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Resumen

Actualmente, los dispositivos basados en materiales semiconductores est�an presentes en

varias aplicaciones de comunicaci�on y procesamiento de informaci�on. En estos dispos-

itivos, las distintas operaciones involucradas implican el desplazamiento controlado de

cargas. Para el almacenamiento de informaci�on, arreglos dem�ultiples capas formadas por

metales magn�eticos, as�� como materiales aislantes, son ampliamente utilizados. En este

�ultimo caso, la informaci�on es registrada y recuperada alreorientar dominios magn�eticos.

La posibilidad de construir dispositivos que uliticen otrapropiedad de las part��culas,

el llamado esp��n, da lugar al campo de la Espintr�onica, a diferencia de la electr�onica

tradicional basada en la carga el�ectrica de las part��culas. M�as a�un, la Espintr�onica

con materiales semiconductores busca el desarrollo de dispositivos h��bridos en los cuales

las tres operaciones b�asicas (l�ogica, comunicaci�on y almacenamiento) puedan estar in-

tegradas en un mismo material. A pesar de los grandes progresos y avances en esta

direcci�on, son varias las preguntas y di�cultades t�ecnicas que quedan por resolver. El

desaf��o, entre otros, es entonces entender c�omo el esp��nse comporta e interacciona en

un material s�olido. El esp��n, al ser una propiedad cu�anticade cualquier part��cula ele-

mental, est�a representada por un estado, susceptible de ser afectado por alguna dada

interacci�on. El esp��n de un electr�on, por ejemplo, puedeno s�olo interaccionar con un

campo magn�etico externo, sino tambi�en acoplarse a otro grado de libertad del electr�on.

La interacci�on de esp��n-�orbita, precisamente, se re�ere al acoplamiento entre el esp��n y

el estado orbital del mismo electr�on.

En la primera parte de esta tesis consideramos este �ultimo efecto, y en particular,

nos ocupamos de un semiconductorbulk de GaAs dopado, y estudiamos la relajaci�on
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Resumen

de esp��n debido a la interacci�on de esp��n-�orbita. Las densidades de dopantes de nuestro

inter�es est�an en un rango cercano a la densidad cr��tica correspondiente a la transici�on

metal-aislante. Por debajo de esta densidad, la propiedades electr�onicas del sistema son

las de un material aislante, mientras que para densidades mayores, aparece un com-

portamiento de tipo met�alico y en consecuencia, la conductividad a temperatura nula

adquiere un valor �nito. En esta tesis estudiamos la relajaci�on de esp��n del lado met�alico

de la transici�on debido a dos clases diferentes de interacci�on esp��n-�orbita. La primera

de ellas est�a asociada a la presencia de impurezas, mientrasque la otra aparece como

consecuencia de la asimetr��a de inversi�on causada por la presencia de dos tipos difer-

entes de �atomos en una celda unidad. Es decir, esta �ultima es una propiedad inherente

de la estructura cristalina del material y es tambi�en conocida como la interacci�on de

Dresselhauso BIA, por sus siglas en ingl�es (bulk inversion asymmetry). Para atacar el

problema de la din�amica de esp��n, desarrollamos una formulaci�on anal��tica basada en la

difusi�on de esp��n de un electr�on en el r�egimen met�alico de conducci�on en la banda de im-

purezas. A trav�es de esta derivaci�on logramos una expresi�on para el tiempo de relajaci�on

de esp��n, dependiente de la densidad de dopantes y de la intensidad de la interacci�on

de esp��n-�orbita. Notablemente, dicha expresi�on est�a exenta de par�ametros ajustables.

Complementamos este esquema y respaldamos los resultados obtenidos anal��ticamente

con el c�alculo num�erico del tiempo de vida del esp��n. Paraello, llevamos a cabo la

evoluci�on temporal de un estado inicial con un esp��n de�nido. De esta manera, el valor

medio del operador de esp��n evoluciona bajo la inuencia del Hamiltoniano completo, que

comprende la interacci�on de esp��n-�orbita y el Hamiltoniano del modelo de Matsubara-

Toyozawa. Este �ultimo describe la banda de impurezas pero no toma en cuenta el esp��n.

El estado inicialmente polarizado, al no ser un autoestado del operador Hamiltoniano

completo, experimenta un decaimiento temporal siguiendo un dado comportamiento, del

cual extraemos el tiempo de relajaci�on de esp��n.

En la segunda parte de esta tesis consideramos un sistema cu�antico de dimensi�on

cero (punto cu�antico o quantum dot) y estudiamos el efecto de la interacci�on de esp��n-

�orbita sobre los autoestados. Elquantum dotest�a alojado entre dos heteroestructuras
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implantadas en un nanohilo de material InAs. Este material presenta la particularidad

que, al ser crecido de manera unidimensional, adquiere una estructura de tipo wurtzita, a

diferencia de la estructura zinc blenda que tiene en su fasebulk. Aqu�� desarrollamos una

soluci�on anal��tica para el quantum dot, considerando la interacci�on de esp��n-�orbita propia

de este tipo de estructuras. M�as precisamente, tomamos la interacci�on de Dresselhaus

de la banda de conducci�on de un material wurtzita que, adem�as de un t�ermino c�ubico

en k -aunque de diferente forma que el de zinc blenda- presenta uno lineal, propio de la

wurtzita. El efecto de un campo magn�etico d�ebil es introducido a trav�es del acoplamiento

de tipo Zeeman. Entre los resultados se incluyen adem�as la estructura de esp��n en el

quantum-dot y el c�alculo del factor g efectivo en funci�on de las dimensiones deldot.

Por �ultimo, estudiamos y calculamos la relajaci�on de esp��n debido a fonones ac�usticos,

teniendo en cuenta para ello los potenciales de fon�on correspondientes a la estructura

wurtzita.

Palabras claves: interacci�on esp��n-�orbita, relajaci�on de esp��n, semiconductores dopados,

nanoestructuras, puntos cu�anticos, fonones
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Summary

Spin relaxation in doped semiconductors and semiconduc-
tor nanostructures

At present, information-processing and communications are mainly based on semi-

conductor devices, within which all the operations imply the controlled motion of small

pools of charge. For information-storage, multilayers of magnetic metals and insula-

tors are predominantly used. In this last case, the information is stored and retrieved by

reorienting magnetic domains. The possibility of buildingdevices that use another prop-

erty of particles, the spin, gives rise the so-called Spintronics, in contrast to the current

charge-based technology. Moreover, semiconductor spintronics pursues the development

of hybrid devices where the three basic operations -logic, communications and storage-

within the same materials technology would be possible. In spite of the strong progress

and numerous advances in the �eld, many fundamental questions and technical hurdles

remain unsolved. A lot of e�ort is therefore devoted to understand how the spin behaves

and interacts with its solid-state environment.

The spin, being a quantum property of any elementary particle, is represented by

a state that may change due to some given interaction. The spin of an electron, for

example, can not only interact with an external magnetic �eld, but also with another

degree of freedom of the electron. In this sense, the so-called spin-orbit interaction

precisely refers to the coupling between the spin and the orbital state of the same

electron.

In the �rst part of this thesis we regard this latter e�ect, and in particular, we adress
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Summary

the problem of the spin-relaxation in a bulk doped GaAs semiconductor resulting from

the spin-orbit interaction. Our interest is focused on donor density values close to a crit-

ical value, where a metal-insulator transition occurs. Below this density, the electronic

properties of the system correspond to that of the insulating regime, while for larger den-

sities, a metallic behaviour appears and accordingly, a non-zero conductivity is measured

at T = 0. It is on this metallic side of the transition where we study the spin relaxation

due to two di�erent types of spin-orbit coupling. The �rst of them is associated to the

presence of extrinsic impurities, while the other one appears as a consequence of the bulk

inversion asymmetry (BIA) brought about by the the presence of two di�erent atoms

(Ga and As) in a unit cell. This latter SOC is also known as the Dresselhaus coupling.

To tackle the spin dynamics problem, we develop an analytical formulation based on the

spin di�usion of an electron in the metallic regime of conduction of the impurity band.

The full derivation provides us with an expression for the spin-relaxation time, which

depends on the doping density and the spin-orbit coupling strength, and remarkably, is

free of adjustable parameters. We complement this approachand back our analytical

results with the numerical calculation of the spin lifetime. For this, we perform and track

the exact time evolution of an initial state with a de�ned spin state. We look at the

spin operator evolving under the inuence of the full Hamiltonian, containing both the

spin-orbit interactions and the spin-free Hamiltonian (basedon the Matsuba-Toyozawa

model) describing the impurity band. The initial polarizedstate, being no longer an

eigenstate, decays following a certain damped time evolution, from which we extract the

spin-relaxation time.

In the second part of the thesis we consider a zero-dimensional system and study the

e�ect of spin-orbit coupling on the eigenstates. The quantumdot is hosted between two

heterojunctions placed in an InAs nanowire. This semiconductor, when grown unidi-

mensionally, presents a wurtzite-type crystal structure,unlike its zincblende phase in

bulk. We develop here an exact analytical solution for the quantum dot, taking into

account the proper e�ective spin-orbit coupling for this type of material. We focus on

the BIA coupling, which presents a cubic-in-k SOC, yet with adi�erent expression from
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that of zincblende, and add also the linear-in-k SOC, characteristic of WZ materials. A

Zeeman interaction from an external magnetic �eld is included as well. We calculate the

energy spectra for di�erent values of the spin-orbit coupling strength. We also display

the spin texture across the dot, compute the e�ectiveg-factor as a function of the dot

size, and calculate the spin-relaxation due to acoustic phonons, taking into account the

phonon potentials corresponding to the wurtzite structure.

Keywords: spin-orbit, spin-relaxation, doped semiconductors, nanostructures, quantum

dots, phonons
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Chapter 1

Introduction

1.1 General Presentation

The spin is an inherent property of electrons, photons, quarks and in general, any el-

ementary particle. Its nature lies in quantum mechanics. Its existence was proposed

nearly 90 years ago by Pauli, while trying to solve some inconsistencies observed in

molecular spectra. He then called this new degree of freedom spin and claimed that in

the case of electrons, it could only take two possible values, which was later on veri�ed

for electrons, as well as for protons and neutrons.

The spin is ubiquitous in many phenomena in condensed matterphysics. For example,

in magnetic resonance imaging (MRI) the spin of the proton isused to visualize internal

structures of the human body. Another celebrated example is that of itinerant ferro-

magnetism, where the electron spin appears as a crucial ingredient. An understanding

of the interactions that a�ect the spin dynamics is thereforenecessary, both to describe

observed phenomena in physical systems and to exploit the possibilities it o�ers for

technological applications.

Conventionally, the spin is associated to an intrinsic angular moment, and due to the

way it couples to a magnetic �eld, it is also viewed as an intrinsic magnetic moment of

the particle. Its dipole-like magnetic moment interacts with a magnetic �eld, such that

it experiences a torqueS � B that tends to align the spin orientation with this �eld.
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Chapter 1 Introduction

Another interaction that is central in this work is the coupling between the motion of

an electron -its orbital degree of freedom- to the spin. To illustrate this, it su�ces to

consider an electron moving in an electric �eld. In the electrons' frame of reference, this

electric �eld is transformed into a magnetic �eld, which according to what we have just

mentioned, interacts with the electronic spin. This gives rise to the so-called spin-orbit

interaction (SOC).

In solid state physics, the electronic spin is necessary to explain many phenomena,

like the ferromagnetism as we have just cited. Ferromagnetic metals are constituted of

atoms with a partially �lled electronic shell. This means that for each spin in the shell

with a given state there is not another spin with the oppositestate. The spontaneous

alignment (being an additional and distinct e�ect) of theseunpaired spins along the

same direction creates a net magnetization by e�ect of the exchange interaction, even

though no external magnetic �eld is necessarily present.

Spin-orbit interactions are not only a key ingredient in thephenomenology of many

experimental observations, but can also be used to control the state of a spin. For

example, the fact that the spin of an electron may only take ontwo values, and the

possibility to switch between these two states by means of any of the interactions with

the environment, makes the spin an ideal candidate for computation. In this context,

each of the two possible values is equivalent to abit of information. The spin is bound

to the charge, that may displace across the device, transporting this information. It is

then important that the spin state remains unperturbed so that the information encoded

in its state is not lost. This promising feature fostered a great deal of research in this

direction in view of its technological potential. In recentyears, new experimental setups

have been proposed and designed in the search of physical systems where the spin can

be e�ciently manipulated. More precisely, its properties have been intensely studied

both in bulk and low-dimensional systems, the latter meaningthat the motion of the

electron is spatially con�ned. An archetype of these systemsis a quantum well made on

a heterostructure, where the composition of a semiconductor material is changed on the

nanoscale [1]. For example, aGaAs layer between twoAl xGa1� xAs layers makes up a

2



1.2 Spintronics

quantum well, where the motion of the electrons parallel to the layers remains free, but

is con�ned in the transverse direction.

Low-dimensional systems have also been widely used to test fundamental physical

concepts, such as the quantum-mechanical version of the Halle�ect: in a two-dimensional

sample, and at low temperatures, the quantization of the conductivity as a function of

the applied magnetic �eld was �rst observed in 1980 by Klaus von Klitzing, later on

awarded with the Nobel Prize.

The purpose of this thesis, expressed in a broad sense, is to study the interaction

of the electron spin with its solid-state environment in semiconducting systems. This

may be reckoned as the central question of the so-called spintronics discipline, which in

contrast to conventional electronics involving thecharge, makes use of thespin instead.

1.2 Spintronics

Even though the success of any spintronic device hinges on the controlled manipulation

of the spin degree of freedom, �nding an e�ective way to polarize a spin system, having

a long lifetime of the spin orientation, and being able to detect it are the three major

challenges.

Many techniques are utilized nowadays for the generation ofspin polarization. The

optical orientation and the electrical spin injection are among the better developed.

While the former is based on the transfer of angular momenta from circularly polarized

photons to electrons, the second one uses a magnetic electrode connected to a sample.

The injected spin-polarized electrons ow from the electrode to the sample, and a non-

equilibrium spin accumulation may so be achieved. The spin population, no matter how

it is generated, will eventually evolve towards equilibriumby means of spin relaxation

mechanisms, many of which involve the aforementioned spin-orbit interaction.

Before describing some spintronic devices, it is worth pointing out that in what follows

we also refer to the term spin as meaning anensembleof individual spins. Historically,

spintronic devices used these ensembles to store information, but nowadays, experimen-
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Chapter 1 Introduction

talists have been able to address and control one single spin. In addition to this distinc-

tion, we mention that spintronic devices are normally made either of semiconductor or

metallic (normal or ferromagnetic) materials, or of a combination of both.

In the case of metals, the discovery of Giant Magneto Resistance represented a big

boost for spintronics. It generated a great deal of interestin the academic �eld, but

also in industry because of the technological applications it enabled. It was observed in

1988 by Fert [2] and afterwards by Gr•unberget al. [3]. Soon after, it was successfully

applied in data storage technologies [4]. IBM bolstered therole of spintronics in 1997

when it introduced the �rst hard-disk drive based on the GMR technology. The imple-

mentation of such structures by IBM for new read heads into their magnetoresistance

hard-disk drives was just the �rst step of a race towards smaller and smaller hard-disks,

found currently in any mobile device. In a typical GMR device, a non-magnetic metallic

spacer is placed between two ferromagnetic layers. The relative orientation of the mag-

netization polarization of these layers determines the overall resistance. The physical

principle behind the GMR is the fact that the scattering of electrons travelling through a

ferromagnetic conductor depend on the relative orientationof their spin with respect to

the magnetization direction of the conductor. This means that electrons bearing a spin

aligned with the magnetization axis scatter di�erently from those having an opposite

spin. Actually, those oriented parallel scatter less often than those oriented antiparallel.

In the GMR setup we have just described, this e�ect can be exploited in the following

way: the electrons injected from one of the magnetic conductors into the non-magnetic

conductor will be preferentially oriented in one direction. If these electrons then arrive to

the second ferromagnetic layer, they will pass into it freely from the non-magnetic metal,

without undergoing strong scattering, only under the condition that their preferred ori-

entation is parallel to the magnetization of the second layer. Hence, the resistance of the

trilayer arrangement depends strongly on the relative magnetization direction of the two

ferromagnetic layers. Although the whole process is about the ow (or not) of electrons,

the fact that the spin is used to control this ow is the reasonto reckon it as a great

inspiration for the spintronic �eld [5].
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1.2 Spintronics

Another closely related phenomenon is observed if the spaceris replaced with a non-

magnetic insulating layer, giving rise to a magnetic tunneljunction, or tunneling mag-

netoresistance (TMR) device. In this con�guration, the electrons tunnel through the

layer without ipping its spin. Although being proposed in 1975 by F. Julli�ere, the ob-

servation of magnetoresistance in such junctions was possible only in 1995, when certain

experimental di�culties were overcome. After this achievement, the challenge to develop

new magnetic random access memory (MRAM) using this technology attracted a lot of

attention from the community, and �nally the �rst MRAM produc t was presented in

2006. Fast read/write times, as of the order of 5 ns, are now pursued [6].

There is still another experimental setup based on the so-called Tunneling Anisotropic

Magnetoresistance, where only a single magnetic layer is needed. In this case, the

resistance depends on the angle of the magnetization vectorof this layer with respect to

some crystallographic axis of an adjacent semiconductor layer. The TAMR necessitates a

semiconductor material with a strong spin-orbit coupling and some magnetic anisotropy

to be e�cient. In Ref. [7], this type of magnetoresistance is explained in more detail.

The use of semiconductors in a spintronic device was �rstly proposed in 1990, when

the Datta-Das transistor, known also as the Spin-Field e�ective transistor (SFET) [8],

was presented. It illustrates the fundamental ideas of a spin-based logic device. In it, a

drain and a source made of ferromagnetic materials (with parallel magnetic moments; see

Fig 1.1) provide the necessary pieces to inject and detect thespin, respectively. Between

them, a non-magnetic semiconductor sample makes up a narrow channel for the electrons

to ow ballistically from the source to the drain. The electrons injected by the source

are spin-polarized. If the electron polarization arrivingat the drain is parallel to the

drain magnetic moment, the electron goes through. Otherwise, it is scattered o� and a

large resistance is measured. The degree of spin rotation so determines whether there is

a current or not. In order to control this amount of rotation, a voltage gate is applied

on top of the semiconductor channel. This electrostatic potential, in combination with

the con�nement geometry of the channel and the spin-orbit coupling in the substrate

constitute an e�ective magnetic �eld that makes the spin precess across the sample. The
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Chapter 1 Introduction

Figure 1.1: In the scheme of the Datta-Das spin �eld-e�ect transistor (SFET), a fer-

romagnetic emitter (spin injector) and a ferromagnetic collector (spin de-

tector) are placed with parallel magnetic moments. In between, an In-

GaAs/InAlAs heterojunction in a plane normal to n generates a channel

for two-dimensional electron transport between the two ferromagnetic elec-

trodes. The spin-polarized electrons injected by the source with wave vector

k move ballistically across the channel. Due to the spin-orbit interaction,

the spins precess about the precession vector 
, de�ned alsoby the struc-

ture and material properties of the channel. The strength of
 can be tuned

by the gate voltage applied on the top of the channel, which indirectly con-

trols the degree of rotation of the spin. In the end, the current is large if

the electron spin at the drain points in the initial direction (top row), and

small if the direction is reversed (bottom) The current is somodulated by

the gate electrode. Taken from Ref. [9]

�nal e�ective result is the ability to control the spin rotat ion, and thereby the current,

by means of the gate voltage. Other proposals akin to the Datta-Das transistor have

been put forward, for example, by Schliemannet al. [10], where the condition of ballistic

transport is relaxed by tuning the Rashba and the Dresselhaus(to be explained below)

spin-orbit couplings so that the eigenspinors become momentum-independent. Hence,

elastic or inelastic scattering processes changing the wavevector do not randomize the
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1.2 Spintronics

spin state of transmitted electrons.

An important remark here is that the spin-ip process involved in any of the spin tran-

sistors described above requires less energy than the energy needed for charge transport,

which inevitably entails energy dissipation, as in the conventional �eld-e�ect transis-

tor. From this point of view, spintronics is also a key playerin power consumption

optimization.

All these devices, as we said, require in general long spin lifetimes. And that is why

semiconductors are so relevant in spintronics. Their great advantage is that besides

the long lifetimes, the spin can be manipulated via the characteristic strong spin-orbit

coupling of these materials. An example of this rather long spin relaxation times is

encountered in bulk doped GaAs semiconductors. In this case,it was observed that spin

relaxation times of the order of 100 ns can be obtained at certain doping densities, the

spin relaxation times being strongly a�ected by the impurity density, as we will see in

the next section. We concentrate on this problem in the �rst part of the thesis.

When a semiconductor is doped, the impurities are not arrangedin a regular way as

the crystal structure hosting them does. They form a random distribution inside the

perfectly ordered crystal structure. This feature leads then naturally to the theory of

transport in disordered systems. The �rst research works onsuch systems go back to the

late �fties when P. W. Anderson published his pioneering paperAbsence of Di�usion in

Certain Random Lattices. Although many works that followed dealt with the electrical

conduction (or equivalently electronic eigenstates) in disordered systems, Anderson's

paper context was the di�usion of an initial spin excitation which, according to the

experimental observation [11], seemed to remain localizedfor low-concentration of spins.

Interestingly, the opening sentence in Anderson's abstract[12] was

This paper presents a simple model for such processes as spin

di�usion or conduction in the impurity band.

