, w2p~Rjq is a prefix of pLimRefpfqq2.
By Lemma 3.6.3, each application of Ref is computable and the necessary iteration
is also clearly computable.

Lemma 3.6.7. Let f be a sequence of positive integers such that the subsequence
of f ’s first occurrences is an enumeration of N in increasing order and no posi-
tive integer occurs infinitely often in f . Then, LimRefpfq is an absolutely normal
number.

Proof. Fix a base b and ε ą 0. Let us prove that DppLimRefpfqqb ↾ ℓ, bq ď ε

for each sufficiently large ℓ. Let j0 be large enough such that fj ą maxpb, r8{εsq
for every j ě j0. Consider ℓ ą |wbp~Rj0

q|, and noticing that p|wbp~Rjq|qjPN is an

increasing sequence, let j be such that |wbp~Rjq| ď ℓ ă |wbp~Rj`1q|. Observe that

pLimRefpfqqb ↾ ℓ “ wbp~Rj`1q ↾ ℓ. Now note that 1{pfj ` 2q ď ε{8 and apply

point (2) of Lemma 3.6.4 to ~Rj “ Reffj
p~Rj´1q to conclude that

Dpwbp~Rjq, bq ď 2{pfj ` 2q ď ε{4.

By hypothesis, fj , fj`1 ą b ą 1, so let j1 ă j be such that fj1
“ fj ´1 and j2 ă j`1

be such that fj2
“ fj`1 ´ 1. By point (4) of Lemma 3.6.4,

|wbp~Rjq| ě |wbp~Rj1
q| ą ℓfj

pfj ` 2q ą
P

´ logpδfj
q
T

pfj ` 2q,

then,

P

´ logpδfj
q
T

{|wbp~Rjq| ă 1{pfj ` 2q ď ε{8.

Similarly,

|wbp~Rjq| ě |wbp~Rj2
q| ą ℓfj`1

pfj`1 ` 2q,

then,

ℓfj`1
{|wbp~Rjq| ă 1{pfj`1 ` 2q ď ε{8.

Consider Lemma 3.6.4 again, but applied to ~Rj`1 “ Reffj`1
p~Rjq. By point (5),

Dpwbp~Rj`1q ↾ ℓ, bq ď Dpwbp~Rjq, bq `
P

´ logpδfj
q
T

|wbp~Rjq|
` 1

fj ` 2
`

ℓfj`1

|wbp~Rjq|
.

By the bounds established above, each term on the right part of the inequality is at
most ε{4. So,

DppLimRefpfqqb ↾ ℓ, bq “ Dpwbp~Rj`1q ↾ ℓ, bq ď ε.

Notice that by the choice of j0, j, j1 and j2 the sequences ~Rj0
, ~Rj , ~Rj1

, ~Rj2
all contain

a b-adic interval, hence the function wb is defined on them.

Lemma 3.6.8. Let f be a sequence of positive integers such that all but finitely
many occur infinitely often in f . Then, LimRefpfq is absolutely abnormal.
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Proof. Fix a base b such that b appears infinitely often in f . By the conditions im-
posed on f , pLimRefpfqqb`1 has infinitely many prefixes of the form xb`1pRefbp~Iqq
for some ~I. By point (3) of Lemma 3.6.4,

D2ℓb
pxb`1pRefbp~Iqq, b ` 1q ą pb ` 1q´2ℓb´1.

Hence, for infinitely many prefixes of pLimRefpfqqb`1 their discrepancy to blocks of
length 2ℓb in base b ` 1 is bounded away from 0. Then, LimRefpfq is not normal
to base b ` 1. Since all but finitely many bases can be chosen as b ` 1, LimRefpfq
is not normal to all but finitely many bases. By Theorem 2.3.4 it is absolutely
abnormal.

3.7 Completeness results

Theorem 3.7.1. There is a computable reduction from Π0
3 sentences ϕ in L to

indices e such that the following implications hold.

If ϕ is true then e is the index of a computable absolutely normal number.

If ϕ is false then e is the index of a computable absolutely abnormal number.

Proof. Algorithm 3.5.1 outputs infinite sequences of positive integers and Algo-
rithm 3.6.5 takes as input infinite sequences of positive integers. Thus, we can
compose them into an algorithm that takes as input a sentence in L and returns as
output a binary infinite word. Lemmas 3.5.2 and 3.6.7 guarantee that if ϕ is a true
Π0

3 sentence, then the output is an absolutely normal number. By Lemmas 3.5.2
and 3.6.8, if ϕ is false, then the output is an absolutely abnormal number.

By the Sm,n-theorem [Rog87], given ϕ, we can computably obtain the index of
an appropriate infinite binary word. This completes the proof.

Corollary 3.7.2. The set of absolutely normal numbers is Π0
3-complete, and hence

Π0

3
-complete.

Proof. Lemma 3.4.1 states that the corresponding sets are in the Π0
3 and Π0

3
classes.

The hardness result in the effective case is immediate from Theorem 3.7.1 by rel-
ativization. We have the reduction from a Π0

3 sentence in first order arithmetic to
an appropriate index for a computable real number. By relativization, we obtain a
reduction from a Π0

3 statement about a real number x to an appropriate index of a
real number which is computable from x.

For the non-effective case, recall that to prove hardness of subsets of reals at
levels in the Borel hierarchy it is sufficient to consider subsets of Baire space N

N,
because there is a continuous function from the real numbers to N

N that preserves
Π0

3 definability. Baire space admits a syntactic representation of the levels in the
Borel hierarchy in arithmetical terms, namely a subset of NN can be defined by a Π0

3

formula with a fixed parameter P P N
N. The analysis given for the effective case,

but now relativized to x and P , applies.

The reduction in Theorem 3.7.1 gives just two possibilities: absolute normality
or absolute abnormality; that is, normality to all bases simultaneously, or to no base
at all. Consequently, it also separates normality in base b from non-normality in
base b, for any given b. This gives an alternate proof of Ki and Linton’s theorem in
[KL94] for Π0

3
-completeness, that also covers the case of Π0

3-completeness.

Corollary 3.7.3. For every base b, the set of normal numbers in base b is Π0
3-

complete, and hence Π0

3
-complete.
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Proof. Observe that normality in all bases implies normality in each base. And
absolute abnormality is lack of normality in every base. Thus, the same reductions
used in the proof of Corollary 3.7.2 also prove the completeness results for just one
fixed base.

Another consequence of Theorem 3.7.1 is that absolute abnormality, which is a
Π0

4 property, is hard for the classes Σ0
3 and Σ0

3.



CHAPTER 4

Compressibility

This chapter deals with the characterization of normality by compressibility us-
ing finite automata. A fundamental theorem relates normality and finite automata:
an infinite word is normal to a given alphabet if and only if it cannot be com-
pressed by lossless finite transducers. These are deterministic finite automata with
injective input-output behavior. This result was first obtained by joining a theorem
by Schnorr and Stimm [SS72] with a theorem by Dai, Lathrop, Lutz and Mayor-
domo [DLLM04]. A proof of one of the required implications was published in an
article by Bourke, Hitchcock and Vinodchandran [BHV05]. The first result in this
chapter is a direct proof of that theorem. The version here is a slight improvement
of the one we published in [BH13].

What is the true power needed to compress normal words? Of course, transduc-
ers augmented with enough computational power are equivalent to a Turing machine,
hence they can compress computable normal infinite words. Here we analyze differ-
ent ways of augmenting a plain deterministic transducer. We consider deterministic
versus real-time non-deterministic and non-real-time transition functions; having
zero, one, or more counters; with or without a stack.

The power gained by allowing non-deterministic behavior is not obvious and
depends on the context. Deterministic and the non-deterministic automata recognize
the same sets of finite words, known as the rational sets of finite words. However,
deterministic Büchi automata are strictly less expressive than the non-deterministic
ones (see [PP04]). For instance, deterministic Büchi automata recognize a proper
subclass of sets of infinite words than the non-deterministic ones. Furthermore,
functions and relations realized by deterministic transducers are proper subclasses
of rational functions and relations realized by non-deterministic ones.

We prove that lossless transducers, even non-deterministic non-real-time ones,
but with no extra memory or just a single counter, cannot compress normal in-
finite words. Adding memory yields compressibility results: non-real-time non-
deterministic transducers with more than one counter can compress some normal
words. Also real-time non-deterministic transducers with a stack can do it.

Table 4.1 summarizes the results we obtain about compressibility of normal
infinite words by different kinds of transducers. The columns represent different
levels of restrictions on the transitions. The first column represents determinism,
that is, there is exactly one transition that leaves a given state by reading a given
symbol. The second column represents the possibility that several transitions leaving

43
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extra memory deterministic non-deterministic non-real-time

none Not compress Not compress Not compress

(Theorem 4.1.4) (Theorem 4.3.1) (Corollary 4.3.4)

one counter Not compress Not compress Not compress

(Theorem 4.4.2)

multiple counters Not compress Not compress Compress

(Theorem 4.2.1) (Corollary 4.4.1) (Turing complete)

one stack ? Compress Compress

(Theorem 4.5.1)

one stack and Compress Compress Compress

one counter (Theorem 4.5.2) (Turing complete)

Table 4.1: Compressibility of normal infinite words by different kinds of transducers.

the same state read the same symbol. The restriction represented in the third
column adds the possibility of also having transitions that do not read any symbol
(usually called λ-transitions). The rows of the table represent different memory
models. In all cases there is a bounded memory represented by states, and each
row details possible additions of counters or stacks. The realized relation is assumed
to be bounded-to-one. The case of a deterministic transducers with a single stack
remains open:

Question. Can deterministic pushdown transducers compress normal words?

The rest of this chapter is organized as follows. Section 4.1 introduces the main
concepts in the simplest form of deterministic transducers. In Sections 4.2 and 4.3 we
consider non-determinism and counters, independently. Section 4.4 studies the joint
occurrence of counters and non-determinism in a transducer. Finally, Section 4.5
considers pushdown transducers. These are the weakest machines we have found that
can compress normal words. All results in this chapter are contained in [BCH13].

4.1 Deterministic transducers

We recall the standard definition of a deterministic transducer and fix notation.
A transducer is an automaton equipped with an output tape. While it processes an
input word, it produces an output word. The execution of each transition consumes
at most one symbol from the input and produces a word on the output. Thus,
the transducer outputs the concatenation of all the words output in the executed
transitions.

We first introduce transducers where the underlying automaton is deterministic.
These transducers are also called sequential in the literature [Sak09].

Definition. A deterministic transducer is a tuple T “ xQ,A,B, δ, q0y, where

• Q is a finite set of states,

• A and B are the input and output alphabets, respectively,

• δ : Q ˆ A Ñ B˚ ˆ Q is the transition function,



4.1. DETERMINISTIC TRANSDUCERS 45

• q0 P Q is the starting state.

The transducer T processes infinite words over A: if at state p symbol a is processed,
T moves to state q and outputs v where xv, qy “ δpp, aq. In this case, we write
p a|vÝÝÑ q.

A finite run of the transducer is a finite sequence of consecutive transitions

p0
a1|v1ÝÝÝÑ p1

a2|v2ÝÝÝÑ p2 ¨ ¨ ¨ pn´1
an|vnÝÝÝÑ pn

and we write p0
u|vÝÝÑ pn where u “ a1a2 ¨ ¨ ¨ an and v “ v1v2 ¨ ¨ ¨ vn.

An infinite run of the transducer is a sequence of consecutive transitions

p0
a1|v1ÝÝÝÑ p1

a2|v2ÝÝÝÑ p2
a3|v3ÝÝÝÑ p3 ¨ ¨ ¨

and we write p0
x|yÝÝÑ 8 where x “ a1a2a3 ¨ ¨ ¨ and y “ v1v2v3 ¨ ¨ ¨ . An infinite run

is accepting if p0 “ q0. This is the Büchi acceptance condition where all states are
accepting. We write T pxq to refer to the word such that q0

x|T pxqÝÝÝÝÑ 8.

Hereafter a transducer is a deterministic transducer unless it is explicitly indi-
cated. Notice that T pxq is not required to be an infinite word. However, in the
next theorems we impose a condition on the transducers thar ensures their output
is infinite.

q0 q1 q20|0
1|0

1|1

0|0
1|1

0|1

Figure 4.1: A transducer for the division by 3 in base 2.

The transducer pictured in Figure 4.1 realizes the following function from binary
words to binary words. If the input x is the binary expansion of some real number .x,
then output is the binary expansion of .x{3. This function is not one-to-one since
dyadic numbers have two binary expansions. The two binary expansions 01111 ¨ ¨ ¨
and 10000 ¨ ¨ ¨ of 1{2 are mapped to the unique binary expansion 0010101 ¨ ¨ ¨ of 1{6.

We say that a state q is reachable if there is a finite run from the starting state
to q.

Definition. Let T “ xQ,A,B, δ, q0y be a transducer.

1. T is one-to-one if the function x ÞÑ T pxq is one-to-one.

2. T is lossless if for every pair of different words u1 and u2, it is not true that
q0

u1|vÝÝÑ p and q0
u2|vÝÝÑ p for some word v and state p.

3. T is bounded-to-one if the function x ÞÑ T pxq is bounded-to-one.

Being lossless is a property defined on the structure of the transducer whereas
being one-to-one or bounded-to-one is defined on the realized function. Observe that
the same function can be realized by a lossless or a non-lossless transducer as shown
by the following example.

Consider the two transducers pictured in Figure 4.2. They both realize the
shift function that maps each infinite word x “ a1a2a3 ¨ ¨ ¨ to the infinite word
y “ a2a3a4 ¨ ¨ ¨ obtained by removing its first symbol. The first one is lossless
whereas the second one is not. However they are both 2-to-one, and of course,
neither is one-to-one.
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q0

q1

q2

0|λ

1|λ

0|0
1|1
0|0
1|1

q0 q1
0|λ
1|λ

0|0
1|1

Figure 4.2: A lossless and a 2-to-one transducer.

Proposition 4.1.1. one-to-one transducer is lossless. A lossless transducer is
bounded-to-one.

Proof. Let T “ xQ,A,B, δ, q0y be a transducer. For the first implication, let T be
not lossless. Then there are different words u1 and u2, a word v and a state p such
that q0

u1|vÝÝÑ p and q0
u2|vÝÝÑ p. Let x be a non-periodic infinite word, then it is

clear that u1x ‰ u2x but q0
u1|vÝÝÑ p x|yÝÝÑ 8 and q0

u2|vÝÝÑ p x|yÝÝÑ 8 for some y, thus
T pu1xq “ T pu2xq “ vy, so T is not one-to-one.

For the second implication, let T be lossless. By the lossless property, a run of
T cannot contain a cyclic run p u|λÝÝÑ p with p a reachable state, therefore T pxq is
infinite for all x. Let m “ maxt|w| : a P A, p, q P Q, p a|wÝÝÑ qu be the length of the
longest output of a transition of T and x1, . . . , xn be different infinite words such
that y “ T pxiq for i “ 1, . . . , n. Then, for each such i let ui be the prefix of xi

where |ui| “ ℓ, ui ‰ uj for i ‰ j. Let k “ maxt|w| : 1 ď i ď n, p P Q, q0
ui|wÝÝÝÑ pu.

Let vi be the shortest prefix of xi such that q0
vi|wiÝÝÝÑ pi with |wi| ą k. Note that

k ` 1 ď |wi| ď k `m and by definition, for each i, |vi| ą ℓ, hence the vi are pairwise
different. Since T is lossless, the tuples δpq0, viq are pairwise different and they are
included in the set Q ˆ ty ↾ j : k ` 1 ď j ď k ` mu. Therefore, there are at most
|Q|m such tuples, so n ď |Q|m and T is p|Q|mq-to-one.

Definition. An infinite word x “ a1a2a3 ¨ ¨ ¨ is compressible by a deterministic
transducer if its accepting run q0

a1|v1ÝÝÝÑ q1
a2|v2ÝÝÝÑ q2

a3|v3ÝÝÝÑ q3 ¨ ¨ ¨ satisfies

lim inf
nÑ8

|v1v2 ¨ ¨ ¨ vn| log |B|
n log |A| ă 1.

Notice that the factor log |B|{ log |A| in the definition above just accounts for
the necessary recoding from one alphabet to another one. Hereafter, to ease the
presentation of the proofs we assume that |A| “ |B|. The generalization is straight-
forward: if the lengths of words over B are multiplied by the factor log |B|{ log |A|
whenever they are compared to lengths of words over A, all the proofs hold for the
general case.

We prove first that there is a deterministic transducer that compresses any non-
normal infinite word. Since every transducer we consider here is at least as powerful
as a deterministic one, the next result applies to all of them.

Theorem 4.1.2. Not normal infinite words are compressible by a one-to-one trans-
ducer with the same input and output alphabet.

Proof. Assume x is not normal, then it is not ℓ-simply normal for some ℓ. Then, there
is an increasing subsequence of positions n1, n2, n3, ¨ ¨ ¨ such that for a given word
u1 P Aℓ, limiÑ8 bocpx ↾ ni, u1q{ni “ f1 ‰ |A|´|u1|. Let tu1, u2, ¨ ¨ ¨ , u|A|ℓu “ Aℓ.

Let n1,i “ ni and for each j “ 2, 3, ¨ ¨ ¨ , |A|ℓ define nj,1, nj,2, nj,3, ¨ ¨ ¨ a subsequence
of nj´1,1, nj´1,2, nj´1,3, ¨ ¨ ¨ such that limiÑ8 bocpx ↾ nj,i, ujq{nj,i “ fj exists. Thus,
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on the sequence of positions n|A|ℓ,1, n|A|ℓ,2, n|A|ℓ,3, ¨ ¨ ¨ the limit exists for all words of
length ℓ.

Our approach is to apply Huffman coding [Huf52] to the blocks of ℓ symbols of x
to take advantage of the unbalanced frequencies. However, there is a rounding cost
in doing so that may result in no overall compression. To minimize the rounding
cost, we encode m blocks at a time.

