
Di r ecci ó n: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto : digital@bl.fcen.uba.ar

Tesis Doctoral

Modelos abstractos de
comportamiento basados en

habilitación

de Caso, Guido

2013

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

de Caso, Guido. (2013). Modelos abstractos de comportamiento basados en habilitación.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Cita tipo Chicago:

de Caso, Guido. "Modelos abstractos de comportamiento basados en habilitación". Facultad de
Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar

Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Modelos abstractos de comportamiento
basados en habilitación

Tesis presentada para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires
en el área Ciencias de la Computación

Guido de Caso

Director de tesis: Dr. Sebastián Uchitel
Consejero de estudios: Dr. Vı́ctor Braberman

Buenos Aires, 2013

Modelos abstractos de comportamiento
basados en habilitación

Resumen: Muchas interfaces programáticas de aplicación (APIs) presentan re-
stricciones no triviales respecto al orden en que sus operaciones deben ser invocadas.
Para los desarrolladores a cargo de implementar dichas APIs, validar si las mismas
proveen el comportamiento esperado es un problema desafiante. De todas formas,
incluso en la ausencia de requerimientos formales, los desarrolladores de APIs poseen
un modelo mental informal sobre el comportamiento esperado de la API. Este tra-
bajo apunta a asistir a estos desarrolladores en la validación de sus APIs mediante
la construcción de modelos que puedan comparar con sus modelos mentales. Pre-
sentamos las abstracciones basadas en habilitación (EPAs), un novedoso modelo de
comportamiento de grano grueso que presenta una versión sobreaproximada del pro-
tocolo de uso de una API. Las EPAs agrupan las instancias concretas de una API
que habilitan el mismo conjunto de operaciones, lo cual ofrece buena trazabilidad
entre el modelo y la API. Brindamos algoritmos que construyen EPAs a partir de
especificaciones o implementaciones de APIs. Luego estudiamos nuestro enfoque
mediante una serie de casos de estudio en los cuales expertos de dominio usaron
EPAs para identificar problemas en APIs de escala industrial, una evaluación de la
expresividad de las EPAs y tres experimentos controlados apuntando a establecer
cómo entienden los desarrolladores a las EPAs. Estas experiencias confirman que
los modelos de grano grueso tales como las EPAs pueden jugar un rol importante
en procesos manuales tales como validación.

palabras clave: abstracciones de comportamiento de grano grueso, modelos
diseñados para la validación guiada por humanos, protocolo de uso de APIs, gúıas
para la validación, expresividad vs. entendibilidad.

Enabledness-based abstract behaviour models

Abstract:
Many application programming interfaces (APIs) present non-trivial restrictions

with respect to the order in which their operations ought to be called. For a devel-
oper in charge of implementing an API, validating whether it provides the expected
behaviour is a challenging problem. Nevertheless, even in the absence of formal
requirements, API implementers possess an informal mental model of the expected
API behaviour. This work aims to assist these developers in the validation of their
APIs by constructing models that they can compare against their mental models.
We introduce enabledness-preserving abstractions (EPAs), a novel coarse-grained be-
haviour model which presents an overapproximated version of an API usage protocol.
EPAs group concrete instances of an API that enable the same set of operations,
offering good traceability links between the model and the API. We present EPA
construction algorithms from either API specifications or API implementations. We
then study our approach by means of a series of cases studies where experts used
EPAs to identify issues in industrial strength APIs, an evaluation of EPA expres-
siveness, and three controlled experiments aimed at establishing how developers
understand EPAs. These experiences confirm that coarse-grained models such as
EPAs can play an important role in human-intensive processes such as validation.

keywords: coarse-grained behaviour abstraction, models aimed at human-driven
validation, API usage protocol, validation guidelines, expressiveness vs. understand-
ability.

Agradecimientos

Primero quiero agradecer a Sebastián y a Vı́ctor por guiarme en este proceso
tan interesante que es el de avanzar en terrenos inexplorados. Gracias por generar
un clima de confianza, respeto y colaboración que me permitió hacer mis primeras
armas en el campo de la investigación.

Este trabajo no hubiera sido posible de no ser por Diego, quien siempre nos
acompañó desde un primer momento, desempeñando el rol de colaborador de lujo.
Tanto en lo académico como en lo personal Diego me ayudó a superar los innumer-
ables desaf́ıos que un doctorado supone.

Mis compañeros de oficina hicieron que el trabajo realizado estos años haya sido
de lo más entretenido y llevadero: Dani, Dipi, Esteban, Ferto, Herno, Sherman y
Sherwood. ¡Grosos! Quiero agradecer también al resto de los miembros del grupo
LaFHIS.

Quiero hacer una mención especial a Yuri Gurevich, Nikolaj Bjørner y el resto
de la gente de Microsoft Research, quienes me apoyaron durante mi doctorado y me
permitieron colaborar con ellos en proyectos de lo más interesantes.

Quiero agradecer a mi familia por todo el apoyo y por haberme inculcado los
valores del estudio, el esfuerzo y la autosuperación.

Para Celes, que en estos años demostró ser poseedora de paciencia y dulzura
infinitas, no tengo más que decirle, una vez más, que lo que siento por ella es amor
que tiende a 8.

v

Contents

Contents VII

I Prelude 1

1. Introduction 3

1.1. Contributions . 9

1.2. Limitations . 9

1.3. Roadmap . 10

1.4. Dissemination of Results . 10

2. Motivation 11

2.1. Validating API Specifications using Behaviour Abstractions 11

2.2. Validating API Implementations using Behaviour Abstractions . . . 14

2.3. Enabledness Preserving Abstractions 16

II Defining & Building EPAs 19

3. Formal Setting 21

3.1. Action Systems . 21

3.2. Enabledness Abstractions . 24

3.3. Closing Remarks . 27

4. EPA Construction 29

4.1. Enumeration Algorithm . 29

4.2. On-the-fly Exploration Algorithm . 34

4.3. Solving the Algorithm Queries . 35

4.3.1. Construction via Satisfiability Queries 36

4.3.2. Construction via Code Reachability Queries 37

4.4. About the Technique’s Assumptions 48

4.4.1. Dealing with Unannotated Classes 48

4.4.2. Violating the Invariant Correctness Assumption 48

4.4.3. Violating the Requires Clauses Splitting Assumption 49

4.4.4. About Requires Clauses Correctness 50

vii

viii CONTENTS

5. Implementation 51

5.1. The Contractor Tool . 51

5.1.1. Implementation Notes . 51

5.1.2. Algorithms Implementation 52

5.1.3. Solving Satisfiability Queries 53

5.1.4. Solving Reachability Queries 53

5.2. Quantitative Analysis . 54

5.2.1. Subjects . 54

5.2.2. Results . 56

5.3. Validation Support Features . 58

5.3.1. Automatic Detection of Suspicious EPA Elements 59

5.3.2. EPA Exploration Features . 59

5.3.3. Refining the EPA States . 60

5.3.4. Refining the EPA Transitions 61

III Empirical Evaluation and Experiences 63

6. Validation using EPAs 65

6.1. Experimental Setting . 65

6.2. Findings in API Specifications . 66

6.2.1. WebFetcher . 66

6.2.2. ATM . 67

6.2.3. .NET NegotiateStream Protocol 68

6.2.4. WINS Replication and Autodiscovery Protocol 72

6.3. Findings in API Implementations . 77

6.3.1. Java PipedOutputStream . 77

6.3.2. Java Signature . 78

6.3.3. Java List Iterator . 78

6.3.4. Java Socket . 80

6.3.5. PCCR Framework . 83

6.3.6. SMTP Server . 86

6.3.7. SMTP Client . 88

6.4. EPA Validation Guidelines . 90

7. Studying EPAs Expressiveness and Understandability 93

7.1. Research Questions . 94

7.2. Analysing Code Defects Impact on EPAs 94

7.2.1. Experimental Setup . 95

7.2.2. Mutant Generation . 95

7.2.3. Discarding Semantically Equivalent Mutants 95

7.2.4. Generating Mutant EPAs . 96

7.2.5. Structurally Comparing Mutant EPAs 96

7.2.6. Threats to Validity . 96

7.2.7. Results . 97

7.3. Analysing User Understanding of EPAs 99

7.3.1. Experimental Setup . 99

7.3.2. Experiment Procedure . 100

7.3.3. Threats to Validity . 100

7.3.4. Research Question Refinement 101

7.3.5. Results . 102

7.4. Discussion . 106

CONTENTS ix

7.5. Conclusions . 107

IV Discussion 109

8. Related Work 111
8.1. Static Typestate Inference . 111
8.2. Predicate Abstraction . 113
8.3. Model Minimisation . 113
8.4. Contract Exploration . 114
8.5. Model Synthesis from Requirements 114
8.6. Testing-related Approaches . 114
8.7. Model Mining . 114
8.8. Models Aimed at Human Inspection 115
8.9. User-studies On Understanding of Inferred Models 116

9. Conclusion 119
9.1. Future Work . 119
9.2. Outlook . 120

Bibliography 121

List of Figures 127

List of Tables 129

Part I

Prelude

1

CHAPTER 1

Introduction

Verification and validation are artefact evaluation activities carried out at mul-
tiple stages of software development projects. They come in many different guises:
The artefacts under evaluation may be descriptions related to the problem domain
(e.g. requirements) or the solution space (e.g. design) including the actual code.
Furthermore, they can be written in languages with different degrees of formality
(e.g. from mathematics to natural language). In addition, the evaluation itself can
vary in terms of formality (e.g. from axiomatic proof, through structured argu-
mentation, to human inspection) and exhaustiveness (e.g. from exhaustive search,
through simulation, to selective scenario evaluation). All these characteristics lead
to conclusions with very different degrees of certainty.

Verification and validation are related activities both of which aim to increase
confidence regarding the quality of the software under construction. However, they
are of very different natures.

Verification. Verification aims at determining whether an artefact satisfies spe-
cific properties [IEE90]. For instance, if software requirements entail system goals,
if the architecture satisfies its reliability requirements, if the code is structured ac-
cording to the static design, or the execution of a method never raises an array index
out of bounds exception.

Verification is particularly prone to automated, rigorous and even sometimes
exhaustive analysis. If both the artefact under evaluation and the properties are
given in appropriate formal languages, it is plausible to apply a variety of tools such
as model checkers [BHJM07], theorem provers [NPW02], simulators [KNP11] or
symbolic executers [SDK`11]. There are, of course, both theoretical (indecidability
results, e.g., [Esp97a]) and practical (e.g., state explosion [Val98]) limitations. How-
ever, automated verification techniques are tractable and have shown to be useful,
specially when applying some restrictions on the artefact, the property, and/or the
degree of certainty. Most notably, software testing, when the intended test results
are provided (i.e., an oracle), is a widespread verification technique in industry.

Validation. Validation aims to determine the degree to which an artefact is an
accurate representation of the real world. At the requirements level, a typical exam-
ple used to distinguish validation from verification is that validation evaluates if the
requirements meet stakeholders needs, while verification is applied to check that the

3

4 CHAPTER 1. INTRODUCTION

design and/or implementation has been built according to the requirements. In other
words, validation ensures that ‘you built the right thing’ while verification ensures
that ‘you built it right’. Validation is indeed relevant in many software engineering
settings. For instance, determining if an architectural description conforms to an
architect’s intent, if the deployment model is consistent with the actual hardware
available at the client site, if assumptions on network traffic are reasonable, etc.

Validation, in industrial practice, is also a substitute for verification. The lack of
explicit (formal or informal) intended property descriptions impedes verification and
the only possibility is to validate if artefacts conform to the characteristics intended
by the engineer. In other words, a comparison between the artefact and some mental
model of it. Walkthroughs, inspections and reviews are common techniques that
support validation.

When the artefact under validation is written in a formal language (be it code,
or a well founded specification), a common strategy for validation is to apply an
automated, semantics preserving, manipulation. The idea behind this strategy is
that showing engineers alternative views of the artefact may exhibit elements that
stand out as contradicting what is expected by the engineers. Some examples of
this strategy are the application of rewrite rules in specifications, minimisation of
state machines, slicing techniques for code, or executions and simulations. Within
the latter strategy, testing without oracles is a noteworthy technique.

Another common strategy for validation is to turn the validation problem into
a verification one. More concretely, to produce a specification against which the
artefact can be verified. The idea is that if the specification is simpler than the
artefact, validation of the former is likely to be simpler and less error prone. This
is an effective strategy that is commonly used in practice. For instance, sanity
checks are used to filter out bugs in complex models (such as nonzenoness in real
time system models [ACH`95], as well as internal consistency and satisfiability in
requirements specifications [HJL96]). However, this strategy has its downsides too.
Since an alternative specification is required, we need to be sure that it has been
validated appropriately. In other words, turning a validation problem into a verifi-
cation problem creates a new validation task, so eventually human intervention is
required.

Application Programming Interfaces (APIs). In this thesis we are particu-
larly interested in the validation of software artefacts that have non-trivial require-
ments with respect to the order in which their methods or procedures ought to be
called. Such is the case for many application programming interfaces (APIs) [BKA11].
While they appear everywhere in the form of frameworks, public class interfaces or
web services, previous work has shown that developers struggle to learn how to use
APIs. Furthermore, in practice, descriptions of the intended behaviour for APIs are
incomplete and informal, if documented at all, hindering verification and validation
of the code artefacts themselves and the client code that uses the artefacts.

Hence, researchers have not relied on these descriptions and developed techniques
to support the mining or synthesis of behaviour models [SY86] from API implemen-
tations which are then used to verify if client code conforms to the implemented
protocol [AČMN05, DKM`10]. Such approaches address only part of the problem:
they assume the code from which the behaviour model is extracted is correct; that
it conforms to the ordering of methods or procedures intended at the time of design
or developing the requirements for the API.

This work addresses the complementary problem of assisting API implementers
to validate if their APIs provide the intended behaviour when descriptions of this

5

behaviour are informal, partial or non-existent. In this context, approaches such as
testing [GKSB11] or verification [CK05] are inapplicable due to the absence of an
oracle, or target desirable properties, respectively.

However, we believe that even in the absence of a full-fledged formal specification,
API developers still have an informal understanding of the class they are building
and the desired requirements that it has to meet. We usually refer to this informal
understanding as a mental model.

Our working hypothesis is that, presented with an automatically inferred model
comparable to his mental model, a developer can reason about an API and gain
insight.

The basic idea behind model inference (or synthesis) is to automatically analyse,
either statically (e.g, [AČMN05, HJM05]) or dynamically (e.g., [GMM09, EPG`07]),
a software artefact and produce an abstract description of it. The resulting mod-
els are sometimes used as input for other techniques [BN11]. However, it is often
the case that the inferred models are intended to be directly consumed by develop-
ers [BBSE11].

We are interested in the latter scenario. For models to be consumed by hu-
mans, they have to convey relevant aspects about the original artefact in a fashion
amenable to human comprehension. This is a balancing act between expressiveness
and understandability. If a model conveys too much information it may overwhelm
the developer. If it is too simple it is unlikely to be of assistance.

In the vast majority of literature in this area, evidence of developer understand-
ing of such models is often missing or anecdotal [CZvD`09, TTDBS07], with no
statistical relevance. Moreover, few user studies have been conducted, mostly with
negative results. For instance, in the context of models in the form of likely invari-
ants, a recent user study [SHKR12] has shown that developers struggle to correctly
understand them.

Abstraction. When inferring models from APIs, abstraction is paramount. Ab-
straction is the act of withdrawing or removing something, the process of leaving
out of consideration one or more properties of a complex artefact so as to attend to
others. It is also used to refer to the simpler artefact that results from this process.
The abstraction captures the original artefact’s core or essence relative to a spe-
cific aspect of interest. Abstraction is central to computing [Kra07], particularly to
software engineering, and has been extensively applied to support verification and
validation.

Abstraction reduces the complexity of the artefact under evaluation and conse-
quently can reduce the cost and augment the effectiveness of verification and vali-
dation activities. However, abstraction comes at a price. Building abstractions can
be costly, but perhaps more importantly, the loss of detail in the abstract artefact
can impact the degrees of certainty of the evaluation outcome. Given a particular
verification or validation task, analysing a carefully chosen abstraction will yield
conservative (yet sound) results. On the other hand, an incorrect choice might lead
to invalid conclusions. For instance, let’s consider a language with automatic mem-
ory management. A garbage collector (GC) is in charge of reclaiming unreferenced
objects. In order to make a decision whether an object o can be collected, the GC
must ensure that no other object or variable points to o. If the GC makes the deci-
sion based on an abstraction that only considers elements in the program stack, it
may collect objects that are still reachable from the heap.

Hence, given a validation or verification task, it is crucial to work with an ap-
propriate abstraction. That is, carefully selecting which aspects to leave out of

6 CHAPTER 1. INTRODUCTION

consideration and what mechanisms to use for representing the artefact’s features
relevant to the task at hand.

Abstractions for verification. There has been a significant amount of work in
the use of abstractions for verification. Given an artefact a and a formalised property
ϕ to be verified, the aim is to automatically come up with simplified versions â and ϕ̂
of the artefact and property, respectively. Hopefully, verifying whether â satisfies ϕ̂
will be more tractable, while still providing information about the initial verification
problem regarding a and ϕ.

Applying abstraction to obtain a tractable behaviour model of the original arte-
fact typically involves paying the cost of the omitted detail in terms of loss of pre-
cision. Abstracted behaviour models may be overapproximations (when â accepts
all behaviour of a, but possibly more) or underapproximations (when â rejects all
behaviour not in a, but possibly more) of the original artefact. Furthermore, some
abstractions may neither be over nor underapproximations.

Given an API implementation, an overapproximation of its behaviour describes
all legal invocation sequence that API clients can perform on the API. However,
an overapproximation may include sequences which, if performed by clients, would
result in illegal invocation chains. On the other hand, an underapproximation of the
API implementation’s behaviour forbids every illegal invocation sequence, which is
why they are called safe from a client perspective. Underapproximated models may
go too far and forbid behaviour which was permitted in the original artefact. For
this reason, overaproximated models are sometimes referred to as permissive.

One common approach when applying abstraction for verification of API be-
haviour is to synthesise typestates [SY86, DF01, NGC05, BN11] or interfaces [AČMN05,
GP09, HJM05]. The aim is to statically obtain finite state machine representing
a safe model from a client perspective, using techniques such as automata learn-
ing [AČMN05, GP09, HJM05] or abstract interpretation [NGC05].

The safety requirement associated with these kind of models tends to make
abstractions overly restrictive in terms of the model behaviour, sometimes leading to
trivial abstractions (e.g. models in which very few or even no invocation sequences
are allowed). In some cases, permissiveness is possible at the cost of assuming
certain conditions over the artefacts. For instance, the algorithms in [GP09, HJM05]
guarantee permissiveness only when the library’s internal state is finite.

Once inferred, safe typestates for an API can be used to effectively verify the
absence of illegal invocations from clients (e.g., [BA08]). The cost of non-permissive
typestates in this setting is that false-positives (client invocation sequences that are
in fact legal) may be reported.

Another way of obtaining abstract behaviour models is by using predicate ab-
straction [Uri99, GS97]. The idea is to define a set of predicates P and group concrete
states according to the validity of those predicates. Concretely, each abstract state
represents a set of concrete states that gives the same valuation to all the predicates
in P .

There are techniques that use this approach to construct abstract state graphs
from infinite state systems (e.g., [LY92, GS97, LMS07, GKM`08a]). For instance [GS97]
builds an abstract state graph out of a guarded transition system and a set of in-
put predicates. Concrete states are abstracted by using a lattice of monomials of
abstract boolean variables representing the truth values of the input predicates.

For testing purposes, [LMS07] proposes the use of user-provided parameterless
boolean observers to quotient the state space of a class. The abstraction is not
meant to represent behaviour (e.g., it does not define transitions between states)

7

but to define goals for test coverage criteria (which may not be fulfilled due to
the overapproximated nature of the abstraction). These models are then fed to an
algorithm that attempts to create a test suite that covers all of the states.

Another interesting approach is the mining of behaviour models out of execution
traces (e.g., [DLWZ06, GMM09, GS08, LMP08, DKM`10, BBSE11, PG09]). These
techniques aim at inferring a specification which is used for test case generation or
verification.

Mining techniques have a dynamic flavour, and thus heavily depend on the qual-
ity of the traces used as input. The inferred models tend to be underapproximations
of the behaviour of the artefact under analysis, since some behaviour may not ap-
pear in the collected traces. However, in some cases, these approaches may also
over-approximate due to the application of generalisation strategies.

For instance, [GS08] produces an automata by collecting information from the
client’s actual usage of a set of operations (underapproximation). Adabu [DLWZ06]
produces finite state machines whose states are determined by a fixed level of ab-
straction ranging over the return values of the inspectors in a class (e.g., integers are
abstracted according to their sign), leading to both under and overappproximation
of the concrete state. Other approaches [GMM09, LMP08] use invariant detection
tools such as Daikon [EPG`07] in order to generalise the set of traces and obtain
more conservative models.

Abstractions for validation. We are interested in studying the use of abstraction
in the context of validation rather than verification. Since validation requires human
intervention, the size and complexity of the models obtained are a key aspect of
choosing the abstraction.

As we previously stated, most of the models used in the typestate and interface
synthesis literature feed machine-driven tasks such as automated verification and
test-case generation. There are a few exceptions, though.

For instance, the approach followed in [BBSE11] uses logging mechanisms al-
ready in place and regular expressions to obtain behaviour models almost without
user intervention. The logs are mined for invariants encoding simple temporal re-
strictions among operations. Then the authors build a behaviour model that satisfies
every invariant found in the previous step. These models have been successfully used
to guide human validation processes such as program understanding or bug confir-
mation.

Another example of synthesised models being used for human inspection is in-
troduced in [DR09]. The authors present a technique to dynamically construct role
transition diagrams (among other models), which have a resemblance to typestates.
These models are used, together with a powerful graphical user interface, to support
program understanding tasks.

Even though these examples show the use of underapproximations for the valida-
tion of artefacts, we believe that overapproximations are better suited for validation
since they are capable of exhibiting all the potential behaviour of the artefact.

In other words, during a validation task, the developer does not necessarily
have a specific property to be verified in mind. In that context, underapproximated
abstractions may omit relevant aspects of the behaviour. On the other hand, overap-
proximated abstractions display all possible legal behaviour, which is more suitable
when the developer is exploring an artefact during a validation scenario. Of course,
with overappproximation comes the potential pitfall of conservatively displaying too
much information and confound the user. In this work we show a particular kind of
overapproximated abstraction that to be informative enough to unearth interesting

8 CHAPTER 1. INTRODUCTION

properties from the original artefact, and yet concise enough to prevent overwhelm-
ing developers.

Enabledness Preserving Abstractions (EPAs). In this work we introduce and
discuss enabledness-preserving abstractions (or EPAs) [dCBGU12a, dCBGU11], a
novel coarse-grained behaviour model designed to assist developers in the validation
of APIs. EPAs convey a concise abstract representation of an API’s usage proto-
col and are intentionally designed to be understandable, sometimes at the cost of
sacrificing expressiveness.

The key idea behind the abstraction mechanism is to group those concrete in-
stances of an API that enable the same set of operations. This abstraction level has
proved to offer good traceability between elements in the inferred model and the orig-
inal artefact. Furthermore, EPAs are compact enough to be human-understandable,
and yet they are rich enough to assist developers in key tasks such as validation.

As we stated above, a model is safe [AČMN05] if no call sequence violates the
library’s internal invariants; it is permissive if it contains every such safe sequence.
Previous approaches have aimed (e.g., [HJM05]) at modular program analysis using
models which are both safe and permissive for cases in which the library’s internal
state is finite, but may not be permissive for the infinite case. Our approach deals
with infinite internal state space and EPAs are permissive at the cost of safety. As
EPAs are intended to be compared to mental models, failing to offer all of the legal
behaviour (as it may occur in the case of safe models) may hinder the validation
process.

In this work we present construction algorithms that take an API as input and
statically and automatically produce an EPA. The input API can consist of either
a pre/postcondition specification for each action, or a fully-fledged source code im-
plementation. We implemented multi-threaded versions of these algorithms and
released an open-source tool called Contractor.

In order to support our claims about EPAs usefulness, we validated our approach
in various ways. Firstly, we analysed whether our algorithms are efficient enough to
deal with real-life APIs.

Secondly, we conducted a series of case studies where expert reviewers used EPAs
to guide the validation process of a series of industrial-strength APIs. These case
studies led to the identification of issues in the APIs such as undocumented behaviour
or ambiguities in the requirements. Based on this experience, we enumerated a list
of EPA validation guidelines. These guidelines can help developers or reviewers to
identify suspicious EPA elements, which can in turn lead to the identification of
problems in the input API.

Then, we studied EPAs expressiveness and understandability. We analysed their
expressiveness by conducting an evaluation of how sensitive they are to the presence
of defects in the source code of the API implementation. Regarding understand-
ability, we conducted a user study where developers were presented with an EPA
that was either obtained from the original API implementation, or from a defective
version of it. Developers were asked to identify whether or not these EPAs matched
their mental model of the expected API behaviour. The overall goal of this study
was twofold: to determine user detection effectiveness for EPAs that were generated
from defective versions of the source code; and to understand what factors lead to
successful or unsuccessful detection of these EPAs.

1.1. CONTRIBUTIONS 9

1.1. Contributions

The contributions of this thesis are:

The idea of using overapproximated abstractions for validation of APIs.

The definition of enabledness-preserving abstractions (EPAs), a novel coarse-
grained behaviour model aimed at human inspection.

Algorithms to automatically and statically construct enabledness-preserving
behaviour models from either

• API pre/postcondition specifications

• source code implementations accompanied with invariants and requires
clauses.

The implementation of these construction algorithms into a publicly-available
tool named Contractor.

The study of how EPAs are used by domain experts to validate a series of
industrial strength API specifications and implementations on which issues
were found.

A list of validation guidelines that can help developers identify suspicious ele-
ments in an EPA.

An evaluation of EPA expressiveness by means of analysing how sensitive they
are to the presence of defects in the input artefact.

An analysis of how well developers understand EPAs by means of a series of
controlled user studies.

To the best of our knowledge, we present the first approach that given an API
implementation or specification, statically and automatically constructs a model
that accepts a superset of the legal API traces and is therefore suitable for human
inspection.

1.2. Limitations

The results presented in this work depend on a series of assumptions:

A part of our efforts are aimed at generating EPAs from pre/postcondition
specifications. It is a fact that these kind of formal specifications are seldom
found in practice.

We also support the analysis of source code, which is a much more common-
place software artefact. However, in order to produce EPAs for a program we
require it to be equipped with requires clauses for each of its operations as well
as a system (or class) invariant.

Furthermore, as we discuss in Chapter 4, the provided requires clauses for
each action need to be splittable into 2 parts: one that predicates over the
action parameters and the other over the system variables. If this require-
ment is not met, the technique supports the use of requires clauses over and
underapproximations.

10 CHAPTER 1. INTRODUCTION

The nature of EPAs makes them good candidates to help the user discover
and understand the usage protocol of a software artefact. When dealing with
programs (or specifications) that feature a trivial usage protocol, the technique
does not provide much value.

As opposed to automated verification tools, EPAs require active engagement
from the software developer during the validation tasks. Despite this limita-
tion, in Chapters 6 and 7 we show that users were generally proficient with
understanding EPAs.

Our EPA generation tool currently supports:

• Pre/postcondition specifications written in the CVC [BB04] language.

• C source code. Some of the examples analysed throughout this work were
originally found in other languages such as C# and Java. In those cases,
manual translations were produced and made available to the research
community.

1.3. Roadmap

The rest of this document is structured as follows. Part I is comprised of Chap-
ters 1 and 2, where we informally present EPAs and show how they can drive an
API validation process (an extended version was first presented in [dCBGU12b]).

Part II is devoted to EPA construction. Chapter 3 introduces the formal under-
pinnings of our technique, including a formal definition for EPAs (first introduced
in [dCBGU09]. In Chapter 4 we offer two EPA construction algorithms (originally
presented in [dCBGU12a] and [dCBGU11], respectively). In Chapter 5 we intro-
duce the Contractor tool, discuss its implementation details and analyse how it
performs on a series of real-life APIs.

Part III presents the empirical evaluation of our approach. Chapter 6 consists of
a series of case studies in which domain experts were asked to use EPAs to validate a
number of industrial-strength APIs. Chapter 7 offers a study on EPA expressiveness
and understanding, including the report on three controlled user studies.

We close this work in Part IV. We present and discuss related work in Chapter 8
and conclude in Chapter 9 with some final words and an outlook of the road ahead.

1.4. Dissemination of Results

Abbreviated versions of the results presented in this thesis have been originally
published by the authors in [dCBGU09, dCBGU12a, dCBGU11, ZBdC`11]. At the
time of this writing, the results presented in Chapter 7 have been submitted for
consideration to International Conference on Software Engineering (ICSE) 2013.

CHAPTER 2

Motivation

In this chapter we illustrate the difficulties of validating APIs using two toy
examples. We first describe how the proposed approach can identify issues in an
API specification. We then show how our approach is also valid when dealing with
API implementations.

2.1. Validating API Specifications using Behaviour Ab-

stractions

Consider the specification of a circular buffer given in Figure 2.1. The specifi-
cation includes three state variables: a represents an integer array with slots that
the buffer uses for storing data, wp is a pointer to the first available slot for storing
new data, and rp is a pointer to the last slot from which data was read. The idea is
that wp points to a slot further ahead than the slot pointed to by rp and that the
slots in between are those that have been written but not yet read. Of course, the
fact that this is a circular buffer makes the notion of “further ahead” slightly more
complicated to express formally. The specification includes pre and postconditions
for two actions applicable to circular buffers: read and write. Writing requires
the buffer to have empty slots and results in a circular buffer that has incremented
by one its writing pointer unless it has reached the array limit, in which case the
writing pointer is set to 0. Reading requires the buffer to have slots with unread
data and updates its reading pointer using the same strategy as write uses for wp.
Finally, the specification includes an invariant which requires the circular buffer to
have more than three slots for storing data1 and requires both pointers to be within
the bounds of the circular buffer, i.e., between 0 and |a|´1, and there is a condition
over the acceptable starting states for circular buffers.

Given the circular buffer specification, how can we validate if it corresponds to the
intended behaviour of a circular buffer? As mentioned above, one strategy would
be to write another specification (or use an existing one) and verify the contract
specification against it using techniques such as model-checking or theorem proving.

For instance, a reviewer might perform an automated analysis capable of checking
if the contract specification satisfies some given properties. Techniques such as model
checking [CGP99] and in particular infinite state model checking [Esp97b] can verify

1Notice however, that the actual storing capacity is always reduced by two.

11

12 CHAPTER 2. MOTIVATION

CircularBuffer
variable a array of integers
variable wp, rp integer

inv 0 ď rp ă |a| ^ 0 ď wp ă |a| ^ |a| ą 3
start |a| ą 3 ^ rp “ |a| ´ 1 ^ wp “ 0

action write(integer n)
pre pwp ă rp´ 1q _ pwp “ |a| ´ 1 ^ rp ą 0q

_ pwp ă |a| ´ 1 ^ rp ă wpq
post rp1 “ rp ^ pwp ă |a| ´ 1 ñ wp1 “ wp` 1q

^ pwp “ |a| ´ 1 ñ wp1 “ 0q
^ pa1 “ updateArraypa, wp, nqq

action integer read()
pre prp ă wp´ 1q _ prp “ |a| ´ 1 ^ wp ą 0q

_ prp ă |a| ´ 1 ^ wp ă rpq
post rv “ arrp1s ^ wp1 “ wp ^ a1 “ a

^ prp ă |a| ´ 1 ñ rp1 “ rp` 1q
^ prp “ |a| ´ 1 ñ rp1 “ 0q

Figure 2.1: Specification of a circular buffer

if the entire state-machine defined by a contract specification, as described above,
satisfies a property. Theorem proving can check if a property can be directly inferred
from the contract specification. The problem with these strategies, in addition to
tractability issues, is coming up with the properties to be checked. Some examples
of properties that one would want to check against the circular buffer contract are:

1. Initially, the read action is enabled after the first write action occurs.

2. Either a write or a read action can be performed at any given moment.

3. The read operation is always enabled after any (positive) number of write

operations.

4. The write operation is always enabled after any (positive) number of read

operations.

The completeness of the set of properties to be checked against the contract is
crucial to this strategy: Have we included all the relevant properties? In addition, it
requires specifying the intended behaviour twice: Once in an operational pre/post
condition style and the other in a more declarative style.

Such strategies can be effective at finding faults but require another specification
(namely, the aforementioned desirable properties) and shift the validation problem,
as it is now the alternative specification that must be validated.

A complementary approach we propose is to automatically construct a behaviour
model such as the one shown in Figure 2.2. In this model the concrete state space of
the circular buffer has been abstracted based the set of operations the concrete states
enable, that is, the set of operations for which their preconditions hold. Concrete
states of a circular buffer that only allow execution of write are represented by the
twriteu abstract state, concrete states that allow write and read are grouped into
the twrite, readu abstract state, and all concrete states that only allow to read are
abstracted into the treadu abstract state. Transitions between abstract states exist
only if a transition between concrete states they represent exist. Finally, an abstract
state is an initial state (a diamond-shaped node) if it abstracts at least one initial
concrete state of the circular buffer.

