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A mis hermanas



No hay nada rmas pactico que

una buena teora.

(Kurt Lewin, 1952)

There is nothing more practical

than a good theory.

(Kurt Lewin, 1952)



Resumen

Actualmente, los dispositivos basados en materiales senmidactores estin presentes en
varias aplicaciones de comunicacbn y procesamiento dédarmacon. En estos dispos-
itivos, las distintas operaciones involucradas implican desplazamiento controlado de
cargas. Para el almacenamiento de informacon, arreglos aieltiples capas formadas por
metales magreticos, as como materiales aislantes, son pliamente utilizados. En este

ultimo caso, la informacon es registrada y recuperada akorientar dominios magreticos.

La posibilidad de construir dispositivos que uliticen otrgropiedad de las partculas,
el llamado espn, da lugar al campo de la Espintonica, a dé@rencia de la electonica
tradicional basada en la carga ekctrica de las partcul Mas aun, la Espintonica
con materiales semiconductores busca el desarrollo de dsfos hbridos en los cuales
las tres operaciones lasicas (bgica, comunicacbn y mlacenamiento) puedan estar in-
tegradas en un mismo material. A pesar de los grandes progi®y avances en esta
direccon, son varias las preguntas y di cultades tcnias que quedan por resolver. El
desafo, entre otros, es entonces entender mmo el esge comporta e interacciona en
un material olido. EIl espn, al ser una propiedad cuanticade cualquier partcula ele-
mental, est representada por un estado, susceptible der sdectado por alguna dada
interaccon. El espn de un electon, por ejemplo, puedeno lo interaccionar con un
campo magretico externo, sino tamben acoplarse a otro gdo de libertad del electon.
La interaccon de espnorbita, precisamente, se re ee al acoplamiento entre el espn y
el estado orbital del mismo electon.

En la primera parte de esta tesis consideramos este ultimdeeto, y en particular,

nos ocupamos de un semiconductdrulk de GaAs dopado, y estudiamos la relajacon



Resumen

de espn debido a la interaccon de espnorbita. Las dasidades de dopantes de nuestro
intees esin en un rango cercano a la densidad crtica eccespondiente a la transicon
metal-aislante. Por debajo de esta densidad, la propiedadelectonicas del sistema son
las de un material aislante, mientras que para densidades yoees, aparece un com-
portamiento de tipo mealico y en consecuencia, la condugtdad a temperatura nula
adquiere un valor nito. En esta tesis estudiamos la relajasn de espn del lado metlico
de la transicon debido a dos clases diferentes de inter@accespnorbita. La primera
de ellas esh asociada a la presencia de impurezas, mientcge la otra aparece como
consecuencia de la asimetra de inverson causada por lagsencia de dos tipos difer-
entes deatomos en una celda unidad. Es decir, estaultimaseina propiedad inherente
de la estructura cristalina del material y es tamben condda como la interaccon de
Dresselhauso BIA, por sus siglas en inges lulk inversion asymmetry. Para atacar el
problema de la diramica de espn, desarrollamos una fornacon analtica basada en la
difuson de espn de un electon en el egimen mealico e conduccon en la banda de im-
purezas. A trawes de esta derivacon logramos una expresipara el tiempo de relajacon
de espn, dependiente de la densidad de dopantes y de la méedad de la interaccon
de espnorbita. Notablemente, dicha expresbon esh exata de paametros ajustables.
Complementamos este esquema Yy respaldamos los resultaddsrotios analticamente
con el alculo nunerico del tiempo de vida del espn. Pareello, llevamos a cabo la
evolucon temporal de un estado inicial con un espn de rdo. De esta manera, el valor
medio del operador de espn evoluciona bajo la in uencia tielamiltoniano completo, que
comprende la interaccon de espnorbita y el Hamiltoniaro del modelo de Matsubara-
Toyozawa. Esteultimo describe la banda de impurezas per@noma en cuenta el espn.
El estado inicialmente polarizado, al no ser un autoestadeeldoperador Hamiltoniano
completo, experimenta un decaimiento temporal siguiendmulado comportamiento, del

cual extraemos el tiempo de relajacon de espn.

En la segunda parte de esta tesis consideramos un sistemantico de dimenson
cero (punto cuantico o quantum do} y estudiamos el efecto de la interaccon de espn-

orbita sobre los autoestados. Elquantum dotest alojado entre dos heteroestructuras

Vi



implantadas en un nanohilo de material InAs. Este material gsenta la particularidad
gue, al ser crecido de manera unidimensional, adquiere usérectura de tipo wurtzita, a

diferencia de la estructura zinc blenda que tiene en su fasgék Aqu desarrollamos una
solucbn analtica para el quantum dot considerando la interaccon de espnorbita propia
de este tipo de estructuras. Mas precisamente, tomamos latéraccon de Dresselhaus
de la banda de conduccon de un material wurtzita que, adess de un ermino abico

enk -aunque de diferente forma que el de zinc blenda- presentaodimeal, propio de la
wurtzita. El efecto de un campo magretico cebil es introdgido a trawes del acoplamiento
de tipo Zeeman. Entre los resultados se incluyen adenas latictura de espn en el
guantum-doty el @lculo del factor g efectivo en funcon de las dimensiones delot.

Porultimo, estudiamos y calculamos la relajacon de esp debido a fonones aasticos,
teniendo en cuenta para ello los potenciales de foron caspondientes a la estructura

wurtzita.

Palabras claves interaccon espnorbita, relajacon de espn, semiconductores dopados,

nanoestructuras, puntos cwanticos, fonones
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Summary

Spin relaxation in doped semiconductors and semiconduc-
tor nanostructures

At present, information-processing and communications are amly based on semi-
conductor devices, within which all the operations imply te controlled motion of small
pools of charge. For information-storage, multilayers of ngametic metals and insula-
tors are predominantly used. In this last case, the informain is stored and retrieved by
reorienting magnetic domains. The possibility of buildinglevices that use another prop-
erty of particles, the spin, gives rise the so-called Spintnes, in contrast to the current
charge-based technology. Moreover, semiconductor spintros pursues the development
of hybrid devices where the three basic operations -logig@mamunications and storage-
within the same materials technology would be possible. Ipise of the strong progress
and numerous advances in the eld, many fundamental questie and technical hurdles
remain unsolved. A lot of e ort is therefore devoted to undestand how the spin behaves
and interacts with its solid-state environment.

The spin, being a quantum property of any elementary partiel, is represented by
a state that may change due to some given interaction. The spbf an electron, for
example, can not only interact with an external magnetic eld but also with another
degree of freedom of the electron. In this sense, the so-edllspin-orbit interaction
precisely refers to the coupling between the spin and the otaii state of the same

electron.

In the rst part of this thesis we regard this latter e ect, and in particular, we adress



Summary

the problem of the spin-relaxation in a bulk doped GaAs seminductor resulting from
the spin-orbit interaction. Our interest is focused on donodensity values close to a crit-
ical value, where a metal-insulator transition occurs. Belv this density, the electronic
properties of the system correspond to that of the insulatgqnregime, while for larger den-
sities, a metallic behaviour appears and accordingly, a n@ero conductivity is measured
at T = 0. Itis on this metallic side of the transition where we stug the spin relaxation
due to two di erent types of spin-orbit coupling. The rst of them is associated to the
presence of extrinsic impurities, while the other one appesaas a consequence of the bulk
inversion asymmetry (BIA) brought about by the the presence fotwo di erent atoms
(Ga and As) in a unit cell. This latter SOC is also known as the Dgsselhaus coupling.
To tackle the spin dynamics problem, we develop an analyticBormulation based on the
spin di usion of an electron in the metallic regime of conduabn of the impurity band.
The full derivation provides us with an expression for the sp-relaxation time, which
depends on the doping density and the spin-orbit coupling re&ngth, and remarkably, is
free of adjustable parameters. We complement this approaeimd back our analytical
results with the numerical calculation of the spin lifetime For this, we perform and track
the exact time evolution of an initial state with a de ned spn state. We look at the
spin operator evolving under the in uence of the full Hamiltmian, containing both the
spin-orbit interactions and the spin-free Hamiltonian (base@n the Matsuba-Toyozawa
model) describing the impurity band. The initial polarizedstate, being no longer an
eigenstate, decays following a certain damped time evoloti, from which we extract the

spin-relaxation time.

In the second part of the thesis we consider a zero-dimensibegstem and study the
e ect of spin-orbit coupling on the eigenstates. The quanturdot is hosted between two
heterojunctions placed in an InAs nanowire. This semicondior, when grown unidi-
mensionally, presents a wurtzite-type crystal structureunlike its zincblende phase in
bulk. We develop here an exact analytical solution for the guntum dot, taking into
account the proper e ective spin-orbit coupling for this type of material. We focus on

the BIA coupling, which presents a cubic-in-k SOC, yet with ali erent expression from



that of zincblende, and add also the linear-in-k SOC, chartaristic of WZ materials. A

Zeeman interaction from an external magnetic eld is includd as well. We calculate the
energy spectra for di erent values of the spin-orbit couptig strength. We also display
the spin texture across the dot, compute the e ectivay-factor as a function of the dot
size, and calculate the spin-relaxation due to acoustic phons, taking into account the

phonon potentials corresponding to the wurtzite structure.

Keywords spin-orbit, spin-relaxation, doped semiconductors, nastructures, quantum

dots, phonons
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Chapter 1

Introduction

1.1 General Presentation

The spin is an inherent property of electrons, photons, quikes and in general, any el-
ementary particle. Its nature lies in quantum mechanics. # existence was proposed
nearly 90 years ago by Pauli, while trying to solve some incsistencies observed in
molecular spectra. He then called this new degree of freedoninsand claimed that in
the case of electrons, it could only take two possible valyeshich was later on veri ed
for electrons, as well as for protons and neutrons.

The spin is ubiquitous in many phenomena in condensed mattghysics. For example,
in magnetic resonance imaging (MRI) the spin of the proton igsed to visualize internal
structures of the human body. Another celebrated example is #h of itinerant ferro-
magnetism, where the electron spin appears as a crucial iadrent. An understanding
of the interactions that a ect the spin dynamics is thereforenecessary, both to describe
observed phenomena in physical systems and to exploit the gsibilities it o ers for
technological applications.

Conventionally, the spin is associated to an intrinsic angar moment, and due to the
way it couples to a magnetic eld, it is also viewed as an intnisic magnetic moment of
the particle. Its dipole-like magnetic moment interacts wih a magnetic eld, such that

it experiences a torqueS B that tends to align the spin orientation with this eld.
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Another interaction that is central in this work is the coupling between the motion of
an electron -its orbital degree of freedom- to the spin. Toliistrate this, it su ces to
consider an electron moving in an electric eld. In the electms' frame of reference, this
electric eld is transformed into a magnetic eld, which accading to what we have just
mentioned, interacts with the electronic spin. This gives se to the so-called spin-orbit

interaction (SOC).

In solid state physics, the electronic spin is necessary tapéain many phenomena,
like the ferromagnetism as we have just cited. Ferromagnetmetals are constituted of
atoms with a partially lled electronic shell. This means that for each spin in the shell
with a given state there is not another spin with the oppositestate. The spontaneous
alignment (being an additional and distinct e ect) of theseunpaired spins along the
same direction creates a net magnetization by e ect of the elange interaction, even

though no external magnetic eld is necessarily present.

Spin-orbit interactions are not only a key ingredient in thephenomenology of many
experimental observations, but can also be used to contrahd state of a spin. For
example, the fact that the spin of an electron may only take otwo values, and the
possibility to switch between these two states by means of yawof the interactions with
the environment, makes the spin an ideal candidate for comgation. In this context,
each of the two possible values is equivalent tokat of information. The spin is bound
to the charge, that may displace across the device, transpiog this information. It is
then important that the spin state remains unperturbed so that the information encoded
in its state is not lost. This promising feature fostered a gat deal of research in this
direction in view of its technological potential. In recentyears, new experimental setups
have been proposed and designed in the search of physical eyst where the spin can
be e ciently manipulated. More precisely, its properties tave been intensely studied
both in bulk and low-dimensional systems, the latter meaninghat the motion of the
electron is spatially con ned. An archetype of these systems a quantum well made on
a heterostructure, where the composition of a semiconductmaterial is changed on the

nanoscale [1]. For example, &aAs layer between twoAl,Ga; «As layers makes up a
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guantum well, where the motion of the electrons parallel tohe layers remains free, but
is con ned in the transverse direction.

Low-dimensional systems have also been widely used to teshdamental physical
concepts, such as the quantum-mechanical version of the Hakct: in a two-dimensional
sample, and at low temperatures, the quantization of the calctivity as a function of
the applied magnetic eld was rst observed in 1980 by Klaus on Klitzing, later on
awarded with the Nobel Prize.

The purpose of this thesis, expressed in a broad sense, is todgtuhe interaction
of the electron spin with its solid-state environment in sermonducting systems. This
may be reckoned as the central question of the so-called spartics discipline, which in

contrast to conventional electronics involving theeharge makes use of thespin instead.

1.2 Spintronics

Even though the success of any spintronic device hinges oretbontrolled manipulation
of the spin degree of freedom, nding an e ective way to pol&e a spin system, having
a long lifetime of the spin orientation, and being able to det it are the three major
challenges.

Many techniques are utilized nowadays for the generation spin polarization. The
optical orientation and the electrical spin injection are mong the better developed.
While the former is based on the transfer of angular momenta frocircularly polarized
photons to electrons, the second one uses a magnetic eled¢r@onnected to a sample.
The injected spin-polarized electrons ow from the electie to the sample, and a non-
equilibrium spin accumulation may so be achieved. The spiropulation, no matter how
it is generated, will eventually evolve towards equilibriunby means of spin relaxation
mechanisms, many of which involve the aforementioned spambit interaction.

Before describing some spintronic devices, it is worth pding out that in what follows
we also refer to the term spin as meaning aensembleof individual spins. Historically,

spintronic devices used these ensembles to store infornati but nowadays, experimen-
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talists have been able to address and control one single spin addition to this distinc-
tion, we mention that spintronic devices are normally madeither of semiconductor or

metallic (normal or ferromagnetic) materials, or of a combiation of both.

In the case of metals, the discovery of Giant Magneto Resisize represented a big
boost for spintronics. It generated a great deal of interesh the academic eld, but
also in industry because of the technological applicationse@nabled. It was observed in
1988 by Fert [2] and afterwards by Granberget al. [3]. Soon after, it was successfully
applied in data storage technologies [4]. IBM bolstered th®le of spintronics in 1997
when it introduced the rst hard-disk drive based on the GMR tchnology. The imple-
mentation of such structures by IBM for new read heads into #ir magnetoresistance
hard-disk drives was just the rst step of a race towards smidr and smaller hard-disks,
found currently in any mobile device. In a typical GMR devicega non-magnetic metallic
spacer is placed between two ferromagnetic layers. The t@la orientation of the mag-
netization polarization of these layers determines the onadl resistance. The physical
principle behind the GMR is the fact that the scattering of etctrons travelling through a
ferromagnetic conductor depend on the relative orientatioaf their spin with respect to
the magnetization direction of the conductor. This means #i electrons bearing a spin
aligned with the magnetization axis scatter di erently fromthose having an opposite
spin. Actually, those oriented parallel scatter less ofterhtan those oriented antiparallel.
In the GMR setup we have just described, this e ect can be expied in the following
way: the electrons injected from one of the magnetic conduest into the non-magnetic
conductor will be preferentially oriented in one direction If these electrons then arrive to
the second ferromagnetic layer, they will pass into it freglfrom the non-magnetic metal,
without undergoing strong scattering, only under the condion that their preferred ori-
entation is parallel to the magnetization of the second layeHence, the resistance of the
trilayer arrangement depends strongly on the relative magization direction of the two
ferromagnetic layers. Although the whole process is abouteghow (or not) of electrons,
the fact that the spin is used to control this ow is the reasornto reckon it as a great

inspiration for the spintronic eld [5].
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Another closely related phenomenon is observed if the spacgreplaced with a non-
magnetic insulating layer, giving rise to a magnetic tunnglunction, or tunneling mag-
netoresistance (TMR) device. In this con guration, the eletrons tunnel through the
layer without ipping its spin. Although being proposed in 195 by F. Jullere, the ob-
servation of magnetoresistance in such junctions was podsibnly in 1995, when certain
experimental di culties were overcome. After this achievemet, the challenge to develop
new magnetic random access memory (MRAM) using this technolpgttracted a lot of
attention from the community, and nally the rst MRAM produc t was presented in

2006. Fast read/write times, as of the order of 5 ns, are now pawed [6].

There is still another experimental setup based on the solea Tunneling Anisotropic
Magnetoresistance, where only a single magnetic layer iseded. In this case, the
resistance depends on the angle of the magnetization vectdrthis layer with respect to
some crystallographic axis of an adjacent semiconductoyéa. The TAMR necessitates a
semiconductor material with a strong spin-orbit coupling ad some magnetic anisotropy

to be e cient. In Ref. [7], this type of magnetoresistance isplained in more detail.

The use of semiconductors in a spintronic device was rstlyrpposed in 1990, when
the Datta-Das transistor, known also as the Spin-Field e edte transistor (SFET) [8],
was presented. It illustrates the fundamental ideas of a splvased logic device. In it, a
drain and a source made of ferromagnetic materials (with pdral magnetic moments; see
Fig 1.1) provide the necessary pieces to inject and detect tbpin, respectively. Between
them, a non-magnetic semiconductor sample makes up a narrdwannel for the electrons
to ow ballistically from the source to the drain. The elections injected by the source
are spin-polarized. If the electron polarization arrivingat the drain is parallel to the
drain magnetic moment, the electron goes through. Othervésit is scattered o and a
large resistance is measured. The degree of spin rotation steitmines whether there is
a current or not. In order to control this amount of rotation, a voltage gate is applied
on top of the semiconductor channel. This electrostatic pettial, in combination with
the con nement geometry of the channel and the spin-orbit egling in the substrate

constitute an e ective magnetic eld that makes the spin preess across the sample. The
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Figure 1.1: In the scheme of the Datta-Das spin eld-e ect transistor (¥ET), a fer-
romagnetic emitter (spin injector) and a ferromagnetic ctéctor (spin de-
tector) are placed with parallel magnetic moments. In betwee an In-
GaAs/InAlAs heterojunction in a plane normal to n generates a channel
for two-dimensional electron transport between the two feomagnetic elec-
trodes. The spin-polarized electrons injected by the sowavith wave vector
k move ballistically across the channel. Due to the spin-orbinteraction,
the spins precess about the precession vector , de ned alday the struc-
ture and material properties of the channel. The strength ofcan be tuned
by the gate voltage applied on the top of the channel, which directly con-
trols the degree of rotation of the spin. In the end, the currg is large if
the electron spin at the drain points in the initial direction (top row), and
small if the direction is reversed (bottom) The current is sanodulated by

the gate electrode. Taken from Ref. [9]

nal e ective result is the ability to control the spin rotat ion, and thereby the current,
by means of the gate voltage. Other proposals akin to the DatDas transistor have
been put forward, for example, by Schliemanat al. [10], where the condition of ballistic
transport is relaxed by tuning the Rashba and the Dresselha® be explained below)
spin-orbit couplings so that the eigenspinors become momenttindependent. Hence,

elastic or inelastic scattering processes changing the waxextor do not randomize the
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spin state of transmitted electrons.

An important remark here is that the spin- ip process involvel in any of the spin tran-
sistors described above requires less energy than the egargeded for charge transport,
which inevitably entails energy dissipation, as in the comntional eld-e ect transis-
tor. From this point of view, spintronics is also a key playein power consumption
optimization.

All these devices, as we said, require in general long spintlifees. And that is why
semiconductors are so relevant in spintronics. Their greatd@antage is that besides
the long lifetimes, the spin can be manipulated via the chacteristic strong spin-orbit
coupling of these materials. An example of this rather long sprelaxation times is
encountered in bulk doped GaAs semiconductors. In this casewas observed that spin
relaxation times of the order of 100 ns can be obtained at cam doping densities, the
spin relaxation times being strongly a ected by the impuriy density, as we will see in
the next section. We concentrate on this problem in the rst prt of the thesis.