Let us call superblocks to the concatenation of m blocks of ℓ symbols each. We
associate to each superblock a desired code length. To the superblock ui1

ui2
¨ ¨ ¨uim

we assign the desired length
Q

´ řm
j“1 log|A| fij

U

. It is easy to check that the multiset

of desired lengths for the |A|mℓ possible superblocks meets the condition of Theo-
rem 2.2.5, and therefore there is a one-to-one coding function c : Amℓ Ñ A˚ such

that |cpui1
ui2

¨ ¨ ¨uimq| “
Q

´ řm
j“1 log|A| fij

U

and the image of c is prefix free.

For each positive integer m define a transducer Tm “ xA,A,Aămℓ, δ, λy where

δpu, aq “
#

xua, λy |ua| ă mℓ

xλ, cpuaqy |ua| “ mℓ.

Tm applies c to each block of mℓ symbols and concatenates the results, in order.
Since c is one-to-one and its image is prefix-free, Tm is one-to-one.

Consider the accepting run of Tm over x factorized into subruns of mℓ steps

q0
s1|cps1qÝÝÝÝÝÑ q1

s2|cps2qÝÝÝÝÝÑ q3
s3|cps3qÝÝÝÝÝÑ q4 ¨ ¨ ¨

where sk “ uik,1
uik,2

¨ ¨ ¨uik,m
. Notice that within each subrun all steps but the last

output nothing. Consider now the compressibility limit over positions nj “ n|A|ℓ,j ,

lim inf
jÑ8

|cps1qcps2q ¨ ¨ ¨ cpstnj{pmℓquq| log |A|
nj log |A| ,

that is equal to

lim inf
jÑ8

tnj{pmℓqu
ÿ

k“1

|cpskq|
nj

“ lim inf
jÑ8

tnj{pmℓqu
ÿ

k“1

Q

´ řm
h“1 log|A| fik,h

U

nj

ď lim inf
jÑ8

tnj{pmℓqu
ÿ

k“1

1

nj
`

m
ÿ

h“1

´ log|A| fik,h

nj

ď 1

mℓ
´ 1

ℓ

|A|ℓ
ÿ

i“1

fi log|A| fi.

Since f1 ‰ |A|´ℓ, by Corollary 2.2.4,

´
|A|ℓ
ÿ

i“1

fi log|A| fi ă log|A| |A|ℓ “ ℓ.

Therefore,

´
|A|ℓ
ÿ

i“1

fi log|A| fi{ℓ ă 1,

so we can let m be large enough such that

´
|A|ℓ
ÿ

i“1

fi log|A| fi{ℓ ` 1{pmℓq ă 1.

Putting all the inequalities together, Tm compresses x.
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We now turn to incompressibility results. We first show that deterministic trans-
ducers do not compress normal infinite words. We use the following lemma. Due to
its generality, it also applies to more powerful transducers.

Lemma 4.1.3. Let ℓ be a positive integer, and let u1, u2, u3, . . . be words of length
ℓ over the alphabet A such that u1u2u3 ¨ ¨ ¨ is simply normal to word length ℓ. Let

C0
u1|v1ÝÝÝÑ C1

u2|v2ÝÝÝÑ C2
u3|v3ÝÝÝÑ C3 ¨ ¨ ¨

be a run where each Ci is a configuration of some kind of transducer. Assume there
is a real ε ą 0 and a set U Ď Aℓ of at least p1´εq|A|ℓ words such that ui P U implies
|vi| ě ℓp1 ´ εq. Then,

lim inf
nÑ8

|v1v2 ¨ ¨ ¨ vn|
nℓ

ě p1 ´ εq3.

Proof. Assume words ui as in the hypothesis. By definition of normality to word
length ℓ, let n0 be such that for every u P Aℓ and n ě n0,

|ti : 1 ď i ď n, ui “ uu| ě n|A|´ℓp1 ´ εq.
Then, for every n ě n0,

|v1v2 ¨ ¨ ¨ vn| “
n

ÿ

i“1

|vi|

ě
ÿ

1ďiďn,uiPU

|vi|

ě
ÿ

1ďiďn,uiPU

ℓp1 ´ εq

ě n|A|´ℓp1 ´ εq
ÿ

uPU

ℓp1 ´ εq

ě n|A|´ℓp1 ´ εqp1 ´ εq|A|ℓℓp1 ´ εq
ě p1 ´ εq3nℓ.

Theorem 4.1.4. Normal infinite words are not compressible by bounded-to-one
transducers.

Proof. Fix a normal infinite word x “ a1a2a3 ¨ ¨ ¨ , a bounded-to-one transducer
T “ xQ,A,B, δ, q0y with only reachable states, a real ε ą 0 and the accepting run
q0

a1|v1ÝÝÝÑ q1
a2|v2ÝÝÝÑ q2

a3|v3ÝÝÝÑ q3 ¨ ¨ ¨ . It suffices to show that there is ℓ and U such that
Lemma 4.1.3 applies to this arbitrary choice of T and ε.

Let hu “ mint|v| : p, q P Q, p u|vÝÝÑ qu be the minimum number of symbols that the
processing of u can contribute to the output. Let Uℓ “ tu : |u| “ ℓ, hu ě p1´εqℓu be
the set of words of length ℓ with relatively large contribution to the output. Let t be
such that T is t-to-one. For each pair of states p, q P Q and word v, consider the set
U 1 “ tu : p u|vÝÝÑ qu. Since p is reachable, let u0, v0 be such that q0

u0|v0ÝÝÝÑ p. Thus, for
different u1, u2 P U 1, q0

u0u1|v0vÝÝÝÝÝÑ q and q0
u0u2|v0vÝÝÝÝÝÑ q, therefore T pu0u1xq “ T pu0u2xq

for any x, and by the definition of t, |U 1| ď t. By bounding the cardinality of the
sets U 1, we can bound the complement of Uℓ.

|tu : p
u|vÝÝÑ qu| ď t

|tu : p, q, p
u|vÝÝÑ qu| ď |Q|2t

|tu : hu ă p1 ´ εqℓu| ď |Q|2t|B|p1´εqℓ`2.
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Thus,

|Uℓ| ě |A|ℓ ´ |Q|2t|B|p1´εqℓ`2.

Fix ℓ such that |Uℓ| ą |A|ℓp1 ´ εq, which is possible because the second term in
the last inequality is op|A|ℓq (recall |A| “ |B|), and take U “ Uℓ. By construction,
the only run of T over x fulfills the hypothesis of Lemma 4.1.3 using states as
configurations. The application of the lemma finishes the proof.

4.2 Counter transducers

We consider deterministic transducers augmented with a fixed number of coun-
ters. Each counter contains an integer value. The execution of each transition
reads exactly one input symbol, checks each counter for being zero or non-zero, and
increments or decrements each counter by some amount.

Thus, a counter can only increase or decrease a bounded amount when processing
a symbol of the input. Notice we are assuming by default a real-time restriction.
We consider the consequences of removing this restriction later. When the range 1
to k is clear from the context, we write m for the k-tuple xm1, . . . ,mky and 0 for
the k-tuple x0, . . . , 0y.

Definition. A (deterministic) k-counter transducer is a tuple T “ xQ,A,B, δ, q0y,
where

• Q is a finite set of states,

• A and B are the input and output alphabets, respectively,

• δ : Q ˆ ttrue, falseuk ˆ A Ñ B˚ ˆ Q ˆ Z
k is the transition function,

• q0 P Q is the starting state.

The transducer T processes infinite words over A: if at state p with counter i having
value mi symbol a is processed, T moves to state q, stores value ni “ mi ` di in
counter i and outputs v where xv, q, dy “ δpp, c, aq and each ci indicates whether
mi “ 0 or not. Such a transition of the transducer is denoted by xp,my a|vÝÝÑ xq, ny.

A finite run of the transducer is a finite sequence of consecutive transitions

xp0,m0y a1|v1ÝÝÝÑ xp1,m1y a2|v2ÝÝÝÑ xp2,m2y ¨ ¨ ¨ xpn´1,mn´1y an|vnÝÝÝÑ xpn,mny

and we write xp0,m0y u|vÝÝÑ xpn,mny where u “ a1a2 ¨ ¨ ¨ an and v “ v1v2 ¨ ¨ ¨ vn.

An infinite run of the transducer is a sequence of consecutive transitions

xp0,m0y a1|v1ÝÝÝÑ xp1,m1y a2|v2ÝÝÝÑ xp2,m2y a3|v3ÝÝÝÑ xp3,m3y ¨ ¨ ¨

and we write xp0,m0y x|yÝÝÑ 8 where x “ a1a2a3 ¨ ¨ ¨ and y “ v1v2v3 ¨ ¨ ¨ . An infinite
run is accepting if p0 “ q0 and all initial values of the counters are 0, namely, m0 “ 0.
This is the Büchi acceptance condition where all states are accepting. We write T pxq
to refer to the word such that xq0, 0y x|T pxqÝÝÝÝÑ 8.

Notice that for given p, m and u there is a unique choice of v, q and n such that
xp,my u|vÝÝÑ xq, ny. A configuration xq,my is reachable if there is a finite run from the
starting configuration xq0, 0y to xq,my. Extending the definition of bounded-to-one
and compressibility to counter transducers is straightforward.
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Definition. A counter transducer T is bounded-to-one if the function x ÞÑ T pxq is
bounded-to-one.

Definition. An infinite word x “ a1a2a3 ¨ ¨ ¨ is compressible by a counter transducer
if its accepting run xq0, 0y a1|v1ÝÝÝÑ xq1,m1y a2|v2ÝÝÝÑ xq2,m2y a3|v3ÝÝÝÑ xq3,m3y ¨ ¨ ¨ satisfies

lim inf
nÑ8

|v1v2 ¨ ¨ ¨ vn| log |B|
n log |A| ă 1.

Theorem 4.2.1. Normal infinite words are not compressible by bounded-to-one
counter transducers.

Before proving Theorem 4.2.1 we need to introduce some technical tools.

Definition. Let T “ xQ,A,B, δ, q0y be a counter transducer. We call DT the
maximum absolute value of a counter increment or decrement in a transition in δ,
DT “ maxtIu, where

I “ t|di| : p, q P Q, a P A, v P B˚, c P ttrue, falseuk, d P Z
k, xv, q, dy “ δpp, c, aqu.

All runs with values of the counters far from 0 have a similar behavior, because
if a counter does not become zero during the run, then its value has no impact. We
formalize this with the concept of template.

Definition. For each positive integer L let πL : Z Ñ r´L,Ls Y t´8,`8u be
the function that identifies each integer in p´8,´Lq with ´8 and each integer in
pL,`8q with `8,

πLpnq “

$

’

&

’

%

´8 if n ă ´L

n if ´ L ď n ď L

`8 if n ą ´L

The function πL can be extended component-wise to tuples of integers by setting
πLpmq “ n where ni “ πLpmiq.

For a positive integer L, an L-template for a k-counter transducer is a triple
xM,N,Oy where each M,N,O is a k-tuple in pr´L,Ls Y t´8,`8uqk. We say that
a run xp,my u|vÝÝÑ xq, ny of the transducer complies only to one L-template; namely,
xπLpmq, πLpnq, πLpm ´ nqy.

Observe that there are exactly p2L`3q3k L-templates of a k-counter transducer.

Lemma 4.2.2. For two words of the same length ℓ, u and u1, let xp,my u|vÝÝÑ xq, ny
and xp,m1y u1|vÝÝÑ xq, n1y be two runs of the same k-counter transducer T that comply
to the same pℓDT q-template xM,N,Oy. Then, there exists a run xp,m1y u|vÝÝÑ xq, n1y
of the same transducer.

Proof. First notice that mi´ni is bounded by ℓDT because at each step of the run the
counter cannot increase or decrease more than DT . Thus, since both runs comply
to the same pℓDT q-template and the difference in counters is within the interval
r´ℓDT , ℓDT s, the difference in counters on the other run m1

i ´ n1
i must coincide.

This is true for each counter, so m ´ n “ m1 ´ n1 which implies m ´ m1 “ n ´ n1.
Let us write the run over u “ a1a2 ¨ ¨ ¨ aℓ explicitly:

xp,my “ xp0,m0y a1|v1ÝÝÝÑ xp1,m1y a2|v2ÝÝÝÑ ¨ ¨ ¨ aℓ|vℓÝÝÝÑ xpℓ,mℓy “ xq, ny
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where v “ v1v2 ¨ ¨ ¨ vℓ. Consider the tuple d “ m ´ m1 “ n ´ n1. We need only to
prove that the following run over u1 “ a1

1a
1
2 ¨ ¨ ¨ a1

ℓ,

xp,m1y “ xp0,m0 ´ dy a1
1

|v1ÝÝÝÑ xp1,m1 ´ dy a1
2

|v2ÝÝÝÑ ¨ ¨ ¨ a1
ℓ
|vℓÝÝÝÑ xpℓ,mℓ ´ dy “ xq, n1y,

is a valid run. Let us show that in configuration xpj ,mjy counter i is zero if and only
if it is zero in configuration xpj ,mj ´ dy. That is, mj,i is zero if and only if mj,i ´ di

is zero. Then, validity of each step follows from validity of the corresponding step in
the original run. If di is zero, the requirement follows immediately. If di is non-zero,
then mi ‰ m1

i, and therefore mi and m1
i are both greater than ℓDT or both smaller

than ℓDT . Assume mi,m
1
i ą ℓDT . Since mj,i ě m0,i ´ DT j “ mi ´ DT j and j ď ℓ,

mj,i is positive. And mj,i ´ di “ mj,i ´ mi ` m1
i “ m1

i ´ pmi ´ mj,iq ě m1
i ´ DT j

is also positive. If, on the other hand, mi,m
1
i ă ℓDT , it follows by symmetry that

both mj,i and mj,i ´ di are negative.

Proof of Theorem 4.2.1. Fix a normal infinite word x, a bounded-to-one k-counter
transducer
T “ xQ,A,B, δ, q0y, a real ε ą 0 and the accepting run

xq0, 0y a1|v1ÝÝÝÑ xq1,m1y a2|v2ÝÝÝÑ xq2,m2y a3|v3ÝÝÝÑ ¨ ¨ ¨ .

It suffices to show that there is ℓ and U such that Lemma 4.1.3 applies to this
arbitrary choice of T and ε.

Let hu “ mint|v| : p, q P Q,m, n P Z
k, xp,my u|vÝÝÑ xq, nyu be the minimum

number of symbols that the processing of u can contribute to the output. Let
Uℓ “ tu : |u| “ ℓ, hu ě p1 ´ εqℓu be the set of words of length ℓ with rela-
tively large contribution to the output. Let t be such that T is t-to-one. For
each pair of states p, q P Q, word v and pℓDT q-template τ , consider the following set
U 1 “ tu : m,n, xp,my u|vÝÝÑ xq, ny complies to τ, xp,my is reachableu. Let us name the
n different words in U 1 by u1, u2, . . . , un. Since each ui is in U 1, let mi and ni be such
that xp,miy ui|vÝÝÑ xq, niy complies to τ and xp,miy is reachable. By Lemma 4.2.2 with
u “ ui and u1 “ u1, for each i there exist runs xp,m1y ui|vÝÝÑ xq, n1y. Since xp,m1y
is reachable, let u0, v0 be such that xq0, 0y u0|v0ÝÝÝÑ xp,m1y. Therefore, there is an ac-
cepting run xq0, 0y u0|v0ÝÝÝÑ xp,m1y ui|vÝÝÑ xq, n1y x|yÝÝÑ 8 which shows T pu0uixq “ v0vy

for each i. Therefore, by definition of t, n ď t and |U 1| ď t. Now we can continue
the proof as in the case with no counters, given in Theorem 4.1.4. We showed

|tu : m,n, xp,my u|vÝÝÑ xq, ny complies to τ, xp,my is reachableu| ď t,

which implies that the union over all possible p, q and τ , is not greater than
|Q|2p2ℓDT ` 3q3kt and considering the union over all possible lengths not greater
than p1 ´ εqℓ yields

|tu : |u| “ ℓ, hu ă p1 ´ εqℓu| ď |Q|2p2ℓDT ` 3q3kt|B|p1´εqℓ`2,

and

|Uℓ| ě |A|ℓ ´ |Q|2p2ℓDT ` 3q3kt|B|p1´εqℓ`2.

Fix ℓ such that |Uℓ| ą |A|ℓp1 ´ εq and apply Lemma 4.1.3 with U “ Uℓ to the
considered run. This completes the proof.
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4.3 Non-deterministic transducers

We consider non-deterministic transducers. We focus first in those that operate
in real-time, that is, they process exactly one input alphabet symbol per transition.
Then we give the general case.

Definition. A non-deterministic transducer is a tuple T “ xQ,A,B, δ, q0, F y, where

• Q is a finite set of states,

• A and B are the input and output alphabets, respectively,

• δ Ă Q ˆ A ˆ B˚ ˆ Q is a finite transition relation,

• q0 P Q is the starting state.

• F Ď Q is the set of accepting states,

The transducer T processes infinite words over A: if at state p symbol a is processed,
T may move to a state q and output v whenever δpp, a, v, qq. In this case, we
write p a|vÝÝÑ q. Finite and infinite runs are defined as in the case of deterministic
transducers, and an infinite run is accepting if it starts at q0 and visits infinitely
often accepting states. This is the classical Büchi acceptance condition. We write
T px, yq whenever there is an accepting run q0

x|yÝÝÑ 8.

Definition. A non-deterministic transducer T is bounded-to-one if and only if the
function y ÞÑ |tx : T px, yqu| is bounded.

q0 q1 q20|0
0|1

1|1

0|0
1|1

1|0

Figure 4.3: A transducer for the multiplication by 3 in base 2.

Exchanging the input and the output of each transition of the transducer of
Figure 4.1 yields the transducer of Figure 4.3. This transducer is non-deterministic.
If the input x is the infinite binary expansion in base 2 of some real number .x ă 1{3,
then the output is the binary expansion of 3 ˆ .x.