2.1. VALIDATING API SPECIFICATIONS USING BEHAVIOUR ABSTRACTIONS13

{ w r i t e }
{wr i t e ,

r e a d }

wr i t e

wr i te , read

wr i t e ,

r ead

{ r e a d }
wri te , read

read

Figure 2.2: Circular buffer finite abstraction

We believe that automated construction of abstractions that consolidate pre/-
post condition specifications into one cohesive behaviour model (which quotients
states based on the operations they enable) can complement the strategies out-
lined previously and provide further support for analysis and validation of pre/post
specifications. The model of the circular buffer specification shown in Figure 2.2
abstracts away the size of the buffer and brings an infinite state space down to only
three abstract states. Furthermore, the three abstract states have a clear and intu-
itive interpretation in the domain of circular buffers: a circular buffer can be empty
(twriteu), full (treadu), or partially full/empty (twrite, readu).

performed and state 2 allows reading only.

Consider the write-labelled transition from state twrite, readu to twriteu.
This transition is suspicious as writing data into a non-empty buffer should not
lead to a state that models empty buffers. Similarly, the transition from the state
twrite, readu (non-full) to state treadu (full) on label read also looks suspicious.
These transitions suggest that there could be something in the specification that is
not entirely accurate or correct.

To understand why these suspicious transitions appear in the behaviour model
it is important to understand the abstraction relation between the model in Figure
2.2 and the specification. The concrete states of the circular buffer are formally
abstracted according to following invariants:

State twriteu: inv ^ write pre ^ read pre

State twrite, readu: inv ^ write pre ^ read pre

State treadu: inv ^ write pre ^ read pre

Let us now try to understand why the transition labelled write from states
twrite, readu to twriteu appears in Figure 2.2 and if this is signalling a problem in
the specification. The fact that the transition is enabled in state twrite, readu fol-
lows directly from the choice of level of abstraction of Figure 2.2. State twrite, readu
models all the states of circular buffers in which both read and write are enabled.
So the question to answer is why can write lead to state twriteu. The question can
be answered by asking how can the invariant of state twriteu hold if the invariant
of state twrite, readu holds and action write occurs; this question can be easily
answered automatically with appropriate tool support: If rp “ wp holds on top of
the invariant for state twrite, readu, then the postcondition for write leads to state
twriteu.

It turns out that the invariant for circular buffers was missing the condition
rp ‰ wp. The amended specification would yield an abstract behaviour model
(see Figure 2.3) without the two suspicious transitions. It is interesting to note the
subtlety of this error: The completed invariant is guaranteed to be true by the initial
predicate and the postconditions of the two circular buffer actions. Any sequence of

14 CHAPTER 2. MOTIVATION

{ w r i t e }
{wr i t e ,

r e a d }

wr i t e

r ead

wr i t e ,

r ead

{ r e a d }
wr i t e

r ead

Figure 2.3: Corrected circular buffer finite abstraction

ExtendedCircularBuffer
...

inv 0 ď rp ă |a| ^ 0 ď wp ă |a| ^ |a| ą 3...
action reset()

pre true
post rp1 “ wp ^ wp1 “ wp ^ a1 “ a

Figure 2.4: Circular buffer with reset

actions starting from the initial state guarantees rp ‰ wp yet the omission becomes
a problem if the buffer is extended with legal operations (those that preserve the
incomplete invariant) such as the specification shown in Figure 2.4.

In summary, the example above illustrates how an abstract model that integrates
the various pieces of information that appear in an API specification supports its
validation and aids identifying potential problems it may have. Furthermore, we
believe that the specific choice of level of abstraction of the model, the traceability
of the abstraction to the specification and to domain-relevant states help identify
and fix problems.

2.2. Validating API Implementations using Behaviour

Abstractions

Having shown how behaviour abstractions are useful in the context of API spec-
ifications, lets now consider API implementations. In other words, we now deal with
actual source code that implements a set of operations.

Consider the C source code of Figure 2.5, which implements a singly-linked
integer list. It features a node structure, which contains a data field and a pointer
to the next node in the list (or to the first one, if standing on the last node). The
list itself is stored in another structure, which holds the total number of elements
and a pointer to the first node.

The implementation provides an initialization operation, which creates the list
structure; an add operation which stores a new integer at the end of the list; a
remove operation which eliminates the first element (if any) and a destroy operation
which frees the memory used by the list and all its nodes. Note that besides its
basic functionality, this list implementation is augmented with a system invariant
(inv()) and a requires clause for each of its operations (add req(), remove req(),
and destroy req()).

A similar problem as with the circular buffer arises: How can we validate if this
implementation provides the intended functionality when there is no formal and
validated model of the intended functionality to compare against? As mentioned

2.2. VALIDATING API IMPLEMENTATIONS USING BEHAVIOUR ABSTRACTIONS15

1 typedef struct node {
2 int data ; struct node ∗next ;
3 } node ;
4 typedef struct l i s t {
5 int s i z e ; node∗ f i r s t ;
6 } l i s t ;
7
8 l i s t ∗ l ;
9

10 int inv () {
11 return l==NULL | | l >́s i z e >= 0 ;
12 }
13
14 int L i s t () {
15 l = (l i s t ∗) mal loc (s izeof (l i s t)) ;
16 i f (l == NULL) return 0 ;
17 l >́s i z e = 0 ; l >́ f i r s t = NULL;
18 return 1 ;
19 }
20
21 int add req () { return l !=NULL; }
22 int add (int data) {
23 node ∗tmp = l >́ f i r s t ;
24 while (tmp >́next != l >́ f i r s t)
25 tmp = tmp >́next ;
26 tmp >́next =
27 (node ∗) mal loc (s izeof (node)) ;
28 i f (tmp >́next == NULL) {
29 l = NULL; return 0 ;
30 }
31 tmp >́next >́data = data ;
32 tmp >́next >́next = l >́ f i r s t ;
33 l >́s i z e++; return 1 ;
34 }

35 int remove req () {
36 return l !=NULL && l >́s i z e > 0 ;
37 }
38 int remove (){
39 int r e t = l >́f i r s t >́data ;
40 node∗ n ew f i r s t = l >́f i r s t >́next ;
41 f r e e (l >́ f i r s t) ;
42 l >́ f i r s t = n ew f i r s t ;
43 return r e t ;
44 }
45
46 int de s t r oy r eq () {
47 return l !=NULL;
48 }
49 void dest roy () {
50 node∗ cur rent ;
51 node∗ tmp ;
52 cur rent = l >́ f i r s t ;
53 l >́ f i r s t = 0 ;
54 while (cur r ent != 0) {
55 tmp = current >́next ;
56 f r e e (cur r ent) ;
57 cur rent = tmp ;
58 }
59 l = 0 ;
60 }

Figure 2.5: A singly-linked list C implementation

{ }
{add ,

des t roy}

des t roy

add

{add ,

remove ,

des t roy}

add

des t roy

add

remove

add

Figure 2.6: Singly-linked list enabledness abstraction

previously, one strategy would be to write a specification (or use an existing one)
and verify the implementation against it using techniques such as testing, model
checking or refinement checking. Such strategies can be effective at finding faults,
however, they require a specification and shift the validation problem as it is now
the specification itself that must be validated.

As we did in the case of the circular buffer specification, we propose to auto-
matically extract a behaviour model such as the one shown in Figure 2.6. In this
model we abstract the concrete state space of the singly-linked list based on the set
of operations the concrete states enable, that is, the set of operations for which their
requires clauses hold. The tadd, destroyu abstract state groups concrete instances
that allow execution of add and destroy. Abstract state tadd, remove, destroyu

16 CHAPTER 2. MOTIVATION

groups concrete instances that allow add, remove, and destroy. And the tu ab-
stract state groups all concrete instances that do not allow any operation. Like in
the previous example, initial states are identified as diamond-shaped nodes.

It is simple to see that this model describes states which relate to whether a
singly-linked list is empty (tadd, destroyu), non-empty (tadd, remove, destroyu),
or inactive (tu).

Consider the remove operation. It is only featured in a transition that loops over
state tadd, remove, destroyu. This is suspicious, since it is indicating that whenever
we erase an element from a non-empty list, we always end up having a non-empty list.
There would seem to be a remove transition missing from tadd, remove, destroyu
back to tadd, destroyu, which would model the case when the last element is re-
moved from the list.

The implementation of remove does not ever empty the list. Surely, this is an
unintended fault. Upon inspection of operation remove in Figure 2.5 we can observe
that the list size field is not being decremented. Fixing this fault is straightforward
and yields an enabledness behaviour abstraction that is the same as Figure 2.6,
but with the addition of the missing remove transition from tadd, remove, destroyu
back to tadd, destroyu.

The abstraction in Figure 2.6 could also prompt the discovery of interesting
aspects of the implementation under analysis. For instance, both initializing the list
and adding an element can lead to the terminal state tu. Inspection of the source
code shows that memory availability has an impact on the list’s behaviour. It is
interesting to note that such observations, elicited easily from the abstraction, would
require explicit modelling and or manipulation of the memory management aspects
of the program’s environment to be detected in verification-based approaches.

2.3. Enabledness Preserving Abstractions

The behaviour models presented so far are called enabledness-preserving abstrac-
tions (EPAs). They group concrete instances into abstract states according to which
actions are enabled and which actions are not.

Such behaviour models are permissive. Every legal operation sequence on the
original artefact (i.e., the specification or implementation) is included on the EPA’s
language. This permissiveness is succinctly obtained at the cost of sacrificing safety.
There are operations sequences in the model’s language which are not legal on the
original artefact. For instance, the sequence write ❀ read ❀ read is part of the
EPA’s language in Figure 2.3 but it is not a legal action sequence according to
the circular buffer specification in Figure 2.1, even adding the missing part of the
invariant. Notice that in general it is not possible to have a finite state machine that
safely and permissively captures the behaviour of an implementation, since only
regular languages can be encoded using finitely many states.

According to our previous experience [dCBGU12a], sacrificing safety for the sake
of obtaining a finite (and hopefully compact) behaviour model enables human in-
spection. Had we decided to construct a finite and safe behaviour model, we could
have only allowed a single call to read, since a finite model can not keep track of
how many times this operation has been invoked with respect to write invocations.

The question arises, why choose this particular level of abstraction? Our claim is
that the enabledness-based level of abstraction presents a good size/precision ratio in
terms of facilitating developer-in-the-loop API validation. This level of abstraction
not only yields a compact finite abstract model from an infinite concrete state space,
but also allows tracing back concerns to the source code for identifying and fixing

2.3. ENABLEDNESS PRESERVING ABSTRACTIONS 17

problems in the latter. That said, we discuss EPA refinements later in this work and
do not discard the possibility that other abstraction levels could also prove useful in
helping developers during validation tasks.

In the next two chapters we show how enabledness-preserving abstractions like
the one in Figure 2.6 can be built automatically from APIs such as the one depicted
in Figure 2.5.

Part II

Defining & Building EPAs

19

CHAPTER 3

Formal Setting

The purpose of this part of the thesis is to define EPAs and provide EPA con-
struction algorithms, together with their implementation.

EPAs provide an abstract representation of the usage protocol for an API. They
do so in a concise manner by grouping those concrete instances of the API that
enable the same set of operations.

EPAs are constructed from either the specification or the implementation of an
API. Specifications can have different flavours and implementations can be written
in a miriad of programming languages. In order to abstract away from this variety,
we introduce action systems. An action system mainly consists of a series of actions,
each having a requires clause and an implementation.

In order to accommodate both API implementations and specifications, action
implementations are defined in terms of transformations over system configurations.
A configuration encompasses the API internal state and the elements in the heap.
In the rest of this work, C will denote the set of all possible configurations.

3.1. Action Systems

We define an action system as the semantic interpretation of the API under anal-
ysis. Action systems encode the information known about the input API, whether
it is in the form of a specification or a concrete (source code) implementation.

An action system comes with an initial condition that indicates which config-
urations are legal freshly constructed API instances. An action system provides a
system invariant that characterises the set of legal configurations for the API inter-
nal state. It also provides a set of actions that constitute the public interface for the
API. For each of these actions, it provides a requires clause that indicates when is
it safe to invoke such action, as well as a function that transforms the configuration
accordingly when the action is invoked.

Action systems are formally defined as follows.

Definition 3.1 (Action System). An action system is a structure of the form AS “
xinit , inv , Act , R, F y, where:

init : C Ñ ttrue, falseu is the initial condition, which indicates if a given
configuration is an initial configuration.

inv : CÑ ttrue, falseu is the action system invariant.

21

22 CHAPTER 3. FORMAL SETTING

Act “ ta1, . . . , anu is a finite set of action labels.

R is an Act-indexed set of requires clauses. For each action label a, the requires
clause Ra : C ˆ Z Ñ ttrue, falseu indicates if the action a is enabled for the
given configuration and parameters. Notice that for the sake of simplicity, and
without losing generality, we restrict ourselves to consider functions with a
single integer parameter.

F is an Act-indexed set of functions. For each action label a, the function
Fa : CˆZÑ pCYKq takes a configuration and an integer parameter and has
two possible outcomes: i) either it transforms the configuration, or ii) it does
not terminate (represented by the K symbol).

In the rest of this thesis, we assume that the system invariant correctly and
precisely characterises legal instances of the action system. In Section 4.4 we discuss
the consequences of the violation of this assumption.

We now provide two action system examples, one for the circular buffer specifica-
tion presented in Figure 2.1 and one for the list implementation given in Figure 2.5.

Example 3.1 (Circular Buffer Action System). A possible action system for the
circular buffer specification given in Figure 2.1 is AS “ xinit , inv , Act , R, F y
where:

init yields true only for configurations that have an array of length at least
3, an rp variable pointing to the last position in the array and a wp variable
pointing to 0.

inv returns true only if the array is of length at least 3 and both rp and wp
are pointing within the array bounds.

Act “ twrite, readu.

Rwrite yields true only for configurations on which there is room for an extra
element in the array. Informally, this happens when the wp pointer is to “the
left” of the rp pointer. Of course, the concept of “left” has to consider the
fact that the array is to be interpreted circularly. Formally, Rwrite yields true
when one of the following holds:

i. wp ă rp´ 1

ii. wp “ |a| ´ 1 ^ rp ą 0

iii. wp ă |a| ´ 1 ^ rp ă wp

Rread yields true only for configurations on which there is at least one valid
item stored in the array. Informally, this happens when the wp pointer is
circularly to “the right” of the rp pointer. We omit the formal definition,
which is analogous to the previous one.

Fwrite returns a new configuration on which the parameter has been stored at
the position pointed by wp. The wp pointer is therefore circularly shifted one
position “to the right”.

Fread returns a new configuration on which the rp pointer is circularly shifted
one position “to the right”. A distinguished retVal variable in the configuration
is created so that it points to the element that was stored in the array at position
rp` 1.

3.1. ACTION SYSTEMS 23

Example 3.2 (List Action System). A possible action system for the list C im-
plementation in Figure 2.5 of the previous section is AS “ xinit , inv , Act , R, F y
where:

init yields true only for configurations that have the l variable pointing to
NULL or to a structure such that: i) its size field is 0 and ii) its first field is
NULL. This is the condition after applying the List function, which serves as
constructor.

inv returns true only if i) the configuration has a NULL l variable; or ii) if l
has a non-negative size field.

Act “ tadd, remove, destroyu. This set of actions indicates the names of the
actions exposed in the public interface of the list implementation.

Radd yields true only for configurations on which the l variable is not NULL.

Rremove yields true only for configurations that have a non-null l variable whose
size field is positive.

Rdestroy is the same as Radd.

F “

Fadd, Fremove, Fdestroy

(
. Where these functions are the semantic inter-

pretation of the corresponding C functions in Figure 2.5.

Note that these action systems are rather arbitrary. For instance, we could have
decided to exclude the destroy operation from the public interface, removing it
from the actions set, which would have characterised a system with a smaller state
space.

When considering API specifications, the implementation Fapc, pq for each action
a is obtained as the (only) configuration c1 that satisfies the postcondition of appq
invoked on c. If the postcondition for an action is non-deterministic (i.e., there
are many possible c1 that satisfy such condition), the definition for action systems
becomes a little bit more elaborate. For the sake of presentation we restrict ourselves
to the case of deterministic pre/postcondition contracts in the rest of this work.

On the other hand, when dealing with API implementations we will use CodeOf rf s
to refer to the source code that is originally found in the program under analy-
sis. For instance, consider the requires clause for the add operation presented in
Figure 2.5. Its code is represented by CodeOf rRadds “ return head != NULL;.
Similarly, CodeOf rFadds is the fragment of lines 22–34 in Figure 2.5.

We now proceed to characterise the state space of an action system as an infinite
deterministic Labelled Transition System (LTS). We define an LTS L as a tuple
xA, S, S0,∆y where A is the action alphabet, S is a set of states, S0 Ď S is the set of
initial states and ∆ : Sˆ AÑ S is the partial transition function.

Definition 3.2 (Action System Semantics). Given an action systemAS “ xinit , inv , Act , R, F y,
we say that its semantics is provided by an LTS L “ xA, S, S0, ∆y satisfying
A “ Act ˆ Z, S “ tc P C | invpcq “ trueu and S0 “ tc P S | initpcq “ trueu. Also,
for each c P S and for each a P Act and p P Z such that Rapc, pq “ true, if Fapc, pq “ c1

and invpc1q “ true then ∆
`
c, pa, pq

˘
“ c1. The transition function is not defined for

any other values of a, c and p.

Note that the LTS of an action system leaves out those configurations for which
the system invariant does not hold.

24 CHAPTER 3. FORMAL SETTING

Example 3.3 (List underlying LTS). Given the action system described in Exam-
ple 3.2, Figure 3.1 presents a finite fragment of its underlying LTS. List configura-
tions are given using ra, b, cs to represent the list with elements a, b and c (in that
order).

[]

[18]

add(18)

[32]

add(32)

[25]

add(25)

.. .

remove()

[18 ,18]

add(18)

[18 ,32]
add(32)

[18 ,25]

add(25)

.. .

remove()

[32 ,18]

add(18)

[32 ,32]add(32)

[32 ,25]

add(25)

.. .

remove()

[25 ,18]

add(18)

[25 ,32]

add(32)

[25 ,25]add(25)

.. .

remove()
.. .

remove()

.. .

remove()

.. .

remove()
.. .

remove()

.. .

remove()

.. .

remove()

.. .

remove()

.. .

remove()

.. .

Figure 3.1: Finite fragment of the list underlying LTS

Notice that, even fixing the possible elements to be 18, 32 or 25 and leaving out
the destroy operation, the state space is infinite. Dashed lines are used to represent
the extra edges that reach LTS nodes that were left out of the chosen finite fragment.

3.2. Enabledness Abstractions

Now that we have defined the state space of an action system by means of its
LTS, we need to define a proper level of abstraction in order to obtain a finite rep-
resentation. Our experience indicated that grouping LTS states for which the same
set of actions are enabled is an abstraction level that provides a good compromise
between size and precision. In the next chapters we will discuss and provide evidence
about this claim. For now, we introduce its formal underpinnings.

First of all, we present the concept of enabledness equivalence. Two configura-
tions are enabledness equivalent when they allow the same set of operations to be
invoked.

Definition 3.3 (Enabledness Equivalence). Let AS “ xinit , inv , Act , R, F y be
an action system. Given two configurations c1, c2 P C, we say that c1 and c2 are
enabledness equivalent configurations (noted c1 ”e c2) iff for every a P Act D p P
Z . Rapc1, pq “ true ô D p1 P Z . Rapc2, p

1q “ true.

Notice that this definition is comparable to requiring simulation equivalence for
one step.

Example 3.4 (Enabledness Equivalent List Instances). Continuing with the list
example from Figure 2.5, consider the following instances:

l1 : A list of size 3, with nodes carrying the integers 1, 3, 5.

l2 : A list of size 2, with nodes carrying the integers 39, 10.

3.2. ENABLEDNESS ABSTRACTIONS 25

l3 : A list of size 0.

Both l1 and l2 enable the same set of actions, namely the add, remove and
destroy operations and therefore l1 ”e l2. On the other hand l3 only enables add
and destroy so it is not equivalent to any of the two other instances.

We use a non-deterministic finite LTS to provide an abstract representation of
an action system, or more precisely, of the state space defined by its infinite LTS. A
non-deterministic finite LTS is a structureM “ xS, S0, Σ, δy where S is a finite set
of states, S0 Ď S is the set of initial states, Σ is a finite alphabet and δ : SˆΣÑ 2S

is a transition function.
Given an LTS describing the semantics of an action system, we now define its

enabledness-preserving abstraction as a finite non-deterministic state machine which
groups the action system configurations according to the actions that they enable. In
other words, we quotient the action system semantics using the enabledness equiv-
alence relation. Furthermore, this abstraction is able to simulate any path in the
LTS describing the action system semantics.

Definition 3.4 (Enabledness-preserving Abstraction). Given an action systemAS “
xinit , inv , Act , R, F y and its LTS L “ xA, S, S0, ∆y, we say M “ xΣ, S, S0, δy
is an enabledness-preserving abstraction (EPA) of AS iff there exists a total function
α : SÑ S such that αpS0q Ď S0 and for every c P S, action label a and parameter p
such that Rapc, pq holds, then αp∆pc, pa, pqqq P δpαpcq, aq. Furthermore, given a pair
of configurations c1, c2 on S, it holds that c1 ”e c2 ô αpc1q “ αpc2q.

Where α is extended so that it can also be used as a function in 2S Ñ 2S in the
natural way.

Example 3.5 (Enabledness-preserving Abstraction for the Circular Buffer). Fig-
ure 2.2 presents an enabledness-preserving abstraction for the action system given
in Example 3.1.

Example 3.6 (Enabledness-preserving Abstraction for the List). Figure 2.6 de-
picts an enabledness-preserving abstraction for the action system presented in Ex-
ample 3.2.

In order to construct an enabledness-preserving abstraction we first define the
notion of action set predicate. Given a subset of actions A Ď Act of an action
system AS , we wish to characterise all configurations c that satisfy the action system
invariant inv and in which every action a in A is possible from c (there exists a
parameter p such that the requires clause Ra of action a holds) and, importantly, in
which every action a not in A is not possible from c.

Definition 3.5 (Predicate of an Action Set). Let AS “ xinit , inv , Act , R, F y
be an action system . The predicate of a set of actions A Ď Act is the function
predA : CÑ ttrue, falseu defined as:

predApcq
def
ô invpcq ^

ľ

aPA

Dp. Rapc, pq ^
ľ

aRA

∄p. Rapc, pq

Example 3.7 (Predicate of the tadd, destroyu Action Set from List). The pred-
icate for the tadd, destroyu action set is obtained by indicating that there always
exists parameters that enable add and destroy, while there is not any parameter
that enables remove. Particularly, in the case of destroy and remove they are
parameterless, so this can be simplified, obtaining:

predtadd,destroyupcq “ invpcq ^ Dp.Raddpc, pq ^ Rdestroypcq ^ Rremovepcq

26 CHAPTER 3. FORMAL SETTING

We can now construct an enabledness-preserving abstraction of an action system
by fixing the states to be the enumeration of all the possible action sets. We connect
two action sets A and B with a label a when there is a configuration c satisfying the
predicate of the action set A, such that when executing the action a, c evolves into
a configuration that satisfies the predicate of the action set B.

Theorem 3.1 (EPA characterisation). Given an action systemAS “ xinit , inv , Act , R, F y,
then M “ xΣ, S, S0, δy is an EPA of AS where:

1. Σ “ Act

2. S “ 2Act

3. S0 “ tA P S | Dc P C. predApcq ^ initpcqu

4. For all A P S and a P Σ, if a R A then δpA, aq “ H, otherwise:

δpA, aq “

"
B

ˇ̌
ˇ̌ Dc. predApcq ^ Dp. Rapc, pq

^ predB
`
Fapc, pq

˘
*

Proof. Let L “ xA, S, S0, ∆y be the semantic interpretation of AS . Let α : SÑ S,
defined as follows:

αpcq
def
“ ta P Act | D p P Z . Rapc, pq “ trueu

We first postulate a lemma about α.

Lemma 3.2.

αpcq “ A ô predApcq “ true for c P S and A Ď S

The proof for this lemma follows directly from the definition of predA and α.

Back to our proof of Theorem 3.1, in order to show that M satisfying the above
conditions is an EPA for AS , we have to check the following items:

i) Initial states:
αpS0q Ď S0

Remember, by Definition 3.2, S “ tc P C | invpcq “ trueu and S0 Ď S is such
that S0 “ tc P S | initpcq “ trueu.

Let A P αpS0q. Then A P αptc P S | initpcq “ trueuq. It therefore exists c P S
such that initpcq “ true and A “ αpcq.

From Lemma 3.2, we know that it exists c P S such that predApcq “ true and
initpcq “ true. These are exactly the conditions for A to be part of the S0 set,
which is what we wanted to prove.

ii) Transitions: for every c P S, action label a and parameter p such that Rapc, pq
holds, then:

αp∆pc, pa, pqqq P δpαpcq, aq

Remember, by Definition 3.2, under these conditions, ∆
`
c, pa, pq

˘
“ Fapc, pq.

Let A “ αpcq and B “ αp∆pc, pa, pqqq “ αpFapc, pqq.

We have to prove that B P δpαpcq, aq. More precisely, we have to check that:

Dc0. predApc0q ^ Dp0. Rapc0, p0q ^ predB
`
Fapc0, p0q

˘

We claim that c0 “ c and p0 “ p satisfy the conditions. We analyse each
conjunct:

3.3. CLOSING REMARKS 27

Since A “ αpcq, using the lemma above we know that predApcq “ true.

Since c0 “ c and p0 “ p, we know that Rapc0, p0q “ true.

Using Lemma 3.2, since B “ αpFapc, pqq, we also get predBpFapc, pqq “
true.

iii) Enabledness: for every pair of configurations c1, c2, then:

c1 ”e c2 ô αpc1q “ αpc2q

This is directly satisfied by construction, since we defined α so that it only
keeps track of the enabled actions.

3.3. Closing Remarks

In this chapter we formally introduced action systems and EPAs. We also pre-
sented Theorem 3.1, which provides a straightforward (yet very inefficient) way of
constructing EPAs by enumerating every single possible abstract state and testing
for the presence of each possible transition. In the next chapter we present more
efficient construction algorithms.

CHAPTER 4

EPA Construction

In this section we present the formal underpinnings behind the construction of
the enabledness-preserving abstraction of an action system. We begin by presenting
two construction algorithms in Section 4.1 and Section 4.2. In Section 4.3 we describe
how the queries performed by these two algorithms are actually solved. The chapter
finishes with a discussion about the technique’s assumptions in Section 4.4.

4.1. Enumeration Algorithm

A trivial algorithm using the concepts of Theorem 3.1 would require nˆΩp2n´1ˆ
ˆ2nq transition tests, where n is the number of actions in the action system. This
is because, for each action, it appears in exactly 2n´1 abstract states, and it could
potentially advance to any abstract state. In a straightforward implementation,
space complexity would also be exponential in n since the set of states would have
to be kept in memory while computing transitions.

In this section we present a more sophisticated algorithm which splits the con-
struction problem into three parts: i) obtaining a set of candidate states, ii) com-
puting the transitions between these states, and iii) restricting the result to the
reachable part.

The first part could be easily accomplished by just enumerating all the possi-
ble states, but this would result in a very expensive transition-computation phase.
Instead, we construct a set of candidate states by calculating enabledness dependen-
cies among actions, yielding a set of states which is usually much smaller than 2n

but still contains any reachable state in the resulting EPA. The second part takes
the set of candidate states and explores every possible transition between them in
a standard manner. The complexity of the second phase is heavily dependent on
the size of the candidate set constructed in the first phase. Finally, the third phase
restricts the result to only those connected subgraphs which contain at least one
initial state.

First of all, we define the notion of enabledness dependency between actions. We
say that actions a and b are dependent if either: i) every time that a is enabled then
b is also enabled, ii) every time that a is enabled then b is disabled, iii) every time
that a is disabled then b is enabled, or iv) a is disabled implies that b is disabled.

29

30 CHAPTER 4. EPA CONSTRUCTION

Definition 4.1 (Enabledness Dependencies). Let AS “ xinit , inv , Act , R, F y be
an action system. We define the following enabledness dependency relations in
Act ˆAct:

D``
def
“ tpa, bq | @c P C, p P Z. invpcq ^Rapc, pq ñ Rbpc, pqu

D`´
def
“ tpa, bq | @c P C, p P Z. invpcq ^Rapc, pq ñ Rbpc, pqu

D´`
def
“ tpa, bq | @c P C, p P Z. invpcq ^ Rapc, pq ñ Rbpc, pqu

D´´
def
“ tpa, bq | @c P C, p P Z. invpcq ^ Rapc, pq ñ Rbpc, pqu

Example 4.1 (Enabledness Dependencies in the List Action System). In the context
of the List action system presented in Example 3.2, the enabledness dependency
relations are as follows:

D`` “ I Y tpremove, addq, premove, destroyq, padd, destroyq, pdestroy, addqu

D`´ “ H

D´` “ H

D´´ “

pb, aq

ˇ̌
pa, bq P D``

(

Where I “ tpadd, addq, premove, removeq, pdestroy, destroyqu is the reflexive rela-
tion involving the three actions.

Intuitively, given a set of actions, we will say that it is compliant with the
enabledness dependencies relations if it satisfies all the restrictions that they impose.

Definition 4.2 (Enabledness Dependencies Compliance). Given an action system
AS “ xinit , inv , Act , R, F y and its enabledness dependency relations D``, D`´, D´`, D´´,
we say that a set of actions A P 2Act complies with the enabledness dependencies if
all the following conditions hold:

1. For every pa, bq P D``, if a P A then b P A.

2. For every pa, bq P D`´, if a P A then b R A.

3. For every pa, bq P D´`, if a R A then b P A.

4. For every pa, bq P D´´, if a R A then b R A.

Example 4.2 (List Action System Enabledness Dependencies Compliance). Given
the enabledness dependencies for the List action system presented in Example 4.1:

A “ taddu is not dependency compliant. In particular, since padd, destroyq P
D`` and add P A then destroy should also be part of A, but it is not.

B “ tadd, remove, destroyu is dependency compliant.

C “ H is dependency compliant.

The enabledness dependency relations are straightforwardly computed using the
following algorithm.

Definition 4.3 (Enabledness Dependencies Computation Algorithm). Given an ac-
tion system AS “ xinit , inv , Act , R, F y, we construct the enabledness dependency
relations D``, D`´, D´` and D´´ using the following procedure.

4.1. ENUMERATION ALGORITHM 31

Procedure BuildDepencencies
Input: An action system AS “ xAct , F, R, inv , inity
Output: The dependency relations D``, D`´, D´`, D´´ for the given action system.

1 D`` ÐH;
2 D`´ ÐH;
3 D´` ÐH;
4 D´´ ÐH;
5 for a P Act do
6 for b P Act do
7 if @c P C, p P Z. invpcq ^Rapc, pq ñ Rbpc, pq then
8 D`` Ð D`` Y tpa, bqu;
9 else if @c P C, p P Z. invpcq ^Rapc, pq ñ Rbpc, pq then

10 D`´ Ð D`´ Y tpa, bqu;
11 end
12 if @c P C, p P Z. invpcq ^ Rapc, pq ñ Rbpc, pq then
13 D´` Ð D´` Y tpa, bqu;
14 else if @c P C, p P Z. invpcq ^ Rapc, pq ñ Rbpc, pq then
15 D´´ Ð D´´ Y tpa, bqu;
16 end

17 end

18 end

To analyse the time complexity of this algorithm, we count the number of logical
implications which need to be solved. This number drives the resulting execution
time since solving each of these implications is much more expensive than the other
operations in the algorithm (initialising sets, adding elements to sets). More con-
cretely, the number of logical implications is bounded by 4 ˆ n2, where n is the
amount of actions. Notice that pa, bq P D´´ is equivalent to pb, aq P D``, therefore
reducing the total number of logical implications that need to be solved.

Furthermore, the algorithm in Definition 4.3 is rather näıve. Our tool, discussed
later in Chapter 5, implements a few optimisations. In a first round, only depen-
dencies among labels ai and aj with i ď j are calculated. This information is then
propagated using a standard fix-point algorithm to calculate the rest of the depen-
dencies. This reduces almost in half the number of logical implications that need to
be solved in order to compute the enabledness dependency relations.

We now postulate that enabledness-dependencies are sound, in the sense that
abstract states not compliant with them are infeasible.

Lemma 4.1. Given a state A P 2Act , if predA is satisfiable then A is compliant with
the enabledness dependency relations.

Notice that the converse is not true: there exist states that are compliant with
the enabledness dependency relations but are not consistent. For instance, consider
an action system with an internal state consisting of integer variables x, y, z, true
as invariant and actions a1, a2, a3 with requires clauses x ă y, y ă z and z ă x

respectively. There are no enabledness dependencies, therefore the state ta1, a2, a3u
is compliant, but its state predicate is not satisfiable.

Once that we have calculated the enabledness dependency relations, we can pro-
ceed to enumerate all the states that comply with these restrictions. The following
algorithm provides an efficient way to do so.

Definition 4.4 (Enumerating States that Comply with Enabledness Dependencies).
Given an action system AS “ xinit , inv , Act , R, F y and its enabledness depen-
dencies relations D``, D`´, D´` and D´´, we compute a set of states S‹ given as
the result of EnumpH, 1q.

32 CHAPTER 4. EPA CONSTRUCTION

Procedure Enum(current, i)

Input: An action system AS “ xAct , F, R, inv , inity, its dependency relations
D``, D`´, D´`, D´´ and an index i pointing to the action under consideration
in the Act actions array.