In the �rst part of this thesis we also consider the impurity band of a GaAs semi-

conductor, where spin related processes are examined and thespin relaxation time is

calculated. Many aspects of the physics in the impurity bandwill be carefully unfolded
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in the following sections.

Anderson's cutting-edge ideas about localization could have been regarded, as he

points out in Ref. [13], as the germ of modern quantum computation: localization would

provide the necessary isolation to have independent sites with a quantum entity (spin)

inside, thereby forming a two-level system, and su�cientlyprotected from loss of coher-

ence. Needless to say that the very word "qubit" did not exist at the time. In spintronics,

a qubit means a bit of quantum information, or equivalently, a controllable quantum two-

level system. A superposition of these states represents a possible con�guration that can

be changed via a unitary evolution, performing many classical computations in parallel.

The common condition of the various spin-based quantum computers that have been

proposed is the manipulation of the dynamics of the spin. Manyof them employ GaAs

quantum dots [14] or Si systems [15], to be introduced later.As a zero-dimensional

example, a quantum dot is built upon spatially con�ning one or many conduction band

electrons in its three directions. Nowadays, the so-called qubits are commonly realized

in quantum dot nanostructures, as originally proposed in 1998 [14], but they can also

be found in trapped atoms or ions, in quantum states of Josephson junctions, and other

examples.

One of the challenges in these con�ned systems is to manipulate the electron spin in

a short time, shorter than the time for it to lose the coherence of information. It is

precisely the long coherence times (of the order of hundred of nanoseconds) of spin that

make them suitable for quantum computation. However, the electrical read-out of the

state of an individual electron spin (the spin orientation)was possible only in 2004 [16],

reported by the group of Kouwenhoven. In their experiment, an electron is trapped in

a quantum dot, in the presence of a magnetic �eld that separates the energy of the two

possible spin states (Zeeman splitting). An electrostatic potential is tuned such that if

the spin is down (antiparallel to the magnetic �eld), the electron leaves the dot; otherwise

it stays. In this way, the charge of the state in the dot is correlated to the spin state of

the electron. Using a nearby quantum point contact, they were able to detect whether

the dot was occupied or not. In 2010, the same group describedin Ref. [17] an ingenious
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1.2 Spintronics

experiment, where they claimed to be able to control the individual spin in a quantum

dot via the spin-orbit interaction. The more sophisticatedarrangement consisted of two

quantum dots hosted in a InAs nanowire, a quasi-one-dimensional structure where the

electrons can ow in one direction. The quantum dots are de�ned within the nanowire by

making use of gate voltages applied over it. In the experimental setup, the electrons in

both dots are individually addressable. In this scheme, fast qubit rotations and universal

single-qubit control were accomplished using only electric �elds, coupled to the spin via

the SOC.

In the second part of the thesis we focus on InAs nanowires. This speci�c choice

is related to the fact that, when grown unidimensionally, this semiconductor material

acquires a wurtzite-type (WZ) crystal structure, unlike the zincblende case that we

considered for the spin relaxation in a bulk GaAs sample. We speci�cally study a

quantum dot in such a wire, with cylindrical shape and in particular, we consider the

case where the radius is larger than the length ("pillbox"-like). Taking this into account,

we analyse di�erent electronic properties by including theappropriate e�ective spin-orbit

coupling terms derived for a WZ structure.

As a general remark, it is worth emphasizing that spintronics, far from being only a

topic in the realm of fundamental science, promises new technological applications to

keep up with the demand on the increasing number of transistors in computer processors,

and the continuing miniaturization of electronic devices. This is largely a motivation to

foster the scienti�c research in this �eld.

In the following, we go through the two main subjects already mentioned, starting

with the spin relaxation in a doped semiconductor as well as the physics related with the

metal-insulator transition, and secondly, we describe quantum nanostructures in more

detail.
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1.3 Spin relaxation in n-GaAs

As it was already indicated, the �rst part of this thesis dealswith the spin relaxation in

a doped bulk GaAs semiconductor. The role of impurities is of paramount importance,

and in particular, the spin relaxation depends strongly on the doping density. We start

by recalling the di�erent density ranges of interest, in which distinct electronic transport

properties are observed. Afterwards, we resume the study of the spin-orbit coupling and

spin relaxation.

1.3.1 Di�erent doping density regimes in a bulk semiconductor

Let us �rst consider the extreme situation of a single impurity placed in the semicon-

ductor host lattice. If the impurity is a donor, as it is in our case, a new electronic state

is created close to the conduction band, within the energy gap of the semiconductor.

As other impurities are added, so that the electron mayjump from one to the other,

an impurity band will arise out of the donor states of di�erent impurities. If we further

increase the donor density, this band gets broader and the electronic states span over

a larger energy interval. Beyond a certain density -the hybridization density - the

impurity and conduction bands merge. Below this value, the system is in the impu-

rity band regime, where two di�erent phases can still be distinguished. It is important

to remark that due to the fact that the impurities are randomly distributed, the wave

number k associated to thecrystal momentumof the electron is not a good quantum

number anymore since the translational invariance is broken.

One common property of three dimensional disordered systems is the coexistence of

localized and extended states, as it is illustrated in Fig. 1.2. In a density of states

picture, the localized states appear towards the band edges, while the extended states

are located in between. The separating limit is called themobility edge (Ec). Here

the Fermi Level comes into play. If it is situated in the localized region (jEF j > E C ),

the system does not conduct atT = 0 and it behaves as an insulator. ForT > 0, the

electrons can be thermally excited, either to an extended state or to another localized
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1.3 Spin relaxation in n-GaAs

Figure 1.2: Schematic representation of the density of states of a disordered system

as a function of energy within the Anderson model. The coloured zone

represents localized states, while the extended states arein between. The

energy separating them is called themobility edge.

state, thereby giving rise to conduction. Conversely, oncethe Fermi Level enters the

extended region, the metallic regime is reached.

In the Anderson model, themetal-insulator transition takes place when the two

mobility edges come together, and the energy spectrum contains only localized states [18].

At the precise density ofnc, disorder systems show interesting properties like fractal-

ity [19].

In conclusion, for three dimensions, depending on the doping density, there may be

a coexistence of both localized and extended eigenstates inthe energy spectrum, sep-

arated by the mobility edge cited before. For one dimensional systems, instead, the

Anderson model predicts that all the eigenstates are localized no matter how weak the

disorder is [12]. For two dimensions the scaling theory of localization yields an insulat-

ing phase for any degree of randomness, but the localizationlength may be extremely

large. Experiments exhibiting the signature of metallic behaviour, have often been in-

terpreted by going beyond single-particle modes and invoking the interaction between

electrons [20]. It has also been found in two dimensions thatspin-orbit coupling favors

the delocalization of the electrons.
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Figure 1.3: Di�erent conducting regimes according to the dopant densityare shown. At

the hybridization critical density nh separates, the impurity band merges

the conduction band. Belownh, two situations may arise: betweennh and

the MIT density nc, we observe the metallic regime with delocalized states,

while for densities smaller thannc, the insulating regime is reached, and the

conductivity at zero temperature vanishes.

Our study deals with three dimensional systems, and focuses on the spatial extension

of one-particle electronic states in the impurity band, of which we present a detailed

study in Chap. 3. We start there with a preliminary analysis that does not contain the

spin, and then we look at the spin-orbit coupling e�ects on the density of states, as well

as the distribution of the so-called Inverse participation ratio, that measures the degree

of extension of a wave function. The original results presented in this Chapter have been

published in Ref. [21].

1.3.2 Spin dephasing and spin relaxation

We now come back to the description of the spin and discuss the key concepts concerning

the spin decay time. The �rst step is to address the precise meaning of the word spin

relaxation, in contrast to the spin dephasing concept. Microscopically, relaxation and

dephasing are driven by di�erent spin processes, although both lead to spin-lifetime

decays [22]. In general, the relaxation timeT1 (also called longitudinal time) and the

dephasing timeT2 (transverse) are two characteristic times that appear in the context of

the magnetization produced by a spin ensemble. The Bloch-Torrey equation describes

the precession, decay and di�usion of the magnetizationM (associated to the spin) in

12



1.3 Spin relaxation in n-GaAs

the case of mobile electrons. These equations include the two times in question [9],

@Mx

@t
=  (M � B )x �

M x

T2
+ Dr 2M x

@My

@t
=  (M � B )y �

M y

T2
+ Dr 2M y

@Mz

@t
=  (M � B )z �

M z � M 0
z

T1
+ Dr 2M z

where a magnetic �eld B(t) = B0bz + B 1(t) with a static part B0 and a transverse

oscillating B 1 are assumed to be applied.D is the di�usion coe�cient,  = � B g=~

is the electron gyromagnetic ratio including the Bohr magneton � B and the electron

g-factor; M 0
z = �B 0 is the thermal equilibrium magnetization with � being the static

susceptibility. These phenomenological equations show that T1 is related to the time it

takes for the longitudinal magnetization to reach equilibrium. Equivalently, it accounts

for the non-equilibrium population decay, in which a certain amount of energy has to be

transferred from the spin system to the lattice, for example, via phonons. The timeT2,

on the other hand, measures how long the transverse component of the spin ensemble is

well-de�ned and can precess around the longitudinal direction.

Regarding this spin dephasing time, there are two processes that contribute. The

�rst contribution to T2 comes from the so-called inhomogeneous broadening, that ap-

pears for example as a consequence of the inhomogeneities inthe g-factor [22], that

leads ultimately to di�erent precession frequencies of theindividual spins. This broad-

ening might also be brought about by a momentum-dependent spin-orbit coupling or an

energy-(or momentum-) dependentg-factor. Conventionally, when the spin dephasing

time includes this type of broadening related to reversibleprocesses, it is refered asT �
2 .

By contrast, if the phase is lost due to spatial or temporal uctuations of the precessing

frequencies (or magnetic �elds equivalently) leading toirreversible dephasing, the term

homogeneousbroadening is used, and the timeT2 does not bear a star symbol. In the

case of mobile electrons, the di�erent momentum states have slightly di�erent g-factor

and thus di�erent precession frequencies. This inhomogeneous broadening is however

surpassed by the so-called motional narrowing, that we nextexplain.
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For mobile electrons, the timesT1 and T2 are calculated by averaging the spin over

the thermal distribution of the electron momenta. The di�erent momentum states have

di�erent spin ip characteristics, and therefore momentumscattering entails spin-ip

scattering. This means that when an electron undergoes a momentum scattering, its spin

orientation might change, which is equivalent to having a uctuating e�ective magnetic

�eld. The physics of the spin dephasing in this inhomogeneous magnetic �eld is governed

by the so-calledmotional narrowing, that also introduces another relevant timescale, as

we now see.

Let us consider a spin precessing about a given axis with a Larmor frequency 
.

This frequency may change randomly between� 
 and 
, which means that the spin

rotates clock- or counterclockwise. Let us assume that a correlation time � c determines

the probability that the spin continues its precession in the same direction, or changes

it. During this time � c, a phase is accumulated�' = 
 � c. If we now consider the

spin precession as a random walk with this precise step�' , after N steps, we simply

have that the spread of the total accumulated phase is = �'
p

N . On the other

hand, the numberN depends on time and is indeed equal tot=� c. Identifying the phase

relaxation time t ' with the time at which the phase spread reaches unity, we havethat

1 = �' 2t ' =�c. Finally we get the important result

1
t '

= 
 2� c

The inverse relation between the two times is characteristic of the motional narrowing,

and implies that the longer the correlation time, the smaller the phase relaxation time,

and vice versa. In our language, the motional narrowing is related to T2 and is the main

source of spin dephasing. For conduction electrons, to a very good approximation, the

relation T �
2 = T2 holds.

In the case of electrons bound to impurities or quantum dots,the inhomogeneities

are static and theg-factor-induced broadening due to spatial inhomogeneities plays an

important role. Nevertheless, thanks to a technique known asspin-echo, it is possible

to suppress these reversible phase losses, and the sole contribution to T2 comes from the
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1.3 Spin relaxation in n-GaAs

homogeneous dephasing. For example, the timeT �
2 has been measured in lightly n-doped

GaAs samples, yielding values� 5 ns [23]. In general,T2 is the quantity of most interest

in quantum computing and spintronic, whereasT1 is usually easier to measure.

However, in electronic systems at relatively weak magnetic �elds, the useful relation

T1 = T2 holds for isotropic and cubic solids (if this last conditionis not ful�lled, an

anisotropy factor of order unity is introduced) [24]. To determine the validity of this

equality, we must resort again to the correlation time� c introduced for the motional

narrowing. The phase losses occur during time intervals of� c, and in consequence

1=�c gives the rate of change of the e�ective magnetic �eld. If this rate is such that

1=�c � B 0, then T1 = T2. For electrons,� c can be identi�ed either with the momentum

scattering time or with the time of interaction of the electrons with phonons or holes.

As they can be as small as a picosecond, the equality betweenT1 and T2 is satis�ed

up to several Tesla. In many cases, therefore, a single term� s is used to refer to spin

relaxation or spin dephasing, indistinctly. In the experiments of our interest, since the

magnetic �eld is weak, we will use� s, and call it the spin-relaxation time, making it

clear that the spin decay will be driven by the spin-orbit coupling.

We �nally mention that in our discussion about spin relaxation, we deal with many-

spin systems. In the context of quantum computation, another term is utilized for the

spin dephasing of a single -or few- spin, namely the spin decoherence. But we do not

discuss it in what follows.

The experimental results that motivated the �rst part of our work are presented in

the next part, while the techniques are succinctly described afterwards.

1.3.3 The experiment

As we have mentioned, the �rst part of this thesis deals with GaAs samples, doped with

Silicon, and is inspired in the work of Kikkawa and Awschalom [25]. These authors

measured in 1998 the spin relaxation time and observed the inuence of the doping

on the spin relaxation. Interestingly, relaxation times longer than 100 nanoseconds for

a doping densitiy of the order of 1016cm� 3 were reported. Four years later, Dzhioev
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and collaborators [26] carried out similar experiments, butthey swept a larger range of

donor densities, establishing a more accurate value for thelongest relaxation time and the

corresponding density. These valuable experiments raisedthe interest of the spintronics

community and many attempts were performed to explain the results. The experiment

of Dzhioev et al. showed very clearly (Fig. 1.4) that the longest spin relaxation time

was in the proximity of the Metal-Insulator transition density, that occurs within the

impurity band of a n-doped semiconductor. The physics around this critical point is still

not understood due to the competition of disorder and electron-electron interaction.

Figure 1.4: The spin-relaxation time at low temperatures as a function ofthe doping

density (labeled asnD ) obtained in di�erent experiments is shown. Open

symbols correspond to the optical orientation data from Ref. [26], while the

solid circles are the results from a Faraday Rotation experiment from [25,27].

Solid lines correspond to parameter-free theoretical estimates, considering

the relevant spin-relaxation mechanism indicated by the labels: DP for

Dyakonov-Perel, anisotropic interaction, and hyper�ne interaction. Taken

from Ref. [26]
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Our aim is to tackle the problem of the spin relaxation on the metallic side of the

MIT, and close to it. The identi�cation of the dominant spin-interaction giving such

long relaxation times is one of our major goals.

As we will later see in this chapter, the spin relaxation timesfor di�erent density

values far away from the critical one have been understood in terms of various existing

theories. Nevertheless, none of these can be applied to the precise density range near

the metal-insulator transition that is the center of our attention. Before describing these

theories, we quickly review the experimental techniques involved in the measurements.

1.3.4 Experimental techniques

We briey describe here the di�erent experimental techniques encountered in the liter-

ature reporting spin relaxation measurements.

In Ref. [25], Kikkawaet al used the so-called Time-resolved Faraday rotation (TRFR)

technique, with a temporal resolution going from femto to nanoseconds. Thispump-probe

technique uses the Faraday rotation as the fundamental principle. The initial circularly

polarized light (pump) creates a net magnetization in the sample, and subsequently,

with a time delay � t, a second linearly polarized light crosses the sample (probe). The

angle of polarization changes according to the degree of magnetization present in the

system, and by changing the time delay �t, a time-resolved observation is obtained.

The TRFR was also used in lightly (< 2 � 10cm� 3) doped n-GaAs to measure spin-ip

times as a function of magnetic �eld and temperature [23,28].

The experiment of Dzhioevet al. used the combination of the optical orientation and

the Hanle e�ect, which is the depolarization of the photoluminescence with a transverse

magnetic �eld. The polarization created by the initial circularly polarized light is sup-

pressed by the presence of a transverse magnetic �eld, and therefore, by measuring the

corresponding photoluminescence polarization, the spin-relaxation can be inferred. In

this case, the degree of spin polarization is detected by observing circularly polarized

luminescence coming from the recombination of the spin-polarized electrons and holes.

In both cases, the initial step is to create an electron-holepair by circularly polar-
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ized light (optical spin orientation). The hole loses very rapidly its initial spin state

and it recombines with an unpolarized equilibrium electron(the probability of recom-

bination with a photoexcited electron is negligible under low pump intensity). Thus,

spin-polarized photoexcited electrons eventually createa spin polarization accumulation

in the crystal.

A totally di�erent technique was also applied for measuringthe spin-relaxation in

n-doped bulk semiconductors. It is based on the spin noise spectroscopy [29], and

it maps the ever present stochastic spin-polarization uctuations of free and localized

carriers at thermal equilibrium and the Faraday e�ect onto the light polarization of

an o�-resonant probe laser. The advantage of this tool over other methods is that it

measures the disturbance-free spin dynamics in the semiconductors with high accuracy,

and undesired e�ects such as carrier heating or injection of interfering holes are not

present. Employing this technique, the spin-relaxation rate in samples with doping

densities close to the metal-insulator transition was measured, for temperatures between

4 K and 80 K. A clear di�erence in the spin-relaxation times was observed when varying

the doping densities and moving from the regime of localizedelectrons to that of free

electrons. We discuss about this in more detail in Chap. 4, and only mention here

that the longest spin relaxation time at the critical density was veri�ed for the lowest

temperature range, up to 70 K [30].

1.3.5 The existing theories

Having already identi�ed the di�erent doping density regimes, we can now move to the

existing theories in terms of which the di�erent spin relaxation times measured in the

experiment can be explained. However, we insist that none of them can be applied to the

metallic regime of the impurity band, which will be covered by our theory afterwards.

Hyper�ne interaction

For the smallest doping densities, the di�erent impuritiesare far from each other and

one expects electrons to be deeply localized. In this case, the measured spin-relaxation
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times can be understood by appealing to the hyper�ne interaction. On the extreme side

of very low donor concentration, the electrons are isolatedand precess independently in

the random static nuclear �elds of the impurity domains. Theorigin of the hyper�ne

interaction is the coupling between the electrons and the magnetic �eld produced by

the atomic nuclei. This magnetic coupling a�ects the localized spins, such as those

con�ned in quantum dots or bound to donors, and it may produce spin dephasing as

well as single spin decoherence. The interaction, althoughit is suitable for localized

electrons, was shown to be too weak for itinerant electrons (free electrons in metals or

bulk semiconductor) in Ref. [31].

The hyper�ne Hamiltonian reads

H =
2
3

� 0g0� B

X

i

~ n;i S � I � (r � R i ) (1.1)

where � 0 denotes the vacuum permeability,� B the Bohr magneton,g0 = 2:0023 is the

free-electron g-factor,i labels the nucleus at positionR i , while S and I corresponds to the

electron spin operator and the nucleus spin operator, respectively, both expressed in units

of ~.  n;i stands for the nuclear gyromagnetic ratio. It can be shown that this interaction

can be expressed asA(IS) (Fermi contact interaction), with A being proportional to

the square of the electron wave function at the location of the nucleus [32]. Both the

properties of nuclei involved and the degree of localization of the electron, which may

be spread over many lattice sites (typically 104 � 106) are decisive to determine the

strength of the interaction. In Si, for instance, most of thenuclei carry no spin: only

the isotope29Si with spin 1/2 produces hyper�ne interaction, but its natural abundance

is too low ( 4:6%) [9]. In GaAs, on the other hand, all the nuclei have spin 3/2, whence

the stronger hyper�ne interaction of a localized electron in it.

There are in general three mechanisms where the hyper�ne interaction plays a major

role in the electron spin relaxation. The �rst of them deals with independent evolution

of the nuclei and electron spins, i.e, small orbital and spincorrelations. The spatial

variations of Bn -the magnetic �eld experienced by the electron- lead to inhomogeneous
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dephasing of the spin ensemble. This dephasing has been measured in Si in Ref. [11],

the same experiment that inspired Anderson. If this e�ect is removed by a spin-echo

technique, then the temporal uctuation of Bn due to nuclear dipole-dipole interaction

leads to irreversible dephasing and decoherence of the electron spin, which makes the

second case of the list. The third regime corresponds to the hopping regime of the

electron between adjacent states and thus important at �nite temperatures. Here the

spin precession due toBn is motionally narrowed, as explained before, and limited by

the direct exchange interaction, which causes individual spin decoherence.

In the experiment by Dzhioevet al., the authors attribute the increase in the relaxation

time with dopant density for the lowest density range to the dynamical averaging of the

hyper�ne interaction, where the electron passes less time in each localization domain as

the density increases, interacting for shorter time with more nuclei, thus diminishing the

e�ect of the nuclei-spin uctuations.

Anisotropic exchange

As we further increase the doping density, electrons centered around neighboring impu-

rity centers start having some degree of overlap, and therefore the exchange interaction

becomes relevant. It is worth mentioning here that since we discuss the case of two lo-

calized electrons in what follows, the same physics does indeed apply to double quantum

dots, with an electron in each of them.