Definition. An infinite word x “ a1a2a3 ¨ ¨ ¨ is compressible by a non-deterministic
transducer if it has an accepting run q0

a1|v1ÝÝÝÑ q1
a2|v2ÝÝÝÑ q2

a3|v3ÝÝÝÑ q3 ¨ ¨ ¨ satisfying

lim inf
nÑ8

|v1v2 ¨ ¨ ¨ vn| log |B|
n log |A| ă 1.

Theorem 4.3.1. Normal infinite words are not compressible by bounded-to-one non-
deterministic transducers.

Proof. Fix a normal infinite word x “ a1a2a3 ¨ ¨ ¨ , a real ε ą 0, a bounded-to-
one non-deterministic transducer T “ xQ,A,B, δ, q0, F y, and an accepting run,
q0

a1|v1ÝÝÝÑ q1
a2|v2ÝÝÝÑ q2

a3|v3ÝÝÝÑ q3 ¨ ¨ ¨ . It suffices to show that there is ℓ and U such
that Lemma 4.1.3 applies to this arbitrary choice of ε, T and accepting run.

Let hu “ mint|v| : 0 ď i, j, qi
u|vÝÝÑ qju be the minimum number of symbols

that the processing of u can contribute to the output in the run we fixed. Let
Uℓ “ tu : |u| “ ℓ, hu ě p1 ´ εqℓu be the set of words of length ℓ with relatively large
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contribution to the output. Let t be such that T is t-to-one. For each pair of states
qi, qj in the run and for each word v, consider the set U 1 “ tu : qi

u|vÝÝÑ qju. Let
u0 “ a1a2 ¨ ¨ ¨ ai, v0 “ v1v2 ¨ ¨ ¨ vi, x0 “ aj`1aj`2aj`3 ¨ ¨ ¨ and y0 “ vj`1vj`2vj`3 ¨ ¨ ¨ .
By definition, there exists a finite run q0

u0|v0ÝÝÝÑ qi and an infinite run qj
x0|y0ÝÝÝÑ 8 that

goes infinitely often through accepting states. Thus, for different u1, u2 P U 1, there
are accepting runs q0

u0u1x0|v0vy0ÝÝÝÝÝÝÝÝÑ 8 and q0
u0u2x0|v0vy0ÝÝÝÝÝÝÝÝÑ 8, from which it follows

that T pu0u1x0, v0vy0q and T pu0u2x0, v0vy0q. Therefore, by definition of t, |U 1| ď t.
Now we can continue the proof as in the deterministic case, given in Theorem 4.1.4,

|tu : qi
u|vÝÝÑ qju| ď t.

Thus,

|Uℓ| ě |A|ℓ ´ |Q|2t|B|p1´εqℓ`2.

Fix ℓ such that |Uℓ| ą |A|ℓp1 ´ εq and apply Lemma 4.1.3 with U “ Uℓ to the
considered run. This completes the proof.

4.3.1 Non-real-time non-deterministic transducers

A non-real-time (non-deterministic) transducer is a tuple T “ xQ,A,B, δ, q0, F y
which is identical to a real-time one except that that the transition relation δ is a
finite subset of Q ˆ pA Y tλuq ˆ B˚ ˆ Q instead of Q ˆ A ˆ B˚ ˆ Q. This allows
the transducer to make progress without processing a symbol of the input word. If
the machine is at state p and δpp, λ, v, qq holds, the machine may move to state q

and output v without processing the next input symbol. We extend the definition
and notation of runs and accepting runs to this case, and write the relation T in the
same way as for non-deterministic transducers.

q0 q1a|a
λ|#

λ|#
a|a

Figure 4.4: A non-real-time transducer that inserts dummy symbols #.

We give here an example of a relation T that can be realized by a non-real-time
transducer but that cannot be realized by a real-time one. Let A be any alphabet
and let B be the alphabet A Y t#u obtained by adding to A a new dummy symbol
# R A. In this machine, T px, yq if and only if y is obtained by inserting dummy
symbols in x. This relation T is clearly one-to-one since x is recovered from y by
removing all the symbols #. It is easy to see that this relation cannot be realized
by a real-time non-deterministic transducer. On the other hand, Figure 4.4 shows
a non-real-time transducer that realizes it. Note that state q0 is accepting. This
forces the transducer to copy x entirely. Otherwise, the word y could end with a
tail #ω and the transducer would not be bounded-to-one.

Definition. An infinite word x over A is compressible by a non-real-time transducer
if it has an accepting run q0

b1|v1ÝÝÝÑ q1
b2|v2ÝÝÝÑ q2

b3|v3ÝÝÝÑ q3 ¨ ¨ ¨ , where each bi P A Y tλu
and x “ b1b2b3 ¨ ¨ ¨ satisfying

lim inf
nÑ8

|v1v2 ¨ ¨ ¨ vn| log |B|
|b1b2 ¨ ¨ ¨ bn| log |A| ă 1.
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In this definition, if every bi were different from λ then |b1b2 ¨ ¨ ¨ bn| “ n and the
definition would coincide with compressibility for real-time transducers.

Real-time transducers always read the entire input. However, non-real-time
transducers may loop forever using transitions without input. The next lemma
shows that this cannot happen for accepting runs of bounded-to-one non-real-time
transducers.

Lemma 4.3.2. Any accepting run of a bounded-to-one non-real-time transducer
reads the entire input.

Proof. Fix the transducer T . If an accepting run over input wx with output y

reads only w, then the same run is an accepting run of any input wx1, thus, making
T pwx1, yq true for any x1, which contradicts the bounded-to-one condition.

Theorem 4.3.3. For any bounded-to-one non-real-time transducer there exists a
(real-time) non-deterministic transducer that compresses exactly the same infinite
words.

Proof. Let T “ xQ,A,B, δ, q0, F y be a non-real-time transducer. Let us show that
for any run of T consisting of n transitions p0

λ|v1ÝÝÑ p1
λ|v2ÝÝÑ p2 ¨ ¨ ¨ pn´1

λ|vnÝÝÝÑ pn

there exists a run p0
λ|vÝÝÑ pn consisting of no more than 2|Q| transitions, such that

|v| ď |v1v2 ¨ ¨ ¨ vn| and it visits an accepting state if and only if the original one does.
If n ą 2|Q|, there is a state q visited three times in the run, so we can write the run
as p0

λ|w1ÝÝÝÑ q λ|w2ÝÝÝÑ q λ|w3ÝÝÝÑ q λ|w4ÝÝÝÑ pn where v1v2 ¨ ¨ ¨ vn “ w1w2w3w4. Notice that
if q “ p0 and/or q “ pn the first and/or last subruns may be empty. If the subrun
q λ|w2ÝÝÝÑ q visits an accepting state, then we take the run p0

λ|w1ÝÝÝÑ q λ|w2ÝÝÝÑ q λ|w4ÝÝÝÑ pn

that is shorter and outputs no more than the original while still visiting an ac-
cepting state. If the subrun does not visit an accepting state, then we take the run
p0

λ|w1ÝÝÝÑ q λ|w3ÝÝÝÑ q λ|w4ÝÝÝÑ pn, which is also shorter and produces no more output. Also,
since we removed a subrun that does not visit an accepting state, the new run has
the required property. By induction, this proves the claim.

Consider the real-time non-deterministic transducer T 1 “ xQ,A,B, δ1, q0, F y
where δ1pp, a, vw, qq if and only if there is a state r such that p λ|vÝÝÑ r with at
most 2|Q| transitions and r a|wÝÝÑ q. From the initial claim and Lemma 4.3.2, it is
easy to see that an infinite word x is compressed by T if and only if it is compressed
by a run of T that does not use more than 2|Q| consecutive transitions of the form
p λ|v1ÝÝÑ q. It is also easy to check that any such run induces a run in T 1 which also
compresses x.

Corollary 4.3.4. Normal infinite words are not compressible by bounded-to-one
non-real-time transducers.

Proof. Immediate combining Theorem 4.3.1 and Theorem 4.3.3.

4.4 Non-deterministic transducers with counters

It is straightforward to combine the proofs of incompressibility for (real-time)
non-deterministic transducers and counter transducers, respectively Theorems 4.3.1
and 4.2.1, to obtain the following corollary.

Corollary 4.4.1. Normal infinite words are not compressible by bounded-to-one
non-deterministic counter transducers.
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Proof. Combine the proofs of Theorem 4.2.1 and Theorem 4.3.1. The only non-
trivial point to notice is that, when defining U 1 as in the proof of Theorem 4.3.1, in
addition to requiring that xp,my be reachable, we need that there exists an infinite
run starting from xq, ny that goes infinitely often through accepting states. It is easy
to check that these requirements are met and they do not invalidate any step of the
proof.

As it stands, our proof for counter transducers cannot be extended to non-real-
time because in the non-real-time case the processing of a fixed word may increase or
decrease the counter an unbounded amount. This voids the argument we used to give
an upper bound of the set U 1. On the other hand, a non-real-time transducer with
two or more counters is Turing-complete [Min61], so it can compress computable
normal infinite words.

This raises the question of whether non-real-time transducers augmented with
a single counter can compress normal infinite words. We answer it in the following
theorem.

A non-real-time 1-counter transducer is a tuple T “ xQ,A,B, δ, q0, F y, iden-
tical to a non-real-time transducer, but the transition relation δ is a subset of
Q ˆ ttrue, falseu ˆ pA Y tλuq ˆ B˚ ˆ Q ˆ Z. This means that the transducer can
check the zero or non-zero status of the counter and modify it in each transition.
Definitions for bounded-to-one and compressible straightforwardly extend to this
setting.

Theorem 4.4.2. Normal infinite words are not compressible by bounded-to-one non-
real-time 1-counter transducers.

In the proof of Theorem 4.2.1 we used Lemma 4.2.2 to deal with counters. We
bounded their increase or decrease by the length of the input word. For non-real-
time transducers this argument fails. Lemma 4.4.7 gives an alternative argument.
This is a quite technical result, that we prove using Lemmas 4.4.3 to 4.4.6.

For a non-real-time 1-counter transducer T , as for deterministic counter trans-
ducers, let DT be the maximum absolute value of a counter increment or decrement
in a transition of T .

Lemma 4.4.3. For any non-real-time 1-counter transducer T there is another non-
real-time 1-counter transducer T 1 that realizes the same relation, compresses exactly
the same infinite words and has DT 1 ď 1.

Proof. We can simply emulate increasing (or decreasing) by k with k steps that do
no input or output, and increase (or decrease) by 1. Since the maximum possible k

is bounded by DT , we can do it with finitely many states and transitions. Formally,
if T “ xQ,A,B, δ, q0, F y we let T 1 “ xQˆr´DT , DT s, A,B, δ1, xq0, 0y, F ˆt0uy where

δ1 “ txxq, k ` 1y, c, λ, λ,`1, xq, kyy : 0 ď k ă DT , c P ttrue, falseuu Y
txxq, k ´ 1y, c, λ, λ,´1, xq, kyy : DT ă k ď 0, c P ttrue, falseuu Y
txxp, 0y, c, a, v, 0, xq, kyy : δpp, c, a, v, k, qqu.

It is immediate to check that any step xp, ny a|vÝÝÑ xq,my of T induces a finite run
xxp, 0y, ny a|vÝÝÑ xxq, 0y,my of at most DT ` 1 steps of T 1 and viceversa, which in turn
implies they realize the same relation and compress the same infinite words. By
inspection of δ1 it is clear that DT 1 ď 1.

Lemma 4.4.4. Let xq0, 0y a1|v1ÝÝÝÑ xq1,m1y a2|v2ÝÝÝÑ xq2,m2y a3|v3ÝÝÝÑ xq3,m3y ¨ ¨ ¨ be an
accepting run of a bounded-to-one non-real-time 1-counter. If there is a prefix
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xq0, 0y a1a2¨¨¨an|v1v2¨¨¨vnÝÝÝÝÝÝÝÝÝÝÝÑ xqn,mny of the run such that each accepting run that starts
with it does not contain more configurations with a counter value 0, then each such
accepting run does not compress a1a2a3 ¨ ¨ ¨ .

Proof. Let T “ xQ,A,B, δ, q0, F y be the transducer, and let n be as in the hy-
pothesis. We can emulate the process using a transducer without a counter. Let
T 1 “ xQ Y tr0, r1, . . . , rnu, A,B, δ1, r0, F y be a non-real-time transducer, where

δ1 “ tp a|vÝÝÑ q : d P Z, δpp, a, false, v, q, dquY

tri
ai`1|vi`1ÝÝÝÝÝÝÑ ri`1 : 0 ď i ă nuY

trn
an`1|vn`1ÝÝÝÝÝÝÑ qn`1u

and p a|vÝÝÑ q stands for the tuple xp, a, v, qy. Clearly, for each accepting run of T 1,

r0
a1|v1ÝÝÝÑ r1

a2|v2ÝÝÝÑ ¨ ¨ ¨ an|vnÝÝÝÑ rn
bn`1|wn`1ÝÝÝÝÝÝÝÑ pn`1

bn`2|wn`2ÝÝÝÝÝÝÝÑ ¨ ¨ ¨

there is an accepting run of T ,

xq0, 0y a1|v1ÝÝÝÑ xq1,m1y a2|v2ÝÝÝÑ ¨ ¨ ¨ an|vnÝÝÝÑ xqn,mny bn`1|wn`1ÝÝÝÝÝÝÝÑ

xpn`1,m
1
n`1y bn`2|wn`2ÝÝÝÝÝÝÝÑ xpn`2,m

1
n`2y bn`3|wn`3ÝÝÝÝÝÝÝÑ ¨ ¨ ¨

because by hypothesis the accepting run of T does not visit a configuration with a
counter value 0 after step n, and then every transition is valid. Therefore, since T

is bounded-to-one, T 1 is bounded-to-one. By Corollary 4.3.4, T 1 does not compress
a1a2a3 ¨ ¨ ¨ , so the given run of T does not compress it either.

Lemma 4.4.5. Let T be a non-real-time 1-counter transducer with DT ď 1 and
k P N. A finite run of T , xp,my u|vÝÝÑ xq, ny such that |m´n| ě pk ` 1qp|u| ` |v| ` 1q,
contains a run xp1,m1y λ|λÝÝÑ xq1, n1y with |m1 ´ n1| ě k and pm ´ nqpm1 ´ n1q ą 0.

Proof. Assume m´n ě pk`1qp|u|`|v|`1q. The case m´n ď ´pk`1qp|u|`|v|`1q
follows by symmetry. The counter decreases by at least pk ` 1qp|u| ` |v| ` 1q during
the run. At most |u| ` |v| of that decrease happens in transitions reading input, or
writing output or both. Then, the counter decreases by at least kp|u| ` |v| ` 1q in
transitions with no input nor output. Those are divided into at most |u| ` |v| ` 1
consecutive groups by the |u| ` |v| transitions that do input or output or both. By
pigeonhole principle, at least one of those groups decreases the counter by at least
k, yielding the desired run.

Lemma 4.4.6. Let T “ xQ,A,B, δ, q0, F y be a non-real-time 1-counter transducer
with DT ď 1. Assume xp,my u1|v1ÝÝÝÑ xq1, h1y u2|v2ÝÝÝÑ xq2, h2y u3|v3ÝÝÝÑ xr,my is a finite
run of T such that all the values of the counter within it are greater than |Q|2 ` 1
and minph1, h2q ´ m ě p|Q|2 ` 1qp|u1| ` |v1| ` |u2| ` |v2| ` 1q. Then, there is a
run of T of the form xp,my u1|v1ÝÝÝÑ xq1, h1

1y u2|v2ÝÝÝÑ xq2, h1
2y u3|v3ÝÝÝÑ xr,my such that

0 ă h1 ´ h1
1 “ h2 ´ h1

2 ď |Q|2 and the subrun xq1, h1
1y u2|v2ÝÝÝÑ xq2, h1

2y uses the same
sequence of transitions as the original subrun xq1, h1y u2|v2ÝÝÝÑ xq2, h2y but with the
counter values shifted by h1 ´ h1

1 “ h2 ´ h1
2.

Proof. By Lemma 4.4.5 there are runs

xp1,m1y λ|λÝÝÑ xp2,m2y λ|λÝÝÑ ¨ ¨ ¨ λ|λÝÝÑ xpk,mky inside xp,my u1|v1ÝÝÝÑ xq1, h1y
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with mk ´ m1 ě |Q|2, and

xr1, n1y λ|λÝÝÑ xr2, n2y λ|λÝÝÑ ¨ ¨ ¨ λ|λÝÝÑ xrℓ, nℓy inside xq2, h2y u3|v3ÝÝÝÑ xr,my

with n1 ´ nℓ ě |Q|2. Letting

ρ “ xp,my u1,1|v1,1ÝÝÝÝÝÑ xp1,m1y λ|λÝÝÑ ¨ ¨ ¨ λ|λÝÝÑ xpk,mky u1,2|v1,2ÝÝÝÝÝÑ xq1, h1y, and

σ “ xq2, h2y u3,1|v3,1ÝÝÝÝÝÑ xr1, n1y λ|λÝÝÑ ¨ ¨ ¨ λ|λÝÝÑ xrℓ, nℓy
u3,2|v3,2ÝÝÝÝÝÑ xr,my,

the run can be written as

ρ
u2|v2ÝÝÝÑ σ.

Since DT ď 1, the value of the counter is set in every integer in the range rm1,mks
in a configuration of the first run and rnℓ, n1s in a configuration of the second run.
Let us pair the value m1 with nℓ, m1 ` 1 with nℓ ` 1 and so on. We have at least
|Q|2`1 such pairs, so consider the first |Q|2`1 pairs. By pigeonhole principle, there
are indices i1, i2, j1, j2 such that 1 ď i1 ă i2 ď k, 1 ď j2 ă j1 ď ℓ and mi1

is paired
with nj1

, mi2
is paired with nj2

, pi1
“ pi2

and rj1
“ rj2

. By definition of the pairing
mi1

´ nj1
“ mi2

´ nj2
“ m1 ´ nℓ; therefore, 0 ă mi2

´ mi1
“ nj2

´ nj1
“ ∆ ď |Q|2.