When a semiconductor is doped, the impurities are not arranged a regular way as
the crystal structure hosting them does. They form a randomisiribution inside the
perfectly ordered crystal structure. This feature leads #n naturally to the theory of
transport in disordered systems. The rst research works osuch systems go back to the
late fties when P. W. Anderson published his pioneering papekbsence of Di usion in
Certain Random Lattices Although many works that followed dealt with the electrical
conduction (or equivalently electronic eigenstates) in dordered systems, Anderson's
paper context was the diusion of an initial spin excitation which, according to the
experimental observation [11], seemed to remain localizixt low-concentration of spins.

Interestingly, the opening sentence in Anderson's abstragt?] was

This paper presents a simple model for such processes as spin

di usion or conduction in the impurity band.

In the rst part of this thesis we also consider the impurity kand of a GaAs semi-
conductor, where spin related processes are examined and #pen relaxation time is

calculated. Many aspects of the physics in the impurity bandill be carefully unfolded
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in the following sections.

Anderson's cutting-edge ideas about localization could havbeen regarded, as he
points out in Ref. [13], as the germ of modern quantum computan: localization would
provide the necessary isolation to have independent sitesthva quantum entity (spin)
inside, thereby forming a two-level system, and su cientlyprotected from loss of coher-
ence. Needless to say that the very word "qubit” did not existtethe time. In spintronics,
a qubit means a bit of quantum information, or equivalently, a entrollable quantum two-
level system. A superposition of these states represents@spible con guration that can
be changed via a unitary evolution, performing many classiceomputations in parallel.
The common condition of the various spin-based quantum comigrs that have been
proposed is the manipulation of the dynamics of the spin. Mangf them employ GaAs
quantum dots [14] or Si systems [15], to be introduced laterAs a zero-dimensional
example, a quantum dot is built upon spatially con ning one o many conduction band
electrons in its three directions. Nowadays, the so-callediljts are commonly realized
in quantum dot nanostructures, as originally proposed in B8 [14], but they can also
be found in trapped atoms or ions, in quantum states of Josepirsjunctions, and other

examples.

One of the challenges in these con ned systems is to maniptdahe electron spin in
a short time, shorter than the time for it to lose the coherere of information. It is
precisely the long coherence times (of the order of hundrefiranoseconds) of spin that
make them suitable for quantum computation. However, the et&rical read-out of the
state of an individual electron spin (the spin orientation)was possible only in 2004 [16],
reported by the group of Kouwenhoven. In their experiment,raelectron is trapped in
a quantum dot, in the presence of a magnetic eld that separat the energy of the two
possible spin states (Zeeman splitting). An electrostaticgiential is tuned such that if
the spin is down (antiparallel to the magnetic eld), the eletron leaves the dot; otherwise
it stays. In this way, the charge of the state in the dot is coelated to the spin state of
the electron. Using a nearby quantum point contact, they werebde to detect whether

the dot was occupied or not. In 2010, the same group describadRef. [17] an ingenious



1.2 Spintronics

experiment, where they claimed to be able to control the indigual spin in a quantum

dot via the spin-orbit interaction. The more sophisticatedarrangement consisted of two
guantum dots hosted in a InAs nanowire, a quasi-one-dimensal structure where the
electrons can ow in one direction. The quantum dots are de ed within the nanowire by

making use of gate voltages applied over it. In the experimih setup, the electrons in
both dots are individually addressable. In this scheme, fiagubit rotations and universal

single-qubit control were accomplished using only eleatrields, coupled to the spin via
the SOC.

In the second part of the thesis we focus on InAs nanowires. Bhspecic choice
is related to the fact that, when grown unidimensionally, tis semiconductor material
acquires a wurtzite-type (WZ) crystal structure, unlike the zincblende case that we
considered for the spin relaxation in a bulk GaAs sample. We @agpi cally study a
guantum dot in such a wire, with cylindrical shape and in paitular, we consider the
case where the radius is larger than the length ("pillbox"#ke). Taking this into account,
we analyse di erent electronic properties by including thappropriate e ective spin-orbit

coupling terms derived for a WZ structure.

As a general remark, it is worth emphasizing that spintronicsfar from being only a
topic in the realm of fundamental science, promises new tewblogical applications to
keep up with the demand on the increasing number of transis®m computer processors,
and the continuing miniaturization of electronic devices. Tis is largely a motivation to

foster the scienti ¢ research in this eld.

In the following, we go through the two main subjects already entioned, starting
with the spin relaxation in a doped semiconductor as well abeé physics related with the
metal-insulator transition, and secondly, we describe gqutum nanostructures in more

detail.
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1.3 Spin relaxation in n-GaAs

As it was already indicated, the rst part of this thesis dealswith the spin relaxation in
a doped bulk GaAs semiconductor. The role of impurities is of pgmount importance,
and in particular, the spin relaxation depends strongly onhe doping density. We start
by recalling the di erent density ranges of interest, in whth distinct electronic transport
properties are observed. Afterwards, we resume the study &t spin-orbit coupling and

spin relaxation.

1.3.1 Di erent doping density regimes in a bulk semiconductor

Let us rst consider the extreme situation of a single impurlg placed in the semicon-
ductor host lattice. If the impurity is a donor, as it is in our case, a new electronic state
is created close to the conduction band, within the energy geof the semiconductor.
As other impurities are added, so that the electron mayjump from one to the other,
an impurity band will arise out of the donor states of di erer impurities. If we further
increase the donor density, this band gets broader and theeetronic states span over
a larger energy interval. Beyond a certain densitythe hybridization density - the
impurity and conduction bands merge. Below this value, the stam is in the impu-
rity band regime, where two di erent phases can still be dighguished. It is important
to remark that due to the fact that the impurities are randoml distributed, the wave
number k associated to thecrystal momentum of the electron is not a good quantum
number anymore since the translational invariance is broke

One common property of three dimensional disordered systers the coexistence of
localized and extended states, as it is illustrated in Fig. 2. In a density of states
picture, the localized states appear towards the band edgeshile the extended states
are located in between. The separating limit is called thenobility edge (E.). Here
the Fermi Level comes into play. If it is situated in the locaked region {Efj > E ¢),
the system does not conduct all = 0 and it behaves as an insulator. FoiT > 0, the

electrons can be thermally excited, either to an extended $&aor to another localized

10



1.3 Spin relaxation in n-GaAs

Figure 1.2: Schematic representation of the density of states of a dislmred system
as a function of energy within the Anderson model. The colowtezone
represents localized states, while the extended states anebetween. The

energy separating them is called thenobility edge

state, thereby giving rise to conduction. Conversely, ondde Fermi Level enters the
extended region, the metallic regime is reached.

In the Anderson model, themetal-insulator transition takes place when the two
mobility edges come together, and the energy spectrum coimta.only localized states [18].
At the precise density ofn., disorder systems show interesting properties like fradta
ity [19].

In conclusion, for three dimensions, depending on the dopirdensity, there may be
a coexistence of both localized and extended eigenstateshe energy spectrum, sep-
arated by the mobility edge cited before. For one dimensiohaystems, instead, the
Anderson model predicts that all the eigenstates are loca#id no matter how weak the
disorder is [12]. For two dimensions the scaling theory ofdalization yields an insulat-
ing phase for any degree of randomness, but the localizatiength may be extremely
large. Experiments exhibiting the signature of metallic beaviour, have often been in-
terpreted by going beyond single-particle modes and invalg the interaction between
electrons [20]. It has also been found in two dimensions thgpin-orbit coupling favors

the delocalization of the electrons.

11



Chapter 1 Introduction

Figure 1.3: Di erent conducting regimes according to the dopant densitare shown. At
the hybridization critical density n,, separates, the impurity band merges
the conduction band. Belowny, two situations may arise: betweem, and
the MIT density n., we observe the metallic regime with delocalized states,
while for densities smaller thamg, the insulating regime is reached, and the

conductivity at zero temperature vanishes.

Our study deals with three dimensional systems, and focuses the spatial extension
of one-particle electronic states in the impurity band, of wich we present a detailed
study in Chap. 3. We start there with a preliminary analysis hat does not contain the
spin, and then we look at the spin-orbit coupling e ects on th density of states, as well
as the distribution of the so-called Inverse participationatio, that measures the degree
of extension of a wave function. The original results presed in this Chapter have been

published in Ref. [21].

1.3.2 Spin dephasing and spin relaxation

We now come back to the description of the spin and discuss theykconcepts concerning
the spin decay time. The rst step is to address the precise raring of the word spin
relaxation, in contrast to the spin dephasing concept. Mioscopically, relaxation and
dephasing are driven by di erent spin processes, althoughoth lead to spin-lifetime
decays [22]. In general, the relaxation tim&@; (also called longitudinal time) and the
dephasing timeT, (transverse) are two characteristic times that appear in ta context of
the magnetization produced by a spin ensemble. The Bloch+4Tey equation describes

the precession, decay and di usion of the magnetizatiokl (associated to the spin) in

12



1.3 Spin relaxation in n-GaAs

the case of mobile electrons. These equations include theottimes in question [9],

QM My

ot = (M Bl 5 +Dr "M

@N _ M

at - M B _sz + Dr *My

@M M, M7 2
= +

at (M B), T Dr *M,

where a magnetic eldB(t) = Bob + B(t) with a static part B, and a transverse
oscillating B, are assumed to be applied.D is the di usion coe cient, = Q0=
is the electron gyromagnetic ratio including the Bohr magrien g and the electron
g-factor; M2 = B , is the thermal equilibrium magnetization with  being the static
susceptibility. These phenomenological equations showathT, is related to the time it
takes for the longitudinal magnetization to reach equilidum. Equivalently, it accounts
for the non-equilibrium population decay, in which a certai amount of energy has to be
transferred from the spin system to the lattice, for examplevia phonons. The timeT,,
on the other hand, measures how long the transverse componehthe spin ensemble is
well-de ned and can precess around the longitudinal direicin.

Regarding this spin dephasing time, there are two processdst contribute. The
rst contribution to T, comes from the so-called inhomogeneous broadening, that ap
pears for example as a consequence of the inhomogeneitieshan g-factor [22], that
leads ultimately to di erent precession frequencies of thmdividual spins. This broad-
ening might also be brought about by a momentum-dependentisporbit coupling or an
energy-(or momentum-) dependeng-factor. Conventionally, when the spin dephasing
time includes this type of broadening related to reversiblprocesses, it is refered &F, .
By contrast, if the phase is lost due to spatial or temporal @tuations of the precessing
frequencies (or magnetic elds equivalently) leading tareversible dephasing, the term
homogeneousroadening is used, and the tim@, does not bear a star symbol. In the
case of mobile electrons, the di erent momentum states havéightly di erent g-factor
and thus di erent precession frequencies. This inhomogemes broadening is however

surpassed by the so-called motional narrowing, that we negixplain.
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For mobile electrons, the timesT,; and T, are calculated by averaging the spin over
the thermal distribution of the electron momenta. The di erent momentum states have
di erent spin ip characteristics, and therefore momentumscattering entails spin- ip
scattering. This means that when an electron undergoes a mentum scattering, its spin
orientation might change, which is equivalent to having a w@tuating e ective magnetic
eld. The physics of the spin dephasing in this inhomogenesunagnetic eld is governed
by the so-calledmotional narrowing, that also introduces another relevant timescale, as
we now see.

Let us consider a spin precessing about a given axis with a bawr frequency .
This frequency may change randomly between and , which means that the spin
rotates clock- or counterclockwise. Let us assume that a celation time . determines
the probability that the spin continues its precession in tk same direction, or changes
it. During this time ., a phase is accumulated’ = c. If we now consider the
spin precession as a random walk with this precise step, after N steps, we simply
have that the spread of the total accumulated phase is = ' pW. On the other
hand, the numberN depends on time and is indeed equal ts .. Identifying the phase
relaxation time t. with the time at which the phase spread reaches unity, we havlat
1= " 2t = .. Finally we get the important result

1 — 2
r - c
The inverse relation between the two times is characteristid ¢the motional narrowing,
and implies that the longer the correlation time, the smallethe phase relaxation time,
and vice versa. In our language, the motional narrowing isleg¢ed to T, and is the main
source of spin dephasing. For conduction electrons, to a yggood approximation, the
relation T, = T, holds.

In the case of electrons bound to impurities or quantum dotghe inhomogeneities
are static and theg-factor-induced broadening due to spatial inhomogeneiteplays an
important role. Nevertheless, thanks to a technique known aspin-echo, it is possible

to suppress these reversible phase losses, and the solerdmriton to T, comes from the
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1.3 Spin relaxation in n-GaAs

homogeneous dephasing. For example, the tirfie has been measured in lightly n-doped
GaAs samples, yielding values 5 ns [23]. In generalT, is the quantity of most interest
in quantum computing and spintronic, wheread is usually easier to measure.
However, in electronic systems at relatively weak magnetields, the useful relation
T, = T, holds for isotropic and cubic solids (if this last conditions not ful lled, an
anisotropy factor of order unity is introduced) [24]. To de¢rmine the validity of this
equality, we must resort again to the correlation time . introduced for the motional
narrowing. The phase losses occur during time intervals of, and in consequence
1

¢ gives the rate of change of the e ective magnetic eld. If ths rate is such that
1=, B o, then T; = T,. For electrons, . can be identi ed either with the momentum

scattering time or with the time of interaction of the electrams with phonons or holes.
As they can be as small as a picosecond, the equality betweBnand T, is satis ed

up to several Tesla. In many cases, therefore, a single terqiis used to refer to spin
relaxation or spin dephasing, indistinctly. In the experirents of our interest, since the
magnetic eld is weak, we will use s, and call it the spin-relaxation time, making it

clear that the spin decay will be driven by the spin-orbit copling.

We nally mention that in our discussion about spin relaxation we deal with many-
spin systems. In the context of quantum computation, anothreterm is utilized for the
spin dephasing of a single -or few- spin, namely the spin deeoénce. But we do not
discuss it in what follows.

The experimental results that motivated the rst part of our work are presented in

the next part, while the techniques are succinctly descrileafterwards.

1.3.3 The experiment

As we have mentioned, the rst part of this thesis deals with GAs samples, doped with
Silicon, and is inspired in the work of Kikkawa and Awschalom2p]. These authors
measured in 1998 the spin relaxation time and observed the uence of the doping
on the spin relaxation. Interestingly, relaxation times lager than 100 nanoseconds for

a doping densitiy of the order of 18cm 2 were reported. Four years later, Dzhioev
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and collaborators [26] carried out similar experiments, buhey swept a larger range of
donor densities, establishing a more accurate value for tlmmgest relaxation time and the
corresponding density. These valuable experiments raiséee interest of the spintronics
community and many attempts were performed to explain the seilts. The experiment
of Dzhioevet al. showed very clearly (Fig. 1.4) that the longest spin relaxain time
was in the proximity of the Metal-Insulator transition densty, that occurs within the
impurity band of a n-doped semiconductor. The physics arodrthis critical point is still

not understood due to the competition of disorder and eleain-electron interaction.

Figure 1.4: The spin-relaxation time at low temperatures as a function athe doping
density (labeled asnp) obtained in di erent experiments is shown. Open
symbols correspond to the optical orientation data from Ref26], while the
solid circles are the results from a Faraday Rotation exp@nient from [25,27].
Solid lines correspond to parameter-free theoretical asiates, considering
the relevant spin-relaxation mechanism indicated by the kels: DP for
Dyakonov-Perel, anisotropic interaction, and hyper ne ineraction. Taken
from Ref. [26]
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1.3 Spin relaxation in n-GaAs

Our aim is to tackle the problem of the spin relaxation on the mtallic side of the
MIT, and close to it. The identi cation of the dominant spin-interaction giving such
long relaxation times is one of our major goals.

As we will later see in this chapter, the spin relaxation timedor di erent density
values far away from the critical one have been understood ierims of various existing
theories. Nevertheless, none of these can be applied to the@se density range near
the metal-insulator transition that is the center of our atention. Before describing these

theories, we quickly review the experimental techniquesvalved in the measurements.

1.3.4 Experimental techniques

We brie y describe here the di erent experimental techniges encountered in the liter-
ature reporting spin relaxation measurements.

In Ref. [25], Kikkawaet al used the so-called Time-resolved Faraday rotation (TRFR)
technique, with a temporal resolution going from femto to m@oseconds. Thipump-probe
technique uses the Faraday rotation as the fundamental priiple. The initial circularly
polarized light (pump) creates a net magnetization in the gaple, and subsequently,
with a time delay t, a second linearly polarized light crosses the sample (prob&he
angle of polarization changes according to the degree of matzation present in the
system, and by changing the time delay t, a time-resolved observation is obtained.
The TRFR was also used in lightly € 2 10cm 3) doped n-GaAs to measure spin- ip
times as a function of magnetic eld and temperature [23, 28]

The experiment of Dzhioewet al. used the combination of the optical orientation and
the Hanle e ect, which is the depolarization of the photolumiescence with a transverse
magnetic eld. The polarization created by the initial ciraularly polarized light is sup-
pressed by the presence of a transverse magnetic eld, ancethfore, by measuring the
corresponding photoluminescence polarization, the spialaxation can be inferred. In
this case, the degree of spin polarization is detected by @lpging circularly polarized
luminescence coming from the recombination of the spin-@wized electrons and holes.

In both cases, the initial step is to create an electron-holgair by circularly polar-
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ized light (optical spin orientation). The hole loses very naidly its initial spin state

and it recombines with an unpolarized equilibrium electrorfthe probability of recom-
bination with a photoexcited electron is negligible under l@ pump intensity). Thus,

spin-polarized photoexcited electrons eventually createspin polarization accumulation
in the crystal.

A totally di erent technique was also applied for measuringthe spin-relaxation in
n-doped bulk semiconductors. It is based on the spin noise sprescopy [29], and
it maps the ever present stochastic spin-polarization uatations of free and localized
carriers at thermal equilibrium and the Faraday e ect onto he light polarization of
an o -resonant probe laser. The advantage of this tool overtloer methods is that it
measures the disturbance-free spin dynamics in the semidaotors with high accuracy,
and undesired e ects such as carrier heating or injection ohterfering holes are not
present. Employing this technique, the spin-relaxation & in samples with doping
densities close to the metal-insulator transition was meased, for temperatures between
4 K and 80 K. A clear di erence in the spin-relaxation times wa observed when varying
the doping densities and moving from the regime of localizeslectrons to that of free
electrons. We discuss about this in more detail in Chap. 4, dnonly mention here
that the longest spin relaxation time at the critical densiy was veri ed for the lowest

temperature range, up to 70 K [30].

1.3.5 The existing theories

Having already identi ed the di erent doping density regimes, we can now move to the
existing theories in terms of which the di erent spin relaxtion times measured in the
experiment can be explained. However, we insist that none dfegm can be applied to the

metallic regime of the impurity band, which will be covered ¥ our theory afterwards.

Hyper ne interaction

For the smallest doping densities, the di erent impuritiesare far from each other and

one expects electrons to be deeply localized. In this casee tmeasured spin-relaxation
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1.3 Spin relaxation in n-GaAs

times can be understood by appealing to the hyper ne interain. On the extreme side
of very low donor concentration, the electrons are isolatemhd precess independently in
the random static nuclear elds of the impurity domains. Theorigin of the hyper ne
interaction is the coupling between the electrons and the rgaetic eld produced by
the atomic nuclei. This magnetic coupling a ects the locatied spins, such as those
con ned in quantum dots or bound to donors, and it may producemn dephasing as
well as single spin decoherence. The interaction, althougtis suitable for localized
electrons, was shown to be too weak for itinerant electrong€g electrons in metals or
bulk semiconductor) in Ref. [31].

The hyper ne Hamiltonian reads
2
H=Zo%e ~mSI| (r R) (1.1)

where , denotes the vacuum permeability, g the Bohr magneton,g, = 2:0023 is the
free-electron g-factorj labels the nucleus at positiorR;, while Sand| corresponds to the
electron spin operator and the nucleus spin operator, resgively, both expressed in units
of ~. ,; stands for the nuclear gyromagnetic ratio. It can be shown #t this interaction
can be expressed aA(lS) (Fermi contact interaction), with A being proportional to
the square of the electron wave function at the location of #hnucleus [32]. Both the
properties of nuclei involved and the degree of localizatioof the electron, which may
be spread over many lattice sites (typically 10 1CF) are decisive to determine the
strength of the interaction. In Si, for instance, most of thenuclei carry no spin: only
the isotope?®Si with spin 1/2 produces hyper ne interaction, but its natural abundance
is too low ( 46%) [9]. In GaAs, on the other hand, all the nuclei have spin 3/2vhence
the stronger hyper ne interaction of a localized electronni it.