Output: A set of states S‹ complying with the given dependencies.
1 if i ą n then
2 if Dc P C. predcurrentpcq then
3 return tcurrentu;
4 else
5 return H;
6 end

7 else if ai R current ^ p aiq R current then
8 c1 Ð currentY taiu;
9 c1 Ð c1 Y tb | pai, bq P D

`` u;
10 c1 Ð c1 Y tp bq | pai, bq P D

`´ u;
11 c2 Ð currentY tp aiqu;
12 c2 Ð c2 Y tb | pai, bq P D

´` u;
13 c2 Ð c2 Y tp bq | pai, bq P D

´´ u;
14 return Enum(c1, i` 1) Y Enum(c2, i` 1);

15 else
16 return Enum(current, i` 1);
17 end

The main idea behind this recursive algorithm is to gradually explore all the
states, while cutting branches that are known to violate the given dependencies.
Initially we start with current “ H and consider the first action a1. In line 7, since
neither this action nor its negation are part of the empty set, we proceed to make 2
recursive invocations:

1. In lines 8–10 we construct the argument c1 for the first recursive invocation.
We include a1 as part of the new current set. Furthermore, when available, we
use the information from the enabledness dependencies to extend the current
set with other actions or their negations.

2. Similarly, in lines 11–13 we construct the argument c2 for the second recursive
information by including a1 and possibly other actions derived from the
dependencies.

Finally, in line 14 we make the recursive invocations and incrementing the second
parameter so that the algorithm now considers a2.

In a general recursive step, there are 3 possible scenarios:

We reach the end i ą n. In this case current already holds a full set of
actions or their negations. By construction, current satisfies the enabledness
dependencies as we never add actions (or their negations) that disrupt them
(see lines 8–13). The only remaining thing to do is to check whether it complies
with the action system invariant and if so return it as a valid state1.

Alternatively, if i ď n and neither ai nor its negation are part of current we
are in a situation analogous to the one analyzed above in the context of the
first invocation.

1Notice that, since states are defined only by the set of actions that they contain, all the negated
actions are implicitly dropped.

4.1. ENUMERATION ALGORITHM 33

Finally, if i ď n and either ai or its negation are part of current , we don’t need
to make two recursive invocations as the information for this action (or its
negation) was previously introduced via dependencies in an invocation j ă i.
It suffices to make a single recursive invocation to consider action ai`1.

Lemma 4.2. The set of candidate states S‹, as constructed in Definition 4.4, sat-
isfies that it is equal to the set of consistent states that comply with the enabledness
dependency relations.

Once that the set S‹ of candidate states has been constructed, we need to con-
struct the transitions between states in S‹. This is performed using the following
algorithm.

ALGORITHM 1: EPA Construction by Enumeration

Input: An action system AS “ xAct , F, R, inv , inity, and a set of candidate states S‹

Output: The EPA M “ xΣ, S, S0, δy.
1 S0 Ð ts P S‹ | Dc P C. predspcq ^ initpcqu;
2 ΣÐ Act ;
3 δps, aq Ð H @s, a;
4 for A,B P S‹ do
5 for each action a P A do
6 if Dc. predApcq ^ Dp. Rapc, pq ^ predB

`
Fapc, pq

˘
then

7 δpA, aq Ð δpA, aq Y tBu;
8 end

9 end

10 end

In this algorithm we test each of the candidate states in S‹ to see if they are
initial states (which requires |S‹| queries, or Op2nq). We then initialise the transition
function as empty for any input and proceed to check if any pair of states is reachable
using enabled transitions in the departing state (which requires |S‹|2ˆ|Act | queries,
or Opnˆ 22nq).

We can now postulate that the abstraction constructed by Algorithm 1 is indeed
an EPA.

Theorem 4.3. Given an action system AS “ xinit , inv , Act , R, F y, then M as
built by Algorithm 1 using the set S‹ of candidate states as given by Definition 4.4
is an EPA of AS.

The proof for this theorem is based on the fact that Algorithm 1 performs an
exhaustive exploration which complies with Theorem 3.1 over the set of states S‹.
All the states which are left out of this exploration (namely, 2Act rS‹) would never
be part of the final result since their state predicates are unsatisfiable, as implied by
Lemmas 4.1 and 4.2.

The final EPA construction phase, which is the restriction of the resulting ab-
straction to its reachable fragment, is entirely standard and will not be analysed
here. Furthermore, notice that this phase could be combined with the transition
generation phase following standard BFS or DFS exploration patterns.

We now proceed to analyse the time complexity of the full construction process
introduced so far. As mentioned before, the enabledness dependencies calculation
needs Opn2q queries, where n is the number of actions. The construction of the set
of candidate states S‹ requires one query for each state that is compliant with the
enabledness dependencies. If we have no dependencies at all, then we need Op2nq
queries, which is the worst case. However, in practice the set of compliant states

34 CHAPTER 4. EPA CONSTRUCTION

and consistent states in the resulting abstraction is very similar, as discussed in the
following chapters. As mentioned before, the transition calculation phase requires
Op|S‹|2 ˆ nq queries. Finally, the restriction to the reachable fragment requires no
queries.

4.2. On-the-fly Exploration Algorithm

The enumeration algorithm presented previously in this chapter has the poten-
tial drawback that it has to keep in memory the set of abstract states that satisfy
the enabledness dependencies. In this section we present a different construction
strategy based on an on-the-fly exploration of the reachable abstract states. In-
stead of computing enabledness dependencies, we iteratively explore the abstract
state starting from the initial states. More concretely, Algorithm 2, presented in
this section, performs a Breadth-first search (BFS) exploration of the enabledness
state space. We thus mitigate the need to exhaustively enumerate all the possible
2n abstract states for a program with n actions. Using this exploration strategy
guarantees that we only consider reachable abstract states, avoiding the need for
the last phase of the strategy presented in the previous section (restriction to the
reachable fragment).

ALGORITHM 2: EPA Construction
Input: An action system AS “ xAct , F, R, inv , inity
Output: The EPA M “ xΣ, S, S0, δy.

1 Σ “ Act ; S “ H;
2 δpA, aq “ H, @A, a;
3 A´ “ ta P Act | @c. initpcq ñ Dp. Rapc, pqu;
4 A` “ ta P Act | @c. initpcq ñ Dp. Rapc, pqu;

5 SC
0
“ tA Ď Act | A` Ď A, A´ XA “ Hu;

6 S0 “

A P SC

0
| Dc. predApcq ^ initpcq

(
;

7 W “ queue starting with elements in S0;
8 while there is a certain A at the head of W do
9 W “W ´ rAs;

10 S “ S Y tAu;
11 for each action a P A do
12 B´ “

b P Act

ˇ̌
@c, p. predApcq ^ Rapc, pq ñ Dp1. Rb

`
Fapc, pq, p

1
˘(

;

13 B` “

b P Act

ˇ̌
@c, p. predApcq ^ Rapc, pq ñ Dp1. Rb

`
Fapc, pq, p

1
˘(

;

14 SC “ tB Ď Act | B` Ď B, B´ XB “ Hu;

15 for each state B P SC do
16 if Dc. predApcq ^ Dp. Rapc, pq ^ predB

`
Fapc, pq

˘
then

17 δpA, aq “ δpA, aq Y tBu;
18 if B R S and B RW then
19 W “W Y rBs;
20 end

21 end

22 end

23 end

24 end

The transition function is initialised as empty for every input. The set A´ stores
the actions that can never be enabled in any initial state. Conversely, A` holds
those actions that have to necessarily be enabled in every initial state. A set of
candidate initial states SC

0 is constructed by enumerating all the action sets that:
i) exclude all the actions in A´; ii) contain all the actions in A`. All of the action

4.3. SOLVING THE ALGORITHM QUERIES 35

sets in SC
0 are then tested in order to store in S0 only those that comply with item 3

of Theorem 3.1. Notice that the more actions are classified as necessarily enabled
(or disabled) the smaller is the set of candidate initial states. Furthermore, this
optimization takes a linear amount of operations in terms of predicates that need to
be analysed.

Having determined S0, the algorithm initialises a queueW of states (action sets)
pending to be visited. Each time a given state A is visited, all of its enabled actions
a P A are considered. The set B´ holds all those actions that can not be executed
with any parameter after the execution of a from state A. Conversely, B` is the set
of actions which have at least one parameter to be executed with after the execution
of a from state A. The set of candidate destination states SC is constructed in a
way similar to SC

0 . All the states in this candidate set are considered in order to
check each one of them and see if they can be actually reached by evolving A using
a. Each time a new state is found, it is added to the pending states queue W .

This algorithm is, in the worst case, exponential in space with respect to the
number of actions. However, the more actions we can classify as necessarily enabled
(or disabled) in a particular state, the fewer candidate states the algorithm needs to
consider. This optimisation makes running times come down significantly (i.e., re-
ductions of up to 5x were observed, as we discuss in Section 5.2) and allowed us
to cope with real-life programs while keeping time down to a few minutes in the
worst case. Furthermore, the exploration nature of this algorithm makes it simple
to parallelise using worker threads that share the pool of states to be visited.

We can now postulate that the outcome of this algorithm is in fact an EPA
compliant with Definition 3.4.

Theorem 4.4. Given an action system AS , M as built by Algorithm 2 is an EPA
of AS .

The proof for this theorem is based on the fact that the abstraction constructed
by Algorithm 2 is the reachable fragment of the abstraction presented in Theo-
rem 3.1.

4.3. Solving the Algorithm Queries

Algorithms 1 and 2 are templates that describe how to construct EPAs. In other
words, they stipulate which queries need to be performed, but not how to solve
them. In this section we deal with the problem of providing effective answers to
these queries.

First of all, since validity checking is undecidable in general, we need to analyse
the impact that uncertain answers in the validity checks may have on the algorithm’s
result.

For instance, when deciding if an action a needs to be included in the set A´ in
Algorithm 2, the validity check @c. initpcq ñ Dp. Rapc, pq may return an uncertain
answer. In this case it is safe to exclude the action a from the set A´ since there is
no guarantee that it will necessarily be disabled on any initial state.

This has no impact on the algorithm’s output, since A´ is only used to reduce
the set of potential initial states. In other words, if an action a which is always
disabled on any initial state is excluded from A´ due to an uncertain answer in
the validity check, then it only makes the algorithm run slower; it does not affect
the result. Similarly, the computation of sets A`, B´ and B` is not affected by
uncertainties. In fact, these sets could be set to H without affecting the result.

36 CHAPTER 4. EPA CONSTRUCTION

On the other hand, the validity checks in lines 6 and 16 are critical for the result
of the algorithm. Line 6 affects the set of initial states; line 16 affects the presence of
transitions among states, therefore affecting which states of the EPA are reachable
and deserve being explored. Uncertain answers in the validity checks in these two
lines do affect the quality of the result, as indicated in the following theorem.

Theorem 4.5. Let AS be an action system, and let M be built by either of the
following options:

Algorithm 1 dealing with uncertainty as follows: a) If uncertain when deciding
enabledness dependencies, do not include the action in the relation. b) If
uncertain in line 6 then the then-branch is executed.

Algorithm 2 dealing with uncertainty as follows: a) If uncertain in line 6 then
A is added to S0. b) If uncertain in line 16 then the then-branch is executed.

Then M satisfies a relaxation of the items in Theorem 3.1: i) S0 is a superset of the
one in item 3; and ii) δpA, aq is a superset of the one in item 4.

A corollary for this result is that, in this context of uncertainty from the validity
checks, the constructed M is a simulation of the EPA. In general, in the rest of this
work we will still refer to this potentially larger M as EPA. Notationally, we will
mark uncertain transitions by suffixing them with a ? symbol.

In the rest of this section, we present two operationalisation strategies for the
construction algorithms.

4.3.1. Construction via Satisfiability Queries

We first deal with the case in which the input action system is obtained from a
specification (i.e., as opposed to an implementation).

In such a scenario, for each action a, the action system carries a symbolic repre-
sentation of its function Fa. In other words, we have a postcondition for each action.
Therefore, each step of Algorithms 1 and 2 can be encoded as a satisfiability query.

Example 4.3 (Satisfiability Query for the Circular Buffer). For instance, in order
to compute line 13 of the algorithm, given a set of actions A, an action a P A and
another action b we need to decide whether:

@c, p. predApcq ^ Rapc, pq ñ Dp1. Rb

`
Fapc, pq, p

1
˘

(4.1)

In the context of the action system in Example 3.1, we instantiate a, b and A as
follows:

a “ write

b “ read

A “ twrite, readu

With these values, we now have:

predApcq “ predtwrite,readupcq “ invpcq ^ Dp.Rwritepc, pq ^ Rreadpcq

invpcq “ 0 ď cprpq ă |cpaq| ^ 0 ď cpwpq ă |cpaq| ^ |cpaq| ą 3
Rapc, pq “ Rwritepc, pq “ cpwpq ă cprpq ´ 1 _ pcpwpq “ |cpaq| ´ 1 ^ cprpq ą 0q _

pcpwpq ă |cpaq| ´ 1 ^ cprpq ă cpwpqq
Rbpc, pq “ Rreadpc, pq “ cprpq ă cpwpq ´ 1 _ pcprpq “ |cpaq| ´ 1 ^ cpwpq ą 0q _

pcprpq ă |cpaq| ´ 1 ^ cpwpq ă cprpqq

4.3. SOLVING THE ALGORITHM QUERIES 37

Fapc, pq “ Fwritepc, pq “ c1 such that c1prpq “ cprpq ^
pcpwpq ă |cpaq| ´ 1 ñ c1pwpq “ cpwpq ` 1qq ^
pcpwpq “ |cpaq| ´ 1 ñ c1pwpq “ 0q ^
c1paq “ updateArraypcpaq, cpwpq, cpnqq

Replacing these values in formula 4.1 yields a rather lengthy (yet shallow) expres-
sion.

The rest of the algorithm steps translate similarly to satisfiability queries. These
queries can then be fed to a satisfiability modulo theories (SMT) solver such as
CVC3 [BB04], Yices [DdM06] or Z3 [DMB08]. Naturally, since SMT solving is in
general undecidable, we must accommodate uncertain responses coming from these
tools. In those scenarios, Theorem 4.5 provides a framework that allows us to obtain
an overapproximated (yet still valid) abstraction.

4.3.2. Construction via Code Reachability Queries

In the previous section we dealt with the case in which the input action system
has a symbolic representation of the functions governing each action. Since we
also want to obtain EPAs from source code, in principle we do not have such a
symbolic representation and therefore, unlike the previous case, we can not use a
theorem prover in this context. In this section we explain how we can fulfill the tasks
prescribed by each step of Algorithm 2 by resorting to code reachability queries2.

Notice that some of the queries that we deal with in the algorithm are of the
form:

@x. ϕpxq ñ ψ
`
F pxq

˘
(4.2)

The general strategy to encode will be as follows:

procedure General-Query(x)
if CodeOf rϕs pxq “ true then

y Ð CodeOf rF s pxq
if CodeOf rψs pyq “ false then

Target
end if

end if

end procedure

Software model checkers (e.g., Blast [BHJM07]) are then used to decide whether
theTarget statement is executed for at least one value of x when invokingGeneral-
Query(x). If Target is never reached, then the formula (4.2) holds.

In some cases the formula to analyse involves extra parameters, in some cases we
need to resort to approximations, and in some other cases there are also existential
quantifiers in the formula. In the rest of this section we refine this general strategy
for each of the queries in the algorithm.

Query for line 3

For instance, given an action a, the step of line 3 of Algorithm 2 requires an
effective way of deciding the validity of @c. initpcq ñ Dp. Rapc, pq. Consider the
following procedure:

procedure a-disabled-on-init(c : C, p : Z)

2Constructing reachability queries to solve the steps of 1 is an analogous task and is left out of
the presentation.

38 CHAPTER 4. EPA CONSTRUCTION

if CodeOf rinits pcq “ true then

if CodeOf rRas pc, pq “ true then

Target
end if

end if

end procedure

The Target statement is reachable by an execution of this procedure if and
only if: i) there exits a starting configuration c which makes the initial predicate
true; and ii) there exists a parameter p that makes the requires clause of a hold for
the same configuration c. Formally:

Target is reachable ” Dc. pinitpcq ^ Dp. Rapc, pqq

Target is unreachable ” @c. pinitpcq ^ Dp. Rapc, pqq

” @c. initpcq ñ Dp. Rapc, pq

Meaning that the unreachability of the Target statement in the given procedure
is equivalent to the validity of the predicate in line 3 of the algorithm. Following
the discussion in the previous section, if the reachability decision engine is unable to
provide a definite answer, it is interpreted as Target may be reachable, and then
the action a is conservatively not added to the A´ set.

Example 4.4 (Reachability Query for the List). Continuing with the list example
presented in Figure 2.5, we now show how we construct a reachability query in order
to decide if the add action needs to be added to the A´ set.

procedure add-disabled-on-init(l : List, e : int)
if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq then

if l ‰ NULL then

Target
end if

end if

end procedure

Reachability queries like the one presented above require a decision engine to ex-
plore all posible choices for the parameters of the function at hand. In this case, a
decision engine should consider all possible lists l and integer elements i and see if
there is any pair pl, eq such that List-add-query-for-line-3pl, eq forces the execu-
tion to visit the Target statement.

Notice that in this case, a non null list l with a size field set to 0 and a null first
field makes the execution of this procedure reach the Target statement, therefore
the add action is not included in the A´ set.

Query for line 4

The rest of the algorithm is required to decide the validity of similar predicates,
however not every predicate can be solved using a code reachability query, since
reachability can only encode safety properties. For instance, in line 4 of Algorithm 2,
we need to decide the validity of @c. initpcq ñ Dp. Rapc, pq. This can not be encoded
as a safety property since evidence of its validity takes the form of a function that
returns which p makes the requires clause hold for each configuration c.

The strategy we followed to overcome this problem is obtaining a pair of ap-
proximations of the original requires clause of action a: xRa and |Ra. Formally, for

4.3. SOLVING THE ALGORITHM QUERIES 39

every configuration c P C and every parameter p P Z, then xRapc, pq ñ Rapc, pq and

Rapc, pq ñ |Rapc, pq.

Furthermore, each approximation must be rewritten as the conjunction of two
predicates: one ranging over the configuration and another over the parameter.
Formally:

xRapc, pq “ ySRapcq ^ PRappq

|Rapc, pq “ }SRapcq ^ PRappq

As we will show in the following section, it is frequent that the code of Ra

evaluates a condition for the parameter and, independently, a condition over the
configuration. Such cases are easy to handle. Typical cases where condition involves
both parameter and configuration are membership or comparison queries. Usually,
those could be exactly approximated by checking non-emptiness or non-nullity of
substructures of configuration. We further discuss requires clause splitting in the
next section, as well as in Chapter 5.

Moreover, if non-trivial candidate approximations are provided they can be ver-
ified correct. Checking the overapproximation is easy: it boils down to showing
the impossibility of finding a configuration and parameter that satisfies the origi-
nal clause but does not satisfy the overapproximation; which is equivalent to the
Target statement being unreachable in the following procedure:

procedure a-correct-overapproximation(p : Z)
if CodeOf rRas pc, pq “ true then

if CodeOf
”
}SRa

ı
pcq “ false then

Target
end if

end if

end procedure

The case of the underapproximation is a little bit trickier since it also requires
a Skolem function Sk on the configuration for computing a candidate parameter3.
With a Skolem function like that, checking the underapproximation boils down to
verifying that Sk always finds a parameter p such that the configuration and p satisfy
the original requires clause. This is equivalent to the unreachability of the Target
statement in the following procedure:

procedure a-correct-underapproximation()
if CodeOf rRas pc, Skpcqq “ false then

Target
end if

end procedure

Under this scenario, the validity of the sentence in line 4 is implied by @c. initpcq ñ

Dp. xRapc, pq. Since we assume xRa can be split in two parts, this sentence can be

rewritten as Dp. PRappq ^ @c. initpcq ñ ySRapcq. The validity of this conjunction
can be solved using code reachability by means of two separate queries. The first one

3Remember, a Skolem function value “replaces” an existentially quantified variable x in a formula
ϕ. Its parameters are those variables in ϕ which are universally quantified in the scope where x
appears. See [Hod97] for a formal definition.

40 CHAPTER 4. EPA CONSTRUCTION

deals with the first part of the conjunction, and is solved by asking if the Target
statement is reachable in the following procedure:

procedure a-feasible(p : Z)
if CodeOf rPRas ppq “ true then

Target
end if

end procedure

In fact, notice that this query does not depend on the value for the configuration
c. If the Target statement were not reachable, then the a action can never be
executed for any parameter (regardless of the configuration). In the rest of the
paper we will assume that, given an action a, there is always at least one parameter
that makes PRa be true. The second part of the conjunction, namely @c. initpcq ñ
ySRapcq, is solved by a reachability query in this code:

procedure a-enabled-on-init(c : C)
if CodeOf rinits pcq “ true then

if CodeOf
”
ySRa

ı
pcq “ false then

Target
end if

end if

end procedure

Notice that the unreachability of the Target statement is a sufficient condition
to establish that a is enabled on every initial state. Therefore, we add a to the set A`

only if we have conclusive evidence of unreachability. In other cases (i.e., reachability
of Target or uncertain), we conservatively keep A` unchanged.

Query for line 6

To decide the validity of the predicates in the rest of the algorithm, given an
action set A Ď Act and a configuration c, we need to be able to determine whether
predApcq holds. As requires clauses can be weakened and strengthened, we can
calculate a weaker version:

­predApcq
def
ô invpcq ^

ľ

aPA

Dp. PRappq ^ }SRapcq ^
ľ

aRA

`
Dp. PRappq ^ ySRapcq

˘

This can be simplified, since Dp. PRappq is assumed to be true. Therefore, we
can calculate this approximated action set predicate using the following procedure:

procedure Over-Pred-Of-A(c : C)
ret Ð invpcq
for a P A do

if CodeOf
”
}SRa

ı
pcq “ false then

ret Ð false
end if

end for

for a R A do

if CodeOf
”
ySRa

ı
pcq “ true then

ret Ð false
end if

end for

return ret

4.3. SOLVING THE ALGORITHM QUERIES 41

end procedure

Using this action set predicate overapproximation we can decide the validity of
the predicate in line 6 of Algorithm 2 as a code reachability query as follows:

procedure A-is-initial-state(c : C)
if Over-Pred-Of-A(c) “ true then

if CodeOf rinits pcq “ true then

Target
end if

end if

end procedure

If the Target statement is reachable then we add A to the set S0 of initial states.
In ordet to comply with Theorem 4.5, if we are uncertain whether it is reachable or
not, we still add the action set as initial state in the abstraction.

Query for line 12

Following a similar approximation strategy as the one used for line 3, we can
now determine the validity of the check in line 12 of Algorithm 2. Namely, given
labels a, b P Act and an action set A, we need to decide if:

@c, p. predApcq ^ Rapc, pq ñ Dp1. Rb

`
Fapc, pq, p

1
˘

In this case we will use the following logic property:

pqϕñ pψq ñ pϕñ ψq where ϕñ qϕ and pψ ñ ψ

We obtain a logically weaker left-hand side of the implication:

predApcq ^ Rapc, pq ❀
­predApcq ^ PRappq

And a logically stronger right-hand side4:

 Dp1. Rb

`
Fapc, pq, p

1
˘

❀ Dp1. |Rb

`
Fapc, pq, p

1
˘

The validity of which can be modeled by the following procedure:

procedure b-disabled-after-a-from-A(c : C, p : Z, p1 : Z)
if Over-Pred-Of-A(c) “ true then

if CodeOf rPRas ppq “ true then

c1 Ð CodeOf rFas pc, pq

if CodeOf
”
|Rb

ı
pc1, p1q “ true then

Target
end if

end if

end if

end procedure

Notice that in this case, if the Target statement is unreachable then every
instance that satisfies a predA will certainly not enable b after the execution of a.

4Notice that we use the weaker requires clause |Rb, but its negation produces a strengthening
effect.

42 CHAPTER 4. EPA CONSTRUCTION

On the other hand, if Target is reachable, then b is not necessarily enabled after
the execution of a, due to the overapproximations used in the procedure. This is
not a problem, since line 12 is used only as an optimisation. In other words, as
we discussed earlier, not adding labels to B´ does not alter the final result of the
algorithm.

Query for line 13

Similarly, in line 13 of Algorithm 2 we need to decide the validity of:

@c, p. predApcq ^ Rapc, pq ñ Dp1. Rb

`
Fapc, pq, p

1
˘

As in the previous case, we will use a logically weaker left-hand side of the
implication by replacing:

predApcq ^ Rapc, pq ❀
­predApcq ^ PRappq

On the right-hand side of the implication, we obtain a logically stronger formula
by changing:

Dp1. Rb

`
Fapc, pq, p

1
˘

❀
ySRbpFapc, pqq

We construct the following procedure:

procedure b-enabled-after-a-from-A(c : C, p : Z)
if Over-Pred-Of-A(c) “ true then

if CodeOf rPRas ppq “ true then

c1 Ð CodeOf rFas pc, pq

if CodeOf
”
ySRb

ı
pc1q “ false then

Target
end if

end if

end if

end procedure

The unreachability of the Target statement in this query will be enough evi-
dence to indicate that b is always enabled after executing a from a configuration c
which satisfies the action set predicate of A. The action b is therefore added to the
B` set.

If Target is reachable, or if we are uncertain, we conservatively do not add b
to B`.

Query for line 16

Now we focus on the validity check in line 16 of Algorithm 2:

Dc. predApcq ^ Dp. Rapc, pq ^ predB
`
Fapc, pq

˘

In order to comply with Theorem 4.5, if in doubt, the sentence needs to be
accepted as true, so that the then-branch of the if is executed. Therefore, and
in order to translate the validity problem into a reachability query, we will check
the validity of a weaker formula, using the approximations of the requires clauses.
Concretely, we will try to decide the validity of the following sentence:

Dc. ­predApcq ^ Dp. PRappq ^ }SRapcq ^ ­predB
`
Fapc, pq

˘

4.3. SOLVING THE ALGORITHM QUERIES 43

Since a P A, then ­predApcq includes }SRapcq and this sentence is equivalent to:

Dc. ­predApcq ^ Dp. PRappq ^ ­predB
`
Fapc, pq

˘

The validity for this sentence can be derived by the reachability checking on the
following code:

procedure A-to-B-using-a(c : C, p P Z)
if Over-Pred-Of-A(c) “ true then

if CodeOf rPRas ppq “ true then

c1 Ð CodeOf rFas pc, pq
if Over-Pred-Of-B(c1) “ true then

Target
end if

end if

end if

end procedure

In case of unreachability of Target the transition is not added to the result. If
the Target statement is reported to be reachable, the transition is added to the
result. Finally, if the decision engine is uncertain, the transition is still added to the
EPA (it is suffixed with a ? symbol to report this uncertainty), therefore complying
with Theorem 4.5.

Example Run of Algorithm 2

In the rest of this section, we present a step-by-step execution of Algorithm 2
using reachability queries. We consider the action system introduced in the Exam-
ple 3.2.

A´ construction:
First, we construct the A´ set of actions that are necessarily disabled in the

initial state.

add
procedure add-disabled-on-init(l : List, e :
int)

if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq
then

if l ‰ NULL then
Target

end if
end if

end procedure

+
Target is reachable. add R A´

remove
procedure remove-disabled-on-init(l : List)

if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq
then

if l ‰ NULL ^ l.size ą 0 then
Target

end if
end if

end procedure

+
Target is unreachable. remove P A´

destroy

procedure destroy-disabled-on-init(l : List)
if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq

then
if l ‰ NULL then

Target
end if

end if
end procedure

+
Target is reachable. destroy R A´

44 CHAPTER 4. EPA CONSTRUCTION

A´ “ tremoveu

A` construction:
We proceed by constructing the A` set of actions that are necessarily enabled

in the initial state.

add
procedure add-enabled-on-init(l : List)

if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq
then

if pl ‰ NULLq then
Target

end if
end if

end procedure

+
Target is reachable. add R A`

remove

remove is already in A´, it can not be in A` too.

destroy

procedure destroy-enabled-on-init(l : List)
if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq

then
if pl ‰ NULLq then

Target
end if

end if
end procedure

+
Target is reachable. destroy R A`

A` “ H

S0 construction:
Having computed A´ and A` we can construct the set of initial states S0 as

those action sets A that:

1. No action of A is included in A´.

2. Every action in A` is included in A.

3. Have at least one configuration that satisfies both the initial condition of the
action system and the action set predicate of A.

First, we construct the set SC
0 of candidate states that satisfy the first 2 condi-

tions.

SC
0 “

!
H, taddu , tdestroyu , tadd, destroyu

)

We now test the third condition on each of the states in the SC
0 set.

A “ H
procedure Over-Pred-Of-H(l : List)

ret Ð l “ NULL _ l.size ě 0 // list invariant
ret Ð ret ^ pl ‰ NULLq // add is not enabled
ret Ð ret ^ pl ‰ NULL ^ l.size ą 0q // remove is not enabled
ret Ð ret ^ pl ‰ NULLq // destroy is not enabled
return ret

end procedure

procedure H-is-initial-state(l : List)
if Over-Pred-Of-H(l) then

if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq
then

Target
end if

end if
end procedure

+
Target is reachable. H P S0

4.3. SOLVING THE ALGORITHM QUERIES 45

A “ taddu
procedure Over-Pred-Of-taddu(l : List)

ret Ð l “ NULL _ l.size ě 0 // list invariant
ret Ð ret ^ l ‰ NULL // add is enabled
ret Ð ret ^ pl ‰ NULL ^ l.size ą 0q // remove is not enabled
ret Ð ret ^ pl ‰ NULLq // destroy is not enabled
return ret

end procedure

procedure taddu-is-initial-state(l : List)
if Over-Pred-Of-taddu(l) then

if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq
then

Target
end if

end if
end procedure

+
Target is unreachable. taddu R S0

A “ tdestroyu
procedure Over-Pred-Of-tdestroyu(l : List)

ret Ð l “ NULL _ l.size ě 0 // list invariant
ret Ð ret ^ pl ‰ NULLq // add is not enabled
ret Ð ret ^ pl ‰ NULL ^ l.size ą 0q // remove is not enabled
ret Ð ret ^ l ‰ NULL // destroy is enabled
return ret

end procedure

procedure tdestroyu-is-initial-state(l : List)
if Over-Pred-Of-tdestroyu(l) then

if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq
then

Target
end if

end if
end procedure

+
Target is unreachable. tdestroyu R S0

A “ tadd, destroyu
procedure Over-Pred-Of-tadd, destroyu(l : List)

ret Ð l “ NULL _ l.size ě 0 // list invariant
ret Ð ret ^ l ‰ NULL // add is enabled
ret Ð ret ^ pl ‰ NULL ^ l.size ą 0q // remove is not enabled
ret Ð ret ^ l ‰ NULL // destroy is enabled
return ret

end procedure

procedure tadd, destroyu-is-initial-
state(l : List)

if Over-Pred-Of-tadd, destroyu(l) then
if l “ NULL _ pl.size “ 0 ^ l.first “ NULLq

then
Target

end if
end if

end procedure

+
Target is reachable. tadd, destroyu P

S0

S0 “
!
H, tadd, destroyu

)

Exploration from initial states in S0:

Having computed the set of initial states, we initialize a work queue W that will
be used in the exploration phase of the algorithm. Initially,W “ rH, tadd, destroyus

While W is not empty, we extract the head and explore all the enabled actions.

A “ H, W “ rtadd, destroyus

There are no enabled actions in A to explore.

46 CHAPTER 4. EPA CONSTRUCTION

A “ tadd, destroyu , W “ r s

In this case there are 2 enabled actions. We first explore the add action.

• a “ add

B´ construction:

We construct the set B´ of actions that are necessarily disabled after
executing add from the state tadd, destroyu.

˝ add
procedure add-disabled-after-add-from-tadd, destroyu(l :
List, e : int, e1 : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if l1 ‰ NULL then

Target
end if

end if
end procedure

+ Target
is reach-
able. add

R B´

˝ remove
procedure remove-disabled-after-add-from-
tadd, destroyu(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if l1 ‰ NULL ^ l1.size ą 0 then

Target
end if

end if
end procedure

+ Target is
reachable.
remove

R B´

˝ destroy
procedure destroy-disabled-after-add-from-
tadd, destroyu(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if l1 ‰ NULL then

Target
end if

end if
end procedure

+ Target is
reachable.
destroy

R B´

B´ “ H

B` construction:

We now construct the set B` of actions that are necessarily enabled after
executing add from the state tadd, destroyu.

˝ add
procedure add-enabled-after-add-from-
tadd, destroyu(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if pl1 ‰ NULLq then

Target
end if

end if
end procedure

+
Target is reach-
able. add R B`

˝ remove
procedure remove-enabled-after-add-from-
tadd, destroyu(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if pl1 ‰ NULL ^ l1.size ą 0q then

Target
end if

end if
end procedure

+
Target is
reachable.
remove R B`

˝ destroy

4.3. SOLVING THE ALGORITHM QUERIES 47

procedure destroy-enabled-after-add-from-
tadd, destroyu(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if l1 ‰ NULL then

Target
end if

end if
end procedure

+
Target is
reachable.
destroy R B`

B` “ H

Explore candidate states:

Having computed both B´ and B` we can explore all the states SC that
comply with the restrictions imposed by these. In this particular case,
since both sets of restrictions are empty, the set of candidate states will
be complete.

SC “

"
H, taddu , tremoveu , tadd, removeu , tdestroyu ,

tadd, destroyu , tremove, destroyu , tadd, remove, destroyu

*

We consider each candidate state B at a time, trying to determine if A
can advance to B using action a. If a state is reached for the first time,
it is added to the W queue.