We construct a run as required in the statement of the lemma.

• subtract ∆ from the value of the counter to all configurations between xpi2
,mi2

y
and xrj2

, nj2
y inclusive, in the original run;

• identify xpi1
,mi1

y “ xpi2
,mi2

´ ∆y and xrj2
, nj2

´ ∆y “ xrj1
, nj1

y; and

• remove xpi1
,mi1

y λ|λÝÝÑ ¨ ¨ ¨ λ|λÝÝÑ xpi2
,mi2

y and xrj2
, nj2

y λ|λÝÝÑ ¨ ¨ ¨ λ|λÝÝÑ xrj1
, nj1

y.

These modifications do not invalidate the run because ∆ ď |Q|2, so, the values of
the counter everywhere in the run are positive, as in the original.

The following lemma has the role that Lemma 4.2.2 had for real-time transducers,
and it is the key piece in the proof of Theorem 4.4.2.

Lemma 4.4.7. Let T “ xQ,A,B, δ, q0, F y be a non-real-time 1-counter transducer
with DT ď 1. Let xq0, 0y u1|v1ÝÝÝÑ xq1,m1y u2|v2ÝÝÝÑ xq2,m2y u3|v3ÝÝÝÑ xq3, 0y be a prefix of an
accepting run of T . Then, there is a finite run xq1, n1y u2|v2ÝÝÝÑ xq2, n2y contained in
an accepting run of T and with |n1|, |n2| ď 2p|Q|2 ` 1qp|u2| ` |v2| ` 1q.

Proof. Let K “ p|Q|2 ` 1qp|u2| ` |v2| ` 1q. Let us prove the following claim: For a
run

ρ “ xq0, 0y u1|v1ÝÝÝÑ xq1,m1y u2|v2ÝÝÝÑ xq2,m2y u3|v3ÝÝÝÑ xq3, 0y

with the requirements of the hypothesis, if |m1| ą 2K or |m2| ą 2K, there is another
run

ρ1 “ xq0, 0y u1|v1ÝÝÝÑ xq1,m1
1y u2|v2ÝÝÝÑ xq2,m1

2y u3|v3ÝÝÝÑ xq3, 0y

where the same requirements hold and m1
1 ď m1,m

1
2 ď m2 and m1

1 `m1
2 ă m1 `m2.

Then, by iterating this until m1 and m2 are not greater than 2K, we obtain a run
whose middle part is the run required in the statement.

Let us consider first m1 ą 2K. Since DT ď 1 inside xq0, 0y u1|v1ÝÝÝÑ xq1,m1y
there is a value of the counter exactly at K. We can thus get a shortest suffix
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xp,Ky u1,2,v1,2ÝÝÝÝÝÑ xq1,m1y so that within it the counter does not take values below K.
There are two cases.

If within xq1,m1y u2|v2ÝÝÝÑ xq2,m2y the counter takes a value below K (possibly
m2 “ K), let xq1,m1y u2,1|v2,1ÝÝÝÝÝÑ xr,Ky be the shortest prefix so that within it the
counter does not take values below K. By applying Lemma 4.4.6 to the subrun

ρ1 “ xp,Ky u1,2,v1,2ÝÝÝÝÝÑ xq1,m1y λ|λÝÝÑ xq1,m1y u2,1|v2,1ÝÝÝÝÝÑ xr,Ky

we get another run

ρ1
1 “ xp,Ky u1,2,v1,2ÝÝÝÝÝÑ xq1,m1

1y λ|λÝÝÑ xq1,m1
1y u2,1|v2,1ÝÝÝÝÝÑ xr,Ky

and replacing ρ1 by ρ1
1 in ρ we get a ρ1 as required.

If, on the other hand, within xq1,m1y u2|v2ÝÝÝÑ xq2,m2y the counter does not take a
value below K, we consider xq2,m2y u3|v3ÝÝÝÑ xq3, 0y and take xq2,m2y u3,1|v3,1ÝÝÝÝÝÑ xr,Ky
to be a shortest prefix such that within it the counter does not take a value below K.
By applying Lemma 4.4.6 to the subrun

ρ2 “ xp,Ky u1,2,v1,2ÝÝÝÝÝÑ xq1,m1y u2|v2ÝÝÝÑ xq2,m2y u3,1|v3,1ÝÝÝÝÝÑ xr,Ky

we get another run

ρ1
2 “ xp,Ky u1,2,v1,2ÝÝÝÝÝÑ xq1,m1

1y u2|v2ÝÝÝÑ xq2,m1
2y u3,1|v3,1ÝÝÝÝÝÑ xr,Ky

and replacing ρ2 by ρ1
2 in ρ we get a ρ1 as required.

The cases m1 ă ´2K, m2 ą 2K and m2 ă ´2K follow by symmetric arguments.

Proof of Theorem 4.4.2. Fix a normal infinite word x, a bounded-to-one non-real-
time 1-counter transducer T “ xQ,A,B, δ, q0, F y, a real ε ą 0 and the accepting
run

xq0, 0y a1|v1ÝÝÝÑ xq1,m1y a2|v2ÝÝÝÑ xq2,m2y a3|v3ÝÝÝÑ xq3,m3y ¨ ¨ ¨ .

By Lemma 4.3.2, T reads the entire input. It suffices to show that there is ℓ and U

such that Lemma 4.1.3 applies to this arbitrary choice of T and ε. By Lemma 4.4.3,
let us assume without loss of generality that DT ď 1.

By Lemma 4.4.4, if there is a prefix of the run that cannot be extended to an ac-
cepting run visiting a configuration with a counter value 0, the run does not compress
the input. Assume there is no such prefix. Let hu “ mint|v| : xqi,miy u|vÝÝÑ xqj ,mjyu
be the minimum number of symbols that the processing of u can contribute to the
output in the run we fixed. Let Uℓ “ tu : |u| “ ℓ, hu ě p1 ´ εqℓu be the set of words
of length ℓ with relatively large contribution to the output.

Let t be such that T is t-to-one. For states p, q, integers m,n word v and
length ℓ, consider U 1 “ tu P Aℓ : an accepting run of T contains xp,my u|vÝÝÑ xq, nyu.
Let u1, u2, . . . , un P U 1 be pairwise different. Let

xq0, 0y u0|v0ÝÝÝÑ xp,my u1|vÝÝÑ xq, ny x|yÝÝÑ 8

be an accepting run that justifies u1 P U 1. By construction, for each i there are
accepting runs

xq0, 0y u0|v0ÝÝÝÑ xp,my ui|vÝÝÑ xq, ny x|yÝÝÑ 8.
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Thus, T pu0uix, v0vyq and |U 1| ď n ď t.
Assume u produces an output v somewhere along the run we fixed; that is, there

is a prefix of the run xq0, 0y u0|v0ÝÝÝÑ xqi,miy u|vÝÝÑ xqj ,mjy. By our assumption this can
be extended to a run of the form xq0, 0y u0|v0ÝÝÝÑ xqi,miy u|vÝÝÑ xqj ,mjy u1|v1ÝÝÝÑ xp, 0y that
is the prefix of an accepting run. Apply Lemma 4.4.7 to this prefix. If u P U 1 for
p “ qi, q “ qj , ℓ “ |u| and arbitrary values of m and n, then u is also in U 1 for m and
n having absolute value not greater than 2p|Q|2 `1qpℓ` |v| `1q. So, if hu ă p1´εqℓ,
u P U 1 for some values of p, q, ℓ, v,m and n with the restriction |v| ă p1 ´ εqℓ and
|m|, |n| ď 2p|Q|2 ` 1qpℓ ` |v| ` 1q. There are at most

|Q|2p4p|Q|2 ` 1qpℓ ` p1 ´ εqℓ ` 1q ` 1q2|B|p1´εqℓ

combinations of those values with the mentioned restrictions. Since each |U 1| ď t

there are at most

t|Q|2p4p|Q|2 ` 1qpℓ ` p1 ´ εqℓ ` 1q ` 1q2|B|p1´εqℓ`2

values of u among those. This magnitude is op|A|ℓq , so we can fix ℓ such that
|Uℓ| ą |A|ℓp1 ´ εq and take U “ Uℓ. By construction, the fixed run of T over x

fulfills the hypothesis of Lemma 4.1.3 using tuples of states and a counter value as
configurations.

4.5 Pushdown transducers

A pushdown transducer is a transducer equipped with a single stack as memory
that can hold elements of a finite given alphabet. The machine makes decisions
based on the input and the top symbol of the stack. When moving, it can pop
symbols from or push symbols to the stack. A special bottom symbol K as top
represents the empty stack.

If the alphabet of the stack (symbols that can be pushed into the stack, not
including the bottom symbol) is unary, the only relevant information for the current
configuration is the number of symbols contained in the stack. Also, the automaton
can only test for the number to be zero (empty stack) or non-zero (non-empty stack).
The stack is then equivalent to a counter with only non-negative values, although
counters with positive and negative values can also be emulated with the help of
the automaton states. This shows that a stack gives at least as much power as a
counter.

In this section we show that either non-deterministic pushdown transducers or
deterministic pushdown transducers with a single additional counter can compress
normal infinite words. The latter implies that deterministic pushdown transducers
with at least two stacks can compress normal infinite words. The question remains
open for deterministic pushdown transducers with a single stack.

In both cases we show that a particular transducer can compress the same infinite
word. Let x0 be a normal infinite word and let ui “ x0 ↾ 2i´1 be its prefix of length
2i´1. We work with the infinite word x1 “ u1ũ1u2ũ2u3ũ3 ¨ ¨ ¨ , where ũi is the reverse
word of ui. It is easy to see that this infinite word is also normal, for instance with
an argument similar to Champernowne’s original argument [Cha33].

4.5.1 Non-deterministic pushdown transducer

In a non-deterministic pushdown transducer with a stack each transition depends
on the current state, the top symbol of the stack and the input symbol. It produces
an output word, a word of stack symbols that replaces the top symbol, and the new
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state. The transition relation δ is a finite subset of QˆC ˆAˆB˚ ˆQˆC˚ where
Q is the state set, A and B are the input and output alphabets and C is the stack
alphabet. Note that the top symbol of the stack is always replaced by a word w over
the stack alphabet. This means that the transducer pops the top symbol if |w| “ 0,
replaces the top symbol by another if |w| “ 1 and pushes several symbols if |w| ą 1.

Theorem 4.5.1. There is a one-to-one non-deterministic pushdown transducer that
compresses a normal infinite word.

Proof. We give a transducer that realizes the following relation. For each input word
x, the output words y satisfy T px, yq where

T px, yq ô px “ w1w̃1w2w̃2 ¨ ¨ ¨wnw̃n ¨ ¨ ¨ , y “ w1#w2# ¨ ¨ ¨ #wn# ¨ ¨ ¨ q _
px “ w1w̃1w2w̃2 ¨ ¨ ¨wnw̃nx

1 , y “ w1#w2# ¨ ¨ ¨ #wn#x1q.

It is easy to uniquely recover x from either form of output y “ w1#w2# ¨ ¨ ¨ #wn# ¨ ¨ ¨
or y “ w1#w2# ¨ ¨ ¨ #wn#x1, thus the relation is one-to-one. In the case where the
input has the form w1w̃1 ¨ ¨ ¨wnw̃n ¨ ¨ ¨ , one possible output is w1# ¨ ¨ ¨ #wn# ¨ ¨ ¨ .
Moreover, each factor of the input wiw̃i produces exactly the corresponding factor
of the output wi#, thus leading to a compression of the input.

The transducer proceeds as follows. It guesses non-deterministically either a
factorization x “ w1w̃1 ¨ ¨ ¨wnw̃n ¨ ¨ ¨ or a factorization x “ w1w̃1 ¨ ¨ ¨wnw̃nx

1 of the
input word x. Note that the second case is just a degenerate case of the first one
where wn`1 becomes infinite. The transducer uses two states q0 and q1. It is in
state q0 when it reads a factor wi of the remaining tail and it is in state q1 when it
reads a factor w̃i. In state q0, each read symbol is output and pushed on the stack.
The transducer non-deterministically either stays in state q0 or moves to states q1 to
decide if the factor ended. An extra symbol # is output when it moves to state q1.
In state q1, each read symbol is compared with the top symbol popped from the
stack. If these two symbols do not match, the run fails. If they do match, nothing is
output. The transducer moves back to state q0 when the stack is empty. Note that
the transducer is indeed real-time: an input symbol is read at each step of the run.

The complete transition table of the transducer is given below. The tuple
xp, s, a, v, q, λy is in δ if and only if the cell at row p and column xs, ay contains
xv, q, popy. The tuple xp, s, a, v, q, wy is in δ for non-empty w if and only if that cell
contains xv, q, pushwy. To ease the read of the table, a variable a is used in the
columns, which can take the value 0 or 1, and ā is 1 ´ a.

xa, ay xa, āy xa,Ky
q0 xa, q0, push ay xa, q0, push ay xa, q0, push ay

xa#, q1, push ay xa#, q1, push ay xa#, q1, push ay
q1 xλ, q1, popy xa, q0, push ay

xa#, q1, push ay

4.5.2 Deterministic multi-pushdown

In Theorem 4.2.1 we proved that real-time transducers with any number of coun-
ters cannot compress normal infinite words. Here we show that adding a single
counter to a deterministic pushdown machine gives enough power to compress a
normal infinite word.

A deterministic pushdown transducer with one counter uses a stack and a counter
as extra memory. Each of its transitions depends on the current state, the top symbol
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of the stack, the zero or non-zero status of the counter, and the input symbol. It
produces an output word, a word of stack symbols that replaces the top symbol, an
integer to increase or decrease the counter and the new state. Thus, transitions are
given by a function δ : Q ˆ C ˆ ttrue, falseu ˆ A Ñ B˚ ˆ Q ˆ C˚ ˆ Z.

Theorem 4.5.2. There is a one-to-one deterministic transducer with one stack and
one counter that compresses a normal infinite word.

Proof. We give a transducer that realizes the following function. An infinite input
word factorized as w1w

1
1w2w

1
2w3w

1
3 ¨ ¨ ¨ where |wi| “ |w1

i| “ 2i´1 is mapped to the
output word w1v1#w2v2#w3v3# ¨ ¨ ¨ where vi “ w1

i ↿ ℓi with ℓi being the length of
the longest common prefix between w1

i and w̃i. Since from wi and vi we can easily
recover wi and w1

i, the function is one-to-one. In the case where w1
i “ w̃i for all i, the

output for a prefix of the form w1w̃1w2w̃2 ¨ ¨ ¨wnw̃n is w1#w2# ¨ ¨ ¨wn and therefore
such an input is compressible.

The required transducer uses the counter and the stack to recognize the positions
where a wi or w1

i starts. When starting to read wi, the counter contains |wi| “ 2i´1

and the stack is empty. While reading each symbol of wi we decrease the counter by
1 and push it to the stack. Therefore, the counter at 0 indicates the first symbol of
w1

i and w̃i is in the stack. While reading each symbol of w1
i, we pop from the stack

and increase the counter by 2, so the empty stack indicates the beginning of wi`1

and the counter is left at 2i. By default, we output λ while reading from w1
i. We

compare the symbols read from w1
i and the top of the stack. When they mismatch

for the first time, we output the current symbol and move to a state that does the
same process, but outputs the current symbol instead of λ. When moving between
states, we control the counter and the stack to avoid off-by-1 errors.

Notice that since the starting value of the counter is 0, we need a special starting
state for processing w1. The transducer has 4 states, a state q0 to start, a state q1
to read wi and push, a state q2 to read w1

i and pop while it coincides with the stack
and a state q3 to read the rest of w1

i, pop the rest of the stack and write, to use after
a mismatch.

The complete transition table for the transducer is given below. The cell at row
q and column xa, s, cy contains δpq, s, c, aq, where q is a state, a is a symbol from the
input, s is the top symbol from the stack (or K for empty stack) and c is represented
as 0 for true and H for false, to indicate zero and non-zero counter, respectively.
The cells contain a tuple xv, q, s, iy where v is the word to be output, q is the new
state, s is an instruction to perform in the stack as in the previous proof, and i is
an increment to the counter. As before, to ease the read of the table, a variable a

is used in the columns, which can take the value 0 or 1, and ā is 1 ´ a. Underscores
( ) are also used to represent that any value is acceptable. Different instances of an
underscore are not necessarily equal in value.

xa, , y
q0 xa, q1, push a, 0y

xa, ,Hy xa, a, 0y xa, ā, 0y
q1 xa, q1, push a,´1y xλ, q2, pop,`2y xa, q3, pop,`2y

xa, a, y xa, ā, y xa,K, y
q2 xλ, q2, pop,`2y xa, q3, pop,`2y x#a, q1, push a,´1y

xa, a, y xa, ā, y xa,K, y
q3 xa, q3, pop,`2y xa, q3, pop,`2y x#a, q1, push a,´1y





CHAPTER 5

Compressibility with two-way machines

In this chapter we study the power of compression of two-way transducers on
normal infinite words. As opposed to the one-way machines considered in the pre-
vious chapter, two-way transducers have an input reading head that may be moved
backwards to re-read parts of the input several times.

The introduction of two-way transducers can be traced back to the very begin-
ning of the study of transducers [AHU69]. Two-way transducers have a nice logical
characterization [EH01] and the equivalence of two of them is a decidable problem
[Gur82, IK87].

The interest in these transducers have been recently renewed by the introduction
of an equivalent model called streaming string transducers [AC10].

The definition of compressibility used in the previous chapter for one-way ma-
chines does not generalize in a unique way to two-way machines. A significant part
of the work we do here is considering several ways in which the definition may be
generalized and prove that they are all equivalent. The extent of this equivalency
is stronger for deterministic two-way transducer than for non-deterministic ones.
This implies that results for non-deterministic are not strict generalizations of the
results for the deterministic case, which motivates us to present them separately.
However, a significant part of the work done for the deterministic case is reused for
the non-deterministic transducers.