The origin of the exchange term is in the Coulomb interactionbetween electrons,

that gives a spin-dependent energy contribution as we require the total wave function -

including spin- of the two-electron system be anti-symmetric with respect to the exchange

of their coordinates. What this means is that if the spins of the electrons are parallel,

the spatial coordinate part of the wave function must be antisymmetric, meaning that

it must change sign upon exchanging the spatial coordinatesof the electrons:

	 "" (~r1; ~r2) = � 	 "" (~r2; ~r1)

This ultimately implies that electrons with parallel spin tend to be far apart, reducing
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1.3 Spin relaxation in n-GaAs

their mutual repulsion, and consequently diminishing the electrostatic energy.

Let us now consider the e�ect of the spatial anisotropy arising from the crystal en-

vironment and introduce theisotropic exchange interaction. The spins of two localized

electrons are actually coupled by two kinds of interaction,the magnetodipole and the

exchange interactions. In an isotropic system, the latter is described by the Heisenberg

Hamiltonian

Hex = 2JSA � SB

whereJ is the exchange coupling constant, andS denote the spin operator of the cor-

responding electron. Interestingly, this isotropic (or scalar) interaction conserves the

total spin of the two electrons, and consequently, it does notcause any spin relaxation.

However, in the presence of a crystal environment, the previous expression should be

generalized [33] to

Hex = A �� SA� SB�

where A turns out to be a second-rank tensor de�ned by the structure symmetry.

Anisotropic interactions of this kind appear in crystal structures lacking inversion sym-

metry, as in bulk semiconductors with zincblende and wurtzite structures. The spin-

orbit coupling gives rise to this anisotropic part of the exchange term, whose form is

also known as the Dzyaloshinskii-Moriya interaction, and it may even dominate over

the isotropic part. Although the spin-orbit interaction disappears on averaging over the

localized wave function of a single-electron state, it is nolonger the case for two electrons

at a pair of donors close to each other, or quantum dots alternatively.

Qualitatively, the process can be described in the following way, as Kavokin explained

in Ref. [33]. If we take two sites A and B, and consider an electron tunneling from one

site to the other one, it will experience the inuence of the spin-orbit �eld. This �eld

makes the spin rotate a small angle. Reversely, the tunnelingof the other electron in the

opposite direction is accompanied by a spin rotation throughthe same angle, but in the

opposite direction, because the internal �eld arising from the SOC, changes its polarity

for the backward motion. This makes that an interchange of the electrons also implies

a relative rotation of their spins. As a result, we expect to have an e�ective coupling

21



Chapter 1 Introduction

between these rotated spins, whose relative angle is determined by the SOC. In other

words, we end up with an interaction between tipped spin operators of the form

Hex = 2JS0
A � S0

B

If one wishes to express this interaction in terms of the original spin operatorsSA and

SB , the appropriate transformation yields

Hex = 2JSA SB cos( ) +
2J
b2

(bSA ) (bSB ) (1 � cos( )) +
2J
b

b (SA � SB ) sin( ) (1.2)

where  is the relative angle of rotation andb stands for the internal magnetic �eld

produced by the spin-orbit coupling. The last two terms correspond to the anisotropic

contribution [33]. Although we will not work out the full derivation of the anisotropic

Hamiltonian, we just emphasize some important aspects of it.The �rst of them is related

to the general structure of the electron wave function. As mentioned before, we consider

semiconductors lacking inversion symmetry, where an e�ective spin-orbit coupling in the

conduction band (this is further explained in Chap. 2) presents the general form

HSOC = � B gB SOC (~k) � S

where B SOC represents an e�ective spin-orbit �eld that depends on the wave vector,

only via odd powers of~k.

As it is usually very weak, it has no incidence on the binding energy and the wave

function shape near the localization center. However, away from it, it strongly modi�es

the wave function, even though the potential energy at largedistances can be neglected.

As shown by Kavokin [34], the wave function at a (large) distance r from the center is

	 � e� r=r 0 exp

 

i
m� B gB SOC (~k = ~r=(rr 0)) � S

~2

r
r0

!
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1.3 Spin relaxation in n-GaAs

where the length scaler0 = (
q

2mE B
~2 )� 1 has been introduced.EB denotes the binding

energy, andm the e�ective mass of a conduction electron. The second part of this

formula resembles a spin rotation operation, meaning that if near the center the spin is

pointing along a certain axis, then at a given distancer the spin have the same projection

but on an turned axis, whose angle is equal to

 (r ) =
m� B gB SOC (~k = ~r=(rr 0))r

r0

around the spin-orbit �eld BSOC . This asymptotic behaviour has an inuence on the

spin dynamics. To show this, the next step is to consider the two centersA and B, and

notice that the two wave functions of the electrons localized at each site are no longer

orthogonal, even though they have opposite spin projection(along a common axis). This

implies at the same time that an electron tunneling from, say,site A to site B will turn

its spin through an angle given by (R AB ). If the site B is occupied by another electron

(described also by an asymptotic wave function), the exchange interaction will couple

both electrons which are de�ned in di�erent primed coordinate frames, as shown before.

Upon transforming this primed Hamiltonian back to a common frame, the resulting

exchange interaction (1.2) accounts for the full process.

From this description, yet not totally formal, it is reasonable to expect that a stronger

overlap between the wave functions, due to a increasing doping density for example,

will produce a stronger exchange and yield lower values for the spin-relaxation times.

This situation is consistent with the dip observed in Fig. 1.4for a doping density just

below the critical one. Indeed, Kavokin showed that the motional narrowing of the

anisotropic term for two conduction-band electrons localized at shallow centers (donors

or quantum dots) accounts for the decrease of� s in the intermediate density region

3 � 1015cm� 3 < n < n c of the experiment of Dzhioevet al..

If we now leap over the critical density and consider the extreme case of highly doped

samples, beyond the hybridization density, where the conduction band is mainly pop-

23



Chapter 1 Introduction

ulated, we expect the usual spin-relaxation mechanisms forconduction electrons to be

applicable. We address two of them in the following section.

The Elliot-Yafet mechanism

We briey describe here the spin-relaxation mechanism thatdespite not being suitable

in our speci�c context, it certainly helps to understand thetheory developed later for the

impurity band. In a regular array of ions, the periodic potential Vcry induces a spin-orbit

coupling term

HSOC =
~

4m2
0
(r Vcry � p) � �

where m0 is the free electron mass,p = � i~r is the linear-momentum operator, and

� is the spin operator. This term couples di�erent single-electron Bloch states, and

therefore, they are no longer� z eigenstates, but a mixture of spin-up and spin-down.

Elliot �rst considered the case of a metal with a center of symmetry, for which these

modi�ed eigenstates read

	 k n" (r ) =
h
ak n (~r)j "i + bk n (~r)j #i ]ei k �~r

i
(1.3)

	 k n#(~r) =
�
a�

� k n (~r)j #i � b�
� k n (~r)j "i

�
ei k �~r ] (1.4)

where the di�erent coe�cients ak n and bk n measure the degree of spin mixture of the

state in the band n, for each wave vectork. The spatial-inversion operator and the

time-reversal operator (both of them commute with the Hamiltonian) connect these two

degenerate states. The labels" and # are justi�ed by the fact that the spin-orbit coupling

is weak and consequently, the typical value ofjbk n j << 1. This estimation can be done in

the following way: sinceHSOC has the periodicity of the lattice, it only connects states

with opposite spin but the samek at di�erent bands n. If a typical coupling matrix

element is given byjHSOC j, and we denote the distance between these states by a gap
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1.3 Spin relaxation in n-GaAs

4 E, then

b ' j Hsocj=4 E;

which is usually much smaller than 1, because the spin-orbitcoupling is much smaller

than a typical energy gap. Given this, we observe that some mechanism of momentum

scattering will produce spin relaxation, because states with di�erent k's have di�erent

spin orientations. Or to put this di�erently, every time the electron su�ers a scattering

event that changes its momentum, its spin state may change as well. In Fig. 1.5, the

process is sketched. At each scattering on a center (phonon,impurity, etc), the electron

has a small chance to ip its spin. Elliot's formula [9] states that the spin-relaxation

rate is proportional to the momentum relaxation rate

� s � � � 1
s � h b2i � p

where � p = � � 1
p is the momentum relaxation rate determined by \up" to \up" scattering

[35]. The spin-ip length turns out to be proportional to the mean-free path (or to the

di�usion constant):

� s =
p

D� s

The Elliot-Yafet mechanism is known to be very e�ective in metals, but it also enters

the physics of semiconductors. It is applicable for conduction electrons in the presence

of an inversion symmetric crystal structure. When this last condition is not ful�lled, an-

other mechanism appears and competes with it, namely the Dyakonov-Perel mechanism

that we discuss in the sequel.

D`yakonov-Perel

The inversion symmetry in semiconductors can be broken by the presence of two dis-

tinct atoms in the Bravais lattice. This happens to be the casein groups III-V (such

as GaAs) and II-VI (ZnSe) semiconductors. In heterostructures, instead, the source

of this breaking is the asymmetric con�ning potential. In general, in asymmetric sys-

tems the spin-orbit interaction leads to the Dyakonov-Perel mechanism for conduction

electrons. Due to the lack of translational invariance, theeigenenergies do no longer
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satisfy Ek # = Ek " , but since the time-reversal symmetry is still present (as long as no

external magnetic �eld is applied), the following relationholds Ek # = E � k " . The spin

splitting so produced is equivalent to consider an intrinsick-dependent magnetic �eld

B i (k), perpendicular tok, that induces a Larmor precession around it with a frequency

of 
( k) = ( e=m)B i (k). This intrinsic magnetic �eld derives (and depends on) from the

spin-orbit coupling in the band structure, whose e�ective interaction term reads

H (k) =
1
2

~� � 
( k)

where� are the Pauli matrices andk is the momentum state label of the electron in the

conduction band. Therefore, the combination of the momentum relaxation described by

a characteristic time� p and the momentum-dependent spin interaction gives rise to spin

dephasing. If we further de�ne 
 av as the average of the intrinsic Larmor frequency over

the electronic momentum distribution, two di�erent cases can be distinguished.

If 
 av � p � 1, the momentum relaxation time is long enough as to permit thespin to

precess a full cycle before being scattered to another momentum state. In general, the

Figure 1.5: The Elliot Yafet mechanism, relevant for conduction electron in centrosym-

metric crystals, is sketched. The spin-orbit interaction makes a spin-up

(down) Bloch state bear a small contribution of spin-down (up) amplitude.

Impurities, boundaries or phonons, even being spin independent potentials,

may induce transition between quasi-up and quasi-down states [35].
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1.3 Spin relaxation in n-GaAs

spin dephasing time is given by 1=�s � 4 
, where 4 
 is the width of the distribution

sampled by the ensemble of spins. Fort < � p, all the spins dephase reversibly, but

afterwards, this coherence is irreversibly lost due to randomizing scattering.

In the other case, 
av � p < 1, the electrons changes its momentum rapidly and so does

the magnitude and direction of the intrinsic magnetic �eld.The time step� p determines

the \small" rotation angle of the spin � � = 
 av � p betweentwo successive scattering

events. The spin phase then accumulates di�usively and aftera certain number of steps

given by t=� p, the total phase is calculated as

�( t) � ��
q

t=� p

The presence of the square root coming from the random walk picture must be noticed.

If we now de�ne � s as the time at which �( � s) = 1, then we come across the usual

\motional narrowing" equation

1=�s = 
 2
av � p

In this case, the total phase accumulated by a single electronconsist of asum of dif-

ferent Larmor frequencies (randomly taken) multiplied by� p, such that 
( k) is sampled

by the distribution of these sums. Its variance is, according to the central-limit theo-

rem, very small. Randomizing is very e�ective in this case because there are other spins

bearing di�erent momentums, and thus precessing with di�erent Larmor frequencies.

The simple picture of the Dyakonov-Perel mechanism is presented in Fig. 1.6. As the

spins in the bands are no longer degenerate, the spin-up state carries a di�erent energy

from a spin-down state with the same momentum. The electrons moving throughout the

sample experience an internal magnetic �eld, dependent on momentum, that makes the

spin precess along such �eld, until the electron momentum changes by scattering due to

a impurity, boundaries, or phonons. The precession then continues, but along a di�erent

axis, because the~k has changed. In this case, unlike the Elliot mechanism, the smaller

the momentum scattering time the longer the spin relaxationtime. A large momentum

scattering rate prevents the spin to perform a full cycle of spin rotation, whereby spin
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Figure 1.6: The Dyakonov-Perel mechanism applies in non-centrosymmetric structures,

where the spin bands are no longer degenerate, and a spin up state with a

given momentum has a di�erent energy from the spin down statewith the

same momentum. Therefore, the e�ective picture is an internal k-dependent

magnetic �eld, along which the spin precesses. When the electron is scat-

tered by a phonon, a boundary or an impurity, the precession continues

along a di�erent axis [35].

relaxation would be enhanced.

As it has been pointed out, the Dyakonov Perel mechanism is suitable for conduction

electrons with a well-de�ned crystal momentum~k. In the case of doped semiconductor,

for large densities (Fig. 1.4) where the conduction band is wellpopulated, the spin-

relaxation times can be understood in terms of this mechanism. For a smaller density,

just above the critical point, we enter the metallic regime of the impurity band, and

therefore the aforementioned theory is not applicable. We have developed in this work a

suitable theory for treating the spin relaxation in this case, whose results can be found

in Ref. [36]. However, we anticipate that the notion of spin di�usion will be used upon

constructing our description for the spin-relaxation in theimpurity band.

1.4 Spin in nanostructures

So far we have dealt with electrons and spins in bulk systems,where the electron moves

in the three directions. In low-dimensional systems, by contrast, the electron motion is
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restricted to two, one, or even zero dimensions. Nevertheless, bulk and low-dimensional

physics are not completely dissociated. For example, lightly doped GaAs has been stud-

ied in view of the similar spin properties observed for electrons localized on isolated

donors and for electrons localized in quantum dots [23], since in both cases the electron

is e�ectively con�ned in a zero dimensional enclosure. As it ismentioned by Kavokin in

Ref. [34], an understanding of the spin behaviour in the impurity band of bulk semicon-

ductors would be a proper basis for the study of localized electronic spins in wells or dot

arrays. However, the con�nement potential in nanostructures is in general less isotropic

than the localizing potentials of donors in bulk systems.

The importance of low-dimensional semiconductor systems is related to their great

exibility in manipulating charge and also spin properties of the electronic states. Here,

spin relaxation is also caused by random magnetic �elds originating either from the base

material or from the heterostructure itself, and the Dyakonov-Perel and the Hyper�ne

interaction are believed to be the most relevant mechanisms[9]. As the spin relaxation

and spin dephasing in these systems should be reduced for technological applications, a

great deal of research has been devoted to understand them.

From the point of view of applications, an additional motivation for studying low-

dimensional spin-based electronics is its close connection to the current trend in tech-

nology of requiring smaller and smaller devices. In this sense, spintronics also belongs

to the �eld of nanotechnology.

In the second part of this thesis we concentrate on a semiconductor quantum dot, ex-

plained in Chap. 5. Before that, we briey describe the various low-dimensional systems,

starting with the two-dimensional case.

1.4.1 Quantum wells

An example of low-dimensional system is the quantum well. In this case, the carriers

are con�ned on a planar region, whose thickness is comparableto the de Broglie wave-

length of the carriers. The setup consists of an ultra-thin layer of a small band gap

semiconductor between larger gap semiconductor materials, that e�ectively forms an
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attractive potential in which electrons are trapped. In heterostructures made of GaAs

and AlGaAs, the two-dimensional electron gas (2DEG) is formedbetween the spacer

(AlGaAs) and the bu�er layer (GaAs) [37]. In these systems, electrons spins have been

successfully manipulated by means of electric �elds, whichallows to set and control

the g-factor value -so varying the coupling between the magnetic �eld and the spin-

throughout the well, and thereby tuning the electron spin resonance [37,38]. An equiv-

alent g-tensor modulation resonance technique that used a gigahertz electric �eld was

proposed in Ref. [39]. After it, a di�erent approach that alsomade use of time-dependent

electric �elds, was put forth by Rashba and Efros [40, 41]. These electric �elds change

the orbital state of the electrons, and couple to the spin viathe spin-orbit coupling.

Their alternative gate-voltage induced spin resonance mechanism, known as the Electric

Dipole Spin Resonance (EDSR), was later on extended for quantum dots.

1.4.2 Nanowires

Another example of a lower dimensional system is a wire, in which the electrons are

con�ned to one single dimension, as in a rod or a whisker. They are typically grown

by the so-called metalorganic vapor phase epitaxy (MOVPE), achemical -in contrast

to physical- method used to grow thin �lms of a given material. The desired atoms

di�using through the gas phase deposit onto the wafer (substrate surface) atomic layer

by atomic layer. The chemicals are vaporized and injected into a reactor together with

other gases, where a critical chemical reaction takes place, turning the chemicals into the

desired crystal. A compound semiconductor can also be grownusing this technique [42].

This procedure needs a seeding nanoparticle, deposited on the substrate, in order to

induce the process. The nanoparticle size determines the diameter of the nanowire,

which can typically reach 100nm [43]. The structural properties of the nanowires are

usually studied using a high-resolution transmission electron microscopy (TEM).

Nanowires have been proposed for several practical applications. In Ref. [44], the

possibility to use a ferromagnetic gate as a spin-polarization �lter for one-dimensional

electron systems was put forward. Nowadays, an additional interest on these wires is
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Figure 1.7: A transmission electron microscopy of InP barriers of various sizes inside

InAs nanowhiskers. In the lower �gure the crystalline perfection is showed,

along with the interface abruptness. The InAs whisker diameter is 40

nm [46].

rising, because in contact with normal (gold) and superconducting electrodes, they can

be used for the seek of the novel Majorana fermions [45]. In this thesis we do not deal

with this interesting subject.

An appealing feature about the nanowires is the possibility to host a quantum dot,

by con�ning the electron in the axis of the wire. The electron dwelling in the dot is a

conduction band electron of the underlying structure that is a�ected by the con�nement

e�ects. A necessary step for achieving such a setup is the formation of one dimensional

heterostructures, in which a single whisker contains various segments, with abrupt in-

terfaces and heterostructure barriers of varying thickness. The picture in Fig. 1.7 shows

the transmission electron microscopy (TEM) image of a nanowhisker made of InP and

InAs pieces, with a remarkably sharp interface between them,also displayed.

By using these InAs nanowires, the group in Sweden headed by L. Samuelson [47] came

across a novel device. They designed a few-electron quantumdot in these semiconductor

nanowires, by introducing a double barrier made of InP heterostructures. The quantum

dot is hosted between the barriers, and by increasing the gate voltage, they added

electrons one by one into the dot, up to 50. This is the type of quantum dot that we

study, and we next describe it in more detail.
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Figure 1.8: An outline of the nanowhisker quantum dot. Tho InP tunnel barriers de�ne

the quantum dot in the InAs nanowire. The lateral side facets form a

hexagonal cross section with presumably hard wall conditions [48].

1.4.3 Quantum Dots

A quantum dot is a zero-dimensional system in which the motionof the electron is

con�ned in its three dimensions. As such, the energy spectra presents discretized levels.

The electron spin in a semiconductor quantum dot is a promising candidate for quantum

information applications, and therefore much e�ort has been devoted to understand and

identify the e�ects producing the loss of information eithervia decoherence or relaxation.

The original proposal of implementing a two-level system -associated to the electron spin-

as a quantum bit (or qubit) in a quantum dot was published in 1998 by D. Loss and

D. DiVincenzo [14]. Many theoretical and experimental worksfollowed thereafter, and

many technical pitfalls have been overcome, eventually leading to great advances. Only

in recent years systems where the properties of individual electrons can be measured

have been achieved. Among those, the quantum dot is particularly appealing since it

constitutes the building block for scalable solid-state quantum computers. The central

and major challenge notwithstanding remains in the present: how to manipulate the

spin in a short time before it loses its (quantum) initial state. The simplest idea would

be to think about resonant magnetic �elds. In Ref. [49], the group of L. P. Kouwenhoven
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claimed to control coherently a single spin in a dot by applying short bursts of oscillating

magnetic �elds. The problem is that the �eld involved cannot bespatially localized, the

strength of it renders the time to reverse the spin too slow, and the experiment has to be

performed at very low temperatures and at high frequencies [50]. All these shortcomings

make the experiment as well as the technological applicationa very hard task. A more

desirable approach was conceived in 2007 by Nowack and collaborators [51], where the

coherent control of the spin by means of oscillating electric �elds generated in a local

gate was performed. They reported induced coherent transitions (Rabi oscillations) as

fast as 55 nanoseconds, and their analysis indicated that the spin-orbit interaction was

the driving mechanism. The manipulation times obtained in these GaAs quantum dots,

about 110 ns for a spin ip, were not fast enough, hindering a quick and precise control.

This de�ciency was partially improved again by Kouwenhoven's group [17]. Here the

one dimensional wire was made of indium arsenide, whose spin-orbit coupling is known

to be stronger. In this spin-orbit qubit, spin-ip times of about 8 ns were obtained. The

quantum dot in this latter example is de�ned by using an arrayof 5 contiguous gates

(no structuraly de�ned tunnel barriers are present), where two quantum dots are hosted.