There are in general three mechanisms where the hyper ne iné&tion plays a major
role in the electron spin relaxation. The rst of them deals wth independent evolution
of the nuclei and electron spins, i.e, small orbital and spinorrelations. The spatial

variations of B, -the magnetic eld experienced by the electron- lead to inloogeneous
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dephasing of the spin ensemble. This dephasing has been meas$un Si in Ref. [11],

the same experiment that inspired Anderson. If this e ect isemoved by a spin-echo
technique, then the temporal uctuation of B, due to nuclear dipole-dipole interaction

leads to irreversible dephasing and decoherence of the al@atspin, which makes the

second case of the list. The third regime corresponds to the hopg regime of the

electron between adjacent states and thus important at nié temperatures. Here the
spin precession due t@, is motionally narrowed, as explained before, and limited by
the direct exchange interaction, which causes individual spdecoherence.

In the experiment by Dzhioewet al., the authors attribute the increase in the relaxation
time with dopant density for the lowest density range to the gnamical averaging of the
hyper ne interaction, where the electron passes less time each localization domain as
the density increases, interacting for shorter time with m@ nuclei, thus diminishing the

e ect of the nuclei-spin uctuations.

Anisotropic exchange

As we further increase the doping density, electrons centédraround neighboring impu-
rity centers start having some degree of overlap, and theogé the exchange interaction
becomes relevant. It is worth mentioning here that since we disss the case of two lo-
calized electrons in what follows, the same physics does irdeapply to double quantum
dots, with an electron in each of them.

The origin of the exchange term is in the Coulomb interactiorbetween electrons,
that gives a spin-dependent energy contribution as we regeithe total wave function -
including spin- of the two-electron system be anti-symmatr with respect to the exchange
of their coordinates. What this means is that if the spins of ta electrons are parallel,
the spatial coordinate part of the wave function must be antisnmetric, meaning that

it must change sign upon exchanging the spatial coordinate$ the electrons:

w(Ff) = - (f2F)

This ultimately implies that electrons with parallel spin tend to be far apart, reducing
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1.3 Spin relaxation in n-GaAs

their mutual repulsion, and consequently diminishing the ektrostatic energy.

Let us now consider the e ect of the spatial anisotropy arisim from the crystal en-
vironment and introduce theisotropic exchange interaction. The spins of two localized
electrons are actually coupled by two kinds of interactionthe magnetodipole and the
exchange interactions. In an isotropic system, the lattesidescribed by the Heisenberg
Hamiltonian

HeX = ZJSA SB

whereJ is the exchange coupling constant, an8 denote the spin operator of the cor-
responding electron. Interestingly, this isotropic (or sdar) interaction conserves the
total spin of the two electrons, and consequently, it does natuse any spin relaxation.
However, in the presence of a crystal environment, the previewexpression should be
generalized [33] to

Hex = A Sa Sg

where A turns out to be a second-rank tensor de ned by the structure symetry.
Anisotropic interactions of this kind appear in crystal structures lacking inversion sym-
metry, as in bulk semiconductors with zincblende and wurti® structures. The spin-
orbit coupling gives rise to this anisotropic part of the exchnge term, whose form is
also known as the Dzyaloshinskii-Moriya interaction, andtimay even dominate over
the isotropic part. Although the spin-orbit interaction disappears on averaging over the
localized wave function of a single-electron state, it is fonger the case for two electrons
at a pair of donors close to each other, or quantum dots alteatively.

Qualitatively, the process can be described in the follongrway, as Kavokin explained
in Ref. [33]. If we take two sites A and B, and consider an eleot tunneling from one
site to the other one, it will experience the in uence of the @n-orbit eld. This eld
makes the spin rotate a small angle. Reversely, the tunneling the other electron in the
opposite direction is accompanied by a spin rotation througthe same angle, but in the
opposite direction, because the internal eld arising fromhe SOC, changes its polarity
for the backward motion. This makes that an interchange of t electrons also implies

a relative rotation of their spins. As a result, we expect to ha an e ective coupling
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between these rotated spins, whose relative angle is detémed by the SOC. In other

words, we end up with an interaction between tipped spin opators of the form

Hex =2JS2 S3

If one wishes to express this interaction in terms of the oiiigal spin operatorsS, and

Sg, the appropriate transformation yields

Hex =2JSaSg cos( ) + %(bSA)(bSB)(l cos()) + %b(SA Sg)sin( ) (1.2

where is the relative angle of rotation andb stands for the internal magnetic eld
produced by the spin-orbit coupling. The last two terms cogspond to the anisotropic
contribution [33]. Although we will not work out the full derivation of the anisotropic
Hamiltonian, we just emphasize some important aspects of ithe rst of them is related
to the general structure of the electron wave function. As méoned before, we consider
semiconductors lacking inversion symmetry, where an e agé spin-orbit coupling in the

conduction band (this is further explained in Chap. 2) preses the general form

Hsoc = BOBsoc(K) S

where Bsoc represents an e ective spin-orbit eld that depends on the ave vector,
only via odd powers ofk.

As it is usually very weak, it has no incidence on the binding engy and the wave
function shape near the localization center. However, awasofn it, it strongly modi es
the wave function, even though the potential energy at largdistances can be neglected.
As shown by Kavokin [34], the wave function at a (large) distaser from the center is

|

e ™o exp ;m Bngocﬂizz t=(rro)) Sr

o
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q
where the length scale, = ( 2%52) ! has been introduced.Eg denotes the binding

energy, andm the e ective mass of a conduction electron. The second parf this
formula resembles a spin rotation operation, meaning that hear the center the spin is
pointing along a certain axis, then at a given distancethe spin have the same projection

but on an turned axis, whose angle is equal to

m ggBsoc (K= +=(rro))r
o

(r)=

around the spin-orbit eld Bsoc. This asymptotic behaviour has an in uence on the
spin dynamics. To show this, the next step is to consider thevb centersA and B, and
notice that the two wave functions of the electrons localizkat each site are no longer
orthogonal, even though they have opposite spin projectiqalong a common axis). This
implies at the same time that an electron tunneling from, saygite A to site B will turn
its spin through an angle given by (Rag ). If the site B is occupied by another electron
(described also by an asymptotic wave function), the exchge interaction will couple
both electrons which are de ned in di erent primed coordinaé frames, as shown before.
Upon transforming this primed Hamiltonian back to a common frane, the resulting
exchange interaction (1.2) accounts for the full process.

From this description, yet not totally formal, it is reasonale to expect that a stronger
overlap between the wave functions, due to a increasing dogi density for example,
will produce a stronger exchange and yield lower values fordlspin-relaxation times.
This situation is consistent with the dip observed in Fig. 1.4or a doping density just
below the critical one. Indeed, Kavokin showed that the madnal narrowing of the
anisotropic term for two conduction-band electrons locaed at shallow centers (donors
or quantum dots) accounts for the decrease of in the intermediate density region
3 10%cm 2 <n<n . of the experiment of Dzhioeet al..

If we now leap over the critical density and consider the ex¢me case of highly doped

samples, beyond the hybridization density, where the condtion band is mainly pop-
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ulated, we expect the usual spin-relaxation mechanisms foonduction electrons to be

applicable. We address two of them in the following section.

The Elliot-Yafet mechanism

We brie y describe here the spin-relaxation mechanism thadlespite not being suitable
in our speci ¢ context, it certainly helps to understand thetheory developed later for the
impurity band. In a regular array of ions, the periodic potentl V., induces a spin-orbit

coupling term

Hsoc = 4—m%(r Vey  P)

where mg is the free electron massp = i~r is the linear-momentum operator, and
is the spin operator. This term couples di erent single-etdron Bloch states, and

therefore, they are no longer , eigenstates, but a mixture of spin-up and spin-down.

Elliot rst considered the case of a metal with a center of symetry, for which these

modi ed eigenstates read

h i
k(1) = &n(®j" + b (D] #ileHT (1.3)

a @it b @i € (1.4)

kn#(f‘)

where the di erent coe cients ax, and b, measure the degree of spin mixture of the
state in the band n, for each wave vectork. The spatial-inversion operator and the

time-reversal operator (both of them commute with the Hamilbnian) connect these two

degenerate states. The labelsand# are justi ed by the fact that the spin-orbit coupling

is weak and consequently, the typical value ¢l ,j << 1. This estimation can be done in

the following way: sinceHsoc has the periodicity of the lattice, it only connects states
with opposite spin but the samek at di erent bands n. If a typical coupling matrix

element is given byjHsocj, and we denote the distance between these states by a gap
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4 E, then
b'j Hso=4 E;

which is usually much smaller than 1, because the spin-orlzbupling is much smaller
than a typical energy gap. Given this, we observe that some glfenism of momentum
scattering will produce spin relaxation, because states twidi erent k's have di erent

spin orientations. Or to put this di erently, every time the electron su ers a scattering
event that changes its momentum, its spin state may change ael In Fig. 1.5, the

process is sketched. At each scattering on a center (phonampurity, etc), the electron

has a small chance to ip its spin. Elliot's formula [9] stats that the spin-relaxation

rate is proportional to the momentum relaxation rate

where = is the momentum relaxation rate determined by \up" to \up" scattering
[35]. The spin- ip length turns out to be proportional to the mea-free path (or to the

di usion constant):

s — D s

The Elliot-Yafet mechanism is known to be very e ective in mtls, but it also enters
the physics of semiconductors. It is applicable for conducticelectrons in the presence
of an inversion symmetric crystal structure. When this last @ndition is not ful lled, an-
other mechanism appears and competes with it, namely the Dy@nov-Perel mechanism

that we discuss in the sequel.

D yakonov-Perel

The inversion symmetry in semiconductors can be broken by eéhpresence of two dis-
tinct atoms in the Bravais lattice. This happens to be the case groups I1I-V (such

as GaAs) and II-VI (ZnSe) semiconductors. In heterostructuse instead, the source
of this breaking is the asymmetric con ning potential. In geeral, in asymmetric sys-
tems the spin-orbit interaction leads to the Dyakonov-Pettemechanism for conduction

electrons. Due to the lack of translational invariance, theeigenenergies do no longer

25
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satisfy Exx = Ey-, but since the time-reversal symmetry is still present (aohg as no
external magnetic eld is applied), the following relationholds Exx = E «-. The spin
splitting so produced is equivalent to consider an intrinsik-dependent magnetic eld
Bi(k), perpendicular tok, that induces a Larmor precession around it with a frequency
of ( k) =(e=m)B;(k). This intrinsic magnetic eld derives (and depends on) frm the

spin-orbit coupling in the band structure, whose e ectiventeraction term reads

Hk)= 5~ (k)

NI =

where are the Pauli matrices andk is the momentum state label of the electron in the
conduction band. Therefore, the combination of the momentua relaxation described by
a characteristic time , and the momentum-dependent spin interaction gives rise t@is
dephasing. If we further de ne ,, as the average of the intrinsic Larmor frequency over

the electronic momentum distribution, two di erent cases ca be distinguished.

If a p 1, the momentum relaxation time is long enough as to permit thspin to

precess a full cycle before being scattered to another momeamt state. In general, the

Figure 1.5: The Elliot Yafet mechanism, relevant for conduction electmn in centrosym-
metric crystals, is sketched. The spin-orbit interaction mies a spin-up
(down) Bloch state bear a small contribution of spin-down (upamplitude.
Impurities, boundaries or phonons, even being spin indepaent potentials,

may induce transition between quasi-up and quasi-down seg [35].
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1.3 Spin relaxation in n-GaAs

spin dephasing time is given by4 4 |, where 4 is the width of the distribution
sampled by the ensemble of spins. Fdr< , all the spins dephase reversibly, but
afterwards, this coherence is irreversibly lost due to rawdizing scattering.

In the other case, . , < 1, the electrons changes its momentum rapidly and so does
the magnitude and direction of the intrinsic magnetic eld. The time step , determines
the \small" rotation angle of the spin =, , betweentwo successive scattering
events. The spin phase then accumulates di usively and after certain number of steps
given by t= ,, the total phase is calculated as

q__
(v t=p

The presence of the square root coming from the random walkchire must be noticed.
If we now de ne ¢ as the time at which ( ) = 1, then we come across the usual
\motional narrowing" equation

- = 2
l_S_ av p

In this case, the total phase accumulated by a single electraonsist of asum of dif-
ferent Larmor frequencies (randomly taken) multiplied by ,, such that ( k) is sampled
by the distribution of these sums Its variance is, according to the central-limit theo-
rem, very small. Randomizing is very e ective in this case lzause there are other spins
bearing di erent momentums, and thus precessing with di eent Larmor frequencies.

The simple picture of the Dyakonov-Perel mechanism is preged in Fig. 1.6. As the
spins in the bands are no longer degenerate, the spin-up &atarries a di erent energy
from a spin-down state with the same momentum. The electronsawing throughout the
sample experience an internal magnetic eld, dependent onamentum, that makes the
spin precess along such eld, until the electron momentum ahges by scattering due to
a impurity, boundaries, or phonons. The precession then camies, but along a di erent
axis, because th& has changed. In this case, unlike the Elliot mechanism, the aiter
the momentum scattering time the longer the spin relaxatiotime. A large momentum

scattering rate prevents the spin to perform a full cycle ofpsn rotation, whereby spin
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Chapter 1 Introduction

Figure 1.6: The Dyakonov-Perel mechanism applies in non-centrosymmitistructures,
where the spin bands are no longer degenerate, and a spin uatstwith a
given momentum has a di erent energy from the spin down statwith the
same momentum. Therefore, the e ective picture is an inteal k-dependent
magnetic eld, along which the spin precesses. When the elemt is scat-
tered by a phonon, a boundary or an impurity, the precessionontinues

along a di erent axis [35].

relaxation would be enhanced.

As it has been pointed out, the Dyakonov Perel mechanism is sable for conduction
electrons with a well-de ned crystal momentunk. In the case of doped semiconductor,
for large densities (Fig. 1.4) where the conduction band is wglopulated, the spin-
relaxation times can be understood in terms of this mechamnis For a smaller density,
just above the critical point, we enter the metallic regime fothe impurity band, and
therefore the aforementioned theory is not applicable. Weakie developed in this work a
suitable theory for treating the spin relaxation in this cas, whose results can be found
in Ref. [36]. However, we anticipate that the notion of spin dision will be used upon

constructing our description for the spin-relaxation in thempurity band.

1.4 Spin in nanostructures

So far we have dealt with electrons and spins in bulk systemashere the electron moves

in the three directions. In low-dimensional systems, by ctmast, the electron motion is
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1.4 Spin in nanostructures

restricted to two, one, or even zero dimensions. Neverthededulk and low-dimensional
physics are not completely dissociated. For example, ligitdoped GaAs has been stud-
ied in view of the similar spin properties observed for elegcins localized on isolated
donors and for electrons localized in quantum dots [23], si&in both cases the electron
is e ectively con ned in a zero dimensional enclosure. As it imentioned by Kavokin in
Ref. [34], an understanding of the spin behaviour in the impity band of bulk semicon-
ductors would be a proper basis for the study of localized eteonic spins in wells or dot
arrays. However, the con nement potential in nanostructurs is in general less isotropic
than the localizing potentials of donors in bulk systems.

The importance of low-dimensional semiconductor systems felated to their great
exibility in manipulating charge and also spin properties 6 the electronic states. Here,
spin relaxation is also caused by random magnetic elds origiting either from the base
material or from the heterostructure itself, and the Dyakone-Perel and the Hyper ne
interaction are believed to be the most relevant mechanisnf8]. As the spin relaxation
and spin dephasing in these systems should be reduced fohtedogical applications, a
great deal of research has been devoted to understand them.

From the point of view of applications, an additional motivaton for studying low-
dimensional spin-based electronics is its close conneugtitw the current trend in tech-
nology of requiring smaller and smaller devices. In this s& spintronics also belongs
to the eld of nanotechnology.

In the second part of this thesis we concentrate on a semicontlucquantum dot, ex-
plained in Chap. 5. Before that, we brie y describe the varios low-dimensional systems,

starting with the two-dimensional case.

1.4.1 Quantum wells

An example of low-dimensional system is the quantum well. In ik case, the carriers
are con ned on a planar region, whose thickness is comparalbitethe de Broglie wave-
length of the carriers. The setup consists of an ultra-thin {gr of a small band gap

semiconductor between larger gap semiconductor materiakthat e ectively forms an

29
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attractive potential in which electrons are trapped. In heg¢rostructures made of GaAs
and AlGaAs, the two-dimensional electron gas (2DEG) is formebetween the spacer
(AlGaAs) and the bu er layer (GaAs) [37]. In these systems, et#rons spins have been
successfully manipulated by means of electric elds, whichllows to set and control
the g-factor value -so varying the coupling between the magneticeld and the spin-
throughout the well, and thereby tuning the electron spin reonance [37,38]. An equiv-
alent g-tensor modulation resonance technique that used a gigateelectric eld was
proposed in Ref. [39]. After it, a di erent approach that alsamade use of time-dependent
electric elds, was put forth by Rashba and Efros [40,41]. Tése electric elds change
the orbital state of the electrons, and couple to the spin vighe spin-orbit coupling.
Their alternative gate-voltage induced spin resonance ntemism, known as the Electric

Dipole Spin Resonance (EDSR), was later on extended for quam dots.

1.4.2 Nanowires

Another example of a lower dimensional system is a wire, in whi¢he electrons are
con ned to one single dimension, as in a rod or a whisker. Theyeatypically grown
by the so-called metalorganic vapor phase epitaxy (MOVPE), ahemical -in contrast
to physical- method used to grow thin Ims of a given material The desired atoms
di using through the gas phase deposit onto the wafer (substta surface) atomic layer
by atomic layer. The chemicals are vaporized and injected mta reactor together with
other gases, where a critical chemical reaction takes platerning the chemicals into the
desired crystal. A compound semiconductor can also be growsing this technique [42].
This procedure needs a seeding nanoparticle, deposited ¢ tsubstrate, in order to
induce the process. The nanoparticle size determines the miieter of the nanowire,
which can typically reach 100nm [43]. The structural propeies of the nanowires are
usually studied using a high-resolution transmission el@on microscopy (TEM).
Nanowires have been proposed for several practical applicais. In Ref. [44], the
possibility to use a ferromagnetic gate as a spin-polarizah Iter for one-dimensional

electron systems was put forward. Nowadays, an additionaiterest on these wires is
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1.4 Spin in nanostructures

Figure 1.7: A transmission electron microscopy of InP barriers of vans sizes inside
InAs nanowhiskers. In the lower gure the crystalline perfen is showed,
along with the interface abruptness. The InAs whisker diamet is 40

nm [46].

rising, because in contact with normal (gold) and supercondting electrodes, they can
be used for the seek of the novel Majorana fermions [45]. Inigtthesis we do not deal

with this interesting subject.

An appealing feature about the nanowires is the possibilityot host a quantum dot,
by con ning the electron in the axis of the wire. The electron delling in the dot is a
conduction band electron of the underlying structure thats a ected by the con nement
e ects. A necessary step for achieving such a setup is therfmation of one dimensional
heterostructures, in which a single whisker contains vats segments, with abrupt in-
terfaces and heterostructure barriers of varying thicknas The picture in Fig. 1.7 shows
the transmission electron microscopy (TEM) image of a nandwsker made of InP and

InAs pieces, with a remarkably sharp interface between them|so displayed.

By using these InAs nanowires, the group in Sweden headed by an3uelson [47] came
across a novel device. They designed a few-electron quantdat in these semiconductor
nanowires, by introducing a double barrier made of InP hetestructures. The quantum
dot is hosted between the barriers, and by increasing the gatvoltage, they added
electrons one by one into the dot, up to 50. This is the type ofugntum dot that we

study, and we next describe it in more detail.
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Figure 1.8: An outline of the nanowhisker quantum dot. Tho InP tunnel barrers de ne
the quantum dot in the InAs nanowire. The lateral side facetsofm a

hexagonal cross section with presumably hard wall conditie [48].