The main result of this chapter is that normal infinite words are not compressible
by deterministic nor by non-deterministic two-way transducers. The result for the
deterministic case is presented in Section 5.1 and the result for the non-deterministic
case in Section 5.2. In Section 5.3 we show with an example that the traditional
way of defining compressibility collapses for two-way transducers with unbounded
memory, even in its simplest form of a single counter. To deal with that case, new
notions of compressibility would have to be developed. The results in this chapter
are included in [CH13].

5.1 Deterministic Two-way transducers

Deterministic two-way transducers have a two-way input tape and a one-way
output tape. This means that they have two independent heads: one over the input
tape and another one over the output tape. The input head is two-way: it can
move back and forth. On the contrary, the output head is one-way: it can only

63
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move forward. Each cell of the input tape contains a symbol of the input word. Its
first cell contains the left end-marker $ that allows the transducer to recognize that
its input head is at the first cell of the tape. When the transducer reads the left
end-marker, it can only move its input head to the right.

Q

Two-way

input tape
$ a1 a2 a3 a4 a5 a6 a7

One-way

output tape b1 b2 b3 b4 b5 b6 b7

Figure 5.1: Working principle of a two-way transducer.

In order to simplify the presentation, we assume that the input and output
alphabets of all transducers are the same alphabet A. All the results of the chapter
can easily be extended to the setting where the output alphabet B is different from
the input alphabet A. To do it, when comparing lengths of input and output words,
we would just need to multiply lengths of words over A and B by the factors log |A|
and log |B|, respectively.

Definition. A (deterministic) two-way transducer is a tuple T “ xQ,A, δ, q0y, where

• Q is a finite set of states,

• A is the input and output alphabet,

• δ : Q ˆ pA Y t$uq Ñ tŸ,Źu ˆ A˚ ˆ Q is the transition function,

• q0 P Q is the starting state.

such that if δpp,$q “ xd, v, qy then d “ Ź. The transducer T processes infinite words
over A: if at state p symbol a is processed, T moves to state q, moves the reading
head to the left or right depending on d and outputs v where xd, v, qy “ δpp, aq.

Let x “ a1a2a3 ¨ ¨ ¨ be a fixed infinite word over A and a0 “ $. Whenever
xd, v, qy “ δpp, amq, we write xp,my |vÝÝÑ xq, ny where n “ m ´ 1 if d “ Ÿ and
n “ m ` 1 if d “ Ź. We do not write the input over the arrow because it is
always the symbol below the reading head, namely, am. In this notation, the tuples
represent the current configuration of a machine with the current state and the
current position of the input head.

A finite run of the transducer over x is a finite sequence of consecutive transitions

xp0,m0y |v1ÝÝÑ xp1,m1y |v2ÝÝÑ xp2,m2y ¨ ¨ ¨ xpn´1,mn´1y |vnÝÝÑ xpn,mny

and we write xp0,m0y |vÝÝÑ xpn,mny where v “ v1v2 ¨ ¨ ¨ vn. We also refer to finite runs
over words w when all positions mi in the run but the last are between 1 and |w|.
The last position mn is allowed to be between 0 and |w| ` 1. It is 0 if the run has
left w on the left and it is |w| ` 1 if it has left |w| on the right.

An infinite run of the transducer over x is an infinite sequence of consecutive
transitions

xp0,m0y |v1ÝÝÑ xp1,m1y |v2ÝÝÑ xp2,m2y |v3ÝÝÑ xp3,m3y ¨ ¨ ¨
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and we write xp0,m0y |yÝÝÑ 8 where y “ v1v2v3 ¨ ¨ ¨ . An infinite run is accepting if
p0 “ q0 and m0 “ 1. This is the Büchi acceptance condition where all states are
accepting.

The transducers that we consider in this section are deterministic: for a state p

and an input symbol a, there is exactly one possible move of the transducer. It
follows that for a given infinite word x, there is exactly one run over x starting at
the starting state q0. We write T pxq to refer to the word output by the accepting
run xq0, 1y |T pxqÝÝÝÝÑ 8 over x. The function which maps any input word x to T pxq is
said to be realized by the transducer.

We call deterministic two-way transducer simply two-way transducers and only
add the modifier for the non-deterministic case.

Definition. A two-way transducer T is bounded-to-one if the function x ÞÑ T pxq is
bounded-to-one.

In a run of a two-way transducer a given position in the input can be visited more
than once. However, we can prove that in a bounded-to-one two-way transducer,
any given position is visited a bounded number of times.

Proposition 5.1.1. Any accepting run of a bounded-to-one two-way transducer
T “ xQ,A, δ, q0y visits all positions of the input. Moreover, each position in the
input is visited at most |Q| times.

Proof. By contradiction, let ρ be an accepting run over x that does not visit a given
position n. Since the input head is moved one position at a time, ρ also does not
visit any position m ě n. Therefore, if the first n symbols of x and x1 coincide, ρ is
an accepting run over x1 as well. Since there are infinitely many such x1, T is not
bounded-to-one, which contradicts the hypothesis. For the second point, if the run
contains a configuration xq, ny twice, since the transducer is deterministic, the run
is periodic. Therefore, the run does not visit the entire input, which contradicts the
first point.

The fact that a position can be visited multiple times introduces a difficulty for
defining compressibility. We could consider the length of the output done at the
first visit, or the last, or anything in between. However, we show that for normal
inputs, all alternatives are equivalent. Figure 5.2 shows the positions of the input
head along a possible run of a two-way transducer. In each case, the part of the run
whose output is considered for each ratio is highlighted.

n

fn

gn

n

fn

gn

n

fn

gn

Figure 5.2: Parts of the run used for first-hit, middle and last-hit ratios.

Definition. Let fn “ minti : mi “ nu and gn “ maxti : mi “ nu be the first
and last visit of position n of the input in the accepting run ρ of a bounded-to-one
two-way transducer

ρ “ xq0, 1y |v1ÝÝÑ xq1,m1y |v2ÝÝÑ xq2,m2y |v3ÝÝÑ xq3,m3y ¨ ¨ ¨
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The first-hit ratio, middle ratio and last-hit ratio at n are, respectively,

1

n

ÿ

iďfn

|vi`1|, 1

n

ÿ

miďn

|vi`1| and
1

n

ÿ

iďgn

|vi`1|.

In each case, the ratio of ρ is the inferior limit when n goes to infinity.

Notice that the first-hit ratio is less than or equal to the middle ratio and the
middle ratio is less than or equal to the last-hit ratio at every position, and also in
the limit.

Theorem 5.1.2. The first-hit, middle and last-hit ratios of the accepting run of a
bounded-to-one two-way transducer over a normal infinite word coincide.

Before proving the theorem, let us give an example showing that for non-normal
inputs, the ratios might be different. Figure 5.3 shows a deterministic two-way
transducer working over the binary alphabet t0, 1u. Each circle with a number
represents a state and an arrow from p to q labeled a d v represents a transition
leaving from p when reading a, moving the input head in direction d, making output
v and moving to state q, that is, if δ is the transition function of the transducer,
δpp, aq “ xd, v, qy. We use an arrow with multiple labels as a concise representation
of multiple arrows between the same pair of states, one with each label. When for
some pair p, a there is no arrow leaving from p with label starting with a, it means
that δpp, aq can be defined as any value, because it is not used.

0 1 2 3 4 5 6

0Źλ

1Ÿλ

0Ÿλ

1Ź1
$Źλ

0Ź0

1Ÿλ

0Ÿλ

1Ÿλ

$Źλ

0Ÿλ

1Źλ
$Źλ

0Źλ

1Źλ

0Źλ

1Źλ

Figure 5.3: Deterministic two-way transducer with different ratios.

The depicted transducer processes the entire input, making some turns. For
each 1 encountered in the input, it moves to the next 1 and back without making
any output, then it does it again but copying the input while moving forward, and
finally goes back to the previous 1 and forth once more without output. Since
the realized function is the identity, the transducer is clearly bounded-to-one. The
first of the described trips makes the first-hit ratio of a position only account for the
output done before the previous 1. The trip backwards delays the last-hit, effectively
making the last-hit ratio account for the output done up to the following 1. Since
each position of the input is copied while reading it, the middle ratio is always 1. In
an input where the distance between consecutive 1s grows fast enough, the previous
observation shows that the first-hit ratio converges to 0, while the last-hit ratio
diverges to `8. The positions of the input head along a run on a given input with
small frequency of 1s is given in Figure 5.4, highlighting the parts of the run when
the input is copied to the output.

We develop some formal tools that aid the proof of Theorem 5.1.2. First we
introduce a measure of how far a run is from a one-way run, namely, how much
further than position n it can go before its last visit to that position.
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$ 1 1 1 1

Figure 5.4: Shape of a run with different ratios.

Definition. Let gn “ maxti : mi “ nu be the last visit of position n in a run ρ with
finitely many visits to each position

ρ “ xp0, 1y |v1ÝÝÑ xp1,m1y |v2ÝÝÑ xp2,m2y |v3ÝÝÑ xp3,m3y ¨ ¨ ¨

The lookahead of ρ is the function Λpnq “ maxtmk ´ n : k ď gnu.

Notice that Λpnq ě 0 for every n, and Λpnq “ 0 for every n if and only if the
run is one-way. Also notice that the last visit of position n is always before the first
visit of position n ` Λpnq ` 1.

Proposition 5.1.3. The first-hit, middle and last-hit ratios of a run with finitely
many visits to each position and lookahead satisfying Λpnq “ opnq coincide.

Proof. Fix the run xp0, 1y |v1ÝÝÑ xp1,m1y |v2ÝÝÑ xp2,m2y |v3ÝÝÑ xp3,m3y ¨ ¨ ¨ and let
fn “ minti : mi “ nu and gn “ maxti : mi “ nu be the first and last visits
of position n. Let Λpnq “ maxn1ďn Λpn1q be a non-decreasing upper bound on
Λ. It is clear that Λpnq “ opnq and also gn ď fn`Λpnq`1 which together with the

monotonicity of f and Λ implies gn ď fn`Λpnq`1, and thus, gn´Λpnq´1 ď fn.
Then, for every n,

1

n

ÿ

iďfn

|vi`1| ě n ´ Λpnq ´ 1

n

¨

˝

1

n ´ Λpnq ´ 1

ÿ

iďg
n´Λpnq´1

|vi`1|

˛

‚.

Since pn ´ Λpnq ´ 1q{n converges to 1, this shows that first-hit ratio is greater than
or equal to the last-hit ratio, which finishes the proof.

We want to show that the lookahead of a run of a bounded-to-one two-way
transducer over a normal infinite word is opnq. For that purpose, we introduce the
concept of a valve. A valve of a bounded-to-one two-way transducer is a word such
that a run cannot cross it from right to left.

Definition. Let T “ xQ,A, δ, q0y be a two-way transducer. A state p is a return
state for an input word w if and only if there is a run over w which starts at the
first position of w and exits w on the left, namely,

xp, 1y |v1ÝÝÑ xq1,m1y |v2ÝÝÑ xq2,m2y ¨ ¨ ¨ xqn´1,mn´1y |vnÝÝÑ xqn, 0y

where 1 ď mi ď |w|. An input word w is a valve for T if and only if it has a
maximum number of return states.
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a1 a2 a3 a4 ak

p

qn

Figure 5.5: Shape of the run showing a return state p of a word w “ a1 ¨ ¨ ¨ ak.

Notice that any return state of a word w is also a return state of a right exten-
sion wu of w.

Lemma 5.1.4. Every two-way transducer has a valve.

Proof. Immediate from the fact that the number of return states of any given word
is bounded by |Q|. Note that as a consequence of Proposition 5.1.1, for a bounded-
to-one two-way transducer this bound is actually |Q| ´ 1.

The next lemma formalizes the main property about valves, namely, that a run
cannot cross it from right to left.

Lemma 5.1.5. Let T “ xQ,A, δ, q0y be a bounded-to-one two-way transducer and

xp0, 1y |v1ÝÝÑ xp1,m1y |v2ÝÝÑ xp2,m2y |v3ÝÝÑ xp3,m3y ¨ ¨ ¨

be a run over an infinite word x. Let w “ xrn..n ` |w| ´ 1s be a valve. Then, if
mj0

ě n ` |w| for some j0, then, for all j ě j0, mj ě n.

Proof. By contradiction, assume there is an integer j0 such that mj0
ě n ` |w| and

there is some integer j ą j0 for which mj ă n. Then, let m “ maxtmk : j0 ď k ď
ju ě n ` |w| and consider the word xrn..ms. This is an extension to the right of w,
so it has all the return states w has and at least one extra, namely, the one used to
enter w from the left before leaving on the right at step j0. Since by definition w

has a maximum number of return states, this contradicts the hypothesis.

Proposition 5.1.6. The lookahead Λ of a run of a bounded-to-one two-way trans-
ducer over a normal infinite word satisfies Λpnq “ opnq.

Proof. By Lemma 5.1.4, let w be a valve for the transducer and x be the normal
input. Let h be the function given by Lemma 2.3.5 for x and w and let n be
an arbitrary position. By Lemma 2.3.5 there is an occurrence of w in the word
xrn..n ` hpnqs, and applying Lemma 5.1.5 shows that Λpnq ď hpnq “ opnq.

We are now in conditions to give the proof for Theorem 5.1.2.

Proof of Theorem 5.1.2. Apply Proposition 5.1.1, Proposition 5.1.6 and then Propo-
sition 5.1.3 to the accepting run.

Also recall that non-normal infinite words are already compressible by determin-
istic one-way transducers [BH13]. These equivalencies together enable us to define
compressible with no arbitrary choices.

Definition. An infinite word is compressible by a bounded-to-one two-way trans-
ducer if and only if any of its first-hit, middle or last-hit ratios is less than 1.

Theorem 5.1.7. Normal infinite words are not compressible by bounded-to-one two-
way transducers.
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To prove Theorem 5.1.7, we first introduce the technical definition of a template
that we use to prove the main result of this section. A template captures the behavior
of the run in a given interval of positions. Informally, the template keeps track, for
each traversal of the word, of the entry state, the direction of the traversal, the
output and the exit state. We start with the definition of the xm,ny-factorization
of a run for two positions m ď n of the input.

Definition. Given two positions m and n such that m ď n and given an accepting
run, its xm,ny-factorization is a writing of the run as

xq0, 1y |v1ÝÝÑ xq1,m1y |v2ÝÝÑ xq2,m2y |v3ÝÝÑ xq3,m3y |v4ÝÝÑ ¨ ¨ ¨ xq2k,m2ky |yÝÝÑ 8,

where each part xq2i`1,m2i`1y |v2i`2ÝÝÝÝÑ xq2i`2,m2i`2y reads only positions in the
range rm,ns and each part xq2i,m2iy |v2i`1ÝÝÝÝÑ xq2i`1,m2i`1y reads only positions
outside rm,ns.

Note that in the previous definition m2i`1 P tm,nu because the run enters the
interval rm,ns, moreover, m2i`1 is m if the entry is from the left and n if it is from
the right. Also m2i`2 P tm ´ 1, n ` 1u because the run has just left the interval
rm,ns. Moreover, m2i`1 is m ´ 1 if the exit is to the left and n ` 1 if it is to the
right.

Definition. Given the xm,ny-factorization of a run,

xq0, 1y |v1ÝÝÑ xq1,m1y |v2ÝÝÑ xq2,m2y |v3ÝÝÑ xq3,m3y |v4ÝÝÑ ¨ ¨ ¨ xq2k,m2ky |yÝÝÑ 8,

the xm,ny-template τ of the run is a list of elements of the set Qˆ tŸ,Źu ˆA˚ ˆQ

where item i in the list, starting from 0, is xq2i`1, di, v2i`2, q2i`2y where di “ Ÿ if
and only if m2i`2 “ m ´ 1 and di “ Ź if and only if m2i`2 “ n ` 1. Its weight is
|τ | “ řn

i“1 |v2i|.

m n

q1
q2

q3 q4

q5
q6

q7q8

q9 q10

Figure 5.6: A run and its xm,ny-template.

Proof of Theorem 5.1.7. Fix a normal infinite word x, a bounded-to-one two-way
transducer T “ xQ,A, δ, q0y, a real ε ą 0 and the accepting run over x

xq0, 1y |v1ÝÝÑ xq1,m1y |v2ÝÝÑ xq2,m2y |v3ÝÝÑ xq3,m3y ¨ ¨ ¨

Let us prove that the middle ratio is at least p1 ´ εq3.
For each u, let Su “ tτ : τ is the xm,ny-template of the run and xrm..ns “ uu.

Also let hu “ mint|τ | : τ P Suu be the minimum number of symbols that the
processing of u can contribute to the output and let Uℓ “ tu : |u| “ ℓ, hu ě p1 ´ εqℓu
be the set of words of length ℓ with relatively large contribution to the output.

Let t be an integer such that T is t-to-one. For each length ℓ and each τ that
is an xm,ny-template of the run for some m and n, consider the set U 1 “ tu P
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Aℓ : τ P Suu. Let u1, u2 P U 1 be different, and let m and n be positions such that
xrm..ns “ u1 and the xm,ny-template of the run is τ . Consider the input word
x1 “ xr1..m ´ 1su2xrn ` 1..s. Since τ is in Su2

there is another accepting run over
x1 with the same output as the run over x. Therefore, |U 1| ď t.

Let us bound the number of different templates τ “ pxpi, di, vi, qiyq1ďiďn with a
given fixed list of vis. By Proposition 5.1.1 we know that n ď |Q|. For each item of
the list, there are at most 2|Q|2 ways of choosing the remaining elements pi, qi and
di. Thus, there are at most p2|Q|2q|Q| templates for any given fixed list of vis.