One of them serves only for reading purposes. Operating in the Coulomb blockade

regime, that prevents the electron from escaping from the dot, a microwave-frequency

electric �eld applied to one of the gates forces the spin inside the wire to oscillate,

so inducing resonant transitions between spin-orbit states when the a.c frequency is

equal to the Larmor frequency. The Electric Dipole Spin Resonance mechanism, already

mentioned for 2D systems and extended for quantum dots in Ref. [52], is at the basis of

the comprehension of the experimental results.

Another property of interest in quantum dots is the e�ective g-factor. It has been

measured in InAs nanowire quantum dots for various dot sizes in Ref. [48], where a strong

dependence on the dot sizes is exhibited in the case in which few electrons occupy the

lowest discretized energy states. This sensitivity leads to a possible setup for individually

addressable spin qubits, if the nanowire has multiple dots with di�erent g-factors along

it.
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Our reference to the speci�c material InAs is not casual. We consider an quantum

dot like the one sketched in Fig. 1.8. The dot is hosted betweenthe two InP tunnel

barriers. Our point of interest is the intrinsic spin-orbit coupling related to a particular

property of these systems: the crystal structure of InAs presents a zincblende form in the

bulk phase, but it acquires a wurtzite-type structure when grown unidimensionally [53].

Moreover, a crossover to the zincblende crystal structure has been observed as a function

of the wire diameter [54], and theoretically explained by classical nucleation modeling.

Logically, the commonly cited form of the e�ective Dresselhaus spin-orbit coupling for

zincblende (cubic-in-k) is not expected to be applicable tothe wurtzite case. Indeed,

the e�ective spin-orbit coupling for the conduction band ofWZ contains a linear-in-k

term, �rstly proposed in Ref. [55]. In addition, and only recently, a cubic-in-k term has

been shown to be present [56] as well, and the corresponding coupling parameters have

been calculated [57].

In our study about spin-orbit e�ects in InAs-based quantum dots, we treat both terms

on equal footing (see Ref. [58]).

1.5 Outline of this thesis

The outline of the thesis is as follows. In Chap. 2 we review the theoretical formalism

related to our work. We begin by exploring the origin of the spin-orbit interaction start-

ing from the Dirac equation. After this and by way of a digression, we introduce basic

concepts of group theory, that provide us with a convenient language to treat the sym-

metries encountered in crystal structures. The zincblendeand the wurtzite structures

are there described. The chapter �nishes with the e�ective theories whereby we can deal

with the behaviour of an electron without taking into accountall the microscopic details

concerning the crystalline structure.

In Chap. 3 we present our characterization of the impurity band, and more precisely,

our study about the e�ect of the spin-orbit interaction on the localization of the wave

function. We consider a suitable parameter to measure the degree of spatial extension of
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the calculated eigenfunctions, and how it changes upon increasing the spin-orbit coupling

strength, in this case, given by an extrinsic-type SOC associated to the impurities.

In Chap. 4 we tackle our main subject related to spin-relaxation on the metallic side

of the metal-insulator transition of a doped semiconductor. In addition to the extrinsic

term, we add the Dresselhaus (cubic-in-k) SOC derived for zincblende structures. Our

approach to the spin di�usion in the impurity band is carefully explained, along with the

complete analytical treatment of the density dependence ofthe spin relaxation for dopant

densities slightly larger than the one corresponding to themetal-insulator transition. We

also performed some numerical calculations for the estimation of the spin relaxation by

considering the time evolution of an initial state. After presenting the numerical results,

we compare and discuss the agreement of our theory with the experiment of Fig. 1.4.

In Chap. 5 we concentrate on the behaviour of a conduction electron con�ned in a

cylindrical quantum dot. The e�ective spin-orbit coupling terms related to the wurtzite

structure, here containing both a linear-in-k and a cubic-in-k contribution, are exactly

treated. A two-dimensional system is �rstly considered, and the energy dispersion as

a function of k is derived analytically. A further con�nement is imposed with cylin-

drical hard-wall boundary conditions to make up a pillbox-like quantum dot. Here, an

equation for the discretization of the energies is found, and a numerical solution is thus

implemented. The resultingg-factors are evaluated.

The conclusions brought about by our theoretical work, as well as the perspectives

are in terms of further theoretical and experimental research discussed in Chap. 6.
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Chapter 2

Spin-orbit interaction in

semiconductors

2.1 Dirac-Spinor

The spin-degree of freedom associated with an intrinsi angular momentum S couples

to a magnetic �eld exactly in the same way as a dipole magneticmoment does. This

magnetic moment is related toS via the de�nition � = g� B S, whereg is the g-factor and

� B is the Bohr magneton. But in spite of this interaction, whichhas a classical form, the

spin degree of freedom itself does not have any classical analog. Even though the spin

emerges naturally in relativistic quantum mechanics, its existence is revealedsolely by

a linearization of the Schr•odinger equation, without appealing to any relativistic theory,

as it is elegantly exposed in [59]. Suchlinearized equation is equivalent to the usual

Sch•odinger equation, but in contrast to the latter, this one is linear both in (@=@t) and

in (@=@x). The Pauli equation can be thus derived and the correct value for theg-factor

results. Here, however, we will follow the more conventional way of using a Quantum

Electrodynamics framework, in order to treat the interaction of an electron with an

electromagnetic �eld. The basic goal is to see how thespin-orbit coupling (SOC)

comes out, or equivalently, to trace back its origin. For this, the Dirac equation will

be unfolded, and the sping-factor will appear as well. In the beginning we succinctly
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Chapter 2 Spin-orbit interaction in semiconductors

sketch the derivation of the Dirac Equation, following [60].The road map starts from the

Schr•odinger equation, followed by its relativistic counterpart, and we �nish by deriving

a new Schr•odinger equation as a non-relativistic limit.

The Schr•odinger Equation can be obtained by using the quantum prescription p !

(� i~)r and E ! i~ @
@t for a conservative mechanical system

�
~2

2m
r 2 + V  = i~

@ 
@t

(2.1)

with m the free-electron mass,V a potential energy and~ the Planck's constant.

On the other hand, leaving out the potential energy, the relativistic energy-momentum

relation is

E 2 � p2c2 = m2c4

In the so-called covariant notation, this is expressed as :

p� p� � m2c2 = 0 (2.2)

where � = 0; 1; 2; 3. The 0 component is associated to the energy (x0 is the time

coordinate), while the other three correspond to the momentum components. We note

that the space and time coordinates appear on equal footing in this last equation. The

Einstein notation has been used for the sum. For our purposes, it is enough to know

that the super and subscript notation simply mean

a� b� = a0b0 + a1b1 + a2b2 + a3b3 = a0b0 � a1b1 � a2b2 � a3b3

wherea and b are operators. Every time we want to rise the index of an operator, we

have to multiply it by � 1 only if � = 1; 2; 3. The 0-component remains the same. In

relativistic language, p0 = E=c and p = ( p1; p2; p3) is the linear momentum operator.

If we followed the aforementioned quantum prescription, wewould arrive to the Klein

Gordon equation :
� 1
c2

@2 
@2t

+ r 2 =
� mc

~

� 2
 

The fact of being second order int poses a problem based on the statistical interpreta-

tion of j j2. To circumvent this di�culty, Dirac sought an equation linear in @=@t, and
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2.1 Dirac-Spinor

compatible with the relativistic energy-momentum relation (2.2). Dirac's proposition

was to split the energy-momentum relation (2.2) in two parts:

p� p� � m2c2 = ( � kpk + m c)( � p� � m c) = 0 (2.3)

thereby imposing the energy-momentum relation. If this equation is to be satis�ed,

then any of the two terms of the decomposition is a solution tothe total problem. It

also implies that the linear equation is attained. Remarkably, the simple requirement in

eq. (2.3) leads to the conditions to be met by the� 0s and  0s :

� � k =  k

� the  0s must be matrices

� the smallest dimension of these matrices can be 4� 4

� ( 0)2 = I

� ( i )2 = � I for i = 1; 2; 3

�  �  � +  �  � = 0 if ( � 6= � ) (the anti-commutation relation)

The last item de�nes analgebra, and there are several equivalent ways of representing

the  0s. One of them is

 0 =

0

@
I 0

0 � I

1

A

and

 i =

0

@
0 � i

� � i 0

1

A

Each block in these matrices is a 2� 2 matrix; I is the identity and � i are the Pauli

matrices.
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Another choice is the so-calledMajorana basis. It takes up di�erent expressions for the

 matrices, which of course satisfy the same algebra, and imply ultimately the existence

of a particle that is its own antiparticle, i.e. a Majorana Fermion.

Back to our derivation, the usual substitutionp� = i~@� is inserted into the eq. (2.3),

and any of the two terms can be named theDirac Equation :

i~ � @�  � m c = 0: (2.4)

Nevertheless, it must be noted that is a four-component spinor; it is NOT a four-

component vector, since it does not transform under the ordinary Lorentz rules. We

mentioned that the spin-orbit coupling is our �nal objective, and therefore the e�ect of

an electromagnetic �eld needs to be included. The requirementof preserving the gauge

invariance dictates that the spatial and time derivatives must be replaced by

� ~
i r ! ~

i r � e
c

~A

� i~ @
@t ! i~ @

@t � e�

where ~A is the magnetic vector potential and� the electric scalar potential. In covariant

notation, the Dirac equation including this quadripotential is

[ � (i~@� �
e
c
A � ) � m c] (x) = 0 : (2.5)

In order to recover the Schr•odinger equation, the linear time derivative can be separated

from all the other terms by multiplying ( 0 c) from the left

[  0 c] [ 0(i~@0 �
e
c
A0) +  i (i~@i �

e
c
A i ) � m c] (x) = 0 : (2.6)

Using the property ( 0)2 = 1, the time derivative is written on the left side, while the
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2.1 Dirac-Spinor

rest of the equation passes to the right

i~
@ 
@t

= eA0 �  0 i (i~c)@i  + e 0 i A i  +  0m c2 = �  (2.7)

If the potential A � is restored to its original form and the product of matrices is renamed

as

 0 i = � i =

0

@
0 � i

� i 0

1

A

 0 = �

then � in eq. (2.7) can be re-expressed as

� = c� � (~p�
e
c

~A) + mc2� + e� I (2.8)

which is in the original form put forth by Dirac.

We now analyze thenon-relativistic limit limit of this equation, setting our sight

on the Schr•odinger equation. For this purpose, the equation (2.7) will be considered,

along with a decomposition of the four-component spinor into two components

 =

0

@
' 0

� 0

1

A

We then have

i~
@
@t

0

@
' 0

� 0

1

A =

0

@
c~� � b� � 0

c~� � b� ' 0

1

A + e�

0

@
'

�

1

A + m c2

0

@
'

� �

1

A

where ~� = ( � x ; � y; � z) and the generalized momentum operator has been introduced

b� = ~p� (e=c) ~A. If we further separate the largest energy scale, namely therest energy,

in the following way
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 =

0

@
' 0

� 0

1

A = e� i (m c2=~)t

0

@
'

�

1

A

a new expression for the eq. (2.7) is obtained

i~
@
@t

0

@
'

�

1

A =

0

@
c~� � b� �

c~� � b� '

1

A + e�

0

@
'

�

1

A � 2m c2

0

@
0

� �

1

A (2.9)

A "formal" solution for the lower part of the spinor can be written as

� =
~� � b�
2mc

' �
i~ @

@t � e�
2mc2

� (2.10)

If only the �rst term were retained, the Pauli equation would result in the magnetic

dipole interaction, with the correct value of 2 for the sping-factor. The second term

must be kept for the spin-orbit coupling to appear. In our formulation, we can consis-

tently argue that the �rst term in eq. (2.10) is the dominating one, as the second one is

divided by the rest mass (largest energy scale)

This way, the equation can be solved iteratively in order to get � as a function of'

� =
~� � b�
2mc

' �
i~ @

@t � e�
2mc2

 
~� � b�
2mc

!

' (2.11)

This relation is then substituted in the eq. (2.9) for' and what is left can be identi�ed

with the Hamiltonian of the problem. Nevertheless, the wave function must be nor-

malized before this; otherwise the Hamiltonian is not Hermitian. This technical step is

excluded here, and we only take care of the two products of operators containing~� and

b�.

The �rst of them is

1
2m

(~� � b�)( ~� � b�) =
1

2m
b� 2 �

e~
2mc

~� � ~B
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2.1 Dirac-Spinor

where the kinetic energy is represented byb� 2 and the correct electrong-factor equal to

2 is immediately recognized, once the following identi�cations are done

~
2

~� = bS

and for the Bohr magneton

� B =
e~

2mc

The second one, stemming from the corrections included in eq. (2.11), turns out to be

2
4m2c

(~� � b�) � (~� � b�) =
2

4m2c
~p�~p +

2
4m2c

~� � (r � � ~p)

The ~p�~p term has no classical analogue, and is of order (v=c)2. The second term ac-

counts for the sought spin-orbit coupling. The total result for the Hamiltonian, with the

correct normalization of the wave function, gives

H =
�

� 2

2m
�

p4

8m3c

�
+ e� �

e~
mc

~� � ~B �
ie

8m2c2
~p� ~E � (2.12)

�
ie

8m2c2
~� � (r � ~E) +

e
4m2c2

~� � ( ~E � ~p)
�

:

The last bracket in the expression contains the total spin-orbit coupling, and leads,

for example, to the �ne structure of atoms. In this case, the presence of a symmetric

spherical potential leads to

~� � (r � E) = 0

and
e

4m2c2
~� � ( ~E � ~p) =

e
4m2c2

~� �
@V
@r

�
~r
r

� ~p
�

=
e

4m2c2

1
r

@V
@r

~� � ~L:
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Chapter 2 Spin-orbit interaction in semiconductors

This formula shows that the correct Thomas Precession -one half the result obtained for

an electron at rest in the magnetic �eld of a proton circling around it- is obtained as

well. Finally, the term ~p� ~E, associated to theDarwin force is not discussed here as it

is beyond the scope of our subject.

In this preliminary section we have introduced the spin degree of freedom and the

resulting spin-orbit coupling. The results we have got are valid for a free electron in

the presence of a general potentialV(~r). Exactly the same spin-orbit coupling exists in

solids, where the electron sees a crystalline landscape. However, the e�ective theories we

will work with, allow to stow the information about the hosting crystalline structure and

its parameters in the coupling constants, and derive e�ective spin-orbit Hamiltonians.

The derivation of these e�ective terms and the associated parameters makes use of

the crystalline properties of the underlying structure. For this reason, we continue in

the next section by briey introducing Group theory, an appropriate frame to study

symmetries.

2.2 A brief summary on Group Theory

Semiconductors, and metals alike, are generally made of regular arrays of ions. This

ordered feature o�ers the possibility of identifying symmetry operations that leave the

crystal unchanged. Indeed, this property is exploited to facilitate the study of solids,

and in particular, the electron band structure. For example, if two di�erent states la-

beled with ~k and ~k0 are related to each other via a symmetry operation of the crystal,

then the electronic energies of these two di�erent states must be identical. This implies

that we need to calculate the energy of one state, and infer the other one by symme-

try considerations. The second consequence is related to the wave function: they can

be expressed in a symmetrized fashion, meaning that they have certain transformation

properties de�ned by the symmetries of the crystal. Therefore, given a symmetry oper-

ation, we can classify and group the wave functions according to it. In doing so, we can
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2.2 A brief summary on Group Theory

deduce if a matrix element -or equivalently, an operator coupling two states- vanishes or

not, depending on the symmetry properties of the operator. These gives the so-called

selection rules. As we will see below, the symmetry operations must also cope with the

spin degree of freedom as well, and so a convenient extension of the symmetry operations

reserved for crystal structure without spin will be necessary. Once the importance of

regarding and identifying the symmetry operations has beenhighlighted, a systematic

way of sorting them is of great utility. The suitable conceptual framework to handle

this is Group Theory . Though we do not make a thorough description of this theory

here, we discuss some relevant concepts and the widely used terminology in solid state

physics.

A group is a set of elements (operations in our case), where the successive application

or multiplication between any two elements belongs to the set. If a and b belong to G,

the multiplication must satisfy �ve conditions:

� Closure) The result of the operationab is another element of the group.

� Associativity ) It is equivalent (ab)c = a(bc)

� Identity ) An elemente is the identity if 8a 2 G ! ea= a

� Inverse) Every element ofG has its inverse elementa� 1 such that a� 1a = e

In principle, the successive application of two operationsin the group does not commute.

In the case of crystal lattices, although there are many symmetry operations, we can

list some basic operations in terms of which any other may be written. The de�ntion

for them is

� Ci is an i � fold rotation about a given axis

� � is the reection about a plane

� i is the inversion
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Chapter 2 Spin-orbit interaction in semiconductors

Figure 2.1: The set of three primitive lattice vectors is shown for the face-centered

cubic lattice.

� Si means the rotationCi followed by a reection about the plane perpendicular to

the rotation axis

� the identity operation E.

If we now compute all the possible symmetry operations of thiskind, but with the

additional restriction that at least one point �xed and unchanged in space, we obtain the

so-calledpoint group, related to rotation, inversion and reection symmetries. Crystals,

on the other hand, also have translational symmetries, which also form a group. Groups

that contain both rotation and translations are space groups. The point group of

the zincblende structure is denoted byT2
d . The translational symmetry operations are

de�ned in terms of the three primitive lattice vectors (see Fig. 2.1.), which are at the

same time used to de�ne the point group operations, with the origin at one of two atoms

in the primitive cell.

With this choice of coordinates, the 24 operations forT2
d are enumerated below (usu-

ally introduced equivalently for the methane molecule):
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2.2 A brief summary on Group Theory

� E : the identity

� C3: clockwise and counterclockwise rotations of 120� about the [111]; [111]; [111],

and [111] axes, respectively (8 operations);

� C2 : rotations of 180� about the [100]; [010], and [001] axes, respectively (x3)

� S4 : clockwise and counterclockwise rotations of 90� about the [100]; [010], and

[001] axes, respectively, followed by a reection(x6);

� � : reections with respect to the (110); (110); (101); (101); (011), and (011) planes,

respectively (x6).

So far we have taken care of the pure description of the crystal in terms of its sym-

metries. A question might arise: How does an operator generating any of the symmetry

transformations cited above act on the wave function? For this, we need a representation

of the operator. One way is the matrix representation of an operator in a given basis

set � i (~r), spanning the Hilbert space,

H (~r)� i (~r) =
X

k

H ik � k(~r); (2.13)

where Hki is the matrix element between the statesi and k. If we are to consider the

e�ect of any operationS upon the basis set, we must also operate on the spatial variable

~r [61], such that

� i (S~r) =
X

k

Sik � k(~r) (2.14)

This leads to an expression for the matrix elements of a Hamiltonian which is transformed

under the sameS, i.e H (S~r)

H ij !
X

kl

S� 1
il H lk Skj (2.15)
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Assuming that S is any operation of the symmetry group of the Hamiltonian (H remains

unchanged underS), we obtain the following condition for the commutator of both

operators

[H ; S] = 0

This means that a given symmetry of the Hamiltonian, and thus of the crystal, can be

expressed via a vanishing commutator of it with the corresponding symmetry operator.