1.4.3 Quantum Dots

A quantum dot is a zero-dimensional system in which the motionf the electron is
con ned in its three dimensions. As such, the energy spectragsents discretized levels.
The electron spin in a semiconductor quantum dot is a promigincandidate for quantum
information applications, and therefore much e ort has beedevoted to understand and
identify the e ects producing the loss of information eithewvia decoherence or relaxation.
The original proposal of implementing a two-level system saociated to the electron spin-
as a quantum bit (or qubit) in a quantum dot was published in 198 by D. Loss and
D. DiVincenzo [14]. Many theoretical and experimental workfllowed thereafter, and
many technical pitfalls have been overcome, eventually lead to great advances. Only
in recent years systems where the properties of individualeetrons can be measured
have been achieved. Among those, the quantum dot is particulka appealing since it
constitutes the building block for scalable solid-state quiium computers. The central
and major challenge notwithstanding remains in the presenthow to manipulate the
spin in a short time before it loses its (Qquantum) initial stée. The simplest idea would

be to think about resonant magnetic elds. In Ref. [49], the gup of L. P. Kouwenhoven
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1.4 Spin in nanostructures

claimed to control coherently a single spin in a dot by applyig short bursts of oscillating
magnetic elds. The problem is that the eld involved cannot bespatially localized, the
strength of it renders the time to reverse the spin too slowna the experiment has to be
performed at very low temperatures and at high frequencies(]. All these shortcomings
make the experiment as well as the technological applicati@avery hard task. A more
desirable approach was conceived in 2007 by Nowack and catletiors [51], where the
coherent control of the spin by means of oscillating electrields generated in a local
gate was performed. They reported induced coherent trangibs (Rabi oscillations) as
fast as 55 nanoseconds, and their analysis indicated thatettspin-orbit interaction was
the driving mechanism. The manipulation times obtained in thse GaAs quantum dots,
about 110ns for a spin ip, were not fast enough, hindering auigck and precise control.
This de ciency was partially improved again by Kouwenhovers group [17]. Here the
one dimensional wire was made of indium arsenide, whose spibit coupling is known
to be stronger. In this spin-orbit qubit, spin- ip times of about 8 ns were obtained. The
guantum dot in this latter example is de ned by using an arrayof 5 contiguous gates
(no structuraly de ned tunnel barriers are present), wherewo quantum dots are hosted.
One of them serves only for reading purposes. Operating inethCoulomb blockade
regime, that prevents the electron from escaping from the do& microwave-frequency
electric eld applied to one of the gates forces the spin irde@ the wire to oscillate,
so inducing resonant transitions between spin-orbit stastewhen the a.c frequency is
equal to the Larmor frequency. The Electric Dipole Spin Resance mechanism, already
mentioned for 2D systems and extended for quantum dots in R¢b2], is at the basis of

the comprehension of the experimental results.

Another property of interest in quantum dots is the e ective g-factor. It has been
measured in INAs nanowire quantum dots for various dot sizas Ref. [48], where a strong
dependence on the dot sizes is exhibited in the case in whiglwfelectrons occupy the
lowest discretized energy states. This sensitivity leads & possible setup for individually
addressable spin qubits, if the nanowire has multiple dots thidi erent g-factors along

it.
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Our reference to the speci c material InAs is not casual. We osider an quantum
dot like the one sketched in Fig. 1.8. The dot is hosted betwedhe two InP tunnel
barriers. Our point of interest is the intrinsic spin-orbit coupling related to a particular
property of these systems: the crystal structure of InAs prests a zincblende form in the
bulk phase, but it acquires a wurtzite-type structure when gpwn unidimensionally [53].
Moreover, a crossover to the zincblende crystal structure &®een observed as a function
of the wire diameter [54], and theoretically explained by aksical nucleation modeling.
Logically, the commonly cited form of the e ective Dressebus spin-orbit coupling for
zincblende (cubic-in-k) is not expected to be applicable tthe wurtzite case. Indeed,
the e ective spin-orbit coupling for the conduction band ofWZ contains a linear-in-k
term, rstly proposed in Ref. [55]. In addition, and only reently, a cubic-in-k term has
been shown to be present [56] as well, and the correspondiogigling parameters have
been calculated [57].

In our study about spin-orbit e ects in InAs-based quantum dos, we treat both terms

on equal footing (see Ref. [58]).

1.5 Outline of this thesis

The outline of the thesis is as follows. In Chap. 2 we review ¢htheoretical formalism
related to our work. We begin by exploring the origin of the gp-orbit interaction start-
ing from the Dirac equation. After this and by way of a digressim we introduce basic
concepts of group theory, that provide us with a convenienahguage to treat the sym-
metries encountered in crystal structures. The zincblendand the wurtzite structures
are there described. The chapter nishes with the e ective thories whereby we can deal
with the behaviour of an electron without taking into accountall the microscopic details
concerning the crystalline structure.

In Chap. 3 we present our characterization of the impurity bad, and more precisely,
our study about the e ect of the spin-orbit interaction on the localization of the wave

function. We consider a suitable parameter to measure the glee of spatial extension of
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the calculated eigenfunctions, and how it changes upon imasing the spin-orbit coupling
strength, in this case, given by an extrinsic-type SOC assated to the impurities.

In Chap. 4 we tackle our main subject related to spin-relaxain on the metallic side
of the metal-insulator transition of a doped semiconductorin addition to the extrinsic
term, we add the Dresselhaus (cubic-in-k) SOC derived fornmblende structures. Our
approach to the spin di usion in the impurity band is carefuly explained, along with the
complete analytical treatment of the density dependence tife spin relaxation for dopant
densities slightly larger than the one corresponding to th@etal-insulator transition. We
also performed some numerical calculations for the estinia of the spin relaxation by
considering the time evolution of an initial state. After presenting the numerical results,
we compare and discuss the agreement of our theory with the expnent of Fig. 1.4.

In Chap. 5 we concentrate on the behaviour of a conduction eteon con ned in a
cylindrical quantum dot. The e ective spin-orbit coupling terms related to the wurtzite
structure, here containing both a linear-in-k and a cubicAa-k contribution, are exactly
treated. A two-dimensional system is rstly considered, ah the energy dispersion as
a function of k is derived analytically. A further con nemert is imposed with cylin-
drical hard-wall boundary conditions to make up a pillbox-lie quantum dot. Here, an
equation for the discretization of the energies is found, dra numerical solution is thus
implemented. The resultingg-factors are evaluated.

The conclusions brought about by our theoretical work, as Weas the perspectives

are in terms of further theoretical and experimental reseehn discussed in Chap. 6.
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Chapter 2

Spin-orbit interaction In

semiconductors

2.1 Dirac-Spinor

The spin-degree of freedom associated with an intrinsi angulmomentum S couples
to a magnetic eld exactly in the same way as a dipole magnetimoment does. This
magnetic moment is related tdS via the de nition = g g S, whereg is the g-factor and
s IS the Bohr magneton. But in spite of this interaction, whichhas a classical form, the
spin degree of freedom itself does not have any classical laga Even though the spin
emerges naturally in relativistic quantum mechanics, itsxstence is revealedolely by
a linearization of the Schredinger equation, without appaling to any relativistic theory,
as it is elegantly exposed in [59]. Suclnearized equation is equivalent to the usual
Schedinger equation, but in contrast to the latter, this ore is linear both in (@=@#nd
in (@=@xThe Pauli equation can be thus derived and the correct vagufor the g-factor
results. Here, however, we will follow the more conventionalay of using a Quantum
Electrodynamics framework, in order to treat the interacton of an electron with an
electromagnetic eld. The basic goal is to see how thepin-orbit coupling (SOC)
comes out, or equivalently, to trace back its origin. For thisthe Dirac equation will

be unfolded, and the sping-factor will appear as well. In the beginning we succinctly
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Chapter 2 Spin-orbit interaction in semiconductors

sketch the derivation of the Dirac Equation, following [60].The road map starts from the
Schredinger equation, followed by its relativistic courgrpart, and we nish by deriving
a new Schredinger equation as a non-relativistic limit.

The Schredinger Equation can be obtained by using the quamin prescription p !

( ir andE'! i~@@tfor a conservative mechanical system
~2 @
2 —_
—T +V =i~— 2.1
2m (@] (2.1)

with m the free-electron massy a potential energy and~ the Planck's constant.
On the other hand, leaving out the potential energy, the retavistic energy-momentum
relation is
E2 p2C2 = m2c*
In the so-called covariant notation, this is expressed as :

pp m*?=0 (2.2)

where = 0;1;2,3. The 0 component is associated to the energxq(is the time
coordinate), while the other three correspond to the momemin components. We note
that the space and time coordinates appear on equal footing this last equation. The
Einstein notation has been used for the sum. For our purposdsis enough to know

that the super and subscript notation simply mean
ab =am+alh+a’h+a’h=ay albht ak adb’

wherea and b are operators. Every time we want to rise the index of an opedm, we
have to multiply it by 1 only if =1;2;3. The O-component remains the same. In
relativistic language,pp = E=c and p = (ps; p2; p3) is the linear momentum operator.
If we followed the aforementioned quantum prescription, wevould arrive to the Klein
Gordon equation :

1@ ) mc 2

JEEE——— r = -
CZ @t ~
The fact of being second order ih poses a problem based on the statistical interpreta-

tion of j j2. To circumvent this di culty, Dirac sought an equation linear in @=@and
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2.1 Dirac-Spinor

compatible with the relativistic energy-momentum relatiom (2.2). Dirac's proposition

was to split the energy-momentum relation (2.2) in two parts
pp mF=( ¥pk+mc)( p mc)=0 (2.3)

thereby imposing the energy-momentum relation. If this equi®n is to be satis ed,
then any of the two terms of the decomposition is a solution tthe total problem. It
also implies that the linear equation is attained. Remarkdip, the simple requirement in

eq. (2.3) leads to the conditions to be met by theSsand % :

the % must be matrices

the smallest dimension of these matrices can be 4
(92=|

(2= 1fori=1;23

+ =0if ( 6 ) (the anti-commutation relation)

The last item de nes analgebrg and there are several equivalent ways of representing

the %. One of them is 0 1
@' Oa
0 |
and 0 1
i
@ % A
0

Each block in these matrices is a 2 2 matrix; | is the identity and ; are the Pauli

matrices.
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Another choice is the so-calleMajorana basis. It takes up di erent expressions for the

matrices, which of course satisfy the same algebra, and implitimately the existence
of a particle that is its own antiparticle, i.e. a Majorana Femion.

Back to our derivation, the usual substitutionp = i~@ is inserted into the eq. (2.3),

and any of the two terms can be named th®irac Equation
i~ @ mc =0: (2.4)

Nevertheless, it must be noted that is a four-component spinor; it is NOT a four-
component vector, since it does not transform under the omtry Lorentz rules. We
mentioned that the spin-orbit coupling is our nal objective, and therefore the e ect of
an electromagnetic eld needs to be included. The requiremenf preserving the gauge

invariance dictates that the spatial and time derivatives mat be replaced by

whereA is the magnetic vector potential and the electric scalar potential. In covariant

notation, the Dirac equation including this quadripotental is

[ (i~@ EA) mc (x)=0: (2.5)

In order to recover the Schredinger equation, the linear the derivative can be separated

from all the other terms by multiplying ( °c) from the left
O 0 . e | . e - .
[ %]l ~@ A+ '(-@ _A) md (x)=0: (26)
Using the property ( °)? = 1, the time derivative is written on the left side, while the
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2.1 Dirac-Spinor

rest of the equation passes to the right

i~— = eAy O ii~@ +e®'A + °mc® = (2.7)

If the potential A is restored to its original form and the product of matricess renamed

as 0 1

then in eq. (2.7) can be re-expressed as

=c (p EA)+ mc® +e | (2.8)

which is in the original form put forth by Dirac.
We now analyze thenon-relativistic limit limit of this equation, setting our sight
on the Schredinger equation. For this purpose, the equatio(2.7) will be considered,

along with a decomposition of the four-component spinor into two components

0 1
v 0
=@ A
0
We then have
0 1 0 1 0 1 0 1
@~ 0 c~ b o ' '
~—~@ A=Q@ Ate @ Aitma@ A
@t 0 c~ bro
where~ = ( ; y; ;) and the generalized momentum operator has been introduced

b= P (e=QA. If we further separate the largest energy scale, namely thest energy,

in the following way
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0 1 0 1

1 0 1
- @ A = e i(mc2=~)t@ A
0

a new expression for the eq. (2.7) is obtained

0 1 O 1 0 1 0 1

1 o~ b !
-9 A-@° Are @ A 2mc@ ° A (2.9)
@t c~ VY

A "formal" solution for the lower part of the spinor can be writen as

_ b g e 2.10
©2me 2mc2 (2.10)

If only the rst term were retained, the Pauli equation would result in the magnetic
dipole interaction, with the correct value of 2 for the sping-factor. The second term
must be kept for the spin-orbit coupling to appear. In our forralation, we can consis-
tently argue that the rst term in eq. (2.10) is the dominating one, as the second one is
divided by the rest mass (largest energy scale)

This way, the equation can be solved iteratively in order togf as a function of'

~ b' i~@@t e ~ b .
©2me 2mc2 2mc (2.11)

This relation is then substituted in the eq. (2.9) for and what is left can be identi ed
with the Hamiltonian of the problem. Nevertheless, the wave fiction must be nor-
malized before this; otherwise the Hamiltonian is not Hermié&n. This technical step is
excluded here, and we only take care of the two products of sp®rs containing~ and
b

The rst of them is

1 1 e~
= (~ -~ b= b2 = _
2m( l?( l? 2m 2mc B
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where the kinetic energy is represented b?z and the correct electrong-factor equal to

2 is immediately recognized, once the following identi cains are done

and for the Bohr magneton

e
B~ 2mc

The second one, stemming from the corrections included in.€.11), turns out to be

2 (- (- b=

4m2c - 2

PP+

4m2c 4m?2c

The p p term has no classical analogue, and is of order5Q2. The second term ac-

counts for the sought spin-orbit coupling. The total resultdr the Hamiltonian, with the

correct normalization of the wave function, gives

2 p? e~ ie

H= on &mc "° me B amePFE (2.12)
ie e
s B gmeem (B

The last bracket in the expression contains the total spintbit coupling, and leads,
for example, to the ne structure of atoms. In this case, the igsence of a symmetric

spherical potential leads to

~(r E)=0
and
_ e @V * _ e 1@\/~
4m2c2 (E p)_4m2c2 @rr P T amaar ar
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This formula shows that the correct Thomas Precession -onalhthe result obtained for
an electron at rest in the magnetic eld of a proton circling aound it- is obtained as
well. Finally, the term p E, associated to theDarwin force is not discussed here as it
is beyond the scope of our subject.

In this preliminary section we have introduced the spin degeeof freedom and the
resulting spin-orbit coupling. The results we have got are \id for a free electron in
the presence of a general potentid (¥). Exactly the same spin-orbit coupling exists in
solids, where the electron sees a crystalline landscape. Hesvethe e ective theories we
will work with, allow to stow the information about the hosting crystalline structure and
its parameters in the coupling constants, and derive e ect& spin-orbit Hamiltonians.

The derivation of these e ective terms and the associated pameters makes use of
the crystalline properties of the underlying structure. Fo this reason, we continue in
the next section by brie y introducing Group theory, an appr@riate frame to study

symmetries.

2.2 A brief summary on Group Theory

Semiconductors, and metals alike, are generally made of réguarrays of ions. This
ordered feature o ers the possibility of identifying symmey operations that leave the
crystal unchanged. Indeed, this property is exploited to faate the study of solids,

and in particular, the electron band structure. For example,fitwo di erent states la-

beled with K and R are related to each other via a symmetry operation of the cria,

then the electronic energies of these two di erent states mstibe identical. This implies
that we need to calculate the energy of one state, and inferdhother one by symme-
try considerations. The second consequence is related teettvave function: they can
be expressed in a symmetrized fashion, meaning that they leagertain transformation
properties de ned by the symmetries of the crystal. Therefa;, given a symmetry oper-

ation, we can classify and group the wave functions accordiro it. In doing so, we can
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2.2 A brief summary on Group Theory

deduce if a matrix element -or equivalently, an operator cqling two states- vanishes or
not, depending on the symmetry properties of the operator. llese gives the so-called
selection rules As we will see below, the symmetry operations must also copeiwihe
spin degree of freedom as well, and so a convenient extensibthe symmetry operations
reserved for crystal structure without spin will be necessa Once the importance of
regarding and identifying the symmetry operations has bedmghlighted, a systematic
way of sorting them is of great utility. The suitable concepial framework to handle
this is Group Theory . Though we do not make a thorough description of this theory
here, we discuss some relevant concepts and the widely usadhteology in solid state
physics.

A group is a set of elements (operations in our case), whereetbuccessive application
or multiplication between any two elements belongs to the self a and b belong to G,

the multiplication must satisfy ve conditions:

Closure) The result of the operationabis another element of the group.
Associativity ) It is equivalent (abjc= a(bg

Identity ) An elementeis the identity if 822 G ! ea= a

Inverse) Every element of G has its inverse elemena ! such thata 'a= e

In principle, the successive application of two operations the group does not commute.
In the case of crystal lattices, although there are many symeiry operations, we can
list some basic operations in terms of which any other may beritten. The de ntion

for them is
Ci isani fold rotation about a given axis
is the re ection about a plane

i is the inversion
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Chapter 2 Spin-orbit interaction in semiconductors

Figure 2.1: The set of three primitive lattice vectors is shown for the fee-centered

cubic lattice.

S means the rotationC; followed by a re ection about the plane perpendicular to

the rotation axis
the identity operation E.

If we now compute all the possible symmetry operations of thikind, but with the
additional restriction that at least one point xed and unchanged in space, we obtain the
so-calledpoint group, related to rotation, inversion and re ection symmeties. Crystals,
on the other hand, also have translational symmetries, whiclso form a group. Groups
that contain both rotation and translations are space groups. The point group of
the zincblende structure is denoted by ;. The translational symmetry operations are
de ned in terms of the three primitive lattice vectors (see F. 2.1.), which are at the
same time used to de ne the point group operations, with ther@in at one of two atoms
in the primitive cell.

With this choice of coordinates, the 24 operations fof; are enumerated below (usu-

ally introduced equivalently for the methane molecule):
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2.2 A brief summary on Group Theory

E : the identity

Cs: clockwise and counterclockwise rotations of 12@bout the [111][111}[111],

and [111] axes, respectively (8 operations);
C, : rotations of 180 about the [100][010], and [001] axes, respectively (x3)

S, : clockwise and counterclockwise rotations of 9@bout the [100][010], and

[001] axes, respectively, followed by a re ection(x6);

. re ections with respect to the (110) (110); (101); (101); (011), and (01) planes,

respectively (x6).