˝ B “ H
procedure tadd, destroyu-to-H-using-add(l :
List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if Over-Pred-Of-H(l1) then

Target
end if

end if
end procedure

+
Target is reachable.
H P
δptadd, destroyu , addq

B is already in S, so it is not added to W .

˝ B “ taddu
procedure tadd, destroyu-to-taddu-using-add(l :
List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if Over-Pred-Of-taddu(l1) then

Target
end if

end if
end procedure

+
Target is unreachable.
taddu R
δptadd, destroyu , addq

˝ B “ tremoveu
procedure tadd, destroyu-to-tremoveu-using-
add(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if Over-Pred-Of-tremoveu(l1) then

Target
end if

end if
end procedure

+
Target is unreachable.
tremoveu R
δptadd, destroyu , addq

...

˝ B “ tadd, remove, destroyu

48 CHAPTER 4. EPA CONSTRUCTION

{ }

{add ,

des t roy}

add

{add ,

remove ,

des t roy}

add

Figure 4.1: Partially explored List EPA

procedure tadd, destroyu-to-tadd, remove, destroyu-using-
add(l : List, e : int)

if Over-Pred-Of-tadd, destroyu(l) then
l1 Ð addpl, eq
if Over-Pred-Of-tadd, remove, destroyu(l1) then

Target
end if

end if
end procedure

+ Target is reach-
able.
tadd, remove, destroyu P
δptadd, destroyu , addq

W “ W Y rtadd, remove, destroyus “ rtadd, remove, destroyus

At the end of this step, the algorithm has already explored the add action from
the tadd, destroyu state. The partially explored EPA is depicted in Figure 4.1.

After this point, the algorithm will explore the destroy action from the tadd, destroyu
state, and finally it will explore all the actions enabled in the tadd, remove, destroyu
state. Due to space restrictions, we will not show a step-by-step tracing of the rest
of the execution.

4.4. About the Technique’s Assumptions

In the previous sections we presented results that rely on three assumptions.
We first assume that the class is equipped with an accurate invariant and requires
clauses. We then assume that invariants are accurate. Finally, we assume that
requires clauses can be split. In this section we discuss the impact of violating these
assumptions. We also discuss about requires clauses correctness.

4.4.1. Dealing with Unannotated Classes

The annotation burden is often presented as one of the biggest obstacles in
the adoption of software engineering techniques. In our setting, we need software
artefacts to be equipped with requires clauses as well as invariants.

That said, we envision that these annotations required by our technique can be
automatically inferred. One possibility is to use invariant mining techniques such
as Daikon [EPG`07]. Another option, in the case of requires clauses, would be
to syntactically identify the fragment of the source code that deals with exception
checking and heuristically obtain candidate annotations.

In Chapter 6 we analyse a number of case studies over industrial strength API
implementations that do not explicitly mark requires clauses or invariants.

4.4.2. Violating the Invariant Correctness Assumption

We split the discussion in two scenarios:

a) First, we consider user-provided invariants that are too weak. This means that
the user provided invariant admits instances that are not reachable using the
provided set of actions. In such cases, as a direct consequence the abstract

4.4. ABOUT THE TECHNIQUE’S ASSUMPTIONS 49

state predicates become weaker than they should. Therefore, when constructing
transitions, we will possibly consider concrete class instances that satisfy the
supplied (weak) invariant. As a consequence, extra transitions could appear
since they would use these bogus concrete intances as witnesses.

In this case, the constructed EPA will still be an overapproximated version of
the class behaviour. However, in extreme cases (for instance, when the invariant
is set to true) the resulting EPA could be very different from the one we would
get with a more accurate invariant. This abrupt difference with respect to the
expected result (i.e., one that matches the mental model) can be a hint for the
developer that she needs to provide a refined version of the invariant.

b) Second, the user can provide an incorrect invariant. That is, one that is falsified
by at least one legal instance of the class. By legal instance we refer to an
instance that can be constructed by starting from a valuation satisfying the initial
predicate init and arbitrarily invoking any number of actions whose requires
clauses are satisfied.

For such cases, we provide an experimental feature that checks the validity of
the user-provided invariant on each transition. Extra reachability queries similar
to the ones presented in Section 4.3.2 are used for this purpose. The offending
transitions are then marked with a ˚ in the output, so that the user can realize
that there is a problem with the invariant, and what action triggers it.

4.4.3. Violating the Requires Clauses Splitting Assumption

Regarding the requires clauses splitting problem, based on our observations in
a number of industrial APIs, we present 3 common patterns of requires clauses. In
the following, let x1, . . . , xk be a subset of the parameters and let y1, . . . , ym be a
subset of the API internal variables (or fields).

P1px1, . . . , xkq ^ P2py1, . . . , ymq

An example of this is a push operation for a stack that stores positive numbers.
The requires clause should check that the element being pushed is not negative
(P1) and that the stack is not full (P2). Splitting this kind of requires clauses
is trivial since we set PR as P1 and SR as P2.

P py1, . . . , ymq

This is the case for many actions that take no parameters. An example of this
is the close operation for a file handler. The only requirement is that the file is
open, and there are no parameters. This pattern also appears when the action
takes parameters, but imposes no restriction on them, such as data containers.
Splitting this kind of requires clauses is also trivial, as it is a particular case
of the previous one where P1 is set to true.

P1px1, . . . , xkq ^ P2py1, . . . , ymq ^ xi op yj

This third pattern adds an extra check that involves a comparison of a field
variable and a parameter. An example of this is a login operation that checks
that the given password (as provided by the user in the parameter) matches the
password that is stored in a field. In this example op is the equality operation.

There is no generalised way to split this kind of requires clauses. However,
for the purposes of EPA construction, requires clauses are used to determine
whether actions are enabled or not. Therefore, in such cases, the existential

50 CHAPTER 4. EPA CONSTRUCTION

elimination of the parameter xi can yield a reasonable approximation of the
requires clause. Earlier in Section 4.3.2 we do provide reachability queries that
check if the provided requires clause approximation is sound.

For instance, in the login example, from an enabledness point of view, the
password check is irrelevant. In other words, there is always the possibility
that the user will provide the correct password, therefore the check that the
input password matches the stored password can be dropped.

A similar example arises when the requires clause for an action specifies that
a parameter value has to be part of a collection stored in a field. For instance,
a process operation that takes the key k of an active work item and checks
that k belongs to a stored list of active work items W . In this example, op
is the “belongs” P set operation. From an enabledness perspective, as long as
the active work items set W is not empty, there will always exist a key k that
will enable the process action. Therefore:

Rprocesspkq “ k PW

Can be rewritten as:

xSRprocesspW q “ @k. k PW

|SRprocesspW q “ Dk. k PW

With PRprocesspkq “ true.

There are other patterns, such as multiple parameters xi1 , xi2 being compared
with several fields yj1 , yj2 , yj3 . However, we did not find this kind of situation in
practice.

Nevertheless, we understand this is a limitation in our approach and envision
that we need to support a wider variety of patterns in order for our tool to be
widely usable.

4.4.4. About Requires Clauses Correctness

Our technique does not impose any notion of requires clause correctness. Fur-
thermore, there is no general way to define what requires clauses should describe.
In some cases, requires clauses are set so that no exceptions are thrown (this is the
case in all of the classes evaluated in the next section). In some other cases, the
API uses error codes in the result (e.g., pop returns ´1 if there are no elements) and
requires clauses have to be defined so that these special values are avoided. Finally,
some other APIs are more permissive and fail silently (e.g., push leaves the stack as
is if there is no more room for the new element).

The concept of requires clause is associated with weakest preconditions [Dij75].
We analyse what happens when an action a has a requires clause Ra that does not
imply the weakest precondition of Fa.

Fa could not terminate. Our reachability queries are built in such a way
that the Target statement is always after the call to Fa. Therefore, if Fa

does not terminate, those traces will not be eligible to be used as reachability
witnesses.

Fa could terminate, leaving the system in a possibly inconsistent
state. In this scenario the resulting EPA may present extra a-labeled transi-
tions. The developer could potentially discover these transitions, and then fix
the problems in Ra.

CHAPTER 5

Implementation

In this chapter we discuss the implementation of our EPA construction algo-
rithms. We begin by introducing Contractor, an open-source tool developed as
part of this work. We then evaluate its scalability in a number of real life API
specifications and implementations. Finally, we introduce a series of Contractor
features that were specially designed to assist developers in validation tasks involving
EPAs.

5.1. The Contractor Tool

We implemented Algorithms 1 and 2 as a practical tool named Contractor.
Contractor is open-source and available under a GNU GLP v3 license [GPL07].
The tool, together with all of the case studies discussed in this work is available for
download at:

http://lafhis.dc.uba.ar/contractor

In the rest of this section we present Contractor’s architecture and the de-
tails of how the satisfiability and reachability queries presented in Section 4.3 are
effectively and automatically solved by the tool.

5.1.1. Implementation Notes

From a black-box perspective Contractor takes an action system description
in XML format as input and produces an EPA as output. As we discussed so far,
our approach is valid both when the action system describes an API implemen-
tation or an API specification. Furthermore, APIs can be implemented in various
programming languages, and API specifications have many flavours: first-order logic
pre/postcondition specifications, Event-B [MAV05] or Z [Spi92], to name a few. The
input XML file for a pre/postcondition API specification simply defines each action
as a precondition and a postcondition, as well as giving an invariant and initial con-
dition. On the other hand, the XML file for a C API implementation points to a set
of C files; for each action, it provides the name of the C function that implements its
requires clause, and also the name of the C function that implements its behaviour.

The resulting EPA can also take several forms: from graphical representations
like the ones presented in this work, to machine readable formats that can be fed to
other tools and processes.

51

http://lafhis.dc.uba.ar/contractor

52 CHAPTER 5. IMPLEMENTATION

In order to accommodate the variety of input and output formats we designed
Contractor in a highly modular fashion. Consequently, Contractor imple-
ments both Algorithm 1 and Algorithm 2 but also permits the addition of other
construction algorithms without disrupting the rest of the components.

From an object-oriented design patterns perspective [GJHV95], Contractor
implements the construction algorithms as templates. They stipulate what abstract
tasks to perform and in what order, but not how they are implemented. Exam-
ple abstract tasks are deciding if a pair pa, bq of actions belongs to the enabledness
dependency relation D``, deciding if an action b is necessarily enabled after execut-
ing a from a particular abstract state, etc. This modular design allows us to have
different algorithms and still reuse fragments that they might have in common.

Each input format (e.g., pre/postcondition API specifications, C API implemen-
tations, etc.) knows how to solve these abstract tasks. Therefore, each input format
implements a strategy pattern.

Furthermore, using abstract tasks as the unit of work enabled us to implement a
multi-threaded solution. A single (synchronized) queue stores the tasks that need to
be performed. A number of worker threads take elements from this queue and notify
the queue manager upon completion. Notice that executing one task may produce
new tasks that need to be added to the queue. Such is the case, for example, when
a new abstract state is visited for the first time and prompts a series of task to be
enqueued in order to keep exploring from there.

Input and output are handled via factories that understand how to parse API
specifications or implementations in the supported formats, as well as producing the
desired output file (e.g., XML or PDF).

Overall, Contractor is 3.4 KLOC long, spread over more than 80 Python
modules.

5.1.2. Algorithms Implementation

As we mentioned before, Contractor implements both Algorithm 1 and Algo-
rithm 2. In this section we discuss the implementation details and some variations.
The performance of these implementations is discussed later in Section 5.2.

Construction by Enumeration

When implementing Algorithm 1, we considered two variations.

The EnumD implementation uses the enabledness dependencies information
to prune the set of candidate states, as described in Section 4.1.

The Enum implementation does not compute the enabledness dependencies
and considers every possible abstract state.

The motivation for having an unoptimised version is twofold. First, we wanted
to see the effect of using enabledness dependencies with respect to a baseline imple-
mentation of the enumeration algorithm. Second, in small examples, computing the
dependencies is a relatively big task in comparison with the actual states enumera-
tion and its benefits might not pay off.

Construction by Exploration

For Algorithm 2 we considered three variations:

The Expl`{´ implementation uses the A`/A´ sets in order to prune the
possible destination states as described in Section 4.2.

5.1. THE CONTRACTOR TOOL 53

The ExplD incorporates the enabledness dependencies information when com-
puting the A`/A´ sets. For instance, if the implementation computes that
a P A` and it also knows that pa, bq P D`` then it discovers that b P A` too,
without a need to query the underlying decision engine.

The Expl implementation does not compute the A`/A´ sets. It works as if
A` and A´ are always empty, in other words, it considers every possible state
when exploring.

Finally, the three versions use a caching mechanism to avoid repeatedly asking
the same query to the underlying engine. In particular, we implemented the following
caches, which are always consulted before querying the engine:

Consistent states: stores all the visited abstract states B such that predB in sat-
isfiable.

Inconsistent states: stores all the visited abstract states B such that predB is
unsatisfiable.

5.1.3. Solving Satisfiability Queries

As we discussed in Section 4.3.1, some action systems have a declarative symbolic
representation of the semantics for each action. In such cases, we can solve the
algorithms queries via satisfiability checks in a SMT solver.

Currently, Contractor natively supports CVC3 [BB04] and Yices [DdM06].
The SMT-LIB [RT06] standard language is also supported, so plugging other provers
(such as Z3 [DMB08]) should not be a problem.

Supporting several SMT solvers is important since each prover has its strong
points. Ideally, we would like to automatically combine, for each query, the answers
from different SMT solvers in order to minimise the possibility of having unknown
responses. This is currently work in progress.

5.1.4. Solving Reachability Queries

SMT solvers are powerful and efficient tools. However, they require a declarative
postcondition for each of the actions in the input action system. In many cases this
is an onerous requirement that can not be met. When dealing with API implemen-
tations, such as the Signature, Socket or SMTPProtocol classes in the previous
section, we need an alternative approach that can work directly with their source
code.

For such cases, Section 4.3.2 introduces an operationalisation of the algorithms
based on source code reachability queries. In its current version, Contractor uses
the Blast software model checker to solve these queries.

Blast input is a tuple xP, l, fy where P is a C program, l is a label defined
somewhere in that program and f is the point-of-entry function to that program.
Whenever we show a reachability query in Section 4.3.2, we define:

f as the name of the function (e.g., b-disabled-after-a-from-A),

l “ Target,

and P to be the program composed of the original C code that defines AS
extended with the function f .

54 CHAPTER 5. IMPLEMENTATION

Given a tuple xP, l, fy, Blast tries to find an instantiation for every parameter
of f such that the execution of f using those parameters reaches l in program P . As
we mentioned before, reachability solving is undecidable in general so Blast may
not be successful at finding a parameter valuation that hits l even when it exists. In
any case, Theorem 4.5 guarantees that our result is a safe overapproximation.

The exploration for concrete parameter values is trickier when f has a formal
parameter of a non-primitive type τ (e.g., a C struct). In such scenarios, τ instances
need to comply with an internal invariant Iτ . To the best of our knowledge, there is
no explicit mechanism in Blast to impose an invariant on a complex type. Instead,
if an action a takes a parameter p of type τ , we add Iτ ppq to the requires clause
Ra. Parameters that do not comply with Ra are not considered by the reachability
queries, therefore avoiding malformed instances of τ as witnesses for reachability.
Failing to include Iτ in Ra could imply having extra transitions in the resulting
EPA, which does not compromise its soundness.

The fact that Blast only deals with C code, forced us to analyse programs that
are written in that programming language. When dealing with programs written
in other languages (e.g. the Java Socket implementation) we manually translated
them to C.

We envision that other backends can be added to Contractor. For instance,
instead of using a software model checker, we could have used a verification-based
approach (e.g., [CK05]). We explored such possibility in [ZBdC`11], but this is out
of the scope of this thesis.

Another option would be to use a symbolic execution engine (e.g., [KPV03]).
However, most symbolic execution engines fail to capture the complete behaviour of
a program (e.g., due to loop unrolling). In this scenario, it is harder to guarantee
that EPAs indeed exhibit an overapproximation of the behaviour.

Finally, an alternative approach to solving reachability queries would be to use a
testing-based approach. For each query, we could use a random test-case generator
(e.g., Randoop [PE07]) for a limited time. If at least one of the test-cases reaches
the Target statement, then we would add the transition. If none of the test-
cases hits the Target statement, then there is no guarantee. Instead of obtaining
a behaviour overapproximation, our EPA would feature only a subset of the legal
behaviour, possibly making the user validation process more difficult.

5.2. Quantitative Analysis

In this section we present and analyse how Contractor performs when con-
structing the EPAs details on a series of industrial-strength APIs.

More concretely, we want to answer the following research question:

R.Q. 1: Are the EPA construction algorithms efficient enough to deal with
industrial-strength APIs and provide an answer in a reasonable amount of
time?

We first present the subject APIs we used to answer this research question, and
then elaborate on the results.

5.2.1. Subjects

The APIs to which we applied our implementation can be divided in two groups:
API specifications and API implementations.

5.2. QUANTITATIVE ANALYSIS 55

Predicate complexity (number of boolean operators)
Name # Actions Preconditions Postconditions Invariant
WebFetcher 4 0 8 4
ATM 8 8 16 0
MS-NSS 13 23 30 14
MS-WINSRA 33 120 241 10

Table 5.1: Case studies specification APIs’ size information

Non-whitespace nor comment LOC
Name # Actions API functionality Requires clauses Invariant
List 3 75 8 1
PipedOutputStream 4 90 10 1
Signature 5 83 12 1
ListItr 5 130 26 6
Socket 8 230 25 11
MS-PCCRR 12 251 39 6
SMTPServer 9 85 19 4
SMTPProtocol 16 510 34 1

Table 5.2: Case studies implementation APIs’ size information

Actions with Actions that required
Name Total actions precise splitting approximation
List 3 3 0
PipedOutputStream 4 4 0
Signature 5 5 0
ListItr 5 5 0
Socket 8 8 0
MS-PCCRR 12 9 3
SMTPServer 9 9 0
SMTPProtocol 16 16 0

Table 5.3: Case studies subjects’ requires clauses splitting information

In the first group we have a WebFetcher typestate specification from [DF04], ATM
pre/postcondition specification from [WSCF00] and two Microsoft protocol speci-
fications: .NET NegotiateStream (MS-NSS) [MS-08] and WINS Replication and
Autodiscovery Protocol (MS-WINSRA) [MS-09b].

In the second group we have the PipedOutputStream, Signature, ListItr and
Socket implementations from the Java Development Kit (JDK) 1.4 implementation;
the SMTPServer server-side from the JES Java mail server; the SMTPProtocol client-
side class from the Ristretto protocol-level Java mail client; and the MS-PCCRR

class taken from a C# SpecExplorer protocol model [MS-09a].

In Tables 5.1 and 5.2 we provide additional information regarding the size of the
subject API specifications and implementations, respectively.

Subject APIs were included according to the following criteria: i) APIs that
feature rich restrictions in the order in which the actions must be called; ii) APIs
for which either behaviour documentation or manually-generated behaviour models
can be found; iii) APIs that have already been analysed using techniques comparable
to ours (e.g., [AČMN05, HJM05]); and iv) APIs that are of industrial relevance.

When dealing with API implementations we used the existing run-time checks
from each class’s source code as requires clauses. Table 5.3 presents the information
regarding requires clauses splitting. Almost all the requires clauses could be split
in most of the analised APIs. The exception was the MS-PCCRR class: a few actions
had requires clauses which forced the value of a parameter to be exactly the same
as the value of a class field. Since there is always an assignment to the parameter
which is equal to the value of the field, setting pR and qR to true could be used as
an exact approximation of the original requires clause from an enabledness point of

56 CHAPTER 5. IMPLEMENTATION

Input Executed queries (running time)

#Actions, Name EnumD Enum Expl`{´ ExplD Expl
4, WebFetcher 35 (ă1s) 31 (ă1s) 42 (ă1s) 60 (ă1s) 33 (ă1s)
8, ATM 396 (2s) 535 (1s) 438 (1s) 504 (2s) 597 (2s)
13, MS-NSS 580 (2s) 8454 (23s) 442 (1s) 715 (2s) 8507 (39s)
33, MS-WINSRA (1st) 57300 (5m20s) n/a (ą12h) 102632 (7m38s) 103589 (7m36s) n/a (ą 12h)
33, MS-WINSRA (2nd) 49043 (4m32s) n/a (ą12h) 56993 (3m58s) 57764 (4m01s) n/a (ą12h)
33, MS-WINSRA (3rd) 7226 (43s) n/a (ą12h) 12628 (1m18s) 14517 (1m07s) n/a (ą12h)
4, PipedOutputStream 57 (17s) 56 (10s) 85 (13s) 97 (14s) 67 (11s)
5, Signature 84 (10s) 81 (11s) 127 (15s) 157 (16s) 91 (12s)
5, ListItr 266 (11m17s) 251 (11m11s) 278 (11m36s) 300 (11m23s) 289 (11m59s)
8, Socket (1st) 1992 (8h30m48s) 2012 (8h32m26s) 401 (1h25m43s) 427 (1h24m16s) 1057 (3h03m14s)
8, Socket (2nd) 1980 (8h05m55s) 2000 (8h07m38s) 255 (40m23s) 297 (39m40s) 850 (1h43m03s)
12, MS-PCCRR (1st) 905 (19m38s) 4723 (28m09s) 558 (19m44s) 776 (19m33s) 4867 (35m13s)
12, MS-PCCRR (2nd) 504 (9m11s) 4322 (17m49s) 253 (10m13s) 505 (10m21s) 4337 (21m18s)
9, SMTPServer 273 (42m29s) 434 (42m12s) 461 (47m07s) 470 (46m21s) 482 (45m53s)
16, SMTPProtocol 395 (4m51s) 64644 (53m47s) 979 (10m26s) 882 (8m37s) 65650 (53m48s)

Table 5.4: Executed queries and running times by each implementation

view.

With respect to invariants, we first tried to use a pre-existing one coming from
the literature. This is the case in subjects taken from other research papers, as the
ATM subject.

When no invariant was readily available in the literature, we proceeded by using
true as invariant. This is the case in 5 of our subjects.

Finally, when a true invariant was not enough, we (or an expert reviewer, usually
a colleague) manually generated an invariant based on exploratory execution and
code inspection. This occured in 4 of our subjects.

The invariants for each specific subject are discussed in Sections 6.2 and 6.3.

With respect to the time it took to produce the requires clauses, it is worth
noticing that they were not produced from scratch, but rather identified in the
existing code. While time was not accounted for the requires clauses extraction,
we believe that automating this task is key to lowering the adoption barrier for our
approach.

Finally, there were a few cases in which action parameters had non-primitive
types (i.e., types other than bool or int). There are no a-priori limitations in
our approach with respect to non-primitive parameters. However, in our current
implementation we inherit the limitations of the Blast back-end. As we will present
later on this section, even when Blast does not necessarily specialize in finding
values for complex data types, it has performed reasonably well in all the scenarios
that involved finding such values.

5.2.2. Results

The reported running times were taken from an Intel Core i7 (hyper-threaded
quad-core) computer with 8 GB of RAM. Contractor was executed using 8 worker
threads running in parallel. The raw data used throughout this section is publicly
available in an online spreadsheet located at http://goo.gl/QxCol.

Table 5.4 presents the number of executed queries and the running time for
each of the case studies. It is divided in two sections: API specifications in the
upper half and API implementations in the bottom half. We considered the five
algorithm implementations described in Section 5.1.2 and imposed a timeout of 12
hours. The implementation with the least number of queries is highlighted on each
row. Similarly, the fastest running implementation is also highlighted. Notice that
the fastest implementation is not always the one with the least queries.

http://goo.gl/QxCol

5.2. QUANTITATIVE ANALYSIS 57

 1

 10

 100

 1,000

 10,000

 100,000

W
eb

F
et

ch
er

A
T

M

M
S

−
N

S
S

M
S

−
W

IN
S

R
A

 (
1

st
)

M
S

−
W

IN
S

R
A

 (
2

n
d

)

M
S

−
W

IN
S

R
A

 (
3

rd
)

P
ip

ed
O

u
tp

u
tS

tr
ea

m

S
ig

n
at

u
re

L
is

tI
tr

S
o

ck
et

 (
1

st
)

S
o

ck
et

 (
2

n
d

)

M
S

−
P

C
C

R
R

 (
1

st
)

M
S

−
P

C
C

R
R

 (
2

n
d

)

S
M

T
P

S
er

v
er

S
M

T
P

P
ro

to
co

l

N
u

m
b

er
 o

f
q

u
er

ie
s

(l
o

g
 s

ca
le

) ENUM D

ENUM

EXPL +/−

EXPL D

EXPL

Figure 5.1: Executed queries on each case study

 1

 60

 3,600

W
eb

F
et

ch
er

A
T

M

M
S

−
N

S
S

M
S

−
W

IN
S

R
A

 (
1

st
)

M
S

−
W

IN
S

R
A

 (
2

n
d

)

M
S

−
W

IN
S

R
A

 (
3

rd
)

P
ip

ed
O

u
tp

u
tS

tr
ea

m

S
ig

n
at

u
re

L
is

tI
tr

S
o

ck
et

 (
1

st
)

S
o

ck
et

 (
2

n
d

)

M
S

−
P

C
C

R
R

 (
1

st
)

M
S

−
P

C
C

R
R

 (
2

n
d

)

S
M

T
P

S
er

v
er

S
M

T
P

P
ro

to
co

l

R
u

n
n

in
g

 t
im

e
in

 s
ec

o
n

d
s

(l
o

g
 s

ca
le

) Time out

ENUM D

ENUM

EXPL +/−

EXPL D

EXPL

Figure 5.2: Running time on each case study

Figures 5.1 and 5.2 present a graphical representation of the data in Table 5.4.

We now analyse each of the case studies in detail, starting with the computa-
tionally expensive ones.

In MS-NSS the most effective implementation is Expl`{´. It is closely followed by
both EnumD and ExplD, but these are slower since they compute the enabledness
dependencies. In this particular example, the benefits of having computed these
dependencies do not pay off soon enough, making these two implementations slower.
The unoptimised versions Enum and Expl are significantly slower as they consider
roughly 8000 abstract states, when the reachable fragment in the resulting EPA has
only 10 states.

With 33 actions, the MS-WINSRA case study is the largest in terms of abstract
state space. The unoptimised algorithms fail to explore all the 233 possible action
combinations. The fastest implementation in this case is almost always EnumD.

58 CHAPTER 5. IMPLEMENTATION

This is due to the fact that this example has rich enabledness dependency sets.
For instance, the first version has 656 out of 1056 possible dependencies. Only 105
abstract states comply with these dependencies. On the other hand, the Expl`{´

and ExplD implementations consider roughly 90, 000 states.

In the ListItr case study all the implementations perform similarly in terms of
time and number of queries. This can be explained by the fact that there are almost
no enabledness dependencies in this example; similarly, there are almost no actions
in the A`/A´ sets. The SMTPServer case study presents a very similar situation.

The Socket case study is dominated by the exploration implementations. There
are very few enabledness dependencies (only 22) and rougly 165 actions are included
in A`/A´ sets in the course of the execution. The EnumD implementation is
therefore forced to consider 36 abstract enabledness compliant states, when only 9
are eventually reachable. A similar situation occurs in the MS-PCCRR case study.

In the SMTPProtocol case study, the resulting EPA only features 2 abstract states
(out of 216 possible action combinations). In this context, EnumD quickly discovers
these 2 states, only considering 1 extra compliant state. It therefore becomes the
fastest implementation.

In most of the remaining case studies the Enum and Expl implementations
are the most efficient ones, both in terms of number of queries and running times.
Optimisations such as enabledness dependencies or A`/A´ sets are not free, and
their benefits are realized only in the long run. In small examples these optimisations
are not worth computing, and therefore the unoptimised implementations perform
much better than their more sophisticated counterparts.

Manipulating declarative artefacts such as API specifications is much faster than
dealing with source code. On average each satisfiability query is solved in 46 ms,
while each reachability query takes roughly 1 second.

As we can observe, running times do not only depend on the number of actions,
but also on the size of the abstraction, as can be seen for instance when comparing
the two versions of MS-PCCRR.

It is worth mentioning that the reachable fragments of the EPAs constructed with
Contractor feature significantly fewer states than the complete 2|Act | enabledness-
based state space. For instance, the ListItr EPA has 7 states out of 32; the second
MS-PCCRR EPA has 10 states out of 4096.

Finally, the engine certainty was very high in all of the analysed case studies. This
is remarkably high for the CVC3 and Blast tools. Specially considering that most of
the analysed subjects were relevant APIs already studied in previous work [WSCF00,
DF04, AČMN05, HJM05, DKM`10].

As an overall conclusion to the quantitative data analysed in this section, we
understand that ExplD dominates on the largest code examples, and is competitive
everywhere else, followed closely by Expl`{´. This indicates that if we had to
support a single algorithm (or decide on a default one for our tool) we would pick
ExplD.

The enumeration-based algorithms were quite competitive on most cases, but
proved to be significantly slower than their exploration counterparts in specific cases
such as Socket or the ATM.

5.3. Validation Support Features

In this section we present a number of Contractor features designed to assist
developers or reviewers in the task of validating software artefacts using EPAs.

5.3. VALIDATION SUPPORT FEATURES 59

5.3.1. Automatic Detection of Suspicious EPA Elements

The first set of features is related to the list of validation guidelines that we
discuss later on in Section 6.4. Some of these guidelines refer to structural properties
of the EPAs that can be automatically analysed. For instance, detecting the presence
of a deadlock state in an EPA is straightforward: We simply check for the existence
of a state whose action set is empty.

In particular, the current version of Contractor implements the following
structural detection features:

Detection of missing actions. We check the EPA to see if there exists an action
a P Act that is not enabled in any abstract state.

Detection of enabled actions with missing transitions. This is the case when
the EPA features a reachable abstract state A and an action a P A has no
outgoing transitions from that state.

This occurs, for instance, in pre/postcondition specifications in which the post-
condition for A is semantically equivalent to false. In such cases, no outgoing
transition can ever be found since the action is not executable.

In any of these cases, Contractor will issue a warning in order to inform the
user.

5.3.2. EPA Exploration Features

As we discuss later in Chapter 6 some EPAs can become too large to handle
without proper tool support. In those cases, our experience indicates that guided
exploration can help us tame the scale of the resulting abstraction.

In particular, in the context of A. Tcach’s M.Sc. thesis [Tca10], we designed and
implemented an EPA exploration extension for Contractor.

Figure 5.3: The Contractor explorer in action on the MS-NSS protocol

Figure 5.3 presents a screenshot of this extension. As we can see, the user is
presented with two windows. On the left, the main window displays the action
system details. The right window presents a graphical representation of the EPA.

60 CHAPTER 5. IMPLEMENTATION

The tool provides two exploration modes. In the concrete exploration mode the
user starts from one of the initial abstract states. For each step, the user picks one
of the enabled actions in the current state, together with concrete parameters for
it. The graphical representation on the right highlights the current state, while the
main window shows the exploration history. At any moment the user can undo or
redo her steps.

In the symbolic exploration mode the user constructs a parameterless trace on
the EPA. Notice that such trace not only prescribes the actions to be performed on
the action system, but also the desired abstract destination states. The tool checks
if the given trace is feasible. In other words, it tries to find concrete parameters for
each action in the trace.

The reader is referred to [Tca10] for the implementation details of these ex-
ploration modes. Currently, due to limited support from the underlying decision
engines, only API specifications can be explored.

5.3.3. Refining the EPA States

In our experience, grouping concrete instances according to the actions that they
enable provides a good compromise between abstraction size and precision. However,
in many cases the resulting abstraction is too coarse and rather uninformative.

For instance, let’s consider the singly-linked list implementation first presented
in Figure 2.5. The EPA helped in identifying a problem in the remove operation,
but it is not precise enough to let a reviewer identify if elements are added at the
beginning or the end of the list.

Contractor provides a feature to extend action systems with extra predi-
cates [dCBGU12b]. These predicates are used, together with the requires clauses,
when partitioning the abstract state space.

For instance, we can add an extra predicate to the action system:

evenFirst
def
“ l != null && l´>size > 0 && l´>first´>data % 2 == 0.

This predicate states that the list is not empty and that its first element is even.
When executing contractor on the extended action system extended with the

evenFirst predicate, we obtain the EPA depicted in Figure 5.4.

{ }

{add ,

des t roy}

des t roy

add

{add ,

remove ,

des t roy}

evenFirst

add

{add ,

remove ,

des t roy}

add

des t roy

add

remove

add

remove

remove

des t roy

add

remove

remove

remove

add

Figure 5.4: EPA for the singly-linked list with extra predicate

Notice how this EPA is richer than the original EPA presented in Figure 2.6.
In particular, the abstract state tadd,remove,destroyu evenFirst groups non-empty lists

5.3. VALIDATION SUPPORT FEATURES 61

whose first element is even. On the other hand tadd,remove,destroyu groups non-empty
lists whose first element is odd. These two states are not interconnected via add

labels. This means that whenever we add an element, the parity of the list head is
not affected. As a consequence, we infer that elements must probably be added on
the tail of the list. On the other hand, these states are interconnected via remove

labels, so removing elements is certainly performed on the head of the list.
In [dCBGU12b] we present a walk-through example of state refinements via extra

predicates.
From an implementation perspective, predicates are treated as non-executable

actions. This allows us to reuse all the machinery that we had for actions (enabled-
ness dependencies, state predicates, etc.) without disrupting the rest of the tool
internals.

5.3.4. Refining the EPA Transitions

In the previous section we discussed how sometimes adjusting the EPA abstract
states may help the reviewer discover new interesting facts about the API under
analysis. An analogous situation occurs when an action appears in several transitions
and the reviewer may wish to further refine these to get a better understanding.