Once we �x a basis for each element S of the group, there is a corresponding matrix

Sik . The correspondence between the elements of a group and the matrices representing

them is such that fora; b; c 2 G, the multiplication ab= c corresponds toM a M b = M c,

where M � , the matrix associated with the group element� = a; b; c is termed the

representation of a group. Such a correspondence is not unique, since the basis can be

arbitrary chosen. There is actually -for a given group- an in�nite number of such groups

of matrices, each of them being connected to its counterpartin another representation

via a unitary transformation (they are said to beequivalent). Among all of them, there

is one special basis set, namely the eigenbasis 	i (~r) which satis�es

H (~r)	 i (~r) = � i 	 i (~r) (2.16)

The transformed equation can be consistently expressed as

H (S~r)	 i (S~r) = � i 	 i (S~r) (2.17)

and asS stands for a symmetry operation

H (S~r) = H (~r)

H (~r)	 i (S~r) = � i 	 i (S~r) (2.18)
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2.2 A brief summary on Group Theory

This result evinces that 	 i (S~r) is itself an eigenfunction with the same energy. In case

of having a n-fold degenerate level� � , with eigenfunctions denoted by 	�p (r =1,2,3..,n),

the implication of the symmetry operation is

	 �
q (S~r) =

nX

p=1

	 �
p (~r) (2.19)

which means that the transformed wave function can be written as a linear combination

involving only partner wave functions with the same energy

The matrix representation ofS has block-diagonal form

Sik =

0

B
B
B
@

S(1) 0

0 S(� )

1

C
C
C
A

Every square diagonal submatrix has a dimensionn� � n� , determined by the degen-

eracy of the level� . All the other operations in the group can be similarlyreduced to

this shape. A representation is said to bereducibleif the samesimilarity transformation

brings all the matrices of a representation into the same block diagonal form. i.e all

of the new matrices have diagonal submatrices with the same dimension at the same

position. On the other hand, when each of the blocks cannot befurther reduced, the

representation is calledirreducible. A similarity transformation can convert a reducible

representation into a block-diagonal form, where each blockis a irreducible represen-

tation. The possibility of having the irreducible representation of a group -matrices

such asS� of minimum order n� - simpli�es the multiplication of two matrices of the

representation, because it only involves one subspace

R(� ) = S(� )T (� )

The powerful implication that follows is the connection between degeneracy and dimen-

sion of irreducible representation. Let us suppose that we have a given representation

of a group. If the matrix of any observable, the Hamiltonian for example, is invariant

under the group, then it commutes with the irreducible representation of any element
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of the group. Shur's lemma then ensures that the eigenvalues of the observable can be

put into sets with the same degeneracyn� . Of course, this does not give the magnitude

of the eigenvalues, but since the irreducible representation can be calculated from the

basic operations of the group, it provides very useful information about the solution. In

other words, the problem of classifying the eigenvalues of the Hamiltonian is solved if

the small number of inequivalent irreducible representations of the symmetry group is

found. Of course, the eigenfunctions of an operator form a basis for an irreducible rep-

resentation of the operator, but to �nd them is the di�cult ta sk. In conclusion, we have

that for each eigenvalue of a Hamiltonian, there is a unique irreducible representation of

the group of that Hamiltonian. Besides this, the degeneracy of an eigenvalue coincides

with the dimensionality of this irreducible representation, and thus, the dimensionalities

of the irreducible representations of a group are equal to thedegeneracies of Hamilto-

nians (with that symmetry group). Group theory thus provides labels corresponding

to irreducible representations and to which eigenfunctions belong. This is a very useful

result that group theory gives to quantum mechanics. To illustrate the idea behind the

irreducible representations, let us take the example of thereection of coordinates about

the yz-plane, which is represented by the matrix

M =

0

B
B
B
@

� 1 0 0

0 1 0

0 0 1

1

C
C
C
A

0

B
B
B
@

x

y

z

1

C
C
C
A

This is a reducible representation, since the same transformation can be done by applying

three one-dimensional matrices in the following way

[(� 1)x; (1)y; (1)z]

and in this last case, the representation cannot be further reduced (it is the irreducible

representation). The irreducible representation of a rotation through 180� (a 2-fold

rotation axis) is also one-dimensional (a sign reversal), provided a suitable choice of

coordinates is made. However, the 3-, 4- and 6-fold rotation axes (except the 360�

rotation) always involve two coordinates changes and the irreducible representation is
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2.2 A brief summary on Group Theory

therefore two-dimensional. A more physical example concerning the rotation operator is

given in [62]. Suppose we have a simultaneous eigenket ofJ and Jz, called jj; m i . The

rotation operator describing a rotation of� around the ~n-axis reads

e� i J �~n
~ �

and the matrix elements for this operator in the basis of eigenkets of J 2 and Jz is

accordingly

D (j )
m;m 0 = hj; m 0je� i J �~n

~ � jj; m i (2.20)

where the samej is considered on both sides because the rotation operator does not mix

states with di�erent j -values, as a direct consequence of the relation

[J2; Jk ] = 0 8k:

The (2j + 1) � (2j + 1) D (j )
m;m 0 matrix is said to be a (2j + 1)-dimensional irreducible

representation of the rotation operationD.

To �nish with the classi�cation of the elements of a group, we now fetch the class

notion. This concept allows us to assemble all the elements of a group into smaller

subsets. If two elementss and t in a group satisfy that xs = tx for some element x

in the group, then s and t are said to be conjugate (they are related by a similarity

transformation). A class contains all the elements of a group that are conjugate to each

other. To �nd the class where an element is, one considers theproducts of the form

EsE � 1; vsv� 1

for every elementv in the group. E is the identity. Several of these products coincide

with other elements of the group. By combining and grouping them, we form a class [63].

This transformation also implies thats = x � 1tx , showing that we can get the same result

of the transformation s by means of an application in a certain manner involving two

other operationst and x. In the case the group is represented by matrices, the similarity

transformation that connects all the elements within a class implies that their traces are

all the same. The traces of the matrices in a representation are called its characters.
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A physical interpretation for this might be as follows: if the symmetry operations that

the elements of the group represent satisfy the above relation B = X � 1AX , it means

that the net operation B can be equally obtained by �rst rotating the object byX , then

carrying out the operation A and �nally undoing the initial rotation by X � 1. Taking

for exampleA as a rotation, thenB is also a rotation through a di�erent rotation axis.

For zincblende, for example, we had that the point group has 24 symmetry operations.

All these can be further divided in �ve classes:

f Eg; f 8C3g; f 3C2g; f 6S4g; f 6� g

We have introduced classes because group theory provide us here with a valuable

theorem: the number of classes is equal to the number of inequivalent irreducible repre-

sentations. We thus learn now thatTd (the point group of zincblende) has �ve irreducible

representations.

Let us �nally regard the notation used in band structure. At the center of the Brillouin

zone, the so-called �-point, the wave functions always transform according to the irre-

ducible representation of the point group of the crystal. Therefore, for ZB we label the

irreducible representation by �i , where the subscripti = 1; 2; 3; 4; 5 simply refers to the

irreducible representation in Koster notation. With the introduction of the spin degree

of freedom, this notation changes, as the point group itselfdoes (see section 2.6.1).

As we have seen, group theory provides a suitable mathematicaltool and terminology

to study symmetric structures. We next describe speci�cally the two crystal structures

that concern this thesis, namely zincblende and wurtzite.

2.3 Crystal Structures: Zincblende and Wurtzite

While most of the III-V semiconductors crystallize in the zincblende (ZB) structure,

the family of the II-VI and IV-VI compounds exhibit a greater variety [64]; they can

be found in the ZB form, others are wurtzite (WZ) and some of them can be found in

both forms. InAs, for example, presents a ZB structure in the bulk, but it is of the WZ
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type when grown in quasi one-dimensional quantum wires. A further key feature of a

band structure in semiconductors is its band gap: it can be either a direct-gap, as in

some zincblende and wurtzite-type semiconductors, or an indirect-gap, as in silicon. In a

direct-gap semiconductor the maximum of the valence band coincides with the minimum

of the conduction band. Since electrons in semiconductors mostly populate the lowest

states in the conduction band, it is possible to concentrateon the electronic states near

the single conduction band minima. In this thesis, we rely on this condition as we only

consider direct-gap cases.

As we have seen, the crystal structure is very important because it determines the

symmetry properties of the system, and hence the correct irreducible representation

in the band center, which is a key step in the construction of the k � p Hamiltonians,

explained in the ensuing section. We also present there the corresponding SOC both in

ZB and WZ materials, whose crystalline properties are now described.

Zincblende

The underlying structure of ZB is the diamond lattice, whichconsist of two interpene-

trating face-cented cubic Bravais Lattices, displaced along the diagonal of the cubic cell

(see Fig. 2.2) bya
4 = ( bx + by + bz) [65]. It must be noted that the diamond structure

is not a Bravais Lattice. In the diamond structure each lattice point and its 4 nearest

neighbors form a regular tetrahedron. The zincblende case is obtained when the two

fcc lattices are made of di�erent atoms, for example GaAs, which is a III-V compound.

Concerning its symmetry properties, we have already mentioned that its space group

is T2
d while its point group is Td, containing 24 basic operations listed before. For ZB

materials, the characteristic representations for the band center is sketched in Fig. 2.3

where the e�ect of the spin-orbit coupling manifest in the split o� of the valence band,

which are p-like with orbital angular momentuml = 1 at the band center. Without spin-

orbit, the valence would be three-fold degenerate at the bandcenter. In the presence of

SOC, the valence band degeneracy is lifted in two ways. The band with total angular

momentumJ = 1=2, the so-calledsplit-o� band, separates from theheavy holeand light
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Figure 2.2: The conventional cubic cell for the diamond structure consists of two inter-

penetrating face-centered cubic. Each of the sublattices contains a di�erent

kind of atoms (Ga and As), making up the zincblende structure.

hole bands (both of them with total angular momentumJ = 3=2). The combination of

the SOC and the lack of inversion symmetry leads to an energy splitting for conduction

and valence states withk 6= 0, even if the magnetic �eld is zero. As a consequence, the

heavy-hole and light-hole bands have di�erent energies for the samek. The inuence of

the SOC in the electron energy levels for bulk semiconductors was pointed out by Elliot

[66] and Dresselhaus [67] and will be further studied in the coming sections.

Wurtzite

The building block for the wurtzite material is the hexagonal close-packed structure

(hcp), obtained as two simple hexagonal Bravais Lattices displaced in the horizontal

direction, such that the points of one lattice coincides with the center of the triangles

formed by the other one. In the vertical direction, the displacement is along the c-axis

and the distance is given byc=2 (see Fig. 2.4). The space group of WZ isC4
6v, and

the symmetries comprising rotations are the identity, clockwise and counterclockwise

rotations of �= 3 about the c-axis, and reections in vertical planes de�nedby the c-axis

and the reciprocal lattices (~b1; � ~b2; � ~b1 + ~b2).
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Figure 2.3: The e�ect of the spin-orbit coupling is shown for the zincblende material.

The labels correspond to the group symmetry of the corresponding band,

and in the case of SOC, the double group notation is used.

The rotations by � and by � �= 6 around the c-axis, and the three reections in the

planes containing the c-axis and~a1;~a2, and~a3 must be followed by a displacement along

[0; 0; c=2] in order to leave the crystal unchanged. The inversion is not a symmetry since

di�erent type of atoms occupy the horizontal planes in thez-direction.

In WZ, the spin-orbit coupling has also an e�ect in the band structure, as it is seen

in Fig. 2.5.

The topic of our next section is precisely to introduce the spin-orbit coupling, and

describe how they modify the band structure of solids.
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Figure 2.4: The hexagonal close-packed crystal structure is shown. Twointerpene-

trating simple hexagonal Bravais lattices, displaced along the vertical axis

(c-axis), and displaced horizontally so that the center of the triangle of one

lies exactly above the point of the other. The three primitive vectors are

a1 = a~x a2 = a=2~x +
p

3a=2~y (horizontal arrows) and a3 = c~z (vertical

arrow).

2.4 Spin-orbit in solids

In this section, we consider the spin-orbit coupling in crystalline solids. In addition to

the Zeeman term, already present in the Pauli Equation, we found

HSOC;vac = � vac� � (~k � r V) (2.21)

where � vac = � ~2

4m2c2 � � 3:7 � 10� 6�A2 and ~~k = ~p. The subscript vac underlines the

fact that we are dealing with an electron in vacuum. This remark will become signi�cant

as the e�ective theory for the SOC is discussed.

In a crystal, the electrostatic potential V can be split o� as the sum of acrystal

contribution Vcrys that should be separated fromVother including any other kind of
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2.4 Spin-orbit in solids

Figure 2.5: The same picture as in Fig. 2.3 is depicted for the wurtzite case.

electric potential due to impurities, boundaries, etc.

V = Vcrys + Vother (2.22)

The distinction drawn for the possible types of electrostatic potential leads to a classi-

�cation of the di�erent kinds of SOC. In this sense, we will use the termsintrinsic and

extrinsic spin-orbit coupling, even though it is not unique across theliterature. We will

refer to the term extrinsic as the spin-orbit contribution that depends on theimpuri-

ties, in accordance with the de�nition given in Ref. [68]. Theintrinsic SOC, on the
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other hand, means that the spin-orbit �eld in the solid system is solely related to the

structural properties of the system and arises even in the absence of impurities. The

inversion symmetry needs to be broken to get such a term. Such a de�nition is based

on the idea of intrinsic semiconductors, which are so pure that, at a su�ciently high

temperature, the impurity contribution to the carrier density is negligible, and result

in intrinsic conductivity. At lower temperatures, the extrinsic properties emerge as the

contribution to the carrier density from impurities dominates.

The well-known \Rashba" coupling, for two dimensional systems, arises as conse-

quence of the asymmetry in the con�nement potential.

In three dimensional systems, the expression for the intrinsic SOC depends on the

crystal structure and band parameters, and as we will see below when we study the

Dresselhaus coupling, the zincblende and the wurtzite examples exhibit di�erent H int .

In contrast to this, an extrinsic SOC accounts for the coupling of the moving spin in

the presence of the electric �eld due to impurities. Hence, the extrinsic coupling is also

present even if the inversion symmetry is preserved. An extrinsic term looks like [68]

Hext = �� � (~k � r V) (2.23)

where � is an e�ective constant that contains information about theband structure.

The role of V is played, for example, by the impurities potential.

The e�ective constants and e�ective SOC terms are obtained byappealing to the so-

calledk � p method. In combination with the envelope function approximation, it allows

to include the e�ect of the SOC close to the band minima. We start with the envelope

function approximation, and then introduce thek � p method. This latter contains the

Kane Model in which the e�ective SOC terms can be calculated. Since the full derivation

exceeds the scope of this thesis, it is not carried out in detail. The main ideas and hints

will be exposed nevertheless.
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2.5 The envelope function approximation

The envelope function approximation (EFA) copes with the behaviour of electrons and

holes in the presence of electric or magnetic �elds that vary smoothly in the length scale

of the crystal. It describes the electron wave function in terms of band-edge Bloch Func-

tions, which renders the method very useful for the subsequent systematic perturbation

treatment [69]. To observe how these conditions are introduced, it is instructive to see

the derivation of the EFA Hamiltonian, which starts with the Schr•odinger Equation

 
(� i~r + ( e=c) ~A)2

2m0
+ V0 +

~
4m2

0c2
~� �

�
(� i~r + ( e=c) ~A) � r V0

�
(2.24)

+ V(r ) +
g0

2
� B ~� � ~B

�
	( ~r) = E	( ~r):

The potential V0 represents the periodic potential, the vector~A generates the magnetic

�eld ~B, and V(~r) accounts for the slowly varying potential. The next step isto expand

the eigenfunctions in terms of band-center Bloch functions,in the same spirit as the~k � ~p

method in next section.

	( ~r) =
X

� 0� 0

 � 0� 0(~r)u� 00(~r)j� 0i (2.25)

where u� 00 are the quickly oscillating Bloch Functions of the� -band at k = 0 and j� 0i

are the spin eigenstates in theSz basis. The � 0� 0(r ) play the role of the expansion coef-

�cients or envelope functions, now position-dependent, that modulate the function. We

then insert this Ansatz in the eq. (2.25) and integrate over one unit cell. At this stage,

we appeal to the smoothly varying character of the �eld and ; we consider that within

one unit cell these quantities do not change considerably andtherefore, we take them

out of the integral. We then come across a set of coupled equations called multiband

(many bands are in principle involved) or EFA Hamiltonian:
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X

� 0;� 0

("

E � 0(0) +
(� i~r + ( e=c) ~A)2

2m0
+ V(~r)

#

� �;� 0� �;� 0 (2.26)

+
1

m0
(� i~r + ( e=c) ~A) � ~P �� 0

�;� 0 + 4 �� 0

�;� 0

h
+

g0

2
� � ~B� �;� 0

io
	 � 0;� 0(~r) = E	 �;� (~r)

where

~P �� 0

�;� 0 = h�� j~� j� 0� 0i

with

~� = p +
~

4m0c2
~� � r V0

and

4 �� 0

�;� 0 =
~

2m2
0c2

h�� j [~p� ~� � (r V0)] j� 0� 0i :

We notice that the characteristic feature in the EFA set of equations is the presence

the envelope functions instead of Bloch-Functions. Using quasi-degenerate perturba-

tion theory we can convert this in�nite-dimensional eigenvalue equation into a solvable

problem.

We have done here a simple exercise of deriving a Hamiltonian that contains a slowly

varying potential whereby we expected to get envelope functions. We now step back

to consider a situation without this smooth potential. We wish instead to describe the

energy dispersionE(~k) close to some point~k = ~k0 in the band structure. For this, we

will resort to a method, called thek � p method, that in analogy to the EFA, considers

a linear combination of many bands to build up a solution.

In the end, we will see that the EFA Hamiltonian can be derived from the k �p method

by some proper substitutions.
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2.6 k � p method

A simple tight-binding (TB) model would be enough to understand how the discrete

levels of the atoms merge and form a band when they come closer. Such a quasi-

continuous energy levels arise as a consequence of the atomic wave-function overlapping

of di�erent atoms. Depending on the type of orbital, the bands may have positive or

negative curvatures. The cosine-like energy dispersion given by the TB method resembles

the real band structure for k values close to the band extrema. In this region, one

can often make a parabolic approximation for the energy dispersion and attribute an

e�ective mass to the electron. The e�ective mass then allowsto pack information about

the physical system in a parameter, and to have a simpler Hamiltonian (as simple as the

free-electron Hamiltonian, for example), yet restricted to agiven energy region.

In this section we will explain how the concept of e�ective mass arises in more sophis-

ticate descriptions of band structures. Thek � p method used to introduce it has proved

to be successful for the calculation of energy dispersion near a given~k0, which for us will

be the � point or zone center [70].

First of all, we cite the Bloch Theorem, which states that the solutions to the Hamil-

tonian containing a periodic potentialV0
�

p2

2m0
+ V0

�
	 n~k = En~k 	 n~k (2.27)

can be written

	 n~k(~r) = ei~k�~r � un~k(~r) (2.28)

whereun~k(~r) is a periodic function with the periodicity of the lattice and m is the free-

electron mass, and~k -the wave vector- is associated to the crystal momentum of the

electron. If we now replace this function into eq. (2.27), anequation for the periodic

part of the Bloch Function (BF), known as the~k � ~p equation, is obtained
 

p2

2m0
+ V0 + ~

~k � ~p
m0

+
~2k2

2m0

!

un~k = En~kun~k (2.29)

At ~k = 0, this equation reduces to
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�
p2

2m0
+ V0

�
un0 = En0un0 ( with n=0,1,2,3...) (2.30)

Now we assume we know the solution to this equation. It can be shown that the periodic

functions un0 with di�erent n's form a complete set of basis, and so we can exploit this

property to expand theunk in terms of these band-edges states and treat the~k � p=m

as a perturbation. The general expression for the proposed solution is

un~k =
X

n0

cn
n0(~k)un00: (2.31)

For simplicity we consider the band structure to have a minimum at En0 = 0 and no

degeneracy exist at this point.

At this point, we can proceed by using standard perturbationtheory, and take the

k � p operator as the \weak" term. In this case, we obtain the correction terms to un0

(the \unperturbed state")

~un~k = un0 +
~

m0

X

n06= n

hun0 j~k � ~pjun00 i
En0 � En00

un00 (2.32)

and for En0

~En~k = En0 +
~2k2

2m0
+

~2

m2
0

X

n06= n

jhun0 j~k � ~pjun00 ij 2

En0 � En00
: (2.33)

We note that there is no linear dependence onk, because the energy has been chosen to

be an extreme. The following parabolic energy dispersion for small values ofk

~En~k = En0 +
~2k2

2m�
(2.34)

de�nes the e�ective mass of the band as

1
m�

=
1

m0
+

2
k2m2

0

X

n06= n

jhun0 j~k � ~pjun00 ij 2

En0 � En00
(2.35)
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by likening the corresponding terms. This formula shows explicitly the correction to the

free-electron mass due to the~k � ~pcoupling between this band and the neighboring ones,

and it is valid as long as the energy region of interest is close to En0. We note that the

wave functionun0 couples to anotherun00 via the p operator. The importance of group

theory becomes evident here. The operator~p, responsible for the coupling between the

two states, has a �4 symmetry in the ZB case (it transforms like a vector). Therefore,

applying the matrix element theorem and group theory , we can anticipate that a

conduction band state with symmetry �1c will be coupled only to valence band state

� � 4v (and in principle, also to a �4c). The � 4v state, besides being coupled to �1, also

interacts with � 3, � 4, and � 5 states. This is just an example exhibiting how group theory

provides a way to discard certain matrix elements based on symmetry properties. Sec-

ondly, it must be also noticed that the energy separation between the two states weights

the relative contribution of n0 to the e�ective mass of the bandn, and could eventually

give rise to a negative or a positive contribution tom� . These two general features can

be applied to several direct band gaps of the group-III-V and II-VI. To illustrate the idea

we take zincblende GaAs and calculate the e�ective mass of aconduction electron . In

Fig. 2.3, the zone-centers states for this material [71] are shown using the group notation

for the identi�cation of the symmetry properties of the states involved. We also know

that

� 1 � S

and

� 4 � X; Y; Z:

The namesS and (X; Y; Z ) are used because of the similarity between the �4 and

� 1 states and the atomicp states (three fold degenerate withl = 1) and s states,

respectively. The other important point is that

hSjpx jX i = hSjpy jY i = hSjpzjZ i
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and that there is no term like hSjpx jY i . This implies that the e�ective mass (which

should be de�ned ultimately as a tensor) is isotropic in thiscase and so

1
m�

=
1

m0
+

2
m2

0

jhSjpx jX v ij 2

E � 1c � E � 4v

�
2

m2
0

jhSjpx jX cij 2

E � 4c � E � 1c

(2.36)

where we include the interaction between the lowest conduction band � 1c and both the

upper conduction band �4c and the valence bands �4v. In ZB, the last term happens to

be smaller that the preceding correction term, and som� < m 0. Using the same method,

we can correct only one of the three p-like valence bands; onlythe light holeband couples

to the conduction band �1c along a given direction (the4 direction). The result here is

that mlh < 0, which means that the correction "bends" this valence banddownwards.

The k � p interaction is then capable of changing the curvature of theconduction and

valence in certain cases. Within this simple one-band model, the heavy-hole band can

also be derived, but in this case, unlike the light-hole band, the interaction of the valence

band and the more remote �4c state must be necessarily considered.