So far we have taken care of the pure description of the crysta terms of its sym-
metries. A question might arise: How does an operator generagiany of the symmetry
transformations cited above act on the wave function? For thj we need a representation
of the operator. One way is the matrix representation of an opa&tor in a given basis
set (¥), spanning the Hilbert space,

X

H() (M= Hi «(9); (2.13)
k

where H,; is the matrix element between the states and k. If we are to consider the
e ect of any operation S upon the basis set, we must also operate on the spatial variab

+ [61], such that

X
i(St) = Sik k(¥ (2.14)
k

This leads to an expression for the matrix elements of a Hanohian which is transformed

under the sames, i.e H (S¢)

Hj ! S, "Hik S (2.15)
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Chapter 2 Spin-orbit interaction in semiconductors

Assuming that S is any operation of the symmetry group of the HamiltonianK remains
unchanged underS), we obtain the following condition for the commutator of bth

operators

[H:S]=0

This means that a given symmetry of the Hamiltonian, and thusfahe crystal, can be
expressed via a vanishing commutator of it with the correspding symmetry operator.
Once we x a basis for each element S of the group, there is a @sponding matrix
Sik. The correspondence between the elements of a group and thetnoas representing
them is such that fora; b;c2 G, the multiplication ab= c corresponds toM, My = Mg,
where M , the matrix associated with the group element = a;b;cis termed the
representation of a group. Such a correspondence is not unique, since the basin be
arbitrary chosen. There is actually -for a given group- an imite number of such groups
of matrices, each of them being connected to its counterpairt another representation
via a unitary transformation (they are said to beequivalen). Among all of them, there

is one special basis set, namely the eigenbasig+) which satis es

HF® i(®= i (" (2.16)

The transformed equation can be consistently expressed as

H(Sf) i(SH) = ;i i(SP) (2.17)

and asS stands for a symmetry operation

H(Sf) = H(¥)

H(F) (S = i i(SP) (2.18)
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2.2 A brief summary on Group Theory

This result evinces that (S#) is itself an eigenfunction with the same energy. In case
of having a n-fold degenerate level , with eigenfunctions denoted by (r =1,2,3..,n),

the implication of the symmetry operation is

X
4(SF) = o (%) (2.19)
p=1

which means that the transformed wave function can be writteas a linear combination
involving only partner wave functions with the same energy

The matrix representation of S has block-diagonal form

0 1
SO0

S

o0 sO)

Every square diagonal submatrix has a dimensiam  n , determined by the degen-
eracy of the level . All the other operations in the group can be similarlyreducedto
this shape. A representation is said to beeducibleif the samesimilarity transformation
brings all the matrices of a representation into the same blkaiagonal form. i.e all
of the new matrices have diagonal submatrices with the samérgnsion at the same
position. On the other hand, when each of the blocks cannot erther reduced, the
representation is calledrreducible. A similarity transformation can convert a reducible
representation into a block-diagonal form, where each blogk a irreducible represen-
tation. The possibility of having the irreducible representaon of a group -matrices
such asS of minimum order n - simpli es the multiplication of two matrices of the

representation, because it only involves one subspace
R()=sOT0)

The powerful implication that follows is the connection beteen degeneracy and dimen-
sion of irreducible representation. Let us suppose that weave a given representation
of a group. If the matrix of any observable, the Hamiltonian foexample, is invariant

under the group, then it commutes with the irreducible repreentation of any element
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Chapter 2 Spin-orbit interaction in semiconductors

of the group. Shur's lemma then ensures that the eigenvaluestbe observable can be
put into sets with the same degeneracy . Of course, this does not give the magnitude
of the eigenvalues, but since the irreducible representati can be calculated from the
basic operations of the group, it provides very useful inforation about the solution. In
other words, the problem of classifying the eigenvalues dfg Hamiltonian is solved if
the small number of inequivalent irreducible representatits of the symmetry group is
found. Of course, the eigenfunctions of an operator form a bsgor an irreducible rep-
resentation of the operator, but to nd them is the di cult ta sk. In conclusion, we have
that for each eigenvalue of a Hamiltonian, there is a uniquer@ducible representation of
the group of that Hamiltonian. Besides this, the degeneracyf an eigenvalue coincides
with the dimensionality of this irreducible representatio, and thus, the dimensionalities
of the irreducible representations of a group are equal to thdegeneracies of Hamilto-
nians (with that symmetry group). Group theory thus provides labels corresponding
to irreducible representations and to which eigenfunctieanbelong. This is a very useful
result that group theory gives to quantum mechanics. To illstrate the idea behind the
irreducible representations, let us take the example of the ection of coordinates about

the yz-plane, which is represented by the matrix

0 10 1
1 0 0 X
oo L BRS
0O 01 z

This is a reducible representation, since the same transfieation can be done by applying

three one-dimensional matrices in the following way

[( 1x;(1)y:(1)z]

and in this last case, the representation cannot be furtheeduced (it is the irreducible
representation). The irreducible representation of a roteon through 180 (a 2-fold
rotation axis) is also one-dimensional (a sign reversal)rqvided a suitable choice of
coordinates is made. However, the 3-, 4- and 6-fold rotatiorxes (except the 360

rotation) always involve two coordinates changes and thereducible representation is

50



2.2 A brief summary on Group Theory

therefore two-dimensional. A more physical example cono@mng the rotation operator is
given in [62]. Suppose we have a simultaneous eigenketland J,, calledjj;mi. The

rotation operator describing a rotation of around the r-axis reads

e
and the matrix elements for this operator in the basis of eig&ets of J2 and J, is
accordingly

DY) o= Hi;mYe " jimi (2.20)

where the sameg is considered on both sides because the rotation operatoredanot mix

states with di erent j-values, as a direct consequence of the relation
[J%:3,] =0 8k:

The (2 +1) (2 +1) Dij];)mo matrix is said to be a (3 + 1)-dimensional irreducible
representation of the rotation operationD.

To nish with the classi cation of the elements of a group, we ow fetch the class
notion. This concept allows us to assemble all the element$§ @ group into smaller
subsets. If two elements and t in a group satisfy that xs = tx for some elementx
in the group, thens and t are said to be conjugate (they are related by a similarity
transformation). A class contains all the elements of a grpuhat are conjugate to each
other. To nd the class where an element is, one considers tpeoducts of the form

ESE 1 vsv !

for every elementv in the group. E is the identity. Several of these products coincide
with other elements of the group. By combining and groupingiem, we form a class [63].
This transformation also implies thats = x tx, showing that we can get the same result
of the transformation s by means of an application in a certain manner involving two
other operationst and x. In the case the group is represented by matrices, the simiigr
transformation that connects all the elements within a clasimplies that their traces are

all the same. The traces of the matrices in a representatiomeacalled its characters

51
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A physical interpretation for this might be as follows: if tre symmetry operations that
the elements of the group represent satisfy the above relati B = X AX, it means
that the net operation B can be equally obtained by rst rotating the object byX, then
carrying out the operation A and nally undoing the initial rotation by X *. Taking
for exampleA as a rotation, thenB is also a rotation through a di erent rotation axis.

For zincblende, for example, we had that the point group hastzymmetry operations.

All these can be further divided in ve classes:

fEQ;f8Czg;f3C,0;f6S,0;f6 g

We have introduced classes because group theory provide usehwith a valuable
theorem: the number of classes is equal to the number of in@galent irreducible repre-
sentations. We thus learn now thafly (the point group of zincblende) has ve irreducible
representations.

Let us nally regard the notation used in band structure. At the center of the Brillouin
zone, the so-called -point, the wave functions always trasform according to the irre-
ducible representation of the point group of the crystal. Tarefore, for ZB we label the
irreducible representation by ;, where the subscripti = 1;2; 3;4;5 simply refers to the
irreducible representation in Koster notation. With the introduction of the spin degree
of freedom, this notation changes, as the point group itsalfoes (see section 2.6.1).

As we have seen, group theory provides a suitable mathemati¢abl and terminology
to study symmetric structures. We next describe speci callthe two crystal structures

that concern this thesis, namely zincblende and wurtzite.

2.3 Crystal Structures: Zincblende and Wurtzite

While most of the IlI-V semiconductors crystallize in the zieblende (ZB) structure,
the family of the II-VI and IV-VI compounds exhibit a greater vaiiety [64]; they can
be found in the ZB form, others are wurtzite (WZ) and some of tha can be found in

both forms. InAs, for example, presents a ZB structure in theuk, but it is of the WZ
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2.3 Crystal Structures: Zincblende and Wurtzite

type when grown in quasi one-dimensional quantum wires. Arther key feature of a
band structure in semiconductors is its band gap: it can be &ier a direct-gap, as in
some zincblende and wurtzite-type semiconductors, or an inect-gap, as in silicon. In a
direct-gap semiconductor the maximum of the valence bandiogides with the minimum

of the conduction band. Since electrons in semiconductors stly populate the lowest
states in the conduction band, it is possible to concentraten the electronic states near
the single conduction band minima. In this thesis, we rely orhis condition as we only
consider direct-gap cases.

As we have seen, the crystal structure is very important becae it determines the
symmetry properties of the system, and hence the correct éducible representation
in the band center, which is a key step in the construction ofhe k p Hamiltonians,
explained in the ensuing section. We also present there thereesponding SOC both in

ZB and WZ materials, whose crystalline properties are now degmed.

Zinchlende

The underlying structure of ZB is the diamond lattice, whichconsist of two interpene-
trating face-cented cubic Bravais Lattices, displaced abg the diagonal of the cubic cell
(see Fig. 2.2) byd = (b + 9+ b) [65]. It must be noted that the diamond structure
is not a Bravais Lattice. In the diamond structure each lattte point and its 4 nearest
neighbors form a regular tetrahedron. The zincblende case @btained when the two
fcc lattices are made of di erent atoms, for example GaAs, wti is a I11-V compound.
Concerning its symmetry properties, we have already mentied that its space group
is TZ while its point group is Ty, containing 24 basic operations listed before. For ZB
materials, the characteristic representations for the bahcenter is sketched in Fig. 2.3
where the e ect of the spin-orbit coupling manifest in the spl o of the valence band,
which are p-like with orbital angular momentuml = 1 at the band center. Without spin-
orbit, the valence would be three-fold degenerate at the barwenter. In the presence of
SOC, the valence band degeneracy is lifted in two ways. Thermhwith total angular

momentumJ = 1=2, the so-calledsplit-o band, separates from theneavy holeand light
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Chapter 2 Spin-orbit interaction in semiconductors

Figure 2.2: The conventional cubic cell for the diamond structure consts of two inter-
penetrating face-centered cubic. Each of the sublatticesrtains a di erent

kind of atoms (Ga and As), making up the zincblende structure.

hole bands (both of them with total angular momentumJ = 3=2). The combination of
the SOC and the lack of inversion symmetry leads to an energpliting for conduction
and valence states withk 6 0, even if the magnetic eld is zero. As a consequence, the
heavy-hole and light-hole bands have di erent energies fon¢ samek. The in uence of
the SOC in the electron energy levels for bulk semiconductowas pointed out by Elliot

[66] and Dresselhaus [67] and will be further studied in the ming sections.

Wurtzite

The building block for the wurtzite material is the hexagonhclose-packed structure
(hcp), obtained as two simple hexagonal Bravais Lattices splaced in the horizontal
direction, such that the points of one lattice coincides wit the center of the triangles
formed by the other one. In the vertical direction, the dis@cement is along the c-axis
and the distance is given byc=2 (see Fig. 2.4). The space group of WZ i&¢,, and

the symmetries comprising rotations are the identity, cldavise and counterclockwise
rotations of =3 about the c-axis, and re ections in vertical planes de nedby the c-axis

and the reciprocal lattices ,; 1T,; T, + 1,).
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2.3 Crystal Structures: Zincblende and Wurtzite

Figure 2.3: The e ect of the spin-orbit coupling is shown for the zincblede material.
The labels correspond to the group symmetry of the correspading band,

and in the case of SOC, the double group notation is used.

The rotations by and by =6 around the c-axis, and the three re ections in the
planes containing the c-axis aney ; &, and-& must be followed by a displacement along
[0; 0; c=2] in order to leave the crystal unchanged. The inversion isha symmetry since

di erent type of atoms occupy the horizontal planes in thez-direction.

In WZ, the spin-orbit coupling has also an e ect in the band strature, as it is seen
in Fig. 2.5.

The topic of our next section is precisely to introduce the sp-orbit coupling, and

describe how they modify the band structure of solids.
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Figure 2.4: The hexagonal close-packed crystal structure is shown. Twoterpene-
trating simple hexagonal Bravais lattices, displaced algnthe vertical axis
(c-axis), and displaced horizontally so that the center of th triangle of one
lies exactly above the point of the other. The three primitive gctors are
a; = ax a, = a=2x+ P §a:2y (horizontal arrows) andaz = cz (vertical

arrow).

2.4 Spin-orbit in solids

In this section, we consider the spin-orbit coupling in cryalline solids. In addition to

the Zeeman term, already present in the Pauli Equation, we fod

Hsocwvac =  vac R r V) (2.21)

where gz = ﬁ 3:7 10 %A? and ~k = § The subscript vac underlines the
fact that we are dealing with an electron in vacuum. This rem& will become signi cant

as the e ective theory for the SOC is discussed.

In a crystal, the electrostatic potential V can be split o as the sum of acrystal

contribution Vgys that should be separated fromVyme, including any other kind of
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2.4 Spin-orbit in solids

Figure 2.5: The same picture as in Fig. 2.3 is depicted for the wurtzite case

electric potential due to impurities, boundaries, etc.
V = Verys + Vother (2.22)

The distinction drawn for the possible types of electrostat potential leads to a classi-
cation of the di erent kinds of SOC. In this sense, we will ug the termsintrinsic and
extrinsic spin-orbit coupling, even though it is not unique across thiterature. We will
refer to the term extrinsic as the spin-orbit contribution that depends on theimpuri-

ties, in accordance with the de nition given in Ref. [68]. Theintrinsic SOC, on the
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other hand, means that the spin-orbit eld in the solid systen is solely related to the
structural properties of the system and arises even in the sénce of impurities. The
inversion symmetry needs to be broken to get such a term. Such a de nihois based
on the idea of intrinsic semiconductors, which are so puredh at a su ciently high
temperature, the impurity contribution to the carrier densty is negligible, and result
in intrinsic conductivity. At lower temperatures, the extrinsic properties emerge as the

contribution to the carrier density from impurities dominates.

The well-known \Rashba" coupling, for two dimensional sysms, arises as conse-

guence of the asymmetry in the con nement potential.

In three dimensional systems, the expression for the intricsSOC depends on the
crystal structure and band parameters, and as we will see bal when we study the

Dresselhaus coupling, the zincblende and the wurtzite exahes exhibit di erent Hiy .

In contrast to this, an extrinsic SOC accounts for the coupling of the moving spin in
the presence of the electric eld due to impurities. Hence, ghextrinsic coupling is also

present even if the inversion symmetry is preserved. An extsit term looks like [68]

Hext = Rr V) (2.23)

where is an e ective constant that contains information about theband structure.

The role ofV is played, for example, by the impurities potential.

The e ective constants and e ective SOC terms are obtained bgppealing to the so-
calledk p method. In combination with the envelope function approxiration, it allows
to include the e ect of the SOC close to the band minima. We stamwith the envelope
function approximation, and then introduce thek p method. This latter contains the
Kane Model in which the e ective SOC terms can be calculated.ir®e the full derivation
exceeds the scope of this thesis, it is not carried out in ddtaThe main ideas and hints

will be exposed nevertheless.
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2.5 The envelope function approximation

2.5 The envelope function approximation

The envelope function approximation (EFA) copes with the bedwiour of electrons and
holes in the presence of electric or magnetic elds that varynsothly in the length scale
of the crystal. It describes the electron wave function in tens of band-edge Bloch Func-
tions, which renders the method very useful for the subsequesystematic perturbation

treatment [69]. To observe how these conditions are introdad, it is instructive to see

the derivation of the EFA Hamiltonian, which starts with the Schredinger Equation

(i +(e=QA)2+V0 + —

2my mia (i~r +(e=0A) r Vg (2.24)
0

+ VO +L e- B (H=E(9

The potential V, represents the periodic potential, the vectoA generates the magnetic
eld B, and V(¥) accounts for the slowly varying potential. The next step i$o expand
the eigenfunctions in terms of band-center Bloch functiong) the same spirit as thek p

method in next section.

X
(®= o o(F)U oo(F)j (2.25)

00

whereu o are the quickly oscillating Bloch Functions of the -band atk =0 and j 9
are the spin eigenstates in th&, basis. The o o(r) play the role of the expansion coef-
cients or envelope functionsnow position-dependent, that modulate the function. We
then insert this Ansatz in the eq. (2.25) and integrate over anunit cell. At this stage,
we appeal to the smoothly varying character of the eld and ; we consider that within
one unit cell these quantities do not change considerably arnlerefore, we take them
out of the integral. We then come across a set of coupled equeis called multiband

(many bands are in principle involved) or EFA Hamiltonian:
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@ #

X - _
E o(0) + Sl ;n(]e_omz +V(E) .o o (2.26)
0

+i( i~r +(e=QA) P.o+4 . o
h g‘oo io
+§ B .o oo¥)= E . (¥)

where
P.o=h j=j°9
with
- p+4moc2~ rov
and
0 =~ . . .
4 0= gragh e~ (1 VO] ° 4

We notice that the characteristic feature in the EFA set of egations is the presence
the envelope functions instead of Bloch-Functions. Using gsiadegenerate perturba-
tion theory we can convert this in nite-dimensional eigenalue equation into a solvable
problem.

We have done here a simple exercise of deriving a Hamiltonidmat contains a slowly
varying potential whereby we expected to get envelope functie. We now step back
to consider a situation without this smooth potential. We wié instead to describe the
energy dispersiorkE (K) close to some poink = Ky in the band structure. For this, we
will resort to a method, called thek p method, that in analogy to the EFA, considers
a linear combination of many bands to build up a solution.

In the end, we will see that the EFA Hamiltonian can be derived &m the k p method

by some proper substitutions.
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2.6 k p method

A simple tight-binding (TB) model would be enough to understad how the discrete
levels of the atoms merge and form a band when they come closé8uch a quasi-
continuous energy levels arise as a consequence of the atowave-function overlapping
of di erent atoms. Depending on the type of orbital, the bands ray have positive or
negative curvatures. The cosine-like energy dispersiowvgn by the TB method resembles
the real band structure fork values close to the band extrema. In this region, one
can often make a parabolic approximation for the energy dispsion and attribute an
e ective mass to the electron. The e ective mass then allow® pack information about
the physical system in a parameter, and to have a simpler Hartwhian (as simple as the
free-electron Hamiltonian, for example), yet restricted to @iven energy region.

In this section we will explain how the concept of e ective masarises in more sophis-
ticate descriptions of band structures. Thé& p method used to introduce it has proved
to be successful for the calculation of energy dispersionana givenky, which for us will
be the point or zone center [70].

First of all, we cite the Bloch Theorem, which states that the glutions to the Hamil-

tonian containing a periodic potentialVy

P _
2_mo + Vo k= Enx ok (2.27)

can be written
(= €8T UL (2.28)

whereu . () is a periodic function with the periodicity of the lattice ard m is the free-
electron mass, andk -the wave vector- is associated to the crystal momentum of ¢h
electron. If we now replace this function into eq. (2.27), aequation for the periodic

part of the Bloch Function (BF), known as thekK p equation, is obtained
|

P’ Rop, -2k _
2—rno + VO + "‘m—o + Z_mO unk - Enkunk (229)

At K =0, this equation reduces to
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2
P Vo Uno = Englne  (with n=0,1,2,3...) (2.30)
2mg

Now we assume we know the solution to this equation. It can beahn that the periodic
functions u,o with di erent n's form a complete set of basis, and so we can exploit this
property to expand theup, in terms of these band-edges states and treat th&k p=m

as a perturbation. The general expression for the proposed#ion is

X
Ug = Cpo(R)Unw: (2.31)

no
For simplicity we consider the band structure to have a minimm at E,o = 0 and no
degeneracy exist at this point.