Let’s revisit the singly-linked list example with the extra predicates. We dis-
cussed how the two states characterising non-empty lists where connected by means
of remove transitions. However, they also present looping remove transitions of
their own.

Using extra status predicates we can refine the remove operation to distinguish
two cases: an odd element is being removed (retVal % 2 != 0) or an even element
is being removed (retVal % 2 == 0)

{ }

{add ,

des t roy}

des t roy

add

{add ,

remove ,

des t roy}

evenFirst

add

{add ,

remove ,

des t roy}

add

des t roy

add

remove / even

add

remove / even

remove / even

des t roy

add

remove / odd

remove / odd

add

remove / odd

Figure 5.5: EPA for the singly-linked list with extra predicates and refined remove

action

The refined EPA is presented in Figure 5.5. This feature, reminiscent of Mealy
machines [HMU07], and its application to support validation are further discussed
in [dCBGU12b].

Part III

Empirical Evaluation and

Experiences

63

CHAPTER 6

Validation using EPAs

In this chapter we comment on some of the aspects involved in the validation of
our approach. In particular, we aim to answer the following research question:

R.Q. 2: Is the enabledness level of abstraction useful for validating software
artefacts and identifying findings that relate to bugs in code and problems
in expected or documented requirements?

Notice that this research question deliberately omits the problems that arise
when actually constructing EPAs: scalability, uncertainty in providing answers to
the algorithms queries as these aspects were already discussed in the previous chapter
when we answered R.Q. 1.

That said, in this chapter we focus in providing evidence that supports our
claim that EPAs are a valuable aid during manual inspection/validation tasks. We
first present a series of case studies in which EPAs were used to uncover interesting
findings such as bugs, inconsistencies or undocumented behaviour. We also motivate
the selection criteria for these subjects. We then dive into the findings discovered
when using the EPAs as validation companions. We close this chapter presenting a
series of guidelines that can assist developers/reviewers that want to use EPAs as
validation aids.

The validation of our approach is continued in the next chapter, where we pose
complementary research questions that evaluate how expressive and understandable
EPAs are.

6.1. Experimental Setting

In order to answer the previous research question we conducted a series of case
studies using each of the APIs presented in Section 5.2.1. These case studies were
conducted using the following design. First, we obtain an enabledness-preserving
abstraction for each API under analysis. Separately, behaviour requirements are
procured. They may be manually generated by a third-party or derived from existing
documentation.

Then, an expert reviewer compares the enabledness-preserving model with the
behaviour requirements, yielding a list of suspicious differences between them. We
will refer to these as findings. Finally, leveraging the binding that state predicates

65

66 CHAPTER 6. VALIDATION USING EPAS

create between EPA transitions and states with fragments of the original artefact
such as requires clauses, each finding is manually tracked back to the original artefact
in order to confirm it is non spurious.

The behaviour requirements, which were compared to the enabledness-preserving
abstractions, were obtained as follows. The WebFetcher EPA was compared against
its original typestate introduced in [DF04]. The ATM EPA was compared against
its statechart presented in [WSCF00]. Both the MS-NSS and MS-WINSRA protocols
were compared against the informal diagrams presented in their respective official
technical documentation [MS-08, MS-09b]. The PipedOutputStream EPA was com-
pared against the official Java documentation (Javadoc). The Signature EPA was
compared against the class Javadoc and against a manually-generated model made
available by Dallmeier et al. [DKM`10]. The ListItr EPA was compared against a
manually-generated model, which was constructed by a senior Java developer. The
Socket EPA was compared against the class Javadoc and an inferred restriction re-
ported in [HJM05]. The MS-PCCRR EPA was compared against the reviewer’s under-
standing of the protocol since the C# SpecExplorer model was undocumented. The
SMTPServer and SMTPProtocol EPAs were compared against a manually-generated
model made available by Dallmeier et al. [DKM`10], as well as the SMTP Protocol
RFC1.

6.2. Findings in API Specifications

6.2.1. WebFetcher

The purpose of this case study was to compare the enabledness-preserving ab-
stractions automatically constructed by our approach with manually constructed
abstractions aimed at static-time reasoning about programs. We considered a case
study presented in [DF04] which extends the notion of typestates for object oriented
languages: a class modelling a web page fetcher. The class provides methods to set
the target URL, to open and close the connection and to fetch data, as described in
Figure 6.1.

WebFetcher
variable site string
variable cxn socket

inv site ‰ null ^ pcxn ‰ null ñ cxn.state “ openq
start site ‰ null ^ cxn “ null

action setSite(string s)
pre s ‰ null ^ cxn “ null post site 1 “ s

action open()

pre cxn “ null post cxn 1 ‰ null ^ cxn 1.state “ open

action close()

pre cxn ‰ null post cxn 1 “ null

action getPage()

pre cxn ‰ null post true

Figure 6.1: Specification of a web page fetcher

From the specification in Figure 6.1 we derived an action system and automat-
ically constructed the EPA depicted in Figure 6.2. The states, the transitions (as
depicted in the diagram) and the state predicates (as computed according to Def-

1http://www.faqs.org/rfcs/rfc821.html

http://www.faqs.org/rfcs/rfc821.html

6.2. FINDINGS IN API SPECIFICATIONS 67

{se tS i te ,

o p e n }

se tS i t e

{close,

fe tch}

open

close

fetch

Figure 6.2: EPA for the web page fetcher

inition 3.5) that our technique produces coincide with the manually constructed
typestate FSM diagram shown in [DF04].

The results of this case study support the conjecture that enabledness-preservation
provides an abstraction level that is close to the level at which developers find con-
venient to describe protocols and API expected usage. In addition, the case study
provides some indication that the automated EPA construction technique here pre-
sented could be used to produce typestates, in the sense of [DF04], automatically
from specifications.

6.2.2. ATM

In this case study, our aim was to apply our approach to validate an existing
contract specification produced by a third party. We took the ATM case study
described in [WSCF00] where a statechart [Har87] model is inferred from scenarios
and pre/post conditions for actions appearing in them. The resulting statechart
can simulate the scenarios and has an invariant for each of its states based on the
pre/post conditions of actions.

ATM
variable cardIn, cardHalfway , passwdGiven boolean
variable card card
variable passwd int

inv true
start cardIn ^ cardHalfway ^ passwdGiven ^ card “ null ^ passwd “ 0

action insertCard(card c)
pre c ‰ null ^ cardIn post cardIn 1 ^ card 1 “ c

action enterPassword(int p)
pre p ‰ 0 ^ passwdGiven post passwdGiven 1 ^ passwd 1 “ p

action takeCard()

pre cardHalfway post cardHalfway 1 ^ cardIn 1

action displayMainScreen()

pre cardHalfway ^ cardIn post true

action requestPassword()

pre passwdGiven post true

action ejectCard()

pre cardIn post cardIn 1 ^ cardHalfway 1 ^ card 1 “ null ^ passwd 1 “ 0

action requestTakeCard()

pre cardHalfway post true

action canceledMessage()

pre cardIn post true

Figure 6.3: Specification of an ATM (extracted from [WSCF00])

Using the pre/post specification in Figure 6.3 we derived an action system and
obtained the EPA in Figure 6.4. Notice that [WSCF00] also provides a series of

68 CHAPTER 6. VALIDATION USING EPAS

scenarios for the ATM. We did not use these scenarios while constructing the EPA.

{inser tCard,

en te rPassword ,

displayMainScreen,

reques tPassword}

displayMainScreen

reques tPassword
{en te rPassword ,

reques tPassword ,

ejectCard,

canceledMessage}inser tCard

{inser tCard,

displayMainScreen}

en te rPassword

reques tPassword

canceledMessage

{ejectCard,

canceledMessage}

en te rPassword

{inser tCard,

en te rPassword ,

takeCard,

reques tPassword ,

requestTakeCard}

ejectCard

displayMainScreen

inser tCardcanceledMessage

{inser tCard,

takeCard,

requestTakeCard}

ejectCard

takeCard

reques tPassword

requestTakeCard

en te rPassword

{en te rPassword ,

takeCard,

reques tPassword ,

ejectCard,

requestTakeCard,

canceledMessage}

inser tCard

takeCardrequestTakeCard

{takeCard ,

ejectCard,

requestTakeCard,

canceledMessage}

inser tCard

takeCard

ejectCard

reques tPassword

requestTakeCard

canceledMessage

en te rPassword

takeCard

ejectCard

requestTakeCard

canceledMessage

Figure 6.4: EPA for the ATM

We then compared the EPA with the statechart provided in Figure 11 of [WSCF00]
with respect to simulation [Mil80]. As a result, we found that the following trace
is valid in the statechart, but not valid in the EPA: displayMainScreen, insertCard,
requestPassword, enterPassword, canceledMessage, ejectCard, requestTakeCard, takeCard,

displayMainScreen, insertCard, requestPassword.

Analysis of the execution of the trace on both models, showed that while the
takeCard action in the statechart led back to its initial state, this did not occur
in the EPA. Based on this observation, we compared the state predicates reached
by the execution up to takeCard in the EPA and the statechart. We found that
they differed on the acceptable values for the passwdGiven system variable. In
the predicate for the EPA state, passwdGiven is required to be true, while in the
predicate for the statechart state, passwdGiven is required to be false. Further
analysis shows that takeCard’s postcondition in Figure 6.3 does not update the
passwdGiven system variable to false. The impact of this omission is that, according
to the pre/post specification in Figure 6.3, the ATM never returns to a state where
it can accept a new password to be entered because it already has one. In addition,
it shows that the synthesis algorithm in [WSCF00] does not guarantee preservation
of postconditions in the synthesised statechart.

In summary, the construction of an EPA from the pre/post specification of an
ATM in [WSCF00] supported uncovering errors in the specification and problems
with the actual synthesis algorithm therein proposed.

6.2.3. .NET NegotiateStream Protocol

The aim of this case study was twofold. On one hand, we intended to validate
the utility of the approach in aiding the construction of pre/post condition-based
specifications. The hypothesis was that by using behaviour models early in the
development of the specification, bugs can be detected and guidance on how to fix
them can be obtained. On the other hand, we aimed at validating whether the
approach can support identifying problems in real specifications.

Using the quality process and model-based testing approach described in [GKM`08b]
as a starting point, we selected a Microsoft protocol specification currently under
revision: The MS-NSS protocol [MS-08] conceived for the negotiation of credentials
between a client and a server over a TCP stream.

6.2. FINDINGS IN API SPECIFICATIONS 69

The protocol has two phases: i) a negotiation phase in which client and server
exchange security tokens using the GSS-API [Lin93] and ii) a data transfer phase
in which actual data is transmitted according to the negotiated standards.

Basically, the negotiation phase starts with the client sending a security token to
the server including a requested security level (e.g., encryption and/or signature).
The server processes this token and sends an answer to the client, which processes
it and sends back another answer. This process is repeated while the token that
they send each other is a continuation token and is finished usually when one of the
following situations takes place:

An error message is sent by either the client or the server, in which case the
client may try again or terminate the negotiation.

The server sends an acceptance token indicating to the client the end of the
first phase (a security mechanism like Kerberos may have been sucessfully
negotiated). This token includes the final protection level, which could be
weaker than the required by the client.

Once the data transfer phase begins, the client can exchange data with the server.
Data exchange requires framing when signature and/or encryption are implied by
the negotiated protection level. As in the negotiation phase, the data exchange
phase can result in an error in which case the communication is usually terminated.

The experimental setup for this case study (which can be seen diagrammatically
in Figure 6.5) was as follows. First, a person completely unfamiliar with the protocol
but experienced in writing pre/post condition-based specifications read the publicly
available technical documentation describing the protocol [MS-08]. Then, the same
person wrote a formal specification for the protocol validating the protocol against
the document. Once the protocol’s specification was completed, an engineer from
our team with experience in protocol validation analysed its EPA in order to validate
the specification and the protocol tecnical documentation.

Protocol

technical

documenta t ion

na tu ra l

l anguage

+ d iagrams

formal

l anguage

ext rac t ion

Specification

EPA

Construct ion

Process

FSM

EPA

feedback

1)

2) . . .

3) validation

Suspicious

behaviour

check for

er rors

Figure 6.5: Experimental setup for the MS-NSS case study

The protocol’s technical documentation is structured natural language descrip-
tion containing two auxiliary state machines. The documentation states that the

70 CHAPTER 6. VALIDATION USING EPAS

natural language description is to be considered the normative specification of the
protocol while the state machines are simply references for the reader.

The inferred protocol specification included a set of controllable and observable
actions appearing in the technical documentation of the client side of the proto-
col. Only the information provided in natural language was used as a source for
the specification. For instance, Figure 6.6 depicts a natural language fragment of
the original technical document, together with its specification translation. It is
worth mentioning that models developed in [MS-08] include server and client-side
requirements since the main goal of the QA project is to check protocol techni-
cal documentation compliance against Windows products. For our experiment, the
modeller only referred to the client-side specification section of the document.

“If the gss init sec context function returns an error code, then the client
MUST create a HandshakeError message, placing the returned error code in the
AuthPayload of the messages as described in section 2.2.1.”

action sndError()

pre tcpConnection ^ handShakeState “ Proccessed ^ gssReturned “ Error
post phandShakeState’ “ NotStarted ^ tcpConnection’q _ phandShakeState’ “

Error ^ tcpConnection’q

Figure 6.6: MS-NSS documentation fragment and corresponding translation

During the specification development process the modeller iteratively constructed
EPAs in order to use them as an aid to eliminate bugs and typos from the specifi-
cation being developed. The EPA was analysed using: i) inspection techniques, ii)
simulating scenarios appearing in the protocol specification document, iii) checking
for bisimilarity of the EPA against the auxiliary client side state machine of the
protocol specification document, and iv) composing the EPA in parallel with the
the server side auxiliary state machine of the protocol specification document. Such
analyses uncovered inconsistencies in the specification-under-development such as a
client trying to send a token before having produced it, or a client receiving responses
to messages that had never been sent to the server. As a result of the construction
effort, a number of under-specified aspects were identified in the protocol’s technical
documentation (these were documented and modelled as non- deterministic actions
in the specification).

The validation of the final specification and, indirectly, of the protocol technical
documentation was performed by the experienced engineer. Most of the validation
was done by inspection, guided by the enabledness-preserving abstraction (Fig.6.7)
and the modeller’s expertise, going into the detail of the specification and finally the
protocol technical documentation if needed.

As a result of this final validation by the experienced engineer, three kinds of
issues arose. First, two questions regarding the behaviour of the client were raised.
These issues point to potential problems in the protocol technical documentation:

In abstract state tcloseTCP,rcvDone,rcvErroru of the EPA, the client has just sent a
message to the server indicating that the negotiation phase is over (sndDone).
However, at this point the server could potentially reply with a continuation
token (rcvInProgess), which the client cannot accept in that abstract state.
From the document it is not clear what should happen to this continuation
token.

Abstract states tsndError,closeTCPu, tcloseTCP,rcvDone,rcvErroru and tcloseTCP,rcvInProgress,rcvDone,rcvErroru
have outgoing transitions with error labels that go to both the initial and the

6.2. FINDINGS IN API SPECIFICATIONS 71

{openTCP}
{closeTCP,

gssIni tSec}

openTCP { }

closeTCP

{closeTCP,

sndInProgress}

gssInitSec

{closeTCP,

sndError}

gssInitSec

{closeTCP,

sndDone}

gssInitSec

closeTCP

{closeTCP,

rcvInProgress,

rcvDone,

rcvError}

sndInProgress

sndError

closeTCP

sndError

closeTCP

{closeTCP,

rcvDone,

rcvError}

sndDone

rcvInProgress

rcvError

closeTCP

rcvError

{closeTCP,

sndDa ta ,

rcvData}

rcvDone

{closeTCP,

rcvFData,

sndFDa ta}

rcvDone

rcvError

closeTCP

rcvError

rcvDone

rcvDone

closeTCP

sndDa ta

rcvData

closeTCP

rcvFData

sndFData

rcvFData

sndFData

Figure 6.7: EPA for the NegotiateStream protocol

deadlock state. This non-determinism reflects underspecified behaviour de-
scribed in the protocol specification document. However, this underspecifica-
tion seems to be problematic as an implementation could decide unilaterally
whether to (return to the initial state and) try to reuse the connection despite
the error or to deadlock and require the user to restart with a new protocol
instance. However, the server side does not seem to be prepared for such a
non-deterministic choice on the client side.

Second, an inconsistency between the natural language specification of the client
behaviour and the state machine of the protocol specification document describing
the server behaviour was identified: The EPA for the client constructed automati-
cally from the protocol’s specification composed in parallel with the state machine
for the server leads to a deadlock. A trace to the deadlock, raises the following
question:

The EPA shows that the specification allows a client to receive rcvDone with-
out ever sending a sndDone message. This implies that the server may unilat-
erally decide to enter the data transfer phase, which leads to a deadlock. Why
is the client not sending a sndDone message before being allowed to receive
rcvDone?

Note that, in fact, the inferred formal specification and hence the natural lan-
guage specification for the client is consistent with the natural language description
for the server (which is the normative part of the technical documentation), hence
the issue raised above actually shows a discrepancy between text specification and
diagrammatic-aid of the server side in the protocol technical documentation.

Finally, inspection of the EPA and comparison against the auxiliary client side
state machine of the protocol technical documentation helped find some discrepan-
cies between the textual description and the diagrammatic aid for the client side:

72 CHAPTER 6. VALIDATION USING EPAS

In the state machine of the protocol technical documentation, action sndError

goes to a state in which the client waits for a message from the server. However,
the EPA shows that after this event the client should either terminate the
connection or retry the whole phase. The EPA is consistent with the protocol
technical documentation text.

Analogously to sndError, when the state machine of the protocol technical
documentation for the client side receives rcvError, the client must wait.
However, the EPA, in agreement with the protocol technical documentation
text, shows that this is not the case.

Some of the issues reported above, for version 2.0 of the protocol technical doc-
umentation that was available at the time, were subsequently corrected in version
3.0 of the document. This shows that the issues identified were not only real but
also relevant enough to warrant correction.

In summary, in this case study, the automated construction of an EPA for an
industrial strength document aided significantly in: i) correcting and elaborating
a formal specification of the protocol, in ii) identifying relevant problems in the
pre-existing real natural language (and auxiliary diagrammatic) protocol technical
documentation, and iii) in automatically constructing a diagrammatic aide which is
sound with respect to the protocol technical documentation (as opposed to manually
generated diagrams that have inconsistencies with the normative description of the
protocol).

On a final note, it is worth mentioning that the EPA in Figure 6.7 featured
almost the same level of abstraction as the state machines in the protocol technical
documentation. The main differences were that the EPA has more states and tran-
sitions because it models local GSS-API calls explicitly and distinguishes encrypted
and plain data transmissions. This similarity in abstraction level is not only rele-
vant because it allows validations based on bisimulation and parallel composition of
artifact but also because it supports the conjecture that enabledness-preservation
provides an intuitive abstraction level that is close to the level at which developers
describe protocols and API expected usage.

6.2.4. WINS Replication and Autodiscovery Protocol

The purpose of this case study was to analyse the limitations of our approach
that arise from dealing with a large industrial strength contract specification. These
difficulties are mainly divided in two categories: scalability of the construction al-
gorithm in terms of time and memory consumption and feasibility of validating the
output EPA which has the potential of having billions of states. Scalability concerns
were discussed in Section 5.2; we discuss the validation feasibility next.

We chose another Microsoft protocol specification, in this case the one for the
“WINS Replication and Autodiscovery Protocol” [MS-09b]. This protocol, also
known as WINSRA, governs the process by which a set of name servers discover
each other and share their records in order to keep an up-to-date vision of the name
mappings.

A name server can have two different roles when interacting with other servers.
It can be in pull replication mode, in which, from time to time, the server asks its
partners whether they have something new, and then fetches the differences between
its own name mapping and that of its partners. Or it can be in push replication
mode, in which it informs its partners that there is some new information that they
need to be aware of, so they can fetch it.

On a pull replication round, a name server goes through the following actions:

6.2. FINDINGS IN API SPECIFICATIONS 73

1. It initiates network traffic, indicating the replication mode with initiateTrafficPull.

2. It establishes an association with its partner using associationStartRequestControlSuccess.
Once the request is sent it awaits for an associationStartResponseObserve

response.

3. Once the association is set up it requests a mapping indicating which are the
maximum and minimum version numbers for each server having name records
owned by its partner with ownerVersionMapRequestControlSuccess. It then
waits for its partner to send this mapping via ownerVersionMapResponseObserve.

4. Once it has the versions mapping it calculates which name records it needs to
update and proceeds to request them one by one with successive nameRecordsRequestControlSuccess
Each of these messages has its corresponding nameRecordsResponseObserve.

5. Finally, when there are no more name records that need to be requested, it
finishes its association by sending associationStopRequestControlSuccess.

The push replication round is symmetrical:

1. The round starts with traffic initiation, which is performed with initiateTrafficPush.

2. Once the traffic has been initiated, the name server waits for its partner to con-
nect and send an association start request with associationStartRequestObserve.
Once received, this request is answered with an associationStartResponseControlSuccess.

3. An updateNotificationControl action happens in which the partner is sent
the mapping (as if it had been requested).

4. The name server expects its partner to ask for name records with nameRecordsRequestObserve.
Each of these record requests is responded with nameRecordsResponseControlSuccess.

5. Finally, a disconnection from the partner is expected with associationStopRequestObserve.

Notice that this brief description of the WINSRA protocol is simplified for the
sake of presentation. The actual protocol deals with the fact that each participant
can switch between the push and pull roles in particular situations, as well as being
able to act as both pull and push partner at the same time. There also exists
the possibility for the pull partner to act in “data verification” mode, which adds
complexity.

The case study was conducted as follows (refer to Figure 6.8 for a diagrammatic
representation of the process): The initial documentation available was, as with the
previous case study, a publicly available protocol specification document [MS-09b]
including a normative natural language description of the protocol together with
diagrammatic aids in the form of state machines, and a SpecExplorer [CGN`05]
model of the protocol. The SpecExplorer model had been created by a different
team than the one that developed the protocol specification.

We used the SpecExplorer model as the basis for constructing a protocol spec-
ification in the form of an action system that could be input to our approach. A
systematic translation procedure was used for translating the SpecExplorer model
into a specification: a variable was created for each of the SpecExplorer model
variables and one action for each method in the SpecExplorer model. For action’s
requires clauses we used the requires clauses of the SpecExplorer model and for
functions of each action we performed manual strongest postcondition calculus.

Notice that the SpecExplorer model is 2500 lines long, featuring a class with
16 fields some of which are complex data types such as maps and sets. This class

74 CHAPTER 6. VALIDATION USING EPAS

describes 33 actions, which are composed of the aforementioned events, together with
special variants used in special cases. For instance, NameRecordsResponseControlDisconnect
is used when the obtained name record was the last one and the partner proceeds
to disconnect.

Surprinsingly, the action system invariant for this specification was almost trivial
as it only required to indicate that an integer value used as a count was never
negative.

Protocol

technical

documenta t ion

na tu ra l

l anguage

+ d iagrams

C#-like

l anguageconstruct ion

SpecExplorer

model

formal

l anguaget rans la t ion

Specification

EPA

Construct ion

Process

FSM

EPA

1)

2) . . .

3)
validation

Suspicious

behaviour

check for

er rors

Figure 6.8: Experimental setup for the WINSRA case study

We obtained an EPA protocol specification obtained by translating the SpecEx-
plorer model. This initial abstraction featured 60 states and 642 transitions. Various
standard finite state machine analysis techniques such as hiding and minimisation
were needed to handle an abstraction that had, in its initial version, 20 times more
transitions than the MS-NSS protocol.

Similarly to the MS-NSS protocol case study, an iterative process was enacted
in which first the protocol specification was used to produce an EPA for validation.
Second, the resulting abstraction was analysed and a list of issues that were thought
to be suspicious was generated. This list was then validated against the SpecExplorer
model and the protocol technical documentation. Errors detected in the specification
or in the SpecExplorer model were subsequently corrected and an EPA generated
again.

We now reproduce parts of the validation process that led to detecting flaws in:

1. The specification with respect to the SpecExplorer model.

2. The SpecExplorer model with respect to the WINSRA technical documenta-
tion.

3. The WINSRA technical documentation with respect to the intended protocol
behaviour.

From the first version of the EPA, our impression was that there was something
wrong with the specification: the natural language protocol description did not seem
to be describing a protocol with such a rich number of modes that would lead to a
60-state abstraction. In other words, it did not seem to be a case that the protocol

6.2. FINDINGS IN API SPECIFICATIONS 75

action associationStartRequestControlSuccess()

pre . . . ^
`
passociation “ None ^ persistent “ Noq _ passociation “ Pull ^

replicationType “ Pushq _ passociation “ Push ^ replicationType ‰ Pushq _
association ‰ Both

˘

post protocolState’ “ AssociationStartRequestControl

Figure 6.9: Buggy specification for association start request (fragment)

actions could legally be combined in 60 different ways. We decided to inspect the
states closest to the initial one in order to see if we could identify clues as to why
the specification produced so many states and transitions.

The first issue that we found is that the action setupInitialization, which
is supposed to be called once, appeared in a looping transition (i.e., a transition
that has the same source and target states). We discovered that the SpecExplorer
model’s requires clause for this method was too weak with respect to the original
protocol specification document. Having fixed the model and the specification, we
obtained a new EPA, but the amount of states and transitions remained almost the
same.

The next step was to discover that there was a state very close to the initial one
that had more than 60 incoming transitions. Such a high fan-in was a warning sign.
We observed that the actions available in that state were initiateTrafficPull,
initiateTrafficPush and initiateTrafficDataVerify2. We revisited the pro-
tocol technical documentation and discovered that the protocol allows partners to
establish persistent associations that last along several replication rounds. This per-
sistent behaviour is modelled by calling traffic initiation actions in advanced stages
of the protocol. In the SpecExplorer model this was allowed by letting any of the
traffic initiation actions occur at any time. This was too permissive, since it is not
true that a new persistent round can be initiated at any time. According to the
technical documentation this is not intended to happen until a replication round is
over.

Correcting this issue in the model (and, by translation, in the specification)
involved modifying the requires clause of the three traffic initiation methods. After
this change, the EPA had 54 states and 467 transitions.

We further analysed the EPA states nearest to the initial one and found that,
even having fixed the traffic initiation process, the association start request and
observe actions were creating another high fan-in state (of about 30 incoming tran-
sitions). We carefully inspected the requires clauses for those methods in the
SpecExporer model and found two errors:

1. The requires clauses for these methods enumerate a series of conditions as
the one in Figure 6.9. This was suspicious, since a valuation with values
association “ Pull and replicationType “ No would be accepted, even when it
is clear that replicationType is not Push. The conditions were in fact wrong,
and corrected by replacing the conjunctions with logical implications and the
disjunctions by conjunctions.

2. The requires clauses for these methods were lacking a condition over the
variable protocolState which is used throughout the protocol life to indicate in
which stage the protocol currently is in (This is basically achieved by keeping
record of which was the last received or sent message). A correction was
introduced by indicating that in order to start an association (or observe an

2initiateTrafficDataVerify is used for a scheduled data verification process that is similar to
the standard pull replication process.

76 CHAPTER 6. VALIDATION USING EPAS

association request) the previous action must have been a traffic initiation and
the one before that a setup initialisation action.

Having corrected this issues in the model and in the specification we obtained an
EPA with 38 states and 233 transitions, which is roughly half the size than before.
The following is a list of errors that we found using the EPA in this iteration:

The setupInitialization action may go to a state with no enabled actions.
This was caused by a weak action system invariant, which did not account
for the fact that whenever the system was not initialised, then a boolean
variable was necessarily fixed to be false (more precisely, isSetupInitializedñ
 replicationOn). This was corrected.

The requires clauses for the traffic initiation methods were allowing the server
to persistently associate in push mode with a partner and then re-establish
communication taking the pull role. This was corrected by making available
of the traffic initiation methods in the case of the protocol beginning, in which
we have not yet taken a role. Successive calls to traffic initiation methods are
restricted in order to allow them only if we keep the role we already had. The
SpecExplorer model and the resulting specification were corrected.

The updateNotificationObserve action may go to a state in which the only
available action is to end the association. This is not correct since when the
push partner is telling that there is something new, then the following action
is a name records request. This anomalous behaviour was due to an error
in the specification translation from the SpecExplorer model. In particular,
the updateNotificationObserve action may leave a variable that indicates
how many name records have to be requested with value 0 and this was too
permissive.

During the validation process, we identified a number of suspicious behaviours
in the EPA that turned out to be perfectly acceptable behaviour. These cases
correspond to when our understanding of the technical document was incomplete
or incorrect and do not highlight neither errors in the technical document, nor the
SpecExplorer model, nor the translated specification. However, they do show that
validation using EPAs can help in understanding complex protocol specifications.
Some of the issues that led us to gain a better understanding of the protocol were:

After the association has been just established, name records can be requested
even when the owner version map has not yet been requested. This appeared
to be incorrect, but we checked the technical documentation and this was
possible when the protocol was in data verification mode.

Once we get the owner version map we can directly disconnect. This also
appeared to be incorrect, but in fact it is not. This can happen if the owner
version map that we get indicates that the partner has nothing to offer us. In
that case we can not ask for name records.

In this case study the automated construction of an EPA was helpful in: i) cor-
recting and elaborating a formal specification of the protocol, and in ii) identifying
relevant problems in pre-existing industrial formal models of the protocol specifi-
cation. The case study showed that large EPAs are still amenable to analysis and
helpful in finding problems in software development artifacts.

6.3. FINDINGS IN API IMPLEMENTATIONS 77

{connec t ,

flush,

close}

flush

close

{wr i t e ,

flush,

close}

connec t

flush

wr i t e

{f lush,

close}

close

flush

close

Figure 6.10: EPA of JDK 1.4 PipedOutputStream

6.3. Findings in API Implementations

6.3.1. Java PipedOutputStream

The PipedOutputStream is an implementation of an output stream that can be
connected to a piped input stream to create a communications pipe. The piped
output stream is the sending end of the pipe. More precisely, an instance of the
PipedOutputStream class can engage in 4 different actions:

connect(PipedInputStream snk) connects the PipedOutputStream to the
reader side.

write(byte b) outputs the given byte and makes it available to the reader
side.

flush() notifies the reader side of the data availability in the pipe.

close() ends the connection with the reader side.

We constructed an action system using the JDK 1.4 implementation of the
PipedOutputStream. For the requires clauses we manually extracted the code frag-
ments which contain the necessary conditions to avoid exceptions being thrown
when executing methods of the class. It was trivial to split these requires clauses
into two parts, as required by our approach, because none of them depended both
on parameters and class attributes. Finally, we used true as the system invariant.

The model in Figure 6.10 is the EPA we obtained for the PipedOutputStream.
This abstraction is an accurate representation of the Java official documentation. For
instance, the Javadoc for the connect method says that “if this object is already
connected to some other piped input stream, an IOException is thrown.”. This
is reflected in the EPA as the connect action is unavailable once a connection is
established.

The documentation for the close method reads that after closure the “stream
may no longer be used for writing”. This is reflected in the close transition from
state twrite, flush, closeu to tflush, closeu, since the latter does not allow to
perform the write operation.

More interestingly, the abstraction of Figure 6.10 shows a close loop transition
on the initial state, which contradicts the Java documentation since it allows the
following trace: close ❀ connect ❀ write, which exhibits the use of the writing
operation after the pipe was closed. The expert reviewer analysed if this trace was
legal in two ways: i) by exercising this trace to see if it threw an exception; and ii) by
analysing the JDK implementation to see if there was any additional condition which
might make the closure of a non-connected buffer throw an exception. The reviewer
found that, despite the documentation says otherwise, the closure of unconnected
piped output streams is legal.

78 CHAPTER 6. VALIDATION USING EPAS

{initVerify,

initSign}

{initVerify,

initSign,

verify,

u p d a t e }
initVerify {initVerify,

initSign,

sign,

u p d a t e }
initSign

initVerify

u p d a t e

verify

initSign

initVerify

initSign

sign

u p d a t e

Figure 6.11: EPA of JDK 1.4 Signature

6.3.2. Java Signature

The Java Signature class is used to provide applications the functionality of a
digital signature algorithm. There are three phases to the use of a Signature object
for either signing data or verifying a signature: i) Initialization, with either a public
key, which initializes for verification, or a private key, which initializes for signing;
ii) Updating, which updates the bytes to be signed or verified; and iii) Signing or
verifying a signature on all updated bytes.

initSign(PrivateKey privateKey) initializes the Signature object in sign-
ing mode. The data to be signed is initialized to an empty byte array.

initVerify(PublicKey publicKey) initializes the Signature object in sig-
nature verification mode.

update(byte[] b) updates the data to be signed.

sign() returns a cryptographic signature for the data given by the last update
command, if any.

verify(byte[] signature) checks the cryptographic signature given in the
parameter.

As with the previous class, we constructed an action system from the JDK 1.4
implementation of the Signature class. We defined the requires clauses with the
adequate manually extracted code fragments. We set the system invariant as true.

The model in Figure 6.11 is the EPA we obtained for Signature. This EPA
was exactly the same as the manual model presented in [DKM`10]. This model
clearly represents how an instance of Signature can only be in 3 different states:
uninitialized, initialized for signing or initialized for signature verification. After
checking the source code, the reviewer found that the implementation stores this
information in an integer variable named state, which takes values from the set
tUNINITIALIZED, SIGN, VERIFYu.

Our abstraction also proved to be a faithful representation of both the manually-
generated model presented in [DKM`10] (see Figure 6.12), as well as of the restric-
tions imposed by the official Java documentation.