The generalk � p method framework -beyond perturbation theory- allows to describe

the coupling between heavy holes and light holes, and other interactions such as non-

parabolicity or spin splitting in the band structure. Let us now derive thek � p Hamil-

tonian with SOC. We must thus include

HSOC = �
~

4m0c2
� � p � r V0

in eq. (2.29). The resulting equation for the periodic Blochequation jn~ki is

�
p2

2m0
+ V0 +

~2k2

2m0
+

~
m0

~k � ~� �
~

4m0c2
� � p � r V0

�
jn~ki = En~k jn~ki (2.37)

with

~� = p +
~

4mc2
� � r V0:

It must be noted that owing to the SOC, the newly de�ned functions jn~ki are two-

component spinor, and the label \n" is a common label both for the orbital motion and

for the spin degree of freedom. The indices arise from the irreducible representations of

the double group of the band.
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However, we will expand the Bloch Functions as before in terms of band-center states,

which also are spin eigenstates:

jn~ki =
X

� 0;� 0= " ;#

cn� 0;� 0(~k)j� 0� 0i (2.38)

with j� 0� 0i = j� 0;~k = 0i 
 j � 0i . The next step is to replace this expansion in (2.37)

and multiply from the left by h�� j, and in virtue of the orthogonality of the band-center

functions, the resulting equation is

X

� 0;� 0

��
E � 0(0) +

~2k2

2m0

�
� �� 0� �� 0 +

~
m0

~k � ~P �� 0

�� 0 + 4 �� 0

�� 0

�
cn� 0;� 0(~k) = En (~k)cn� 0;� 0(~k) (2.39)

where the eigenvalueE � (0) of j� 0� 0i has been introduced.

As the matrix elements appearing in this case~P �� 0

�� 0 and 4 �� 0

�� 0 are the same as those in

the EFA Hamiltonian (2.27), it seems natural that the EFA Hamiltonian can be obtained

from the k � p Hamiltonian by replacing the vector ~~k = ~p ! � i~r + e
c

~A, adding the

slowly varying potential V(~r) and the Zeeman term (g0=2)� B � � ~B . It is worth pointing

out that in the EFA case, ~k (or p) is the operator of kinetic momentum and must be

distinguished from the canonical momentum \� i~r ". In particular, if no magnetic �eld

is present, then they coincide. If alsoV(~r) is zero, then the wave vectork is equivalent

to the operator k from EFA.

If a non-zero magnetic �eld is considered instead, then no matter what Gauge is

chosen, the components of the operatork do not commute and

~k � ~k � ~B

Likewise, we �nd that

[~k; V(~r)] = � i r V(~r):
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Let us see in what follows how thek � p method works for the energy dispersion

calculation close to the band center.

2.6.1 The Kane Model : First-order

In the previous section we have found the energy dispersion by means of perturbation

theory. Nevertheless, the expansion of the periodic Bloch Function (2.31) can be applied

to replace the di�erential equation (2.29) by the corresponding matrix, in which case

an in�nite representation naturally appears. As we can only handle �nite matrices, an

approximation must be done. This consists of the diagonalization within an appropriate

subspace, where the interaction between some bands is exactly treated, whereas the cou-

pling to the more distant bands is incorporated through a perturbation scheme. These

various models, referred as Kane models, build a hierarchy depending on how and which

bands are taken into account. For example, the simplest 4� 4 Kane model contains the

interaction between the conduction band �1c � S and the three-fold degenerate valence

band � 4v � X; Y; Z . The resulting Hamiltonian [72], in the basisf S;� iX; � iY; � iZ g, is

H (~k) =

0

B
B
B
B
B
B
@

� (~k) + Eg kxP kyP kzP

� (~k) 0 0

y � (~k) 0

� (~k)

1

C
C
C
C
C
C
A

(2.40)

where � (~k) = ~2k2

2m0
is the free-electron energy dispersion andP = � i~m0hSjPx jX i is

related to the coupling between di�erent bands. The energy dispersion is

E(~k) =

8
>>><

>>>:

~2k2

2m0
twice heavy-hole

� (~k) + Eg

2 +
q

Eg

2 + k2
xP2 electrons

� (~k) + Eg

2 �
q

Eg

2 + k2
xP2 light-hole

9
>>>=

>>>;

We see that 2 valence bands are not modi�ed respect to the free-electron one, while

the conduction band and the light-hole bandlh change and acquire a certain curvature.
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The e�ective masses within this model are isotropic, but the heavy-hole bandhh is the

free-electron one. Thelh band then presents non-parabolicity.

The e�ective-masses for electrons and holes are

1
m�

=
1

m0

�
1 �

Ep

Eg

�

respectively. The Kane parameterEp = 2m0P 2

~2 has been de�ned.

So far we have neglected the spin-orbit coupling. In thek � p equation (the equation

for the periodic Bloch function), the interaction enters as

HSOC =
~

4m2
0c2

(� � r V) � ~p+
1

4m2
0c2

(� � r V) � ~k (2.41)

if the spin-orbit coupling is applied to the total function un;~kei~k�~r . The second term in

eq. (2.41), being smaller than the �rst one, is often neglected. The inclusion of spin

transforms the 4� 4 case into the 8-band Kane model. The spin-orbit coupling lifts

the three-fold degeneration present so far in the valence band at the � point, leaving

only a two-fold degeneration and shifting the energy of the third valence bands to lower

energies. This spin split-o� band is then considered, and therefore an extra parameter

4 0 appears. It denotes the energy di�erence between these two valence bands.

As we have anticipated, the introduction of the spin also entails a modi�cation in

the symmetry group of the crystal. The necessity for such a modi�cation can be easily

justi�ed if one considers that a orbital part of a wave function remains the same under

a rotation of 2� , whereas the spin wave function changes sign under the same operation.

Following the notation of Ref. [70], we callbE the 2� rotation about a given axis. For

a spinless particlebE is the identity operation; for a spin-1=2 particle it represents an

additional symmetry operation. This implies that if G is the point group without spin

of a crystal, the new group including spin must bebEG, and it is twice as large as the

original one. The name for this kind of groups is accordinglydoublegroup.

Since theHSOC operates on spin states, we also have to analyze the symmetryproper-

ties of the spin matrices, and then review the representations of the symmetry operators.

We expect the number of irreducible representations of the double group to increase as
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well, as the group is \bigger". The number of elements of the point group in ZB is, as

we know, 24 and it is 48 for the double group. However, while thenumber of classes of

the single point group is 5, for the double group it is 8,not 10. Therefore, �i will run

over 1, ..., 8.

In our ZB example, elements inf 3Ci g and elements inf 3bECi g belong to the same

class, likef 6� g and f 6bE� g. This explains why the number of irreducible representations

is larger but not doubled. The spin-orbit coupling also forces us to adopt other basis

functions. The eigenstates ofHSOC are also eigenstates of the total angular momentum

J = L + S and its z-component. The appropriate basis is now

jJ ; j zi = fj
3
2

; �
1
2

i ; j
3
2

; �
3
2

i ; j
1
2

; �
1
2

ig

We have just seen how the SOC splits thej = 3=2 states from thej = 1=2 states.

Concerning the notation, the four-fold degeneratej = 3=2 states belong to a �8 repre-

sentation, since this is the only four-dimensional representation in the point group. In

the case ofj = 1=2, the irreducible representation may be in principle either� 6 or � 7,

both of them being two-dimensional, but it can be shown that it actually belongs to � 7.

This observation completes the understanding of Fig. 2.3.

Back in the 8-band Kane model, the bands considered are the �6c, � 8v and � 7v, these

two last bands separated by4 0. The basis is the following

fj iS "i ; j
3
2

; �
1
2

i ; j
3
2

; �
3
2

i ; j
1
2

; �
1
2

i ; jiS #i ; g

and matrix elements such as

hi jS " j H j
3
2

3
2

i = hi jS " j H j
1

p
2

(X + iY ) "i =
1

p
2

P(kx + ik y)

must be calculated. Solving for the energy dispersion, the e�ective masses are derived.

The result shows that for the electron

1
me

=
1

m0

�
1 +

2
3

Ep

Eg
+

1
3

Ep

Eg + 4 0

�
(2.42)

68



2.6 k � p method

Likewise, for the light hole,

1
mlh

=
1

m0

�
1 �

2
3

Ep

Eg

�
; (2.43)

the heavy hole,
1

mhh
=

1
m0

(2.44)

and the spin hole or split-o� band,

1
msh

=
1

m0

�
1 �

Ep

3(Eg + 4 0)

�
(2.45)

While the heavy-hole band still has the free-electron mass (because the remote conduc-

tion band is not included), we see that the introduction of the spin modi�es the e�ective

mass of the split-o� band.

2.6.2 The Kane Model : Second-order

As we previously mentioned, the �rst-order Kane model deals with states within the

desired subspace, and containsk-linear coupling terms between thes and the p states.

The inclusion of remote bands (�4c for example) leads to quadratic terms (second order)

both in the diagonal and the o�-diagonal matrix elements. An example of extended Kane

model takes up the �4v valence bands (6-fold degenerate with spin), the �1c (2-fold), and

the � 4c (6-fold). In double group notation, the bands considered arelisted in Fig. 2.6

in increasing order of energy, and with the dimension of the irreducible representation

besides.

This extended Kane model forms a 14� 14 model that takesexactly into account all the

~k�~pand spin-orbit interaction between the above-mentioned bands. The interaction with

other bands is considered using second order perturbation theory [69], or alternatively,

by means of a block-diagonalization, known as the L•odwin Partitioning, which is actually

a unitary transformation that converts the original Hamiltonian into a block-diagonal

matrix (keeping terms up to the desired order).

We now describe the Dresselhaus SOC term, for which a 14� 14 Kane Model must

be considered. An 8 model is not enough.
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Chapter 2 Spin-orbit interaction in semiconductors

Figure 2.6: The energy separation at the � point is shown with the coupling parameters

of the 14� 14 Kane model.

2.6.3 Dresselhaus SOC

The time-reversal symmetry, preserved in the presence of the SOC, changes the sign of

the vector ~k and "ips" the spin such that its e�ect is

Time-reversal! E+ (~k) = E � (� ~k) (2.46)

The symmetry provided by an inversion symmetric systems ensures that the energy is

unchanged if~k ! � ~k, whereas the spin remains the same

Inversion symmetry! E � (~k) = E � (� ~k) (2.47)

The combination of both properties result in a spin-degeneracy E+ (~k) = E � (~k), which is

lifted upon the inclusion of an inversion symmetry breakingmechanism. This is indeed

the case that we will next consider: systems without a centerof inversion or equivalently,

with bulk inversion asymmetry (BIA). In zincblende or wurtzite material, the inversion
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2.6 k � p method

symmetry is broken due to the di�erent type of atoms in the cell, and we expect therefore

an energy splitting for a givenk. Nevertheless, we still have Kramers degeneracy as we

�rstly mentioned. The wave vector~k de�nes a spin orientation axisn(~k) that depends on

~k, and we have an eigenstate of the spin operator pointing along this direction. The time-

reversed partner carrying the same energy, points in the direction de�ned by � ~k. All

these symmetries imply that in these materials without bulk inversion symmetry, only

odd powers ofk are generally allowed in the energy expansion around the symmetry

point �. This e�ect is know as the Dresselhaus or Bulk Inversion Asymmetry (BIA)

e�ect. In ZB, the lowest term is cubic, unlike the WZ case having a linear-in-k term.

One way of approaching the problem is theTheory of invariants .

Although this theory has not been detailed here, it basicallystates that since the

Hamiltonian of a system must be invariant under the same symmetry operations of the

crystal involved (the Td for the zincblende), the only possible e�ective Hamiltonianterms

containing k and � must be compatible with this symmetry. In this way, one can rule

out other terms that must necessarily vanish.

Zincblende structures

For example, if we focus on the higher order term in the conduction band � 6c of a

zincblende material, we know that there is no linear-in-k spin splitting, because the

term � � (~k � r V) in �rst order perturbation and the term � � (~p� r V) coupled via~k � ~p

in second-order perturbation theory gives zero matrix elements [72]. This means that

the spin splitting is cubic in k, and so the theory of invariants gives a general expression

of this term in zincblende structures, that is known as the \Dresselhaus" term.

H 6c;6c =  c
�
kx (k2

y � k2
z)� x + c:p:

�
(2.48)

where c.p. means cyclic permutations. This is the lowest-order term producing a spin-

splitting in the conduction band. The method gives equivalently invariant terms for the

valence band that will be omitted here. In the language of Kane models, we get the

Dresselhaus term from an extended Kane model, considering the � 7v; � 8v; � 6c; � 7c, and
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Chapter 2 Spin-orbit interaction in semiconductors

� 8c, i.e. a 14� 14 model.

The �gure 2.6 shows these bands and the parameters for the BIAsplitting. The prefac-

tor involves the product PP0Q, which means that the origin of thespin-splitting resides

in the ~k � ~p interaction between :

� the valence band states and the �6c state (matrix element P)

� the � 6c and the � 7c or � 8c (P0)

� the valence band states and the �7c or � 8c (Q)

The spin-orbit split-o� energies 4 0 and 4 0
0 also appear in the formula, as we see in

the total expression (the leading order) for this coe�cient

 c = P P0Q
�

1
(Eg + 4 0)(Eg � E 0

g � 4 0
0)

�
1

Eg(Eg � E 0
g)

�
(2.49)

For electrons con�ned to two dimensions, the bulk Hamiltoniancited in eq. (2.48) leads

to two contributions. In this case we must take the expectation value of the Hamiltonian.

To see how it works, we assume that the con�nement direction is along the [001]. In

this case, we can separate our solution to the Schr•odinger equation in two parts. One of

them contains the variables on the plane, while the other onedepends onz. Due to the

con�nement, the energies associated to this latter part arewell separated. Usually, only

the lowest energy is taken, and an average over the corresponding state is performed.

For our averaged BIA Hamiltonian, we must look at the expectation valueshkzi and

hk2
z i . Whereashkzi = 0 , the other value k2

z � (�=d )2 [68],d being the small con�nement

width. As a consequence, one obtains a linear Dresselhaus term for 2D systems,

H (1)
D; 2d = � (kx � x � ky � y)

with � = �  c(�=d )2 and a remaining cubic term given by

H (3)
D; 2d =  ckxky(ky � x � kx � y)
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2.6 k � p method

The same average procedure will be applied in this thesis in our approach to quantum

dots in nanowires, when the SOC is included in 2D-WZ systems.

Next we consider the spin-orbit coupling terms correspondingto the bulk wurtzite-

type case.

Wurtzite structures

Let us briey discuss the linear spin splitting that occurs in wurtzite materials. The

focus is on the conduction band, even though it is also present in the valence band. The

Theory of Invariants indicates that the only possible term linear in ~k is [55]

H � (kx � y � ky � x ) (2.50)

Note that there is no linear-in-kz spin-splitting, if z is along the c-axis. It can be

shown that the k-dependent SOC (� (r Vcrys � ~k) � ~� ) contribution is zero up to �rst-

order perturbation for the conduction band, in contrast to the valence band where it

yields a contribution. The leading term will then result fromthe second-order coupling

between the electron state and the valence band states with �9; � 7; and � 70 symmetries.

Nevertheless, due to its symmetry, the state associated to �9 does not contribute anyway.

In addition to this linear term, the C6v double point group corresponding to the WZ

symmetry also allows a cubic-in-k spin-splitting [73], given by

H � (b k2
z � k2

k)(kx � y � ky � x ) (2.51)

2.6.4 Rashba SOC

Another source of spin-splitting in semiconductor quantum structures is given by an

inversion asymmetry in thestructure (SIA) due to the con�ning potential V(~r), for

example at a heterostructure. The potential producing the symmetry breaking may be

a built-in potential, an external potential, etc, but also some experiments have shown

that it is possible to tune the SIA spin-splitting by means of external gates [74,75].
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Chapter 2 Spin-orbit interaction in semiconductors

The lowest order ink and V(~r) in the conduction band � 6
c is given by the Rashba [69]

H R
6c;6c = r 6c;6c� � (~k � ~E) (2.52)

where ~E denotes the electric �eld caused to the asymmetry ofV(~r). The constant r 6c;6c

is a material-speci�c parameter, that vanishes if the bulk split-o� energies 4 0 and 4 0
0

are zero. It is worth pointing out that the calculation of the Rashba coe�cient can

be made by using the subbandk � p method in a 8� 8 Kane Hamiltonian, in contrast

to the Dresselhaus coupling, that needs a 14� 14 model. Further details about the

widely studied Rashba model can be found in [68] and references therein. The Theory

of Invariants indicates that this is the only term that is linear both in k and the electric

�eld ~E compatible with the symmetries of the conduction band. Assuming that the

electric �eld ~E = (0 ; 0; Ez), the Rashba energy dispersion results

E � (~kk) =
~2

2m�
k2

k � h r 6c;6c Ezi kk (2.53)

where ~kk = ( kx ; ky). The magnitude hr 6c;6c Ezi means an average over the con�ning

dimension, and is usually denoted with� . It is interesting to note that, unlike the BIA

case, the SIA spin-splitting depends both on the microscopicdetails of the underlying

crystal (through r 6c;6c) and the macroscopic �eld given byEz. We thus obtain a linear

energy dispersion (that depends on the modulus of~kk), such that for each state labeled

by (kx ; ky) a spin orientation is determined, as shown in Fig. 2.7

Although the Rashba is derived for the case of a Structural Inversion Asymmetry,

we could equally argue that the SOC induced by the electric �eld of an impurity (the

extrinsic term) causes an asymmetry in the structure, and could be therefore also be

dubbed \extrinsic". Furthermore, due to this equivalence it is not surprising that both

the Rashba term and the extrinsic term look alike, as we will see in a subsequent section.

The Rashba term is widely used to take into account the structural asymmetry in

quasi-2D problems. But an important remark is here noteworthy. This term must not

be mistaken with the linear-in-k BIA spin-splitting already mentioned in eq. (2.50).

There, the WZ symmetry allows such a linear term for the bulk inversion asymmetry,

whereas for the ZB symmetry the lowest term is cubic.
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2.7 Impurities

Figure 2.7: Energy dispersion of a state with Rashba splitting (bottom part) together

with the spin orientations of electrons(arrows in the upperpart).

In our approach to WZ quantum dots, which includes the computation of the energy

dispersion of a quasi-2D system, we do not consider the Rashba term explicitly. Nev-

ertheless, as our formulation includes the linear Dresselhaus term, Rashba is therein

implicit. What it would merely change is the value of the coupling strength parameter,

which for us will be given only by band structure calculationsfound in Ref. [57].

2.7 Impurities

Impurities or defects, despite the negative nuance in theirnames, can be useful in semi-

conductors, because they change the electronic properties in such systems. Depending

on what kind of e�ect is desired, some defects (or impurities) prove to be appropriate

and others do not. Obviously, the experimental control overthese defects is a major

task, and it also determines whether they can be used in a device or not.

At the theoretical level, the study of the electronic properties of defects is required.

Although there is a full classi�cation of impurities, we will mention only those corre-
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Chapter 2 Spin-orbit interaction in semiconductors

sponding to our study. The GaAs semiconductor we consider here is doped with Silicon

impurities. An impurity like Silicon, being di�erent from th e atoms in the host crys-

tal (Gallium and Arsenide) is anextrinsic defect. Since Silicon appears isolated in the

underlying crystal, it receives the name ofpoint defect. Additionally, since it tends to

substitute the Ga it gives an electron to the crystal, hence the namedonor, in contrast

to acceptor impurities. Conversely, Silicon may be an acceptor in another type of crystal

or semiconductor. In GaAs, a Silicon atom substitutes a Ga atomof the host crystal,

and in this situation, the defect is said to besubstitutional. Compared to the Ga atom

(group III), Silicon (group IV) has an extra negative charge,that interacts with the

nucleus of the Si atom through the attractive Coulomb potential, but screened by the

core and the other valence electrons. The other source for screening comes from the va-

lence electrons of the neighboring atoms of the host crystal. This gives the intuitive idea

that the Silicon atom behaves e�ectively as though it were an hydrogen atom embedded

in a medium where the attractive potential is weaker due to thescreening e�ect. The

consequence for the electron is that it is loosely bound to the Si ion and it can be easily

ionized by thermal or electrical excitations. The exact calculation of this screening is

a di�cult task, and one way to overcome it is to assume a screening controlled by the

dielectric constant of the host crystal in the electrostatic potential:

U = �
e
�r

(2.54)

where � is the dielectric constant. We will use this as the Coulomb potential produced

by the impurity ion. The Silicon impurity is also in our case ashallow impurity: the

electronic states associated to it have an energy close to the conduction band such that

they can be calculated in the e�ective-mass approximation,as we will see below. The

approximation made forU is our starting point in our path towards the derivation of the

equation describing the donor state. We recall that based onthe previous ideas we expect

an hydrogen-like equation. On the other hand, we are under theconditions required for

the Envelope-function approximation described before, because the potential in (2.54)

is a smoothly varying one. We thus anticipate an envelope function solution for the
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2.7 Impurities

donor, multiplied by some Bloch Function. We perform here anyway the full derivation

in order to see a concrete example of the EFA. In what follows wedevelop the derivation

based on Bloch Functions, although the same result can be achieved in terms of Wannier

functions, as it is neatly developed in Ref. [70].

Our derivation starts by considering the crystal HamiltonianH0 and the impurity

potential U. To solve the problem of the full Hamiltonian, we will considerthe case that

we have a (non-degenerate) minimum of the conduction band at~k = 0. The unperturbed

Hamiltonian H0 is

H0 = �
~2

2m0
r 2 + Vcrys (~r) (2.55)

whose solution is 	n;k (~r) � un;k (~r)ei~k�~r .