Let us bound the number of lists of at most |Q| words vi with the sum of their
lengths bounded by a given integer k. Since we are interested in the asymptotic
behavior of the bound, assume k ą 2|Q|. We can consider v “ v1v2 ¨ ¨ ¨ vn the
concatenation of all the words in the sequence. There are at most |A|k`1 possible
choices of v. For fixed v, there are at most

`

k`m´1
m´1

˘

lists of m words that produce

it, so at most |Q|
`

k`|Q|´1

|Q|´1

˘

possible lists. Thus, there are at most |Q|
`

k`|Q|´1

|Q|´1

˘

|A|k`1

lists of at most |Q| words with the sum of their lengths bounded by k.
Putting both bounds together, we can see that the number of templates of weight

not greater than k is at most

Kk “ p2|Q|2q|Q||Q|
ˆ

k ` |Q| ´ 1

|Q| ´ 1

˙

|A|k`1.

By bounding the mentioned sets U 1, we can bound the complement of Uℓ.

|tu P Aℓ : τ P Suu| ď t

|tu P Aℓ : τ P Su, |τ | ď p1 ´ εqℓu| ď Krp1´εqℓst

|tu P Aℓ : hu ď p1 ´ εqℓu ď Krp1´εqℓst

|Uℓ| ě |A|ℓ ´ Krp1´εqℓst

Fix ℓ such that |Uℓ| ą |A|ℓp1 ´ εq, which is possible because Krp1´εqℓst is op|A|ℓq.
Let x “ u1u2u3 ¨ ¨ ¨ , where each |ui| “ ℓ. Since x is ℓ-simply normal, let n0

be such that for all n ě n0, |ti ď n : ui “ uu| ě n|A|´ℓp1 ´ εq. Let τi be the
xpi ´ 1qℓ ` 1, iℓy-template. Then, for all n ě n0,

ÿ

0ămiďnℓ

|vi`1| “
n

ÿ

i“1

|τi|

ě
ÿ

uPAℓ

hu|ti ď n : ui “ uu|

ě
ÿ

uPAℓ

hun|A|´ℓp1 ´ εq

ě
ÿ

uPUℓ

hun|A|´ℓp1 ´ εq

ě
ÿ

uPUℓ

p1 ´ εqℓn|A|´ℓp1 ´ εq

ě |Uℓ|p1 ´ εqℓn|A|´ℓp1 ´ εq
ě |A|ℓp1 ´ εqp1 ´ εqℓn|A|´ℓp1 ´ εq “ p1 ´ εq3ℓn.

Thus,

lim inf
nÑ8

1

nℓ

ÿ

0ămiďnℓ

|vi`1| ě p1 ´ εq3.



5.2. NON-DETERMINISTIC TWO-WAY TRANSDUCERS 71

Since
ř

mi“0 |vi`1| is bounded and does not depend on n,

lim inf
nÑ8

1

nℓ

ÿ

miďnℓ

|vi`1| ě p1 ´ εq3,

and since
ř

nℓămiăpn`1qℓ |vi`1| is uniformly bounded by ℓ|Q|DT where DT is the
bound on the length of the outputs of all transitions of T , the middle ratio is also
not less than p1 ´ εq3.

5.2 Non-deterministic two-way transducers

In this section we introduce non-determinism into two-way transducers. We
define them with a real-time restriction, that is, disallowing transitions that do not
read the input (usually called λ-transitions). However, this restriction does not
affect the power level of these transducers, because a λ-transition can be simulated
by moving the input head forward and changing to a new special state and then
moving the input head backwards. The definition of a non-deterministic two-way
transducer is very similar to the definition of a deterministic one but the transition
function δ is replaced by a relation.

Definition. A non-deterministic two-way transducer is a tuple T “ xQ,A, δ, q0, F y,
where

• Q is a finite set of states,

• A is the input and output alphabet,

• δ Ă Q ˆ pA Y t$uq ˆ tŸ,Źu ˆ A˚ ˆ Q is the transition relation,

• q0 P Q is the starting state,

• F Ď Q is the set of accepting states.

such that if δpp,$, d, v, qq then d “ Ź. The transducer T processes infinite words
over A: if at state p symbol a is processed, T may move to state q, move the reading
head to the left or right depending on d and output v where δpp, a, d, v, qq.

Let x “ a1a2a3 ¨ ¨ ¨ be a fixed infinite word over A and a0 “ $. Whenever
δpp, am, d, v, qq, we write xp,my |vÝÝÑ xq, ny where n “ m ´ 1 if d “ Ÿ and n “ m ` 1
if d “ Ź. Finite and infinite runs over x are defined as in the case of deterministic
two-way transducers, and an infinite run is accepting if it starts at xq0, 1y and visits
infinitely often accepting states. This is the classical Büchi acceptance condition.

We write T px, yq whenever there is an accepting run xq0, 1y |yÝÑ 8 over x. This
relation is said to be realized by the transducer.

Definition. A non-deterministic two-way transducer T is bounded-to-one if and
only if the function y ÞÑ |tx : T px, yqu| is bounded.

Note that if a run visits infinitely often a given position, the last visit of a
position is not defined, and middle and last-hit ratios cannot be defined as before.
The following example shows that for non-deterministic two-way transducers, the
analog of Proposition 5.1.1 fails. However, we prove afterwards a weaker version of
it that is enough to properly define the ratios.

Figure 5.7 shows a non-deterministic two-way transducer. When the transducer
is at non-accepting state 0, it may move the input head anywhere. However, in
order to be an accepting run, it needs to eventually move to state 1. The only way
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to do that is to place the input head at the beginning of the input. While at state
1, the transducer just copies the input and moves forward. This makes the realized
relation exactly the identity, so the transducer is bounded-to-one. It is clear that
there is no bound on the number of visits to a given position, because while at state
0, the transducer may loop between any two or more positions. However, after fixing
a run, the number of visits to each position is finite.

0 1

0Źλ 1Źλ $Źλ

0Ÿλ 1Ÿλ

$Źλ

0Ź0
1Ź1

Figure 5.7: Non-deterministic two-way transducer with unbounded visits to some
positions.

Proposition 5.2.1. Any accepting run of a bounded-to-one non-deterministic two-
way transducer visits all positions of the input. Moreover, each position in the input
is visited finitely many times.

Proof. The first point can be proved in the same way as for deterministic two-way
transducers. For the second point, assume there is an accepting run over an input
word x that visits a given position n infinitely often. Then, it visits some configura-
tion xq, ny infinitely often, for some state q. Therefore, there is a run xq, ny |vÝÝÑ xq, ny
that visits a final state and a run xq0, 1y |wÝÝÑ xq, ny. Then, there is an accepting
run that visits only finitely many positions by using infinitely many times the cycle
xq, ny |vÝÝÑ xq, ny after starting with xq0, 1y |wÝÝÑ xq, ny, which contradicts the first
point.

Proposition 5.2.1 allows us to define first-hit, middle and last-hit ratios exactly
as in the deterministic case.

We have not been able to extend Theorem 5.1.2 to the non-deterministic case,
even though we conjecture that it holds. However, we can prove a weaker equivalence
between the ratios, which enables us to define compressibility using either, as before.

Theorem 5.2.2. For any accepting run ρ of a bounded-to-one non-deterministic
two-way transducer over some normal infinite word, there is another accepting run
ρ1 over the same input such that the first-hit, middle and last-hit ratios of ρ are not
greater than the corresponding ratio of ρ1, and all ratios of ρ1 coincide.

As before, we develop some tools to aid in the proof of Theorem 5.2.2.
We use the same definition for lookahead of a run as in the deterministic case.

Recall Proposition 5.1.3 and notice that in the proof the run is fixed and the deter-
minism of the transducer is not used, so it can easily be checked that it is also valid
in the non-deterministic case.

The approach we use to prove Proposition 5.1.6 fails for the non-deterministic
case. In that proof, we bound the lookahead using a function depending only on the
transducer. The example already shown in Figure 5.7 illustrates that this cannot
be done for non-deterministic two-way transducers. We prove a weaker version of
Proposition 5.1.6, which in turn is the element that induces the need for a weaker
version of Theorem 5.1.2 in the non-deterministic case.

Next we show that from a given run of a bounded-to-one non-deterministic two-
way transducer we can get another one with small lookahead and without losing
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compression, namely, the ratios of the new run are not greater than the ratios of the
original. For that purpose, we introduce the concept of a shortcutter. A shortcutter
is a word that contains shortcuts, which are runs between a given pair of states that
enter and leave the word on its right end and have small output.

a1 a2 a3 a4 an

p

q

Figure 5.8: Shape of a run showing a shortcut of w “ a1 ¨ ¨ ¨ an.

Definition. Fix a non-deterministic two-way transducer T “ xQ,A, δ, q0, F y. A
shortcut is an element of Q ˆ Q ˆ ttrue, falseu ˆ A˚. A word w contains a shortcut
xp, q, c, vy if and only if there is a run over w xp, |w|y |vÝÝÑ xq, |w| ` 1y where c is true
if and only if the run visits a final state. A shortcutter is a word w such that any
left extension vw has no better shortcuts, namely, if vw has a shortcut xp, q, c, vy,
then w has a shortcut xp, q, c, v1y with |v1| ď |v|.

Lemma 5.2.3. Every non-deterministic two-way transducer has a shortcutter.

Proof. There are a bounded number of choices for p, q and c in the shortcut. For
each such choice either there is no v such that xp, q, c, vy is a shortcut or there is a
minimum one. Notice that any shortcut of w is also a shortcut of a left extension
uw of w. This monotonicity proves that all minimums are among the shortcuts of
some word.

Lemma 5.2.4. Let T “ xQ,A, δ, q0y be a bounded-to-one non-deterministic two-way
transducer and

xq0, 1y |v1ÝÝÑ xp, ny |vÝÝÑ xq, n ` 1y |yÝÝÑ 8

be a run over an infinite word x such that ρ “ xp, ny |vÝÝÑ xq, n ` 1y only visits
positions less than or equal to n. Let w “ xrn ´ |w| ` 1..ns be a shortcutter. Then,
there is another run

xq0, 1y |v1ÝÝÑ xp, ny |v1

ÝÝÑ xq, n ` 1y |yÝÝÑ 8

where ρ1 “ xp, ny |v1ÝÝÑ xq, n` 1y visits only positions in the range rn´ |w| ` 1, ns and
|v1| ď |v|. Furthermore, ρ visits a final state if and only if ρ1 does.

Proof. Let m be the least position visited by ρ. If m ě n ´ |w| ` 1, then setting
ρ1 “ ρ finishes the proof. Otherwise, consider the word uw occurring from position
m to position n in x. Since this is a left extension of w, by definition of shortcutter,
there exists a ρ1 with the desired properties.

A consequence of |v1| ď |v| in the statement of the lemma, is that the first-hit
ratio of the run using ρ at any position m is not greater than the first-hit ratio of
the run using ρ1 at m. For m ď n, both ratios are the same, because the runs up to
the first visit to position m coincide. For m ě n, ρ1 outputs an extra v1, but does
not output v, so the total length of the output up to m does not increase.
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Proposition 5.2.5. For any accepting run ρ of a bounded-to-one non-deterministic
two-way transducer over a normal infinite word, there is another accepting run ρ1

over the same input such that the first-hit ratio of ρ1 at any position n is not greater
than the first-hit ratio of ρ at n, and the lookahead Λ of ρ1 satisfies Λpnq “ opnq.

Notice that we do not state any relation between ρ and ρ1 with respect to the
middle and last-hit ratios. However, in the proof of Theorem 5.2.2 it is clear that
since all ratios become equal and the first-hit ratio is always the least of them, it is
also true that the other ratios do not increase after the entire process.

Proof. Let x be the normal infinite word used as input and T be the bounded-to-
one non-deterministic two-way transducer used for ρ. By Lemma 5.2.3, let w be a
shortcutter for T . Applying Lemma 5.2.4 for w to ρ iteratively, we can get a run
ρ1 that never crosses an occurrence of w from right to left. Notice that ρ1 is also
accepting because each application of Lemma 5.2.4 replaces a part of the run visiting
a final state with another run that also visits a final state, so for any position n if
there is a visit to a final state in ρ after the first visit to position n, then the same
is true for ρ1. As is remarked after Lemma 5.2.4, its application does not increase
the first-hit ratio at any position. Finally, as we stated, w acts like a valve for ρ1, so
by applying Lemma 2.3.5 on x and w we can conclude that the Λ, the lookahead of
ρ1, satisfies Λpnq “ opnq.

Proof of Theorem 5.2.2. By hypothesis, ρ is an accepting run of a bounded-to-one
non-deterministic two-way transducer. Apply Proposition 5.2.5 to get ρ1. The first-
hit ratio of ρ1 is not greater than the first-hit ratio of ρ, which is in turn not greater
than the middle and last-hit ratios of ρ, and by Proposition 5.1.3 all ratios of ρ1 are
equal, then each ratio of ρ1 is not greater than the corresponding ratio of ρ.

Definition. An infinite word is compressible by a non-deterministic two-way trans-
ducer if and only if there is a run of the transducer over that infinite word such that
any of its first-hit, middle or last-hit ratios is less than 1.

Theorem 5.2.6. Normal infinite words are not compressible by bounded-to-one non-
deterministic two-way transducers.

In the deterministic case, we only use the fact that a run over a normal infinite
word has a bounded number of visits (Proposition 5.1.1) to prove that its middle
ratio is not less than 1. In the non-deterministic case, as we remarked above, this
property does not hold on every run. However, in the same way we did for other
properties, we can modify the run in a way that does not increase the ratios and has
a bounded number of visits to each position. This enables the proof of Theorem 5.1.7
for deterministic two-way transducers to apply also to the non-deterministic case.

Lemma 5.2.7. Given an accepting run ρ of a non-deterministic two-way transducer
T “ xQ,A, δ, q0, F y with lookahead Λpnq “ opnq there is another accepting run ρ1 of
the same transducer over the same input such that its lookahead Λ1pnq “ opnq, the
last-hit ratio of ρ1 at any position n is no greater than the last-hit ratio of ρ at n

and ρ1 visits each position at most 2|Q| times.

Proof. If ρ contains a run xq, ny |v1ÝÝÑ xq, ny |v2ÝÝÑ xq, ny with three visits to the
same state at the same position, we can replace it by just one of the two runs
xq, ny |v1ÝÝÑ xq, ny or xq, ny |v2ÝÝÑ xq, ny, keeping always one with a visit to a final
state, if there is one. It is straightforward to see that this change does not increase
last-hit ratio or the lookahead of any position. Applying this procedure for each
position iteratively, the process converges to an accepting run ρ1 that does not visit
more than twice the same position at the same state.
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Proof of Theorem 5.2.6. Fix a run ρ of a bounded-to-one non-deterministic two-way
transducer over a normal infinite word. Apply Proposition 5.2.5 to get a new run
ρ1 with lookahead Λ1pnq “ opnq and first-hit ratio no greater. By Proposition 5.1.3,
ρ1 has all ratios equal, and thus, each is no greater than the corresponding ratio of
ρ. Applying Lemma 5.2.7 to ρ1, we get a new run ρ2 with lookahead Λ2pnq “ opnq,
last-hit ratio no greater than ρ1 and a bounded number of visits to each position.
By Proposition 5.1.3 again, ρ2 has all ratios equal, and thus, each is not greater than
the corresponding ratio of ρ1, and therefore also of ρ. The proof of Theorem 5.1.7
applies to ρ2, finishing the proof.

5.3 Two-way transducers with counters

In this section we show that two-way transducers with unbounded memory, even
in the limited sense of a single counter, do not admit a definition of compressibility
based on the ratios we use in the previous sections.

We illustrate this by giving an example of a bounded-to-one deterministic 1-
counter two-way transducer such that for any input infinite word, the middle and
last-hit ratio are not even well defined, while the first-hit ratio is always strictly less
than 1.

Definition. A (deterministic) 1-counter two-way transducer is a tuple
T “ xQ,A, δ, q0y, where

• Q is a finite set of states,

• A is the input and output alphabet,

• δ : Q ˆ pA Y t$uq ˆ ttrue, falseu Ñ tŸ,Źu ˆ Z ˆ A˚ ˆ Q is the transition
function,

• q0 P Q is the starting state.

such that if δpp,$, zq “ xd, i, v, qy then d “ Ź. The transducer T processes infinite
words over A: if at state p symbol a is processed and z represents the counter being
equal to 0, T moves to state q, moves the reading head to the left or right depending
on d, outputs v and adds i to the counter, where xd, i, v, qy “ δpp, a, zq.

Let x “ a1a2a3 ¨ ¨ ¨ be a fixed infinite word over A and a0 “ $. Whenever
xd, i, v, qy “ δpp, am, zq, we write xp,m, ky |vÝÝÑ xq, n, k` iy where n “ m´1 if d “ Ÿ,
n “ m ` 1 if d “ Ź and z “ true ô k “ 0.

Finite and infinite runs are defined the same as in two-way transducers without
counters with configurations including a third variable to represent the value con-
tained in the counter, as explained above. An infinite run is accepting if it starts
with xq0, 1, 0y.

We write T pxq to refer to the word output by the accepting run xq0, 1, 0y |T pxqÝÝÝÝÑ 8
over x. The function which maps each input x to T pxq is said to be realized by the
transducer.

Definition. A 1-counter two-way transducer T is bounded-to-one if and only if the
function x ÞÑ T pxq is bounded-to-one.

Figure 5.9 shows a deterministic 1-counter two-way transducer working over
the binary alphabet t0, 1u. In this case, an arrow from p to q labeled z, a d v, i

represents a transition leaving from p when reading a and z P t0,Hu is 0 if and only
if the counter is 0, moving the input head in direction d, adding i to the counter,
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making output v and moving to state q, that is, if δ is the transition function of the
transducer, δpp, a, zq “ xd, v, i, qy where 0 represents true and H represents false.
The rest of the representation is as in previous examples.