At this point, we can proceed by using standard perturbatiortheory, and take the
k p operator as the \weak" term. In this case, we obtain the cortion terms to ung

(the \unperturbed state")

~ X I"Uank ﬂlunooi

., = U+ — u 2.32
nk no Mo o Eo Enm n% ( )
and for E, o
2k2 =2 X jhugoiR  fiunoij 2
E. =Ep+ —+ — no ol . 2.33
nk no 2m0 mS en Eno EnOO ( )

We note that there is no linear dependence dn because the energy has been chosen to
be an extreme. The following parabolic energy dispersionr femall values ofk

~2k2
E.x = Enot om (2.34)

de nes the e ective mass of the band as

el . JMUnoJK FUnopl) (2.35)
Mg kZm n% n Eno  Enw
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by likening the corresponding terms. This formula shows ehgitly the correction to the
free-electron mass due to th& p coupling between this band and the neighboring ones,
and it is valid as long as the energy region of interest is c$o E,,o. We note that the
wave functionuno couples to another,o via the p operator. The importance of group
theory becomes evident here. The operatgs; responsible for the coupling between the
two states, has a 4 symmetry in the ZB case (it transforms like a vector). Thereie,
applying the matrix element theorem  and group theory , we can anticipate that a
conduction band state with symmetry ;. will be coupled only to valence band state
4 (@nd in principle, also to a 4). The 4 state, besides being coupled to,, also
interacts with 3, 4, and s states. This is just an example exhibiting how group theory
provides a way to discard certain matrix elements based onmaynetry properties. Sec-
ondly, it must be also noticed that the energy separation beten the two states weights
the relative contribution of n°to the e ective mass of the bandn, and could eventually
give rise to a negative or a positive contribution tan . These two general features can
be applied to several direct band gaps of the group-1l1-V and-VMI. To illustrate the idea
we take zincblende GaAs and calculate the e ective mass otanduction electron . In
Fig. 2.3, the zone-centers states for this material [71] areahn using the group notation
for the identi cation of the symmetry properties of the states involved. We also know

that

and

a2 XY Z:

The namesS and (X;Y;Z) are used because of the similarity between the, and
1 States and the atomicp states (three fold degenerate witH = 1) and s states,

respectively. The other important point is that

SjpjXi = ISjpjYi = Sjp,jZi
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and that there is no term like hSjp,jYi. This implies that the e ective mass (which
should be de ned ultimately as a tensor) is isotropic in thisase and so
1 _ 1, 2jhSipdXyij? 2 jhSjpX.ij?

m 2
4y mOE 4c E

2.
m mg m3E, E (2.36)

1c

where we include the interaction between the lowest condueh band ;. and both the
upper conduction band 4 and the valence bands 4. In ZB, the last term happens to
be smaller that the preceding correction term, and sm < m,. Using the same method,
we can correct only one of the three p-like valence bands; otihe light hole band couples
to the conduction band ;. along a given direction (the4 direction). The result here is
that my, < 0, which means that the correction "bends" this valence bandownwards.
The k p interaction is then capable of changing the curvature of theonduction and
valence in certain cases. Within this simple one-band model,ghheavy-hole band can
also be derived, but in this case, unlike the light-hole bandhe interaction of the valence
band and the more remote 4 State must be necessarily considered.

The generalk p method framework -beyond perturbation theory- allows to desibe
the coupling between heavy holes and light holes, and othetteractions such as non-
parabolicity or spin splitting in the band structure. Let us now derive thek p Hamil-

tonian with SOC. We must thus include

Hsoc = W pr Vo

in eqg. (2.29). The resulting equation for the periodic Blockequation jnKi is

p2 ~2k2 ~ -

——+ g+ —+ —K ~ r Vy jnki = E _jnKi 2.37
2my 0 2mg Mg 4mc? P o JNKI nk KI ( )

with

~

= p+

4mc? Vo:
It must be noted that owing to the SOC, the newly de ned functiors jnKi are two-

component spinor, and the label \n" is a common label both forite orbital motion and

for the spin degree of freedom. The indices arise from the idwecible representations of

the double group of the band.
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2.6 k p method

However, we will expand the Bloch Functions as before in term$ lmand-center states,

which also are spin eigenstates:

X
inki = Gn o o(R)j © G (2.38)

0 0=

with j ©9 = j %k =0i j 9. The next step is to replace this expansion in (2.37)
and multiply from the left by h j, and in virtue of the orthogonality of the band-center

functions, the resulting equation is

X 2|2

E o(0) + e 0 o m;ok Po+4d o G ooR)= En(R)Gh o oK) (2.39)

where the eigenvalu€& (0) of j °© 9 has been introduced.

As the matrix elements appearing in this casB , and4 , are the same as those in
the EFA Hamiltonian (2.27), it seems natural that the EFA Hamilkonian can be obtained
from the k p Hamiltonian by replacing thevector ~K = p! i~r + £A, adding the
slowly varying potential V (¥) and the Zeeman term ¢,=2) g B. It is worth pointing
out that in the EFA case, K (or p) is the operator of kinetic momentum and must be
distinguished from the canonical momentum \ i~r ". In particular, if no magnetic eld
is present, then they coincide. If als& (¥) is zero, then the wave vectok is equivalent
to the operator k from EFA.

If a non-zero magnetic eld is considered instead, then no ntat what Gauge is

chosen, the components of the operatér do not commute and

Likewise, we nd that

K;V(®)]= ir V(¥):
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Chapter 2 Spin-orbit interaction in semiconductors

Let us see in what follows how thek p method works for the energy dispersion

calculation close to the band center.

2.6.1 The Kane Model : First-order

In the previous section we have found the energy dispersiog means of perturbation
theory. Nevertheless, the expansion of the periodic Bloch Fetion (2.31) can be applied
to replace the di erential equation (2.29) by the correspoting matrix, in which case
an in nite representation naturally appears. As we can only &ndle nite matrices, an
approximation must be done. This consists of the diagonadizon within an appropriate
subspace, where the interaction between some bands is ekatrteated, whereas the cou-
pling to the more distant bands is incorporated through a petrbation scheme. These
various models, referred as Kane models, build a hierarchy @gywling on how and which
bands are taken into account. For example, the simplest 44 Kane model contains the
interaction between the conduction band ;. S and the three-fold degenerate valence
band 4  X;Y;Z. The resulting Hamiltonian [72], in the basid S; iX; iY; iZg,is

0 1
(R)+ Eg kP kP kP
R O 0
H(K) = (2.40)
y ®) O
()
where (KR) = % is the free-electron energy dispersion and =  i~mghSjPyjXi is

related to the coupling between di erent bands. The energyispersion is

8 9

% % twice heavy-hole3
E(K) = 5 (R)+ 2+ ] s + k2P2 electrons

TR+ B s + k2p2 light-hole

We see that 2 valence bands are not modi ed respect to the freéectron one, while

the conduction band and the light-hole bandh change and acquire a certain curvature.
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2.6 k p method

The e ective masses within this model are isotropic, but the éavy-hole bandhh is the
free-electron one. Thdh band then presents non-parabolicity.

The e ective-masses for electrons and holes are

L B

1 —
—
respectively. The Kane parameteE, = 2moP® has been de ned.

So far we have neglected the spin-orbit coupling. In thie p equation (the equation

for the periodic Bloch function), the interaction enters as

r rv) K (2.41)

~ 1
HSOC_W( V) 13+W(

if the spin-orbit coupling is applied to the total function un;keik F. The second term in
eg. (2.41), being smaller than the rst one, is often negleetl. The inclusion of spin
transforms the 4 4 case into the 8-band Kane model. The spin-orbit couplingfts
the three-fold degeneration present so far in the valencerzhat the point, leaving
only a two-fold degeneration and shifting the energy of thenhird valence bands to lower
energies. This spin split-o band is then considered, and #&refore an extra parameter
4 o appears. It denotes the energy di erence between these twalence bands.

As we have anticipated, the introduction of the spin also entl a modi cation in
the symmetry group of the crystal. The necessity for such a rdocation can be easily
justi ed if one considers that a orbital part of a wave functon remains the same under
a rotation of 2 , whereas the spin wave function changes sign under the samerapen.
Following the notation of Ref. [70], we call® the 2 rotation about a given axis. For
a spinless particlel@ Is the identity operation; for a spin-E2 particle it represents an
additional symmetry operation. This implies that if G is the point group without spin
of a crystal, the new group including spin must b&G, and it is twice as large as the
original one. The name for this kind of groups is accordinglgoublegroup.

Since theHsoc operates on spin states, we also have to analyze the symmgtrgper-
ties of the spin matrices, and then review the representats of the symmetry operators.

We expect the number of irreducible representations of the dble group to increase as
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Chapter 2 Spin-orbit interaction in semiconductors

well, as the group is \bigger". The number of elements of thegint group in ZB is, as
we know, 24 and it is 48 for the double group. However, while tmeimber of classes of
the single point group is 5, for the double group it is 8npot 10. Therefore, ; will run
over 1, ..., 8.

In our ZB example, elements irf 3Cig and elements inf B@Cig belong to the same
class, likef6 gandf 61 g. This explains why the number of irreducible representatics
is larger but not doubled. The spin-orbit coupling also foreeus to adopt other basis
functions. The eigenstates oHsoc are also eigenstates of the total angular momentum
J =L + Sand its z-component. The appropriate basis is now

1.3 3 .1

=i }i
2 ’J g

i = Siis Sl
We have just seen how the SOC splits thg¢ = 3=2 states from the] = 1=2 states.
Concerning the notation, the four-fold degeneratg = 3=2 states belong to a g repre-
sentation, since this is the only four-dimensional represgtion in the point group. In
the case off = 1=2, the irreducible representation may be in principle eitherg or -,
both of them being two-dimensional, but it can be shown thattiactually belongs to .
This observation completes the understanding of Fig. 2.3.

Back in the 8-band Kane model, the bands considered are thg,, g and , these
two last bands separated byt . The basis is the following

1. .3 3 .1

Jé, El,j —1;]IS #i;9

fjiS " ;j§; 5 5

=1,
2" 2
and matrix elements such as

SR 3 I § . . 1 .
hjS"jHjéél = hjS"JHJp—é(X +iY)"i = p—zP(kX+ iky)

must be calculated. Solving for the energy dispersion, theeetive masses are derived.

The result shows that for the electron

Ep
= (2.42)
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2.6 k p method

Likewise, for the light hole,

= 1 —— 24
my, Mo 3 Eg ’ ( 3)
the heavy hole,
11 0.4
Mphh Mo
and the spin hole or split-o band,
1 1 E
= — 1 P 2.45
Msh Mg 3(Eg+ 4 o) (2.45)

While the heavy-hole band still has the free-electron mass (@use the remote conduc-
tion band is not included), we see that the introduction of tle spin modi es the e ective

mass of the split-o band.

2.6.2 The Kane Model : Second-order

As we previously mentioned, the rst-order Kane model deals ith states within the
desired subspace, and contairkslinear coupling terms between thes and the p states.
The inclusion of remote bands (4 for example) leads to quadratic terms (second order)
both in the diagonal and the o -diagonal matrix elements. An gample of extended Kane
model takes up the 4, valence bands (6-fold degenerate with spin), the, (2-fold), and
the 4 (6-fold). In double group notation, the bands considered arésted in Fig. 2.6
in increasing order of energy, and with the dimension of thereducible representation
besides.

This extended Kane model forms a 1414 model that takesexactlyinto account all the
R pand spin-orbit interaction between the above-mentioned lbas. The interaction with
other bands is considered using second order perturbationeory [69], or alternatively,
by means of a block-diagonalization, known as the Ledwin PPationing, which is actually
a unitary transformation that converts the original Hamiltonian into a block-diagonal
matrix (keeping terms up to the desired order).

We now describe the Dresselhaus SOC term, for which a 1414 Kane Model must

be considered. An 8 model is not enough.
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Chapter 2 Spin-orbit interaction in semiconductors

Figure 2.6: The energy separation at the point is shown with the couplig parameters

of the 14 14 Kane model.

2.6.3 Dresselhaus SOC

The time-reversal symmetry, preserved in the presence ofetlSOC, changes the sign of

the vector K and " ips" the spin such that its e ect is
Time-reversal! E.(K)= E ( K) (2.46)

The symmetry provided by an inversion symmetric systems en®s that the energy is

unchanged ifk! K, whereas the spin remains the same
Inversion symmetry! E (K)= E ( K) (2.47)

The combination of both properties result in a spin-degenacy E. (K) = E (K), which is
lifted upon the inclusion of an inversion symmetry breakingnechanism. This is indeed
the case that we will next consider: systems without a centef inversion or equivalently,

with bulk inversion asymmetry (BIA). In zincblende or wurtzite material, the inversion
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2.6 k p method

symmetry is broken due to the di erent type of atoms in the ce&) and we expect therefore
an energy splitting for a givenk. Nevertheless, we still have Kramers degeneracy as we
rstly mentioned. The wave vectork de nes a spin orientation axisn(K) that depends on
K, and we have an eigenstate of the spin operator pointing alpthis direction. The time-
reversed partner carrying the same energy, points in the éction de ned by K. All
these symmetries imply that in these materials without bulk imersion symmetry, only
odd powers ofk are generally allowed in the energy expansion around the syratry
point . This e ect is know as the Dresselhaus or Bulk Inversbon Asymmetry (BIA)
e ect. In ZB, the lowest term is cubic, unlike the WZ case havig a linear-ink term.
One way of approaching the problem is th&heory of invariants

Although this theory has not been detailed here, it basicallgtates that since the
Hamiltonian of a system must be invariant under the same symrrg operations of the
crystal involved (the Ty for the zincblende), the only possible e ective Hamiltoniaterms
containing k and must be compatible with this symmetry. In this way, one can rie

out other terms that must necessarily vanish.

Zincblende structures

For example, if we focus on the higher order term in the conduonh band ¢ of a
zincblende material, we know that there is no linear-itk- spin splitting, because the
term (K r V) in rstorder perturbation and the term  (p r V) coupled viak P
in second-order perturbation theory gives zero matrix eleamts [72]. This means that
the spin splitting is cubic ink, and so the theory of invariants gives a general expression

of this term in zincblende structures, that is known as the \Desselhaus" term.

HOS% = (k2 K2) 4+ cip: (2.48)

where c.p. means cyclic permutations. This is the lowestder term producing a spin-
splitting in the conduction band. The method gives equivaldly invariant terms for the
valence band that will be omitted here. In the language of Kane odels, we get the

Dresselhaus term from an extended Kane model, consideringethsy; sv; e 7, and
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Chapter 2 Spin-orbit interaction in semiconductors

g, .. a 14 14 model.
The gure 2.6 shows these bands and the parameters for the BRplitting. The prefac-
tor involves the product P PYQ, which means that the origin of thespin-splitting resides

in the K pinteraction between :

the valence band states and the g state (matrix elementP)
the ¢ andthe . or g (P9
the valence band states and the,. or g (Q)

The spin-orbit split-o energies 4 ; and 4 § also appear in the formula, as we see in

the total expression (the leading order) for this coe cient

1 1

¢ = P POQ (249)

For electrons con ned to two dimensions, the bulk Hamiltoniarcited in eq. (2.48) leads
to two contributions. In this case we must take the expectatiovalue of the Hamiltonian.
To see how it works, we assume that the con nement directiors ialong the [001]. In
this case, we can separate our solution to the Schredingeguation in two parts. One of
them contains the variables on the plane, while the other orgepends ore. Due to the
con nement, the energies associated to this latter part areell separated. Usually, only
the lowest energy is taken, and an average over the corresgmy state is performed.
For our averaged BIA Hamiltonian, we must look at the expectabn valueshk,i and
hk2i. Whereashk,i = 0, the other valuek? ( =d)? [68],d being the small con nement

width. As a consequence, one obtains a linear Dresselhausridor 2D systems,

HI(Dl;)Zd = (ke x kyy)

with =  (=d)? and a remaining cubic term given by

HIE)?;)Zd = Ckay(ky X kx y)
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2.6 k p method

The same average procedure will be applied in this thesis imroapproach to quantum
dots in nanowires, when the SOC is included in 2D-WZ systems.
Next we consider the spin-orbit coupling terms corresponding the bulk wurtzite-

type case.

Wurtzite structures

Let us briey discuss the linear spin splitting that occurs n wurtzite materials. The
focus is on the conduction band, even though it is also presem the valence band. The

Theory of Invariants indicates that the only possible termihear in K is [55]

H (kx y ky x) (2.50)

Note that there is no linear-ink, spin-splitting, if z is along the c-axis. It can be
shown that the k-dependent SOC ( (r Veys K) ~) contribution is zero up to rst-

order perturbation for the conduction band, in contrast to he valence band where it
yields a contribution. The leading term will then result fromthe second-order coupling
between the electron state and the valence band states with; 7; and ;0 symmetries.
Nevertheless, due to its symmetry, the state associated tg does not contribute anyway.
In addition to this linear term, the Cg, double point group corresponding to the WZ

symmetry also allows a cubic-in-k spin-splitting [73], gen by

H (b kd(ke y Ky %) (2.51)

2.6.4 Rashba SOC

Another source of spin-splitting in semiconductor quantum stictures is given by an
inversion asymmetry in thestructure (SIA) due to the con ning potential V (), for

example at a heterostructure. The potential producing the sgmetry breaking may be
a built-in potential, an external potential, etc, but also sone experiments have shown

that it is possible to tune the SIA spin-splitting by means of gternal gates [74, 75].
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Chapter 2 Spin-orbit interaction in semiconductors

The lowest order ink and V (¥) in the conduction band ¢ is given by the Rashba [69]

Hig = r®~ (R E) (2.52)
whereE denotes the electric eld caused to the asymmetry of (+). The constant r6:6¢
is a material-speci ¢ parameter, that vanishes if the bulk git-o energies 4 o and 4 3
are zero. It is worth pointing out that the calculation of the Rashba coe cient can
be made by using the subban#& p method in a 8 8 Kane Hamiltonian, in contrast
to the Dresselhaus coupling, that needs a 14 14 model. Further details about the
widely studied Rashba model can be found in [68] and referesctherein. The Theory
of Invariants indicates that this is the only term that is linear both in k and the electric
eld E compatible with the symmetries of the conduction band. Assuimmg that the

electric eld E =(0;0; E,), the Rashba energy dispersion results

2
E (R)= 5k hrE,ike (2.53)

where R = (ky;ky). The magnitude hr®*®E,i means an average over the con ning
dimension, and is usually denoted with . It is interesting to note that, unlike the BIA
case, the SIA spin-splitting depends both on the microscopdetails of the underlying
crystal (through r®¢) and the macroscopic eld given byE,. We thus obtain a linear
energy dispersion (that depends on the modulus &f), such that for each state labeled
by (kx; ky) @ spin orientation is determined, as shown in Fig. 2.7

Although the Rashba is derived for the case of a Structural l®vsion Asymmetry,
we could equally argue that the SOC induced by the electric ld of an impurity (the
extrinsic term) causes an asymmetry in the structure, and céii be therefore also be
dubbed \extrinsic". Furthermore, due to this equivalencetiis not surprising that both
the Rashba term and the extrinsic term look alike, as we wille® in a subsequent section.

The Rashba term is widely used to take into account the structal asymmetry in
quasi-2D problems. But an important remark is here notewadnly. This term must not
be mistaken with the linear-ink BIA spin-splitting already mentioned in eq. (2.50).
There, the WZ symmetry allows such a linear term for the bulk inersion asymmetry,

whereas for the ZB symmetry the lowest term is cubic.
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Figure 2.7: Energy dispersion of a state with Rashba splitting (bottom art) together

with the spin orientations of electrons(arrows in the uppepart).

In our approach to WZ quantum dots, which includes the computen of the energy
dispersion of a quasi-2D system, we do not consider the Raahierm explicitly. Nev-
ertheless, as our formulation includes the linear Dressalls term, Rashba is therein
implicit. What it would merely change is the value of the couphg strength parameter,

which for us will be given only by band structure calculationgound in Ref. [57].

2.7 Impurities

Impurities or defects, despite the negative nuance in theirames, can be useful in semi-
conductors, because they change the electronic propertiessuch systems. Depending
on what kind of e ect is desired, some defects (or impuriti@grove to be appropriate
and others do not. Obviously, the experimental control ovethese defects is a major
task, and it also determines whether they can be used in a degior not.

At the theoretical level, the study of the electronic propdries of defects is required.

Although there is a full classi cation of impurities, we will mention only those corre-
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sponding to our study. The GaAs semiconductor we consider leeis doped with Silicon
impurities. An impurity like Silicon, being di erent from th e atoms in the host crys-
tal (Gallium and Arsenide) is anextrinsic defect. Since Silicon appears isolated in the
underlying crystal, it receives the name opoint defect Additionally, since it tends to
substitute the Ga it gives an electron to the crystal, henceht namedonor, in contrast
to acceptor impurities. Conversely, Silicon may be an acdep in another type of crystal
or semiconductor. In GaAs, a Silicon atom substitutes a Ga atomf the host crystal,
and in this situation, the defect is said to besubstitutional Compared to the Ga atom
(group 1), Silicon (group 1V) has an extra negative chargethat interacts with the
nucleus of the Si atom through the attractive Coulomb potenél, but screened by the
core and the other valence electrons. The other source foreening comes from the va-
lence electrons of the neighboring atoms of the host crystalhis gives the intuitive idea
that the Silicon atom behaves e ectively as though it were anydrogen atom embedded
in a medium where the attractive potential is weaker due to thecreening e ect. The
consequence for the electron is that it is loosely bound toelSi ion and it can be easily
ionized by thermal or electrical excitations. The exact callation of this screening is
a di cult task, and one way to overcome it is to assume a screemy controlled by the

dielectric constant of the host crystal in the electrostat potential:

u= =
r

(2.54)
where is the dielectric constant. We will use this as the Coulomb pential produced
by the impurity ion. The Silicon impurity is also in our case ashallow impurity: the
electronic states associated to it have an energy close tethonduction band such that
they can be calculated in the e ective-mass approximatioras we will see below. The
approximation made forU is our starting point in our path towards the derivation of the
equation describing the donor state. We recall that based @he previous ideas we expect
an hydrogen-like equation. On the other hand, we are under tlenditions required for
the Envelope-function approximation described before, bagse the potential in (2.54)

iIs a smoothly varying one. We thus anticipate an envelope fation solution for the
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donor, multiplied by some Bloch Function. We perform here amvay the full derivation
in order to see a concrete example of the EFA. In what follows wdevelop the derivation
based on Bloch Functions, although the same result can be &red in terms of Wannier
functions, as it is neatly developed in Ref. [70].