6.3.3. Java List Iterator

The Java List Iterator (ListItr) provides functionality to go through the ele-
ments stored in a List. It is initialized passing both the target list and the initial

6.3. FINDINGS IN API IMPLEMENTATIONS 79

S t a r t N0
init

N1
initVerify

N2
initSign

e x
sign

u p d a t e

verify

initVerify

verify

u p d a t e

initSign

sign

initVerify
initSign

sign

u p d a t e

verify

Figure 6.12: Manually generated model of JDK 1.4 Signature (extracted
from [DKM`10]). init indicates the constructor, while ex is an error state reached
when exceptions are thrown

{LI_prev,

LI_add}

LI_add?

{LI_next,

LI_rem,

LI_prev,

LI_set,

LI_add}

LI_prev

{LI_next,

LI_rem,

LI_set,

LI_add}

LI_prev

{LI_next,

LI_prev,

LI_add}

LI_add?

LI_next

LI_prev

LI_prev

{LI_rem,

LI_prev,

LI_set,

LI_add}

LI_next

{LI_next,

LI_add} LI_add?

LI_next

LI_next

{LI_add}

LI_add

LI_rem

LI_rem

LI_add?

LI_next

LI_prev

LI_set

LI_prev

LI_next

LI_add?

LI_rem

LI_rem

LI_next
LI_set

LI_next

LI_rem

LI_add?

LI_rem

LI_prev

LI_prev

LI_set?

Figure 6.13: EPA of JDK 1.4 ListItr

index from which the iteration begins. The available actions on a ListItr object
are:

next() retrieves the following element, unless the end of the list has been
reached.

prev() retrieves the previous element, unless the iteratior points to the begin-
ning of the list.

add(object o) inserts an new element in the current position.

rem() removes the last retrieved element. Therefore, it is enabled only after
next() or prev() have been invoked.

set(object o) replaces the last retrieved element for the given o. Just like
rem(), it is only enabled after the execution of next() or prev().

We created an action system using the JDK 1.4 Java List Iterator implementa-
tion. The requires clauses where defined using manually extracted fragments of code
so that no exception was thrown. The system invariant was manually generated and
it included restrictions such as:

80 CHAPTER 6. VALIDATION USING EPAS

The current size of the ArrayList does not exceed its capacity.

The cursor used by the iterator is in the range of the array.

The last returned element by the iterator is either: a) undefined; or b) next
to the cursor.

The abstraction of Figure 6.13 is the EPA for the ListItr class. Every state in
it represents an interesting situation to which an iterator can evolve. There are 4
initial states:

taddu. We are iterating over an empty list since adding is the only available
operation.

tnext, addu. The prev operation is disabled, so the cursor is at the beginning
of the list. The set and rem operations are also disabled, so this means that
an element has not been just retrieved. The next operation is enabled, so the
list is not empty.

tprev, addu. Similar to the previous state, but since prev is enabled and next

is not, the cursor is pointing at the end.

tnext, prev, addu. The set and rem operations are disabled, so there has not
been a retrieved element. Since both prev and next are enabled, the cursor is
pointing at a position in the middle of a list.

The rest of the states are similar to the states we already introduced. The only
difference between them is that an element has just been returned, so the rem and
set operations are also enabled.

Notice that some of the transitions in this EPA are suffixed with a “?” symbol.
As we explained in Section 4.3 we use this notation when the underlying decision
engine (e.g., the reachability query solver) returns an uncertain answer.

A senior Java applications developer with more than 8 years of experience (in-
cluding experience with formal models) manually generated a behaviour model,
shown in Figure 6.14, by analysing the JDK implementation for the list iterator.
During this creation process, the developer executed a number of usage scenarios to
refine his understanding of the code.

When comparing this manually-generated model with the EPA, an expert re-
viewer (which was not the same person as the developer who manually created the
model) discovered that the overall level of abstraction of the manually-constructed
model was comparable to that of enabledness: more than half of the states in the
manually-generated model were present in the EPA. Furthermore, there were 2 states
in the manually-generated model which were enabledness-equivalent. This is because
the developer decided to separately consider the cases in which the iterated list had
exactly one element. Finally, there were 3 states in the manually-generated model
which were not traceable to states in the EPA. When further analysing these states,
the expert reviewer discovered that they were exhibiting spurious behaviour and
were accidentally introduced by the developer, due to his misunderstanding of the
requirements.

6.3.4. Java Socket

A Java Socket provides the client-side functionality to establish a TCP connec-
tion between two hosts. A Socket can engage in the following actions:

6.3. FINDINGS IN API IMPLEMENTATIONS 81

1

2

ListI t r(ndx) [ndx=0, s ize>1]

3

ListItr(ndx) [ndx=size-1]4

ListI t r (ndx) [0 < ndx < s ize-1, s ize > 1]

5

ListI t r(ndx) [ndx=0, s ize=1]

6

ListI t r(ndx) [ndx=0, s ize=0]

add

8

n e x t

ERROR

prev

add

7

n e x t

9

prev

add

next [cur=s ize-1]

prev [cur=1]

next [cur < s ize-1]prev [cur>1]

add

1 0

n e x t

prev

add

next , p rev , remove

remove

remove

prev

1 1

add

n e x t

remove [s ize>2]

add

remove [s ize=2]

n e x t

1 3

prev

remove [cur=size-2]

remove [cur<size-2]add

next [cur=s ize-2]

prev [cur=1]

next [cur < s ize-2]prev [cur>1]

remove

add

1 2

prev

n e x t

prev

add

n e x t

add

remove

n e x t

prev

remove [s ize=2]add

remove [s ize>2]

n e x t

prev

Figure 6.14: Manually generated ListItr behaviour model

bind(SocketAddress bindpoint) establishes the local address (particularly,
local port) of the client socket.

connect(SocketAddress endpoint, int timeout) establishes a connection
with a remote server socket.

getOutputStream() and getInputStream() return the streams on which the
client can send and receive from the server, respectively.

shutdownOutput() and shutdownInput() close the sending and receiving
streams, respectively.

close() ends the connection with the server.

We constructed an action system for this class such that the system invariant
restricts that the port value is in range (from 0 to 65535), and that the fields marking
the shutdown state of each stream (either input or output) actually reflect the state of
the streams. From this action system, we obtained the EPA depicted in Figure 6.15.

This first abstraction provides evidence on how the bind operation may be
omitted before a call to connect, since they both eventually lead to the state

82 CHAPTER 6. VALIDATION USING EPAS

{connec t ,

bind,

close}

bind

connec t

{connec t ,

close}bind

{close}

close

connec t

{ge t Inpu tS t r eam,

ge tOu tpu tS t r eam,

close,

shu tdownInpu t ,

s h u t d o w n O u t p u t }
connec t

{ g e t O u t p u t S t r e a m ,

close,

s h u t d o w n O u t p u t }

connec t

{close,

s h u t d o w n O u t p u t }

connec t

{ge t Inpu tS t r eam,

close,

shu tdownInpu t}
connec t

{close,

shu tdownInpu t}

connec t

{close,

shu tdownInpu t ,

s h u t d o w n O u t p u t }

connec t

connec t

close

connec t

connec t

connec t

connec t

connec t

connec t

close

close

ge t Inpu tS t r eam

g e t O u t p u t S t r e a m

shu tdownInpu t

s h u t d o w n O u t p u t

close

s h u t d o w n O u t p u t

g e t O u t p u t S t r e a m

close

s h u t d o w n O u t p u t

close

shu tdownInpu t

ge t Inpu tS t r eam

shu tdownInpu t

close

close

shu tdownInpu t

s h u t d o w n O u t p u t

Figure 6.15: First EPA of JDK 1.4 Socket

tgetInputStream,getOutputStream,close,shutdownInput,shutdownOutputu. This is not clearly stated
in the Java official documentation for this class.

Furthermore, this EPA shows 2 suspicious elements:

The connect operation from the initial state advances to several different
states, some of which do not allow sending to and/or receiving from the server.
This is not the expected behaviour, since a fresh connection should not block
any of these actions.

Furthermore, some states enable the shutdownInput action, even when getInputStream
is disabled. A similar situation happens with shutdownOutput and getOutputStream.

A closer inspection of the Socket class reveals that both of these problems were
due to a weak action set predicate of the tconnect, bind, closeu and tconnect, closeu
abstract states. The boolean variables that store whether the sending and receiving
streams are closed are always false since the Socket creation. However, this restric-

6.3. FINDINGS IN API IMPLEMENTATIONS 83

{connec t ,

bind,

close}

{connec t ,

close}

bind

{close}

close

connec t

{ge t Inpu tS t r eam,

ge tOu tpu tS t r eam,

close,

shu tdownInpu t ,

s h u t d o w n O u t p u t }

connec t

close

connec t

connec t
close

close

g e t O u t p u t S t r e a m

ge t Inpu tS t r eam

{ge t Inpu tS t r eam,

close,

shu tdownInpu t}

s h u t d o w n O u t p u t

{ g e t O u t p u t S t r e a m ,

close,

s h u t d o w n O u t p u t }

shu tdownInpu t

close

shu tdownInpu tge t Inpu tS t r eam

close

s h u t d o w n O u t p u t

g e t O u t p u t S t r e a m

Figure 6.16: Final EPA of JDK 1.4 Socket

tion is not valid in all of the Socket states, particularly after either shutdownInput
or shutdownOutput have been executed.

In order to deal with this pseudoinvariant which holds on some of the abstract
states, we added a feature to our tool, which allows the user to specify properties
which are specific to some of the abstract states.

We then added a restriction that encodes that the variables that keep track of
the sending and receiving streams are closed in the tconnect, bind, closeu and
tconnect, closeu abstract states. This new version produced the EPA in Fig-
ure 6.16.

This second abstraction shows how once the connection is established both send-
ing and receiving are enabled. Each of these actions is disabled after its corre-
sponding shut-down operation. The same restriction is obtained by [HJM05], but it
requires the user to add six predicates to keep track of the state.

6.3.5. PCCR Framework

The Peer Content Caching and Retrieval (PCCR) [MS-09a] system is a P2P-
based distribution framework designed to reduce bandwidth consumption in wide
area networks. The key feature is that it allows clients to retrieve content from
distributed caches when available, instead of content servers which are generally
located remotely. In order to increase the local availability of content, clients also
serve as caches.

This framework is defined by two protocols, one of which (MS-PCCRR) is used for
querying the server for the availability of certain content and retrieving it.

Based on the quality process, model-based testing approach described in [GKSB11],
an expert reviewer analysed the program that defines the SpecExplorer model used
to guide the testing process of the protocol’s client side. In a few words, a SpecEx-
plorer model is a C# class consisting of methods that are interpreted as guarded

84 CHAPTER 6. VALIDATION USING EPAS

rules defining a rich action machine. These rules are used to stimulate the system
under testing and check its answers. In this case, the model program could be
regarded as an abstract implementation of the server side.

Concretely, the MS-PCCRR protocol model defines the following actions:

GetSutPlatform(SutPlatform sutPlatform) establishes which operating sys-
tem runs on the client to be tested.

InitSut(bool isTestingNegotiation) initializes the client to be tested, pro-
viding a parameter that indicates if the negotiation phase of the SUT is being
tested.

RcvNegoReq() indicates that the server has received a message with the pro-
tocol versions supported by the client.

SndNegoResp() is the same as the previous one, but the message is sent by
the server.

RcvGetBlkList() indicates that the server has received a message requesting
the hashes for set of blocks which the client is interested in.

SndBlkList(bool isTimerExpire, bool isSameSegment, bool isWellFormed,

bool isOverlap) makes the server send the hashes for the requested blocks
it possesses to the client.

SndBlkListAb(bool isTimerExpire, bool isSameSegment, bool isWellFormed,

bool isOverlap) is the same as the previous one, but with a response indi-
cating the request was not consistent.

RcvGetBlk(uint index) indicates that the server has received a request for
a particular block, indicated by its hash.

SndBlk(ContentType cType, bool isTimerExpire, bool isSameSegment,

bool isWellFormed, uint index) is the action by which the server sends the
requested block to the client.

Where the Snd-prefixed actions are those that correspond to messages controlled
by the program, while the rest of the actions correspond to messages that the pro-
gram monitors.

It is worth mentioning that there are no ordering restrictions between the re-
quests that come from the client once the connection has been established. For
example, a client may first ask for the supported versions of the server, then for the
list of packages and finally decide not to download anything. Another client may
directly ask for a specific package without even asking for the package list.

The program also has the following control actions, which are communications
with the client under test that are not defined in the protocol documentation. These
are used to control the progress of the testing process itself:

TriggerSutDwnld(ContentType cType) makes the client under test request
a download of the given kind to the server.

SutTimeOut() indicates that the client has timed out.

SutVerifyBlk(ContentType cType, uint index) verifies that the client has
correctly received the requested block.

6.3. FINDINGS IN API IMPLEMENTATIONS 85

{GetSutP la t fo rm}

{In i tSu t}

GetSutPla t form

{SndMsgNegoResp,

TriggerSutDwnld}

Ini tSut

{TriggerSutDwnld}

Ini tSut

{RcvMsgNegoReq,

SndMsgNegoResp,

RcvMsgGetBlkList,

RcvMsgGetBlk,

SutTimeOut}

TriggerSutDwnld

SndMsgNegoResp

{RcvMsgNegoReq,

RcvMsgGetBlkList,

RcvMsgGetBlk,

SutTimeOut}

TriggerSutDwnld

SndMsgNegoResp

{SndMsgNegoResp}

RcvMsgNegoReq

SutTimeOut

{SndMsgNegoResp,

SndMsgBlkList}

RcvMsgGetBlkList

{SndMsgNegoResp,

SndMsgBlk}

RcvMsgGetBlk

{SndMsgNegoResp,

SndMsgBlkListAb}

RcvMsgGetBlkList

RcvMsgNegoReq

{ }

SutTimeOut

{SndMsgBlk}

RcvMsgGetBlk

{SndMsgBlkList}

RcvMsgGetBlkList

{SndMsgBlkListAb}

RcvMsgGetBlkList

SndMsgNegoResp

SndMsgNegoResp

SndMsgNegoResp

SndMsgBlkList
SndMsgNegoResp

{SndMsgNegoResp,

SutVerifyBlk}

SndMsgBlk

SndMsgNegoResp

SndMsgBlkListAb

{SutVerifyBlk}

SndMsgBlk

SndMsgBlkList SndMsgBlkListAb

SndMsgNegoResp

SutVerifyBlk

SutVerifyBlk

SutVerifyBlk

SutVerifyBlk

Figure 6.17: First EPA of the MS-PCCRR server side

86 CHAPTER 6. VALIDATION USING EPAS

We created an action system based on the C# class, using the guards for the
SpecExplorer rules as requires clauses. In this case we needed to relax 3 preconditions
by hand in order to comply with the requisite of split preconditions. Some of the
requires clauses in the original model had constraints over parameters and model
variables, however these could be simplified by asumming worst-case fixed values
for fields. For instance p ď f where p is parameter and f is field can be safely
dropped since there is always going to exist such a p (in particular p “ f satisfies
the constraint). In order to keep code safe, the p ď f restriction was then moved
to the actual action code. The relaxed preconditions were checked correct using the
approach described in Section 4.3.2.

The original C# class had a series of enum fields. The C version turns each enum

field into an int field. The system invariant for the PCCRR class imposes restrictions
so that these int fields are actually in range.

The first EPA we obtained, which had 16 states, can be seen in Figure 6.17. It
was relatively big but still much smaller that the model with 844 states produced
by SpecExplorer during an exploration of the MS-PCCRR state space. The reviewer
analysed this abstraction and found that starting from the initial state the InitSut
initialisation action showed non-deterministic behaviour, as it can evolve to states
tTriggerSutClientDownloadu and tSendMsgNegoResp,TriggerSutClientDownloadu.

The expert reviewer checked the code for the cause of non-determinism on
InitSut and discovered that it is an action with a single boolean parameter called
isTestingNegotiation, which is stored in a boolean field named isTestingNego.
The reviewer then searched for other appearances of the isTestingNego field and
found that when it this true then a negotiation response the SndNegoResp action is
enabled. In the EPA depicted in Figure 6.17, this issue is manifested as the quasi-
partition of the states into two sets which are only connected by 2 transitions. states
tSendMsgNegoRespu and tReceiveMsgNegoReq,ReceiveMsgGetBlkList,ReceiveMsgGetBlk,SutClientReceivingTimeOutu.
A negotiation response action is always enabled in one of the model fragments and
always disabled in the other. Furthermore, this is the only difference between these
sets.

This issue appears to be a case of a weak dispatch condition of the SndNegoResp
action, which might result in the generation of test cases where the program behaves
differently than the client under test is expecting.

In order to get a better understanding of the model code, we decided to fix the
platform to be not Windows-based, getting the abstraction in Figure 6.18.

We then modified the original code, eliminating the isTestingNego field, getting
an abstraction featuring 10 states. This second abstraction allowed the reviewer to
find another unknown issue in the program: an operation SutTimeOut which should
only be triggered when the client is idle has a weak requires clause which could lead
to false positives if the action is executed with a package still on-the-fly. This second
abstraction also reflected the fact that, once the connection is established, there are
no ordering restrictions between the messages that the client may send.

6.3.6. SMTP Server

The SMTPServer class is a Java implementation of an SMTP protocol server
extracted from Java Email Server (JES) 3.

ehlo(string hostname) is used by the client to indicate that it wishes to use
the extended SMTP protocol. The client hostname is provided, so that the
SMTP server can decided if it will relay e-mail for that domain.

3http://www.ericdaugherty.com/java/mailserver

http://www.ericdaugherty.com/java/mailserver

6.3. FINDINGS IN API IMPLEMENTATIONS 87

{GetSutP la t fo rm} {In i tSu t}
GetSutPla t form

{TriggerSutDwnld}
Ini tSut

{RcvMsgNegoReq,

RcvMsgGetBlkList,

RcvMsgGetBlk,

SutTimeOut}

TriggerSutDwnld

{SndMsgNegoResp}
RcvMsgNegoReq

{ }

SutTimeOut

{SndMsgBlk}

RcvMsgGetBlk

{SndMsgBlkList}

RcvMsgGetBlkList

{SndMsgBlkListAb}

RcvMsgGetBlkList

SndMsgNegoResp

{SutVerifyBlk}
SndMsgBlk

SndMsgBlkList

SndMsgBlkListAb

SutVerifyBlk

SutVerifyBlk

Figure 6.18: Second EPA of the MS-PCCRR server side (eliminated the isTestingNego
field)

mail() indicates that the client wishes to send a new e-mail.

rcpt(Address a) is invoked for each of the recipients that the client needs to
add as recipients for the newly created e-mail.

data(byte[] data) is used to indicate the actual contents of the e-mail. It
can be invoked when at least one recipient was already provided.

verify(Address a) is used to check if a given e-mail address is served by this
SMTP server.

rset() is a clean-up operation to restore the server back to the initial state.

noop() is an empty command used to keep alive the connection.

We derived an action system from this class, using the requires clauses as ex-
tracted from the runtime checks on each method. As with the previous class, the
system invariant imposes a restriction over a translated enum field so that it is in
range. We then obtained the EPA in Figure 6.19.

We found two anomalies in the EPA:

1. After a mail command (tvrfy,noop,rset,ehlo,mailu Ñ tvrfy,noop,rset,ehlo,rcptu), a
noop operation does not behave like it should, since it makes the EPA evolve
to another abstract state. This non-empty behaviour for the noop operation
is against the SMTP protocol standard.

2. After a data command (tvrfy,noop,rset,ehlo,rcpt,datau Ñ tvrfy,noop,rset,ehlou), we
should be able to send a new email using the mail command. However, the
EPA shows that this implementation requires the client to first call another
command such as noop or rset in order to go back to the initial state.

Taking a closer look at the STMPServer source code, we found that it uses a
variable to store the name of the last invoked command. Storing noop as the last

88 CHAPTER 6. VALIDATION USING EPAS

{vrfy,

noop,

r se t ,

ehlo,

mail}

vrfy

ehlo

noop

r s e t

mail

{vrfy,

noop,

r se t ,

ehlo,

r cp t}

mail

r s e t

rcp t
{vrfy,

noop,

r se t ,

ehlo,

rcpt ,

d a t a }

rcp t

{vrfy,

noop,

r se t ,

ehlo,

mail,

r cp t}

ehlo

vrfy

noop

r s e t
rcp t

vrfy

ehlo

noop

{vrfy,

noop,

r se t ,

eh lo}

d a t a

r s e t

mail

rcp t

rcp t

rcp t

vrfy

mail

ehlo

noop

vrfy

r s e t

noop

ehlo

vrfy

noop

ehlo

Figure 6.19: EPA for SMTP protocol server class

invoked command is clearly a bad implementation strategy, since the server loses
track of whichever command was executed before that. This problem was causing
the first problem described above.

On top of this, the second problem is caused by an omission in the requires clause
of the mail command, which causes the operation to remain disabled when data is
the last executed command.

6.3.7. SMTP Client

The SMTPProtocol class is a Java implementation of an SMTP protocol client
extracted from the Ristretto Java mail client4.

Using this class we created an action system. The requires clauses were set
according to the run-time checks found in the first lines of each method. The system
invariant imposes a restriction on a translated enum field. We obtained the EPA
in Figure 6.20.

When compared to the manually-generated model in [DKM`10] (see Figure 6.21)
the reviewer discovered that the constructed EPA was much more permissive. In
particular, the manually-generated model reflected a number of method ordering
restrictions, such as requiring mails to be initiated (mail) before recipients could be
added (rcpt).

On the other hand, the EPA does not impose ordering restrictions to any com-
mand, as long as the connection with the server is established. This lack of re-
strictions in the EPA is caused by the fact that the SMTPProtocol implementation
only keeps track of a single variable which indicates if the client is connected or
not. When the client is connected, the implementation acts as a pass-through of
the user requests to the server and delegates the enforcement of invocation ordering
restrictions to the server.

The manually-generated model was indeed constructed by considering the be-
haviour that emerges when connecting the SMTPProtocol instance to a well behaving
SMTP server (i.e., a server that complies with the ESMTP standard [KFR`95]).

4http://ostatic.com/ristretto

http://ostatic.com/ristretto

6.3. FINDINGS IN API IMPLEMENTATIONS 89

{openPor t ,

startTLS,

rcpt ,

quit ,

r e se t ,

verify,

authReceive,

a u t h S e n d ,

dropConnect ion}

authReceive

qui t

openPor t

verify

rcp t

star tTLS

r e s e t

a u t h S e n d

dropConnection

{openPor t ,

startTLS,

ehlo,

helo,

a u t h ,

mail,

rcpt ,

d a t a ,

quit ,

r e se t ,

verify,

expand ,

noop,

authReceive,

a u t h S e n d ,

dropConnect ion}

openPor t

s tar tTLS

openPor t

helo

ehlo

mail

qu i t

a u t h

rcp t

d a t a

r e s e t

verify

noop

a u t h S e n d

e x p a n d

dropConnection

star tTLS

openPor t

ehlo

helo

a u t h

mail

rcp t

d a t a

r e s e t

verify

e x p a n d

noop

authReceive

a u t h S e n d

Figure 6.20: EPA for SMTP protocol client class

S t a r t N0
init

dropConnection

N1

openPor t
e x

ehlo

helo

a u t h

mail

rcp t

d a t a

qui t

r e s e t

verify

e x p a n d

noop

authReceive

a u t h S e n d

dropConnection

qui t

openPor t

ehlo

helo

noop

authReceive

a u t h S e n d

r e s e t

N2

mail

N3
a u t h

rcp t

d a t a

dropConnection

qui t

r e s e t

d a t a

openPor t

rcp t

ehlo

helo

noop

authReceive

a u t h S e n d

a u t h

mail

verify

e x p a n d

dropConnection

qui t

openPor t

ehlo

helo

verify

e x p a n d

r e s e t

authReceive

a u t h S e n d

N4

mail

a u t h

rcp t

d a t a

dropConnection

qui t

openPor t

r e s e t

d a t a

rcp t

ehlo

helo

noop

authReceive

a u t h S e n d

a u t h

mail

verify

e x p a n d

Figure 6.21: Manually generated model for SMTP protocol client class (extracted
from [DKM`10])

Should the client connect to an SMTP server that does not follow the protocol
standard, then the behaviour would significantly differ.

90 CHAPTER 6. VALIDATION USING EPAS

The pass-through behaviour that the EPA unveils can quickly help an expert
reviewer realize that the SMTPProtocol implementation does indeed have a design
flaw, since it heavily relies on the server being correctly implemented. This depen-
dence is not reflected in the manually-generated model.

6.4. EPA Validation Guidelines

Based on our experience in various real-life software such as the ones introduced
so far, we now present a series of guidelines that developers can use as heuristics
that aid identification of “suspicious behaviour” during the validation process.

We organise the heuristics into two categories. The first category is of a more
semantic nature while the second is related to the structure of the EPA.

We hypothesise that one of the benefits of the approach presented is that the
level of abstraction defined by the enabledness criterion is intuitive and modelers
can relate the different abstract states to the problem domain with relative ease.
The first two heuristics we developed confirm, to some extent, this hypothesis.

Understanding states. There are certain abstract states in the EPA that
can be easily interpreted to represent particular situations of the system under
analysis. As an example of this, identifying empty, half-full and full abstract
states in the circular buffer example is straightforward (see Figure 2.3).

When it is not possible or not easy to associate a particular state with a
declarative description of the set of instances that it abstracts, this may be an
indication that there is a problem with the program under analysis. We have
found that in these cases, it was often the case that the state should have been
inconsistent (and hence should not have appeared in the EPA) and that the
requires clauses of enabled actions or the system invariant were (incorrectly)
too weak. This is the case in Figure 2.2, in which the invariant was missing
the requirement wp ‰ rp.

Understanding action sequences. On the other hand, states which can be
declaratively traced to a meaningful set of instances are good candidates for
analysing action sequences. Following fragments of traces from these states
may lead to discovering a certain sequence of actions which should not be
allowed by the program. Programmers should be aware that, given the ap-
proximate nature of the abstraction, the appearance of a (non singleton) trace
is not a guarantee that it denotes a feasible action sequence.

An example of this strategy is what led to the discovery of the bug in the ATM
of [WSCF00] from the EPA in Figure 6.4.

We also identified the following structural characteristics of an EPA that can
help pinpoint problems in the program under analysis:

Large state space. A large state space in the EPA may be an indication of
a poorly designed set of operations. The intuition is that a set of operations
that are intended to be used together to provide a more complex service (e.g.,
a protocol, a public API) will conceptually have a few modes that characterise
the set operations available at a given moment. An unmanageable set of
enabledness states is an indication that the protocol, class or API is either
extremely complex to be used or that it is incorrectly implemented. More
specifically, a large state space can be an indication of problems with requires

6.4. EPA VALIDATION GUIDELINES 91

clauses. A good strategy is to question why different states in the EPA differ
in the actions that they enable.

An example of this problem is showcased in the MS-WINSRA case study,
presented in Section 6.2.4.

Deadlock states. The presence (or absence) of a deadlock state is something
that should be analysed in detail when validating a program using EPAs. By
definition of EPA there can be only one deadlock state, the state whose action
set is empty. The presence of an unintended deadlock state in an EPA is likely
to be an indication of a bug in the actions that evolve into that state.

The MS-NSS case study in Section 6.2.3 presents a deadlock state which is
studied and validated.

Sink states. Similarly to deadlock states, states which only have outgoing
transitions leading back to it can be indicators of problems. They are very
similar to deadlock states since they indicate that once this “operation mode”
is reached it can not be abandoned.

For instance, the Stack EPA in Figure 6.16 presents a sink state tcloseu
which merits attention.

Missing action. If a given specified action is not present in any of the EPA
reachable states then this is an indication that something is not quite right. It
may be the case that the requires clause for that action is inconsistent when
combined with the system invariant. It might also be the case that none of
the other actions leave the system in a state which enables the missing action.

High fan-in. States in an EPA that have a large number of incoming tran-
sitions can be an indication of problems. In particular, they are typically
undesirable since they cause history loss for all the paths that reach the state.
These states can be an indication of problems in requires clauses that when
corrected end up partitioning the high fan-in state into several states.

The MS-WINSRA case study in Section 6.2.4 presents this problem due to
weak requires clauses.

Highly non-deterministic actions. When a state has a large number of
outgoing transitions labeled with the same action it is usually symptomatic of
a problem. Such situations may be caused by two different scenarios. Firstly,
it may be the case that the action is intrinsically non-deterministic. If this is
the case, it can be a symptom that this action is a good candidate to be tested
under different scenarios in order to trigger/cover all of its behaviour space.

Secondly, a highly non-deterministic action on an abstract state can also hap-
pen if the predicate for the state is weak. For instance, an action that updates
the system following the formula pA1 ñ B1q ^ . . .^ pAn ñ Bnq may generate
undesired non-deterministic behaviour in a state where Ai holds for several
values of i. In these cases, it may be the case that a requires clause or the
system invariant requires strengthening.

The tcloseTCPConnection, gssInitSecu abstract state in Figure 6.7 presents
a highly non-deterministic gssInitSec operation.

Mirrored actions. If whenever there is a transition labeled with a given
action a1, there is another transition with the same origin and destination state
labeled with action a2, this is an indication that both actions were specified

92 CHAPTER 6. VALIDATION USING EPAS

independently but are treated in the same way by the system. It may be the
case that one action was copied from the other but the programmer forgot
to modify the appropriate differences between the two (known as copy-paste
bugs).

This is the case with vrfy—noop in the SMTP protocol server EPA depicted
in Figure 6.19.

Some of the heuristics presented in this section can be easily automated. In fact,
our Contractor tool supports some of them.

CHAPTER 7

Studying EPAs Expressiveness and Understandability

We are interested in inferring models that can be directly consumed by develop-
ers. Such models face the challenge to remain simple enough to be understandable,
yet interesting enough to convey useful information. In other words, we believe that
in order to be helpful as a reviewing tool, coarse-grained abstractions have to be
expressive enough to capture interesting behaviour, but still remain understandable
to developers.

However, to the best of our knowledge, the expressiveness of models aimed to
be consumed by developers has not yet been formally studied. Furthermore, evi-
dence of developer understanding of such models is often missing or anecdotal in
literature [CZvD`09, TTDBS07], with no statistical relevance. Moreover, few user
studies have been conducted, mostly with negative results. For instance, in the con-
text of models in the form of likely invariants, a recent user study [SHKR12] has
shown that developers struggle to correctly understand them.

In this chapter we study these both expressiveness and developer understand-
ability, in the context of EPAs. More concretely, we analyse EPA expressiveness
by conducting an evaluation of how sensitive they are to the presence of defects in
the source code of the API implementation. Regarding understandability, we con-
ducted 3 user studies where developers were presented with an EPA that was either
obtained from the original API implementation, or from a defective version of it.
Developers were asked to identify whether these EPAs matched or not their mental
model of the expected API behaviour. The overall goal of this study was twofold: to
determine user detection effectiveness for EPAs that were generated from defective
versions of the source code; and to understand what factors lead to successful or
unsuccessful detection of these EPAs.

Our key results are twofold. First, despite their compactness, EPAs are still ex-
pressive enough to be affected by most of the defects we studied. Furthermore, EPAs
led to the successful detection of defects that were subtle enough to be undetected
by extensive testing. Second, users are quite effective at identifying whether EPAs
were produced from the original source code or from defective versions of it. While
EPAs from defective versions of the source code were correctly classified more often,
we did not find statistically significant differences with respect to user effectiveness
at classifying EPAs from the original source code. Finally, we identified two key
factors that led to correct classification. We found that i) the biggest the change
the EPA suffers from a defect (measured in number of transitions that change with

93

94 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

respect to the original version), the more likely users are to classify it correctly.
And ii) effectiveness at classifying EPAs for the original source code had a positive
correlation with participants’ active dedication to programming. We believe that
the obtained results provide evidence that coarse-grained abstractions are valuable
aids during key software development tasks such as validation.

The rest of this chapter is organised as follows. In Section 7.1 we present our re-
search questions. Section 7.2 focuses on analysing the impact of source code defects
in the EPAs. In Section 7.3 we analyse whether developers are proficient at iden-
tifying the affected EPAs. Section 7.4 presents a discussion of the obtained results
and their implications. We conclude with some final words in Section 7.5.

The raw data analysed throughout this chapter is available online at:

http://userstudies.lafhis-server.exp.dc.uba.ar/userstudy/analysis

7.1. Research Questions

In previous chapters we showed how, in order to remain understandable, EPAs
abstract away elements of the original implementation. This expressiveness/under-
standability trade-off is a balancing act. We believe that EPAs provide a good
balance between the two.

In this section we aim to provide empirical evidence to support our claim. In
other words, we want to show that i) EPAs are expressive enough to provide valuable
assistance throughout an API validation process, and ii) developers do understand
EPAs.

We therefore state two research questions, which complement our first one (in-
troduced in Chapter 6).

R.Q. 3: Are EPAs expressive enough to be affected by defects in
an API’s source code?

R.Q. 4: Given an EPA that was affected by a defect in an API’s source
code, can a reviewer understand it and realize that it is not in line with the
expected behaviour?

First, in R.Q. 3 we state that we need EPAs to be expressive enough to react
to changes in the source code of an API implementation. In other words, given two
(semantically) different API implementations it is desirable that the EPAs for these
two implementations differ. Otherwise, the reviewer will not be getting enough
information that could assist her in classifying a correct implementation from a
bogus one.

But showing that EPAs are affected by defects in the source code is not enough.
Since we are dealing with a human-driven validation process, in R.Q. 4 we ask
whether a developer can actually understand the EPA and notice that the resulting
EPA is not in line with respect to her mental model.