0 1
H, 0Ÿ0,`3
H, 1Ÿ1,`3H,$Źλ,´1

0, 0Ÿ0,`3
0, 1Ÿ1,`3

H, 0Źλ,´1
H, 1Źλ,´1

Figure 5.9: Deterministic 1-counter two-way transducer with bad ratios.

The depicted transducer moves the input head independently of the input. The
input head starts at position 1, moves to the left-end marker and then iterates
moving forward to position 3n and back to the left-end marker, for n “ 1, 2, 3, . . . .
State 0 represents going forward and state 1 going backwards. Change from 0 to 1
is detected by the counter being 0. Change from 1 to 0 is detected by reading the
left-end marker. While going backwards, we increment the counter by 3, ensuring
next time it goes forward, the transducer goes 3 times further. This movement
makes infinitely many visits to all positions, which implies that there is no last visit
to any position, thus making it impossible to define middle or last-hit ratios.

The transducer makes no output going forward, and copies the input when going
backwards. This implies that the first visit to position 3n the total output done is
řn´1

n1“1 3n1 “ p3n ´ 1q{2 making the first-hit ratio at any position n slightly less than
1{2, and converge in the limit to 1{2.

Figure 5.10 shows the position of the input head along the beginning of a run,
highlighting the parts of the run where it copies the input.

0 1 3 9 27

Figure 5.10: Shape of the run.

From input x the output is ũ1ũ2ũ3 ¨ ¨ ¨ where un “ xr1..3ns and ũn is the word
obtained by reversing un. It is easy to check that the realized function is thus
invertible, making the transducer one-to-one.

Notice that changing the powers of 3 to powers of b ą 3 we obtain a family of
examples each with first-hit ratio 1{pb ´ 1q. This shows that the first-hit ratio can
be arbitrarily close to 0 while the middle and last-hit ratio are undefined.



CHAPTER 6

Selection

In this chapter we consider the preservation of normality under a family of func-
tions called selection functions.

A celebrated theorem by V. N. Agafonov in 1968 describes an operation by a
finite automaton that selects symbols from an infinite word by looking at its prefixes
and by recognizing those that belong to a rational set. In case the word is normal,
the word obtained by the selected symbols is normal as well. Agafonov published
it in [Aga68], but unfortunately the proof there depends on work only available
in the Russian literature. M.O’Connor [O’C88] gave another proof of Agafonov’s
theorem using automata predictors, and Broglio and Liardet [BL92] generalized it
to arbitrary alphabets.

The first result in this chapter, Theorem 6.1.1, is an alternative proof of Aga-
fonov’s Theorem using the characterization of normality in terms of incompressibil-
ity. The presentation here improves the one we published in [BH13]. The second
result, Theorem 6.1.2, complements Agafanov’s theorem. We show that selection
based on suffixes, as opposed to prefixes, also preserves normality. However, we
show that there are simple two-sided selection rules that do not preserve normality
and we exhibit one. These results are included in [BCH13].

It is known that Agafonov’s theorem fails for slightly more powerful selection
functions. Merkle and Reimann [MR06] showed that normality is preserved nei-
ther by selection using deterministic one-counter sets (recognized by deterministic
one-counter automata) nor by selection using linear sets (recognized by one-turn
pushdown automata). A characterization of the functions that preserve normality
is still unknown. This is an open problem in that deserves further investigation.

The remainder of the chapter is organized as follows. Section 6.1 introduces the
main definitions of the selection rules we study and formally states the mentioned
results. In Sections 6.2, 6.3 and 6.4 we present the proofs for the result on prefix
selection, suffix selection and two-sided selection, respectively.

6.1 Selection by rational languages

We consider the selection of symbols from an infinite word, deciding one after
the other, and define a word with the selected symbols. A selection rule is a function
f on finite or infinite words such that fpxq is a subsequence of symbols of x. The
question we tackle is which selection rules preserve normality, that is, which families

77
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of functions guarantee that fpxq is normal when x is normal. Notice that if it
is allowed to read the symbol being decided, it would be possible to “select only
zeroes”, or yield similar rules that do not preserve normality.

We call prefix selection to those functions that look only at symbols before the
position being decided. We call suffix selection to those functions looking only at
symbols after the position being selected. And we call two-sided selection to those
looking at both sides. Our presentation of prefix selection subsumes the selection
defined by Agafonov in [Aga68]. Suffix selection and two-sided selection are new.

Definition. Let x “ a1a2a3 ¨ ¨ ¨ be an infinite word over alphabet A. Let L Ď A˚

be a set of finite words over A and X Ď Aω a set of infinite words over A.

The word obtained by prefix-selection of x by L is x ↾ L “ app1qapp2qapp3q ¨ ¨ ¨ ,
where ppjq is the j-th smallest integer in the set ti : a1a2 ¨ ¨ ¨ ai´1 P Lu.

The word obtained by suffix-selection of x by X is x ↿ X “ app1qapp2qapp3q ¨ ¨ ¨ ,
where ppjq is the j-th smallest integer in the set ti : ai`1ai`2ai`3 ¨ ¨ ¨ P Xu.

To fix notation let us recall the definition of a finite automaton, and the definition
of a rational set of finite or infinite words.

Definition. A finite automaton is a tuple S “ xQ,A, δ, q0, F y where

• Q is the set of states,

• A is the input alphabet,

• δ Ď Q ˆ A ˆ Q is a finite transition relation,

• q0 P Q is the starting state and

• F Ď Q is the set of accepting states

The automaton is deterministic if δ is a function Q ˆ A Ñ Q. The automaton
processes symbols as the corresponding transducer, disregarding the output. The
runs and accepting runs are defined as in the case of transducers.

Definition. A set of finite words L is rational if there is a deterministic finite
automaton S “ xQ,A, δ, q0, F y such that L “ tu : q P F, q0

uÝÑ qu. A set of
infinite words X is rational if there is a (possibly non-deterministic) finite automaton
S “ xQ,A, δ, q0, F y such that X “ tx : there is an accepting run q0

xÝÑ 8 of T u.

We prove Agafonov’s theorem and the counterpart theorem for suffix selection.
However, there are simple two-sided selection rules that do not preserve normality.

Theorem 6.1.1 (Agafonov [Aga68]). Prefix selection by a rational set preserves
normality.

Theorem 6.1.2. Suffix selection by a rational set preserves normality.

Theorem 6.1.3. There are extremely simple two-sided selection rules that do not
preserve normality.

To prove each of these three theorems we use the characterization of normality
given by Theorem 2.5.1, which considers the limit frequency of words in a given
infinite word, disregarding the positions where these words occur.
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6.2 Prefix selection

We give a proof of Theorem 6.1.1. The presentation here improves the one we
published in [BH13].

Lemma 6.2.1. If there is an accepting run of a deterministic finite automaton over
a normal infinite word that visits infinitely often exactly the states tq1, . . . , qnu, then,
for each of those states qi and word u, there is another one of those states qj such
that qi

uÝÑ qj.

Proof. Let Q8 “ tq1, . . . , qnu be the set of states visited infinitely often in the
accepting run ρ. Let ρ1 be a suffix of ρ such that only states in Q8 are visited in ρ1.
Since all are visited infinitely often in ρ1, it is clear that for any pair qi, qj P Q8 there
is a subrun from qi to qj . By way of contradiction, assume the statement does not
hold. Without loss of generality, assume there is u such that q1

uÝÑ p and p R Q8.
We build a word u1u2 ¨ ¨ ¨un such that being the input to any state in Q8, it goes
outside Q8. Let u1 “ u, so q1

uÝÑ p. Inductively, consider the state p1 such that
qi`1

u1u2¨¨¨uiÝÝÝÝÝÑ p1. If p1 P Q8 then set u1
i`1 such that p1 u1

i`1ÝÝÝÑ q1 and ui`1 “ u1
i`1u

such that qi`1
u1u2¨¨¨uiui`1ÝÝÝÝÝÝÝÝÑ p. If p1 R Q8, set ui`1 “ λ. In both cases, we obtain

qi`1
u1u2¨¨¨uiui`1ÝÝÝÝÝÝÝÝÑ r with r R Q8. Then, for each subrun of the form r1

u1u2¨¨¨unÝÝÝÝÝÝÑ r2,
either r1 is not in Q8, or r1 “ qi and qi

u1u2¨¨¨uiÝÝÝÝÝÑ r with r R Q8. By normality of
the input word, there are infinitely many subruns of the form r1

u1u2¨¨¨unÝÝÝÝÝÝÑ r2 in ρ1.
Hence, some state not in Q8 is visited infinitely often in ρ1, hence in ρ, contradicting
the assumption.

Lemma 6.2.2. If a1a2a3 ¨ ¨ ¨ is a normal infinite word and q0
a1ÝÑ p1

a2ÝÑ p2
a3ÝÑ ¨ ¨ ¨

is the accepting run of a deterministic finite automaton that visits infinitely often
state q1, then,

lim inf
nÑ8

|ti : i ď n, pi “ q1u|
n

ą 0.

Proof. Let Q8 “ tq1, . . . , qnu be the set of states visited infinitely often in the
accepting run ρ. Let ρ1 be a suffix of ρ such that only states in Q8 are visited in
ρ1. Since all the states in Q8 are visited infinitely often in ρ1, it is clear that for
any pair qi, qj P Q8 there is a subrun from qi to qj . We build a word u1u2 ¨ ¨ ¨un

such that when it is the input to any state in Q8, it visits q1. Let u1 “ λ, so
q1

u1ÝÑ q1. By Lemma 6.2.1, qi`1
u1u2¨¨¨uiÝÝÝÝÝÑ qj for some j, so let ui`1 be such that

qi`1
u1u2¨¨¨uiÝÝÝÝÝÑ qj

ui`1ÝÝÝÑ q1. Since the automaton is deterministic, each time a subrun
of the form r1

u1u2¨¨¨unÝÝÝÝÝÝÑ r2 occurs in ρ1, state q1 is visited, because if r1 “ qi, the
prefix qi

u1u2¨¨¨uiÝÝÝÝÝÑ q1 visits q1 by definition. By normality of the input, u1u2 ¨ ¨ ¨un

occurs with a fixed positive frequency ε, so q1 is visited at least with that same
minimum frequency in ρ1, and therefore in ρ.

Lemma 6.2.3. For any set of finite words L, the function x ÞÑ xx ↾ L, x ↾ A˚zLy is
one-to-one.

Proof. Let y1 “ x ↾ L and y2 “ x ↾ A˚zL. By definition, y1 contains some sym-
bols of x, in the same relative order, and y2 contains the complement, also in the
same relative order. It is possible to reconstruct x by interleaving appropriately
the symbols in y1 and y2. For each i ě 1, the i-th symbol of x comes from y1 if
and only if x ↾ pi ´ 1q P L. Thus, there is a unique x such that y1 “ x ↾ L and
y2 “ x ↾ A˚zL.
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We now introduce two-output transducers. These are regular transducers with
two output tapes instead of one. In terms of compressibility they are equivalent to
regular transducers. We give the proof for the deterministic case. It is straightfor-
ward to extend it to other cases.

Definition. A (deterministic) two-output transducer is a tuple T “ xQ,A,B, δ, q0y,
where each element is as in deterministic transducers except the transition function
δ : Q ˆ A Ñ B˚ ˆ B˚ ˆ Q, which gives two output words.

T processes infinite words over A: if at state p symbol a is processed, T moves
to state q and outputs v on tape 1 and w on tape 2, where xv, w, qy “ δpp, aq. In this
case, we write p a|v,wÝÝÝÑ q. Finite runs, infinite runs and accepting runs are defined as
for deterministic transducers. When putting together several steps, concatenation
of each output is done component-wise; thus, the concatenation of the two runs

p0
u1|v1,w1ÝÝÝÝÝÑ p1 and p1

u2|v2,w2ÝÝÝÝÝÑ p2 is denoted by p0
u1u2|v1v2,w1w2ÝÝÝÝÝÝÝÝÝÝÑ p2.

We write T pxq to refer to the 2-tuple of infinite words such that q0
x|T pxqÝÝÝÝÑ 8

Definition. A two-output transducer T is bounded-to-one if the function x ÞÑ T pxq
is bounded-to-one.

Definition. An infinite word x “ a1a2a3 ¨ ¨ ¨ is compressible by a two-output trans-
ducer if its accepting run q0

a1|v1,w1ÝÝÝÝÝÑ q1
a2|v2,w2ÝÝÝÝÝÑ q2

a3|v3,w2ÝÝÝÝÝÑ q3 ¨ ¨ ¨ satisfies

lim inf
nÑ8

p|v1v2 ¨ ¨ ¨ vn| ` |w1w2 ¨ ¨ ¨wn|q log |B|
n log |A| ă 1.

Theorem 6.2.4. An infinite word is compressible by a bounded-to-one two-output
transducer if and only if it is compressible by a bounded-to-one deterministic trans-
ducer.

Proof. The “if” part is immediate by not using one of the output tapes. For the
“only if” part, let x “ a1a2a3 ¨ ¨ ¨ be an infinite word over A compressible by a
bounded-to-one two-output transducer T “ xQ,A,B, δ, q0y. The idea is to interleave
both outputs in blocks of m symbols with one extra symbol before each block that
identifies which output it came from. We maintain in the finite memory (the states)
a queue buffer for each output tape of up to m symbols. Each time we have at least
m symbols from the same tape, we output as many blocks as possible and drop the
corresponding symbols from the buffer.

Let b1, b2 P B be different symbols. We use bi to mark that a given output block
comes from tape i. Let Om : B˚ ˆ B Ñ B˚ and Lm : B˚ Ñ B˚, be such that, if the
current buffer contains u, Ompu, bq is what is to be output, adding the extra symbol
b before each block of m symbols, and Lmpuq is what is left in the buffer. Namely,
for |ui| “ m and |v| ă m,

Ompu1u2 ¨ ¨ ¨ukv, bq “ bu1bu2 ¨ ¨ ¨ buk and Lmpu1u2 ¨ ¨ ¨ukvq “ v.

For each positive integer m, let Tm “ xQ ˆ Băm ˆ Băm, A,B, δm, xq0, λ, λyy be a
deterministic transducer with

δmpxp, v, wy, aq “ xxq, Lmpvv1q, Lmpww1qy, Ompvv1, b1qOmpww1, b2qy

where δpp, aq “ xq, v1, w1y.
From an output y of Tm we can get a unique tuple of outputs y1, y2 of T , where yi

is the concatenation, in order, of the last m symbols of each block of m` 1 symbols
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in y that starts with bi. Therefore, from T being bounded-to-one we can conclude
each Tm is bounded-to-one. Fix an input word x and consider the accepting run of
T over x,

q0
a1|v1,w1ÝÝÝÝÝÑ q1

a2|v2,w2ÝÝÝÝÝÑ q2
a3|v3,w3ÝÝÝÝÝÑ q3 ¨ ¨ ¨

and the accepting run of Tm over x,

xq0, λ, λy a1|v1
1ÝÝÝÑ C1

a2|v1
2ÝÝÝÑ C2

a3|v1
3ÝÝÝÑ C3 ¨ ¨ ¨

where each Ci P tqiu ˆBăm ˆBăm. By construction, the output of Tm has at most
one extra symbol per m symbols of some output of T ,

|v1
1v

1
2 ¨ ¨ ¨ v1

n| ď m ` 1

m
p|v1v2 ¨ ¨ ¨ vn| ` |w1w2 ¨ ¨ ¨wn|q .

By compressibility of x,

lim inf
nÑ8

p|v1v2 ¨ ¨ ¨ vn| ` |w1w2 ¨ ¨ ¨wn|q log |B|
n log |A| ă 1.

Then, let m be large enough such that the following inequality holds:

lim inf
nÑ8

p|v1v2 ¨ ¨ ¨ vn| ` |w1w2 ¨ ¨ ¨wn|q log |B|
n log |A|

m ` 1

m
ă 1.

Together with the previous claim, this implies Tm compresses x.

Proof of Theorem 6.1.1. Assume x P Aω is normal and L Ď A˚ is rational such
that x ↾ L is infinite and not normal. By Lemma 6.2.3, x ÞÑ xx ↾ L, x ↾ A˚zLy
is one-to-one. Since x ↾ L is not normal, by Theorem 4.1.2 there is a bounded-
to-one deterministic transducer T with the same input and output alphabets that
compresses it. Therefore, the function x ÞÑ xT px ↾ Lq, x ↾ A˚zLy is bounded-to-
one. We can compose the automaton S that accepts L with T to get a two-output
transducer T 1 that realizes that function. It carries out S and T in parallel, sending
each symbol from the input to S. If the symbol is not selected, it is output in tape
2. Else, the symbol feeds T which produces an output in tape 1.