Our derivation starts by considering the crystal HamiltonianH, and the impurity
potential U. To solve the problem of the full Hamiltonian, we will considethe case that
we have a (hon-degenerate) minimum of the conduction band#&t= 0. The unperturbed

Hamiltonian Hg is
2

Ho = mr 2+ Voys (9 (2.55)

whose solution is . (#)  Unk (¥)ERT.
For the perturbed problemH = Hg(+) + U(¥), we will propose a solution of the kind

X
= An(K) nk (2.56)

n;k
As usual, we try to isolate an equation for theA's, and therefore we insert the proposed

solution into the full Schredinger equation and we subse@utly multiply the equation

by

0 -,

The following equation results

X
(En(k) E)A,(R)+ M KUN®KIALKY) =0 (2.57)

n%k°

We now examine the matrix element of the potential, accoumtg for the coupling between

di erent Bloch states via the perturbation.

z & 17 &
n; RjUjn® kS = k€ T) nood® = v un;k(f)uno;ko(f)e'(ko Re( T)df (2.58)
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where theu's are the periodic part of the Bloch function.

One can cast this matrix element into the form

Z
; Kjujn® kY = % dru g Unoko€® ) FU(F) (2.59)
Z
1 . X
=y O Unoyoed ® R F dRuAy(Ry) (2.60)
1 X z N
= Uk) AU Unogoe ® KrRo) # (2.61)
Ku
1 X Z .
= v U(ku) G:kO k+ky drun;kUnO;koe iGr (262)
ku;G

where the periodicity of the functionu,, u,oxe has been taken into account in the last
step by using an expansion over the reciprocal vecto@& The Fourier transform of the
potential U has been introduced. We recall that the electron is weakly bod to the ion,
and so its wave function must resemble a conduction state ihé band minimum, with
contributions coming from smallk's. Hence, we can restrict the values &, kK°andk, to
a small region around 0, which leads to the conditio® = O for the matrix elements we
are dealing with. On the other hand, if we take the limit ofk, ! 0, the delta function
Goko k+o Implies that 7

AUy (B Unok (F) 1 pyno

The eq. (2.57) is thus reexpressed as

X X
(Ec(k) E)AR)+ ICRUICRIA(KY — heRjUINCRIAGRY =0  (2.63)

kO no% c;k0

for the conduction bandn = c¢. A valid approximation, based on our previous re-

marks, is to discard the equation fom 6 c and assume that the leading contribution
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comes from only one band. We can additionally use f& the dispersion relation given

by the e ective-mass %kz approximation (valid for small K) and the matrix element

Al i~ 4e2 . .
heRjUjcRI L ixo z- The nal result is
~2 4e2X 1
_— 2 =
5 k? E AR) VR kc]ZAC(R% 0 (2.64)

In this equation it must be noted that K and K° lie within the rst Brillouin zone (FB)
and the restriction can be safely omitted. By extending thewsn overR° beyond the FB

zone, we end up with the equivalent equation

~ e E A® dezX 1 A(RY =0 (2.65)
2m ¢ VLR R9? s '

The Schredinger equation in momentum space is recognizeg transforming A.(K) to

P _
the coordinate spacd= () = i 4« Ac(R)€X™ We thus get

—r? ? F(¥) = EF (9): (2.66)

The envelope functionF () represents the solution to the hydrogen-like problem of an
electron with a renormalized mass in the presence of a Coulomb potential diminished

by a factor of . The eigenenergies for the problem are well-known

1 (= )?

Ej = 2 2~2m

i=1.2,.. (2.67)

whereas the eigenfunction for the ground state is
1 r=a
F(‘F‘) = p:se . (268)
a
The rede nition of the mass and the dielectric constant also etermines the e ective
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Bohr Radius

2

me2:

a =

Even though this formulation leads us to the initial intuitive idea that a donor electron
should e ectively behave as in hydrogen-like landscape,ig worth pointing out that the
function F (+) is not the total wave function. The full wave function is in &ct the linear
combination

X X

(9= Ac(R) ck(P) = pl: Ac(R)uc€F ™ (2.69)
k Vo

As we said beforeA(K) is con ned in a small range aroundk = 0 and hence we only
keepuck for small K.
Uc;k Uc;o

which turns the aforementioned linear combination into

(P Uco(HF (A= F(#) ugo(re°F

where we explicitly added in the last term the exponential inraer to highlight that the
total wave function is indeed an envelope function multipipg a Bloch function. The
approximation made forA.(K) can be veri ed by noting that its magnitude is appreciable
for K less than Fa. The contribution from the other bands can also be shown to be

negligible as long as the e ective Bohr radius is large

with E, the ionization energy andEy the band gap. We have just treated the case of a

single impurity, and found the shape of the ground state of theathor electron. Yet in
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a bulk semiconductor sample there are many impurities. Foruo purposes, a model is

needed for the electron in the presence of many randomly péatimpurities. For this,

we rely on the Matsubara-Toyozawa Model described in the emd this chapter.
Concerning the impurities, we nally address the SOC term deulation related to the

electrical potential produced by themselves.

2.8 An e ective SOC derivation

In this section we work out the derivation of an e ective spinerbit coupling term aris-
ing from the impurity potential. For this, we aim at decouplng the conduction band
from the valence band, in a similar way as the one done in Ref. [#8} Nozieres and
Lewiner. Though the procedure followed by the authors is pkically transparent, it can
also be stated in a more formal -yet less transparent- way kma as quasi-degenerate
perturbation theory. We make some remarks about this in the geel.

We now start our derivation that goes along the same line as dh of Ref. [76]. In
our case, the time-independent Schredinger equation is useusiead, since we do not
consider any time-dependent e ect, but we arrive to the sameessult. We consider the

Schmedinger equation in matrix form,

0 1 O 10 1

H, h
E@ ‘A-@ A@ A (2.70)
2 hy HZ 2

where we have split into two parts. The term ; corresponds to the component in
the conduction band \subspace”, while all the other bands coponents are assigned to
some ».

The origin of energy is set to the bottom of the conduction bah H; is thus of the
order of a typical conduction electron energy, i.e.r, and H; is of the order of the band
gap. We rede ne it asH, = HY+ Hg in order to measure the valence state energies

from the valence state alk = 0. We also assume thatH? is an intraband Hamiltonian.
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Chapter 2 Spin-orbit interaction in semiconductors

Despite the authors deal with time-dependent Hamiltoniansye restrict our case to the
more simpli ed case of a static interaction denotedh. The approximation to be made
considers that the band gap is much larger than the Fermi emgy ¢, and it is thus

possible to make an expansion overHy. We can formally express the solution

1
2" E H,

h 4

The term with the denominator can be approximated as

1 1 E
- — 1+ —
H, H,

1
E H, H, E
2 21H_2

sinceH, is of the order of the band gap. On the other hand,

1_ 1 1, H?
H, Hg+H? Hy Hg

Within these approximations, the expression for , translates into

1 E HY
= - 1+ —_— 2 py 2.71
S A L (271)
We will need later
h o 2i = hqj j i (2.72)

where we have consistently kept terms up to second ordeq:Hg and de ned

1
= hh
Hg

By replacing , in the eq. (2.70), we nally get an eigenvalue equation for ;.
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2.8 An e ective SOC derivation

1 1 1.1
1+h=h" E ; = H; hSh+h—H)h
H2 H2 Hy “Hg
(2.73)
EL+) 1 = H i (2.74)

The operatorH is de ned in an obvious way. We then attained an equation for ; that
is decoupled from the subspace,. Furthermore, an e ective Schredinger equation can

be derived by multiplying from the left with (1 ).

1 - EQ@+ = (1 —)H
5 EQ+) 1= (1 HH.
J— + = — R + —
1 5 E@+) 1 H1 5 1 1
+ — = — — + — .
E 1+5 1 5 H 1 5 1+5 (2.75)

by noting that (1 + )(1 ) =1 up to second order.

The eq. (2.75) allows us to de ne the e ective wave function
joeti = 1+ 5 1
and an e ective Hamiltonian given by

———— + h—H;—h’ 2.7
2 2 2 Hy 2Hg (2.76)

with Ho = H; hH—lghy. It is important to note that the newly de ned e ective functi on

is properly normalized, since

Noett] el =hajl+ Jai=hgqqi+hqf jad=hq q0+hy =1
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Chapter 2 Spin-orbit interaction in semiconductors

for which the relation previously found in eq. (2.72) has beeused.
As we mention in the beginning, the theory just exposed can beamed in quasi-
perturbation theory as well. This is a more general and abstct avenue to treat the

problem by means of a unitary transformationJ, such that a new Hamiltonian

H%= UHUY (2.77)

is made up out of the original oneH. In general, the transformation operatorU can
be expressed as S if S is an anti-Hermitian operator such thatSY = S. On the
other hand, two subspaces must be distinguished here: a sp@seA that for us are the
conduction states, and another onB (the valence band). The idea behind this approach
is the same as before: the transformation we seek is such thia¢ rotated Hamiltonian
H°does not have any o -diagonal matrix element linking the twosubspaces. The next

step is to separate the original Hamiltonian in two parts

H = Hp + Hyp

where Hp is a block-diagonal Hamiltonian that couples the statesvithin their corre-
sponding subspaces. In our notation, this islp = H; + H,. Hyp, on the other hand,
stands for the coupling term that connects the two subspaces our case this ish. What
the method pursues is the transformation matrixS that makes the matrix elements of
H%between A-states and B-states to vanish up to the desired orddn order to be able
to work order by order, the operatore® can be expanded

1

1
S — 2 3
=1+ S+ S’+ =S

The condition on the removal of the non-diagonal elements iH° leads to a system of
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2.8 An e ective SOC derivation

equations for the successive approximation &= S+ S?+ S3+ ::;, that according to

the Ref. [69] is, up to second order in=HJ:

0 1
0 h
sW =@ Ho A (2.78)
Moo
Hg
and
0 h i1
0 1 H:h hHZ
s®=@ h i Mo Moo oA (2.79)
1 hYH thy 0
Hg Hg Hg

The e ective Hamiltonian H° after computing all the commutators betweerH and S
up to order 1:H§ Is exactly the same as that of eq. (2.76).

To apply this method to the speci ¢ case of the conduction anthe valence band in a
wide gap semiconductor like GaAs, we must consider the aforentionedk p equation
or EFA equation with the electron mass renormalized. The ietraction that couples the
subspaceA and B is the operatork ™= h with K = ir (the canonical momentum)

and 7 the vector operator with matrix elements
_or . :
nno = MUp.o)  —]jUnool; (2.80)
Mo

i.e. those from the Kane Theory. In order to take into accounthe impurities, we
introduce in the conduction band the impurity Coulomb-likepotential \ V;" and in the
valence band the equivalent one\,,"; we consider that this potential does not contribute

to the interband couplingv. Hence

Vi=V; V(¥) (2.81)
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Chapter 2 Spin-orbit interaction in semiconductors

We keep the named/; and V, in order to track each potential individually, and seek for
the e ective terms produced by these potentials. Accordingoteq. (2.76), theV; e ect

enters as

1
Vi E( Vi+ Vi) (2.82)
while V, appears in
1.1 X 1 1 X 1
h—V,—hY = k —Wk —= k Vobk  — 2.
Hy 2Hg | Hq 2 Hq | 2 H? (2.83)

We emphasize here thak is an operator.

All these ingredients can be gathered to write an e ective potgial for the impurity
potential, as we shall see now. We know that because of spitpib coupling, the six-fold
degenerate valence band (& = 0) splits in a four-fold band (quadruplet) and a doublet.
In this case, the matrix elements of betweenthese states and the conduction band
states must be calculated. In particular, by looking at eq.4.83), we note that we need

the following expression

PR 2
HY 2 ( 9" ( g o

+2i S (2.84)

taken from Ref. [76]. In addition to the energy gaHg, the orbital matrix element
P = hsj ir y«=mgjp«i appears. WhileS denotes the spin operator, o corresponds
to the split-o energy di erence at k = 0 between the valence bands. If we now only
concentrate in the spin-dependent e ect (those containin§), we note that the contribu-

tion from eq. (2.82) vanishes: the operator is related to tre matrix element in (2.84)
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2.8 An e ective SOC derivation

with n = 1, which must be multiplied with k k V; and V; k k . These two terms are
symmetric under ! if they commute, and therefore, the multiplication with the
spin-dependent part including cancels out. Conversely, the contribution of the im-

purity potential in the valence band yields a term proportimal to

k Vok (2.85)

Due to the non-commutation of k and V,, the preceding equation transforms into

@y
@x

The rst term is again zero due to the \contraction" of a symmdéric and an anti-

kK KV, (2.86)

symmetric tensor, while the second one gives the sought risu

Rr V, S (2.87)

Two important points to be mentioned are that according to eq(2.84), the spin-orbit
contribution of the impurities is zero if g is set to zero. We have also made use of the
commutation ofk andk , which is no longer valid when a magnetic eld (and thus the
substitution (K'! ir eA=c) is introduced.

In conclusion, for a conduction-band electron in the abseaof spin-orbit interaction,
the electron acquires an e ective-mass and in a rst approriation and close to the
band extrema, the energy dispersion is quadratic with a renoalized mass. Due to the
presence of the external potentiaV (r), there appears a \Rashba-like" or \Structural
Inversion Asymmetry"” (SIA) spin-orbit interaction [69,76{78], that we call hereextrinsic

term to emphasize that it is an potential produced by the imptities

Hext = vk (2.88)
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where is the vector of Pauli matrices,k = p=-, and is the e ective spin-orbit

coupling constant given by

iPj2 1 1
L . . (2.89)
3 HZ (Hg+ 0)?

It is interesting to note that while the vacuum coupling congant is o = ~*=4m3c? "
37 10 6A2, the renormalized one is, for example, 5:3A° for GaAs and
120A% for InAs, that is, more than six orders of magnitude larger.

We have presented an illustrative way of deriving an e ectig Hamiltonian for the
SOC, that allowed us to examine its precise origin. Nevertreds, there is yet another
equivalent approach to take into account the e ect of the spi-orbit coupling and the
potential produced by the impurities. It consist of extendig the Matsubara-Toyozawa in
order to incorporate the spin-orbit interaction in the impuity states. We next continue
in the next section with the description of the Matsubara-Togzawa model in its original
version, and leave the extension proposed in Ref. [79] forthrst part of next chapter,

as an intermediate step before we present our results for shextended model.

2.9 The Matsubara-Toyozawa Model

The Matsubara-Toyozawa tackles the problem of an electron srandom lattice. Their
pioneering work dealt with a high degree of impurity concerdtion, but not as high as
to set the Fermi energy in the conduction band. Some works beéothe MT publication
had used perfectly mobile states (from the energy band), andok into account the e ect
of the disorder within a perturbative scheme. Alternativelyothers started with localized
states, and the e ect of the disorder gives rise to hopping enmts of the carriers. The
common point in both approaches is that the initial states der little from an eigenstate.
Matsubara and Toyozawa studied instead the case where th@enstates of the system

had neither a de nite momentum nor a de nite localization. In this theory, there is
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2.9 The Matsubara-Toyozawa Model

no \disturbance" that cause the scattering of carriers, bease the random potential is
already included in the calculation of the impurity band. Baed on the Green Function
formalism, they analytically obtained the level density ad the electrical conductivity.
In this work we will be mainly concerned with their model and nbwith their results.
The MT model consists of a tight-binding approximation buil from the ground state
(the hydrogenic-likes state) of the doping impurities we have seen in Section (2.7)

X .
(¥ = (R) k" Up. (¥) () Ugg. (F): (2.90)

K
We denote (R) the Fourier transform of the hydrogenic envelope functigrwhile u,. ()
represents the periodic part of the Bloch functions of the ooluction band states. Its
dependence ork, is much smoother than that of (K), and leads to the last relation in
eg. (2.90). In second-quantization notation, the Hamiltorin of the MT model can be
simply expressed as

X
Ho = trmo Cho Cm (2.91)

mé mo
wherec’ , represents the creation operator of an electron eigenstatethe impurity site
mC The annihilation operation isc, . The integral for the energy transfer from sitem
to mPis given by a sum over impuritieg's

X
mmo = N mo Vo) m i (2.92)

pé m

t

while the Coulomb-like potential produced by the impurity pladed at+, is
V()= €=jr 1y

We use for the static dielectric constant ande for the electron charge. Due to the
exponential decay of the envelope functions, the dominanerm in eq. (2.92) is the

two-center integral corresponding tgo = m®and so

homojVim mi= Vo 1+ rm;no exp rm;o ; (2.93)

with \ = €="a and r,mo being the distance between the two impurities.
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Chapter 2 Spin-orbit interaction in semiconductors

Back in the beginning of the eighties, the Hamiltonian in eq.2.91) was studied using
di erent analytical and numerical techniques [80{83], yilling a thorough description
of the impurity band and its electronic transport properties In addition, MT was
employed as a realistic model to study the Anderson Transitioin three dimensional
doped semiconductors [82]. It must be clear that the MT Modealloes not take into
account the spin degree of freedom, and in consequence wetmud the proper way
to include it. This was rstly done in Ref. [79], where the modl was extended and the
impurity states modi ed accordingly.

We begin next chapter by describing this Impurity Spin-Admixure theory, and we
subsequently apply it to study how the spin-orbit interacton a ects the localization of

the eigenstates.
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Chapter 3

SOC In the impurity band

In this section we study numerically the e ects of the spin4dit interaction in n-doped
semiconductors in a model closely related to the one we haustjexposed: the Matsub-
ara and Toyozawa. The in uence of the SOC on the density of staagDOS) and the
calculation of the so-called inverse participation ratiolPR) are addressed. The latter
term is utilized for characterizing the degree of localizain of the spin-orbit perturbed
states in the MT set of eigenstates.

In the numerical treatment of the problem, the nite sizes ttat we are able to consider
force us to introduce an arti cial enhancement of the spin-dit coupling strength in order
to obtain a sizeable perturbation. The IPR and DOS are then obtaed as a function
of an enhancement parameter. This study allows us on the onenthto appreciate
the e ect of the SOC on the impurity band, and at the same time, ¢ examine the
coexistence of localized and extended states in this banch particular, the degree of
spatial extension at the Fermi energy is of crucial importage in the ensuing problem
of the spin relaxation, where besides the extrinsic contuition to the SOC, we also
consider the Dresselhaus term. Although this latter term tums out to play a relevant
role in relaxation, we do not include it here. The enhancemeprocedure followed in
this chapter provides us with a qualitative description of tle impurity band, and as
we do not aim at any quantitative result, the inclusion of theDresselhaus term is not

determinant.
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Chapter 3 SOC in the impurity band

3.1 Presentation

In this chapter we focus on the e ect of the spin-orbit interation in n-doped semi-
conductors when the doping density is close to the critical deity associated to the
metal-insulator transition (MIT). For a n-doped GaAs, the critical density occurs at
nc =2 10%cm 3. Since in the case of the n-doped semiconductors, the MIT agqr
at doping densities where the Fermi level is in the impurity bad [84,85], a description
taking into account only the electronic states built from thke hydrogenic ground state
of the doping impurities is suitable. For densities slighyl larger than the critical one
(i.e. on the metallic side of the transition) non-interactig models, like the Matsubara-
Toyozawa (MT) [80], are applicable. Furthermore, the desimation in terms of impurity
sites can be regarded as an Anderson model of a tight-bindirgftice with on-site or
hopping disorder. In the profuse numerical work devoted tche Anderson model [86],
the critical exponents obtained t reasonably well those othe experimental measure-
ments [87]. The inclusion of spin is equally interesting, iniew of the fact that the
maximum spin relaxation times in n-doped semiconductors hawen observed for im-
purity densities close to that of the MIT [25, 26, 30, 88]. At he level of models, the
generalization of the Anderson model in order to include sonspin-orbit coupling has
been provided by Ando [89]. While this model turns out to be veryseful to study
the progressive breaking of the spin symmetry [90], its coaction with experimentally
relevant systems requires the estimation of coupling paratees which are not obtain-
able from rst principles. In order to adapt the problem of thespin-relaxation in three
dimensional systems, Tamborenea and collaborators [79] ienved the MT model and
incorporated in it the spin-orbit interaction. In their proposition, the impurity states
are no longer spin eigenstates, but a spin mixture ofp and down states.