We used four case examples when answering our research questions: PipedOutputStream,
Signature, ListItr and Socket. All of these classes were already discussed in
Chapter 6.

7.2. Analysing Code Defects Impact on EPAs

In this section we answer our R.Q. 3, which deals with how sensitive EPAs are
with respect to defects in the original source code.

http://userstudies.lafhis-server.exp.dc.uba.ar/userstudy/analysis

7.2. ANALYSING CODE DEFECTS IMPACT ON EPAS 95

7.2.1. Experimental Setup

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

Original source
code

Code
mutator

Source code
mutants
class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

Equivalent
mutant
detector

Non-equivalent
mutants

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

class Stack {
 void push(int e) {
 // ...
 }
 int pop(...) {
 // ...
 }
}

EPA
generator

Original EPA

EPA
generator

Mutant EPAs

EPA
comparator

1. 2. 3b.

3a. 4.

Structurally
affected EPAs

Participants

5.

✓✓✗

✓✗✓

EPA
classifications

Figure 7.1: Experimental setup

Figure 7.1 presents the experimental setup that we used for answering our re-
search questions. Here we focus on steps 1–4, aimed at answering R.Q. 3.

In the absence of a large representative set of defects for the Java classes under
analysis, we used mutant versions of the source code as a proxy. Given an API
implementation, in step 1. a code mutator is use to obtain a large number of API
implementation mutants.

In order to discard mutants that do not produce defects, in step 2. mutants
are classified as either semantically equivalent to the original or not. Deciding if
two programs are semantically equivalent is non decidable in general so we took a
conservative approach based on regression testing.

Then, Contractor is used to generate EPAs for the original implementation
(step 3a.) and each of the non-equivalent implementation mutants (step 3b.).

In step 4. each mutant EPA is structurally compared with the original one in
order to check whether they differ or not.

We finally obtained a profile of how many non-equivalent implementation mu-
tants actually produced changes in the EPA and how big these changes are in terms
of number of abstract transitions that were added/removed.

In the rest of this section we provide detailed explanations for each of these 4
steps, as well as the obtained results.

7.2.2. Mutant Generation

In order to obtain mutant versions for each of the case examples we used an
automated tool called Milu [JH08]. Milu takes a C program and applies a number
of standard mutation operators such as changing unary or binary operations, modi-
fying constants or removing statements. It is worth mentioning that Milu generates
bogus mutants that do not even compile, and these were discarded.

7.2.3. Discarding Semantically Equivalent Mutants

We used testing in order to conservatively discard semantically equivalent mu-
tants. Milu not only generates mutants, it can also be used as a test harness to
compare a test-suite’s results on the original version and on the generated mutants.

If a mutant differs in at least one test-case then it is safe to assume that it is not
semantically equivalent. On the other hand, if it yields the same results for all the
test-cases it may be either equivalent to the original or it can also be the case that
the test-suite is not powerful enough to distinguish them.

96 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

In order to generate very large test-suites (i.e., that would run for days) for each
case example we constructed an ad-hoc random test-case generator. This generator
takes a description of the case example. This case example description comprises the
list of public methods that the test-suite should consider, divided in two groups: A
method is an action if it changes the class observable state; a method is an observer
if it returns a (usually read-only) fragment of the class internal state without altering
it.

For the case of methods that take parameters the description provides a pool
of concrete arguments that can be used to instantiate them. In our setting, this
sufficed, since all of the methods in the APIs that we analysed have basic data types
as parameters.

The random test-suite generator then proceeds as follows:

1. Create a set of traces T . Each trace ti P T is essentially a sequence of ni
action methods a1, . . . , ani

. For each action method that takes parameters,
the generator randomly chooses from the pool of concrete arguments.

2. For each trace ti P T and each observer oj construct a test-case that first
sequentially invokes each methods in ti and then returns the result of invoking
oj .

The number of traces is configurable, and regarding their length the user can
provide a mean value n and the lengths for the traces are generated following an
expp 1

n
q distribution.

A random generator like the one we just described has a potential problem that
if the case example protocol is non trivial, then many of the traces in T might be
unfeasible. This causes the test-suite to take longer to run, without adding any
valuable information. In order to solve this problem we first check that each trace
is feasible in the original class before adding it to T . Since we also want to test
whether the mutants add new legal behavior, there is one caveat. If a trace t is
unfeasible but has a feasible prefix, we add this prefix together with the first illegal
action to the set of traces T . In other words, we do want to test what happens in
the boundary of the legal behaviour.

7.2.4. Generating Mutant EPAs

Generating EPAs for each of the mutants is a straightforward yet lengthy task.
Each EPA is constructed in a time that ranges from a few seconds to around 20
minutes. Given that we work with hundreds of mutants, we applied a distributed
approach in which several desktop computers were assigned a partition of the mu-
tants to work with and generate their EPAs.

7.2.5. Structurally Comparing Mutant EPAs

Comparing graphs in general is a challenging problem. In the particular case
of EPAs, the level of abstraction is fixed and the states are consistently labeled.
Therefore checking for isomorphisms was trivial. If an EPA produced from a mutant
is non isomorphic to the original, we say it is an structurally affected (or simply
affected) EPA.

7.2.6. Threats to Validity

We use non-equivalent mutants as a proxy for defects, thus ensuring that every
considered mutant is indeed a defective version of the source code. Even when

7.2. ANALYSING CODE DEFECTS IMPACT ON EPAS 97

Mutants Test-cases
Case example Total Compilable Killed Number Mean length Running time Stmt. coverage
ListItr 2419 1846 (76.31%) 1308 (70.86%) 15582 15 1d 23h 15m 98.55%
Signature 381 259 (67.98%) 253 (97.68%) 18302 20 3d 15h 43m 100%
PipedOutputStream 518 483 (93.24%) 292 (60.46%) 22253 15 16d 8h 53m 93.02%
Socket 1069 1028 (96.16%) 539 (52.43%) 10240 20 1d 6h 53m 89.9%

Table 7.1: Overview of case examples and results for R.Q. 3

Total Killed mutants effect on EPA
Case example killed mutants Adds transitions Removes transitions Adds and removes transitions No effect
ListItr 1308 284 (21.71%) 480 (36.70%) 238 (18.20%) 306 (23.39%)
Signature 253 58 (22.92%) 52 (20.55%) 62 (24.51%) 81 (32.02%)
PipedOutputStream 292 103 (35.27%) 14 (4.79%) 34 (11.64%) 141 (48.29%)
Socket 539 112 (20.78%) 27 (5.01%) 129 (23.93%) 271 (50.28%)

Total Surviving mutants effect on EPA
Case example surviving mutants Adds transitions Removes transitions Adds and removes transitions No effect
ListItr 538 39 (7.25%) 242 (44.98%) 15 (2.79%) 242 (44.98%)
Signature 6 0 (0.00%) 1 (16.67%) 3 (50.00%) 2 (33.33%)
PipedOutputStream 191 65 (34.03%) 4 (2.09%) 0 (0.00%) 122 (63.87%)
Socket 489 83 (16.97%) 25 (5.11%) 20 (4.09%) 361 (73.82%)

Table 7.2: Mutant impact on the EPAs

mutants are generally used in literature [JH11], we might be missing other interesting
potential bugs due to limitations of the mutant generator.

When deciding if mutants are semantically equivalent, we use a conservative
test-based approach to solve an undecidable problem. Furthermore, the test-case
generation strategy that we followed is a fairly straightforward one. We could have
opted for more sophisticated techniques such as concolic testing (e.g., [SA06]).

However, as we show next, a manual inspection of the surviving mutants shows
that they are intrinsically hard to identify by random test-case generation. In other
words, we believe that we are close to the limits of semantically-equivalent mutant
detection offered by this strategy.

7.2.7. Results

Table 7.1 presents the total number of mutants generated by Milu for each of
the case examples. The number varies significantly from a few hundreds (as in the
case of Signature) to a few thousands (in the case of ListItr). This depends on
the amount of statements that Milu can change, which roughly increases with the
size of the class implementation.

This same table also presents the total number of compilable mutants, which
varies from almost all of the total mutants (as in Socket) to roughly two thirds (as
in Signature).

The number of killed mutants is obtained by executing the test-suite described
in the rightmost portion of Table 7.1. These test-suites were constructed using the
approach described in Section 7.2.3. The proportion of non-equivalent compilable
mutants varies between 52–97%.

Table 7.2 presents the proportion of compilable mutants that either add or re-
move transitions to the EPA with respect to the original EPA.

When considering non-equivalent mutants (upper half of the table), a rather large
proportion (23-50%) of EPAs remain unaffected. It is understandable, however,
since EPAs focus on the protocol aspect of the implementation, and may remain
unaffected by mutants that alter the way data is handled (and not the ordering of
operations). By being agnostic to the kind of mutations that Milu seeded, we can
certainly avoid bias.

98 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

Surviving mutants Manual classification
Case example adding transitions Equivalent mutant Non-equivalent mutant Depends on memory model
ListItr 39 2 (5.13%) 7 (17.94%) 30 (76.92%)
PipedOutputStream 65 5 (7.69%) 14 (21.54%) 46 (70.77%)
Socket 83 5 (6.02%) 27 (32.53%) 51 (61.44%)

Table 7.3: Manual analysis of surviving mutants that add transitions

A large number (50–75%) of the killed mutants produce structurally
affected EPAs.

Regarding the kind of impact, it varies significantly from one case example to
another. For instance, in the ListItr case example almost 55% of the killed mutants
produce EPAs that have missing transitions with respect to the original one. On
the other hand, when considering the PipedOutputStream class, only 16% of the
mutants result in transitions being removed from the resulting EPA.

In the lower half of the table we have the surviving mutants. These are mutants
that could not be proven non-equivalent after (hours and even days of) random
testing with good statement coverage. A priori, we would expect these mutants
to be actually equivalent, and should therefore see a low number of EPAs being
affected.

However, despite being coarse-grained, EPAs can also provide solid evidence that
a mutation is indeed non-equivalent. More concretely, if a sequence of actions is not
exhibited by an EPA, this indicates that the class does not admit that invocation
sequence. Furthermore, EPAs are minimal in the sense that, if there are no uncer-
tainties coming from the decision engine (either SMT or software model-checker)
and the specified invariant is tight, they do not add a transition unless it is strictly
required to capture a legal invocation sequence.

Combining these two observations, if a mutant yields an EPA that is missing
at least one transition with respect to the original EPA, this means that there is
at least one invocation sequence in the original class that is not permitted in the
mutant. This implies that the mutant is non-equivalent.

Following this result, we now analyse the lower half of Table 7.2. Mutants that
either remove transitions only, or that both remove and add transitions are definitely
non-equivalent, despite having survived the test-suite. Adding up the number of
EPAs that remove transitions and the ones that add and remove transitions, we can
see how in the first two rows, the EPAs help us identify that 48–67% of the surviving
mutants are indeed non-equivalent. This result is remarkable considering that these
are mutants that survived a random testing approach for several hours (and even
days). In the last two case examples the EPAs only identify between 2–9% of new
non-equivalent mutants.

In 2 examples, 48–67% of the surviving mutants remove transitions from
EPAs, which proves that they are non-equivalent and therefore were missed
by the test-suite.

On the other hand, between 7–34% of the surviving mutants yield EPAs that
only add transitions. This can indicate that either the mutant is indeed equivalent
but the EPA coarse-grained nature is causing new transitions to appear, or that the
new transitions are evidence of the non-equivalence of the mutant. Since the EPAs
provide a superset of the behaviour, deciding which of the two cases requires manual
inspection for each of the mutants. Table 7.3 summarizes what we discovered from
manually inspecting each of these mutants.

7.3. ANALYSING USER UNDERSTANDING OF EPAS 99

Non-equivalent Non-equivalent mutants detected
Case example mutants By the test-suite By EPAs
ListItr 1602 1308 (81.65%) 1012 (63.17%)
Signature 257 253 (98.44%) 118 (45.91%)
PipedOutputStream 356 292 (82.02%) 112 (31.46%)
Socket 662 539 (81.42) 279 (42.15%)

Table 7.4: Mutant detection capabilities of EPAs and test-suite

As we observe, only a few (5–7%) of the surviving mutants that add transitions
are semantically equivalent to the original class. An important number (17–32%)
of mutants are non-equivalent, which indicates that the manifestation in the EPA
is not a false positive. The remaining vast majority (61–77%) of the mutants is
semantically equivalent modulo uncontrollable decisions such as to which (arbitrary)
value the memory locations are initialized1.

Only 5–8% of the equivalent mutants add transitions to the EPA,
which indicates a very low rate of false positives.

Finally, Table 7.4 compares how many mutants are killed by the test-suites with
how many mutants are detected by the EPAs. The total number of mutants known to
be non-equivalent contains: a) mutants killed by at least a test-case, b) mutants that
remove at least one transition from the EPA, and c) manually classified mutants.
As we observe, the test-suites consistently detect many more mutants than the
EPAs. This is reasonable, considering that EPAs are targeted at capturing the
usage protocol, while test-suites can detect other mutations which only affect the
internal state of the class. However, given that EPAs intentionally coarse-grained
and are aimed at manual inspection, detecting roughly 50% the amount of killed
mutants is not a bad performance.

7.3. Analysing User Understanding of EPAs

As we mentioned before, we are not only interested in observing how defects in
the source code alter the EPAs, but also on discovering how developers understand
this phenomenon.

Our R.Q. 4 refers to the user’s ability to notice that structurally affected EPAs
are not well aligned with the expected behaviour for the class. We answer this
question by means of a series of 3 user studies, presented in this section.

7.3.1. Experimental Setup

Remember, from step 4. in Figure 7.1 we obtained a set of structurally affected
EPAs. We filtered out the EPAs that reported invariant violations (via the experi-
mental Contractor feature discussed in Section 4.4.2) and chose 99 non-equivalent
mutants that produced an affected EPA for each of the case examples, together with
the original EPA for each case example. We took all these EPAs and presented them
in random order to various participants. In step 5. each participant was asked to
classify each EPA as either “original” or “affected”. Two potential types of errors
exist: marking an original EPA as affected and marking an affected EPA as original.

1Remember that we are dealing with C versions of the classes.

100 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

7.3.2. Experiment Procedure

We performed the user studies during the anual winter summer school at the
Universidad de Buenos Aires. This is a week in which a series of advanced courses
are organized for local students and practitioners and also bringing people from
other regions of Argentina and neighboring countries. In order not to clash with the
actual winter school lectures, we performed each user study at a different time: one
in the morning, another one in the afternoon and a third one in the evening. The
software we used to run the experiments, as well as the materials and the procedure
was exactly the same in the three shifts.

All of our controlled experiments began with the administration of a background
questionnaire gathering information about participants’ experience with behaviour
models, industry experience, academic background, and so forth. We then offered a
tutorial presentation (i) explaining the general concepts behind EPAs; (ii) introduc-
ing EPAs for small code examples like the ones in Chapter 2; (iii) explaining what it
means for an EPA to be affected by a change in the source code and giving examples
of affected EPAs; (iv) describing the tasks to be done and explaining the experiment
front-end they had to use; and (v) providing example tasks for the participants.

Following the tutorial presentation, each participant was assigned a series of
tasks. Each task consisted of classifying either the original EPA or one of the 99
mutant EPAs from one of the case examples we considered.

In order to familiarize themselves with the case examples under analysis, par-
ticipants had access to reference materials. In particular, we provided access to the
official Javadoc documentation and a read-only view of the source code. It is impor-
tant to remark that participants were offered the original source code, regardless of
whether the EPA they had to classify was from a mutant or not.

Participants were encouraged to classify the EPA and provide an optional free
text explanation, but were allowed to leave it unclassified, for reasons of time or
uncertainty. These unclassified EPAs were categorized as “unknown”.

Participants were alloted up to 12 minutes to complete each task. This time limit
was determined after test-driving the experiment with 6 beta-testers while imposing
no time restriction and observing that all their tasks were completed in less than
9 minutes. The results for the experiment test-drive were discarded, but provided
valuable feedback in refining the experiment infrastructure.

Participants were given up to 90 minutes to complete as many tasks as they
could. In order to keep a high quality of participants responses, they were offered the
possibility to quit the experiment early if they wanted. Actually, after 1 hour, more
than two thirds of the participants had already left. We believe that keeping them
past their will would have resulted in a lower quality of responses (e.g. participants
may have started to randomly pick answers). However, as an incentive to keep
participants engaged, we raffled prizes, weighing the length of their participation
and the quality of their responses.

Once the 90 minutes were out or the participant decided to leave, exit sur-
veys were administered, gathering information concerning participants’ confidence
in their classifications, their opinion of usefulness of the EPAs, and so forth.

7.3.3. Threats to Validity

External: In this study, all the participants were volunteers attending the win-
ter courses at the university. However, most of them were professional software
developers aged 20–46 with various degrees of experience. While 45% of partici-
pants never worked in software-related positions, 95% of all participants claimed to

7.3. ANALYSING USER UNDERSTANDING OF EPAS 101

have at least 1 year experience with Java. Furthermore, 35% of the participants had
at least 3 years of industry experience in software-related positions.

Even when our case examples are well-known Java classes, they are usually
used as black-box components and their source code is usually unfamiliar to Java
developers. In practice, however, developers are often expected to maintain code
they are unfamiliar with, since it is not theirs.

Furthermore, in our study, participants had limited time to complete the tasks.
However, when beta-testing our experiment we observed that all the tasks were
completed in under 9 minutes each; in the experiments we assigned one third more.
In any case, in real-life situations developers are typically time limited due to project
constraints. Chapter 6 presents a complementary study, in which a few experts
were given unlimited time to use EPAs to validate the behaviour of the same case
examples, among others.

Each of the case examples involves Java classes with varying degrees of difficulty
in terms of API state-space or lines of code. It seems likely that other APIs that
developers may use should have a comparable complexity to one of the case examples
that we used in our experiments.

Internal: Our measurement of user effectiveness is obtained by comparing par-
ticipants’ EPA classifications against our own classifications. Our experimental setup
guarantees that our classification is correct by construction, so we can therefore rely
in our own classification as being 100% correct.

Construct: We measure user effectiveness at classifying EPAs as the proportion
of correct answers over the set of EPAs that they were assigned to classify. Each
participant classified around 25 EPAs chosen at random from a set of 400. Instead,
we could have pre-selected a random set of EPAs and have all the users classified
those. This would have resulted in a more consistent efficiency metric along users,
but over a less representative set of EPAs.

Conclusion: We have conducted 3 case studies with 20 participants, which is
a relatively small number of users. However, as we show next, it is sufficient to
demonstrate statistically significant trends for some of our research questions. All
statistical methods we employ are non-parametric [KV07], thus conclusions we make
rely on few assumptions.

7.3.4. Research Question Refinement

In order to address R.Q. 4, we refine it as follows.

R.Q. 4A: Were user classifications honest or did they follow a random pattern
or similar strategy?

R.Q. 4B: Are users more effective at classifying original EPAs than classifying
affected EPAs?

R.Q. 4C: How is user classification effectiveness influenced by class complex-
ity/size?

R.Q. 4D: In the context of affected EPAs, how is user classification effective-
ness influenced by the size of the change with respect to the original EPA?

R.Q. 4E: How is user classification effectiveness influenced by the participants
background and experience?

102 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

Classification of original EPAs
Case example Total Correct Incorrect
ListItr 11 3 (27.27%) 8 (72.73%)
Signature 17 13 (76.47%) 4 (23.53%)
PipedOutputStream 15 7 (46.67%) 8 (53.33%)
Socket 15 11 (73.33%) 4 (26.67%)

Proportion of correctly classified affected EPAs
Case example Min Mean Median Max Std. dev.
ListItr 0.00% 87.00% 100.00% 100.00% 30
Signature 25.00% 77.00% 93.00% 100.00% 28
PipedOutputStream 0.00% 81.00% 96.00% 100.00% 28
Socket 25.00% 74.00% 75.00% 100.00% 24

Table 7.5: Proportion of correctly classified EPAs

S
oc

ke
t

P
ip

ed
O

ut
pu

tS
tr

ea
m

S
ig

na
tu

re
Li

st
Itr

Total classifications

0 5 10 15

Correct
Incorrect

Figure 7.2: User effectiveness classifying original EPAs

7.3.5. Results

For each user’s assessment of an EPA, the EPA is either original or affected,
and the user may judge it to be either original, affected, or unknown. Thus for
each assessment of an EPA, six basic results can occur. Only two categories repre-
sent correct judgements by the users: classifying an original EPA as original, and
classifying an affected EPA as such. In our analyses, we do not consider unknown
classifications. The average number of unknown responses by participant ranges
between 0.1–0.7 depending on the case example.

In Table 7.5 we present user classification effectiveness. In the case of original
EPAs, we present the number of correct and incorrect classifications (at most one
classification per participant). For affected EPAs, we analyse the percentage of them
correctly classified per participant, including the standard deviation (in percentage
points).

A graphical representation of the information in Table 7.5 can be found in Fig-
ures 7.2 and 7.3. In the first, we depict the proportion of correct classifications for
each original EPA. The latter presents, for each of the case examples, the proportion
of affected EPAs that each participant correctly classified, in the form of a box plot.

With respect to the number of classifications by each participant the average
number of (non-unknown) completed tasks per participant is roughly 5 per case
example with a standard deviation between 4.1–4.86.

In the remainder of this section we address each of the refined research questions
presented in Section 7.3.4.

7.3. ANALYSING USER UNDERSTANDING OF EPAS 103

● ●

●● ● ●

S
oc

ke
t

P
ip

ed
O

ut
pu

tS
tr

ea
m

S
ig

na
tu

re
Li

st
Itr

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.3: User effectiveness classifying affected EPAs

Normal fit with µ “ 0.5 and σ “ 0.5
Affected EPA Original EPA

Case example effectiveness p-value effectiveness p-value
PipedOutputStream 0.0045 0.0242
Signature 0.0292 0.0004
Socket 0.0124 0.0022
ListItr ă0.0001 0.0308
Overall ă0.0001 0.6284

Table 7.6: p-values for normal fit of H1

R.Q. 4A: Disproving Randomness of Classifications

Before diving into the analysis of user effectiveness, we want to make sure that
user classifications are honest and not product of randomness (or other ad-hoc strate-
gies).

In particular, we wanted to test whether user’s classifications outperform an hy-
pothetical participant that classifies randomly following a Bernoulli distribution with
parameter 0.5. If that were the case, then the effectiveness (percentage of correct an-
swers) should follow a normal distribution with µ “ 0.5 and σ “

a
µp1´ µq “ 0.5.

To test whether this is the case, we proposed the following hypothesis and null
hypothesis:

H1: User classifications are not randomly chosen.

H10: User classifications are randomly chosen and therefore user effectiveness fol-
lows a normal distribution with µ “ 0.5 and σ “ 0.5.

Table 7.6 presents the p-values obtained after fitting the user classification ef-
fectiveness data to a normal distribution with µ “ 0.5 and σ “ 0.5. The last row
corresponds to the overall effectiveness for each user across case examples. As we
observe, p-values are sufficiently low to reject the null hypothesis H10 with α “ 0.05
on most cases, which implies that participants did not resort to a random strategy.
The exception is the user overall effectiveness when classifying original EPAs, but
as Figure 7.2 suggests, this is just the result of averaging mixed results.

Furthermore, for each case example we prepared 100 classification tasks consist-
ing of 99 affected EPAs plus the original EPA. Had a participant known about this
proportion, a strategy of always classifying EPAs as affected would have led to a
very high effectiveness.

104 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

In order to show that participants did not know the original/affected EPA pro-
portion, we analysed the ratio of total EPAs classified as original for each partici-
pant. These ratios can be fitted with probability 0.58 to a normal distribution with
µ “ 0.268 and σ “ 0.177. While participants tended to classify EPAs as affected
more often, the average original classification ratio is significantly larger than 1

100 ,
which is what an informed participant would have obtained.

Finally, we analysed whether there exists a learning effect on participants. That
is, whether their effectiveness increases over time. In order to do so, we computed
the overall effectiveness for each participant at two points: i) when it completes the
task n{2 where n is the participant’s total number of tasks, and ii) when it completes
the task n. In other words, we measured the participant effectiveness both nearly
in the middle of his participation and at the end of the experiment. If there was a
learning effect, the population of second values should be significantly larger than the
first. To test this hypothesis, we use a non-parametric test for evaluating whether
two sets of numbers are drawn from the same population. In this case, each user
provides two data points —effectiveness at mid-experiment and final effectiveness—
and therefore the data for evaluating this hypothesis is paired, with 20 pairs, one
for each participant. We thus applied the two-tailed Wilcoxon test and found no
evidence that the median differences are different than zero (p-value = 0.3896). In
other words, we found no evidence of a learning effect.

R.Q. 4B: User Effectiveness for Original and Affected EPAs

As Figure 7.3 shows, while original EPAs are often misclassifed by users (27-
75%), affected EPAs are generally correctly classified (75–86%).

In some case examples, users seem to do better at classifying affected EPAs
(e.g. for ListItr the difference is remarkable). To test this, we proposed the follow-
ing hypotheses:

H2: Users are more effective at classifying affected EPAs than original EPAs.

H20: The percentage of correct classifications by users for affected and original
EPAs are drawn from the same distribution.

As before, since we were dealing with paired data (effectiveness for original EPAs
and affected EPAs for each participant), we applied the two-tailed Wilcoxon test for
each case study.

In the ListItr case example we obtain a p-value of 0.0148, so we reject the null
hypothesis at α “ 0.05. Given the means observed in Table 7.5, this implies that
there is statistical evidence that users are more effective at classifying ListItr af-
fected EPAs than the ListItr original EPA. When considering PipedOutputStream,
Signature and Socket, the p-values are high enough (between 0.19 and greater than
0.99) to indicate that H2 is not supported.

Since there is evidence in favour of H2 in only one case example, we can not
reject the null hypothesis.

R.Q. 4C: Impact of Program Complexity on User Effectiveness

In Table 7.5, we infer from the mean and median user effectiveness that there
exist differences in user effectiveness between case examples. However, as indicated
in Figure 7.3, the interquartile ranges are often quite large, usually larger than the
differences between case example medians.

7.3. ANALYSING USER UNDERSTANDING OF EPAS 105

Signature Socket ListItr

PipedOutputStream 0.8740 0.8628 0.2396
Signature - ą0.9999 0.0136
Socket - - 0.1408

Table 7.7: p-values for Wilcoxon test of H3

Correlation coeff. p-value
Added transitions -0.02 0.73
Removed transitions 0.09 0.17
Changed transitions 0.21 0.0005

Table 7.8: Affected transitions — effectiveness correlations

To further study the impact of program complexity, we again employed statistical
hypothesis testing. Accordingly, we formulated the following hypothesis and null
hypothesis:

H3: Users are more effective at classifying affected EPAs for smaller, less complex
programs than for larger, more complex ones.

H30: The percentage of correct affected EPA classifications for two case examples
of different size/complexity are drawn from the same distribution.

We evaluate this hypothesis for each pair of case examples. We again use a
paired Wilcoxon test, resulting in the p-values shown in Table 7.7.

We can only reject the null hypothesis at α “ 0.05 level for the Signature-
ListItr pair of case examples. As we observe from Table 7.5, the mean user effec-
tiveness when dealing with affected for the ListItr case example is bigger than for
the Signature case example. However, from Table 7.1 we observe that actually the
ListItr case example is larger (in LOC) than the Signature case example, which
contradicts H3. We thus conclude that H3 is not supported.

R.Q. 4D: Impact of EPA Change on User Effectiveness

Having found no evidence that class complexity affects user effectiveness, we now
try to establish a different explanation. More concretely, it is intuitive to think that
the biggest the change on the EPA that a mutation on the source code produces,
the more likely it will be that a user notices something odd with the EPA.

Formally, it would seem reasonable to find a correlation between the number of
transitions changed (that is, either added or removed) from an affected EPA and the
user effectiveness on that EPA. A Spearman (non-parametric) correlation test yields
the results in Table 7.8. The correlation coefficient ranges from ´1 (full inverse
correlation) to 1 (full direct correlation), and the p-value indicates its statistical
significance.

While there is a statistically significant correlation between effectiveness and
the number of changed transitions on an EPA, the correlation coefficient of 0.2 is
considered indication of weak correlation.

R.Q. 4E: Impact of User Background on Effectiveness

Finally, in order to explain user effectiveness we analyse the participant’s back-
ground trying to establish correlations with their effectiveness. It would seem natural
to think that the more experienced a participant is, either academically or industri-
ally, the better she should score when classifying EPAs.

106 CHAPTER 7. EXPRESSIVENESS AND UNDERSTANDABILITY

Effectiveness
Affected EPAs Original EPAs

Corr. coeff. p-value Corr. coeff. p-value
Hours/day 0.02 0.94 0.48 0.04
Years IT 0.33 0.15 0.23 0.34
Years Java -0.17 0.47 -0.19 0.43
Education 0.02 0.95 0.23 0.34
Exp. models -0.17 0.48 0.15 0.55

Table 7.9: Participant’s background — effectiveness correlations

We analysed data collected during the pre-experiment survey, such as amount
of hours worked per day, number of years of experience in IT-related jobs, number
of years of Java experience, level of education (e.g., grad, undergrad) and whether
they had experience with formal behaviour models.

The collected data is presented in Table 7.9. The only statistically significant
correlation indicates that the more hours per day a participant works, the better
he is at identifying original EPAs. The correlation coefficient is 0.48, which indi-
cates a moderate correlation. When correlating user effectiveness on each individual
case example with the same factors, no statistically significant correlations were
consistently identified.

7.4. Discussion

Despite being a rather coarse-grained abstraction aimed at human inspection,
EPAs are usually affected by the presence of defects in the API source code. Most of
the non-equivalent mutants produced changes on their EPAs. Not only that, EPAs
helped in the identification of several non-equivalent mutants that had survived after
extensive testing.

Regarding affected EPAs, in the majority of cases participants were able to detect
that they were not aligned with the expected behavior. Furthermore, we found no
evidence that EPAs were randomly classified (or that participants followed an ad-
hoc strategy), which leads us to believe that users consciously reviewed the EPAs
and made careful classifications.

With respect to original EPAs, we found mixed results. While Socket and
Signature exhibit an effectiveness similar to that of affected EPA classifications,
in PipedOutputStream and ListItr average efficiency was below 50%. We believe,
and our experience so far confirms, that ListItr offers the most complex usage
protocol of all four classes. In a previous work [dCBGU11] an expert Java developer
was asked to manually create a behaviour model for the class and the result had
serious flaws. In fact, a couple user classifications for the original ListItr were
accompanied with comments that entailed strong misconceptions about the class.
With PipedOutputStream user misconceptions about the class are more evident:
roughly half of the classifications have erroneous comments.

Explaining why users were effective classifying EPAs is a challenging problem.
While it should be natural that the bigger the change on the EPA, the more likely it
is to be detected by users, the obtained data only shows a weak correlation. Finally,
we found a moderate correlation between effectiveness and current professional ded-
ication to programming (in terms of hours/day). Other factors such as years of
experience had no statistically relevant correlations with effectiveness.

7.5. CONCLUSIONS 107

7.5. Conclusions

We have analysed the expressiveness and understandability of an intentionally
coarse-grained behaviour abstraction. We believe that the obtained results support
the value that coarse-grained abstractions have in assisting developers in key tasks
such as validation. A natural next step, in the case of EPAs, would be to explore
how to carefully refine them without compromising understandability. While these
abstractions are specially suited to work with classes featuring rich usage protocols,
we envision they can be complemented with other types of abstractions when dealing
with other kinds of programs.

Part IV

Discussion

109

CHAPTER 8

Related Work

In this section we compare our approach to the construction of behaviour models
with other previously published techniques. Table 8.1 presents a summary compar-
ison with some of the most prominent comparable approaches.

From the comparison presented in this table, we can conclude that to the best
of our knowledge, our technique is the first to:

1. Statically and automatically construct, from an API source code or pre/post-
condition specification, a model that accepts a superset of the legal API traces.

2. Statically and automatically construct a model suitable for human inspection.

A more detailed discussion of related work follows.

8.1. Static Typestate Inference

Our technique is related to approaches that synthesize typestates [SY86, DF01,
NGC05] or interfaces [AČMN05, GP09, HJM05] out of a program: any sequence
of methods that is not accepted by our abstraction will not be allowed by a pro-
gram. However, in typestate and interface synthesis approaches the aim is modular
verification, rather than validation.

Aiming at verification imposes a safety requirement which tends to make abstrac-
tions overly restrictive in terms of the model behaviour. Permissiveness is possible
only at the cost of assuming certain conditions over the artefacts being analysed,
for instance the algorithms in [GP09, HJM05] guarantee correctness only when the
library’s internal state is finite. Examples with unbounded internal state are treated
by limiting the number of observed exceptions and changing the signature of meth-
ods, as can be seen in the interface of Fig. 6 of [AČMN05]. This abstraction for
the ListItr class aims at client safety for only 2 of the 5 operations, and considers
only 1 out of 3 exception types. Obtaining a safe interface for the complete class,
considering all the actions and exceptions would have produced a trivial abstraction
that omits most of the iterator behaviour and would be of little use for validation
purposes.