Let S “ xQS , A, δS , q0,S , F y be a deterministic automaton recognizing the ratio-
nal set L and let T “ xQT , A,A, δT , q0,T y be a transducer compressing x ↾ L. The
transducer T 1 is given by T 1 “ xQS ˆ QT , A,A, δ, xq0,S , q0,T yy where

δ “ txps, pty
a|λ,aÝÝÝÑ xqs, pty : ps R F, ps

aÝÑ qsu Y

txps, pty
a|v,λÝÝÝÑ xqs, qty : ps P F, ps

aÝÑ qs, pt
a|vÝÝÑ qtu

and p a|v,wÝÝÝÑ q stands for the tuple xp, a, v, w, qy.
Now, if xq0,S , q0,T y a1|v1,w1ÝÝÝÝÝÑ xq1,S , q1,T y a2|v2,w2ÝÝÝÝÝÑ xq2,S , q2,T y a3|v3,w3ÝÝÝÝÝÑ ¨ ¨ ¨ is the

accepting run of x “ a1a2a3 ¨ ¨ ¨ on T 1, then q0,S
a1ÝÑ q1,S

a2ÝÑ q2,S
a3ÝÑ ¨ ¨ ¨ is a run

over S by construction. Also by construction qi,S R F implies wi “ ai and vi “ λ

and qi,S P F implies wi “ λ. Then,

lim inf
nÑ8

p|v1v2 ¨ ¨ ¨ vn| ` |w1w2 ¨ ¨ ¨wn|q log |A|
n log |A| “ lim inf

nÑ8

ř

iďn:qi,SPF |vi| ` ř

iďn:qi,SRF 1

n

By x ↾ L being infinite and Lemma 6.2.2, there is ε ą 0 such that

lim inf
nÑ8

|ti ď n : qi,S P F u|{n “ ε.
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Let n1, n2, . . . be an increasing sequence such that

lim
jÑ8

|ti ď nj : qi,S P F u|{nj “ ε

and apply it to the inferior limit above, getting

lim inf
nÑ8

ř

iďn:qi,SPF |vi| ` ř

iďn:qi,SRF 1

n
ď lim inf

jÑ8

ř

iďnj :qi,SPF |vi| ` ř

iďnj :qi,SRF 1

nj

Since limjÑ8
ř

iďnj :qi,SRF 1{nj “ p1 ´ εq and z “ limjÑ8

ř

iďnj :qi,SPF |vi|

εnj
ă 1 because

T compresses x ↾ L, we get

lim inf
jÑ8

ř

iďnj :qi,SPF |vi| ` ř

iďnj :qi,SRF 1

nj
ď lim inf

jÑ8

εnjz ` p1 ´ εqnj

nj

“ εz ` p1 ´ εq
ă 1.

Putting all the inequalities above together yields,

lim inf
nÑ8

p|v1v2 ¨ ¨ ¨ vn| ` |w1w2 ¨ ¨ ¨wn|q log |A|
n log |A| ă 1,

which means T 1 compresses x. But by Theorem 6.2.4 and Theorem 4.1.4, this is
impossible. Therefore, the assumption that x ↾ L is not normal must be false.

6.3 Suffix selection

The proof of Theorem 6.1.2 is similar to the one for prefix selection, but it has
additional subtleties. Since the automaton that recognizes rational sets of infinite
words is not necessarily deterministic, we need variants of Lemmas 6.2.1 and 6.2.2.
To do so we use the characterization of rational sets of infinite words that provides
co-determinism instead of determinism given by Carton and Michel [CM03].

Definition. A Büchi automaton is a tuple S “ xQ,A, δ,Q0, F y where

• Q is the set of states,

• A is the input alphabet,

• δ Ď Q ˆ A ˆ Q is a finite transition relation,

• Q0 Ď Q is the set of starting states

• F Ď Q is the set of accepting states

The processing of the input symbols and the definition of the run coincides with
those for a non-deterministic automaton. A run is accepting if it starts at any of
the starting states and visits an accepting state infinitely often.

Note that we allow Büchi automata to have several starting states. This needed
is by Theorem 6.3.1.

Theorem 6.3.1 (Carton and Michel [CM03]). Any rational set of infinite words is
accepted by a prophetic automaton.
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Proposition 6.3.2 ([CM03]). A prophetic automaton is co-deterministic. That is,
if q is a state in at least one infinite run and a is a symbol, there is exactly one state
p such that p aÝÑ q.

Proof. Since q is a state in at least one infinite run assume q xÝÑ 8. Let p axÝÑ 8 be
the only run over ax. Since it contains as a suffix a run over x, and there is only
one such run, the second state in the run must be q, and thus p aÝÑ q. By way of
contradiction, assume p aÝÑ q and p1 aÝÑ q. Then, p axÝÑ 8 and p1 axÝÑ 8, contradicting
the condition of the prophetic automaton.

The next lemmas do the job of Lemmas 6.2.1 and 6.2.2 in the opposite direction.
The proofs are almost the same as the ones of Lemmas 6.2.1 and 6.2.2 but using the
fact that prophetic automata are co-deterministic instead of deterministic.

Lemma 6.3.3. If there is an accepting run of a prophetic automaton over a normal
infinite word that visits infinitely often exactly the states tq1, . . . , qnu, then, for each
of those states qj and each word u, there is another one of those states qi such that
qi

uÝÑ qj.

Proof. Let Q8 “ tq1, . . . , qnu be the set of states visited infinitely often in the
accepting run ρ. Let ρ1 be a suffix of ρ such that only states in Q8 are visited in
ρ1. Since all are visited infinitely often in ρ1, it is clear that for any pair qi, qj P Q8

there is a subrun from qi to qj . By way of contradiction, assume the statement does
not hold, and without loss of generality, assume there is u such that p uÝÑ q1 and
p R Q8. We build a word unun´1 ¨ ¨ ¨u1 such that finishing its process in any state
in Q8, it ensures a visit to a state outside Q8. Let u1 “ u, so p u1ÝÑ q1. Inductively,
consider the only state p1 such that p1 uiui´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ qi`1. If p1 P Q8 then set u1

i`1

such that q1
u1

i`1ÝÝÝÑ p1 and ui`1 “ uu1
i`1 such that p ui`1ui¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ qi`1. If p1 R Q8, set

ui`1 “ λ. In both cases, we obtain r ui`1ui¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ qi`1 with r R Q8. Thus, each time
there is a subrun r1

unun´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÝÑ r2, either r2 is not in Q8, or r2 “ qi and there is a
prefix of the subrun r uiui´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ r2 with r R Q8. By normality of the input word,
there are infinitely many subruns of the form r1

unun´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÝÑ r2 in ρ1. Then, some
state not in Q8 is visited infinitely often in ρ1, and therefore in ρ, contradicting the
assumption.

Lemma 6.3.4. If a1a2a3 ¨ ¨ ¨ is a normal infinite word and p0
a1ÝÑ p1

a2ÝÑ p2
a3ÝÑ ¨ ¨ ¨

is the accepting run of a prophetic automaton that visits infinitely often state q1,
then,

lim inf
nÑ8

|ti : 1 ď i ď n, pi “ q1u|
n

ą 0.

Proof. Let Q8 “ tq1, . . . , qnu be the set of states visited infinitely often in the
mentioned run ρ. Let ρ1 be a suffix of ρ such that only states in Q8 are visited in ρ1.
Since all are visited infinitely often in ρ1, it is clear that for any pair qi, qj P Q8 there
is a subrun from qi to qj . We build a word unun´1 ¨ ¨ ¨u1 such that finishing its process
in any state in Q8, it ensures a visit to q1. Let u1 “ λ, so q1

u1ÝÑ q1. By Lemma 6.3.3,
qj

uiui´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ qi`1 for some j, so let ui`1 be such that q1
ui`1ÝÝÝÑ qj

uiui´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ qi`1.
Then, since the automaton is co-deterministic, each time r1

unun´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÝÑ r2 occurs
in ρ1, state q1 is visited, because if r2 “ qi, the suffix q1

uiui´1¨¨¨u2u1ÝÝÝÝÝÝÝÝÑ r2 visits q1 by
definition. By normality of the input, unun´1 ¨ ¨ ¨u2u1 occurs with a fixed positive
frequency ε, so q1 is visited at least with that minimum frequency on ρ1, and therefore
on ρ.
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When selecting with a rational set of infinite words, we need to check a prophetic
automaton. Notice that the unique run for the input x contains as suffixes the
unique runs for all the suffixes of x. Moreover, the run over x visits accepting states
infinitely often if and only if so does each of the runs over the suffixes of x. Thus, a
symbol is selected according to the state at which prophetic automaton arrives after
processing it. This mirrors of prefix selection by a finite automata, where a symbol
is selected according to the state that the automaton leaves before processing it.

It is straightforward to generalize two-output transducers to make them non-
deterministic and get an analogous of Theorem 6.2.4. However Lemma 6.2.3 cannot
be used because it is based on the determinism of the automaton recognizing the
rational set. A mirror Lemma 6.2.3 would need a finishing state, which does not
exist for infinite runs. Moreover, functions of the form x ÞÑ xx ↿ X,x ↿ AωzXy
are not necessarily bounded-to-one, as the following example illustrates. Consider
A “ t0, 1u and X “ 01Aω the set of binary infinite words that start with 01. The
selection rule induced by X is then the following: select symbol at position i if
and only if, the two symbols at positions i ` 1 and i ` 2 are 0 and 1, respectively.
Consider words x “ 000 ¨ ¨ ¨ 000010101 ¨ ¨ ¨ that start with a positive number of zeroes,
and then alternate zeroes and ones. It is clear that all of them get mapped by
x ÞÑ xx ↿ X,x ↿ AωzXy to x0111 ¨ ¨ ¨ , 000 ¨ ¨ ¨y “ x01ω, 0ωy.

To solve the last problem we insert the current state once in a while in the output
in a predictable way. We also add a way to synchronize the two outputs, so that
for each state we can calculate the two prefixes that were output up to that point.
Then, the whole splitting process is one-to-one, because from a finishing state and
two finite words we can uniquely recover the originating word by doing the same as
in the proof of Lemma 6.2.3, but from right to left.

To add the identification for the state and the synchronization, we need to get
inside the two-output merging done in the proof of Theorem 6.2.4, so each time
we insert a block from one of the tapes, we also write the current state and the
number of symbols left in the buffer of the other tape. This increases the overhead
of the interleaving from 1 symbol per m symbols of input to k` rlogms symbols per
m symbols of input, for some constant k required to encode the states. However,
pk ` rlogmsq{m is also arbitrarily close to 0, so compressibility is maintained in the
same way as in the proof of Theorem 6.2.4.

Proof of Theorem 6.1.2. Assume x P Aω is normal and X is a rational set of infinite
words. By Theorem 6.3.1, assume X is recognized by the prophetic automaton
S “ xQS , A, δS , Q0,S , F y. Let q0

a1ÝÑ q1
a2ÝÑ q2

a3ÝÑ ¨ ¨ ¨ be the unique run of S over
x “ a1a2a3 ¨ ¨ ¨ . Note that the suffix of the run qi

ai`1ÝÝÝÑ qi`1
ai`2ÝÝÝÑ qi`2

ai`3ÝÝÝÑ ¨ ¨ ¨ is
the unique run of S over the suffix of the input ai`1ai`2ai`3 ¨ ¨ ¨ . If finitely many
of the qi are in F , then none of these runs is accepting and x ↿ X is empty, and
thus, finite. From now on, assume infinitely many of the qi are in F . Symbol ai is
selected if and only if the run qi

ai`1ÝÝÝÑ qi`1
ai`2ÝÝÝÑ qi`2

ai`3ÝÝÝÑ ¨ ¨ ¨ is accepting. Since
we know it visits an accepting state infinitely often, the only additional condition is
that qi P Q0,S .

Assume x ↿ X is not normal and by Theorem 4.1.2, let T “ xQT , A,A, δT , q0,T y
be a bounded-to-one deterministic transducer that compresses it. We build a family
of bounded-to-one non-deterministic transducers Tm where each Tm simulates S

and splits the output into the selected and non-selected parts x1 and x2, passes
x1 through T and then merges T px1q and x2 in blocks of m digits as in the proof
of Theorem 6.2.4. While merging, it adds to blocks from T px1q an indicator of
the state of S where the automaton is standing, and the number of digits left in
the buffer of x2. This allows to recover, for infinitely many prefixes of each of the
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bounded possibilities of x1, a corresponding prefix of x2 and a finishing state. These,
in turn, imply that the originating prefix of x is unique, making the construction
bounded-to-one overall.

As in the proof of Theorem 6.2.4, let b1 and b2 be two different symbols of the
output alphabet A. Let pqSqb1,b2

for a state qS P QS be an injective codification of
the states as integers in the range r0, |QS |´1s, written with exactly rlog |QS |s binary
digits. Let pkqb1,b2

, for k an integer between 0 and m ´ 1, be k written in binary
with exactly rlogms binary digits. To write binary digits over alphabet A, we use
bi`1 to represent digit i. Let Om : A˚ ˆ A˚ Ñ A˚ and Lm : A˚ Ñ A˚ be as follows,
for |ui| “ m and |v| ă m,

Ompu1u2 ¨ ¨ ¨ukv, wq “ wu1wu2 ¨ ¨ ¨wuk and Lmpu1u2 ¨ ¨ ¨ukvq “ v.

Observe that in this case Om can place any word before each block and not just a
single symbol. Let

Tm “ xQS ˆ QT ˆ Aăm ˆ Aăm, δm, xq0, q0,T , λ, λy, F ˆ QT ˆ Aăm ˆ Aămy,

where δm is the set of all transitions

xpS , pT , v, wy a|Ompvv1,b1pqSqb1,b2
p|w|qb1,b2

qÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ xqS , qT , Lmpvv1q, wy

such that pS
aÝÑ qS , qS P Q0,S and pT

a|v1ÝÝÑ qT , together with the set of all transitions

xpS , pT , v, wy a|Ompwa,b2qÝÝÝÝÝÝÝÝÑ xqS , pT , v, Lmpwaqy

such that pS
aÝÑ qS and qS R Q0,S .

Thus, δm is defined as the union of two disjoint cases, the case where the current
symbol is selected and the case when it is not. Since T is deterministic and the way
the buffers behave encoded in Lm and Om is also deterministic, each transition of
Tm is associated in a bijective way with a transition of S. Consequently, each run
of Tm is associated with a unique run of S, and thus, there is exactly one run over
each input. Moreover, the unique run of Tm over x is associated to the unique run
of S over x, and it has the form

xq0, p0, λ, λy a1|v1ÝÝÝÑ xq1, p1, . . .y
a2|v2ÝÝÝÑ xq2, p2, . . .y

a3|v3ÝÝÝÑ ¨ ¨ ¨

where the . . . in the configurations represent the content of the buffers, which we do
not record. Since infinitely many of the qi are in F , by definition of the accepting
states of Tm, infinitely many of the xqi, pi, . . .y in the given run are accepting. Since
xq0, p0, λ, λy is the starting state, the given run is an accepting run of Tm over x.

The output of Tm contains an overhead of at most km “ 1 ` rlog |QS |s ` rlogms
extra symbols per m symbols of the input, while outputting exactly the input on one
case (the non-selecting) and a word asymptotically shorter than the input on the
other case (selecting). By Lemma 6.3.4 and the fact that pm ` kmq{m is arbitrarily
close to 1 for m large enough, it is straightforward to combine the reasoning in the
proof of Theorem 6.2.4 and in the last part of the proof of Theorem 6.1.1 to show
that the given run compresses the input for m large enough. Since it is an accepting
run, Tm for m large enough compresses x.

To see that each Tm is bounded-to-one, assume we are given the output y and
let us show that there are bounded number of possible inputs that produce it. First,
parse y into blocks of m ` 1 or m ` 1 ` rlog |QS |s ` rlogms symbols, where the
length of each block is simply determined by its first symbol being b1 or b2. This
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uniquely reconstructs T px1q and x2 as mentioned above. There are a bounded
number of possible x1 because T is bounded-to-one. Fix one. Each block of T px1q
gives enough information (a pair of a state q and an integer k1) to associate a given
prefix u1 of x1 (the shortest prefix that produces a prefix of T px1q to fill that many
blocks of output) to a unique prefix u2 of x2 (if k2 is the number of finished blocks
of x2 before u1 is processed and k1 is the informed integer, u2 is exactly the first
mk2 ` k1 symbols of x2) and a state of S. Since S is co-deterministic, u1 and u2
can be merged into a unique u, which is a prefix of the original input. This can be
done for arbitrarily large prefixes, because we have the extra information infinitely
often, which uniquely determines an input. In conclusion, if T is t-to-one, each Tm

is also t-to-one.
We showed the existence of a bounded-to-one non-deterministic transducer that

compresses a normal input x. This contradicts Theorem 4.3.1. Therefore, the as-
sumption that x ↿ X is not normal must be false.

6.4 Two-sided selection

We show that a selection rule that looks at both sides of the symbol being
decided, in general, does not preserve normality.

Proof of Theorem 6.1.3. Let x “ a1a2a3 ¨ ¨ ¨ be a normal infinite word over t0, 1u
and let y be the result of selecting all symbols between two zeroes, formally, let
y “ app1qapp2qapp3q ¨ ¨ ¨ where ppjq is the j-th smallest integer in ti : ai´1 “ ai`1 “ 0u.
We show that y is not normal.

Let mn be the length of the shortest prefix of x that contains n instances of
either 000 or 010,

mn “ mintm : |ti : 2 ď i ď m ´ 1, ai´1 “ ai`1 “ 0u| “ nu.

By normality of x, infinitely many symbols are selected. So, each mn is well defined.
Let y “ b1b2b3 ¨ ¨ ¨ and kn “ |ti : 1 ď i ď n ´ 1, bibi`1 “ 00u|. By definition,

kn ě|ti : 1 ď i ď mn ´ 3, aiai`1ai`2ai`3 “ 0000u|`
|ti : 1 ď i ď mn ´ 7, aiai`1ai`2ai`3ai`4ai`5ai`6 “ 0001000u|.

Therefore,

lim
nÑ8

kn

n
ě lim

nÑ8

|ti : 1 ď i ď mn ´ 3, aiai`1ai`2ai`3 “ 0000u|
n

`
|ti : 1 ď i ď mn ´ 7, aiai`1ai`2ai`3ai`4ai`5ai`6 “ 0001000u|

n

ą lim
nÑ8

|ti : 1 ď i ď mn ´ 3, aiai`1ai`2ai`3 “ 0000u|
n

ą lim
nÑ8

|ti : 1 ď i ď mn ´ 3, aiai`1ai`2ai`3 “ 0000u|
mn

mn

n
.

By definition of normality and the properties of limit,

lim
nÑ8

|ti : 1 ď i ď mn ´ 3, aiai`1ai`2ai`3 “ 0000u|
mn

“ 1

24
and lim

nÑ8

mn

n
“ 22.

This proves limnÑ8 kn{n ą 2´4 22 “ 1{4. which implies y is not normal.

The proof above shows the frequency of the word 00 inside y is not the expected
1{4. This suffices to prove that normality is not preserved by this selection rule. A
longer and more precise calculation can show that the frequency is exactly 3{10.
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