As we make use of the Impurity Spin-Admixture (ISA) model in thischapter, we start
by describing it in the following section. Immediately afte this, we present the results
obtained in the context of this thesis, starting with a prelminary study of the \bare"
MT model. After including the SOC interaction, we proceed wh the characterization

of the impurity band. We then identify the regions of extende and localized states, and
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3.2 Tight-binding model with impurity spin admixture

analyze the limitations of the model and the conditions of apigability.

3.2 Tight-binding model with impurity spin admixture
We found before that the donor wave function can be approxined by

( ) = Uco(F)F(¥) 3.1

where u.o denotes the periodic Bloch function in the band centek(= 0) and F (¥) is
an envelope function. In order to introduce the spin, we swah to the spinor notation

and generalize this solution :

[ (®]= F(®)luco(r)] (3.2)

So far this spinor is trivial because it is an eigenstate of, with eigenvalues = 1.
This will be no longer the case once the spin-orbit interactn is included. By way of
reminder, we have observed before that the valence band iditspt the point due to
the SOC, and its degeneracy is partially lifted. Thesplit-o band (j = 1=2) separates
from the light-hole and the heavy-holebands { = 3=2) by an amount equal to o. We
have also found that the hydrogenic character of the envelepfunction ts very well
in our intuitive conception of the donor electron. With SOC the expressions for these
states are not so simple however, as it renders the descriptiof the wave function a bit
more sophisticated. To see how, we must step back to the vergdinning, and recall

that a Bloch Function can be written (in spinor language)

[ el = €5 Uyl

Equivalently, one can use the following expansion

X
[ d®]= €57 c(R)U, o]

n

93



Chapter 3 SOC in the impurity band

which turns out to be more convenient when the bands a weaklyuapled. By setting
a 8 8 Kane model, where the s-likej(= 1=2) and the three p-like valencej( = 3=2
and | = 1=2 separated by () bands are taken into account, thek p Hamiltonian can
be exactly diagonalized. By solving for the eigenenergiesdathe eigenvectors, one nds
that the conduction-band states at nite wave vector get spi-mixed, whereby the total

wave function now becomes

o X .
[ «®]= €57 ca(®uyel! € en ]

n

The periodic function g, in eq. (3.2) has been replaced by a spin-mixed conduction-

band state, that in bra-ket notation, is given [91] by
jo 1= jugi + K jupyi; (3.3)
where the second term reads
jupi= 1(JR i+ S jRIi): (3.4)

The state ju,i is s-like and is equal to the original stateuco(t) in eq. (3.2), since it
describes the unperturbed wave function at the -point. ThevectorjRi = (jXi;jYi;jZi)
represents the threg-like valence states and is the spin operator. Obviously, the state
jt 1 is then no longer an eigenstate d§,. However, it is still labeled with since the
mixing is small, andhey jS;jt i is much closer to— than to ——~. In relation to this,
the spin mixing is weighted by the small constants

_.. _3Es+2 o 7
' 6m Ec(Ec+ o)

and
_ 2 ¢ .
~i~(2 o+3Eg)’

2

where all the constants keep the same meaning as in the prexscchapters.
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3.2 Tight-binding model with impurity spin admixture

In order to extend the MT model and incorporate the SOC in the mdel, Tambore-
neaet al. [79] propose to generalize the shallow-donor wave functiorthese functions
are built out of conduction states, and therefore they are @ected to be modi ed accord-
ingly. However the SOC coming from the microscopic crystal dats does not modify
in an appreciable way the envelope functions(r), and will mainly a ect the spinor
part [uc]. The mixing of di erent bands turns the complete donor sta¢ of an impurity
centered atr,, into

h i (r rm)

i
o)y = orm) u® (r)"'am u® (r) (3.5)

In Appendix B the detailed derivation of this term is worked out The hopping of an
electron between di erent ISA states involve the hopping e/een di erent impurity
sites, and it provides a mechanism for spin ip by connectinthe and ™ = states.
It must be noted that even a spin-independent potential likehe impurity Coulomb
potential induces spin- ip transitions, since it couples tates with di erent spin orien-
tations. Similarly to eq. (2.91), the EFA Hamiltonian expresed in second-quantization

language is now

X X _
H=Ho+ Hy= tmmoc?lno Cm + tmmoc:/n‘ch : (3-6)

mé m©¢, mé m©&;

whereH, describes the spin- ip term. The transition matrix elemensg are given by

- X . . -

mmo = NTmo Vo) Tm 15 (3.7)
pé m

t

whose addends read

Z
C PBr (r rm) (Z zZm) (Z 2zZw)(r TImo)
jl’ rmjjr rpjjr rmOj

h o jVp] "m 1 =
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The following de nitions have been used

C= Vo 1% s=a%

and

3=3 o 0+2Eg)=2 o+3Eg)*

In order to calculate the integral in eq. (3.8), a rotation ofcoordinates from the crys-
tallographic system §;y; z) is performed. The new system has the-axis along the line
joining m and m% Taking the origin at the middle point between these impurites, scal-
ing all lengths with the distancer,,0=2, and using dimensionless cylindrical coordinates

(Z;; ), the following expression is computed (see AppendixA)

) Z . z, Z
Ce morfne ™ dz ' d ’ d (3.9)
2 1 0 0
2(cos + i COS mmosin )

o jVpj m |

24 ‘2)+(% Z )2 2 ,cos( o) i
exp  mmo P 2+(Z 1)2+p 2+(Z +1)2 =2a
D 24(Z 12 2+(Z +1)2

where' ymo and no are the polar angles of the vector o in the original coordi-
nate system, and Z,; p; p) are the cylindrical coordinates ofr, in the new coordinate
system.

As in the spin-conserving model, we rstlook at the case with = m® The correspond-
ing two-center integral is obtained by puttingZ, =1, ,=0in eq. (3.9). Interestingly,
h™ mo-jVmo "m 1 = 0 due to the symmetry of the angular integral. As a remark, ths
important fact is ultimately responsible for the large vales of the spin lifetime given
by this type of coupling in the regime of impurity-band condation. This said, looking

back to the integral, the leading order is then determined byhe three-center integrals
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3.2 Tight-binding model with impurity spin admixture

corresponding top 6 m;m°% which are in general very di cult to calculate in closed
form [92]. The angular integral in eq. (3.9) can be performed terms of elliptic func-
tions, but since only the small arguments of the latter are relant for the remaining

integrals, the following expression results

R Ce mmoy 2 . .
h o Vo T i = f’“mo o(COS p+ i COS mmosin )
Z Z, 2 3=2
dz d
1 o h 2+ 3+(Z Z p)? i

exp  mmo P 2+(Z 1)2+p 2+(Z2+1)2 =2a

P 2+(Z 12 2+(Z+1)2 (310)

154

154

Using this expression for the matrix element, we can next foswn how the character of
the MT eigenstates changes under the spin-orbit couplingrength.

In order to characterize the electronic eigenstates in the impty band from the point
of view of their spatial extension, we obtain numerically ta eigenvalues and eigenstates
f"i; ig of H for given con gurations in which N impurities are randomly placed in a
three-dimensional volume. For each con guration we calcatle the energy-dependent

density of states,

X
DOS= (" ") (3.11)

and the inverse participation ratio of the statej i,
2 33

N - Lo
PR= 8 ,:"’h ml W £ (3.12)
m N mj 2

According to this de nition, the IPR approaches the system gieN for extended states,
while it is equal to 1 for a localized one. In the following seicih we present the results

for these two quantities obtained for the MT Model, before inbducing the SOC.
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3.3 The impurity band from the Matsubara-Toyozawa

model

We rst start by considering the bare MT model without spin. Fa this purpose, we
perform an exact diagonalization of the MT Hamiltonian, for a tyen con guration,

and calculate the Density of States from its energy spectrunBy solving also for the
eigenstates, the corresponding IPR for each eigenstate mnputed. This process is
repeated for many disorder realizations, and the resultirgverages for both quantities is
shown in Fig. 3.1. Three densities on the metallic side of theansition were considered.
Each of the panels contains di erent system sizes, distingdned by the solid, dashed
and dotted lines. As we can see, the impurity band develops arad the E = 0 level of

the isolated impurity in an asymmetric fashion: the DOS exhits a long low-energy tail
while the high-energy part is bounded by =1 (in units of V). We also verify that the

width of the impurity band increases with the doping densityas we expect due to the

stronger coupling between sites.

The numerically obtained DOS for dierent densities are wélreproduced by ap-
proximate methods like diagrammatic perturbation obtainedoy Matsubara and Toy-
ozawa [80]. Also the moment-expansion presented in Ref. [98kembles our results.
There, an adapted version of the moment expansion technique ftisordered systems in
three dimensions is employed to estimate the electronic dgty of states in the impurity
band.

By looking at the IPR values, we observe that the highest-ergy states correspond
to electronic wave functions localized on small clusters whpurities. In these clusters,
the strong coupling of adjacent sites gives rise to high-exg states. To illustrate this
situation we can think on the extreme case of a cluster as a gmof n impurities close
to each other but far from any othernot in the cluster. In it, they interact with each
other so strongly that this will be represented in the Hamiltaian as a block (with a
dimension equal to the number of sites in the cluster in quash) matrix full of 1 (in

units of Vy). If the diagonal elements are zero (a nite value would intvduce a shift in
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this extreme case) it can then be shown that the maximum eigeasdue of such a matrix is
1, irrespective of the system size. Furthermore, this eigaiue is (h 1)-fold degenerate.
The other eigenvalue of the matrix is = n (in units of V). Since all the clusters,
no matter their size, contribute to the DOS for = 1, there will be a strong peak at
such a value, and a long tail arising from the remaining eige@ue = n (the size of
each cluster) plus the eigenvalues not associated with agivcluster. This could explain
the tendency for the DOS to develop a \peak” close to one, andraughly at region

for negative energies. The clustering of impurities is knawto happen in real physical
systems since impurities have a very weak long-range intetian, resulting in a lack of
hard-core repulsion on the scale of the lattice constant [/]. As the lattice constant
does not appear any more, we use the letterfor the e ective Bohr radius henceforth.
In our model, we do not impose any kind of limit for the distane between impurities

and this feature thus emerges.

Before continuing with the analysis of the numerical resudt obtained from the MT
model, we discuss some technical features of the model ane tti culties that we
face in trying to improve upon it. Firstly, we notice that the chosen basis set is not
orthogonal. In principle, we can deal with this issue by wrihg a generalized eigenvalue
problem which includes the matrix of orbital overlaps [81,%). This procedure results in
unphysical high-energy states (witlfE 1) that necessitate the inclusion of hydrogenic
states beyond the & orbital in order to be properly described. However, care muste
taken since enlarging the basis set leads to the problem okosompleteness. Fortunately,
for the properties we are interested in, the e ects arising &m non-orthogonality are
known to be small for moderate doping densities, and that is whve do not consider
them in the numerical work, thus staying within the originalMT model. Finally, another
drawback of the MT model is that the high-energy edge of the imyity band overlaps
with the conduction band, which starts atVy,=2 (the e ective Rydberg) and this e ect is
not included in the MT description. As seen in Fig. 3.1 the DOS lyend V,=2 is always
very small, and therefore we can ignore the e ects that the hylization of the bands

would yield in a more complete model. As another remark, the delopment of tails at
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the band edges we observe in our results is a characterisgature of random disorder
potential with long-range interaction [96].

The determination of the mobility edges by studying the sizecaling of IPR/N values
in Fig. 3.1 is not straightforward. We expect the valuéP R=N to vanish for increasingN
if the state is localized, and become independent Nf for extended states. The di culty
in the determination of E. (the mobility edge) arises from the heavily structured DOS
of the MT model [81]. At low energy the small values of the DOSdnslates into a poor
statistics for feasible sizes. In the high-energy part of thenpurity band the separation
between the curves corresponding to di erent values &f is masked by the small values
of the IPR=N. For the highest density (top panel) the IPR=N exhibits a relatively at
region at intermediate energies, which is approximately dependent ofN for the two
largest system sizes. The lower mobility edge can be locatedighly at E 3.5, where
the latter curves separate. For lower impurity densities (lwer panels) the previous
analysis becomes increasingly demanding in terms of systeires. We see that the at
region of IPR=N shrinks, from which we can conclude that the lower mobility dge is

shifting towards higher values oE, as the density diminishes.

3.4 Spin-orbit coupling in the MT Model

We next include the spin in our model and basically repeat therpcedure followed
previously for characterizing the energy eigenstates. Wealdress this by means of the

Impurity-spin admixture proposed in Ref. [79], focusing athe extrinsic SOC. We take

the term
X _
Hy= tmom Cho- Cm (3.13)
mé m©&;
= ) and add it to Ho. Similarly to the spin-conserving case, we have
- X - . .
thmo = Do dVp] T (3.14)
pé m
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01 |

01 |

IPR=N

E[Vo]

Figure 3.1: Density of states (DOS, thick line and right scale) and invese participation
ratio (IPR, thin lines and left scale) for three dierent dersities on the
metallic side of the metal-insulator transition, obtainedthrough impurity
averaging in the Matsubara-Toyozawa model. The solid, dastt and dotted
curves of IPR=N are for a number of impuritiesN = 2744; 4096 and 5832,
respectively. The vertical lines indicate the Fermi energgnd the DOS are

scaled with respect to the e ective Bohr radius.
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with the wave function =, denoting the impurity spin-admixed (ISA) state. In Ref. [79]
an approximate analytical expressions df,,o was provided using the saddle-point ap-
proximation, valid under the conditionr,n,o  a. At the MIT, for example, this relation
Is rmmo=a = 3:7. In this sense, we found that the analytical approximatiorproposed
in [79] overestimates the real values. To avoid this approration, we take the route of
the numerical evaluation of the three-center integrals. Wshow typical absolute values
of these matrix elements in Fig. 3.2 averaged over the orientah angles and over many
realizations.

We next include the Hamiltonian H; and carry out the diagonalization of the full
Hamiltonian. Concerning the SOC strength, we note that the ntaix elementin eq. (3.14)
Is proportional to the e ective spin-orbit coupling which for a zincblende semiconduc-
tor can be orders of magnitude larger than the one of vacuumy ' 3:7 10 A%, For
the case of GaAs we treat here, ' 5:3A° [69], which is notably di erent from bulk

InAs with = 120A°%

3.4.1 Spectral decomposition of MT states

The spin-admixture energy shifts are, even for the largesystem sizes that we can treat
numerically, orders of magnitude smaller than the MT levelgacing. The consequence of
this is that the eigenstates have either an almost-up spinientation or an almost-down,
and the spin-orbit-induced e ects are not observable for # system sizes we are able
to consider. We are then lead to consider an enhancement fact®y that multiplies

and makes the two previous energy scales comparable. The &éunction are expected
to acquire a stronger mixing of spin orientation. This e ectis displayed in Fig. 3.3. In
it, the spectral decomposition of a MT eigenstate (also calll the local density of states
LDOS) with =1 in the basis of spin-admixed eigenstates dd, + H; is shown. The
arrows " and # in the gures denote the two subspaces of the spin projectiorf the
spin-admixed states. It must be noted that we leave this \taging" even for the largely

enhanced cases. We can observe that if there is no enhancen{ét = 1), the spin
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0:25

0:2

0:15

0:1

jhmjH sa jm%j[eV ]

0:05

Rm:mo[a ]

Figure 3.2: The absolute values of the matrix elements for the spin- ip bpping between
two sites m and m°is shown as a function of the distance between them.

Hisa is the Coulomb potential generated by the randomly placed ipurities.
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polarized MT states projects very well onto one of the spindanixed subspaces (look
at the y-scale in the gure), in this caseup. As R, is increased, we obtain signi cant
projections on both subspaces as a manifestation that theispadmixture gets larger.
This consideration on a given state shows the e ect on a giveT state. Alternatively,
the decomposition of an ISA eigenstate in the MT subspaces@h of them with a de ned
spin eigenvalue) is also expected to change in a similar waythe one just exposed. We
study precisely the e ect of the spin-orbit coupling both onthe DOS and IPR of the

ISA eigenstates, usinR, as a control parameter.

3.4.2 Inverse Participation Ratio and DOS

Since we have already described the procedure followed tdcotate the DOS and the
IPR in the spinless case, we only need to mention here the mocttion for the IPR as
the spin degree of freedom is included.

Since the eigenstates of the full Hamiltonian are no longer speigenstates, the IPR
should be calculated by projecting the state onto each impiy orbital including both

spin orientations. The new IPR parameter is given by
3 4
ihw i)
e
b 2

P

2
IPR= (3.15)

Uz =z

(
N

wherej i is the eigenstate whose localization degree is to be calcelht The states

] m I are localized on sitem and are assumed to be spin polarized. In Fig. 3.4 we
present the DOS and IPRN of the extended model for the three densities previously
treated and various values of the spin-orbit coupling stregth R,. The DOS depicted
with solid thick lines do not change noticeably withR,, and that is why we only present
the R, = 1 case. Regarding the spatial extension, we show in each parffor each
density) how the IPR=N curves are modi ed asR, changes. The increase of the IPR
as a function ofR; in the region of extended states (central region) shows thahé SOC

tends to delocalize more and more these states as the HNR values grow towards 1.
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R, =1
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Figure 3.3: Spectral decomposition of a Matsubara-Toyozawa eigenstainto the basis
set formed by the eigenstates of the spin-orbit extended meld The sys-
tem size isN = 1000 and the density is given by i§;a%)*™® = 0:33. The

enhancement factoR, is indicated in each panel.
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This e ect turns out to be even more pronounced for the largetdensity, where the curves
belonging to dierent R,'s separate in a wider region. This latter e ect becomes less
prominent as the energy decreases. In the low-energy sectehere the MT model yields
states identi ed as localized, we observe IPEN curves approximately independent of
N, which is a signature that the SOC is favouring their delocaation.

Finally, we also performed a nite-size scaling of the IPRN for a given density above
the MIT critical density and one value of the spin-orbit coupihg enhancement factor,
namely R, = 50. The result in Fig 3.5 evinces that the relative insenswity of IPR =N
with N implies that the region of localized states (with vanishindPR/N) has been
considerably shifted towards a lower energy. We thus expeid have a lower mobility

edge.

3.5 Conclusion

To sum up, we have considered the problem of the charactetiwa of the eigenstates
of the Matsubara-Toyozawa model regarding their spatial t@mlization. We nd that
the obtained IPR values among the di erent eigenstates of #himpurity band dier
gualitatively from those given by a more thoroughly studiedAnderson model. One
reason for this is that we consider here a long-range poteaitithat stems from the
Coulombic impurity. Anderson models mostly deal with shortange potentials. In our
physical system, the mobility edges do not appear as cleartdimits, yet we observe a
trend in the degree of localization of the eigenstates.

When a similar analysis is performed in the extended model inding the spin-
admixed nature of the donor states originated by the spin-oitocoupling, we have to take
into account the spin-ip event caused by the electrostatic ptential of the hydrogenic
impurities (that in spite of being spin-independent, coupke states of di erent spin). We
found that while the density of states is not considerably nd ed by the spin-orbit

interaction, the states tend to be more delocalized as the €gets stronger.
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