In [NGC05] the authors present a technique to statically infer safe typestates
in the presence of inter-object references. This approach is based on a mixture of
predicate abstraction and abstract interpretation, and does not require the class

111

112 CHAPTER 8. RELATED WORK

Technique Input Output Construction Purpose

[AČMN05] API source code
Model that accepts
subset of legal traces

Predicate abstrac-
tion, language
learning

Verification of
API client us-
age

[NGC05] API source code
Model that accepts
subset of legal traces

Predicate abstrac-
tion, abstract in-
terpretation

Verification of
API client us-
age

[HJM05]
API source code
(finite internal
state)

Model that accepts all
legal traces

Predicate abstrac-
tion via software
model checking

Verification of
API client us-
age

[GP09] Finite LTS
Model that accepts all
legal traces

Software model
checking, language
learning

Compositional
verification

[GS97]
Set of guarded-
assignments, set
of predicates

Model that accepts su-
perset of legal traces

Predicate abstrac-
tion via assisted
theorem proving

Verification of
system proper-
ties

[GGSV02]
Abstract state
machine

Underapproximation
of the “true FSM”

Symbolic execution
Construction
of test-suite

[LMS07] API source code

Partition of concrete
states according to the
output of boolean ob-
servers

SMT solvers, test-
ing

Construction
of API test-
suite

Contractor
API source code,
requires clauses
and invariant

Model that accepts su-
perset of legal traces

Predicate abstrac-
tion using enabled-
ness of operations

Human inspec-
tion

[GS08] API client traces
Model that accepts
superset of observed
traces

BDD-based mining
algorithm

API specifica-
tion recovery

[DLWZ06] API client traces
Partition of concrete
states according to ob-
servers output

Predicate abstrac-
tion over given
traces

Construction
of API test-
suite

[GMM09] API client traces
Model that accepts su-
perset of given traces

Extrapolation via
graph transforma-
tion rules

API specifica-
tion recovery

[LMP08] API client traces

Model that accepts su-
perset of given traces,
preserving data depen-
dencies

k-tail, data invari-
ant inference

Construction
of API test-
suite

[PG09] API client traces
Model that accepts
superset of observed
traces

States model
methods, edges
model precedence
frequency between
methods

API specifica-
tion recovery

[BBSE11] API client traces
Model that accepts
superset of observed
traces

Extrapolation via
transitive clo-
sure of temporal
invariants

Human inspec-
tion

[DR09] API client traces
Model that accepts
superset of observed
traces

Predicate abstrac-
tion using a set of
built-in predicates

Human inspec-
tion

Table 8.1: Related work summary

internal state to be finite. However, like in the other approaches that we mentioned,
the results obtained are aimed at creating test drivers and performing verification
of client code. The result is accompanied with plenty of information regarding the
boolean values obtained in the predicate abstraction process. The obtained amount
of detail, while it helps to construct tests or guide verification processes, may hinder

8.2. PREDICATE ABSTRACTION 113

human-in-the-loop tasks such as visual inspection.

Approaches to perform modular verification of typestate usage (e.g., [BA08]) are
based on annotating both the protocol and the client class with pre and postcondi-
tions (among other clauses). In general, the annotations for the protocol class can
be manually generated since they are created once and used several times. On the
other hand, there are thousands of different programs where a protocol is used and
it is very time consuming to manually annotate all of those. In [BN11] the authors
present a technique to automatically infer annotations for the client usages of the
protocol.

8.2. Predicate Abstraction

Our work can be considered an instantiation of the predicate abstraction [Uri99]
framework.

Within the area of predicate abstraction, a closely related technique is the con-
struction of finite state machines from Z specifications (which include pre and post-
conditions) and Live Sequence Charts (LSCs) [SD06]. Although there are similarities
with our work in how transitions are computed the key difference is in the predicates
used for abstraction: In [SD06] predicates found in LSCs are used to construct the
set of states, while pre and postconditions are used to construct transitions. We use
pre and postconditions for constructing both the states and the transitions, thus
leveraging the enabledness concept in order to generate models which are useful for
validation. Other predicate abstraction approaches such as counterexample-guided
abstraction refinement (e.g. [BHJM07]) sometimes need an initial model and a prop-
erty from which then the iterative process is performed. In fact, we believe that EPAs
may serve that first purpose.

8.3. Model Minimisation

Our work is also related to techniques that construct abstract state graphs from
infinite state systems (e.g., [LY92, GS97, GGSV02]). However, these techniques aim
at verification or generation of test cases rather than validation, hence the level of
abstraction, the size of the resulting model and the challenge of traceability with
the original artefact vary. For instance, even setting the input predicates in [GS97]
to model the enabledness conditions of actions, the output would be too large for
manual inspection (see [dCBGU12a] for further discussion). Notably, the setting
in [GGSV02] admits producing the same abstraction as ours for testing purposes
but the approach is to under-approximate it by finitely bounding the artefact under
analysis.

In general, minimisation approaches do not deal with actions with parameters in
the implicit expression of the transition system (our LTS may have infinitely many
labels due to parameters). The exception seems to be [TY01] where the authors
present a technique for obtaining an untimed abstraction of timed automata. In
timed automata semantics, the LTS also features infinitely many time transitions,
that is transitions labelled with a real number standing for time elapsed from the
source state. The abstractions yield by that technique feature an abstract time
transition when for every state represented by the source abstract state there exists
an amount of time to elapse and thus change to a state which maps to the target
of the abstract transition. That is, it works as an existential elimination of the
parameter value. Similarly, our technique exhibits a transition at the abstract level
if there may be at least one parameter value (and a concrete state) to jump to the

114 CHAPTER 8. RELATED WORK

target abstract state. Unlike [TY01], we do not require every concrete state to be
enabled to perform such a jump (i.e., we are not requiring pre-stability of the yielded
abstraction).

8.4. Contract Exploration

Other specification validation techniques such as the ones presented in [GKM`08b,
LB08, NFLTJ06] explore the state space of a given contract either symbolically or
concretely but they do not intend to construct a complete finite abstraction of it.
We believe the latter provides a global view that can aid the validation process in a
complementary manner.

The ideas presented in [VvLMP04] are also aimed at validation of specifications
by automatically constructing finite state machines from them. However, the con-
struction does not involve further abstraction: the language used for the pre and
postconditions requires bounding the number and values of propositions and predi-
cates.

8.5. Model Synthesis from Requirements

Techniques that construct FSMs from declarative requirements specifications [LKMU08]
have been proposed as a means to facilitate analysis of such specifications and to
support the transition to more design oriented modelling techniques. A particular
instance of these approaches is the construction of FSMs from pre/post condition
specifications. This approach differs from ours in that of their pre/post condition
specification language is propositional logic, the concrete state space is therefore
finite modulo bisimulation and that the resulting FSM has the same level of ab-
straction as the specification.

8.6. Testing-related Approaches

A level of abstraction somewhat related to that of enabledness has been used
in [LMS07]. The authors quotient the state space of a class based on its parameterless
boolean observers. The abstraction is not meant to represent behaviour (e.g., it does
not define transitions between states) but to define goals for test coverage criteria.
These models are then fed to an algorithm that attempts to create a test suite that
covers all of the states. Our work differs in two significant ways: (i) their approach
constructs the set of states using (a subset of the) class observers while we rely on (all
of the) class methods that change its state; and (ii) we do not require the presence
of a representative set of boolean observers in order to produce an abstraction.
The abstraction produced in [LMS07] is then highly dependent on the quantity and
quality of observers which may not have a correspondence with requires clauses,
therefore yielding a different result from ours.

In [GKM`08a] the state space of a model given by a set of precondition-guarded
actions is explored. They do not intend to construct a complete finite abstraction
out of it, but to explore it in order to generate test cases.

8.7. Model Mining

Our approach relates to the mining of temporal specifications (e.g., [DLWZ06,
GMM09, GS08, LMP08, DKM`10, BBSE11, PG09]), which aims at producing, from

8.8. MODELS AIMED AT HUMAN INSPECTION 115

traces, a finite state automaton that describes how a set of operations is used. Unlike
our approach, these techniques aim at inferring a specification which is used for test
case generation or verification. Furthermore, mining techniques have a dynamic
flavour, and thus heavily depend on the quality of the traces used as input. The
inferred models may have both under and overapproximations of the artefact under
analysis behaviour. On the other hand, our technique statically yields a model that
is an abstraction of the program’s source code, considering all possible paths.

The main difference with [GS08] is that the resulting automata are built from
the client’s actual usage of a set of operations rather than from the constraints of
usage provided by requires clauses.

Tools such as Adabu [DLWZ06] produce finite state machines whose states are
determined by a fixed level of abstraction ranging over the return values of the
inspectors in a class. For instance, integers are abstracted according to its sign,
therefore this technique is not suitable for differencing two significant concrete pro-
gram states distinguished by a different positive integer. Our approach depends
on the preconditions in order to create the set of states; if preconditions mention
specific integer values then Blast is going to consider them for us.

In [GMM09], a way to generalise component behaviour using samples taken
during a systematic bounded execution is presented. In a first step a deterministic
finite state machine is built using the sampled behaviour. This is then generalised
using graph transformation rules and invariant detection tools. If an implementation
were to be sampled using this technique then we would end up having a set of graph
rules tightly correlated to the original artefact. That is, the technique would traverse
the inverse path we define in our work.

A similar approach can be found in [LMP08], a technique in which behavioural
models that preserve data and control dependencies are mined out of execution
traces. In a first step, sets of traces that share the same actions are identified and
their parameters are abstracted away by applying Daikon. This produces a tree-
like representation in which then states are joined if they share a common k-future.
These techniques unsoundly generalise observed behaviour by applying invariant
detecting tools. Unlike our approach, the amount and quality of behaviour space
synthesized depend on the traces used as input. On the other hand, there is no clear
indication that yielded abstractions would be coarse enough for validation. The
models we produce can be seen as the k-tail abstraction [LMP08] (with k “ 1) of
the infinite set of traces for a given program.

Finally, [PG09] introduces a similar mining approach, but avoids the approxi-
mation introduced by learning algorithms. Each state in the model they produce
is mapped to a single method. A transition between two states (methods) is added
whenever one method is invoked after the other in an observed trace. Weights are
used to distinguish the most frequently observed method interactions.

8.8. Models Aimed at Human Inspection

As we previously stated, most of the models used in the typestate and interface
synthesis literature are used to feed engineering tasks such as verification and test-
case generation. These approaches build a model suitable for verification at the
cost of either: (i) aiming at verification of client code; or (ii) targeting a particular
property ϕ.

With respect to (i), even when it is an interesting and challenging problem,
we are currently not interested in checking client usage of an API. We are focused
in helping the developer determine if the API implementation provides (and only

116 CHAPTER 8. RELATED WORK

provides) the intended services. Determining this is prior to deciding if a client does
proper use of those services.

Regarding (ii), while it is sometimes taken for granted that a ϕ to be checked
against the API implementation exists, it is usually not a trivial problem getting
such ϕ. In some cases it is hard to come up with the given property in the first place.
In many cases the desired property is informally specified. How do we know that
ϕ is a correct formalization of the intended property? Even when having a correct
formalized ϕ, how do we know if it is enough, on its own, to guarantee that the API
implementation provides the intended services to its clients? Sometimes it suffices
to verify 2 or 3 properties, but how do we know if a set of properties Φ is enough?

If the developer has a property φ in mind, then EPAs may not have the best
level of abstraction to determine if such property holds. On the other hand, if the
developer does not have any property in mind, but instead wants to get a quick
overview of the behaviour space of the API implementation, EPAs can provide a
good starting point.

There are other approaches that, similarly to ours, aim at constructing models for
validation. For instance, the approach followed in [BBSE11] uses logging mechanisms
already in place and regular expressions to obtain behaviour models without too
much user intervention. The logs are mined looking for invariants encoding simple
temporal restrictions among operations. Then, models are produced such that they
satisfy every invariant found in the previous step. The results obtained in this case,
similarly to ours, have been successfully used to guide human validation processes
such as program understanding or bug confirmation. However, the tool presented
at [BBSE11] requires a logging mechanism in place, something which is not generally
available in an early development stage on which we envision Contractor being
applied. We therefore think this approach is complementary to ours.

Another example of synthesised models being used for human inspection is in-
troduced in [DR09]. Authors present a technique to dynamically construct role
transition diagrams (among other models), which have a resemblance to typestates.
These models are used, together with a powerful graphical user interface, to support
program understanding tasks.

8.9. User-studies On Understanding of Inferred Models

While model inference is an active field of research, empirical evidence of how
users understand and interact with the synthesised models is often missing or anec-
dotal [CZvD`09, TTDBS07, PGKG08]. However, in the last couple of years there
have been some interesting controlled experiments in the area (e.g. [SHKR12]), and
the tendency is gaining momentum.

The technique presented in [BBSE11], already discussed in this chapter, presents
a model mining technique based in leveraging existing logging infrastructure. The
authors claim that these models are suitable for human inspection and provide
evidence from a case study involving a single developer as well as a user study
involving 45 students divided in groups of 2–4. While authors found evidence of
the usefulness of the mined models, their interpretation of the user study results is
mostly qualitative, omitting statical analyses.

Another user study is presented in [SHKR12], where the authors analyse devel-
opers’ ability to classify likely invariants produced by Daikon [EPG`07] as either
correct or incorrect. Similarly to our study, participants had to determine whether a
behaviour abstraction is well aligned with their understanding of the original source
code. In their setting, the initial classification of invariants involves human partici-

8.9. USER-STUDIES ON UNDERSTANDING OF INFERRED MODELS 117

pation and is therefore not 100% accurate. In our setting we know by construction
which EPAs correspond to the original program and which ones to defective versions
of it. Another qualitative study of inferred likely invariants is presented in [PCM08].

More recently, in the context of program verification, [DDA12] explores whether
a static analysis technique can help users to manually determine if the failure to
verify a program was due to limitations of the engine or due to an actual bug. They
present a user-study which provides statically-significant evidence and show that
the hints given by their tool dramatically increased user accuracy. The aim of their
study is similar in the sense they show that the outcome of a program analysis
technique can facilitate manual validation.

CHAPTER 9

Conclusion

In the first part of this work we introduced and studied enabledness-preserving
abstractions (or EPAs), a coarse-grained behaviour abstraction for an API usage
protocol which is aimed at human inspection. We presented algorithms that can
statically and automatically construct EPAs either from an API specification or
an API implementation. These algorithms were implemented into an open-source
tool called Contractor, which includes a number of features designed to assist
developers using EPAs for validation tasks.

The second part of this document presented evidence in favor of our claim that
EPAs are a valuable companion for developers. More concretely, we reported the
result of a series of case studies where experts analised EPAs for industrial-strength
APIs uncovering interesting findings on the way. As a consequence, we crafted a list
of validation guidelines that can help reviewers identify suspicious EPA elements. We
complemented these case studies by exploring how sensitive EPAs are: a key question
when dealing with a coarse-grained abstraction. The last part of our validation was
via three controlled experiments where developers were asked to decide whether an
EPA presented suspicious elements or not.

On the last part of this work we explored related approaches. To the best of
our knowledge our approach is the first to statically and automatically construct
overapproximated models suitable for human inspection.

9.1. Future Work

We believe that there are various items that would improve our approach.

First, we plan to improve the tool support for our approach to validation. Au-
tomatic extraction of the requires clauses and guessing a candidate invariant would
make it much easier for developers generating EPAs. Automatic splitting of requires
clauses is also of interest, specially since our current approach deals automatically
with a limited set of requires clause patterns.

Automatically suggesting interesting EPA refinements to the developer appears
promising, specially in very large EPAs. Refining the model in real-time while the
developer explores it could create a “zooming” effect that could help him to get a
better understanding. Our tool can also be enhanced by automating as many items
on our validation guidelines as possible.

Exploring other EPA construction mechanisms also appears as an interesting

119

120 CHAPTER 9. CONCLUSION

research path. We have already developed some preliminary results in generating
EPAs from .NET code using a verification engine in [ZBdC`11]. That same work ex-
plores the possibility of using EPAs to verify client code, which is not their intended
use, but still offers promising possibilities.

Finally, we believe that we can augment EPAs to include elements from other
types of models aimed to be consumed by humans, such as likely invariants or usage
scenarios.

9.2. Outlook

Overall, we believe, and our experience confirms, that EPAs provide an interest-
ing trade-off between expressiveness and understandability. In other words, EPAs
are sensitive enough to be altered by most of the seeded defects that we consid-
ered, but still simple enough for most of the developers to actually understand these
changes. Our experience with the case studies confirms our claim that EPAs can
indeed play an important role in the validation of software artefacts with non-trivial
usage protocols.

More importantly, we believe that this work opens the door to a broader an
deeper study of coarse-grained models aimed at human-intensive tasks. Tradition-
ally, many methodologies have focused on inferring safe, fine-grained models that
can be used as input to other techniques such as verification. While these mod-
els have proven their value, the safety requirement sometimes comes at the price
of restrictions on the input artefact or skyrocketing construction times. This work
presents evidence that i) coarse-grained models are affordable, and ii) they can play
a key role in human-intensive development activities.

Finally, we explored coarse-grained behaviour abstractions that are permissive
but not safe. We believe that this work can be complemented in two ways:

1. By considering coarse-grained abstractions for artefacts other than APIs. For
instance, creating models that developers can use to better understand their
programs in terms of their structure or features.

2. By studying coarse-grained behaviour abstractions that are safe but not per-
missive. Having both kinds of models could help the developer figure out lower
and upper bounds for the admissible legal usage of an API.

Bibliography

[ACH`95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical computer science, 138(1):3–
34, 1995.

[AČMN05] R. Alur, P. Černỳ, P. Madhusudan, and W. Nam. Synthesis of in-
terface specifications for Java classes. In POPL ’05, pages 98–109,
2005.

[BA08] K. Bierhoff and J. Aldrich. Plural: checking protocol compliance under
aliasing. In ICSE, pages 971–972. ACM, 2008.

[BB04] C. Barrett and S. Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Proceedings of the 16 th International
Conference on Computer Aided Verification (CAV ’04), pages 515–
518, 2004.

[BBSE11] I. Beschastnikh, Y. Brun, S.S.M. Sloan, and M.D. Ernst. Leveraging
existing instrumentation to automatically infer invariant-constrained
models. In FSE 2011, 2011.

[BHJM07] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. The software
model checker Blast. STTT, 9:505–525, 2007.

[BKA11] Nels E. Beckman, Duri Kim, , and Jonathan Aldrich. An empirical
study of object protocols in the wild. In ECOOP 2011, 2011.

[BN11] N.E. Beckman and A.V. Nori. Probabilistic, modular and scalable
inference of typestate specifications. PLDI, 2011.

[CGN`05] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Till-
mann, and M. Veanes. Model-based testing of object-oriented reactive
systems with Spec Explorer. Microsoft Research MSR-TR-2005-59,
May, 2005.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[CK05] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML.
Lecture Notes in Computer Science, pages 108–128, 2005.

121

122 BIBLIOGRAPHY

[CZvD`09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke. A systematic survey of program comprehension through
dynamic analysis. TSE, 35(5):684–702, 2009.

[dCBGU09] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Valida-
tion of contracts using enabledness preserving finite state abstractions.
In ICSE ’09, pages 452–462, 2009.

[dCBGU11] Guido de Caso, Vı́ctor A. Braberman, Diego Garbervetsky, and Se-
bastián Uchitel. Program abstractions for behaviour validation. In
Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011,
pages 381–390, 2011.

[dCBGU12a] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Au-
tomated abstractions for contract validation. IEEE Transactions on
Software Engineering, 38(1):141 –162, Jan.-Feb. 2012.

[dCBGU12b] Guido de Caso, Vı́ctor A. Braberman, Diego Garbervetsky, and Se-
bastián Uchitel. Abstractions for validation in action. LNCS, 7320,
2012.

[DDA12] I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis using
abductive inference. In PLDI 2012, pages 181–192. ACM, 2012.

[DdM06] B. Dutertre and L. de Moura. The Yices SMT solver. Available a t
http://yices. csl. sri. com/, August, 2006.

[DF01] R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-
level software. In PLDI ’01, pages 59–69, 2001.

[DF04] R. DeLine and M. Fahndrich. Typestates for Objects. Ecoop 2004-
Object-Oriented Programming: 18th European Conference, Oslo, Nor-
way, June, 2004: Proceedings, 2004.

[Dij75] E.W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
1975.

[DKM`10] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian
Hack, and Andreas Zeller. Generating test cases for specification min-
ing. In ISSTA 2010, 2010.

[DLWZ06] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object
behavior with ADABU. In Workshop on Dynamic systems analysis
’06, 2006.

[DMB08] L. De Moura and N. Bjørner. Z3: An efficient smt solver. Tools
and Algorithms for the Construction and Analysis of Systems, pages
337–340, 2008.

[DR09] Brian Demsky and Martin Rinard. Automatic extraction of heap ref-
erence properties in object-oriented programs. IEEE Transactions on
Software Engineering, 35:305–324, 2009.

BIBLIOGRAPHY 123

[EPG`07] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely in-
variants. Science of Computer Programming, 69:35–45, 2007.

[Esp97a] J. Esparza. Decidability of model checking for infinite-state concurrent
systems. Acta Informatica, 34:85–107, February 1997.

[Esp97b] Javier Esparza. Decidability of model checking for infinite-state con-
current systems. Acta Informatica, 34:85–107, 1997.

[GGSV02] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus
Veanes. Generating finite state machines from abstract state machines.
In ISSTA ’02, pages 112–122, 2002.

[GJHV95] E. Gamma, R. Johnson, R. Helm, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Profes-
sional, 1995.

[GKM`08a] W. Grieskamp, N. Kicillof, D. MacDonald, A. Nandan, K. Stobie,
and F. Wurden. Model-based quality assurance of Windows protocol
documentation. In ICST ’08, pages 502–506, 2008.

[GKM`08b] Wolfgang Grieskamp, Nicolas Kicillof, Dave MacDonald, Alok Nan-
dan, Keith Stobie, and Fred L. Wurden. Model-based quality assur-
ance of Windows protocol documentation. In ICST, pages 502–506.
IEEE Computer Society, 2008.

[GKSB11] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman. Model-based
quality assurance of protocol documentation: tools and methodology.
Software Testing, Verification and Reliability, 21(1):55–71, 2011.

[GMM09] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior
models by graph transformation. In ICSE ’09, pages 430–440, 2009.

[GP09] D. Giannakopoulou and C.S. Păsăreanu. Interface generation and
compositional verification in JavaPathfinder. In FASE ’09, pages 94–
108, 2009.

[GPL07] Gnu general public license, version 3. http://www.gnu.org/

licenses/gpl.html, June 2007. Last retrieved 2012-05-10.

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs
with PVS. In CAV ’97, pages 72–83, 1997.

[GS08] M. Gabel and Z. Su. Symbolic mining of temporal specifications. In
ICSE ’08, pages 51–60, 2008.

[Har87] David Harel. StateCharts: A Visual Formalism for Complex Systems.
Science of Comp. Program., 8:231–274, 1987.

[HJL96] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consis-
tency checking of requirements specifications. ACM Transactions on
Software Engineering and Methodology (TOSEM), 5(3):231–261, 1996.

[HJM05] T.A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces.
In ESEC/FSE ’05, pages 31–40, 2005.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

124 BIBLIOGRAPHY

[HMU07] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to au-
tomata theory, languages, and computation. Addison-wesley, 2007.

[Hod97] Wilfrid Hodges. A shorter model theory. Cambridge University Press,
Cambridge New York, 1997.

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminology,
September 1990.

[JH08] Y. Jia and M. Harman. Milu: A customizable, runtime-optimized
higher order mutation testing tool for the full c language. In TAIC
PART 2008, pages 94–98. IEEE, 2008.

[JH11] Yue Jia and M. Harman. An analysis and survey of the development
of mutation testing. TSE, 37(5):649 –678, sept.-oct. 2011.

[KFR`95] J. Klensin, N. Freed, M. Rose, E. Stefferud, and D. Crocker. Smtp
service extensions. Technical report, RFC 2846, November, 1995.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verifi-
cation of probabilistic real-time systems. In G. Gopalakrishnan and
S. Qadeer, editors, Proc. 23rd International Conference on Computer
Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591.
Springer, 2011.

[KPV03] S. Khurshid, C. PĂsĂreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. Tools and Algorithms for
the Construction and Analysis of Systems, pages 553–568, 2003.

[Kra07] Jeff Kramer. Is abstraction the key to computing? Commun. ACM,
50:36–42, April 2007.

[KV07] P.H. Kvam and B. Vidakovic. Nonparametric statistics with applica-
tions to science and engineering, volume 653. John Wiley & Sons,
2007.

[LB08] M. Leuschel and M. Butler. ProB: an automated analysis toolset for
the B method. International Journal on Software Tools for Technology
Transfer (STTT), 10(2):185–203, 2008.

[Lin93] J. Linn. RFC1508: Generic Security Service Application Program
Interface. RFC Editor United States, 1993.

[LKMU08] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based
transition systems from goal-oriented requirements models. Auto-
mated Software Engineering Journal, 15(2):175–206, 2008.

[LMP08] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of
software behavioral models. In ICSE ’08, pages 501–510, 2008.

[LMS07] L. Liu, B. Meyer, and B. Schoeller. Using contracts and boolean
queries to improve the quality of automatic test generation. In TAP
’07, pages 114–130, 2007.

[LY92] D. Lee and M. Yannakakis. Online minimization of transition systems
(extended abstract). In STOC ’92, pages 264–274, 1992.

BIBLIOGRAPHY 125

[MAV05] C. Metayer, J.R. Abrial, and L. Voisin. Event-b language. RODIN
Project Deliverable D, 7, 2005.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer-Verlag,
1980.

[MS-08] [MS-NNS]: .NET NegotiateStream Protocol Specification v2.0, July
2008. http://msdn.microsoft.com/en-us/library/cc236723.

aspx.

[MS-09a] [MS-PCCRR]: Peer Content Caching and Retrieval: Retrieval Proto-
col Specification v2.0.1, December 2009. http://msdn.microsoft.

com/en-us/library/dd304175(PROT.13).aspx.

[MS-09b] [MS-WINSRA]: Windows Internet Naming Service (WINS) Repli-
cation and Autodiscovery Protocol Specification, May 2009.
http://msdn.microsoft.com/en-us/library/dd357279%28PROT.

10%29.aspx.

[NFLTJ06] C. Nebut, F. Fleurey, Y. Le Traon, and J.M. Jézéquel. Automatic
Test Generation: A Use Case Driven Approach. IEEE TSE, pages
140–155, 2006.

[NGC05] M.G. Nanda, C. Grothoff, and S. Chandra. Deriving object typestates
in the presence of inter-object references. ACM SIGPLAN Notices,
40(10):77–96, 2005.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer, 2002.

[PCM08] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study of
programmer-written and automatically inferred contracts, 2008.

[PE07] C. Pacheco and M.D. Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion,
pages 815–816. ACM, 2007.

[PG09] Michael Pradel and Thomas R. Gross. Automatic Generation of Ob-
ject Usage Specifications from Large Method Traces. In ASE 2009,
pages 371–382. IEEE, November 2009.

[PGKG08] M. Pinzger, K. Gräfenhain, P. Knab, and H.C. Gall. Incremental
visual understanding of Java source code. Technical report, U. of
Zurich, 2008.

[RT06] S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. De-
partment of Computer Science, The University of Iowa, Tech. Rep,
2006.

[SA06] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and
explicit path model-checking tools. In Computer Aided Verification,
pages 419–423. Springer, 2006.

[SD06] J. Sun and J.S. Dong. Design Synthesis from Interaction and State-
Based Specifications. IEEE TSE, 2006.

http://msdn.microsoft.com/en-us/library/cc236723.aspx
http://msdn.microsoft.com/en-us/library/cc236723.aspx
http://msdn.microsoft.com/en-us/library/dd304175(PROT.13).aspx
http://msdn.microsoft.com/en-us/library/dd304175(PROT.13).aspx
http://msdn.microsoft.com/en-us/library/dd357279%28PROT.10%29.aspx
http://msdn.microsoft.com/en-us/library/dd357279%28PROT.10%29.aspx

126 BIBLIOGRAPHY

[SDK`11] Raimondas Sasnauskas, Oscar Soria Dustmann, Benjamin Lucien
Kaminski, Klaus Wehrle, Carsten Weise, and Stefan Kowalewski. Scal-
able symbolic execution of distributed systems. In Proceedings of the
2011 31st International Conference on Distributed Computing Sys-
tems, ICDCS ’11, pages 333–342, Washington, DC, USA, 2011. IEEE
Computer Society.

[SHKR12] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. Un-
derstanding user understanding: determining correctness of generated
program invariants. In ISSTA 2012, pages 188–198, New York, NY,
USA, 2012. ACM.

[Spi92] J.M. Spivey. The Z notation: a reference manual. Prentice Hall In-
ternational (UK) Ltd., 1992.

[SY86] RE Strom and S. Yemini. Typestate: A programming language con-
cept for enhancing software reliability. IEEE TSE, 12(1):157–171,
1986.

[Tca10] Alexis Tcach. Contract simulation via enabledness-based behaviour
abstractions. Master’s thesis, Departamento de Computación,
FCEyN, Universidad de Buenos Aires, 2010.

[TTDBS07] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä. Empirical studies
in reverse engineering: state of the art and future trends. Empirical
Software Engineering, 12(5):551–571, 2007.

[TY01] S. Tripakis and S. Yovine. Analysis of Timed Systems Using
Time-Abstracting Bisimulations. Formal Methods in System Design,
18(1):25–68, 2001.

[Uri99] Tomas Uribe. Abstraction-based Deductive-algorithmic Verification of
Reactive Systems. Stanford University, Dept. of Computer Science,
1999.

[Val98] Antti Valmari. The state explosion problem. In Wolfgang Reisig and
Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science, pages 429–528.
Springer Berlin / Heidelberg, 1998.

[VvLMP04] H.T. Van, A. van Lamsweerde, P. Massonet, and C. Ponsard. Goal-
oriented requirements animation. In Requirements Engineering Con-
ference, 2004., pages 218–228, 2004.

[WSCF00] J. Whittle, J. Schumann, N.A.R. Center, and M. Field. Generating
statechart designs from scenarios. In ICSE ’00, pages 314–323, 2000.

[ZBdC`11] Edgardo Zoppi, Vı́ctor Braberman, Guido de Caso, Diego Garbervet-
sky, and Sebastián Uchitel. Contractor.net: inferring typestate prop-
erties to enrich code contracts. In Proceeding of the 1st workshop on
Developing tools as plug-ins, TOPI ’11, pages 44–47, New York, NY,
USA, 2011. ACM.

List of Figures

2.1. Specification of a circular buffer . 12

2.2. Circular buffer finite abstraction . 13

2.3. Corrected circular buffer finite abstraction 14

2.4. Circular buffer with reset . 14

2.5. A singly-linked list C implementation 15

2.6. Singly-linked list enabledness abstraction 15

3.1. Finite fragment of the list underlying LTS 24

4.1. Partially explored List EPA . 48

5.1. Executed queries on each case study 57

5.2. Running time on each case study . 57

5.3. The Contractor explorer in action on the MS-NSS protocol 59

5.4. EPA for the singly-linked list with extra predicate 60

5.5. EPA for the singly-linked list with extra predicates and refined remove

action . 61

6.1. Specification of a web page fetcher 66

6.2. EPA for the web page fetcher . 67

6.3. Specification of an ATM (extracted from [WSCF00]) 67

6.4. EPA for the ATM . 68

6.5. Experimental setup for the MS-NSS case study 69

6.6. MS-NSS documentation fragment and corresponding translation . . 70

6.7. EPA for the NegotiateStream protocol 71

6.8. Experimental setup for the WINSRA case study 74

6.9. Buggy specification for association start request (fragment) 75

6.10. EPA of JDK 1.4 PipedOutputStream 77

6.11. EPA of JDK 1.4 Signature . 78

6.12. Manually generated model of JDK 1.4 Signature (extracted from [DKM`10]).
init indicates the constructor, while ex is an error state reached when
exceptions are thrown . 79

6.13. EPA of JDK 1.4 ListItr . 79

6.14. Manually generated ListItr behaviour model 81

6.15. First EPA of JDK 1.4 Socket . 82

6.16. Final EPA of JDK 1.4 Socket . 83

6.17. First EPA of the MS-PCCRR server side 85

127

128 LIST OF FIGURES

6.18. Second EPA of the MS-PCCRR server side (eliminated the isTestingNego
field) . 87

6.19. EPA for SMTP protocol server class 88
6.20. EPA for SMTP protocol client class 89
6.21. Manually generated model for SMTP protocol client class (extracted

from [DKM`10]) . 89

7.1. Experimental setup . 95
7.2. User effectiveness classifying original EPAs 102
7.3. User effectiveness classifying affected EPAs 103

List of Tables

5.1. Case studies specification APIs’ size information 55
5.2. Case studies implementation APIs’ size information 55
5.3. Case studies subjects’ requires clauses splitting information 55
5.4. Executed queries and running times by each implementation 56

7.1. Overview of case examples and results for R.Q. 3 97
7.2. Mutant impact on the EPAs . 97
7.3. Manual analysis of surviving mutants that add transitions 98
7.4. Mutant detection capabilities of EPAs and test-suite 99
7.5. Proportion of correctly classified EPAs 102
7.6. p-values for normal fit of H1 . 103
7.7. p-values for Wilcoxon test of H3 . 105
7.8. Affected transitions — effectiveness correlations 105
7.9. Participant’s background — effectiveness correlations 106

8.1. Related work summary . 112

129

	Portada
	Resumen
	Abstract
	Agradecimientos
	Contents
	1. Introduction
	2. Motivation
	3. Formal Setting
	4. EPA Construction
	5. Implementation
	6. Validation using EPAs
	7. Studying EPAs Expressiveness and Understandability
	8. Related Work
	9. Conclusion
	Bibliography
	List of Figures
	List of Tables