For the perturbed problemH = H0(~r) + U(~r), we will propose a solution of the kind

	 =
X

n;k

An (k)	 n;k (2.56)

As usual, we try to isolate an equation for theA's, and therefore we insert the proposed

solution into the full Schr•odinger equation and we subsequently multiply the equation

by

Z
d~r 	 �

n;k

The following equation results

(En (k) � E)An (~k) +
X

n0;k0

hn;~kjUjn0;~k0i An0(~k0) = 0 (2.57)

We now examine the matrix element of the potential, accounting for the coupling between

di�erent Bloch states via the perturbation.

hn;~kjUjn0;~k0i =
Z

	 �
n;k (�

e2

�r
)	 n0;k0d~r =

1
V

Z
u�

n;k (~r)un0;k0(~r)ei (~k0� ~k)�~r (�
e2

�r
)d~r (2.58)

77



Chapter 2 Spin-orbit interaction in semiconductors

where theu's are the periodic part of the Bloch function.

One can cast this matrix element into the form

hn;~kjUjn0;~k0i =
1
V

Z
dru �

n;k un0;k0ei (~k0� ~k)�~r U(~r) (2.59)

=
1
V

Z
dru � n;k un0;k0ei (~k0� ~k)�~r

X

ku

ei (~ku �~r )U(~ku) (2.60)

=
1
V

X

ku

U(~ku)
Z

dru �
n;k un0;k0ei (~k0� ~k+ ~ku )�~r (2.61)

=
1
V

X

ku ; ~G

U(~ku)� G;k 0� k+ ku

Z
dru �

n;k un0;k0e� i ~G�~r (2.62)

where the periodicity of the functionu�
n;k un0;k0 has been taken into account in the last

step by using an expansion over the reciprocal vectors~G. The Fourier transform of the

potential U has been introduced. We recall that the electron is weakly bound to the ion,

and so its wave function must resemble a conduction state in the band minimum, with

contributions coming from small~k's. Hence, we can restrict the values of~k, ~k0 and ~ku to

a small region around 0, which leads to the conditionG = 0 for the matrix elements we

are dealing with. On the other hand, if we take the limit of~ku ! 0, the delta function

� G0;k0� k+0 implies that Z
d~ru�

n;k (~r)un0;k (~r) / � n;n 0

The eq. (2.57) is thus reexpressed as

(Ec(k) � E)Ac(~k) +
X

k0

hc;~kjUjc;~k0i Ac(~k0)
X

n06= c;k0

hc;~kjUjn0;~k0i An0(~k0) = 0 (2.63)

for the conduction band n = c. A valid approximation, based on our previous re-

marks, is to discard the equation forn 6= c and assume that the leading contribution
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comes from only one band. We can additionally use forEc the dispersion relation given

by the e�ective-mass ~2

2m � k2 approximation (valid for small ~k) and the matrix element

hc;~kjUjc;~k0i ! � 4�e 2

V � j~k0� ~kj2
: The �nal result is

�
~2

2m�
k2 � E

�
Ac(~k) �

4�e 2

V �

X

k0

1

j~k � ~k0j2
Ac(~k0) = 0 (2.64)

In this equation it must be noted that ~k and ~k0 lie within the �rst Brillouin zone (FB)

and the restriction can be safely omitted. By extending the sum over~k0 beyond the FB

zone, we end up with the equivalent equation

�
~2

2m�
k2 � E

�
Ac(~k) �

4�e 2

V �

X

all k'

1

j~k � ~k0j2
Ac(~k0) = 0 (2.65)

The Schr•odinger equation in momentum space is recognized by transforming Ac(~k) to

the coordinate spaceF (~r) = 1
V 1=2

P
all k Ac(~k)ei~k�~r We thus get

�
~2

2m�
r 2 �

e2

�r

�
F (~r) = EF (~r): (2.66)

The envelope functionF (~r) represents the solution to the hydrogen-like problem of an

electron with a renormalized massm� in the presence of a Coulomb potential diminished

by a factor of � . The eigenenergies for the problem are well-known

E j =
1
j 2

(e2=�)2

2~2m�
j = 1,2,... (2.67)

whereas the eigenfunction for the ground state is

F (~r) =
1

p
�a � 3

e� r=a �
: (2.68)

The rede�nition of the mass and the dielectric constant also determines the e�ective
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Bohr Radius

a� =
~2�

m� e2
:

Even though this formulation leads us to the initial intuitive idea that a donor electron

should e�ectively behave as in hydrogen-like landscape, itis worth pointing out that the

function F (~r) is not the total wave function. The full wave function is in fact the linear

combination

	( ~r) =
X

k

Ac(~k)	 c;k(~r) =
1

p
V

X

k

Ac(~k)uc;kei~k�~r (2.69)

As we said before,Ac(~k) is con�ned in a small range around~k = 0 and hence we only

keepuc;k for small ~k.

uc;k ' uc;0

which turns the aforementioned linear combination into

	( ~r) � uc;0(~r)F (~r) = F (~r) uc;0(~r)ei 0�~k

where we explicitly added in the last term the exponential in order to highlight that the

total wave function is indeed an envelope function multiplying a Bloch function. The

approximation made forAc(~k) can be veri�ed by noting that its magnitude is appreciable

for ~k less than 1=a� . The contribution from the other bands can also be shown to be

negligible as long as the e�ective Bohr radius is large

jAn j �
E0

Eg

a
a�

jA0j

with E0 the ionization energy andEg the band gap. We have just treated the case of a

single impurity, and found the shape of the ground state of the donor electron. Yet in
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2.8 An e�ective SOC derivation

a bulk semiconductor sample there are many impurities. For our purposes, a model is

needed for the electron in the presence of many randomly placed impurities. For this,

we rely on the Matsubara-Toyozawa Model described in the endof this chapter.

Concerning the impurities, we �nally address the SOC term calculation related to the

electrical potential produced by themselves.

2.8 An e�ective SOC derivation

In this section we work out the derivation of an e�ective spin-orbit coupling term aris-

ing from the impurity potential. For this, we aim at decoupling the conduction band

from the valence band, in a similar way as the one done in Ref. [76]by Nozieres and

Lewiner. Though the procedure followed by the authors is physically transparent, it can

also be stated in a more formal -yet less transparent- way known as quasi-degenerate

perturbation theory. We make some remarks about this in the sequel.

We now start our derivation that goes along the same line as that of Ref. [76]. In

our case, the time-independent Schr•odinger equation is used instead, since we do not

consider any time-dependent e�ect, but we arrive to the same result. We consider the

Schr•odinger equation in matrix form,

E

0

@
 1

 2

1

A =

0

@
H1 h

hy H2

1

A

0

@
 1

 2

1

A (2.70)

where we have split into two parts. The term  1 corresponds to the component in

the conduction band \subspace", while all the other bands components are assigned to

some 2.

The origin of energy is set to the bottom of the conduction band, H1 is thus of the

order of a typical conduction electron energy, i.e.� F , and H2 is of the order of the band

gap. We rede�ne it asH2 = H 0
2 + Hg in order to measure the valence state energies

from the valence state at~k = 0. We also assume thatH 0
2 is an intraband Hamiltonian.
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Despite the authors deal with time-dependent Hamiltonians,we restrict our case to the

more simpli�ed case of a static interaction denotedh. The approximation to be made

considers that the band gap is much larger than the Fermi energy � F , and it is thus

possible to make an expansion over 1=Hg. We can formally express the solution

 2 =
�

1
E � H2

�
hy 1

The term with the denominator can be approximated as

1
E � H2

= �
1

H2

1
�

1 � E
H 2

� � �
1

H2

�
1 +

E
H2

�

sinceH2 is of the order of the band gap. On the other hand,

1
H2

=
1

Hg + H 0
2

�
1

Hg

�
1 �

H 0
2

Hg

�
:

Within these approximations, the expression for 2 translates into

 2 = �
1

Hg

�
1 +

E
Hg

�
H 0

2

Hg

�
hy 1 (2.71)

We will need later

h 2j 2i = h 1j� j 1i (2.72)

where we have consistently kept terms up to second order 1=H2
g and de�ned

� = h
1

H 2
g

hy

.

By replacing  2 in the eq. (2.70), we �nally get an eigenvalue equation for 1.
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�
1 + h

1
H 2

g
hy

�
E 1 =

�
H1 � h

1
H 2

g
hy + h

1
Hg

H 0
2

1
Hg

hy

�
 1

(2.73)

E(1 + �)  1 = H  1: (2.74)

The operatorH is de�ned in an obvious way. We then attained an equation for 1 that

is decoupled from the subspace 2. Furthermore, an e�ective Schr•odinger equation can

be derived by multiplying from the left with (1 � �
2 ).

�
1 �

�
2

�
E (1 + �)  1 = (1 �

�
2

)H  1

�
1 �

�
2

�
E (1 + �)  1 =

�
1 �

�
2

�
H

�
1 �

�
2

� �
1 +

�
2

�
 1

E
�

1 +
�
2

�
 1 =

�
1 �

�
2

�
H

�
1 �

�
2

� �
1 +

�
2

�
 1 (2.75)

by noting that (1 + �
2 )(1 � �

2 ) = 1 up to second order.

The eq. (2.75) allows us to de�ne the e�ective wave function

j ef f i =
�

1 +
�
2

�
 1

and an e�ective Hamiltonian given by

Hef f =
�

1 �
�
2

�
H

�
1 �

�
2

�
= H0 �

H0� + � H0

2
+ h

1
Hg

H 0
2

1
Hg

hy (2.76)

with H0 = H1 � h 1
H g

hy. It is important to note that the newly de�ned e�ective functi on

is properly normalized, since

h ef f j ef f i = h 1j1 + � j 1i = h 1j 1i + h 1j� j 1i = h 1j 1i + h 2j 2i = 1
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for which the relation previously found in eq. (2.72) has been used.

As we mention in the beginning, the theory just exposed can be framed in quasi-

perturbation theory as well. This is a more general and abstract avenue to treat the

problem by means of a unitary transformationU, such that a new Hamiltonian

H 0 = UHUy (2.77)

is made up out of the original oneH . In general, the transformation operatorU can

be expressed ase� S if S is an anti-Hermitian operator such that Sy = � S. On the

other hand, two subspaces must be distinguished here: a subspaceA that for us are the

conduction states, and another oneB (the valence band). The idea behind this approach

is the same as before: the transformation we seek is such thatthe rotated Hamiltonian

H 0 does not have any o�-diagonal matrix element linking the twosubspaces. The next

step is to separate the original Hamiltonian in two parts

H = HD + HND

where HD is a block-diagonal Hamiltonian that couples the stateswithin their corre-

sponding subspaces. In our notation, this isHD = H1 + H2. HND , on the other hand,

stands for the coupling term that connects the two subspaces-in our case this ish. What

the method pursues is the transformation matrixS that makes the matrix elements of

H 0 between A-states and B-states to vanish up to the desired order. In order to be able

to work order by order, the operatoreS can be expanded

eS = 1 + S +
1
2!

S2 +
1
3!

S3

The condition on the removal of the non-diagonal elements inH 0 leads to a system of
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2.8 An e�ective SOC derivation

equations for the successive approximation ofS = S1 + S2 + S3 + :::, that according to

the Ref. [69] is, up to second order in 1=H2
g :

S(1) =

0

@
0 � h

H g

hy

H g
0

1

A (2.78)

and

S(2) =

0

@
0 � 1

H g

h
H 1h
H g

� hH 0
2

H g

i

� 1
H g

h
hyH 1
H g

� H 0
2hy

H g

i
0

1

A (2.79)

The e�ective Hamiltonian H 0 after computing all the commutators betweenH and S

up to order 1=H2
g is exactly the same as that of eq. (2.76).

To apply this method to the speci�c case of the conduction andthe valence band in a

wide gap semiconductor like GaAs, we must consider the aforementioned~k � ~p equation

or EFA equation with the electron mass renormalized. The interaction that couples the

subspaceA and B is the operator~k � ~� = h with ~k = � i r (the canonical momentum)

and ~�, the vector operator with matrix elements

� nn 0 = hun;0j �
i r
m0

jun0;0i ; (2.80)

i.e. those from the Kane Theory. In order to take into accountthe impurities, we

introduce in the conduction band the impurity Coulomb-likepotential \ V1" and in the

valence band the equivalent one \V2"; we consider that this potential does not contribute

to the interband coupling v. Hence

V1 = V2 = V(~r) (2.81)

v = 0
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Chapter 2 Spin-orbit interaction in semiconductors

We keep the namesV1 and V2 in order to track each potential individually, and seek for

the e�ective terms produced by these potentials. According to eq. (2.76), theV1 e�ect

enters as

V1 �
1
2

(� V1 + V1�) (2.82)

while V2 appears in

h
1

Hg
V2

1
Hg

hy =
X

�;�

k� � �
1

Hg
V2k� � �

1
Hg

=
X

�;�

k� V2k� � �
1

H 2
g

� � (2.83)

We emphasize here that~k is an operator.

All these ingredients can be gathered to write an e�ective potential for the impurity

potential, as we shall see now. We know that because of spin-orbit coupling, the six-fold

degenerate valence band (at~k = 0) splits in a four-fold band (quadruplet) and a doublet.

In this case, the matrix elements of � betweenthese states and the conduction band

states must be calculated. In particular, by looking at eq. (2.83), we note that we need

the following expression

� �
1

H n
g

� � =
jPj2

2

�
� � �

�
2

(� � g)n
+

1
(� � g � � 0)n

�

+ 2 i� �� S

�
1

(� � g � � 0)n
�

1
(� � g)n

��
(2.84)

taken from Ref. [76]. In addition to the energy gapHg, the orbital matrix element

P = hsj � i r x=m0jpx i appears. WhileS denotes the spin operator, �0 corresponds

to the split-o� energy di�erence at k = 0 between the valence bands. If we now only

concentrate in the spin-dependent e�ect (those containingS), we note that the contribu-

tion from eq. (2.82) vanishes: the operator � is related to the matrix element in (2.84)
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2.8 An e�ective SOC derivation

with n = 1, which must be multiplied with k� k� V1 and V1 k� k� . These two terms are

symmetric under � ! � if they commute, and therefore, the multiplication with the

spin-dependent part including� �� cancels out. Conversely, the contribution of the im-

purity potential in the valence band yields a term proportional to

k� V2 k� � �� (2.85)

Due to the non-commutation of k� and V2, the preceding equation transforms into

k�

�
k� V2 �

@V2
@x�

�
� �� (2.86)

The �rst term is again zero due to the \contraction" of a symmetric and an anti-

symmetric tensor, while the second one gives the sought result

�
~k � r V2

�
� S (2.87)

Two important points to be mentioned are that according to eq. (2.84), the spin-orbit

contribution of the impurities is zero if � 0 is set to zero. We have also made use of the

commutation of k� and k� , which is no longer valid when a magnetic �eld (and thus the

substitution (~k ! � i r � e~A=c ) is introduced.

In conclusion, for a conduction-band electron in the absence of spin-orbit interaction,

the electron acquires an e�ective-mass and in a �rst approximation and close to the

band extrema, the energy dispersion is quadratic with a renormalized mass. Due to the

presence of the external potentialV(r ), there appears a \Rashba-like" or \Structural

Inversion Asymmetry" (SIA) spin-orbit interaction [69,76{78], that we call hereextrinsic

term to emphasize that it is an potential produced by the impurities

Hext = � � � � r V � ~k; (2.88)
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where � is the vector of Pauli matrices,k = p=~, and � � is the e�ective spin-orbit

coupling constant given by

� � =
jPj2

3

�
1

H 2
g

�
1

(Hg + � 0)2

�
(2.89)

It is interesting to note that while the vacuum coupling constant is � 0 = ~2=4m2
0c2 '

3:7 � 10� 6�A
2
, the renormalized one is, for example,� � ' � 5:3�A

2
for GaAs and � � '

� 120�A
2

for InAs, that is, more than six orders of magnitude larger.

We have presented an illustrative way of deriving an e�ective Hamiltonian for the

SOC, that allowed us to examine its precise origin. Nevertheless, there is yet another

equivalent approach to take into account the e�ect of the spin-orbit coupling and the

potential produced by the impurities. It consist of extending the Matsubara-Toyozawa in

order to incorporate the spin-orbit interaction in the impurity states. We next continue

in the next section with the description of the Matsubara-Toyozawa model in its original

version, and leave the extension proposed in Ref. [79] for the �rst part of next chapter,

as an intermediate step before we present our results for this extended model.

2.9 The Matsubara-Toyozawa Model

The Matsubara-Toyozawa tackles the problem of an electron ina random lattice. Their

pioneering work dealt with a high degree of impurity concentration, but not as high as

to set the Fermi energy in the conduction band. Some works before the MT publication

had used perfectly mobile states (from the energy band), andtook into account the e�ect

of the disorder within a perturbative scheme. Alternatively, others started with localized

states, and the e�ect of the disorder gives rise to hopping events of the carriers. The

common point in both approaches is that the initial states di�er little from an eigenstate.

Matsubara and Toyozawa studied instead the case where the eigenstates of the system

had neither a de�nite momentum nor a de�nite localization. In this theory, there is
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2.9 The Matsubara-Toyozawa Model

no \disturbance" that cause the scattering of carriers, because the random potential is

already included in the calculation of the impurity band. Based on the Green Function

formalism, they analytically obtained the level density and the electrical conductivity.

In this work we will be mainly concerned with their model and not with their results.

The MT model consists of a tight-binding approximation built from the ground state

(the hydrogenic-likes state) of the doping impurities we have seen in Section (2.7).

 � (~r) =
X

~k

� (~k) ei~k�~r u~k;� (~r) � � (~r) u~k=0 ;� (~r): (2.90)

We denote� (~k) the Fourier transform of the hydrogenic envelope function, while u~k;� (~r)

represents the periodic part of the Bloch functions of the conduction band states. Its

dependence on~k, is much smoother than that of� (~k), and leads to the last relation in

eq. (2.90). In second-quantization notation, the Hamiltonian of the MT model can be

simply expressed as

H0 =
X

m6= m0;�

t ��
mm 0 cy

m0� cm� ; (2.91)

wherecy
m0� represents the creation operator of an electron eigenstateat the impurity site

m0. The annihilation operation iscm� . The integral for the energy transfer from sitem

to m0 is given by a sum over impuritiesp's

t ��
mm 0 =

X

p6= m

h m0� jVpj m� i ; (2.92)

while the Coulomb-like potential produced by the impurity placed at~rp is

Vp(r ) = � e2=�jr � r pj

We use� for the static dielectric constant ande for the electron charge. Due to the

exponential decay of the envelope functions, the dominant term in eq. (2.92) is the

two-center integral corresponding top = m0 and so

h m0� jVm0j m� i = � V0

�
1 +

rmm 0

a

�
exp

�
�

rmm 0

a

�
; (2.93)

with V0 = e2="a and rmm 0 being the distance between the two impurities.
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Chapter 2 Spin-orbit interaction in semiconductors

Back in the beginning of the eighties, the Hamiltonian in eq. (2.91) was studied using

di�erent analytical and numerical techniques [80{83], yielding a thorough description

of the impurity band and its electronic transport properties. In addition, MT was

employed as a realistic model to study the Anderson Transition in three dimensional

doped semiconductors [82]. It must be clear that the MT Modeldoes not take into

account the spin degree of freedom, and in consequence we must �nd the proper way

to include it. This was �rstly done in Ref. [79], where the model was extended and the

impurity states modi�ed accordingly.

We begin next chapter by describing this Impurity Spin-Admixture theory, and we

subsequently apply it to study how the spin-orbit interaction a�ects the localization of

the eigenstates.
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SOC in the impurity band

In this section we study numerically the e�ects of the spin-orbit interaction in n-doped

semiconductors in a model closely related to the one we have just exposed: the Matsub-

ara and Toyozawa. The inuence of the SOC on the density of states (DOS) and the

calculation of the so-called inverse participation ratio (IPR) are addressed. The latter

term is utilized for characterizing the degree of localization of the spin-orbit perturbed

states in the MT set of eigenstates.

In the numerical treatment of the problem, the �nite sizes that we are able to consider

force us to introduce an arti�cial enhancement of the spin-orbit coupling strength in order

to obtain a sizeable perturbation. The IPR and DOS are then obtained as a function

of an enhancement parameter. This study allows us on the one hand to appreciate

the e�ect of the SOC on the impurity band, and at the same time, to examine the

coexistence of localized and extended states in this band. In particular, the degree of

spatial extension at the Fermi energy is of crucial importance in the ensuing problem

of the spin relaxation, where besides the extrinsic contribution to the SOC, we also

consider the Dresselhaus term. Although this latter term turns out to play a relevant

role in relaxation, we do not include it here. The enhancement procedure followed in

this chapter provides us with a qualitative description of the impurity band, and as

we do not aim at any quantitative result, the inclusion of theDresselhaus term is not

determinant.
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Chapter 3 SOC in the impurity band

3.1 Presentation

In this chapter we focus on the e�ect of the spin-orbit interaction in n-doped semi-

conductors when the doping density is close to the critical density associated to the

metal-insulator transition (MIT). For a n-doped GaAs, the critical density occurs at

nc = 2 � 1016cm� 3. Since in the case of the n-doped semiconductors, the MIT appear

at doping densities where the Fermi level is in the impurity band [84,85], a description

taking into account only the electronic states built from the hydrogenic ground state

of the doping impurities is suitable. For densities slightly larger than the critical one

(i.e. on the metallic side of the transition) non-interacting models, like the Matsubara-

Toyozawa (MT) [80], are applicable. Furthermore, the description in terms of impurity

sites can be regarded as an Anderson model of a tight-binding lattice with on-site or

hopping disorder. In the profuse numerical work devoted to the Anderson model [86],

the critical exponents obtained �t reasonably well those ofthe experimental measure-

ments [87]. The inclusion of spin is equally interesting, in view of the fact that the

maximum spin relaxation times in n-doped semiconductors havebeen observed for im-

purity densities close to that of the MIT [25, 26, 30, 88]. At the level of models, the

generalization of the Anderson model in order to include somespin-orbit coupling has

been provided by Ando [89]. While this model turns out to be veryuseful to study

the progressive breaking of the spin symmetry [90], its connection with experimentally

relevant systems requires the estimation of coupling parameters which are not obtain-

able from �rst principles. In order to adapt the problem of thespin-relaxation in three

dimensional systems, Tamborenea and collaborators [79] reviewed the MT model and

incorporated in it the spin-orbit interaction. In their proposition, the impurity states

are no longer spin eigenstates, but a spin mixture ofup and down states.

As we make use of the Impurity Spin-Admixture (ISA) model in thischapter, we start

by describing it in the following section. Immediately after this, we present the results

obtained in the context of this thesis, starting with a preliminary study of the \bare"

MT model. After including the SOC interaction, we proceed with the characterization

of the impurity band. We then identify the regions of extended and localized states, and
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3.2 Tight-binding model with impurity spin admixture

analyze the limitations of the model and the conditions of applicability.

3.2 Tight-binding model with impurity spin admixture

We found before that the donor wave function can be approximated by

	( ~r) = uc;0(~r)F (~r) (3.1)

where uc;0 denotes the periodic Bloch function in the band center (~k = 0) and F (~r) is

an envelope function. In order to introduce the spin, we switch to the spinor notation

and generalize this solution :

[	 � (~r)] = F (~r)[uc;0(~r)] (3.2)

So far this spinor is trivial because it is an eigenstate of� z with eigenvalues� = � 1.

This will be no longer the case once the spin-orbit interaction is included. By way of

reminder, we have observed before that the valence band is split at the � point due to

the SOC, and its degeneracy is partially lifted. Thesplit-o� band (j = 1=2) separates

from the light-hole and the heavy-holebands (j = 3=2) by an amount equal to � 0. We

have also found that the hydrogenic character of the envelope function �ts very well

in our intuitive conception of the donor electron. With SOC the expressions for these

states are not so simple however, as it renders the description of the wave function a bit

more sophisticated. To see how, we must step back to the very beginning, and recall

that a Bloch Function can be written (in spinor language)

[	 n~k ](~r)] = ei~k�~r [un~k ]

Equivalently, one can use the following expansion

[	 n~k ](~r)] = ei~k�~r
X

n

cn (~k)[un ~k=0 ]
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which turns out to be more convenient when the bands a weakly coupled. By setting

a 8 � 8 Kane model, where the s-like (j = 1=2) and the three p-like valence (j = 3=2

and j = 1=2 separated by � 0) bands are taken into account, thek � p Hamiltonian can

be exactly diagonalized. By solving for the eigenenergies and the eigenvectors, one �nds

that the conduction-band states at �nite wave vector get spin-mixed, whereby the total

wave function now becomes

[	 c~k ](~r)] = ei~k�~r
X

n

cn (~k)[un ~k=0 ] ! ei~k�~r [~uk � ]

The periodic function [u0;c] in eq. (3.2) has been replaced by a spin-mixed conduction-

band state, that in bra-ket notation, is given [91] by

j~uk � i = ju�
(0) i + k � ju �

(1) i ; (3.3)

where the second term reads

ju �
(1) i = � 1 ( jR � i + � 2S � j R� i ) : (3.4)

The state ju�
(0) i is s-like and is equal to the original stateuc;0(~r) in eq. (3.2), since it

describes the unperturbed wave function at the �-point. Thevector jR i = ( jX i ; jY i ; jZ i )

represents the threep-like valence states andS is the spin operator. Obviously, the state

j~uk � i is then no longer an eigenstate ofSz. However, it is still labeled with � since the

mixing is small, andh~uk � jSzj~uk � i is much closer to� ~
2 than to � � ~

2 . In relation to this,

the spin mixing is weighted by the small constants

� 1 = i~
�

3EG + 2� 0

6m� EG(EG + � 0)

� 1=2

and

� 2 =
2� 0

i~(2� 0 + 3EG)
:

where all the constants keep the same meaning as in the previous chapters.
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In order to extend the MT model and incorporate the SOC in the model, Tambore-

nea et al. [79] propose to generalize the shallow-donor wave functions: these functions

are built out of conduction states, and therefore they are expected to be modi�ed accord-

ingly. However the SOC coming from the microscopic crystal details does not modify

in an appreciable way the envelope functions� (r ), and will mainly a�ect the spinor

part [uk ]. The mixing of di�erent bands turns the complete donor state of an impurity

centered atr m into

h
~ m�

i
(r ) = � (r � r m ) �

�
�
u(0)

�

�
(r ) +

i
a

(r � r m )
jr � r m j

�
�
u (1)

�

�
(r )

�
: (3.5)

In Appendix B the detailed derivation of this term is worked out. The hopping of an

electron between di�erent ISA states involve the hopping between di�erent impurity

sites, and it provides a mechanism for spin ip by connectingthe � and � = � � states.

It must be noted that even a spin-independent potential likethe impurity Coulomb

potential induces spin-ip transitions, since it couples states with di�erent spin orien-

tations. Similarly to eq. (2.91), the EFA Hamiltonian expressed in second-quantization

language is now

H = H0 + H1 =
X

m6= m0;�

t ��
mm 0 cy

m0� cm� +
X

m6= m0;�

t � �
mm 0 cy

m0� cm� : (3.6)

whereH1 describes the spin-ip term. The transition matrix elements are given by

t � �
mm 0 =

X

p6= m

h~ m0� jVpj ~ m� i ; (3.7)

whose addends read

h~ m0� jVpj ~ m� i = C
Z

d3r
(r � rm )� (z � zm0) � (z � zm )(r � rm0)�

jr � r m j j r � r pj j r � r m0j

exp
�

�
[jr � r m j + jr � r m0j]

a

�
(3.8)
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The following de�nitions have been used

C = V0j� 1j2� 3=�a 4;

r � = x � iy;

and

� 3 = 3� 0(� 0 + 2EG)=(2� 0 + 3EG)2:

In order to calculate the integral in eq. (3.8), a rotation ofcoordinates from the crys-

tallographic system (x; y; z) is performed. The new system has thez-axis along the line

joining m and m0. Taking the origin at the middle point between these impurities, scal-

ing all lengths with the distancermm 0=2, and using dimensionless cylindrical coordinates

(Z ; �; � ), the following expression is computed (see AppendixA)

h~ m0� jVpj ~ m� i =
Cei' mm 0r 2

mm 0

2

Z + 1

�1
dZ

Z 1

0
d�

Z 2�

0
d� (3.9)

�
� 2(cos� + i cos� mm 0 sin� )

�
� 2 + � 2

p + ( Z � Z p)2 � 2�� p cos (� � � p)
� 1=2

�
exp

�
� rmm 0

hp
� 2 + ( Z � 1)2 +

p
� 2 + ( Z + 1) 2

i
=2a

�

p
� 2 + ( Z � 1)2

p
� 2 + ( Z + 1) 2

where ' mm 0 and � mm 0 are the polar angles of the vectorr mm 0 in the original coordi-

nate system, and (Z p; � p; � p) are the cylindrical coordinates ofr p in the new coordinate

system.

As in the spin-conserving model, we �rst look at the case withp = m0. The correspond-

ing two-center integral is obtained by puttingZ p = 1, � p = 0 in eq. (3.9). Interestingly,

h~ m0� jVm0j ~ m� i = 0 due to the symmetry of the angular integral. As a remark, this

important fact is ultimately responsible for the large values of the spin lifetime given

by this type of coupling in the regime of impurity-band conduction. This said, looking

back to the integral, the leading order is then determined bythe three-center integrals
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corresponding top 6= m; m0, which are in general very di�cult to calculate in closed

form [92]. The angular integral in eq. (3.9) can be performedin terms of elliptic func-

tions, but since only the small arguments of the latter are relevant for the remaining

integrals, the following expression results

h~ m0� jVpj ~ m� i =
Cei' mm 0�r 2

mm 0

4
� p(cos� p + i cos� mm 0 sin� p)

�
Z + 1

�1
dZ

Z 1

0
d�

�
� 2

� 2 + � 2
p + ( Z � Z p)2

� 3=2

�
exp

�
� rmm 0

hp
� 2 + ( Z � 1)2 +

p
� 2 + ( Z + 1) 2

i
=2a

�

p
� 2 + ( Z � 1)2

p
� 2 + ( Z + 1) 2

: (3.10)

Using this expression for the matrix element, we can next focus on how the character of

the MT eigenstates changes under the spin-orbit coupling strength.

In order to characterize the electronic eigenstates in the impurity band from the point

of view of their spatial extension, we obtain numerically the eigenvalues and eigenstates

f " i ;  i g of H for given con�gurations in which N impurities are randomly placed in a

three-dimensional volume. For each con�guration we calculate the energy-dependent

density of states,

DOS =
X

i

� (" � " i ); (3.11)

and the inverse participation ratio of the statej i i ,

IPR =

2

6
4

P N
m jh� m j i ij 4

� P N
m jh� m j i ij 2

� 2

3

7
5

� 1

: (3.12)

According to this de�nition, the IPR approaches the system sizeN for extended states,

while it is equal to 1 for a localized one. In the following section we present the results

for these two quantities obtained for the MT Model, before introducing the SOC.
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3.3 The impurity band from the Matsubara-Toyozawa

model

We �rst start by considering the bare MT model without spin. For this purpose, we

perform an exact diagonalization of the MT Hamiltonian, for a given con�guration,

and calculate the Density of States from its energy spectrum.By solving also for the

eigenstates, the corresponding IPR for each eigenstate is computed. This process is

repeated for many disorder realizations, and the resultingaverages for both quantities is

shown in Fig. 3.1. Three densities on the metallic side of the transition were considered.

Each of the panels contains di�erent system sizes, distinguished by the solid, dashed

and dotted lines. As we can see, the impurity band develops around the E = 0 level of

the isolated impurity in an asymmetric fashion: the DOS exhibits a long low-energy tail

while the high-energy part is bounded byE = 1 (in units of V0). We also verify that the

width of the impurity band increases with the doping density, as we expect due to the

stronger coupling between sites.

The numerically obtained DOS for di�erent densities are well reproduced by ap-

proximate methods like diagrammatic perturbation obtainedby Matsubara and Toy-

ozawa [80]. Also the moment-expansion presented in Ref. [93] resembles our results.

There, an adapted version of the moment expansion technique for disordered systems in

three dimensions is employed to estimate the electronic density of states in the impurity

band.

By looking at the IPR values, we observe that the highest-energy states correspond

to electronic wave functions localized on small clusters ofimpurities. In these clusters,

the strong coupling of adjacent sites gives rise to high-energy states. To illustrate this

situation we can think on the extreme case of a cluster as a group of n impurities close

to each other but far from any othernot in the cluster. In it, they interact with each

other so strongly that this will be represented in the Hamiltonian as a block (with a

dimension equal to the number of sites in the cluster in question) matrix full of 1 (in

units of V0). If the diagonal elements are zero (a �nite value would introduce a shift in
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3.3 The impurity band from the Matsubara-Toyozawa model

this extreme case) it can then be shown that the maximum eigenvalue of such a matrix is

1, irrespective of the system size. Furthermore, this eigenvalue is (n � 1)-fold degenerate.

The other eigenvalue of the matrix is� = � n (in units of V0). Since all the clusters,

no matter their size, contribute to the DOS for� = 1, there will be a strong peak at

such a value, and a long tail arising from the remaining eigenvalue � = � n (the size of

each cluster) plus the eigenvalues not associated with a given cluster. This could explain

the tendency for the DOS to develop a \peak" close to one, and aroughly at region

for negative energies. The clustering of impurities is known to happen in real physical

systems since impurities have a very weak long-range interaction, resulting in a lack of

hard-core repulsion on the scale of the lattice constant [79,94]. As the lattice constant

does not appear any more, we use the lettera for the e�ective Bohr radius henceforth.

In our model, we do not impose any kind of limit for the distance between impurities

and this feature thus emerges.

Before continuing with the analysis of the numerical results obtained from the MT

model, we discuss some technical features of the model and the di�culties that we

face in trying to improve upon it. Firstly, we notice that the chosen basis set is not

orthogonal. In principle, we can deal with this issue by writing a generalized eigenvalue

problem which includes the matrix of orbital overlaps [81,95]. This procedure results in

unphysical high-energy states (withE � 1) that necessitate the inclusion of hydrogenic

states beyond the 1s orbital in order to be properly described. However, care mustbe

taken since enlarging the basis set leads to the problem of overcompleteness. Fortunately,

for the properties we are interested in, the e�ects arising from non-orthogonality are

known to be small for moderate doping densities, and that is why we do not consider

them in the numerical work, thus staying within the originalMT model. Finally, another

drawback of the MT model is that the high-energy edge of the impurity band overlaps

with the conduction band, which starts atV0=2 (the e�ective Rydberg) and this e�ect is

not included in the MT description. As seen in Fig. 3.1 the DOS beyond V0=2 is always

very small, and therefore we can ignore the e�ects that the hybridization of the bands

would yield in a more complete model. As another remark, the development of tails at
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the band edges we observe in our results is a characteristic feature of random disorder

potential with long-range interaction [96].

The determination of the mobility edges by studying the sizescaling of IPR/N values

in Fig. 3.1 is not straightforward. We expect the valueIPR=N to vanish for increasingN

if the state is localized, and become independent ofN for extended states. The di�culty

in the determination of Ec (the mobility edge) arises from the heavily structured DOS

of the MT model [81]. At low energy the small values of the DOS translates into a poor

statistics for feasible sizes. In the high-energy part of theimpurity band the separation

between the curves corresponding to di�erent values ofN is masked by the small values

of the IPR=N. For the highest density (top panel) the IPR=N exhibits a relatively at

region at intermediate energies, which is approximately independent ofN for the two

largest system sizes. The lower mobility edge can be locatedroughly at E � 3:5, where

the latter curves separate. For lower impurity densities (lower panels) the previous

analysis becomes increasingly demanding in terms of systemsizes. We see that the at

region of IPR=N shrinks, from which we can conclude that the lower mobility edge is

shifting towards higher values ofE, as the density diminishes.

3.4 Spin-orbit coupling in the MT Model

We next include the spin in our model and basically repeat the procedure followed

previously for characterizing the energy eigenstates. We address this by means of the

Impurity-spin admixture proposed in Ref. [79], focusing atthe extrinsic SOC. We take

the term

H 1 =
X

m6= m0;�

t � �
m0m cy

m0� cm� (3.13)

(� = � � ) and add it to H 0. Similarly to the spin-conserving case, we have

t � �
mm 0 =

X

p6= m

h~ m0� jVpj ~ m� i (3.14)
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Figure 3.1: Density of states (DOS, thick line and right scale) and inverse participation

ratio (IPR, thin lines and left scale) for three di�erent densities on the

metallic side of the metal-insulator transition, obtainedthrough impurity

averaging in the Matsubara-Toyozawa model. The solid, dashed and dotted

curves of IPR=N are for a number of impuritiesN = 2744; 4096 and 5832,

respectively. The vertical lines indicate the Fermi energyand the DOS are

scaled with respect to the e�ective Bohr radiusa.
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with the wave function ~ m� denoting the impurity spin-admixed (ISA) state. In Ref. [79]

an approximate analytical expressions oft � �
mm 0 was provided using the saddle-point ap-

proximation, valid under the condition rmm 0 � a. At the MIT, for example, this relation

is rmm 0=a = 3:7. In this sense, we found that the analytical approximationproposed

in [79] overestimates the real values. To avoid this approximation, we take the route of

the numerical evaluation of the three-center integrals. Weshow typical absolute values

of these matrix elements in Fig. 3.2 averaged over the orientation angles and over many

realizations.

We next include the Hamiltonian H 1 and carry out the diagonalization of the full

Hamiltonian. Concerning the SOC strength, we note that the matrix element in eq. (3.14)

is proportional to the e�ective spin-orbit coupling � which for a zincblende semiconduc-

tor can be orders of magnitude larger than the one of vacuum� 0 ' 3:7 � 10� 6�A
2
. For

the case of GaAs we treat here,� ' � 5:3�A
2

[69], which is notably di�erent from bulk

InAs with � = � 120�A
2
.

3.4.1 Spectral decomposition of MT states

The spin-admixture energy shifts are, even for the largest system sizes that we can treat

numerically, orders of magnitude smaller than the MT level spacing. The consequence of

this is that the eigenstates have either an almost-up spin orientation or an almost-down,

and the spin-orbit-induced e�ects are not observable for the system sizes we are able

to consider. We are then lead to consider an enhancement factorRr that multiplies �

and makes the two previous energy scales comparable. The wave function are expected

to acquire a stronger mixing of spin orientation. This e�ectis displayed in Fig. 3.3. In

it, the spectral decomposition of a MT eigenstate (also called the local density of states

LDOS) with � = 1 in the basis of spin-admixed eigenstates ofH 0 + H 1 is shown. The

arrows " and # in the �gures denote the two subspaces of the spin projection of the

spin-admixed states. It must be noted that we leave this \tagging" even for the largely

enhanced cases. We can observe that if there is no enhancement ( Rr = 1), the spin
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Figure 3.2: The absolute values of the matrix elements for the spin-ip hopping between

two sites m and m0 is shown as a function of the distance between them.

H ISA is the Coulomb potential generated by the randomly placed impurities.
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polarized MT states projects very well onto one of the spin-admixed subspaces (look

at the y-scale in the �gure), in this caseup. As Rr is increased, we obtain signi�cant

projections on both subspaces as a manifestation that the spin-admixture gets larger.

This consideration on a given state shows the e�ect on a givenMT state. Alternatively,

the decomposition of an ISA eigenstate in the MT subspaces (each of them with a de�ned

spin eigenvalue) is also expected to change in a similar way asthe one just exposed. We

study precisely the e�ect of the spin-orbit coupling both onthe DOS and IPR of the

ISA eigenstates, usingRr as a control parameter.

3.4.2 Inverse Participation Ratio and DOS

Since we have already described the procedure followed to calculate the DOS and the

IPR in the spinless case, we only need to mention here the modi�cation for the IPR as

the spin degree of freedom is included.

Since the eigenstates of the full Hamiltonian are no longer spin eigenstates, the IPR

should be calculated by projecting the state onto each impurity orbital including both

spin orientations. The new IPR parameter is given by

IPR =

2

6
4

P N
m (

P
� jh� m� j i ij 2)2

� P N
m;� jh� m� j i ij 2

� 2

3

7
5

� 1

: (3.15)

where j i i is the eigenstate whose localization degree is to be calculated. The states

j� m� i are localized on sitem and are assumed to be spin polarized. In Fig. 3.4 we

present the DOS and IPR=N of the extended model for the three densities previously

treated and various values of the spin-orbit coupling strength Rr . The DOS depicted

with solid thick lines do not change noticeably withRr , and that is why we only present

the Rr = 1 case. Regarding the spatial extension, we show in each panel (for each

density) how the IPR=N curves are modi�ed asRr changes. The increase of the IPR=N

as a function ofRr in the region of extended states (central region) shows that the SOC

tends to delocalize more and more these states as the IPR=N values grow towards 1.
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Figure 3.3: Spectral decomposition of a Matsubara-Toyozawa eigenstate into the basis

set formed by the eigenstates of the spin-orbit extended model. The sys-

tem size isN = 1000 and the density is given by (ni a3)1=3 = 0:33. The

enhancement factorRr is indicated in each panel.
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This e�ect turns out to be even more pronounced for the largerdensity, where the curves

belonging to di�erent Rr 's separate in a wider region. This latter e�ect becomes less

prominent as the energy decreases. In the low-energy sector, where the MT model yields

states identi�ed as localized, we observe IPR=N curves approximately independent of

N , which is a signature that the SOC is favouring their delocalization.

Finally, we also performed a �nite-size scaling of the IPR=N for a given density above

the MIT critical density and one value of the spin-orbit coupling enhancement factor,

namely Rr = 50. The result in Fig 3.5 evinces that the relative insensitivity of IPR =N

with N implies that the region of localized states (with vanishingIPR/N) has been

considerably shifted towards a lower energy. We thus expectto have a lower mobility

edge.

3.5 Conclusion

To sum up, we have considered the problem of the characterization of the eigenstates

of the Matsubara-Toyozawa model regarding their spatial localization. We �nd that

the obtained IPR values among the di�erent eigenstates of the impurity band di�er

qualitatively from those given by a more thoroughly studiedAnderson model. One

reason for this is that we consider here a long-range potential that stems from the

Coulombic impurity. Anderson models mostly deal with short-range potentials. In our

physical system, the mobility edges do not appear as clear-cut limits, yet we observe a

trend in the degree of localization of the eigenstates.

When a similar analysis is performed in the extended model including the spin-

admixed nature of the donor states originated by the spin-orbit coupling, we have to take

into account the spin-ip event caused by the electrostatic potential of the hydrogenic

impurities (that in spite of being spin-independent, couples states of di�erent spin). We

found that while the density of states is not considerably modi�ed by the spin-orbit

interaction, the states tend to be more delocalized as the SOC gets stronger.
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